
see more please visit: https://homeofpdf.com

Learning Game Physics with
Bullet Physics and OpenGL

Practical 3D physics simulation experience with
modern feature-rich graphics and physics APIs

Chris Dickinson

BIRMINGHAM - MUMBAI

see more please visit: https://homeofpdf.com

Learning Game Physics with Bullet Physics
and OpenGL

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1181013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-187-9

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

see more please visit: https://homeofpdf.com

Credits

Author
Chris Dickinson

Reviewers
Marco Altomonte

Ian Voyce

Acquisition Editor
Vinay Argekar

Commissioning Editor
Poonam Jain

Technical Editor
Shali Sasidharan

Project Coordinator
Amigya Khurana

Proofreader
Lesley Harrison

Indexer
Monica Ajmera Mehta

Graphics
Ronak Dhruv

Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

see more please visit: https://homeofpdf.com

About the Author

Chris Dickinson grew up in England with a strong passion for science,
mathematics, and, in particular, video games. He received his Master's degree in
Physics with Electronics from the University of Leeds in 2005, and then left for
California to work in scientific research in the heart of Silicon Valley. Finding that
career path unsuitable, he began working in software testing and automation.

For years, he attempted to unravel the magic behind video games and 3D worlds
through modding and level design, and was mostly self taught in software
development and design. But, realizing that he needed proper tutelage and a
stronger grasp of the fundamentals, if he ever wanted to build these complex
applications himself, he decided to undertake a Bachelor's in Game and Simulation
Programming while simultaneously working full time. He earned his second degree
in early 2013 and continues his career in software development/test automation
while simultaneously developing independent game projects in his spare time.

I would like to thank my wonderful wife and best friend, Jamie,
for always being supportive, and eager to help; not to mention, for
putting up with me and my never-ending list of projects and erratic
work schedule. I'd also like to extend a warm thanks to the good
folks at Blizzard Entertainment for bringing us together through a
shared addiction to World of Warcraft. Also, my friends, for their
constant pestering and high expectations of me to get things done,
and, of course, my family for unleashing me on the world and giving
me all of the possibilities I was able to explore. To have learned,
lived, and loved so much in such a short space of time is only thanks
to the opportunities and motivation given to me by all of you.

see more please visit: https://homeofpdf.com

About the Reviewers

Marco Altomonte is working for Milestone S.r.l. on the graphics engine used in
multiplatform video games, such as MotoGP, World Rally Championship, and SBK.

He developed the XNA game, RC Racing 360, published on Microsoft Live
Marketplace for Xbox 360.

He worked for ALTAIR Robotics Lab in Robotics and Physics Simulation department.
He developed a GPGPU (General-purpose computing on graphics processing units)
soft body simulator with haptic feedback for a surgeon training software.

He authored Simulation of deformable environment with haptic feedback on GPU,
published in Proceedings 3959-3964, IROS 2008: International Conference on
Intelligent Robots and Systems.

Ian Voyce is a developer with a broad range of experience gained over many
years in the software industry. He has worked for a variety of clients from
advertising agencies to investment banks, as well as made several independent
releases to the Apple AppStore.

He has a background in creative computing and user experience with in-depth
technical knowledge and a professional specialism in quantitative development. He
tries to find the time to combine his favorite pursuits of blogging (at www.voyce.com),
creating and playing games, and spending quality of time with his two daughters.

see more please visit: https://homeofpdf.com

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

see more please visit: https://homeofpdf.com

Table of Contents
Preface 1
Chapter 1: Building a Game Application 7

Application components 7
Exploring the Bullet and FreeGLUT projects 8
Exploring Bullet's built-in demo applications 9
Starting a new project 10
Building the application layer 11

Configuring FreeGLUT 11
glutKeyboardFunc/glutKeyboardUpFunc 13
glutSpecialFunc/glutSpecialUpFunc 13
glutMouseFunc 13
glutMotionFunc/glutPassiveMotionFunc 13
glutReshapeFunc 14
glutDisplayFunc 14
glutIdleFunc 14

Initializing FreeGLUT 14
glutInit 15
glutInitDisplayMode 15
glutInitWindowPosition/glutInitWindowSize 15
glutCreateWindow 15
glutSetOption 15

Launching FreeGLUT 16
Summary 17

Chapter 2: Rendering and User Input 19
Rendering the scene 19

Introducing double-buffering 20
Understanding the basics of a camera 22

glIdentity 23
glFrustum 23
gluLookAt 24
glViewport 24

see more please visit: https://homeofpdf.com

Table of Contents

[ii]

Basic rendering and lighting 25
Creating a simple box 25

Let there be light! 26
Normals 27
Creating ambient, diffuse, and specular lighting 27
Understanding depth testing 28

glLightfv 30
glEnable 30

glMaterialfv/glMateriali 30
glShadeModel 31
glDepthFunc 31

Coloring your box 32
Understanding rendering pipelines 33

User input and camera control 34
Implementing camera control 34
Gathering user input 35

Summary 36
Chapter 3: Physics Initialization 37

The core bullet objects 37
The world object 38
The broad phase 38
The collision configuration 41
The collision dispatcher 41
The constraint solver 41

Creating the Bullet components 42
Creating our first physics object 42

The collision shape 43
The motion state 44
The collision object 45

Building a custom motion state 45
Creating a box 46
Rendering from transform data 47
Stepping the simulation 47
Summary 49

Chapter 4: Object Management and Debug Rendering 51
Handling multiple objects 51

Designing our objects 52
Rendering our objects 53
Storing our objects 54
Creating our objects 55

see more please visit: https://homeofpdf.com

Table of Contents

[iii]

Debug rendering 57
Building the debug drawer 57

Introducing activation states 59
The domino effect 60
Summary 61

Chapter 5: Raycasting and Constraints 63
The power of raycasting 63

Picking rays 64
Destroying objects 66
Constraints 67
Understanding constraints 68

Picking up objects 68
Building a constraint 69

Summary 73
Chapter 6: Events, Triggers, and Explosions 75

Building a collision event system 75
Explaining the persistent manifolds 76
Managing the collision event 77

Building trigger volumes 80
Disabling contact response 81

Force, torque, and impulse 82
Understanding the object motion 83
Applying forces 84

Applying impulses 86
Summary 88

Chapter 7: Collision Shapes 89
Spheres and cylinders 89
Convex hulls 91

Creating convex hulls from mesh data 94
Compound shapes 94
Summary 97

Chapter 8: Collision Filtering 99
Groups and masks 99

Defining linear and angular freedom 101
Summary 102

see more please visit: https://homeofpdf.com

Table of Contents

[iv]

Chapter 9: Soft Body Dynamics 103
Soft body requirements 103

Initialization 104
Creating soft bodies 105
Rendering soft bodies 106

Summary 108
Index 109

see more please visit: https://homeofpdf.com

Preface
Modern 3D graphics and game physics can seem like complex and confusing
elements of game development from the outside, but this book will reveal what's
going on under the hood of two modern and feature-rich graphics and physics APIs:
OpenGL and Bullet physics. After you finish this book, you'll be armed with a wealth
of knowledge to tackle some of the more advanced aspects of game graphics and
physics going forward.

This book can't hope to show all of the concepts and intricacies of modern physics
and 3D graphical rendering, but it will cover all of the fundamentals in enough
detail to let you hit the ground running when you take on future challenges. And
if those challenges involve building an application with the Bullet physics library,
then all the better, because you will also learn exactly how this library works from
the ground up and help you focus on only the important parts of what you need to
know about simulating game physics.

What this book covers
Chapter 1, Building a Game Application, identifies the files and libraries required to
incorporate the FreeGLUT and Bullet libraries into a starter project, and how to
build an application layer to communicate with the operating system.

Chapter 2, Rendering and User Input, introduces some core 3D rendering concepts,
implements our very first graphical object complete with lighting and color, and
adds user input to our application to control the scene's camera.

Chapter 3, Physics Initialization, introduces the essential concepts of Bullet and the core
objects required to build our physics simulation, and attaches a physical rigid body
to our graphical object, observing how physics and graphics work together to create
a simulated world.

see more please visit: https://homeofpdf.com

Preface

[2]

Chapter 4, Object Management and Debug Rendering, runs through some essential
refactoring of the code in order to better handle multiple objects, and adds debug
rendering to our scene, enabling us to visualize essential information from the
physics engine.

Chapter 5, Raycasting and Constraints, introduces the flexibility of raycasting
in finding, creating, and destroying objects, and will show us how to add
limitations to the motion of our physical objects, allowing even greater control
of the objects in our simulation.

Chapter 6, Events, Triggers, and Explosions, implements a simple and effective method
for extracting collision event information out of Bullet, builds a basic trigger volume
that can trigger these events, and demonstrates the power of these features by
simulating an explosion.

Chapter 7, Collision Shapes, introduces several new types of physical object and
methods for rendering them from basic spheres and cylinders to shapes built
from any arbitrary list of points.

Chapter 8, Collision Filtering, implements a means of separating unwanted contact
responses through a simple filtering method.

Chapter 9, Soft Body Dynamics, provides a brief look at complex soft body shapes
and their requirements, and implements one into our scene.

What you need for this book
An intermediate level of understanding of the C++ language is required for this
book as it is not a programming tutorial, but rather an exploration of existing APIs
that have already been through countless hours of development. Also, a working
knowledge of 3D mathematics is essential as it is assumed that you have a good
understanding of concepts such as vectors and matrices, and how they can be used
to represent a 3D space.

A C++ compiler is necessary to compile the book's source code applications. This
book uses Visual Studio as a reference, and the source code comes with the Visual
Studio solution files. Note that Visual Studio Express can be downloaded from the
Microsoft website for free, and it has all of the features necessary to compile the
source code and complete this book.

see more please visit: https://homeofpdf.com

Preface

[3]

Finally, the Bullet and FreeGLUT libraries will be used, but since they are open
source software, they can be freely downloaded from their project websites, which
will be explained in Chapter 1, Building a Game Application.

Who this book is for
If you're a beginner or intermediate programmer with a basic understanding of 3D
mathematics and you want a stronger foundation in 3D graphics and physics, then
this book is perfect for you! Learning Game Physics with Bullet Physics and OpenGL
will take you through a series of straightforward tutorials until you have a strong
foundation in both APIs. You'll even learn some of the fundamental concepts in
3D mathematics, and software design that lies beneath them both, discovering
some techniques and tricks in graphics and physics that you will use in any game
development project.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The glutKeyboardFunc and
glutKeyboardUpFunc functions are called when FreeGLUT detects that
a keyboard key has been pressed down or up, respectively."

A block of code is set as follows:

int main(int argc, char** argv)
{
 BulletOpenGLApplication demo;
 return glutmain(argc, argv, 1024, 768, "Introduction to Game
 Physics with Bullet Physics and OpenGL", &demo);
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

DrawBox(btVector3(1, 1, 1), btVector3(1.0f, 0.2f, 0.2f));

see more please visit: https://homeofpdf.com

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "To run a
different project, right-click on one of the projects, and select Set as StartUp Project."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

see more please visit: https://homeofpdf.com

Preface

[5]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/1879OS_ColoredImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission will
be accepted and the errata will be uploaded to our website, or added to any list of
existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
\pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Building a Game Application
In this chapter we will set up our Visual Studio project and build a basic OpenGL
application from scratch. We will be using this application throughout the book by
extending its capabilities and introducing more features in the later chapters.

We are not going to build anything as complex as the latest multimillion dollar
budget First-person shooter or Real-time strategy games in a scant 100 pages, but
we are going to learn as much as we can about using OpenGL graphics and Bullet
physics by writing small 3D demos. These demos will teach you the foundations
necessary to build customized physics and graphical effects in other game projects.
Sounds fun? Then let's get started!

Application components
In order to create the simple 3D game demo applications of this book, we will need
the following four essential components:

• Application layer
• Physics
• Graphics
• Input handling

The reason for the application layer should be pretty obvious; it provides a
starting point to work with, even if it's just a blank window. Meanwhile, we
need the remaining components to provide two important elements of any
game: visuals and interactivity. If you can't see anything, and you can't interact
with it, it would be quite a stretch to claim that what you have is a game!

see more please visit: https://homeofpdf.com

Building a Game Application

[8]

These are the essential building blocks or components of most games and game
engines, and it's important to note that each of them is independent of the rest.
When we write code to implement or change the visualization of our objects, we
don't want to have to worry about changing anything in the physics system at the
same time. This decoupling makes it easy to make these components as simple or
complex as we desire.

Of course, a modern game or game engine will have many more components than
this, such as networking, animation, resource management, and even audio; but
these won't be necessary for the applications in this book since we are focussed on
learning about physics and graphics with two specific libraries: Bullet and OpenGL
respectively. However, the beauty of component-based design is that there's nothing
that stops us from grabbing an audio library such as FMOD and giving the demos
some much needed sound effects and background music, thus bringing them one
step closer to being real games.

Bullet is a physics engine and it is important to realize that Bullet is only a physics
simulation solution. It does not provide a means for visualizing its objects and
it never promises to. The authors of the library assume that we will provide an
independent means of rendering, so that they can focus on making the library as
feature-rich in physics as possible. Therefore, in order to visualize Bullet's objects,
we will be using OpenGL. But, OpenGL itself is a very low-level library that is as
close to the graphics-card hardware as you can get. This makes it very unwieldy,
complicated, and frustrating to work with, unless you really want to get into the
nuts and bolts of 3D graphics.

To spare us from such hair-pulling frustration, we will be using FreeGLUT. This is
a library which encapsulates and simplifies OpenGL instructions (such libraries are
often called wrappers) and, as a bonus, takes care of application bootup, control, and
input handling as well. So, with just Bullet and FreeGLUT, we have everything that
we need to begin building our first game application.

Exploring the Bullet and FreeGLUT
projects
Packaged versions of the Bullet and FreeGLUT projects can be found with this
book's source code, which can be downloaded from the PACKT website at:
http://www.packtpub.com/learning-game-physics-with-bullet-physics-
and-opengl/book

see more please visit: https://homeofpdf.com

Chapter 1

[9]

Note that this book uses Bullet Version 2.81. As of the time of
writing, Bullet is undergoing an overhaul in Version 3.x to make use
of multiprocessor environments and push physics processing onto
GPUs. Check this github repository for more information:
http://github.com/erwincoumans/bullet3

Bullet and FreeGLUT can also be downloaded from their respective project websites:

• http://bulletphysics.org

• http://freeglut.sourceforge.net

Bullet and FreeGLUT are both open source libraries, licensed under the zlib
and X-Consortium/MIT licenses, respectively. The details can be found at:

http://opensource.org/licenses/zlib-license.php

http://opensource.org/licenses/MIT

Also, the main website for OpenGL itself is: http://www.opengl.org

Exploring Bullet's built-in demo
applications
A lot of the designing and coding throughout this book is based upon, and very
closely mimics the design of Bullet's own demo applications. This was intentional for
good reason; if you can understand everything in this book, you can dig through all
of Bullet's demo applications without having to absorb hundreds of lines of code at
once. You will also have an understanding of how to use the API from top to bottom.

One significant difference between this book and Bullet's demos is that Bullet uses
GLUT (OpenGL Utility Toolkit) for rendering, while this book uses FreeGLUT.
This library was chosen partly because FreeGLUT is open source, allowing you
to browse through its internals if you wish to, and partly because GLUT has not
received an update since 1998 (the main reason why FreeGLUT was built to replace
it). But, for our purposes, GLUT and FreeGLUT are essentially identical, even
down to the function names they use, so it should be intuitive to compare and find
similarities between Bullet's demo applications and the applications we will be
building throughout this book.

see more please visit: https://homeofpdf.com

Building a Game Application

[10]

You can examine the Bullet application demos by opening the following project
file in Visual Studio:

<Bullet installation folder>\build\vs2010\0BulletSolution.sln

This would be a good time to open this project, compile, and launch some demos.
This will help us to get a feel for the kinds of applications we will be building.

To run a different project, right-click on one of the projects,
select Set as StartUp Project, and hit F5.

Starting a new project
Linking the library and header files into a new project can be an exhausting process,
but it is essential for building a new standalone project. However, to keep things
simple, the Chapter1.1_EmptyProject project in the book's source code has all
of the headers and library files included with an empty main() function ready for
future development. If you wish to examine how these projects are pieced together,
take the time to explore their project properties in Visual Studio.

Here is a screenshot of the files extracted from the book's source code, and made
ready for use:

Note that FreeGLUT also relies on freeglut.dll being placed in
the project's working folder. Normally this requires the FreeGLUT
project to be compiled first, but since it's packaged with the book's
source code, this is unnecessary.

see more please visit: https://homeofpdf.com

Chapter 1

[11]

Building the application layer
Now we can begin to build an application layer. The purpose of this layer is to
separate essential communication with the Windows operating system from our
custom application logic. This allows our future demo applications to be more
focused, and keep our codebase clean and re-usable.

Continue from here using the Chapter1.2_TheApplicationLayer
project files.

Configuring FreeGLUT
Handling low-level operating system commands, particularly for a graphical
application, can be a tedious and painful task, but the FreeGLUT library was
created to help people like us to create OpenGL-based applications and avoid
such burdens. The trade-off is that when we launch our application, we effectively
hand the majority of control over to the FreeGLUT library.

We can still control our application, but only through a series of callback functions.
Each callback has a unique purpose, so that one might be used when its time to
render the scene, and another is used when keyboard input is detected. This is a
common design for utility toolkits such as FreeGLUT. We will be keeping all of our
application layer code within a single class called BulletOpenGLApplication.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit http://
www.packtpub.com/support and register to have the files
e-mailed directly to you.

Here is a code snippet of the basic class declaration for BulletOpenGLApplication:

class BulletOpenGLApplication {
public:
 BulletOpenGLApplication();
 ~BulletOpenGLApplication();
 void Initialize();
 virtual void Keyboard(unsigned char key, int x, int y);
 virtual void KeyboardUp(unsigned char key, int x, int y);
 virtual void Special(int key, int x, int y);

see more please visit: https://homeofpdf.com

Building a Game Application

[12]

 virtual void SpecialUp(int key, int x, int y);
 virtual void Reshape(int w, int h);
 virtual void Idle();
 virtual void Mouse(int button, int state, int x, int y);
 virtual void PassiveMotion(int x, int y);
 virtual void Motion(int x, int y);
 virtual void Display();
};

These essential functions make up the important hooks of our application layer
class. The functions have been made virtual to enable us to extend or override
them in future projects.

As mentioned previously, FreeGLUT has different functions for different purposes,
such as when we press a key, or resize the application window. In order for
FreeGLUT to know which function to call at what moment, we make a series of calls
that map specific actions to a custom list of callback functions. Since these calls will
only accept function pointers that follow specific criteria in return value and input
parameters, we are restricted to using the arguments listed in the previous functions.

Meanwhile, by their nature, callback functions must call to a known, constant place
in memory; hence a static function fits the bill. But, static functions cannot perform
actions on nonstatic or nonlocal objects. So, we either have to turn the functions
in BulletOpenGLApplication static, which would be incredibly ugly from a
programming perspective, or we have to find a way to give it a local reference by
passing it as a parameter. However, we just determined that the arguments have
already been decided by FreeGLUT and we cannot change them.

The workaround for this is to store our application in a global static pointer
during initialization.

static BulletOpenGLApplication* g_pApp;

With this pointer our callback functions can reach an instance of our application
object to work with at any time. Meanwhile an example declaration of one of our
callbacks is written as follows:

static void KeyboardCallback(unsigned char key, int x, int y);

The only purpose of each of these callback functions is to call the equivalent function
in our application class through the global static pointer, as follows:

static void KeyboardCallback(unsigned char key, int x, int y) {
 g_pApp->Keyboard(key, x, y);
}

see more please visit: https://homeofpdf.com

Chapter 1

[13]

Next, we need to hook these functions into FreeGLUT. This can be accomplished
using the following code:

glutKeyboardFunc(KeyboardCallback);

The previous command tells FreeGLUT to map our KeyboardCallback() function
to any key-down events. The following section lists FreeGLUT functions which
accomplish a similar task for other types of events.

glutKeyboardFunc/glutKeyboardUpFunc
The glutKeyboardFunc and glutKeyboardUpFunc functions are called when
FreeGLUT detects that a keyboard key has been pressed down or up, respectively.
These functions only work for keyboard characters that can be represented by a
char data type (glutSpecialFunc and glutSpecialUpFunc handle other types).

Some applications and game engines may only call the input function once the
key is pressed down, and only sends another signal when the key is released,
but nothing in-between. Meanwhile, others may buffer the inputs allowing you
to poll it at later times to check the current state of any key or input control, while
others may provide a combination of both methods allowing you to choose which
method works best for you.

By default, FreeGLUT calls this function repeatedly while a key is held down,
but this behavior can be toggled globally with the glutSetKeyRepeat() and
glutIgnoreKeyRepeat() commands.

glutSpecialFunc/glutSpecialUpFunc
The glutSpecialFunc and glutSpecialUpFunc functions are similar to the
previous keyboard commands, but called for special keys such as Home, Insert,
the arrow keys, and so on.

glutMouseFunc
The glutMouseFunc function is called when mouse button input is detected.
This applies to both button up and button down events, which can be distinguished
from the state parameter it sends.

glutMotionFunc/glutPassiveMotionFunc
The glutMotionFunc and glutPassiveMotionFunc functions are called when
mouse movement is detected. The glutMotionFunc() function is used when
any mouse button is currently held down, while the glutPassiveMotionFunc()
function is used when no mouse buttons are pressed.

see more please visit: https://homeofpdf.com

Building a Game Application

[14]

glutReshapeFunc
The glutReshapeFunc function is called when FreeGLUT detects that the
application window has changed its shape. This is necessary for the graphics
system (and sometimes game logic) to know the new screen size and it's up
to us to make important changes to the scene to handle all possibilities.

glutDisplayFunc
If FreeGLUT determines that the current window needs to be redrawn,
the glutDisplayFunc function is called. Sometimes Windows detects that
an application window is in a damaged state, such as when another window
has been partially obscuring it, and this is where this function might be called.
We would typically just re-render the scene here.

glutIdleFunc
The glutIdleFunc function fills the role of the typical update of game applications.
It is called when FreeGLUT is not busy processing its own events, giving us time to
perform our own game logic instructions.

More information about these functions can be found in the FreeGLUT
documentation at: http://freeglut.sourceforge.net/docs/api.php

Initializing FreeGLUT
Finally, we need to configure our application window before FreeGLUT can launch it
for us. This is done through the following function calls:

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);
glutInitWindowPosition(0, 0);
glutInitWindowSize(width, height);
glutCreateWindow(title);
glutSetOption (GLUT_ACTION_ON_WINDOW_CLOSE,
 GLUT_ACTION_GLUTMAINLOOP_RETURNS);

The following section provides a brief description of each of the previous
function calls.

see more please visit: https://homeofpdf.com

Chapter 1

[15]

glutInit
The glutInit function performs first-step initialization of the FreeGLUT library,
passing in the application's parameters. There are several low-level options one
can play with here (such as enabling debugging in FreeGLUT itself), but we're not
interested in them for our demos. Check the documentation for more information
about the available options.

glutInitDisplayMode
The glutInitDisplayMode function sets the initial display mode of the window,
mostly in terms of what kind of buffers are available. It uses a bitmask to set the
values and the call shown previously enables a double-buffered window (GLUT_
DOUBLE), make these buffers include an alpha channel (GLUT_RGBA), and also include
a separate depth buffer (GLUT_DEPTH). We'll explain these concepts more throughout
the book. There are many more options available, so those who are curious can check
the online documentation.

Note that RGBA is a short form for the three primary
colors; red, green, and blue, and A is short form for alpha,
or transparency. This is a common form of describing a
single color value in computer graphics.

glutInitWindowPosition/glutInitWindowSize
The glutInitWindowPosition and glutInitWindowSize functions set the initial
position and size of the window in pixels. The position is set relative to the top-left
of the main screen.

glutCreateWindow
The glutCreateWindow function spawns a top-level window for the Windows OS
to manage, and sets the title we want it to display in the title bar.

glutSetOption
The glutSetOption function is used to configure a number of options in the window,
even the values that we've already edited such as the display mode and the window
size. The two options passed in the previous example ensure that when the main
window is closed, the main loop will return, exiting our game logic. The main loop
itself will be explained in the following section.

see more please visit: https://homeofpdf.com

Building a Game Application

[16]

Launching FreeGLUT
The final and possibly most important function in FreeGLUT is glutMainloop(). The
moment this function is called, we hand the responsibility of application management
over to the FreeGLUT library. From that point forward, we only have control when
FreeGLUT calls the callback functions we mapped previously.

In our project code, all of the listed functions are encapsulated with a global function
called glutmain(), which accepts an instance of our application class as a parameter,
stores it in our global pointer, calls its own Initialize() function (because even our
application class will want to know when the application is powering up), and then
calls the glutMainloop() function.

And so, finally, we have everything in place to write the all-powerful main()
function. In this chapter's source code, the main() function looks as follows:

int main(int argc, char** argv)
{
 BulletOpenGLApplication demo;
 return glutmain(argc, argv, 1024, 768, "Introduction to Game
 Physics with Bullet Physics and OpenGL", &demo);
}

Before proceeding, try to compile and run the application from this chapter's source
code (F5 in Visual Studio). A new window should launch with either a plain-white
or garbled background (depending on various low-level Windows configuration
settings) as shown in the following screenshot. Do not worry if you see a garbled
background for now as this will be resolved later.

see more please visit: https://homeofpdf.com

Chapter 1

[17]

It is also worth checking that the callback functions are working properly by adding
breakpoints to them and verifying that they trigger each frame, and/or when you
press a key or click on a mouse button.

Summary
Building a standalone project that hooks into other libraries is the first step towards
building an application. We skipped most of this grunt work by using a prebuilt
template; but if you're just starting out with the game development, it is important to
understand and practice this process for the future, since this will not be the last time
you have to tinker with Visual Studio project properties!

The most interesting lesson we learned is how to keep our application layer code in a
separate class, and how to get hooks into the FreeGLUT library, thus giving it control
over our application.

In the next chapter, we will introduce two of the most important parts of any game:
graphics and user input!

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Rendering and User Input
In this chapter, we will begin our journey into the world of OpenGL by performing
some basic initialization steps, and rendering an object onto our window. Then we
will learn how to gather user inputs, and how to manipulate the camera using that
input in order to view our 3D scene from any angle.

Rendering the scene
In its most basic form, 3D rendering involves four essential tasks:

• Creating a blank canvas on which to draw
• Painting every object in the world onto the canvas, based on the direction

it is being viewed from (by the camera)
• Copying the canvas image to the screen
• Clearing the canvas and repeating the process

However, there is much more nuance and complication involved in this process than
it might first appear. In this section, we will explore some of the complications of 3D
rendering and how they are typically worked around. In-depth explanations of these
topics are beyond the scope of this book, and could fill entire chapters by themselves.
But, we'll give each of them a cursory examination so that we're not left completely
in the dark.

Continue from here using the Chapter2.1_RenderingTheScene
project files.

see more please visit: https://homeofpdf.com

Rendering and User Input

[20]

Introducing double-buffering
One complete cycle of the previous tasks is often called a single frame, and when
the cycle is repeated multiple times per second, this gives us the frame rate, or how
many frames per second are being drawn. As long as the cycle is repeated often
enough, and there are gradual differences in the position of the camera and the
world's objects, then our brain interprets this information as an animated scene —
much like an animated cartoon on TV. Other common words to describe these cycles
are refresh, iteration, or render-call.

When we perform these tasks, the graphics system spends most of its time handling
the second task: drawing the world's objects onto the canvas. When an object is
rendered the graphics system picks the corresponding pixel in the canvas and sets
the color of the object there.

This canvas is typically referred to as a buffer. Whenever lots of unique
values of a common data type are stored together (in this case a unique
color value for each pixel), we usually refer to it as a buffer.

When the display system is ready to draw the next frame, it grabs the current buffer
from the video memory (which could be in a dedicated GPU or elsewhere) and copies
it for us to be seen on the screen. The buffer is then cleared and the process repeats.

But, what happens if the graphics card has not finished rendering all of the objects
before the screen grabs the buffer? If the two processes are not synchronized, it
would result in rendering of partial frames which would look very obvious to the
human eye and ruin the illusion we're trying to create.

To solve this problem, we will use two buffers instead of one; this is called double-
buffering. At any moment, one buffer is being displayed (known as the frontbuffer)
while the other is being drawn to (known as the backbuffer). When we've finished
drawing onto the backbuffer, we swap the buffers around so that the second is being
displayed, while we draw onto the first. We repeat this process over and over again to
ensure that we never draw onto the same buffer that we're displaying. This results in a
more consistent scene without the graphical glitches.

Note that we have already enabled this feature back
in Chapter 1, Building a Game Application, when we
called the glutInitDisplayMode() function.

see more please visit: https://homeofpdf.com

Chapter 2

[21]

The following diagram shows the working of double-buffering:

2

Backbuffer
(drawing)

Frontbuffer
(displaying) Screen

1

Backbuffer
(drawing)

Frontbuffer
(displaying) Screen

1

Backbuffer
(drawing)

Frontbuffer
(displaying) Screen

3

Backbuffer
(drawing)

Frontbuffer
(displaying) Screen

The command to swap these buffers in FreeGLUT is glutSwapBuffers(), and the
command to clear the backbuffer is glClear(). In order to clear the color value
of every pixel in the current buffer, we pass the value GL_COLOR_BUFFER_BIT into
glClear(). Both of these functions must be called inside the Idle() function,
which is automatically and repeatedly called by FreeGLUT whenever it's not busy
processing its own events. This is the moment where we should process our own
background tasks such as physics processing, object management, responding to
game events, and even rendering itself.

In order to set the clearing color, we call the glClearColor() function as follows:

glClearColor(0.6, 0.65, 0.85, 0);

see more please visit: https://homeofpdf.com

Rendering and User Input

[22]

The given values should result in a light-blue color that is 60 percent red, 65 percent
green, and 85 percent blue. The fourth parameter is the alpha (transparency) value,
and is typically set to 0 in this situation. The following screenshot shows our
application window, and now that glClear() is being called every iteration:

Understanding the basics of a camera
In order to visualize objects in our scene, a camera is required. The mathematics
involved in camera control and movement can be quite confusing, so we'll explore
it more in-depth towards the end of this chapter. For now, we will simply discuss a
stationary camera.

An essential concept in 3D rendering is the transformation matrix, and the most
important of which, that are used time and time again, are the view and projection
matrices. The view matrix represents the camera's position/rotation in space, and
where it's facing, while the projection matrix represents the camera's aspect ratio
and bounds (also known as the camera's frustum), and how the scene is stretched/
warped to give an appearance of depth (which we call perspective).

One of the most important properties of matrices is being able to combine two matrices
together, through a simple matrix multiplication, and resulting in a transformation
matrix that represents both. This property massively cuts down the amount of
mathematics that needs to be performed every time we render the scene.

see more please visit: https://homeofpdf.com

Chapter 2

[23]

In OpenGL, we must select the matrix we wish to modify with glMatrixMode().
From that point onwards, or until glMatrixMode() is called again, any matrix-
modifying commands will affect the selected matrix. We will be using this command
to select the projection (GL_PROJECTION) and view (GL_MODELVIEW) matrices.

glIdentity
The glIdentity function sets the currently selected matrix to the identity matrix,
which is effectively the matrix equivalent of the number one. The identity matrix is
most often used to initialize a matrix to a default value before calling future functions
described in the following sections.

glFrustum
The glFrustum function multiplies the currently selected matrix by a projection
matrix defined by the parameters fed into it. This generates our perspective effect
(mentioned previously), and when applied, creates the illusion of depth. It accepts
six values describing the left, right, bottom, top, near, and far clipping planes of the
camera's frustum: essentially the six sides of a 3D trapezoid (or trapezoidal prism in
technical terms). The following diagram is an example of a camera frustum, where
FOV stands for field of view:

Near
Far

Left

Right

Top

Bottom

FOV

see more please visit: https://homeofpdf.com

Rendering and User Input

[24]

gluLookAt
The gluLookAt function multiplies the currently selected matrix by a view matrix
generated from nine doubles (essentially three vectors), which represents the eye
position, the point at which the camera is looking at, and a vector that represents
which direction is up. The up vector is used to assist in defining the camera's
rotation. To use common angular rotation vernacular, if we only define a position
and target, that gives us the pitch and yaw we need, but there's still the question of
the roll, so we use the up vector to help us calculate it.

glViewport
Finally, glViewport() is used to describe the current Viewport, or where we should
draw the current camera's view of the scene in the application window. Typically,
this would stretch to the bounds of the window from 0, 0 to w, h (where w and h
are the screen width/height respectively), but this can be used to define whatever
viewport is required.

The glViewport() function should be called each time when FreeGLUT calls the
Reshape() function, which is called every time when the window size changes,
passing us the new height and width. It's also called once when the application is
first launched.

In order to maintain data for our camera, we will keep the following member
variables in our application class so that we can refer to them as needed:

btVector3 m_cameraPosition;
btVector3 m_cameraTarget;
btVector3 m_upVector;
float m_nearPlane;
float m_farPlane;

Throughout this book we will be using Bullet's built-in vector,
quaternion, and matrix classes for our 3D mathematics to
spare us from having to build our own from scratch.

Meanwhile, the code to update our camera is called within the Idle() function.
The comments in the chapter's source code will explain the details of this function.
If any of the commands in the UpdateCamera() function don't make much sense,
then go back to the start of this section and refamiliarize yourself with the purpose
of the various gl- commands, when the FreeGLUT callback functions are triggered,
and how they are used.

see more please visit: https://homeofpdf.com

Chapter 2

[25]

Basic rendering and lighting
We will now construct a simple object from the primitive shapes (triangles),
and explore how OpenGL's built-in lighting system can help us to visualize
our object in three dimensions.

Continue from here using the Chapter2.2_
BasicRenderingAndLighting project files.

Creating a simple box
The glBegin() and glEnd() functions are the two important OpenGL commands
that work together to define the starting and ending points (known as delimiters)
for the construction of a primitive shape. The glBegin() function requires a single
argument that specifies the type of primitive to render. This determines whether the
vertices we input represent points, lines, triangles, quads, or whatever the renderer
supports. We'll be using GL_TRIANGLES for our box, each of which requires three
unique vertices in space in order to render.

There are a variety of commands that can be called between glBegin() and
glEnd() to build the primitive, but the two commands that we will be using are
glVertex3f(), which defines the position of a vertex in space, and glColor3f()
which sets the color of subsequent vertices using the same RGB system that we saw
in the previous chapter (note that it does not have an alpha value).

The actual task of rendering the box happens in the DrawBox() function of the
chapter's source code. The most important part is as follows:

 static int indices[36] = {
 0,1,2, 3,2,1, 4,0,6, 6,0,2, 5,1,4, 4,1,0, 7,3,1, 7,1,5, 5,4,7,
 7,4,6, 7,2,3, 7,6,2};
 glBegin (GL_TRIANGLES);
 for (int i = 0; i < 36; i += 3) {
 const btVector3 &vert1 = vertices[indices[i]];
 const btVector3 &vert2 = vertices[indices[i+1]];
 const btVector3 &vert3 = vertices[indices[i+2]];
 glVertex3f (vert1.x(), vert1.y(), vert1.z());
 glVertex3f (vert2.x(), vert2.y(), vert2.z());
 glVertex3f (vert3.x(), vert3.y(), vert3.z());
 }
 glEnd();

see more please visit: https://homeofpdf.com

Rendering and User Input

[26]

DrawBox() creates a closed box object based on the size of the dimensions we wish
to build it from. The input parameter is btVector3, providing the three dimensions
of the box. DrawBox() then uses the concept of indices to iterate through the number
of vertices we want, without having to repeat the data. We could create the box from
36 different points, but really there are only eight unique points on a box. Indexes
work by labelling each of these eight points with a unique number (index) from 0 to
7, and use those to define the triangles, instead. Here is a screenshot of our box with
no lighting applied:

Let there be light!
At this stage, we can see our box, but all of its faces have exactly the same
coloring, which makes it a little difficult to determine the exact shape as it
moves around in space. OpenGL has some basic built-in lighting functionality,
which we will make use of.

see more please visit: https://homeofpdf.com

Chapter 2

[27]

Normals
Normals represent the direction pointing away from a given surface or point. They
are used in a variety of useful techniques (and not just lighting!), and the most basic
of which is simple diffuse lighting or lighting an object based on the angle between
the light source and the surface. Our lighting system will use each point's normal to
decide in which direction the incoming light should reflect away from that surface
helping it calculate the overall color of the polygon.

Setting the normal for a given vertex can be accomplished by calling the
glNormal3f() function. This function sets the normal for the subsequent vertices,
which could be more than one in the case where they all share the same normal
value until glNormal3f() is called again. For the record, glColor3f() functions in
the same way. The renderer assumes that you're using the same color and normal for
each new vertex until you specify otherwise.

The normal can be calculated fairly easily by performing a cross-product on the three
vertices that make up the triangle. If we remember our 3D mathematics, this gives
us a vector perpendicular to the vectors of all three vertices. The cross product is
noncommutative, so the output vector could either point inwards or outwards from
the surface, depending on what order we performed the cross product, but fixing it
is simply a matter of multiplying it by -1.

Creating ambient, diffuse, and specular
lighting
There are three basic lighting effects that were some of the earliest lighting effects
produced in 3D graphics and are still used to today to simulate basic and cheap
lighting effects in a 3D environment.

Ambient lighting is used to simulate the base background lighting of a scene. It is
essentially the minimum color value of every pixel in the scene in the absence of any
other light sources; so if we had an ambient lighting value of (0.3,0.3,0.3), and there
were no other light sources present, everything we render would be colored dark
grey. Computationally, this effect is cheap.

see more please visit: https://homeofpdf.com

Rendering and User Input

[28]

Diffuse lighting, as mentioned earlier, depends on the direction of the light
and simulates the effect of light radiating from a source and rebounding off the
surfaces. The shallower the angle between the direction of the light and the surface,
the weaker the effect that the light will have on that surface. This effect requires
additional mathematics compared to ambient lighting (essentially one dot-product
per vertex per light) to determine the output.

Finally, specular lighting represents the shininess of an object by highlighting
certain areas with a brighter color depending on the angle of the camera with the
light source. Because the camera also gets involved, the effect itself changes as the
camera moves, and requires a greater amount of mathematics to produce.

However, despite of the difference in mathematical requirements, these three
effects are almost trivialized by modern GPUs, and there are far more advanced
and realistic visual effects such as global illumination, refraction, depth of field,
HDR lighting, and so on, making these simple lighting effects a drop in the ocean
by comparison.

The following diagram shows the same object rendered with ambient, ambient plus
diffuse, and ambient plus diffuse plus specular lighting, respectively.

Understanding depth testing
Depth testing is an important part of graphical rendering that specifies how
objects should be redrawn over others. To draw a painting in the real world,
we must layer our objects on top of others in the correct order, as we start with the
sky, then we add a hill on top of the sky, and then add a tree on top of the hill. But, if
we draw our tree first, then overdraw with the hill, and then overdraw again with the
sky, we would be left with just the sky on our canvas, and an incorrect representation
of what we wanted.

see more please visit: https://homeofpdf.com

Chapter 2

[29]

The following diagram shows three objects rendered with and without depth testing
enabled, respectively. The order of rendering is the small box, the large box, and then
the sphere. The small box is closer to the camera, but without depth testing, the small
box will be overdrawn by the remaining two. When depth testing is enabled, the
renderer understands not to overdraw an object that is closer to the camera.

We need to store this depth information each time we render a new object so we
know the depth of the object currently drawn there; but we can't use the original
backbuffer to store this information since, there's just not enough information stored
in a single RGBA value to do so. So, to keep a track of this information, we add
another buffer called the depth buffer. Each time we attempt to render a pixel, we
check the depth value of the pixel from the depth buffer (also known as the z-buffer,
because it keeps track of the z-value of each pixel away from the camera). If the pixel
is closer, then we render the object's color pixel to the backbuffer, and write the new
z-value into the depth buffer. The next time we try to render at that pixel location,
we will have the updated value to compare with.

Earlier in this chapter, we mentioned how we can set multiple flags in
glClear(), to clear certain buffers. The GL_DEPTH_BUFFER_BIT flag
is used to clear the depth buffer each render call.

Let's go over some of the important OpenGL functions used for a basic lighting and
depth testing system. In each case, there are more options available in the OpenGL
documentation, which can be examined at your leisure.

see more please visit: https://homeofpdf.com

Rendering and User Input

[30]

glLightfv
The glLightfv() function is used to specify the properties of a given light. The
first parameter is used to select which light to edit, the second is used to determine
which property to edit, and the third is used to specify the new value. The first two
parameters must be an enumerator (or enum) corresponding to a specific value.
For instance, the options for the first parameter can be GL_LIGHT0, GL_LIGHT1,
GL_LIGHT2, and so on. Meanwhile, the second parameter could be GL_AMBIENT,
GL_DIFFUSE, or GL_SPECULAR to define which lighting property of the given light to
modify, or even GL_POSITION to define its position. As an example, the following
call sets the ambient lighting value of the first (zeroth) light to the value of ambient,
where ambient is btVector3 representing the ambient color we want:

glLightfv(GL_LIGHT0, GL_AMBIENT, ambient);

glEnable
The glEnable() function is a very generic function used to enable certain features
in the OpenGL library. Every feature we enable typically consumes more processing
power, so OpenGL gives us the freedom to enable only what we need. We will
use this function to enable lighting in general (GL_LIGHTING), create a single light
(GL_LIGHT0), enable the coloring of our primitives (GL_COLOR_MATERIAL), and enable
depth testing (GL_DEPTH_TEST).

glMaterialfv/glMateriali
The glMaterialfv and glMateriali functions specify material parameters for the
lighting system. Specifically, we will be using them to define the strength of our
specular lighting effect. The first parameter for both functions can either be GL_
FRONT, GL_BACK, or both combined to define if the setting should affect front or back
faces (faces pointing towards or away from the camera — which is determined by
using the normal).

We will be using them as follows:

glMaterialfv(GL_FRONT, GL_SPECULAR, specular);
glMateriali(GL_FRONT, GL_SHININESS, 15);

The first call sets the color of the specular effect through GL_SPECULAR (we re-use the
specular variable for convenience since it already defines a white color). The second
sets the shininess (GL_SHININESS) to a value of 15. Larger values produce weaker
shine effects, and vice versa.

see more please visit: https://homeofpdf.com

Chapter 2

[31]

glShadeModel
The glShadeModel() function sets the current style of lighting to either GL_FLAT
or GL_SMOOTH. This is most noticeable on objects such as spheres. Flat shading is
less computationally expensive, but provides a less believable lighting model.
Even though the performance hit is barely noticeable on modern GPUs, it can
be used for a particular artistic style, as shown in the following screenshot:

This effect is achieved by using the previously mentioned normals. With a flat
shading model, the face is colored based on the direction of the light and the normal
of the first vertex on the face, and it assumes that the normal value for the rest is the
same. Hence, the mathematics used to calculate the diffuse lighting color of each
pixel on the face will result in the exact same color. Smooth shading, on the other
hand, calculates a separate result for each vertex independently, and then blends
the computed color for each pixel between them. It is a very primitive lighting
effect, but gives our objects a more believable appearance.

glDepthFunc
The glDepthFunc function sets the depth testing function the renderer will use,
which could be one of the following options:

• GL_ALWAYS

• GL_NEVER

• GL_GREATER

• GL_LESS

see more please visit: https://homeofpdf.com

Rendering and User Input

[32]

These options specify whether the pixel should be overwritten with new information
in one of four ways: always, never, if the z-value is greater than the current value
(further away), or less than the current value (closer). The most common approach is
to choose GL_LESS, but never let it to be said that OpenGL didn't give us the power
to create whatever weird and wacky graphical effects we want, since choosing the
other values will result in some interesting scenes (just use your imagination and the
tree/hill/sky example from earlier).

So with this knowledge, inside the Initialize() function, we create a light at
position (5,10,1) with ambient, diffuse, and specular properties, set the shading
model to smooth lighting (GL_SMOOTH), and set the depth testing function to only
overwrite pixels if their depth value is less than the existing value (GL_LESS).
And voila! We have lighting enabled in our scene. Here is our box with basic
lighting applied:

Coloring your box
If you recall, we called glColor3f() in our DrawBox() function, and set the default
color parameter in the function's declaration to an RGB value of (1,1,1). This
represents the white color: 100 percent red, green, and blue in additive coloring.
Since we're not passing a value for this parameter in our DrawBox() call, it is still
defaulting to white. Therefore, in order to change the color of our box, we simply
add a color value to our DrawBox() call in the form of a btVector3.

DrawBox(btVector3(1, 1, 1), btVector3(1.0f, 0.2f, 0.2f));

see more please visit: https://homeofpdf.com

Chapter 2

[33]

Feel free to tweak the highlighted values until you find a color you prefer.

Note that even though color itself is not a vector, a btVector3 is
a convenient object to use to store three unique floats.

Understanding rendering pipelines
So far (and throughout the remainder of this book), we have performed rendering
through a technique called immediate mode, where the graphics system essentially
forgets the information of each render-call, and must be reminded of the data every
time we draw. We have witnessed this in our DrawBox() function, where we literally
rewrite the information to define and draw our box every single time the function is
called, and it is called every single render-call. This is obviously not the most efficient
way of doing things!

Immediate mode is opposite to retained mode where vertex data is stored (retained)
within memory, and recalled by the graphics system when requested. The retained
mode method consumes more memory during runtime, but it is much faster and
more efficient. However, it can be difficult to understand and use when you're just
starting with the 3D graphics.

In addition, there are two types of high-level rendering process called the fixed-
function pipeline and the programmable pipeline. All of the code in this book
performs its rendering using the fixed-function pipeline. It is called so because it
follows a fixed series of function calls to draw the graphical elements to the screen,
such as processing the primitives, performing transforms and lighting, coloring,
depth testing, and so on. The important point to make here is that the order of these
steps cannot be changed and you have a limited amount of control over each step.

The more modern form of rendering is the programmable pipeline. It is much more
fluid, allowing the graphics programmer to have an immense amount of control
over the rendering steps through the use of custom scripts called shaders. Shaders
can vary from very simple scripts that render objects with ambient shading, to
complex procedures that render effects such as motion blur, HDR lighting, produce
millions of pixel-sized particles, depth of field, and many more. There are even
several languages that can be used to write shaders (common ones are Cg, GLSL,
and HLSL), and they can be used to produce any graphical effect you want to render
(depending on performance limitations, of course). Entire volumes can, and have
been written on the nuances of writing shaders with all the various languages,
algorithms, and styles of programming they support, making their understanding a
highly skilled and highly valued area of 3D graphics programming.

see more please visit: https://homeofpdf.com

Rendering and User Input

[34]

But, don't feel that you've wasted time learning the fixed-function pipeline, because
the programmable pipeline can be utterly bewildering if you haven't established a
firm grasp of the fundamentals through the fixed-function pipeline first.

User input and camera control
We will now learn how to gather keyboard input from FreeGLUT and use it
to interact with our world. This will take the form of rotating our camera around
the center of our world (and hence, our box).

Continue from here using the Chapter2.3_
UserInputAndCameraControl project files.

Implementing camera control
We created a basic camera earlier in this chapter, but it is currently stationary. In
order to verify that our world is truly three-dimensional, it would help if we could
rotate our camera around a central pivot point. There's a lot of 3D mathematics that
goes into controlling camera movement (particularly when it comes to rotation),
which is beyond the scope of this book. So, if some of what is covered here seems
confusing, know that pretty much any book or blog that covers 3D mathematics
and rendering as a whole should cover these topics.

To begin, we will need three new variables for our camera. These will store the
current values for the camera's rotation and zoom:

float m_cameraDistance; // distance from the camera to its target
float m_cameraPitch; // pitch of the camera
float m_cameraYaw; // yaw of the camera

Significant changes are required in our UpdateCamera() code to calculate
the new camera position based on the previous variables. The additions to
this function are liberally commented to explain the process, so we won't
consume space explaining them here.

With our camera control code in place, we can manipulate its position by simply
modifying the three new variables and calling UpdateCamera() to perform the
required math for us. However, this isn't useful without some way of gathering
input and making the necessary changes to the aforementioned variables.

see more please visit: https://homeofpdf.com

Chapter 2

[35]

Gathering user input
FreeGLUT allows us to gather input using the Keyboard() and Special() callback
functions. Remember that Keyboard() is called whenever FreeGLUT detects that
a generic keyboard key has been pressed, such as letters, numbers, and so on.
Meanwhile, the Special() function is called for special keys such as the arrow
keys, Home, End, Page Up/Page Down, and so on.

In this chapter's source code, we've used both of these functions to grab different
types of user input, and employed them to modify our camera's pitch, yaw, and
zoom distance (recall that the roll is always calculated using an up vector that
never changes). Each time the values are modified by a key press, we perform the
mathematical calculations necessary to reposition the camera based on this updated
information. Note that these functions are repeatedly called while a key is still held
down, allowing the camera to continue moving as long as the key is pressed.

Within our application, we can now zoom and rotate the camera with the arrow
keys, Z, and X. Here is our box viewed from a different angle and distance:

see more please visit: https://homeofpdf.com

Rendering and User Input

[36]

Summary
We have delved into some OpenGL code and taken a crash course in 3D rendering,
by exploring the basics of double-buffering, and camera initialization through the
important view and projection matrices. We've used this knowledge to build a basic
scene using primitive shapes, vertices, normals, depth testing, lighting, shading
types, and finally, color. As confusing as they might seem, they all contribute to
the building blocks from which all modern graphical techniques are born.

Finally, we created a simple and colored box, complete with a moveable camera
and basic lighting effects. This will be our essential OpenGL application template
going forward, and hopefully we learned a lot about the fundamentals of 3D
graphics, OpenGL, and FreeGLUT from building it.

In the next chapter, we will begin to integrate our physics engine by creating and
initializing Bullet's core components, and turn our cube into a rigid body which
will fall under the effects of gravity!

see more please visit: https://homeofpdf.com

Physics Initialization
In this chapter, we will discover how to initialize the Bullet library, and learn
how to build our first physical rigid body object, which is the simplest object
available in Bullet.

The core bullet objects
Bullet is designed from the ground up to be highly customizable. Each major task
that the physics engine performs is isolated into its own modular component,
allowing them to be replaced with ease as long as they inherit from the appropriate
interface/base classes.

Most applications, such as ours, can make do with a generic, one-size-fits-all
selection of components, but if we ever find ourselves needing something more
advanced, optimized, or technically superior, then there is nothing stopping us
from interchanging the components or even building our own.

There are a handful of components that need to be created and hooked together
in order to initialize Bullet. We'll cover some essential theory on each of these
components, and then run through the code to create/destroy them.

Continue from here using the Chapter3.1_TheCoreBulletObjects
project files.

see more please visit: https://homeofpdf.com

Physics Initialization

[38]

The world object
The primary control object for a Bullet physics simulation is an instance of
btDynamicsWorld. All of our physical objects will be controlled by the rules
defined by this class. There are several types of btDynamicsWorld that can be used,
depending on how you want to customize your physics simulation, but the one we
will be using is btDiscreteDynamicsWorld. This world moves objects in discrete
steps (hence the name) in space as time advances.

This class doesn't define how to detect collisions, or how objects
respond to collisions. It only defines how they move in response
to stepping the simulation through time.

The broad phase
A physics simulation runs in real time, but it does so in discrete steps of time.
Each step, there would be some number of objects which may have moved a small
distance based on their motion and how much time has passed. After this movement
has completed, a verification process checks whether a collision has occurred, and if
so, then it must generate the appropriate response.

Generating an accurate collision response alone can be highly computationally
expensive, but we also have to worry about how much time we spend checking for
collisions in the first place. The brute force method is to make sure that no collisions
have been missed by comparing every object against every other object, and finding
any overlaps in space, and doing this every step.

This would be all well and good for simple simulations with few objects, but not
when we potentially have hundreds of objects moving simultaneously, such as in a
videogame. If we brute force our way through the collision checks, then we need to
check all the N objects against the other N-1 objects. In Big O notation this is an O(N2)
situation. This design scales badly for increasing values of N, generating an enormous
performance bottleneck as the CPU buckles under the strain of having so much work
to do every step. For example, if we have 100 objects in our world, then we have
100*99 = 9,900 pairs of objects to check!

see more please visit: https://homeofpdf.com

Chapter 3

[39]

Brute forcing one's way through physics collision detection
is typically the first performance bottleneck an inexperienced
game programmer comes across. Understanding what's
happening, and how to optimize these kinds of bulk processes
is a key component in becoming an effective game developer.

But, imagine if only two of those 100 objects are even remotely close together and the
rest are spread too far apart to matter; why would we waste the time doing precise
collision checks on the other 9,899 pairs? This is the purpose of broad phase collision
detection. It is the process of quickly culling away object pairs, which have little or
no chance of collision in the current step, and then creating a shortlist of those that
could collide. This is an important point because the process merely provides a rough
estimate, in order to keep the mathematics computationally cheap. It does not miss any
legitimate collision pairs, but it will return some that aren't actually colliding.

Once we have shortlisted the potential collisions, we pass them on to another
component of the physics simulation called narrow phase collision detection,
which checks the shortlist for legitimate collisions using more intense, but
accurate mathematical techniques.

For our project we will use a broad phase technique based on dynamic bounding
volumes. This algorithm create volumes of space which envelop pairs of objects in a
tree hierarchy using Axis-aligned bounding boxes (AABBs). These AABBs surround
the object with the smallest box shaped volume possible, that is aligned with each
axis, as we can see here:

y

x

see more please visit: https://homeofpdf.com

Physics Initialization

[40]

It is a relatively cheap task to check if two AABBs overlap, but we can still
overburden ourselves if we don't perform some additional optimization. By
organizing the objects by pairs in a tree structure, we naturally organize our objects
by distance from one another, thus automatically culling away the object pairs which
are too far apart to be worth checking, as we can see here:

01

07

08
02

V4

V2

V5

V1

05
04

06 03

V6 V7

V3

It takes some processing work to maintain the tree hierarchy as objects move
around, since the AABBs have to be dynamically altered on occasion. But, this is
much less expensive than performing AABB overlap checks on every pair, every
iteration. You may recognize this tree structure as a simple binary tree:

V1

V6 V7

V3

01 02 08 07 05 06 03 04

V2

V4 V5

see more please visit: https://homeofpdf.com

Chapter 3

[41]

This is no coincidence. The intent is to use the simplicity and speed of searching a
binary tree in order to quickly asses which objects are closest to others.

A btBroadPhaseInterface object is needed to tell our world object what technique
to use for its broad phase collision detection and the built-in type we will be using is
btDbvtBroadphase.

The collision configuration
This is a relatively simple component on the surface, but under the hood it
provides the physics simulation with components that handle essential tasks such
as determining how Bullet manages memory allocation, provides the algorithms for
solving various collisions (box-box, sphere-box, and so on), and how to manage the
data that comes out of the broad phase collision detection called Manifolds (we will
explore these in Chapter 6, Events, Triggers, and Explosions).

For this project, we'll keep things simple and use Bullet's default collision
configuration object, btDefaultCollisionConfiguration.

The collision dispatcher
The collision dispatcher, as the name implies, dispatches collisions into our
application. For a video game, it is practically guaranteed that we will want to
be informed of inter-object collision at some point, and this is the purpose of the
collision dispatcher.

One of the built-in collision dispatcher class definitions that come with Bullet is
the basic btCollisionDispatcher. The only requirement is that it must be fed
with the collision configuration object in its constructor (which forces us to create
this object second).

The constraint solver
The constraint solver's job is to make our objects respond to specific constraints.
We will learn more about the constraints in Chapter 5, Raycasting and Constraints.
We will be using btSequentialImpulseConstraintSolver for our project.

Note that our application class will be derived from and customized
in the BasicDemo class for the next several chapters. This keeps our
application layer code isolated from our physics/game logic.

see more please visit: https://homeofpdf.com

Physics Initialization

[42]

Each of the components described previously can be customized to fit our needs; for
instance, we might be working within extremely tight memory requirements (such as
a mobile device), and so we might consider completely replacing the stack allocator
with our own to optimize Bullet's memory allocation processes.

Creating the Bullet components
Contrary to what the laborious explanations in the previous section might have you
believe, creating the necessary Bullet objects is relatively simple. Our application
layer class contains a handful of pointers that all the derived classes can use:

btBroadphaseInterface* m_pBroadphase;
btCollisionConfiguration* m_pCollisionConfiguration;
btCollisionDispatcher* m_pDispatcher;
btConstraintSolver* m_pSolver;
btDynamicsWorld* m_pWorld;

Meanwhile, the code to initialize Bullet can be found in BasicDemo and looks as
shown in the following code snippet:

m_pCollisionConfiguration = new btDefaultCollisionConfiguration();
m_pDispatcher = new
 btCollisionDispatcher(m_pCollisionConfiguration);
m_pBroadphase = new btDbvtBroadphase();
m_pSolver = new btSequentialImpulseConstraintSolver();
m_pWorld = new btDiscreteDynamicsWorld(m_pDispatcher,
 m_pBroadphase, m_pSolver, m_pCollisionConfiguration);

Creating our first physics object
Bullet maintains the same modular design of its core components even down to
individual physics objects. This allows us to customize physics objects through
their components by interchanging or replacing them at will.

Three components are necessary to build a physics object in Bullet:

• A collision shape, defining the object's volume and how it should respond
to the collisions with other collision shapes

• A motion state, which keeps track of the motion of the object
• A collision object, which acts as a master controller of the object,

managing the previously mentioned components and the physical
properties of the object

see more please visit: https://homeofpdf.com

Chapter 3

[43]

We'll cover some essential theory on these components before we build one in code.
We'll also make some changes to our rendering system so that we can observe the
effects of gravity on our object.

Continue from here using the Chapter3.2_
CreatingOurFirstPhysicsObject project files.

The collision shape
The collision shape represents the volume of an object in space, be it a box, a sphere,
a cylinder, or some other more complex shape. Collision shapes do not care about the
rules of the world. They only care about how they should interact with other shapes,
and so it is the collision shape's responsibility to inform Bullet what kind of shape it
is, so that it can respond appropriately.

We will cover more varieties and intricacies of collision shapes in Chapter 7,
Collision Shapes, but for now we will build a simple collision shape component
using btBoxShape. This object's only requirement is to define its size upon creation.

As an interesting side note, spheres take a lot of polygons in order to generate an
accurate graphical representation of them. But, the physical representation of a
sphere is little more than a position and a radius, and calculating a sphere-to-sphere
collision is very simple (check the distance between their centers against the sum
of their radii). Meanwhile, a box is the exact opposite; they're cheap to generate
graphically (only 12 triangles), but expensive to generate physically and requires
much more complex mathematics to resolve collisions between them. Because of this,
spheres are commonly used for the collision shape of an object, even if its graphical
representation is not a sphere.

In addition, a newbie physics programmer would typically start out by using spheres
to represent the bounding volumes for objects to generate their very first broad phase
system. But, they will later graduate to using AABBs (similar to those described
previously) as they find that the spheres are not very good at representing long,
thin objects, and the mathematics aren't quite as efficient as AABB overlap checks.
Even though AABBs are technically boxes, they don't rotate (since the AA stands
for Axis-aligned), making the overlap math very simple—even simpler than
comparing two spheres for overlap.

see more please visit: https://homeofpdf.com

Physics Initialization

[44]

The motion state
The motion state's job is to catalogue the object's current position and orientation.
This lets us to use it as a hook to grab the object's transformation matrix (also known
as a transform). We can then pass the object's transform into our rendering system in
order to update the graphical object to match that of the physics system.

This is an incredibly important point that cannot be ignored, forgotten, or otherwise
misplaced; Bullet does not know, nor does it care, how we render its objects. We
could add 100 physics objects into our application right now, and Bullet would move
them, detect collisions, and resolve them as we would expect a physics engine to
do; but unless we tell our OpenGL code to draw a graphical box object in the same
location, we will have no idea about what's going on (besides doing some step
through debugging and scanning the code, of course). Our physics and graphics
engines are completely isolated from one another, and they have different ways of
representing the same object.

Having no dependency between our graphics and physics is ideal because it means
that we could completely replace the physics engine without having to touch the
graphics engine, and vice versa. It also means that we can have invisible physics
objects (such as force fields), or graphical objects that don't need a physical presence
(such as particle effects).

It is not uncommon for a game engine to separate these
components entirely with three different libraries, resulting in
the three different sets of Vector3/Matrix4x4/Quaternion
classes in the lowest levels; one set for the physics, one set for the
graphics, and one set for general game logic.

As an example of extending Bullet, we will be creating our own motion state class
called OpenGLMotionState. This class will extend Bullet's btDefaultMotionState
to provide a useful helper function that simplifies the process of extracting the
objects transform data into a format our rendering system can use.

see more please visit: https://homeofpdf.com

Chapter 3

[45]

The collision object
Collision objects are the essential building blocks of our physics objects, since they
maintain the object's physical properties, and give us a hook from which to alter the
object's velocity, acceleration, apply a force upon it, and so on. When we query the
motion state for the transform, it actually comes to this object to obtain it.

The simplest and most commonly used type of collision object is a btRigidBody.
Rigid bodies are physics objects that do not deform as a result of collisions, as
opposed to soft bodies which do. Rigid bodies are the easiest collision objects to
deal with because their behavior is consistent, and doesn't require extravagant
mathematics to handle basic collisions, unlike soft bodies which are far more
difficult and expensive to simulate.

Rigid bodies also require a btRigidBodyConstructionInfo object to be passed
through their constructor. This object stores data of important physical properties
for the rigid body, such as mass, friction, restitution, and so on.

Building a custom motion state
The entire code for our custom motion state can be found in a single header file
OpenGLMotionState.h. The only interesting function is GetWorldTransform(),
which takes an array of btScalars (16 of them to be precise, representing a 4 x 4
matrix), and performs a little math to return the same data in a format that OpenGL
understands. getOpenGLMatrix() is a helper function built into btTransform that
does this for us. OpenGL and Bullet are used together so often (the open source
graphics library used together with the open source physics engine; who would
have guessed?) that the developers of Bullet felt it was prudent to do this.

btScalar is a simple float by default, but could also be a double
if #define BT_USE_DOUBLE_PRECISION is placed somewhere in
the code. We'll continue to use floats for this project.

see more please visit: https://homeofpdf.com

Physics Initialization

[46]

It is a clean and efficient process to feed data between Bullet and OpenGL because
they both use right-handed coordinate systems, which defines how the x, y, and z
axes relate to one another. If we used a different physics and/or graphics library, we
might find that our objects move or render backwards on one of the axes. In that case
we may have a disconnection between our coordinate systems, and we would need
to determine which axis has been flipped, and make the necessary adjustments. The
following diagram shows the difference between the left-handed and right-handed
coordinate systems:

Left hand Right hand

Y
Z

X

Y

Z

X

Creating a box
Creating a box-shaped rigid body is fairly simple; all of the code to create one can
be found in the CreateObjects() function of this chapter's source code. We simply
create the three modular components described previously (motion state, collision
shape, and collision object), hook them together, and then inform the world object
of its existence through addRigidBody(). The only awkward step is of using
btRigidBodyConstructionInfo. This object is an intermediate step in creating
btRigidBody and requires the mass, motion state, and collision shape objects before
it can be built, although it has other properties that can be modified such as the
coefficients of restitution (how much it bounces), and friction.

btRigidBody::btRigidBodyConstructionInfo rbInfo(1.0f,
 m_pMotionState, pBoxShape);
btRigidBody* pRigidBody = new btRigidBody(rbInfo);

see more please visit: https://homeofpdf.com

Chapter 3

[47]

Rendering from transform data
We still have the problem that our DrawBox() function always draws a box at (0,0,0)
in world space. Before we can make use of the data from our object's motion state,
we will have to modify our rendering system to draw our object at a given location
instead. In order to do this, we'll need to introduce a few more OpenGL commands.

glPushMatrix() and glPopMatrix() are another pair of OpenGL delimiter
functions that work together in much the same way as glBegin() and glEnd()
do. They are used to control the matrix stack, which is very helpful while
drawing multiple objects, and objects that are meant to be connected together. As
mentioned previously, transformation matrices can be combined to get a resultant
transformation, and if we have multiple objects that share a similar transformation,
we can optimize our processing time by sharing information through the matrix
stack, instead of recalculating the same value over and over again.

This feature is particularly useful when we have object hierarchies such as a knight
riding on top of a steed, or moons orbiting planets, which themselves orbit stars.
This is the basic concept of a Scene Graph in 3D rendering (which is beyond the
scope of this book). The function to multiply the current matrix stack by a given
matrix is glMultMatrixf().

In this project, DrawBox() has been changed to collect an array of btScalars for the
transform, and uses the methods explained previously to manipulate the matrix stack
by surrounding the previous rendering code with calls to push and pop the stack.

Note that the /*REM*/ comment tags in the source code
represent code that has been removed and/or replaced
since the previous section.

Stepping the simulation
So, now we're rendering a graphical box in the same place as our physical box,
but we still don't see it moving. This is because the box isn't actually moving.
Why? Because Bullet has not been told to step the simulation, yet!

In order to do this, we simply call stepSimulation() on our btDynamicsWorld
object, providing the number of seconds that have elapsed since the last iteration.
The challenge here is counting the amount of time that has passed, since the last
time we called stepSimulation().

see more please visit: https://homeofpdf.com

Physics Initialization

[48]

Bullet comes with a built-in btClock object, but if you have your own clock tool
in mind, which you trust to be more precise, then there's nothing stopping you
from using that for a counter instead. A good place to handle this logic is in the
application layer class with the following member variable:

btClock m_clock;

The clock can be used to calculate the time since the last step and updating
the application.

float dt = m_clock.getTimeMilliseconds();
m_clock.reset();
UpdateScene(dt / 1000.0f);

When we launch our application again, we should observe our box falling under
the effects of gravity as in the following screenshot:

The stepSimulation() function also accepts two more parameters; the second
parameter is the maximum number of substeps that can be calculated this iteration,
and the third is the desired frequency of step calculations.

If we ask Bullet to perform calculations at a rate of 60 Hz (the third parameter – 60
Hz is also the default), but one second has gone by (maybe our application froze
for a moment), Bullet will make 60 separate step calculations before returning. This
prevents Bullet from jumping every object for one full second in time all at once, and
possibly missing some collisions.

see more please visit: https://homeofpdf.com

Chapter 3

[49]

However, calculating so many iterations at once could take a long time to process,
causing our simulation to slow down for a while as it tries to catch up. To solve this,
we can use the second parameter to limit the maximum number of steps it's allowed
to take in case one of these spikes occur. In this case, the world's physics will appear
to slow down, but it also means that your application won't suffer from a long period
of low frame rates.

In addition, the function returns the number of actual steps that took place, which
will either be the maximum, or less if it processed everything quickly enough.

Summary
We've created the essential components that Bullet needs to initialize, and hooked
them all together. We then created our first object in Bullet and extended our
rendering system to render the object as it moves through space. To do this we
created a custom class, OpenGLMotionState, which extends one of Bullet's own
objects. This class simplifies the process of obtaining the correct OpenGL transform
matrix from our object.

In the next chapter, we will implement a more robust system to handle multiple
objects, and look into extracting useful physics debug information from Bullet.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Object Management and
Debug Rendering

Our current application is not very scalable, and does not provide much in the
way of debug information to help us work with the physics system. So in this
chapter, we will be performing some code refactoring to help us handle these
situations in a robust fashion.

Handling multiple objects
We're currently hard coding one pointer and making one call to DrawBox() to create
our first object. Continuing down this path by adding a second pointer, and a second
call to DrawBox()would make introducing even more objects into the scene an
awkward and painful process.

A wise course of action to take at this early stage is to build a system that allows us to
encapsulate important object data (such as the object's shape, collision shape, motion
state, and color) in its own class. This way we can iterate through all of our objects,
regardless of private information, and use common calls to update and render them.

In order to accomplish this, we will have to make five significant changes to our
object system:

• Create a GameObject class to store our object's data
• Instantiate our objects from GameObject and store them in a data structure
• Modify our rendering system to iterate through the aforementioned

data structure

see more please visit: https://homeofpdf.com

Object Management and Debug Rendering

[52]

• Have the rendering system detect the type of shape and render the
appropriate polygons

• Write a new function to simplify the creation of objects

Continue from here using the Chapter4.1_
HandlingMultipleObjects project files.

Designing our objects
We would like to create simple objects of various shapes such as boxes, spheres, and
cylinders, and do so without having to repeat tasks such as creating the motion state,
the rigid body, the rigid body construction info, and so on. Essentially, the only data
that should be unique between any two objects are:

• The mass
• The shape
• The color
• The initial position and rotation

Because of this, it should be possible to create new objects using only these four
parameters, while we automatically build the rest from that information. Hence,
the constructor for our new GameObject class looks as follows:

GameObject(btCollisionShape* pShape, float mass, const btVector3
 &color, const btVector3 &initialPosition = btVector3(0,0,0),
 const btQuaternion &initialRotation = btQuaternion());

GameObject is a new class that stores important personal data, such as the Bullet
object components, and its own color. It also gives us a few helper functions to
access this data if we need (and we will). The majority of the work happens in
the constructor, requiring us to specify the object's mass, color, shape, and initial
transform (in the form of a vector for position and a quaternion for rotation).

Most of the code should be straightforward, with the exception of local inertia.
This value is normally referred to as the moment of inertia in most physics circles.
It essentially boils down to the object's resistance to change in angular velocity
around each axis of rotation. The classic example of this is a pole carried by a tight
rope walker. Because the pole is very long, it resists rotation allowing them to use it
to maintain balance.

see more please visit: https://homeofpdf.com

Chapter 4

[53]

We have a special case built in to this function. If we define the mass to be zero, we
also set the local inertia to (0,0,0). This will prevent the object from rotating as a
result of collisions. In addition, Bullet uses a mass of zero to imply that you really
want it to have an infinite mass, and hence don't want the object to move as result of
forces like gravity. This is useful for environmental objects that don't move, such as a
ground planes walls, and so on.

The center of mass (COM) of an object is an important property in Newtonian
physics and it's just as important in physics simulations. Bullet will assume that
the rigid body's COM is equal to its world position, unless told otherwise. Shifting
the COM to some other location can be achieved through the usage of compound
shapes, which will be explored more in Chapter 7, Collision Shapes.

Rendering our objects
We also need a more universal system to render our objects: one that chooses a
different rendering function based on the type of object being rendered. The source
code for this chapter now features a new DrawShape() function, which accepts a
btCollisionShape pointer of any derived type, determines which type of shape it is
using some of Bullet's internal enumerators, and then renders the appropriate shape.

Since DrawBox() only covers boxes for now, we will be
returning to this function later to expand on the additional
shapes we introduce.

This change requires us to move the coloring and positioning of our objects
(the glColor3f(), glPushMatrix(), and glPopMatrix() calls) out of DrawBox()
and into DrawShape(), to spare us from duplicating the same instructions each
time we render.

When a box is detected, through the BOX_SHAPE_PROXYTYPE enumerator, it
gets the appropriate size for the box, by typecasting to btBoxShape and calling
getHalfExtentsWithMargin(). This function returns the box's half size, or half the
size in each direction. This value is convenient for collision-response mathematics, and
since boxes are symmetrical shapes, physics engines typically define boxes this way.

see more please visit: https://homeofpdf.com

Object Management and Debug Rendering

[54]

Storing our objects
Picking the correct data structure for our needs is a matter of determining our
requirements and matching them to the properties of the various kinds of data
structures available. Tasks such as updating/rendering require quick iteration,
since there could be a very long list of world objects we need to check through.
Meanwhile, we're not particularly worried about tasks such as random access,
or insertion and deletion since these will be fairly rare tasks to perform.

For quick iteration, you can't do much better than one of the array based data
structures (of which there are many). A dynamic array or vector (not to be confused
with the 3D math variety of vector) should suit us well for our game objects.
Although, keep in mind that dynamic arrays are not the most efficient at random
access, insertion, or deletion.

There's a common saying in software engineering that
preoptimization is the root of all evil. Don't spend too much time
thinking about the perfect data structure to use (or heaven forbid,
building it all from scratch). It's wise to just get your application
working first, then go back and optimize if and only if you find
out that they turn out to be a significant bottleneck once you begin
profiling. You may find that your choice of data structure doesn't
matter at all, because there could be bigger optimization problems
popping up in areas you never even considered.

The Standard Template Library (STL) is a library that comes standard with
most C++ compilers, particularly Visual Studio. This library is enormous and
contains classes and tools to handle many different, common problems that C++
programmers come across. It also contains a collection of useful data structures that
we can use to store the objects such as our GameObject. A simple STL vector should
be sufficient for this task:

typedef std::vector<GameObject*> GameObjects;
GameObjects m_objects;

This allows us to refer to our vector using a custom GameObjects type, instead of
using the ugly namespace/template combination each time.

Consequently this allows us to replace our main rendering code with the following:

void BulletOpenGLApplication::RenderScene() {
 // create an array of 16 floats (representing a 4x4 matrix)
 btScalar transform[16];

see more please visit: https://homeofpdf.com

Chapter 4

[55]

 // iterate through all of the objects in our world
 for(GameObjects::iterator i = m_objects.begin(); i !=
 m_objects.end(); ++i) {
 // get the object from the iterator
 GameObject* pObj = *i;
 // read the transform
 pObj->GetTransform(transform);
 // get data from the object and draw it
 DrawShape(transform, pObj->GetShape(), pObj->GetColor());
 }
}

Having our objects stored in a data structure like this provides a lot more flexibility
to add new objects to our scene without undue effort.

As an interesting side note, Bullet uses a concept called Single
Instruction, Multiple Data (SIMD) on some platforms, which makes
the ability to run the same instruction on multiple pieces of data very
rapid. In order to use this, the objects must be aligned in memory in
steps of 16 bytes, and an STL vector does not naturally do this.
However, there is a built-in object type in Bullet called
btAlignedObjectArray, which functions similarly to an STL
vector and is worth exploring if you wish to make use of performance
enhancements like SIMD in the future. Iterating through a large list of
game objects and performing updates on them is a perfect situation to
apply this technique.

Creating our objects
With our new system in place, we can introduce a new function to handle the creation
of a GameObject for us. This function can be examined in the chapter's source code, but
to summarize, it gathers the shape, mass, color, position, and rotation of the object we
want to create, generates a new GameObject for it, and adds it to our dynamic array.
As long as GameObject remains in the array, it will be automatically rendered in each
step, greatly simplifying the act of adding new objects.

With this new function, we easily create our original box with the following call:

CreateGameObject(new btBoxShape(btVector3(1,1,1)), 1.0,
 btVector3(1.0f, 0.2f, 0.2f), btVector3(0.0f, 10.0f, 0.0f));

see more please visit: https://homeofpdf.com

Object Management and Debug Rendering

[56]

But, we can create two new objects with two more calls, and the majority of the work
is taken care of by GameObject, RenderScene(), and DrawShape().

// create a ground plane
CreateGameObject(new btBoxShape(btVector3(1,50,50)), 0,
 btVector3(0.2f, 0.6f, 0.6f), btVector3(0.0f, 0.0f, 0.0f));
// create a second box
CreateGameObject(new btBoxShape(btVector3(1,1,1)), 1.0,
 btVector3(0.0f, 0.2f, 0.8f), btVector3(1.25f, 20.0f, 0.0f));

Note that the increasing values of x in the initial position means
the object starts further left. This is because of the position of our
camera relative to the objects.

Now if we run our application, we should see a blue box falling down, hitting
the red box, tilting, and falling over. It took us only two extra lines of code to create
two new objects; that's a pretty good effort-to-reward ratio! The following screenshot
shows our application with our new ground plane, and a new box colliding with our
original box:

see more please visit: https://homeofpdf.com

Chapter 4

[57]

Debug rendering
Observing a problem visually is usually the easiest first step in diagnosing it. So
it is helpful for a physics engine to provide a means to draw debug information
onto the screen whether it's the edges of objects, the points of collision, the depth
of penetration, or more. Bullet provides a very simple interface for us to render this
kind of debugging data onto our scene, which we will implement in this section.

Continue from here using the Chapter4.2_DebugDrawer
project files.

Building the debug drawer
To create our own debug drawer, we will inherit from btIDebugDraw, an interface
class for debug rendering. This object must override essential functions such
as drawLine() or drawContactPoint(). There are a few functions such as
reportErrorWarning() and draw3dText() that we're not interested in, but
are pure virtual, and requires us to at least define them. Since we won't need
them, we will leave them empty.

Here is a snippet of one of the functions defined in DebugDrawer, which draws a
colored line between the two given points:

void DebugDrawer::drawLine(const btVector3 &from,const btVector3
 &to, const btVector3 &color)
{
 // draws a simple line of pixels between points.
 // use the GL_LINES primitive to draw lines
 glBegin(GL_LINES);
 glColor3f(color.getX(), color.getY(), color.getZ());
 glVertex3f(from.getX(), from.getY(), from.getZ());
 glVertex3f(to.getX(), to.getY(), to.getZ());
 glEnd();
}

see more please visit: https://homeofpdf.com

Object Management and Debug Rendering

[58]

The DebugDrawer class must be handed over to the world object through a call to
setDebugDrawer(). In each render call, we will ask the world object to render the
debug information through a call to debugDrawWorld(). This will cause the world
to determine what needs to be rendered, based on which debug flags are set in m_
debugFlags, and leave the actual rendering to our DebugDrawer class. Note that the
only reason it can accept and use it is because it was derived from the btIDebugDraw
interface class. If this seems confusing, it's worth brushing up on the concepts of
Polymorphism.

The following is a snippet from the Keyboard() function, which allows us to change
a single debug flag. These flags must come from Bullet's own internal enumerator of
values, since it uses this to decide what to render for us.

 case 'w':
 // toggle wireframe debug drawing
 m_pDebugDrawer->ToggleDebugFlag(btIDebugDraw::DBG_DrawWireframe);
 break;

Now our application can render debug lines and AABB volumes through a press
of W or B, respectively. The following screenshot shows the application with debug
rendering enabled:

see more please visit: https://homeofpdf.com

Chapter 4

[59]

Introducing activation states
It may be apparent that the wireframe color of our boxes changes from white to
green a few moments after an object comes to rest. This is yet another optimization
that Bullet handles internally, which is only visualized through the debug mode,
but has a profound effect on CPU usage. Objects whose velocity is below a given
threshold for a given amount of time have their activation state set to deactivated.
Meanwhile, there are actually two dynamic bounding volume trees created when
you use a btDbvtBroadphase object (as we did). One stores the active objects (the
active tree), and the other stores any static or deactivated objects (the deactive tree).
So, when an object is deactivated, it pushes them into the other tree.

This causes Bullet to skip over them when its time for the world to move objects
around, and since the broad phase object only compares the active tree against itself,
and the active tree against the deactive tree (more importantly, it doesn't compare the
deactive tree against the deactive tree) its impact on processing time is reduced even
further. Later, when an active object collides with the deactivated one, it is activated
once more, pushed back into the active tree, and Bullet performs the necessary
calculations until it decides to deactivate it once more. These activation/deactivation
states are typically referred to as putting the object to sleep, or waking it up.

Note that the ground plane is always drawn with a green
wireframe (asleep) because Bullet knows that this object
has an infinite mass, is static, is never a part of the active
tree, and thus will never need to be moved.

This optimization has its drawbacks; sometimes an object may be moving slow
intentionally, but if it is moving too slowly, Bullet deactivates it. For example, we
might have an object that is very slowly teetering on an edge, which means it has
a very low angular velocity for a long time, at which point Bullet may assume that
it needs to put the object to sleep. This can cause some bizarre situations, where an
object looks like it should be falling over, but is in fact it is frozen in place at an angle
that would not be possible in the real world.

The typical workaround is to tweak the sleep threshold of the object, the
minimum values of linear and angular velocity, which Bullet considers too low.
This can be achieved by calling setSleepingThresholds() on any rigid body.
As a last resort, we can force all the objects to remain activated, by calling the
setActivationState(DISABLE_DEACTIVATION) function on every new object,
but this will cost us some performance, since every object will now be a part of
the active tree, and hence will be checked every iteration.

see more please visit: https://homeofpdf.com

Object Management and Debug Rendering

[60]

The domino effect
While on the subject of activation states, it is worth mentioning the domino
effect. It is possible for entire groups of touching objects (often called islands)
to be put to sleep in the same fashion, greatly reducing their impact on the CPU.
Once Bullet detects that none of the objects has moved in a while, they will all be
put to sleep eventually.

This might seem convenient and allow us to throw more objects into the simulation,
but be warned. When these islands get too large, consisting of too many objects, all
it takes is for one of them to be nudged and the entire stack could become active
simultaneously as they collide with one another, wake one another up, and the entire
simulation slows to a crawl until Bullet puts some or all of them back to sleep again.

Too much activity such as this occurring in too short span of time can lead to adverse
physics simulation behavior sometimes known as the Spiral of Death. This occurs
when the simulation takes more time processing the current step, than the step
simulates; for example, if we take 20 ms to simulate a 16 ms timestep we're behind
by 4 ms, so the simulation needs to compensate in the next step, requiring even more
time to process.

This can create a situation of progressively lower and lower frame rates until the
simulation finds enough breathing room (simulation steps where very little is
going on, such as when the awoken island has finally been dealt with) to catch
up to the current moment in time. This would obviously create a very jarring and
disappointing gameplay experience.

However, as mentioned towards the end of Chapter 3, Physics Initialization, Bullet
lets you deal with this situation by tweaking the second and third parameters of
stepSimulation(). But, this information is worth keeping in mind if you use an
alternative physics engine, or find yourself building a custom solution in the future.

An old, but still relevant, blog post covers this concept in more detail
and suggests good methods to avoid it:
http://gafferongames.com/game-physics/fix-your-
timestep/

see more please visit: https://homeofpdf.com

Chapter 4

[61]

Summary
We have introduced some generic object management code to better facilitate
future projects and expansion. Our GameObject class contains the object data,
while BulletOpenGLApplication ensures our objects are stored, and rendered
regardless of how many we create and what their private properties might be.

We have also added debug rendering to our scene, so that we can visualize some
of the information coming from our physics objects. This is a useful tool to keep in
one's tool chest when working with a physics engine such as Bullet, since attempting
to debug complex mathematics at a low level can be mind-bendingly difficult.

In the next chapter, we will implement some advanced mouse control through
the power of raycasting and constraints.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Raycasting and Constraints
Many games use a mouse or touch screen as the primary means of controlling objects;
whether it's by selecting, moving, creating, or destroying them.

If we want to implement such a system into our application, then we must find
a way to translate a mouse click (x-y coordinates on the screen) into a method of
detecting the first object underneath the pointer. The answer to this conundrum is
raycasting, which we will be exploring in this chapter.

Then, once we have a raycasting system in place, we will explore how we can
use it in combination with Bullet's constraint system to move objects with the
mouse cursor.

The power of raycasting
Raycasting is a technique that can be used for a variety of different tasks. A common
use is to find objects underneath the cursor from the camera's perspective. This is
typically referred to as picking. However, rays are also used in other tasks, such as
in shooter games to cast a line from the barrel of a weapon to where a bullet might
strike, which could be a wall or another player.

Another common usage of rays is to surround a player character with many rays
that point outwards from the object, that are used as feelers to detect if the player is
near other objects. For example, there could be a ray that points downwards from
the player's feet a short distance. If the ray collides with a physical object, then we
know that the player is touching the ground and telling us to play the appropriate
animation, or reset a flag that allows them to jump.

see more please visit: https://homeofpdf.com

Raycasting and Constraints

[64]

Regardless, all of these concepts are built from the same basic idea; choose a
starting point, pick a direction to travel in (a ray), and move along that direction
(cast) until it collides with something. Let's create a basic picking ray function which
exactly does that.

Continue from here using the Chapter5.1_
Raycasting project files.

Picking rays
The GetPickingRay() function in the book's source code involves a large smattering
of 3D mathematics that are beyond the scope of this book. It should be enough to
know that it takes the x-y coordinates of a mouse click, and uses the camera's data
(its position, near plane, far plane, field of view, and aspect ratio) to calculate and
return a btVector3 in world coordinates that points forward from the camera in the
corresponding direction. If the camera moves, or we click somewhere else on the
screen, then we get a new btVector3 pointing forward from that position instead.
Armed with this function, we can add some simple code to create a new object
whenever we click on the right mouse button. This code can be found in the chapter's
source code, in the ShootBox() function. This function is called by the Mouse()
function anytime when the application detects that the right mouse button was clicked.

Recall that the Mouse() function was called by FreeGLUT
anytime a mouse button is clicked. It gives us the button, the
state (pressed or released), and the x-y coordinates of the click.

see more please visit: https://homeofpdf.com

Chapter 5

[65]

Launch our application and try right-clicking on the mouse. It should create a
purple box and launch it towards the mouse cursor. The following screenshot
shows this in action:

We've jumped ahead a little with the setLinearVelocity() function. This
instruction is used to set the collision object's linear velocity. We'll learn more about
manipulating the rigid bodies through functions such as this in Chapter 6, Events,
Triggers, and Explosions.

see more please visit: https://homeofpdf.com

Raycasting and Constraints

[66]

Destroying objects
So far, we've essentially created a starting point for a picking ray. It is not a true
raycast or picking ray until the ray travels forward in space and performs some type
of collision detection. To destroy an object in our scene, we'll need to use our picking
ray to perform a raycast and tell us the first rigid body with which it collides.

Raycasting in Bullet is handled through the btDynamicsWorld object's rayTest()
function. We provide the starting point (as a btVector3), the direction (btVector3),
and an object to store the raycast data inside, which should be one of two different
classes that inherit from RayResultCallback. The object could either be:

• ClosestRayResultCallback, which gives the closest collision that the ray
detected from the start location

• AllHitsRayResultCallback, which gives an array filled with all of the
collisions the ray detected

Which object we want to use will depend on whether we want only the closest hit,
or all of them. We will be using ClosestRayResultCallback, which contains useful
data and member functions for the collision point, such as:

• hasHit(), which returns a boolean value and tells us if there was a collision
between the ray and any physics object

• m_collisionObject, which is the btCollisionObject our ray hit
• m_hitPointWorld, which is the coordinate in world space where the ray

detected a collision

The Raycast() function in the book's source code takes a picking ray and an empty
output RayResult structure, uses it to create a ClosestRayResultCallback, and
then performs a raycast test. If the raycast was successful, the function fills out the
structure and returns true, allowing us to check the success or failure of the raycast
outside of this function.

Notice the special case to avoid picking static objects, such as our
ground plane. When we gave our ground plane a mass of zero,
Bullet automatically set the static flag for us, allowing us to check
for it at a later date.

Before we can destroy the picked rigid body we need to know what GameObject that
corresponds to. We will have to search through our list of game objects, comparing
their rigid bodies with the picked one, until we find it. Then, and only then, is it safe
to destroy it.

see more please visit: https://homeofpdf.com

Chapter 5

[67]

Check the DestroyGameObject() function in the chapter's source code for details
of this process. This function searches through our list of objects hunting down
GameObject that corresponds to the given btRigidBody. It is then called during
the Keyboard() function, whenever we detect that the user pressed the D key.

Note that the mouse coordinates, x and y, are also passed
into functions such as Keyboard(). This greatly simplifies
our input handling, preventing us from having to store the
current mouse data locally.

Launch the application, hover the mouse cursor over an object, and press D on the
keyboard. Any objects beneath the cursor should now be instantly destroyed (with
the exception of the ground plane). The following are the screenshots before and
after destruction of the box on the left:

Constraints
We'll now explore Bullet's constraint feature. These objects limit the range of motion
of one object relative to another, giving us the power to create some very interesting
and unique gameplay situations.

Continue from here using the Chapter5.2_
Constraints project files.

see more please visit: https://homeofpdf.com

Raycasting and Constraints

[68]

Understanding constraints
Constraints, in their most basic form, are the rules which limit the range of motion
of an object relative to some specific object or point in space. For example, think of
a desk chair. It is made up of multiple parts, but if we push the base of the chair, the
rest must move with it. The same happens if we push the top section; so even though
the chair is made of multiple pieces, they are constrained to one another by a handful
of rules.

Constraints can be used to also simulate the independent rotation of the desk
chair's top section relative to the base. The top section is able to rotate around an
axis without any dependence on what the bottom section is doing. This constraint
is simulated by hooking the top section to an invisible point, and only allowing
rotation around a single axis about that point.

Constraints can vary in how strongly they influence their target objects. A strong
constraint enforces its limitation on movement at all times as strongly as it can. So,
if two objects are connected by a very strong, rigid constraint, it is the equivalent of
being attached together by invisible and unbreakable glue. In other words, if one
object is moved one unit in space, then the other must move one unit in space to
follow it.

Weaker constraints are more like springs. Under the same scenario, the first object
might move one unit in space, but the second moves somewhat less, causing the
two objects to come closer together, or pushed further apart. In addition, the more
they are pushed away from their resting position, the harder the constraint pulls
them back; if we recall our Newtonian physics, this is much like how a simple
spring functions.

Picking up objects
A feature of most games is to allow the player to pick up and move the objects around
with the mouse cursor or touch screen (also useful for debugging and testing!). There
are several ways to achieve this, such as with forces, or updating the rigid body's
transform each iteration, but we would like to use a constraint to achieve this effect.

The idea is to use our existing raycasting functionality to detect which object was
selected and the exact point of a mouse click. We then create a new constraint at that
point and attach it to the selected object. Then, every time we move the mouse (while
the mouse button is still held down), we update the position of the constraint. The
expectation being that our selected object would move with the constraint, and keep
the same relative position until it is freed from its influence.

see more please visit: https://homeofpdf.com

Chapter 5

[69]

There are a handful of different objects which Bullet provides in order to implement
the constraint system. We'll cover the btGenericDof6Constraint object, the
most generic of the available options (hence the name). Its purpose is to give us an
interface to limit the six degrees of freedom (Dof6 for short) of an object; these refer to
the three axes of both linear and angular motion. This constraint can either be used to
hook two rigid bodies together, or hook a single object to a single point in space.

Building a constraint
We've seen raycasting in action earlier in this chapter, so all we need
to cover is the creation, update, and destruction of the constraint itself.
CreatePickingConstraint() is a very large function, so we'll explore
some code snippets one step at a time:

 if (!Raycast(m_cameraPosition, GetPickingRay(x, y), output))
 return;

This instruction should look familiar, since we used it earlier in this chapter.
It performs a raycast and returns true if it finds anything, pushing the relevant
data into the output variable.

 m_pPickedBody->setActivationState(DISABLE_DEACTIVATION);

Here we're ensuring the picked object doesn't fall asleep while attached to our
constraint. We covered activation states back in Chapter 4, Object Management and
Debug Rendering and the last thing we want is our picked object to freeze in place
while we still have it selected!

 // get the hit position relative to the body we hit
 btVector3 localPivot = m_pPickedBody-
 >getCenterOfMassTransform().inverse() * output.hitPoint;

We mentioned earlier how we would create the constraint at the exact point of
the click, which is exactly what the previous calls do, except it does so in a rather
convoluted way.

Constraints must be defined in local space coordinates, for example, let's say we
have two objects positioned at (0,3,0) and (0,10,0) in world space coordinates.
But, from the first object's perspective, it is always positioned at (0,0,0) in its own
local space, regardless of where it is in world space. Also, as far as the first box is
concerned, the other box is positioned at (0,7,0) in its local space. Meanwhile, from
the second object's perspective, it is also positioned at (0,0,0) in its local space, and
the other box is located at (0,-7,0) in its local space.

see more please visit: https://homeofpdf.com

Raycasting and Constraints

[70]

It's possible to obtain these values mathematically by multiplying the vector
representing a point in world space by the inverse of an object's transformation
matrix. Therefore in the preceding code, we multiply the hit point by the inverse
transform of the box's center of mass, giving us the hit point coordinates from the
box's local space perspective.

The previous mathematical calculation is a very important and
useful feature of matrices that is worth remembering for the future.

Next we create our constraint object:

btGeneric6DofConstraint* dof6 = new
 btGeneric6DofConstraint(*m_pPickedBody, pivot, true);

The constraint requires us to provide the body in question, the pivot point (again, in
local space coordinates), and a bool value. This boolean tells the constraint whether
to store various pieces of data relative to object A (the rigid body) or object B (the
constraint's pivot point in this case, but could also be a second rigid body). This
becomes important when using the constraint later.

dof6->setAngularLowerLimit(btVector3(0,0,0));
dof6->setAngularUpperLimit(btVector3(0,0,0));

Also, calling the setAngularUpperLimit() and setAngularLowerLimit()
functions with zero's btVector3s add a rotational limitation to the box while it is
attached to this constraint, preventing it from rotating.

m_pWorld->addConstraint(dof6,true);

Much like rigid bodies, it's not enough to create the object; we must also inform the
world of its existence, hence we call the addConstraint() function. The second
parameter disables the collisions between the two linked bodies. Since we don't have
two bodies in this constraint (we have a body and a pivot point), it would be wise to
tell Bullet to save itself some effort by setting the value to true. If we had two rigid
bodies connected via a weak constraint and were interested in having them collide,
we would want to set this value to false.

// define the 'strength' of our constraint (each axis)
float cfm = 0.5f;
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,0);
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,1);
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,2);
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,3);
dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,4);

see more please visit: https://homeofpdf.com

Chapter 5

[71]

dof6->setParam(BT_CONSTRAINT_STOP_CFM,cfm,5);
// define the 'error reduction' of our constraint (each axis)
float erp = 0.5f;
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,0);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,1);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,2);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,3);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,4);
dof6->setParam(BT_CONSTRAINT_STOP_ERP,erp,5);

This is where things get a little weird. The setParam() function sets the value of
a number of different constraint variables, two of which are used in the preceding
code. It is called a total of twelve times, since there are three axes, two directions for
each axis (positive and negative), and two different types of variable to edit (3x2x2 =
12). The two aforementioned variables are CFM (Constraint Force Mixing) and ERP
(Error Reduction Parameter).

CFM is essentially a measure of the strength of the constraint. A value of 0 means a
perfectly rigid constraint, while increasing values make the constraint more spring
like, up to a value of 1 where it has no effect at all.

ERP represents the fraction of how much joint error will be used in the next
simulation step. Many constraints could be working in unison to create a complex
interaction (imagine a rope bridge, which can be simulated by a attaching a bunch of
springs connected together) and ERP is used to determine how much of the previous
data will affect the calculation of future data. This is a difficult concept to explain
in such a short space, but imagine that we have multiple constraints acting on the
same object, each forcing the others into breaking their own rules. ERP is then the
priority of this constraint relative to the others, and helps determine who has higher
importance during these types of complex constraint scenarios.

And there we have it. We detected the collision point, and then built our constraint.
That wasn't so bad, was it? The last snippet of code to look at is in the Motion()
function, the code which updates the position of the constraint while we're still
holding down the left mouse button.

// use another picking ray to get the target direction
btVector3 dir = GetPickingRay(x,y) - m_cameraPosition;
dir.normalize();
// use the same distance as when we originally picked the object
dir *= m_oldPickingDist;
btVector3 newPivot = m_cameraPosition + dir;
// set the position of the constraint
pickCon->getFrameOffsetA().setOrigin(newPivot);

see more please visit: https://homeofpdf.com

Raycasting and Constraints

[72]

It was mentioned earlier that it was possible to get data from the constraint in a form
which is relative to one of the two objects involved in the constraint (called A and
B). We use the getFrameOffsetA() function to get the transform position of the
constraint relative to the first object, and then update it with the new value. This is
the equivalent to updating the position of the constraint's pivot point. Thus in the
next simulation step, the constraint will attempt to move the box to the new position
of the mouse, keeping the same distance from the camera as when it was first picked.

The last thing to mention is the RemovePickingConstraint() function, which
makes sure that we have an existing constraint before attempting to destroy it.
If so, we must remove it from the world, destroy the object in memory, nullify
the pointers. The re-enable the ability of the picked up object to go back to sleep.

In this section's application we can pick up one of our objects with the left mouse
button and move it around. The following screenshot shows that the first box has
been moved on top of the second box of to our mouse clicking constraint:

Try tweaking the bLimitAngularMotion, cfm, and erp
variables in CreatePickingConstraint() and observe
the effects they have on the picked object.

see more please visit: https://homeofpdf.com

Chapter 5

[73]

Summary
We've witnessed the power of picking, raycasting, and constraints by adding some
mouse control to our application. This flexible system is used to create, move, and
destroy objects in the scene. This allows for some very creative gameplay mechanics,
animations, and effects, since many games rely on these mechanisms as an essential
component of gameplay, so these are all lessons to take forward when implementing
similar systems in your own projects.

In the next chapter, we'll add more game logic control to our application by adding
a collision event system, complete with volumes of space which act as triggers, and
manipulating our objects through various types of force.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Events, Triggers, and
Explosions

Almost every game needs some form of event system that informs the game logic
about collisions that have occurred between objects, and many of these events are
triggered by invisible volumes of space that react when certain game objects enter
them. In this chapter, we'll learn how to build these features and then apply them
by simulating an explosion!

Building a collision event system
In a game such as Angry Birds, we would want to know when a breakable object such
as a pig or piece of wood has collided with something, so that we can determine the
amount of damage that was dealt, and whether or not the object should be destroyed,
which in turn spawns some particle effects and increments the player's score.

It's the game logic's job to distinguish between the objects, but it's the physics engine's
responsibility to send these events in the first place and then we can extract this
information from Bullet through its persistent manifolds.

Continue from here using the Chapter6.1_
CollisionEvents project files.

see more please visit: https://homeofpdf.com

Events, Triggers, and Explosions

[76]

Explaining the persistent manifolds
Persistent manifolds are the objects that store information between pairs of objects
that pass the broad phase. If we remember our physics engine theory from Chapter 3,
Physics Initialization, the broad phase returns a shortlist of the object pairs that might
be touching, but are not necessarily touching. They could still be a short distance
apart from one another, so the existence of a manifold does not imply a collision.
Once you have the manifolds, there's still a little more work to do to verify if there is
a collision between the object pair.

One of the most common mistakes made with the Bullet physics
engine is to assume that the existence of a manifold is enough to
signal a collision. This results in detecting collision events a couple of
frames too early (while the objects are still approaching one another)
and detecting separation events too late (once they've separated far
enough away that they no longer pass the broad phase). This often
results in a desire to blame Bullet for being sluggish, when the fault
lies with the user's original assumptions. Be warned!

Manifolds reside within the collision dispatcher (a core Bullet object we created back in
Chapter 3, Physics Initialization), and Bullet keeps the same manifolds in memory for as
long as the same object pairs keep passing the broad phase. This is useful if you want
to keep querying the same contact information between pairs of objects over time. This
is where the persistent part comes in, which serves to optimize the memory allocation
process by minimizing how often the manifolds are created and destroyed.

Bullet is absolutely riddled with subtle optimizations and this is
just one of them. This is all the more reason to use a known good
physics solution like Bullet, instead of trying to take on the world
and building your own!

The manifold class in question is btPersistentManifold and we can gain access
to the manifold list through the collision dispatcher's getNumManifolds() and
getManifoldByIndexInternal() functions.

Each manifold contains a handful of different functions and member variables
to make use of, but the ones we're most interested in for now are getBody0(),
getBody1(), and getNumContacts(). These functions return the two bodies in
the object pair that passed the broad phase, and the number of contacts detected
between them. We will use these functions to verify if a collision has actually taken
place, and send the involved objects through an event.

see more please visit: https://homeofpdf.com

Chapter 6

[77]

Managing the collision event
There are essentially two ways to handle collision events: either send an event every
update while two objects are touching (and continuously while they're still touching),
or send events both when the objects collide and when the objects separate.

In almost all cases it is wiser to pick the latter option, since it is simply an optimized
version of the first. If we know when the objects start and stop touching, then we
can assume that the objects are still touching between those two moments in time.
So long as the system also informs us of peculiar cases in separation (such as if one
object is destroyed, or teleports away while they're still touching), then we have
everything we need for a collision event system.

Bullet strives to be feature-rich, but also flexible, allowing us to build custom
solutions to problems such as this; so this feature is not built into Bullet by default.
In other words, we will need to build this logic ourselves. Our goals are simple;
determine if a pair of objects have either collided or separated during the step,
and if so, broadcast the corresponding event. The basic process is as follows:

1. For each manifold, check if the two objects are touching (the number of
contact points will be greater than zero).

2. If so, add the pair to a list of pairs that we found in this step.
3. If the same pair was not detected during the previous step, broadcast a

collision event.
4. Once we've finished checking the manifolds, create another list of collision

objects that contains only the missing collision pairs between the previous
step and this step.

5. For each pair that is missing, broadcast a separation event.
6. Overwrite the list of collision pairs from the previous step, with the list we

created for this step.

There are several STL (Standard Template Library) objects and functions we can use
to make these steps easier. An std::pair can be used to store the objects in pairs,
and can be stored within an std::set. These sets let us perform rapid comparisons
between two sets using a helpful function, std::set_difference(). This function
tells us the elements that are present in the first set, but not in the second.

see more please visit: https://homeofpdf.com

Events, Triggers, and Explosions

[78]

The following diagram shows how std::set_difference returns only objects pairs
that are present in the first set, but missing from the second set. Note that it does not
return new object pairs from the second set.

std::set_difference+ -> =

Objects in the second set

05

05

01

02

04

06

06

03

Objects in the first set

01

0102

02

04

06

03

Objects in
the difference
set

0102

04 03

03

The most important function introduced in this chapter's source code is
CheckForCollisionEvents(). The code may look a little intimidating at first, but
it simply implements the steps listed previously. The comments should help us to
identify each step.

When we detect a collision or separation, we will want some way to inform the game
logic of it. These two functions will do the job nicely:

virtual void CollisionEvent(btRigidBody* pBody0, btRigidBody *
 pBody1);
virtual void SeparationEvent(btRigidBody * pBody0, btRigidBody *
 pBody1);

In order to test this feature, we introduce the following code to turn colliding objects
white (and similar code to turn separating objects black):

void BulletOpenGLApplication::CollisionEvent(const
 btCollisionObject * pBody0, const btCollisionObject * pBody1) {
 GameObject* pObj0 = FindGameObject((btRigidBody*)pBody0);
 pObj0->SetColor(btVector3(1.0,1.0,1.0));
 GameObject* pObj1 = FindGameObject((btRigidBody*)pBody1);
 pObj1->SetColor(btVector3(1.0,1.0,1.0));
}

see more please visit: https://homeofpdf.com

Chapter 6

[77]

Note that these color changing commands are commented out
in future project code.

When we launch the application, we should expect colliding and separating objects to
change to the colors give in CollisionEvent(). Colliding objects should turn white,
and separated objects should turn black. But, when objects have finished moving, we
observe something that might seem a little counterintuitive. The following screenshot
shows the two objects colored differently once they come to rest:

But, if we think about the order of events for a moment, it begins to make sense:

• When the first box collides with the ground plane, this turns both objects
(the box and the ground plane) white.

• The second box then collides with the first turning the second box white,
while the first box stays white.

• Next, the second box separates from the first box, meaning both objects
turn black.

• Finally, the second box collides with the ground plane, turning the box
white once again.

see more please visit: https://homeofpdf.com

Events, Triggers, and Explosions

[80]

What was the last color that the first box turned to? The answer is black, because the
last event it was involved in was a separation with the second box. But, how can the
box be black if it's touching something? This is an intentional design consequence of
this particular style of collision event management; one where we only recognize the
collision and separation events.

If we wanted objects to remember that they're still touching something, we would have
to introduce some internal method of counting how many objects they're still in contact
with, and incrementing/decrementing the count each time a collision or separation
event comes along. This naturally consumes a little memory and processing time, but
it's certainly far more optimized than the alternative of spamming a new collision
event every step while two objects are still touching. We want to avoid wasting CPU
cycles telling ourselves information that we already know.

The CollisionEvent() and SeparationEvent() functions can be used by a game
logic to determine if, when, and how two objects have collided. Since they hand over
the rigid bodies involved in the collision, we can determine all kinds of important
physics information, such as the points of contact (where they hit), and the difference
in velocity/impulse force of the two bodies (how hard they hit). From there we can
construct pretty much whatever physics collision-related game logic we desire.

Try picking up, or introducing more objects with the left/right mouse
buttons, causing further separations and collisions until you get a feel
for how this system works.

Building trigger volumes
Imagine we want an invisible volume of space, and when the player stumbles into it,
it triggers a trap or a cutscene. This concept is used countlessly throughout modern
games (in fact, it's difficult to think of one in the last decade that doesn't use them
somewhere).

This effect is achieved in Bullet by simply disabling the contact responses for any
given rigid body.

Continue from here using the Chapter6.2_TriggerVolumes
project files.

see more please visit: https://homeofpdf.com

Chapter 6

[77]

Disabling contact response
There is no specific class required to build a trigger volume, but there is an essential
flag which we can apply to any object: CF_NO_CONTACT_RESPONSE. This flag disables
all contact response, informing Bullet that it should not calculate any physical
response when other objects collide with the flagged object. This does not prevent it
from performing broad and narrow phase collision detection and informing us when
an overlap occurs, hence our CollisionEvent() and CollisionSeparation()
functions will still be called even for objects flagged in this way. The only difference
is that other objects will pass through it unhindered.

Here's a snippet of code from BasicDemo::CreateObjects():

// create a trigger volume
m_pTrigger = new btCollisionObject();
// create a box for the trigger's shape
m_pTrigger->setCollisionShape(new btBoxShape(btVector3(1,0.25,1)));
// set the trigger's position
btTransform triggerTrans;
triggerTrans.setIdentity();
triggerTrans.setOrigin(btVector3(0,1.5,0));
m_pTrigger->setWorldTransform(triggerTrans);
// flag the trigger to ignore contact responses
m_pTrigger->setCollisionFlags(btCollisionObject::CF_NO_CONTACT_
RESPONSE);
// add the trigger to our world
m_pWorld->addCollisionObject(m_pTrigger);

The previous code creates a trigger volume hovering just above the ground plane.
We don't want these trigger volumes to be rendered during runtime since these
kinds of triggers usually remain invisible to the player. So we avoided using our
CreateGameObject() function (which would have added it to the list of objects
and automatically render it), and instead we built it manually.

However, even though it is invisible to the player, we can still observe it through
the debug renderer. If we enable wireframe mode (the W key), Bullet will draw the
shape for us so that we can visualize the trigger volume in the space.

Meanwhile, BasicDemo includes an override for CollisionEvent() which checks if
the two objects involved are the box and the trigger, and if so, it spawns a large box
besides it. Note that we don't necessarily know if pBody0 or pBody1 represents either
object, so we need to check both pointers:

void BasicDemo::CollisionEvent(btRigidBody* pBody0, btRigidBody*
pBody1) {

see more please visit: https://homeofpdf.com

Events, Triggers, and Explosions

[82]

 // did the box collide with the trigger?
 if (pBody0 == m_pBox->GetRigidBody() && pBody1 == m_pTrigger ||
 pBody1 == m_pBox->GetRigidBody() && pBody0 == m_pTrigger) {
 // if yes, create a big green box nearby
 CreateGameObject(new btBoxShape(btVector3(2,2,2)), 2.0,
btVector3(0.3, 0.7, 0.3), btVector3(5, 10, 0));
 }
}

Launch the application, and enable wireframe debugging (the W key). We should
see a trigger volume (denoted by a white wireframe) just below the spawn point
of the first box. Moments after, the box should collide with the trigger, causing
CollisionEvent() to be called. Since the two objects involved are the trigger
volume, and the first box, the if statement will become true, and a new game object
will be created. The following screenshot shows a new object (the large box) being
spawned after the first box collides with the trigger volume:

Force, torque, and impulse
Next, we will explore how to manipulate the motion of our collision objects
through forces, torques, and impulses and also discuss the important differences
between them.

Continue from here using the Chapter6.3_
ForceTorqueAndImpulse project files.

see more please visit: https://homeofpdf.com

Chapter 6

[77]

Understanding the object motion
We have already observed one method of moving a rigid body with our
ShootBox() command back in Chapter 5, Raycasting and Constraints, by calling the
setLinearVelocity() function on the object's rigid body after creating it. This
function sets the magnitude and direction of the object's linear motion. Meanwhile,
another commonly used motion altering command is setAngularVelocity(),
which is used to set the object's rotational velocity.

However, simple velocity altering commands like these do not add much life or
believability to a scene, since we humans are also familiar with the concept of
acceleration due to effects such as gravity, or the inertia we feel when we drive a
car, ride a bike, or even walk. Acceleration can be applied in Bullet through the use
of forces. There are different types of force, where each one has some important
distinctions that must be understood before making use of them. We'll discuss the
following commands that are accessible through any btRigidBody:

• applyForce()

• applyTorque()

• applyImpulse()

• applyTorqueImpulse()

• applyCentralForce()

• applyCentralImpulse()

All of the preceding functions require a btVector3 object to define the direction and
the strength of the effect. Just like the Newtonian definition, forces (such as gravity)
continuously accelerate an object in a given direction, but do not affect their rotation.
Meanwhile, torque is the rotational equivalent of a force, applying a rotational
acceleration to an object causing it to rotate in place around its center of mass.
Hence, applyForce() and applyTorque() provide the means for applying
these effects, respectively.

Meanwhile, the difference between forces and impulses is that impulses are forces
that are independent of time. For instance, if we applied a force to an object for a
single step, the resultant acceleration on that object would depend on how much
time had passed during that step. Thus, two computers running at slightly different
time steps would see two completely different resultant velocities of the object after
the same action. This would be very bad for a networked game, and equally bad for
a single player game that suffered a sudden spike in activity that increased the step
time temporarily.

see more please visit: https://homeofpdf.com

Events, Triggers, and Explosions

[84]

However, applying an impulse for a single step would give us the exact same
result on both computers because the resultant velocity is calculated without any
dependence on time. Thus, if we want to apply an instantaneous force, it is better to
use applyImpulse(). Whereas, if we want to move objects over several iterations,
then it is better to use applyForce(). Similarly, applying a Torque Impulse is an
identical concept, except it applies a rotational impulse. Hence, we would use
applyTorqueImpulse() if we wanted an instantaneous rotational kick.

Finally, the difference between applyCentralForce() and applyForce() is simply
that the former always applies the force to the center of mass of the object, while the
latter requires us to provide a position relative to the center of mass (which could
always default to the center of mass, anyway). Basically, the Central functions are
there for convenience, while the rest are more flexible since in the real world if we
pushed a box on its edge we would expect it to move linearly (force), but also rotate a
little (torque) as it moved. The same distinction applies to applyCentralImpulse()
and applyImpulse().

Knowing all of this, if we follow the pattern of function names we may notice that
applyCentralTorque() is missing. This is because there's no such thing in the laws
of physics. A torque must always be applied at an offset from the center of mass,
since a central torque would simply be a linear force.

Applying forces
In the source code for this section, BasicDemo has been modified to grab the G key,
and apply a force of 20 units in the y axis to the first box (the red one). This is strong
enough to counteract the force of gravity (default of -10 in the y axis), and cause our
object to accelerate upwards while the key is held down.

Check the Keyboard(), KeyboardUp(), and UpdateScene() functions of BasicDemo
to see this process in action.

Note that each of the override functions used in this process
begins by calling back to the base class implementation of the
same function. This ensures that our base class code, which
handles keyboard input and scene updating, is still called before
we do anything unique in our derived class.

see more please visit: https://homeofpdf.com

Chapter 6

[77]

Launch our application and try pressing and holding the G key. Our first box should
now begin to float. The following screenshot shows how our first box can be lifted
up, land back in the trigger volume, and summon even more boxes:

Also note that the lifted box may seem to rotate and veer off-course slightly even
though we're always applying an upward force. Two effects contribute to this:
the natural inaccuracy of floating point numbers and subtle differences in contact
responses on each of the different vertices when the box hits the ground.

see more please visit: https://homeofpdf.com

Events, Triggers, and Explosions

[86]

Applying impulses
Next, we'll work through an example of an impulse by creating a small explosive
force at the location of the mouse cursor. In order to simulate an explosion, we
will need to create a spherical trigger volume, instead of a box (since a box-shaped
explosion would be really weird). When collisions are detected with this volume we
can apply an impulse that points from the center of the explosion towards the target
object(s), forcing the object away from its epicenter. However, we only want this
object to linger for a single simulation step, so that we can tightly control the amount
of acceleration applied to the target objects.

Since we want our explosion to be generated only temporarily when a key is pressed,
this presents a problem when we interact with the Keyboard() command, since it is
called once when a key is pressed, and continuously while the key is still held down.
It's possible to tweak our input system to not repeat calls like this with a FreeGLUT
function call (as mentioned previously in Chapter 1, Building a Game Application), but
our camera moving code currently depends on the current style, so changing it now
would cause a different set of problems.

So, what we can do is use a simple Boolean flag that tells us if we can create an
explosion object. When we want to create an explosion, we will check if the flag is
true. If so, we create the explosion and set the flag to false, and we will not set the
flag back to true again until the key is released. This prevents subsequent calls to
the Keyboard() function from creating another explosion trigger volume unless
we detect a key up event.

This is a fairly straightforward process, and the source code for this chapter adds
the relevant code to produce this effect with slight tweaks to the Keyboard(),
KeyboardUp(), UpdateScene(), and CollisionEvent() functions of BasicDemo.
The 3D math implemented in the code uses some simple vector arithmetic to obtain
the final direction by converting the vector between them into a unit vector, and
obtaining the final magnitude from the distance between the objects and some
constant value (EXPLOSION_STRENGTH). With a direction and a magnitude, we
can create our final impulse vector.

see more please visit: https://homeofpdf.com

Chapter 6

[77]

Launch the application, place the mouse cursor somewhere near the boxes, and press
the E key. This will result in an invisible explosion that pushes all the nearby objects
away through a simple impulse force. The following screenshot shows what happens
when an explosion is generated between the boxes (epicenter and direction of travel
added for artistic flair):

Note that to simulate the explosion a little more realistically, the strength of the
explosion follows an inverse law, since we wouldn't expect an object further from
the center to experience the same impulse as those that are near.

if (dist != 0.0) strength /= dist;

see more please visit: https://homeofpdf.com

Events, Triggers, and Explosions

[88]

Also note that an additional parameter was added to the Raycast() function to
allow us to decide whether we want it to return collisions with static objects or not
(like the ground plane). These were ignored originally because we didn't want our
DestroyGameObject() function to destroy the ground plane. But, now we need
this special case in order to generate an explosion somewhere on the ground plane's
edge; otherwise it would simply ignore them and we could only generate explosions
on the edges of the boxes. It's set to false by default, to spare us from having to edit
our existing calls to Raycast().

bool Raycast(const btVector3 &startPosition, const btVector3
 &direction, RayResult &output, bool includeStatic = false);

Summary
Very little game logic can be built around a physics engine without a collision
event system, so we made Bullet broadcast collision and separation events to our
application so that it can be used by our game logic. This works by checking the
list of manifolds, and creating logic that keeps track of important changes in these
data structures.

Once we have these collision events, we need to do something with them, and we
explored how to use a collision event between a box and an invisible trigger volume
to instantiate a new object in our world, and how to capture these events within an
instant of time when an explosion is generated.

In the next chapter, we will explore some of the more unusual types of collision
shapes offered by Bullet.

see more please visit: https://homeofpdf.com

Collision Shapes
So far we've only built box collision shapes, but Bullet offers much more variety
than this. In this chapter, we'll explore some more built-in collision shapes to bring
more variety into our scene. We will initially cover some more built-in shapes such
as spheres and cylinders, and then explore how to build unique, customized shapes
through convex hulls and compound shapes.

Spheres and cylinders
The btSphereShape and btCylinderShape are the two collision shapes that
could not be more simple; they define a sphere and cylinder, respectively.

Continue from here using the Chapter7.1_
SpheresAndCylinders project files.

We already know how to create btBoxShape, and building these new built-in shapes
is not much different. Note that nothing about the way we handle rigid bodies or
motion states changes when we start working with different collision shapes. This is
one of the big advantages of the Bullet's modular object system. These new shapes
can be instantiated in the creation of a new GameObject as follows:

CreateGameObject(new btSphereShape(1.0f), 1.0, btVector3(0.7f,
 0.7f, 0.0f), btVector3(-5.0, 10.0f, 0.0f));
CreateGameObject(new btCylinderShape(btVector3(1,1,1)), 1.0,
 btVector3(0.0f, 0.7f, 0.0f), btVector3(-2, 10.0f, 0.0f));

Simple, right? Unfortunately, we now face a more significant challenge: how to
render these new objects? We could just render them like boxes, but this won't be
ideal. We'll need to introduce some new drawing functions, akin to DrawBox(),
which render objects of differing shapes and sizes. Thanks to the rigorous refactoring
we performed on our rendering code back in Chapter 4, Object Management and Debug
Rendering, we have made this whole process fairly trivial on ourselves.

see more please visit: https://homeofpdf.com

Collision Shapes

[90]

DrawSphere() uses a new OpenGL primitive type, GL_QUAD_STRIP, to create strips of
quads. A quad is made of four points, rather than three points for a triangle. A strip of
quads is built two vertices at a time, since they are connected together in strips end-to-
end. This is a much more efficient way of rendering many primitives in one step.

In order to generate a spherical object of a given radius with quads, we have to iterate
laterally, find the angles of this segment, then iterate longitudinally, and draw them.

Meanwhile, to draw a cylinder we can make use of a new helper function in OpenGL
to build the cylinder piece-by-piece using quadrics to build two disks via gluDisk(),
and a cylindrical hull via gluCylinder(). These quadric functions are built into
FreeGLUT, providing an interface with which we can build meshes using simple
mathematical equations. There are various types of quadrics that are available in the
FreeGLUT library, which you can find in the documentation and/or source code.

To save space we won't cover any code snippets here, since there are far too many
bite-size simple commands being introduced. But, take the time to look at the new
functions DrawSphere(), DrawCylinder(), and the changes to DrawShape().

Our application now renders a yellow sphere and green cylinder to accompany our
two original boxes. Try shooting boxes at them and observe their motion. They behave
exactly as we would expect a physics object of that shape to behave! The following
screenshot shows our new cylindrical and spherical objects added to our scene:

see more please visit: https://homeofpdf.com

Chapter 7

[91]

Convex hulls
Next, we'll explore how Bullet lets us build custom collision shapes through the
use of convex hulls.

Continue from here using the Chapter7.2_ConvexHulls project files.

Much like our OpenGL code, we provide the vertex points from which to build the
object and Bullet takes care of the hard work for us; in fact Bullet makes it even easier
than that, because we don't need to define indices or provide them in a specific order
of rotation. Bullet will always try to create the simplest convex shape it can from the
given set of points (also known as a point cloud or vertex cloud in this context). It is
important for the objects to be convex because it is orders of magnitude is easier to
calculate collisions with convex shapes (those without any internal dips or caves in
the shape) than with concave shapes (those with caves in its surface).

A convex hull is defined by the btConvexHullShape class. We must perform a little
programming gymnastics to create our convex hull, by generating an array of five
btVector3s, and passing the memory address of the first point's x coordinate into
our convex hull. This may seem confusing at first, but it's straightforward once we
appreciate the importance of contiguous memory.

A btVector3 consists of four floats: x, y, z, and an unused buffer float. Why is there
an unused variable in this object? Because CPUs are very efficient while working
in powers of 2, and since a float is 4 bytes large, that makes an entire btVector3
object 16 bytes large. Throwing in an unused float like this is a good way to force the
compiled code to make these objects 16 bytes large. This is yet another one of those
low-level optimizations to be found in Bullet. In addition, an array of btVector3s
are contiguous in memory (by definition) such that they follow one another
sequentially by address.

Point 1
x y z -

Point 2 Point 3 Point 4 Point 5
x x x xy y y yz z z z- - - -

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

Five btVector3 objects contiguous in memory.

The btConvexHullShape constructor expects us to provide three things: the memory
address of start of a list of vertex points, the number of vertices, and the stride, or
how many bytes in memory it should jump to reach the next vertex.

see more please visit: https://homeofpdf.com

Collision Shapes

[92]

Since the memory address must be provided in the form of btScalar, we will call
getX() on the first point to get the memory address that we need. The number of
vertices is required so that it knows when to stop counting (computers are stupid like
that), and the stride is necessary to determine how to count. The default value for
the stride is 16 bytes, which is (not by coincidence) the size of a btVector3 object; so
there's actually no need to provide this argument, but it is worth mentioning because
this concept appears all the time when working with vertex and index buffers.

Hopefully things become clear once we explore the code for this procedure:

// create a vertex cloud defining a square-based pyramid
 btVector3 points[5] = {btVector3(-0.5,1,1),
 btVector3(-0.5,1,-1),
 btVector3(-0.5,-1,1),
 btVector3(-0.5,-1,-1),
 btVector3(1,0,0)};
// create our convex hull
 btConvexHullShape* pShape = new
 btConvexHullShape(&points[0].getX(),5);
// initialize the object as a polyhedron
pShape->initializePolyhedralFeatures();
// create the game object using our convex hull shape
CreateGameObject(pShape, 1.0, btVector3(1,1,1), btVector3(5, 15,
 0));

There's one erroneous function call above, initializePolyhedralFeatures(). This
function can be called on a convex hull shape to convert the data into a special format
that gives us access to some convenient functions that we'll need to render the object
later. It essentially builds the indices and vertices for us, so we don't have to.

Once again, we can throw this shape into our GameObject constructor and it is
none the wiser. The only part of our code that cares is our rendering code. Once
again we will skip providing the actual code here, but check out the new function
DrawConvexHull() and changes to DrawShape() to observe the process of rendering
these shapes. It is doing little more than grabbing the polyhedral vertex/index data
and rendering the relevant triangles.

see more please visit: https://homeofpdf.com

Chapter 7

[93]

The following screenshot shows our application, which now includes a white
pyramid shape falling from the sky along with our original shapes:

An important point to note before we move on is that Bullet assumes the center
of mass of the object is at (0,0,0) relative to the given points, ergo the points must
be defined around that location. If we wish to set the center of mass to a different
location, then we must call the setCenterOfMassTransform() function on the
object's rigid body.

see more please visit: https://homeofpdf.com

Collision Shapes

[94]

Creating convex hulls from mesh data
Building a convex hull by manually typing in the vertex data can be incredibly
tedious. So Bullet provides methods for loading customized mesh file data into the
desired vertex format that we used earlier, provided the data has been stored in the
.obj format (a common format that every 3D modeling tool supports these days). To
see this process in action, check out the App_ConvexDecompositionDemo application
in the Bullet source code.

However, be warned that creating convex hulls from a complex shape (such as
a table or a four-legged chair) requires a lot of CPU cycles to generate accurate
collision responses for them. It is wise to stick with simple collision shapes that
estimate the physical object, such as boxes and spheres, unless absolutely necessary.

Compound shapes
Bullet also allows us to build another type of customized physics object by combining
multiple child shapes together into a parent compound shape.

Continue from here using the Chapter7.3_
CompoundShapes project files.

Compound shapes are treated much the same way as any other shape, except its
constituent pieces are stuck together by a set of very rigid constraints (much like the
constraints we explored in Chapter 5, Raycasting and Constraints). We'll use compound
shapes to create a dumbbell, a pair of spheres connected via a connecting rod.

Note that the child shapes do not need to touch one another
for the compound shape feature to work. The child shapes
could be separated by great distances and still behave as if
they were tightly coupled.

The class in question is the btCompoundShape class. The member function
addChildShape(), attaches the given child shape into the compound shape at
the given transform. Therefore a simple compound shape can be built as follows:

// create two shapes for the rod and the load
btCollisionShape* pRod = new btBoxShape(btVector3(1.5f, 0.2f,
 0.2f));
btCollisionShape* pLoad = new btSphereShape(0.5f);
// create a transform we'll use to set each object's position
 btTransform trans;

see more please visit: https://homeofpdf.com

Chapter 7

[95]

trans.setIdentity();
// create our compound shape
btCompoundShape* pCompound = new btCompoundShape();
// add the rod
pCompound->addChildShape(trans, pRod);
trans.setOrigin(btVector3(-1.75f, 0.0f, 0.0f));
// add the top load
pCompound->addChildShape(trans, pLoad);
trans.setIdentity();
// add the bottom load
trans.setOrigin(btVector3(1.75f, 0.0f, 0.0f));
pCompound->addChildShape(trans, pLoad);
// create a game object using the compound shape
CreateGameObject(pCompound, 2.0f, btVector3(0.8,0.4,0.1),
 btVector3(-4, 10.0f, 0.0f));

Bullet lets us create yet another complex physics object with only a handful
of instructions. But, yet again, we have the problem of rendering this shape.
We can use the compound shape's member functions getNumChildShapes(),
getChildTransform(), and getChildShape() to iterate through the child shapes,
but remember that our DrawShape() command only accepts a single shape to draw
at a time, and if we push our compound shape into a game object and render it, it
would not draw anything, because the parent itself is not one of the supported types.

What we must do is to call the DrawShape() function recursively for each child
as follows:

case COMPOUND_SHAPE_PROXYTYPE:
{
 // get the shape
 const btCompoundShape* pCompound = static_cast<const
 btCompoundShape*>(pShape);
 // iterate through the children
 for (int i = 0; i < pCompound->getNumChildShapes(); ++i) {
 // get the transform of the sub-shape
 btTransform thisTransform = pCompound->getChildTransform(i);
 btScalar thisMatrix[16];
 thisTransform.getOpenGLMatrix(thisMatrix);
 // call drawshape recursively for each child. The matrix
 // stack takes care of positioning/orienting the object for us
 DrawShape(thisMatrix, pCompound->getChildShape(i), color);
 }
 break;
}

see more please visit: https://homeofpdf.com

Collision Shapes

[96]

If the purpose of the matrix stack wasn't clear earlier, then the preceding exercise
might help. When the two weights of the dumbbell are drawn, it might appear that
the only transform information given are the positions at (-1.75,0,0) or (1.75,0,0),
and yet it doesn't always render at those exact world space coordinates.

In reality, it renders at the above location relative to the parent object. But why?
This powerful mechanism is achieved by adding the child's transformation matrix
to the stack (with another call to glPushMatrix()) rendering the child, removing its
transform from the stack (with another call to glPopMatrix()), and repeating for the
next child. Thus, wherever the parent's transform begins, the matrix stack ensures
that the children are always drawn relative to that starting location.

Our application now features our new dumbbell object:

Our new dumbbell object

It's worth mentioning that we only created two unique shapes in memory for our
dumbbell: one for the rod and one for the load. Yet, our dumbbell is built from three
unique shapes. This is an essential memory saving feature of collision shapes. Their
data can be shared by more than one collision object, and still be treated as two
unique instances.

see more please visit: https://homeofpdf.com

Chapter 7

[97]

Summary
We have created four new types of Bullet collision shapes in our application by
introducing more case statements to our DrawShape() function. Any object can be
built from primitive shapes such as triangles, quads, and so on (which is why they're
called primitives), but we have also discovered that there are helper functions inside
FreeGLUT called quadrics which make this process easier for us.

In the next chapter, we will explore how collision filtering can be used to develop
interesting physics behavior and game logic.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Collision Filtering
Collision filtering is an act of informing the physics engine to ignore collisions
between specific types of objects. This could either be an optimization to minimize
physics processing activity, or an essential component of gameplay. Either way,
the mechanism to implement this in Bullet is the same, and we will explore how to
implement such a system in this chapter using groups and masks

Groups and masks
The code to implement collision filtering is absolutely trivial, but it requires a good
amount of explanation before it can be fully appreciated and understood.

Continue from here using the Chapter8_CollisionFiltering
project files.

When we call the addRigidBody() function on our world object, there is an
overloaded version of the same function with two more parameters that we can input:

• A short representing the object's collision group
• A short representing the object's collision mask

Each object in our world can be a part of zero, one, or more collision groups. Groups
could represent concepts such as players, power-ups, projectiles, enemies, and so
on. Meanwhile, the collision mask indicates which groups this object should collide
with. In this way, we can use collision filtering to generate an essential element
of gameplay logic by preventing the player from being hit by their own weapon
projectiles, or preventing enemies from being able to pick up power-ups.

see more please visit: https://homeofpdf.com

Collision Filtering

[100]

Bullet treats the short values as a list of bit flags, and uses simple bitwise operations
to perform tests on them. If bitwise operators and bitmasks sound scary or confusing,
then this would be a good moment to break open your computer science manual
of choice and do a little brush up on the subject. They are a commonly used tool in
C++ programming. So common in fact, that we have already used them three times
throughout this book in functions such as glutInitDisplayMode(), glutClear(),
and our DebugDrawer class.

Bitmasks are used by Bullet for these operations because performing
comparisons on them is absurdly fast and they use a minimal amount
of data. With potentially thousands of comparisons to perform per
simulation step, this is a very worthwhile optimization that has been
built into Bullet.

Because the two values for group and mask are shorts, we have 2 bytes, or 16 bits,
to work with. But, Bullet reserves one of these bits for internal usage, which gives
us access to the remaining 15, however this should be more than enough groups for
most situations.

The last thing to consider is that if we want two objects to collide with one another,
then both of their masks must include the group of the opposing object. For example,
if we want the players to collide with power-ups, we can set the player's mask to do
so; but power-ups must also be flagged to collide with player's, or else the collisions
will not occur. Remember this when attempting to use this feature in the future,
because it is an easy thing to forget.

The BasicDemo application is becoming cluttered, so
we have created a specific application to test collision
filtering named CollisionFilteringDemo. Using
this object, instead of BasicDemo, required a handful
of changes to our main() function.

To implement collision filtering, we simply pass the two aforementioned shorts
into our call to the addRigidBody() function. This merely requires a change in the
parameters and the function calls of CreateGameObject(). Because it is so trivial, we
won't show the whole source code here, but we will make a couple of relevant points:

enum CollisionGroups {
 COLGROUP_NONE = 0,
 COLGROUP_STATIC = 1 << 0,
 COLGROUP_BOX = 1 << 1,
 COLGROUP_SPHERE = 1 << 2
};

see more please visit: https://homeofpdf.com

Chapter 8

[101]

This enum, found in BulletOpenGLApplication.h, defines the possible collision
groups for our object. Each represents a different group and is represented by a value
of 1, but bit shifted left by gradually increasing values of 2, 4, 8, 16, and so on. This is
a simple pattern to ensure that each value consumes a unique bit. The same enum that
defines the values for the groups is also used to determine each new object's collision
mask. To set more than one group for an object's collision mask, we use the bitwise-
or operator, as follows:

COLGROUP_BOX | COLGROUP_STATIC

Passing this value as the object's mask makes it collide with any object flagged for
either of these groups.

Defining linear and angular freedom
It's becoming increasingly common these days to see the games that are visually 3D,
but all gameplay and physics occurs in only two dimensions. These types of games
are typically referred to as 2.5D games. These are either attempts to bring a classic
2D game back to life with modern 3D graphics, or a way to keep the simplicity of 2D
gameplay, but give them more life and believability through advanced graphics. To
achieve this, physics objects must only be able to move in the X and Y axes, and only
able to rotate around the Z axis.

Restrictions of this kind can be applied to any rigid body object in Bullet by setting
the linear or angular factor of a rigid body. Simply call the setLinearFactor() or
setAngularFactor() functions on any rigid body, passing in a btVector3 that
specifies which axes are allowed, and which are not. For instance, to restrict the
movement of an object to behave as if it was a 2.5D game, we would call:

pBody->setLinearFactor(btVector3(1,1,0));
pBody->setAngularFactor(btVector3(0,0,1));

To demonstrate this feature, this chapter's source code sets the spheres to only move
in the X - Y plane (up/down/left/right relative to our camera's starting position),
while being constricted along the Z plane (they cannot move towards/away from
the camera's starting position). Even if another object (such as a box we shoot with a
right-click) collides with one of the spheres along the Z axis, it still cannot move in that
direction. The following call restricts the linear motion of the sphere in such a fashion:

pSphere->GetRigidBody()->setLinearFactor(btVector3(1, 1, 0));

The CollisionFilteringDemo application creates 25 boxes and 25 spheres in a
stacked 5 x 5 grid formation. It then configures both types of objects to collide with
the ground plane, but also configures such that the boxes cannot collide with the
spheres, and vice versa.

see more please visit: https://homeofpdf.com

Collision Filtering

[102]

When we launch this application, we should observe two stacks of boxes and
spheres, each occupying the same space without any collisions between them.
There can be collisions only with the objects of the same shape. The following
screenshot shows the collision filtering in effect:

Note that the default values for group and mask are set to -1 in the declaration of the
CreateGameObject() function. If we remember our signed-integer representations,
a value of -1 means every bit is set to 1. Thus, the default values for group and mask
make the object a member of every group, and has a mask enabled for every group.
This is the reason why the ground plane and our shootable boxes are able to collide
with both the boxes and spheres.

Summary
We've explored the power and simplicity of Bullet's collision filtering system,
and implemented it into our scene to avoid generating collisions between objects
of different groups. This feature can be extended further to all kinds of useful
situations, both for the sake of gameplay and for simulation optimization.

In the next chapter, we will explore one final and powerful feature of the Bullet
library: Soft bodies!

see more please visit: https://homeofpdf.com

Soft Body Dynamics
Soft bodies are an alternate type of collision object to rigid bodies; they deform
as a result of collisions and that allows us to simulate objects made from soft and
malleable materials. In this chapter, we will be exploring the nuances of soft body
physics and adding a soft body to our scene.

Continue from here using the Chapter9_
SoftBodyDynamics project files.

Soft body requirements
One way to think of soft bodies is having a non-rigid constraint on each vertex.
When one vertex is moved, the rest move with it, but not to the same extent, and
each tries to maintain their distance from their nearest neighbors, or in other words,
maintain their original pose. Thus, with a robust constraint system in place (like
Bullet has), the mathematics of soft bodies is essentially a larger scale version of the
same concept. There's a lot more that goes into the soft body physics simulation,
but we don't need a PHD in theoretical physics to add one to our simulation.

The btSoftRigidDynamicsWorld world object is required for soft body simulation.
This is a requirement since soft bodies are much more mathematically complex than
rigid bodies, and so an entirely different world is required to perform the work
necessary to move them through space and simulate them correctly.

In addition, this world also requires a slightly different collision configuration object
called btSoftBodyRigidBodyCollisionConfiguration, and an extra object called
btSoftBodyWorldInfo is an added attachment onto the soft body worlds, which
performs some extra initialization for our world to function.

see more please visit: https://homeofpdf.com

Soft Body Dynamics

[104]

Note that this chapter's source code uses a SoftBodyDemo
application to specifically test this feature.

Finally, because of the complexity of soft bodies, an entire project/library file
must be included in the project in order to compile and launch the application with
soft bodies. We must add the BulletSoftBody project, and the BulletSoftBody_
vs2010_debug.lib file.

Initialization
Initialization of the world and collision configuration for soft bodies are not
particularly special.

m_pCollisionConfiguration = new
 btSoftBodyRigidBodyCollisionConfiguration();
m_pWorld = new btSoftRigidDynamicsWorld(m_pDispatcher,
 m_pBroadphase, m_pSolver, m_pCollisionConfiguration);

These calls are identical to the calls used earlier, except using new class types
(with much longer names). The most significant change to the soft body world
initialization is with the btSoftBodyWorldInfo object:

btSoftBodyWorldInfo m_softBodyWorldInfo;
m_softBodyWorldInfo.m_dispatcher = m_pDispatcher;
m_softBodyWorldInfo.m_broadphase = m_pBroadphase;
m_softBodyWorldInfo.m_sparsesdf.Initialize();

Suffice it to say that this object simply needs the pointers for the collision
dispatcher and broad phase objects, and must have it's Signed Distance Field
(SDF for short) initialized so that it can generate proper collision detection for the
world's soft bodies. Diving into the guts of soft bodies could take forever; there are
entire volumes of scientific papers on the subject, so we will only be giving concepts
such as SDFs a very cursory examination.

The SDF is a data structure that generates a more simplified (sparse) version of the
soft body for collision detection in order to improve processing time, and is used
to detect the distances between the soft body and other objects. After initialization,
it will actively communicate with the dispatcher and the broad phase to generate
collision responses for soft bodies (hence it needed the pointers to them).

see more please visit: https://homeofpdf.com

Chapter 9

[105]

Creating soft bodies
To create a soft body, we will utilize btSoftBodyHelpers, which contains many
useful functions to simplify the act of generating these complex objects. We will
use CreateEllipsoid() to build a sphere of triangles (an ellipsoid with equal
dimensions is just a sphere), and then configure it with some additional commands.
We won't be using GameObject for this object, because CreateEllipsoid() already
generates the entire object for us.

btSoftBody* pSoftBody =
 btSoftBodyHelpers::CreateEllipsoid
 (m_softBodyWorldInfo,btVector3(0,0,0),btVector3(3,3,3),128);
m_pSoftBodyWorld->addSoftBody(pSoftBody);

As with rigid bodies and constraints, we need to specifically add a soft body to
the scene before it shows up. This is accomplished by calling the addSoftBody()
function on our world object. But, before we attach it, we need to perform some
additional initialization.

A soft body is (obviously) not a very rigid structure. It deforms as it collides with
other objects. But, the question is how does it deform? What is this object's resistance
to being crushed? What is it's ability to maintain its own shape when sitting
stationary? How heavy is the entire volume? How much friction does it suffer when
morphing and rolling over surfaces? These are all the variables that can be tweaked
in any given soft body, making them the most complex type of collision shape that
can be found in a Bullet.

The two key values that we can set are the soft body's volume conservation
coefficient and it's linear stiffness. Each of these values affects a specific property
of the soft body, altering how well it maintains its original shape as it moves and
collides with other objects.

// set the 'volume conservation coefficient'
pSoftBody->m_cfg.kVC = 0.5;
// set the 'linear stiffness'
pSoftBody->m_materials[0]->m_kLST = 0.5;

Note that m_materials is an array of different materials, which
can be assigned to different sections of the same soft body if desired.
Make sure that you manipulate it keeping this is mind.

see more please visit: https://homeofpdf.com

Soft Body Dynamics

[106]

The remaining initialization for our soft body comes through the setTotalMass()
and setPose() functions. As we might expect, setTotalMass() simply sets the
mass of the soft body, but it also has a profound effect on how the object deforms
when it collides with other objects. If we want our shootable boxes to distort the
soft body, its mass needs to be relatively low. If we want it to ignore them, then
we should set the mass very high.

Finally, setPose() is used to generate the necessary constraints of the soft body,
telling it to maintain the current pose in which its constituent vertices are positioned.
This function takes two booleans, determining if the soft body should attempt to
maintain its volume and frame, respectively; each has a significant effect on how
the soft body moves.

// set the total mass of the soft body
pSoftBody->setTotalMass(5);
// tell the soft body to initialize and
// attempt to maintain the current pose
pSoftBody->setPose(true,false);

Rendering soft bodies
Our base application doesn't know anything about soft bodies (nor should it), so we
will need to extend the RenderScene() function to handle our soft body rendering
code. We make use of btSoftBodyHelpers again, which contains a function that
will help us render our soft body through the very same rendering code that we use
to draw the debug lines on the screen. This will require us to add one more function
override in our debug drawer to render triangles in addition to lines.

Because our soft body is not built from GameObject, we need to handle its rendering
a little differently than before. We can obtain and iterate through any soft bodies in
our scene by calling the getSoftBodyArray() function on our world object and then
use our debug drawer to render each of its triangles:

// check the list of our world's soft bodies
for (int i=0; i< m_pSoftBodyWorld->getSoftBodyArray().size(); i++)
 {
 // get the body
 btSoftBody* pBody = (btSoftBody*)m_pSoftBodyWorld-
 >getSoftBodyArray()[i];
 // is it possible to render?

see more please visit: https://homeofpdf.com

Chapter 9

[107]

 if (m_pSoftBodyWorld->getDebugDrawer() && !(m_pSoftBodyWorld-
 >getDebugDrawer()->getDebugMode() &
 (btIDebugDraw::DBG_DrawWireframe))) {
 // draw it
 btSoftBodyHelpers::Draw(pBody, m_pSoftBodyWorld-
 >getDebugDrawer(), m_pSoftBodyWorld->getDrawFlags());
 }
}

Launching our application now, we should observe a sphere fall, collide with
the ground, and deform. We can also launch boxes with the right-mouse button to
deform it even more. The following screenshot shows our soft body falling from the
sky and deforming under its own weight:

Note that we cannot pick up and move this object with the left-mouse
button because it is not a rigid body, and our picking code exits only if
it detects so (otherwise it would crash!).

Soft bodies are very complex objects with a lot of mathematics behind them.
Consequently, they are processor intensive, and there are many values that can
be tweaked to generate the desired effect. This data can be accessed through the
following two member variables of the soft body object: m_cfg and m_materials.

To see more interesting scenarios involving soft bodies, check out the App_SoftBody
demo in Bullet's demo applications.

see more please visit: https://homeofpdf.com

Soft Body Dynamics

[108]

Summary
In this chapter, we have taken an introductory look at soft body physics, and several
helper functions that can provide more advanced functionality if needed. There is
much more that can be done with these interesting objects, and there are even more
features that the Bullet library offers us, but regrettably we must begin wrapping up
the book and leaving behind some closing thoughts.

All that's left is to say is farewell and good luck with your future game development
projects. There's always more to learn and understand about game development,
which makes it a very tough field to work in and keep pace with. But, for many
of us, we wouldn't want it any other way, because if it was easy it would be boring!

We hope that you've learned a great deal about the fundamentals of game physics
and graphics with this book, and have the drive to continue learning everything
you need to bring your awesome game ideas to life!

see more please visit: https://homeofpdf.com

Index
Symbols
2.5D games 101

A
activation state 59
addConstraint() function 70
addRigidBody() function 99, 100
ambient lighting 27
application layer

about 7, 8
building 11
FreeGLUT, configuring 11, 12
FreeGLUT, initializing 14

Axis-aligned bounding boxes (AABBs) 39

B
box

coloring 32, 33
creating 46

btBroadPhaseInterface object 41
btCompoundShape class 94
btConvexHullShape class 91
btConvexHullShape constructor 91
btCylinderShape 89
btRigidBody

accessible commands 83
btSoftRigidDynamicsWorld world object

103
btSphereShape 89
Bullet

about 8
built-in demo applications, exploring 9
components, creating 42

new project, starting 10
URL, for downloading 9

BulletOpenGLApplication static 12

C
camera

about 22
control 34
glFrustum function 23
glIdentity function 23
gluLookAt function 24
glViewport function 24

center of mass (COM) 53
CFM 71
collision dispatcher 41
CollisionEvent() functions 86
collision event system

building 75
collision event, managing 78-80
managing 77
persistent manifolds 76

collision filtering
about 99
addRigidBody() function 99
code, to implement 99
implementing 100

CollisionFilteringDemo application 101
collision object 42, 45
collision shape 42, 43
compound shapes 94-96
Constraint Force Mixing. See CFM
constraints

about 67
building 69-72
objects, moving with 68, 69

see more please visit: https://homeofpdf.com

[110]

constraint solver 41
contact response

disabling 81, 82
convex hulls

about 91-93
creating, from mesh data 94

core bullet objects
about 37
broad phase 38-40
collision configuration 41
collision dispatcher 41
constraint solver 41
world object 38

CreateGameObject() function 102
CreateObjects() function 46

D
debug

rendering 57
debug drawer

building 57, 58
debugDrawWorld() function 58
delimiters 25
depth buffer 29
depth testing

about 28
glEnable() function 30
glLightfv() function 30
glMaterialfv function 30
glMateriali function 30

DestroyGameObject() function 67, 88
diffuse lighting 28
domino effect 60
double-buffering 20, 21
DrawBox() function 26, 47, 51
drawContactPoint() function 57
drawLine() function 57
DrawShape() command 92, 95
DrawShape() function 53, 95
DrawSphere() 90

E
E key 87
Error Reduction Parameter (ERP) 71

F
field of view (FOV) 23
fixed-function pipeline 33
forces

applying 84, 85
FreeGLUT

about 8
configuring 11, 13
documentation, URL 14
initializing 14
launching 16, 17
URL, for downloading 8

FreeGLUT, configuring
about 11, 12
glutDisplayFunc function 14
glutIdleFunc function 14
glutKeyboardFunc function 13
glutKeyboardUpFunc function 13
glutMotionFunc function 13
glutMouseFunc function 13
glutPassiveMotionFunc function 13
glutReshapeFunc function 14
glutSpecialFunc function 13
glutSpecialUpFunc function 13

FreeGLUT, initializing
about 14
glutCreateWindow function 15
glutInitDisplayMode function 15
glutInit function 15
glutInitWindowPosition function 15
glutInitWindowSize function 15
glutSetOption function 15

frontbuffer 20
frustum 22

G
getFrameOffsetA() function 72
getOpenGLMatrix() helper function 45
GetPickingRay() function 64
getSoftBodyArray() function 106
G key 85
glBegin() function 25
glClearColor() function 21
glColor3f() 27

see more please visit: https://homeofpdf.com

[111]

glDepthFunc function 31, 32
glEnable() function 30
glFrustum function 23
glIdentity function 23
glLightfv() function 30
glMaterialfv function 30
glMateriali function 30
glPopMatrix() 47
glPushMatrix() 47
glShadeModel() function 31
gluCylinder() 90
gluDisk() 90
gluLookAt function 24
glutCreateWindow function 15
glutDisplayFunc function 14
glutIdleFunc function 14
glutInitDisplayMode function 15
glutInit function 15
glutInitWindowPosition function 15
glutInitWindowSize function 15
glutKeyboardFunc function 13
glutKeyboardUpFunc function 13
glutmain() function 16
glutMainloop() function 16
glutMotionFunc function 13
glutMouseFunc function 13
GLUT (OpenGL Utility Toolkit) 9
glutPassiveMotionFunc function 13
glutReshapeFunc function 14
glutSetOption function 15
glutSpecialFunc function 13
glutSpecialUpFunc function 13
glutSwapBuffers() 21
glViewport function 24

I
impulses

about 83
appling 84
applyCentralImpulse() 84
applyImpulse() 84
applying 86, 87

initializePolyhedralFeatures() 92
islands 60

K
Keyboard() command 86
Keyboard() function 58, 67, 86

M
main() function 10, 100
Manifolds 41
moment of inertia 52
Motion() function 71
motion state

about 42-44
custom motion state, building 45, 46

Mouse() function 64
multiple objects

handling 51, 52

N
normals 27

O
object motion 83
objects

creating 55
designing 52, 53
destroying 66, 67
moving, with constraints 68, 69
rendering 53
storing 54, 55

P
persistent manifolds 76
physics object, components

collision object 42
collision shape 42
motion state 42

picking 63
picking rays 64, 65
point 91
polymorphism 58
programmable pipeline 33

see more please visit: https://homeofpdf.com

[112]

R
Raycast() function 66, 88
raycasting 63

picking rays 64, 65
RemovePickingConstraint() function 72

S
scene

rendering 19
setAngularFactor() function 101
setDebugDrawer() function 58
setLinearVelocity() function 65
setParam() function 71
setPose() function 106
setTotalMass() function 106
shaders 33
ShootBox() command 83
ShootBox() function 64
simulation

stopping 47, 48
Single Instruction, Multiple

Data (SIMD) 55
soft body

creating 105
initialization 104
rendering 106, 107
requisites 103, 104

specular lighting 28
Spiral of Death 60
Standard Template Library (STL) 54, 77
stepSimulation() function 48, 60

T
torques 82
transform data

rendering from 47
trigger volumes

building 80
contact response, disabling 81, 82

U
UpdateCamera() 34
user input

gathering 35

V
vertex cloud 91

W
W key 82
wrappers 8

Z
z-buffer 29

see more please visit: https://homeofpdf.com

Thank you for buying
Learning Game Physics with Bullet Physics

and OpenGL

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one
of our commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but
no writing experience, our experienced editors can help you develop a writing career,
or simply get some additional reward for your expertise.

see more please visit: https://homeofpdf.com

OpenGL Development Cookbook
ISBN: 978-1-849695-04-6 Paperback: 326 pages

Over 40 recipes to help you learn, understand, and
implement mondern OpenGL in your applications

1. Explores current graphics programming
techniques including GPU-based methods
from the outlook of modern OpenGL 3.3

2. Includes GPU-based volume rendering
algorithms

3. Discover how to employ GPU-based path
and ray tracing

Cocos2d for iPhone 1 Game
Development Cookbook
ISBN: 978-1-849514-00-2 Paperback: 446 pages

Over 90 recipes for iOS 2D game development
using cocos2d

1. Discover advanced Cocos2d, OpenGL ES,
and iOS techniques spanning all areas of
the game development process

2. Learn how to create top-down isometric
games, side-scrolling platformers, and
games with realistic lighting

3. Full of fun and engaging recipes with
modular libraries that can be plugged
into your project

Please check www.PacktPub.com for information on our titles

see more please visit: https://homeofpdf.com

Box2D for Flash Games
ISBN: 978-1-849519-62-5 Paperback: 166 pages

Create amazing and realistic physics-based Flash
games using Box2D

1. Design blockbuster physics game and
handle every kind of collision

2. Build and destroy levels piece by piece

3. Create vehicles and bring them to life
with motors

3D Game Development with
Microsoft Silverlight 3:
Beginner's Guide
ISBN: 978-1-847198-92-1 Paperback: 452 pages

A practical guide to creating real-time responsive
online 3D games in Silverlight 3 using C#, XBAP
WPF, XAML, Balder, and Farseer Physics Engine

1. Develop online interactive 3D games
and scenes in Microsoft Silverlight 3
and XBAP WPF

2. Integrate Balder 3D engine 1.0, Farseer
Physics Engine 2.1, and advanced
object-oriented techniques to simplify
the game development process

3. Enhance development with animated 3D
characters, sounds, music, physics, stages,
gauges, and backgrounds

Please check www.PacktPub.com for information on our titles

see more please visit: https://homeofpdf.com

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Building a Game Application
	Application components
	Exploring the Bullet and FreeGLUT projects
	Exploring Bullet's built-in demo applications
	Starting a new project
	Building the application layer
	Configuring FreeGLUT
	glutKeyboardFunc/glutKeyboardUpFunc
	glutSpecialFunc/glutSpecialUpFunc
	glutMouseFunc
	glutMotionFunc/glutPassiveMotionFunc
	glutReshapeFunc
	glutDisplayFunc
	glutIdleFunc

	Initializing FreeGLUT
	glutInit
	glutInitDisplayMode
	glutInitWindowPosition/glutInitWindowSize
	glutCreateWindow
	glutSetOption

	Launching FreeGLUT

	Summary

	Chapter 2: Rendering and User Input
	Rendering the scene
	Introducing double-buffering
	Understanding the basics of camera
	glIdentity
	glFrustum
	gluLookAt
	glViewport

	Basic rendering and lighting
	Creating a simple box

	Let there be light!
	Normals
	Creating ambient, diffuse, and specular lighting
	Understanding depth testing
	glLightfv
	glEnable

	glMaterialfv/glMateriali
	glShadeModel
	glDepthFunc

	Coloring your box
	Understanding rendering pipelines

	User input and camera control
	Implementing camera control
	Gathering user input

	Summary

	Chapter 3: Physics Initialization
	The core bullet objects
	The world object
	The broad phase
	The collision configuration
	The collision dispatcher
	The constraint solver

	Creating the Bullet components
	Creating our first physics object
	The collision shape
	The motion state
	The collision object

	Building a custom motion state
	Creating a box
	Rendering from transform data
	Stepping the simulation
	Summary

	Chapter 4: Object Management and Debug Rendering
	Handling multiple objects
	Designing our objects
	Rendering our objects
	Storing our objects
	Creating our objects

	Debug rendering
	Building the debug drawer

	Introducing activation states
	The domino effect
	Summary

	Chapter 5: Raycasting and Constraints
	The power of raycasting
	Picking rays

	Destroying objects
	Constraints
	Understanding constraints
	Picking up the objects
	Building a constraint

	Summary

	Chapter 6: Events, Triggers, and Explosions
	Building a collision event system
	Explaining the persistent manifolds
	Managing the collision event

	Building trigger volumes
	Disabling contact response

	Force, torque, and impulse
	Understanding the object motion
	Applying forces

	Applying impulses
	Summary

	Chapter 7: Collision Shapes
	Spheres and cylinders
	Convex hulls
	Creating convex hulls from mesh data

	Compound shapes
	Summary

	Chapter 8: Collision Filtering
	Groups and masks
	Defining linear and angular freedom

	Summary

	Chapter 9: Soft Body Dynamics
	Soft body requirements
	Initialization
	Creating soft bodies
	Rendering soft bodies

	Summary

	Index

