
see more please visit: https://homeofbook.com

Linux

Linux Command Lines and Shell
Scripting

see more please visit: https://homeofbook.com

Table of Contents
Introduction
Chapter One: What is Linux?

The Birth of the Linux Operating System
Linux Distributions
Linux is Open-Source
The Linux Shell
Root
Reasons to Use the Linux Operating System
Installation of the Linux Operating System

Chapter Two: Working with Linux Commands
Let’s Start
The First Commands for Your Linux Operating System
Basic Commands
File Navigation in Linux

The ls command
Options and Arguments Commands
Finding Out the Type of File

The less command
Chapter Three: Files & Directories Commands

Special Characters
Command-Line Editing
Linux Commands for Directories

The cp command
Examples of cp command
The mv command
Examples for mv command
The rm command
Examples of rm command

Chapter Four: Practical Work with Commands

see more please visit: https://homeofbook.com

https://calibre-pdf-anchor.a/#a8
https://calibre-pdf-anchor.a/#a12
https://calibre-pdf-anchor.a/#a14
https://calibre-pdf-anchor.a/#a29
https://calibre-pdf-anchor.a/#a48
https://calibre-pdf-anchor.a/#a66

The type command
The which command

Documentation of Commands
The help command
The man command
The apropos command
The whatis command
The info command

Chapter Five: Redirection Commands & Keyboard Tricks with
Linux Commands

Redirection
Keyboard Tricks

Text Modification
Completion Commands

Completion commands
Searching History

History Expansion
Chapter Six: Process Commands

Process States
Using the Top Command to View Processes

Chapter Seven: Working with Linux Editors
The Vim Editor
Data Editing
Copy & Paste
The KDE Editor Family
The KWrite Editor

The Edit Menu of KWrite Editor
The KWrite Editor Tools
The GNOME Editor

Basic Features of the Editor
Preferences
View

see more please visit: https://homeofbook.com

Editor Tab
Syntax Highlighting

Plugins
The emacs Editor

Basic Commands of emacs Editor
Editing Data

Popular Linux Commands

Chapter Eight: Linux Shell Scripting
Writing the Shell Script
The Format of Linux Shell Scripts
Displaying Text
The if-then Statement
The if-then-else Statement
Advanced if-then Features

The for Command
Reading a List through a Variable
The while Command

Multiple Test Commands
The until Command

Nesting Loops
Loop Control
More Basic Shell Scripts

Chapter Nine: Linux Shell Scripting for Functions
The Basics
Function Creation
Returning a Value in Linux Functions
Passing Parameters to a Function
Passing Arrays to Functions
Handling User Input

Conclusion

see more please visit: https://homeofbook.com

https://calibre-pdf-anchor.a/#a144
https://calibre-pdf-anchor.a/#a189

References

see more please visit: https://homeofbook.com

� Copyright 2021 - All rights reserved.
The contents of this book may not be reproduced, duplicated or transmitted
without direct written permission from the author.

Under no circumstances will any legal responsibility or blame be held against the
publisher for any reparation, damages, or monetary loss due to the information
herein, either directly or indirectly.

Legal Notice:

This book is copyright protected. This is only for personal use. You cannot amend,
distribute, sell, use, quote or paraphrase any part or the content within this book
without the consent of the author.

Disclaimer Notice:

Please note the information contained within this document is for educational and
entertainment purposes only. Every attempt has been made to provide accurate,
up to date and reliable complete information. No warranties of any kind are
expressed or implied. Readers acknowledge that the author is not engaging in the
rendering of legal, financial, medical or professional advice. The content of this
book has been derived from various sources. Please consult a licensed
professional before attempting any techniques outlined in this book.

By reading this document, the reader agrees that under no circumstances is the
author responsible for any losses, direct or indirect, which are incurred as a result
of the use of information contained within this document, including, but not limited
to, —errors, omissions, or inaccuracies.

see more please visit: https://homeofbook.com

Introduction
This book on the Linux command line and shell scripting contains
proven steps and strategies for using the keyboard to type
commands and writing shell scripts to create your customized
programs. Linux is tougher than Windows and Mac operating
systems, and it is the securest of the three. When you have learned
Linux, you can create your custom software and use it to do common
daily tasks. You can customize how you want your computer should
work.
Linux is fun to operate, but it is not easy to operate. Unlike Windows
that has a graphical interface, Linux has a command line. If you are
unfamiliar with what a command line is, you should refer to Dos or
Command Prompt in Windows. It is a black screen on which you
have to enter commands and complete your daily tasks.
I have written this book in two-parts: the first part deals with
commands and the second part deals with shell scripting. Unless
you have a good grasp of Linux commands and shell scripting, you
cannot expertly operate the system. I have packed the book with the
most used and important commands that you’ll need. I have also
included a few results you can see on the command line after
entering a command.
The shell scripting section can be tough. If you have a programming
background, it is fun to read. To practice scripting, you will have to
work in an editor, but don’t worry, you will find a chapter on Linux
editors later in the book. You can write your own scripts or copy mine
and paste them into the editor to practice. For convenience, I have
included the results of each script so that you may compare them. I
have also included lots of basic script examples on how to use
commands.

see more please visit: https://homeofbook.com

Chapter One: What is Linux?
As a Linux student, the first thing you should learn is Linux's origins
to understand the concept behind this operating system. Linux is a
software layer between the hardware and the software in a computer
operating system. It allows you to do productive things and create
custom programs on your computer. In simple words, an operating
system is a medium between the software and a computer system's
hardware. An operating system allows you to store data on your
storage devices like hard drives, solid-state drives, and USBs. It
manages the transmission of data from one element to another; for
example, it oversees data flow from the operating system to printers
in your office or home. If you have installed a normal Windows
environment such as the Microsoft Windows operating system on
your computer system, the Windows operating system runs the
hardware. It controls the mouse, keyboard, printers, scanners, and
other accessories. You will have to install Microsoft Office, Adobe
readers, pdf converters, and other software as per your needs. You
will pay for each program and have them installed on your system.
Linux is the same as the Windows operating system regarding the
process of controlling the hardware. It is different because it acts as
a medium between the instructional code of the software and the
physical device. The biggest difference is that of the software you
will use in the Linux operating systems. The software will be of a
different type as compared to the ones that run on Windows
systems. You cannot install and run Microsoft Office or Adobe
Photoshop on Linux environment. Linux runs different servers like
web virtualization servers, Apache servers, database servers, etc.
However, Linux has several distributions that are made for personal
desktop computers. These distributions are similar to macOS and
Windows operating systems. They run the same type of programs
like word processors, image editors, and games. These Linux
distributions appear to be more targeted for the home users
searching for a free system alternative.

see more please visit: https://homeofbook.com

Linux did not kick-off as an operating system or a challenger to the
Windows operating system. In the start, Linux happened to be a
kernel that was created by Linus Torvalds. Linus was a student then
at the University of Helsinki. The kernel is still useful in the system.
In the start, the Linux kernel was used along with the GNU operating
system. You can say that the GNU system was incomplete without
the kernel.
A kernel is defined as an integral component of Linux. A kernel is
considered the central part of operating systems, responsible for all
the interfacing of applications and hardware. There are two types of
kernels in the market now, namely Unix-like kernels and Windows
kernels.

he Birth of the Linux Operating System
Between 1991 and 1994, Linus took a step further to create the
Linux operating system. He combined the GNU OS with Linux
Kernel. At the start, he wanted to create an operating system that did
not come free, but instead, he needed something that he could
customize to fit as per his programming needs. Linux appeared to be
his pet project at the start. It was like a side hustle. UNIX is different
from the Linux operating system.
Linus built the entire Linux system from scratch. He created Linux
because he desired to build an open-source operating system for the
people to use. At that time, UNIX was not open-source. People had
to pay someone to use UNIX. Similarly, Microsoft was also a paid
operating system.
Therefore, Linux came up with the idea of an open-source operating
system. He worked up the idea with his friends from the
Massachusetts Institute of Technology (MIT). Coupled with building
an open-source operating system, they needed an easy-to-use and
efficient operating system they could customize to suit their
programming needs.

Linux Distributions

see more please visit: https://homeofbook.com

When Linus was creating the Linux operating system, he stopped
working on it for a while. During that period, he made the code for
the operating system public. This allowed everyone to take part in
the creation of the system. Scientists and computer geeks started
working on the concept as well. They changed the operating system
as they deemed fit.
Major educational institutions and companies liked the concept of
this new operating system because everyone who had the source
code could install Linux on his or her computer. This is how people
started creating different versions of the Linux operating system.
Students from the University of California, Berkeley, tried to start
creating a version. People from China and people with different
occupations also started creating versions to suit their personal
needs.
The availability of the source code to the public facilitated the
creation of distros or distributions. Distributions are different versions
of Linux that people have been creating over time. Linux has
different versions, and its many distributions offer it several
capabilities. When you have to decide which Linux distribution you
need to use, you have to decide what you want your computer to do
with Linux. I will explain it by running an analogy with the Windows
operating system. When you install Microsoft Windows operating
system on our computer, every distribution is built to do things in a
particular manner.
There is a version of Linux known as Trustix. Linux Trustix is labeled
as the most secure Linux operating system in the market. It is simply
a brick. You set up Linux Trustix, and no one will be able to hack it
until you do something immensely stupid. There will be no sneaking
in by viruses. It is a secure and solid server. However, you have to
decide that you really need a secure server before picking up the
source code and installing the system.
If you are looking out for a computer that you can use for some office
applications, you may need an Ubuntu Linux desktop version. If you
are looking for a super-secure computer, then you may need Linux

see more please visit: https://homeofbook.com

Trustix. If you are looking forward to something that comes with
enterprise-level support, you may need to use a Linux distribution
paired up with a tech support center to help you out. In this case,
Red Hat Linux will be the answer to your needs. Again, you must
decide what you want your computer to do to determine the most
appropriate Linux distribution to install on your computer system.

Linux is Open-Source
Now that you have learned about the origins of Linux and its
distributions, it is time to move forward to the concept of open-source
licensing, which makes Linux different from other operating systems.
Linux has open-source licensing. You might have heard of open-
source software at some point in your life. Open source does not
mean that your software is free to use. If you treat all open-source
software as free, you will be on the verge of jeopardizing your
programming career and company as well. This is legally bad;
therefore, we must discuss open-source software to clear the air.
Open-source software means that whenever programmers write a
code for a software, they give you the code to see how he or she
wrote the program in the first place. It does not mean that the
program is free to use. There are different ways by which open-
source vendors are paid.
The first way is through the Open Source model, where they give off
their software free of cost. However, when you require support or
training for the software, they will charge you a certain amount. For
example, you can download MySQL server for the Linux server. You
find it useful and powerful as well. Even though you have learned the
MySQL program's different intricacies, there are some aspects of the
software you may need to learn or need support with. Therefore, you
approach the software developer, ask for training or support with the
software. At this point, you have to pay the programmer or developer
for his or her development efforts.
The second way by which developers are paid is through a non-
commercial open-source license. This is where most people get into

see more please visit: https://homeofbook.com

trouble. You have to pay them to use them.
If you want software for home use, there is no problem. Once you
use it to connect to a business server, you own a licensing fee to use
that software for commercial use. The worst thing is that licensing
fees may be over $8,000. It can be that much expensive in some
cases. Therefore, it is wise to stay conscious of how you may use
the software for non-commercial, personal, or commercial purposes.
The third way by which open-source software programmers are paid
is through a paid open-source license. Some of you might ask how
software can be on the open-source license if it happens to be a paid
software. A paid software is called open-source if the programmer of
the software allows you to see their code.
The fourth way by which these programmers earn money is by
recurring license fees for the open-source software. This is like most
of the open license programs. They will let you download and test
their software free of charge. They would let you see its code as well
so that you know how the software works. However, if you want to
have the software's legal rights, you will have to pay a yearly or
monthly fee for that. This is much cheaper than a one-minute
licensing fee that is too much expensive.

The Linux Shell
Now I will move on to the Linux shell of the Linux operating system.
The shell of any operating system is the screen by which you interact
with that system. Take the example of Microsoft Windows. The
Windows shell is its graphical user interface where you can see the
mouse pointer at work. You use a pointer to navigate the screen and
click on different desktop elements such as icons and folders.
The shell is generally of two types, the first being the graphical user
interface (GUI) and the second being the line user interface (LUI).
The LUI appears to be as DOS prompts. If you ever have the
opportunity to work on the Microsoft DOS prompt, you should know
that the screen you see and work on is the line user interface (LUI).

see more please visit: https://homeofbook.com

It is a black-and-white screen. You see a bunch of commands on the
screen to get a specific output from your computer.
Linux is a technical operating system, which is why programmers,
engineers, and geeks prefer it. They prefer to use this line user
interface because it facilitates them in programming. When you
install Linux, you can install the Linux graphical user interface on
your system, just like Windows. Here, you can use a mouse to click
on things or access a line user interface more suitable for
programmers. However, the line user interface on Linux works on a
bunch of commands.
You should keep in mind that the line user interface on Linux is more
robust than the graphical user interface (GUI). However, when you
install Linux with a line user interface for the Linux shell, you see a
prompt instead of a mouse. If you do not know what a command
prompt is or what you will do with it, you will most likely be stuck. To
help you out, I will give functional examples of Linux commands and
shell scripts.

Root
The next concept that you must chew down and digest is that the
concept of the root. In the Linux operating system, root relates to the
top level of anything. When you work on Linux, you will hear more
often about the word ‘root.’ A root user refers to a computer's
administrator. A root user is the highest-level user that anyone can
be on a computer system. If you can log in as a root user, you can
use any command and do anything with the computer. A root user
refers to the root of the Linux operating system. It is the point where
the operating system is installed on your hard drive. If you think
about this in terms of the Windows operating system, C:/ is the
operating system root because it is where you have installed the
Windows operating system.
A root user has several privileges and the highest level of access
that any user can reach. The Linux operating system has many
folders, and the home folder is packed up with the user’s data like

see more please visit: https://homeofbook.com

settings, documents, programs, etc. Therefore, the home directory
can be the highest level for a specific user. The most important thing
to keep in mind is that when you talk about the root user in the Linux
operating system, the root level is the highest level. Root users have
complete access to anything in an operating system. Once we move
toward typing commands and making the Linux operating system do
different tasks, we will realize how important the root user concept is.
Where we will be blocked while logged in as a non-root user, we will
have access there as a root user.

Reasons to Use the Linux Operating System
The reason you should learn about the Linux operating system is the
functionality of the server. The Linux operating system is incredibly
rock-solid. Once you have installed the Linux operating system and
once you have gone through the quirks and set up the
configurations, a Linux operating system will run without overheating
and dying in the middle of working. It would run on end. Once you
have installed the Linux operating system correctly, it has the power
to run for a hundred and fifty days without shutting down.
The Linux operating system is unlike Windows in the sense that you
have to reboot it on a weekly basis to avoid certain losses of
memory. If you have configured it properly, the Linux operating
system would run and do the job with the least concern about the
circumstances. There will be little to no operational problems when
you install a Linux operating system on your computer.

Installation of the Linux Operating System
In this section, I will walk you through how to install the Linux
operating system to try it out and have a feel for the process of using
the Linux operating system. I will explain the installation process of
the Ubuntu Linux server edition. This is open-source and free to use.
Whether you will use Ubuntu for commercial or personal use, there
will be no charges. Google and open up the website of Ubuntu and
download the ISO file to install the Ubuntu server edition. Burn the
file on a disk or load it up on a USB thumb drive. I hope you already

see more please visit: https://homeofbook.com

know about the burning processor making bootable thumb drive. I
am not delving into that to save time.
Since it is a server edition, there will be no graphical user interface
on your screen. You will see a line user interface, which in simple
words means a black-and-white screen. There will be a blinking
cursor on your screen. You have to write commands to move further
with your work, or you will be stuck. Let me answer the question that
is popping up in your heads as to why the screen is black and white
in the Linux operating system’s server edition. The biggest reason is
safety. The server version of the Linux operating system has a line
user interface because every function is like an attack vector for a
black hat hacker. Any program that you install on your computer’s
graphical interface gives a hacker a loophole to enter your system.
As there is no graphical interface or external apps in the Linux
operating system, the threat of hacking attacks is minimum.
Although the MAC operating system is secure, hackers have
deciphered the art of hacking into the Adobe Flash applet that the
Mac operating system uses. Over the years, hackers have learned
the art of hacking into the Adobe Flash applet that the Mac operating
system has been using. Even though the Mac operating system is
solid in terms of security, the Adobe Flash has turned into a security
vulnerability. Hackers are now in a position to take over a Mac
computer with the help of the Flash software. However, the Linux
operating system is free of this vulnerability. Let us move on to the
process of installing a Linux operating system on your computer.
The first step for the installation is to download the Ubuntu Linux
server operating system. Go to ww.ubuntu.com. On the home page
of Ubuntu, you will find different versions of Ubuntu to do several
things. You will find a desktop version of Ubuntu. You will also see a
netbook version. There will be a cloud version as well, along with a
version for tablets and cell phones. You have to locate the server
version of Ubuntu and find its link for download.
If you are looking forward to installing Ubuntu on your computer
system, you should make sure that the file boots off a DVD and not a

see more please visit: https://homeofbook.com

hard disk drive. You can do this by pressing the DELETE or F1 key
on the keyboard to enter the motherboard's BIOS settings. From
there on, you may set up the point where you may want to boot the
system from. Several motherboard manufacturers have different
ways to enter the BIOS settings, so you should make sure that you
consult the user’s manual of the motherboard on how you should do
this.
Once you have downloaded the file and made it ready for booting
from a CD or DVD, you may proceed to install it. You will be asked in
which language you want to install Ubuntu Linux operating system.
Choose the desired language and hit Enter. Linux will be installed on
your computer system.

see more please visit: https://homeofbook.com

Chapter Two: Working with Linux Commands
When we talk about the Linux command line, we refer to the Linux
shell. The Linux shell is a program that accepts keyboard commands
and passes them on to your operating system for execution. All
Linux distributions have a shell program, namely , bash. The bash is
the short form of Bourne Again Shell. This is a reference to the fact
that bash is the next level version of sh, which was the original UNIX
shell program.
When you are using a graphical user interface, you need another
program, namely a terminal emulator for interaction with the Linux
shell. If you look through the desktop menus, you will be able to
locate one.

Let’s Start
It is time to start working on the command line of your Linux
operating system. The first step that you need to take is to kick off
the terminal emulator. Once you have opened it, you should be able
to see the following line.
linuxbox1:~$
This is known as the shell prompt. You will see that whenever the
Linux shell is ready to take in the input. It may vary in appearance
based on the distribution you are using. If you see a (#) instead of a
dollar sign ($), the terminal session will offer you superuser
privileges. Either you will be logged in as a root user, or you have
selected a terminal emulator that offers superuser privileges. Let us
type something on the shell and see what it does for you.
linuxbox1:~$ hkhkhhkhk
/bin/sh: hkhkhhkhk: not found
If you want to check on your command history, you may check it out
by pressing the up-arrow key. Whether you have written and entered
a hundred commands, you will see all of them on the screen. When
you press the down-arrow, the command history will disappear. You

see more please visit: https://homeofbook.com

might be thinking that the command line is all about the keyboard.
However, that is not the case. You may use a mouse with the
terminal emulator.

The First Commands for Your Linux Operating
System
It is time to enter your first commands on your Linux system to see
how the terminal works. These are the simplest commands that you
will be using to do some common tasks. The first command on the
line is the calendar command by which you can display a full
calendar of the current month.
linuxbox1:~$ cal
 January 2021
Su Mo Tu We Th Fr Sa
 1 2
 3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

You can experiment with the date and time command as well. By
entering a simple command, you may display the current time and
data on your screen. See the following command.
linuxbox1:~$ date
Sun Jan 24 10:35:23 UTC 2021

When you are using an operating system, you will need to know the
exact space on your system to keep the functioning of the system

see more please visit: https://homeofbook.com

smooth and easy.
linuxbox1:~$ df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/root 5120000 2417728 2702272 47% /
devtmpfs 125912 0 125912 0% /dev
tmpfs 126068 8 126060 0% /run
none 126068 0 126068 0% /dev/shm

If you want to see the amount of free memory, you will have to enter
the free command.
linuxbox1:~$ free
 total used free shared buff/cache available
Mem: 252140 5252 245980 8 908 24310
4
Swap: 0 0 0

When you have finished your work and you want to end your
terminal session, you simply write exit on the command line and
close the terminal session.

Basic Commands
This section of the chapter will walk you through the Unix commands
and utilities. The first on the line is the cat command that will display
the contents of a file. I will use the system information file and then
get back to the shell prompt. This is one of the easiest commands to
understand. You can get the output of one or more than one file and
read through them.
Note: I will use Fedora distribution to test commands from now
onwards.

see more please visit: https://homeofbook.com

File Navigation in Linux
Most of you might have been familiar with a graphical user interface.
It is very easy to navigate in that system. You see a perfect file tree
to see different files on your system. You can open them and
navigate through them in seconds. However, that is not the case in
Linux. There is no graphical display of files in a Linux operating
system. It’s better to look at the Linux file system as a maze. The
directory in which you are currently present is the current directory.
The directory above you is the parent directory. You can display the
current working directory with the pwd command.
[gha@localhost ~]$ pwd
/root

The ls command
The ls command will display the contents of one of the directories in
your system. The default is the current directory. You can use ls -1
command to display a lengthier version of the file. You can also use
the ls –F command to display the information of the type of files.
[gha@localhost ~]$ ls
bench.py hello.c
You can change the current working directory by using the cd
command. Just type cd in the shell and the pathname of the
directory you want to work in. A pathname is a general route that you
take along the branches of a tree to reach the directory you want.
You can specify it in two ways. The first way is the absolute
pathnames. An absolute pathname starts with the root directory, and
it follows the tree branch by branch until the path to file or desired
directory stands completed. Take the example of a directory on your
system in which most of the system's programs are installed.
[gha@localhost ~]$ cd /usr/downloads
[gha@localhost downloads]$ pwd

see more please visit: https://homeofbook.com

/usr/downloads
[gha@localhost downloads]$ ls
This command will list the files in that directory. The ls command is
one of the widely used commands in a Linux operating system. With
this command's help, you can see the contents of a directory and
determine the number of files and directory attributes. As you have
seen, you can enter the ls command to see the list of files and
subdirectories that are contained inside a current working directory.
[gha@localhost ~]$ ls /usr
bin games include lib lib64 libexec local sbin share src tmp

You can list the home directory of the user and the /usr by using the
following command.
[gha@localhost ~]$ ls ~ /usr
/root:
bench.py hello.c

/usr:
bin games include lib lib64 libexec local sbin share src tmp

You can add -1 to the ls command to change the format of the
display and reveal more details. By adding -1 to the same ls
command, you can change the output to a longer format.

Options and Arguments Commands
Most Linux commands are made up of one character preceded by a
dash. However, some are longer, with two dashes followed by a
word, such as those in the GNU support project. Some commands
even allow two or more shorter options to be tagged to one another.
In the example you see below, we will give the ls command two

see more please visit: https://homeofbook.com

options – the first (l) will reduce the long output, while the second (t)
sorts the results by modification time.
Let us see the result of the –l command.
[gha@localhost ~]$ ls -l
total 8
-rw-r--r-- 1 root root 114 Dec 26 15:19 bench.py
-rw-r--r-- 1 root root 185 Sep 9 2018 hello.c

Now I will add t to –l to prolong the output if it can be prolonged.
[gha@localhost ~]$ ls -l
total 8
-rw-r--r-- 1 root root 114 Dec 26 15:19 bench.py
-rw-r--r-- 1 root root 185 Sep 9 2018 hello.c

You can reverse the order of the output by using the reverse
command. See the syntax of the command as under:
[gha@localhost ~]$ ls -lt --reverse
total 8
-rw-r--r-- 1 root root 185 Sep 9 2018 hello.c
-rw-r--r-- 1 root root 114 Dec 26 15:19 bench.py

Let’s take a look at some miscellaneous commands that you can pair
up with the ls command.
[gha@localhost ~]$ ls is used to produce a list of all the files with
proper names that start with a period. It also produces those files
that are usually listed as hidden.
[gha@localhost ~]$ ls --all is the long option for the same command.

see more please visit: https://homeofbook.com

[gha@localhost ~]$ ls –d is used to specify a directory and display its
contents. It does not display the directory. You can pair up this
command with the –l command to explore details about the directory
instead of the contents.
[gha@localhost ~]$ ls --directory is used to produce more details
about the directory or its contents.
[gha@localhost ~]$ ls –F is used to append a particular indicator
character to the tail of listed names, like the forward-slash of the
name is already in the directory.
[gha@localhost ~]$ ls --classify is used to append the indicatory
character to the tail of a listed name.
[gha@localhost ~]$ ls --human-readable is used to display the
contents in long format listings and display the files in human-
readable formats rather than in the form of bytes.
[gha@localhost ~]$ ls –S is used to sort out the results by the size of
the files.
[gha@localhost ~]$ ls –t is used to sort out the results by the
modification time.

Finding Out the Type of File
As we begin to explore the system, one of the most useful things you
should learn is what is in the files. To do this, we use the file
command to help us work out the file type. Linux doesn’t require the
filenames to specify the file contents, so, for example, where you
would expect a .jpg file to contain an image, Linux doesn’t require
this. When the Linux File command is invoked, it prints out a
description of the file contents.
[gha@localhost ~]$ file image.jpg
There are lots of file types, and, like many other operating systems,
Linux treats everything in the system as a file.

The less command

see more please visit: https://homeofbook.com

We use the less command for viewing text files. The Linux operating
system contains several files with text readable by the human eye,
and the less command gives us an easy way to look through them.
Text files need to be examined because some of them will be full of
system settings. You see these labeled as configuration files, and all
of them are stored in a particular format. When you can read the
files, you will gain an idea of the way Linux works, and you will find
several of the programs used by your system, called scripts, are
stored the same way.
Once the less command has been executed, you can scroll through
a text file, back or forward. Let’s say you are looking at a file defining
user accounts for your system. You could use this command:
[gha@localhost ~]$ less /etc/passwd
Once the command has been given, you can look at the content of a
specific file. If it is a long file, use the arrow keys on your keyboard to
navigate the contents. Below you can see the other common
keyboard shortcuts that help you navigate files with the less
command:

Page Up to scroll back a page
Page Down to scroll forward a page
Spacebar to scroll forward a page
Up Arrow to scroll up a line on the page
Down Arrow to scroll down the line on the page
G to go to the end of the text file
1G or g to move to the start of the file on the page
h to display the help screen on the page
n to search for the next possible occurrence of different
characters
/characters to search forward to the characters' next
occurrence on the page

see more please visit: https://homeofbook.com

q to quit the less command
Your Linux file system is similar to that of other UNIX-like systems,
and the Linux File System Hierarchy Standard is the published
standard that specifies the design. Below are some of the directories
you can explore:

/ is the root directory that plays the role of the starting point of
everything.
/bin is the root directory that contains binaries or programs that
ought to be present for a system to boot and run.
/boot is the root directory containing the Linux kernel. This is
the boot loader and contains the drivers needed for the system
to boot.
/var is the root directory which is where data that is most likely
to change is stored. You will find a number of pool files,
databases, user mail in this directory.
/var/log is the root directory which contains different log files. It
also contains certain records of system activities. The files
packed inside the directory are very important. You should
monitor it from time to time. The most useful one is
/var/log/messages. It is possible that on some systems, you will
have to log in as a superuser to access the log files.
/ imp is used to store transient files created by a number of
programs. Some configurations may cause the directory to be
emptied each time you reboot the system.
/usr is the largest one in your Linux operating system. It may
contain the programs and support certain files that are used by
regular users.
/proc is a special directory because it is not a filesystem used
for storing files on the hard drive. Instead, it is a virtual
filesystem the kernel maintains, and the files are snapshots
into the kernel, are readable, and will tell you the kernel views
a computer.

see more please visit: https://homeofbook.com

/root is the major home directory if you are operating a root
account.
/tmp is used to store transient or temporary files. Be aware that
some configurations may empty this directory whenever your
system is rebooted.
/usr/bin carries some executable programs that are installed by
the Linux distribution. It is not uncommon for the directory to
hold a number of programs.
/usr/lib is a shared library for different programs that sit in
/usr/bin.
/usr/sbin is loaded with many system administration programs.
/usr/local is a tree that contains programs not part of the actual
distribution but still needed for system-wide use. The programs
compiled from the source code go into /usr/local/bin, and you
will find this on a new install of the Linux system. However, until
the system administrator adds files to it, it will remain empty.
/usr/share is packed up with shared data that the programs in
/usr/bin use. This directory includes different things such as
icons, configuration files, sound files, and screen backgrounds.
/usr/share/doc contains documentation files that are organized
by the package.
/lib is filled up with shared library files that are used by core
system programs. These programs are similar to DLLs in the
Windows operating system.
/mnt is used in older Linux operating systems. The /mnt
directory carries certain mount points for removable devices in
the system. The condition is that the devices should be
manually mounted.
/lost+found is used in case of a partial recovery from the
filesystem’s corruption event. This directory stays empty until
your system passes through something bad.

see more please visit: https://homeofbook.com

/media is used on modern Linux operating systems. The
/media directory contains mount points for the removable
media like CD-ROMs, USB drives, and any other device
mounted automatically.

see more please visit: https://homeofbook.com

Chapter Three: Files & Directories Commands
This chapter will walk you through the commands to navigate
through files and directories in the Linux operating system. You can
manipulate directories and files. Some of the tasks are easy to do.
When you are using commands for navigation, you have more power
and flexibility as compared to using a graphical user interface. While
the latter option is easy to perform and is suitable to execute simple
tasks, you need the command line for pulling off complicated tasks.
Copying HTML files from one directory to another is hard in a
graphical user interface; however, it is easier to do in a command-
line system. Before I move on to exploring the commands that you
can use to manipulate files and directories, I will explain some
special characters that you can use in Linux.

Special Characters
When you are discussing Linux with others, you may hear about
some special characters that Linux users encounter during
operations. Each special character has a job to do, knowing which
will make things easier for you.

* is technically called asterisk or star. It is used for a regular
expression and as a glob character.
‘ is technically called tick or single quote. It is used for literal
strings.
Special character . is technically called dot. It is used to denote
the current directory you are working in or the hostname or file
delimiter.
$ is technically called the dollar sign. It is used for denotation of
a variable or for representing the end of the line.
\ is technically called backslash. It is used for macros and
literals.
/ is technically called forward slash. It is used as a search
command or a directory delimiter.

see more please visit: https://homeofbook.com

! is technically called bang. It is used for command history and
negation.
| is technically called a pipe. It is used for command pipes.
_ is technically an underscore or under. It is used for the cheap
subtitle for some particular space.
` is technically called backtick or backquote. It is used for the
substitution of command.
“ is technically called double quote. It is used for semi-literal
strings.
{} is technically called braces or curly brackets. It is used for
ranges or statement blocks.
^ is technically called caret. It is used to denote the start of line
and negation.
[] is technically squares or brackets. It is used for ranges.
~ is technically called squiggle or tilde. It is used as a directory
shortcut and negation.
is technically called pound, hash, or sharp. It is used for
preprocessor, comments, and substitutions.

Command-Line Editing
As you move around and explore the Linux shell, you will find out
that you have the freedom to move in the shell through arrow keys.
This comes as a standard on most Linux operating systems. It is a
good idea to know about the standard keystrokes on Linux operating
systems.

CTRL-B is used to move the cursor on the screen to the left
side.
CTRL-F is used to move the cursor on the screen to the right
side.
CTRL-E is used to move the cursor on the screen to the end of
a line.

see more please visit: https://homeofbook.com

CTRL-A is used to move the cursor on the screen to the start
of a line.
CTRL-P is used to view any previous commands on the
screen. It is used to move the cursor upside.
CTRL-N is used to move the cursor to the downside, and it is
also used to view the next command.
CTRL-K is used to erase everything from the cursor to the end
of a line.
CTRL-W is used to erase the preceding word from the cursor
on the screen.
CTRL-U is used to erase everything from the cursor to the start
of a line.
CTRL-Y is used to paste the erased text that you have already
cut off on the screen by the command CTRL-U. It is similar to
copy and paste in word processors.

Linux Commands for Directories
The mkdir Linux command is used for the creation of directories. It
works as the following:
mkdir directoryname

The cp command
Another command, the cp command, is used to copy directories and
files. You can use it in different ways, such as the following:
cp file1 file2
cp files… directoryname
You can use the following options with the cp command.

The cp command option –a or --archive is used to copy the
directories and files and their entire attributes, including
permissions and ownerships. Usually, copies take on average
default attributes of a user who is performing the copy action.

see more please visit: https://homeofbook.com

The cp command option –u or --update is used when you are
copying from one directory to another, and you are copying
files that do not exist or newer to the files in the destination
directory.
The cp command option –v or --verbose is used to display the
informative messages as you perform the copy.
The cp command option –i or --interactive is used before
overwriting existing files, which prompts the user for
confirmation. If you have not specified the option, the cp
command will overwrite the existing files, which is not good for
your document records.
The cp command option –r or --recursive is used to copy the
contents and files recursively. This particular option is needed
when you are copying directories.

Examples of cp command
The Linux command cp item1 item2 will copy the files of item1
to the files of item2. If item2 exists, it will be overwritten with
the contents of item1. If it does not exis, the system will create
it.
The Linux command –i item1 item2 will copy the files of item1
to the files of item2. However, the only exception is that if item2
exists, the user will be prompted before the file is overwritten.
The Linux command item1 item2 dir1 will copy contents of
item1 and item2 into dir1. The directory dir1 must exist before
you execute this command.
The Linux command cp dir1* dir2 uses a wildcard. It will copy
all the files of dir1 into dir2. The condition is that dir2 must exist
before the execution of the command.
The Linux command –r dir1 dir2 will copy the directory dir1 to
the directory dir2. If dir2 is non-existent, it will be created and
will contain the same contents as the directory dir1 will.

see more please visit: https://homeofbook.com

The mv command
The mv Linux command performs movement and renaming of files
based on how a user uses it. The original filename does not exist
after you have executed the command. The mv command is used in
the same way as the cp command.
mv file1 file2
Just like the cp command, the mv command comes with different
options that are given as under:

The mv command option –u or --update is used when you are
moving from one directory to another, and you are moving files
that do not exist or newer to the files in the destination
directory.
The mv command option –v or --verbose is used to display
informative messages as you perform the movement.
The mv command option –i or --interactive is used before
overwriting existing files, which prompt the user for
confirmation. If you have not specified the option, the mv
command will overwrite the existing files, which is not good for
your document records.

Examples for mv command
the Linux command mv item1 item2 will copy the files of item1
to the files of item2. If item2 exists, it will be overwritten with
the contents of item1. If it does not exist, the system will create
it. The file item1 will cease to exist in either case.
the Linux command mv –i item1 item2 will move the files of
item1 to the files of item2. However, the only exception is that if
item2 exists, the user will be prompted before the file is
overwritten.
the Linux command mv item1 item2 dir1 will move contents of
item1 and item2 into dir1. The directory dir1 must exist before
you execute this command.

see more please visit: https://homeofbook.com

the Linux command mv dir1* dir2 uses a wildcard. It will move
all the files of dir1 into dir2. The condition is that dir2 must exist
before the execution of the command.
the Linux command mv dir1 dir2 will move the directory dir1 to
the directory dir2. If dir2 is non-existent, you will have to create
it and move the contents of dir1 into dir2.

The rm command
The rm command is used for removing or deleting directories and
files like the following:
rm file…
In this command file is the name of one or more than one directory
and files. Using this command can be highly treacherous. Once you
delete something with the rm command, you will never get it back.
Linux assumes that you have removed a file on purpose. It does not
give it back to you. Therefore, you should use it carefully. Let us say
that you want to delete the HTML files in some directory.
So when you are using wildcards with the rm command, you should
test the wildcard with the ls command to see the contents of the file
you are going to remove from the system. You can use the arrow key
to recall the command and replace it with rm then.

The mv command option –r or --recursive is used to delete
directories recursively. This means that if the directory you are
deleting has subdirectories, you can delete them as well. If you
want to delete a directory, you should specify this option.
The mv command option –f or --force is used to ignore the non-
existent files. It does not prompt. It tends to override the –
interactive option.
The mv command option –v or --verbose is used to display the
informative messages as you perform the deletion.
The mv command option –i or --interactive is used before
deleting the existing files, which prompts the user for

see more please visit: https://homeofbook.com

confirmation. If you have not specified the option, the rm
command will silently delete the existing files, which is not
good for your document records.

Examples of rm command
The Linux command rm item1 will silently delete files of item1.
The Linux command rm –i item1 will delete the files of item1.
However, the only exception is that the user will be prompted
before the file is deleted.
The Linux command rm item1 dir1 will delete the contents of
item1 and dir1. The directory dir1 must exist before you
execute this command.
The Linux command rm –rf item1 dir1 works the same as
above, with the exception that if both item1 and dir1 do not
exist, the rm command will go on silently.

see more please visit: https://homeofbook.com

Chapter Four: Practical Work with Commands
You have gone through a series of commands. Each has some
mysterious options and arguments. This chapter will walk you
through some more commands to make you more familiar with the
Linux command line.

The type command
This is a built-in Linux command that displays a typical type of
command that the shell is going to execute. See how you can use it.
[gha@localhost ~]# type type
type is a shell builtin
[gha@localhost ~]# type ls
ls is aliased to `ls --color=auto’
[gha@localhost ~]# type cp
cp is /bin/cp
[gha@localhost ~]# type mv
mv is /bin/mv
[gha@localhost ~]# type rm
rm is /bin/rm
[gha@localhost ~]# type cd
cd is a shell builtin
[gha@localhost ~]# type help
help is a shell builtin

You can see that there are different results of all these different
commands.

The which command

see more please visit: https://homeofbook.com

Sometimes more than one version of executable programs is
installed on a particular system. While this is not common on
desktop systems, it is not quite unusual on large servers. You can
use the ‘which’ command to know the exact location of an
executable.

[gha@localhost ~]# which ls
ls=’ls --color=auto’
 /bin/ls

The which command works well for executable programs only and
not for built-ins or alias that are mostly substitutes for executable
programs. When you try to use the which command on shell built-in,
you get either no response or a big error message.

[gha@localhost ~]# which help
/usr/bin/which: no help in (/usr/local/sbin:/bin:/sbin:/usr/bin:/usr/sbin:/
usr/l
local/bin)

Documentation of Commands
You can take a step further and fish out the available documentation
in the system for each type of command.

The help command
Bash shell has a built-in help facility for shell built-ins. If you want to
use it, you can type help and the name of the shell built-in. See the
following example.

see more please visit: https://homeofbook.com

[gha@localhost ~]$ help cd
cd: cd [-L|[-P [-e]] [-@]] [dir]
 Change the shell working directory.

 Change current directory to DIR. The default DIR is the HOME
Shell variable’s value.

 The CDPATH variable is used to define the search path leading to
the directory where DIR is. CDPATH indicates alternative file names
by using a colon (:) to separate them. A null name indicates the
current directory, and where a slash (/) precedes a directory name,
then CDPATH isn’t used.

The details are longer than I have mentioned here. I cut it down to
save space. You can type the command on the terminal and see
how the help command can help you out when you get stuck as you
operate the Linux operating system. When you see square brackets
in the description of a command's syntax, you should keep in mind
that they indicate only optional items. If you see a vertical bar
character in the description, it denotes mutually exclusive items.
Some executable programs support the --help option. When you
apply the option, it displays a lengthy description of the command's
supported syntax and the related options.

[gha@localhost ~]$ mkdir --help
Usage: mkdir [OPTION]... DIRECTORY...
Create the DIRECTORY(ies) if they do not already exist.

Mandatory arguments to long options are mandatory for short option
s too.

see more please visit: https://homeofbook.com

 -m, --
mode=MODE set file mode (as in chmod), not a=rwx - umask

The man command
Most executable programs intended for command-line use offer a
formal piece of documentation known as a man page or a manual
page. A special paging program known as man is loaded up on
Linux to view the details. You can type the man command and then
the title of the command. The man pages differ in format and contain
a title or a synopsis of the command's syntax, a listing, and a
description of the purpose of the command. The man page does not
include examples, and they are intended as a special reference and
not as a tutorial. See the following example.

[gha@localhost ~]$ man ls
LS(1) User Commands LS(1)

NAME
 ls - list directory contents

SYNOPSIS
 ls [OPTION]... [FILE]...

DESCRIPTION
 List information about
the FILEs (the current directory by default).
 Sort entries alphabetically if none of -cftuvSUX nor --sort is
specified.

see more please visit: https://homeofbook.com

On most of the Linux operating systems, man uses less for
displaying the manual page so that all familiar less commands work
while the page is displayed. The manual that man displays has
different sections, and it covers user commands and system
administration commands. In addition to that, it also covers file
formats, programming interfaces, and much more. See the complete
layout of the manual as under:

The number 1 section of the man command will display user
commands.
The number 2 section of the man command will display
programming interfaces for the kernel system calls.
The number 3 section of the man command will display
programming interfaces to the C library.
The number 4 section of the man command will display special
files such as the device nodes and the drivers.
The number 5 section of the man command will display formats
of the files.
The number 6 section of the man command will display the
details of games and entertainment like screensavers.
The number 7 section of the man command will display
miscellaneous items.
The number 8 section of the man command will display the
commands related to system administration.

At times, you may need to look into a specific section of a manual to
find out what you are looking for. If you do not specify a section
number, you will always get the very first instance of a specific match
in section 1.

The apropos command

see more please visit: https://homeofbook.com

It is possible to search the list of man pages for some possible
matches based on a specific search term. This crude approach is
often helpful. The syntax is as under:

[gha@localhost ~]$ apropos floppy

The whatis command
The whatis command in Linux operating displays the name and a
short description of a man page. The syntax is as under:

[gha@localhost ~]$ whatis ls

The man pages that come with a Linux distribution system are
labeled as a reference documentation instead of a tutorial. A number
of man pages are tough to read, so tough that a majority of us skip
them right away without giving them a second glance. However, the
most difficult of the man pages are of bash. They are long,
complicated, and almost unreadable. However, their length becomes
their strength as they contain plenty of useful information for you to
add to your knowledge. When you have gone through one page, it
will start making sense to you.

The info command
The GNU project provides info pages as an alternative option to the
man pages. A reader program called info displays these pages, and
these are hyperlinked in the same way web pages are. For example:

[gha@localhost ~]$ info ls

Next: dir invocation, Up: Directory listing

see more please visit: https://homeofbook.com

10.1 ‘ls’: List directory contents
==================================

In the ‘ls’ program, you will find information about files of any type,
and that includes directories. As usual, arbitrary mixing of options ad
file arguments is accepted.
By default, ‘ls’ will list the contents of non-option command-line
arguments that are also directories, but this is not a recursive list,
and files starting with ‘.’ are left out.
The info program will read the info files – these are structures that go
into individual nodes, each containing one topic. Hyperlinks in the
info files help users move between the nodes, and these hyperlinks
are identified by a leading asterisk. Typically, activating these
hyperlinks requires the user to click them with the cursor and press
Enter. The info command provides this information:

The ? key in the info menu will display the command help.
The Page up or Backspace keys in the info menu will display
the previous page.
The Page down or Spacebar keys in the info menu will display
the succeeding page.
The n key in the info menu will display the next node in the
menu.
The p key in the info menu will display the previous node in the
menu.
The u key in the info menu will display the parent node of the
node that is presently on display.
The Enter key in the info menu will allow you to follow the
hyperlink at the cursor's present location.

see more please visit: https://homeofbook.com

The q key in the info menu will allow you to quit the menu.

see more please visit: https://homeofbook.com

Chapter Five: Redirection Commands &
Keyboard Tricks with Linux Commands
In this chapter, we will talk about the coolest feature of the command
line, which is called I/O redirection. The I/O stands for input/output.
With this facility, you may redirect the input and output of commands
and connect multiple commands to make a powerful command
known as pipelines.
The output of a program is of two types. First, you have the result of
the program which contains the data program produces. Secondly,
there are status and error messages that instruct you how the
program is getting along. If you look at the command ls, you will see
that it delivers results and error messages on your screen.
This program sends the output to another file called standard error.
Both standard error and output are connected to the screen, and
they are saved into a disk file. Many programs take input from a
facility known as standard input stdin, which is attached to a
keyboard.
I/O redirection allows you to change where the output goes and
where the input flows in from. Usually, output goes to the screen,
and the input flows in from the keyboard in Linux; I/O has the power
to change that.

Redirection
I/O redirection helps you in redefining the direction of the output. To
redirect the standard output to a file instead of the screen, you have
to use the redirection operator that is followed by the name of the
file. It is useful more often to store the output of a certain command
inside a file. You may tell the shell to direct the ls command's output
to a file namedls-output.txt instead of the screen.
[gha@localhost ~]$ ls -1 /usr/bin > ls-pt.txt
I have created a long listing of /usr/bin directory and then sent the
results to the file ls-pt.txt.

see more please visit: https://homeofbook.com

Keyboard Tricks
Unix is an operating system for people who love to type. The
command line does not allow a mouse to operate. Linux commands
can be exhaustive, therefore, you should learn a bunch of keyboard
tricks.

Text Modification
The following list shows how you can modify text in the Linux
command line. The terms killing and yanking refer to cutting and
pasting, respectively.

The keyboard trick CTRL-D will help you delete the character
that is at the present position of the cursor.
The keyboard trick CTRL-T will help you transpose the
character at the present location of the location with the one
that is preceding it.
The keyboard trick Alt-U will help you convert into uppercase
the characters from the cursor's present position to the ending
point of the word.
The keyboard trick Alt-L will help you convert into lowercase
the characters from the cursor's present position to the ending
point of the word.
The keyboard trick Alt-T will help you transpose the words at
the cursor's present position with the preceding one.
The keyboard trick CTRL-K will help you kill text from the
cursor's present position to the ending point of a line.
The keyboard trick CTRL-U will help you kill text from the
cursor's present position to the starting point of a line.
The keyboard trick ALT-D will help you kill text from the cursor's
present position to the end of a current word.
The keyboard trick ALT-Backspace will help you kill text from
the cursor's present position to the starting point of the current

see more please visit: https://homeofbook.com

word. If the cursor is presently at the start of a word, it will also
kill the previous word.
The keyboard trick CTRL-Y will help you yank text from the kill-
ring and paste it at the cursor's present position.

Completion Commands
Another way by which the shell will help you is through completion.
This occurs when you hit the Tab key while you are typing the
command. When you are halfway through a command, you can
enter tab to complete the command. The important thing to
remember is that you should not hit the Enter key.

Completion commands
The keyboard trick Alt-$ will help you display the list of all
possible completions. You may also do this by pressing the Tab
key twice. This is much easier to do.
The keyboard trick Alt-* will help you insert the possible
completions. This is highly useful when you intend to use more
than one match.

Searching History
Bash maintains a history of the commands you type in it. The list of
commands is kept in the home directory in a file named
.bash_history. The history facility is highly useful for cutting down on
the amount of typing that you need to do especially when you
combine it with command-line editing. Here is the syntax of the
history command.
[gha@localhost ~]$ history | less
Bash, by default, stores the last 500 commands that you have
entered. Suppose you want to find the commands that you used to
list /usr/bin. Here is the way to do that.
[gha@localhost ~]$ history | grep /usr/bin

see more please visit: https://homeofbook.com

There is a list of keystrokes that you may use when you are
navigating through the history command.

You can use the keyboard shortcut CTRL-P to move to the
latest history entry. This performs the same action as the up
arrow.
You can use the keyboard shortcut CTRL-N to move to the
next history entry. This performs the same action as the down
arrow.
You can use the keyboard shortcut ALT-> to move to the
bottom of the list of history that is the current command line.
You can use the keyboard shortcut ALT-< to move to the
starting point of the list of history.
You can use the keyboard shortcut CTRL-R to reverse the
incremental search. This option incrementally searches from
the current command line up the list of history.
You can use the keyboard shortcut CTRL-O to execute the
present item in the list of history and then move on to the next
one. This is handy if you are looking forward to re-execute a
sequence of commands in the list.
You can use the keyboard shortcut ALT-N to forward the
search. This is non-incremental.
You can use the keyboard shortcut ALT-P to reverse the
search. This also is non-incremental. Coupled with this
keyboard shortcut, you can type the search string and then
press ENTER before you have performed the search.

History Expansion
The shell offers a special type of expansion for different items in the
history list by using the ! character. We already have seen how a
number may follow the exclamation point to insert a particular entry
from the list of history. There are many other expansion features.

see more please visit: https://homeofbook.com

History expansion mechanism has many available elements, but this
subject is too arcane.

You can type the sequence !! to repeat the latest command.
However, it may be easier to press the up arrow and then hit
ENTER.
You can type the sequence !?string to repeat the latest history
list item that contains a string.
You can type the sequence !string to repeat the latest history
list item that starts with a string.
You can type the sequence !number to repeat the latest history
list item.

see more please visit: https://homeofbook.com

Chapter Six: Process Commands
Today’s operating systems are capable of multitasking, which means
they can do more than one thing at a time. They switch rapidly
between executing programs, and the Linux kernel manages this.
Linux uses processes to organize the programs queued for
execution in the CPU.
Sometimes, a computer system can become slow, or a specific
application might stop working. This chapter is designed to show you
the command-line tools you can use to terminate certain processes
that don’t work properly during the system operations.
When your system wakes, certain activities are activated as
processes by the kernel. This is followed by a program called init
being launched. This program runs shell scripts known as init scripts,
which are used to start the system services. Lots of these services
are implemented as daemon programs, working in the background
and doing what they have to do without a user interface. You can
find the processes command here:
[gha@localhost ~]$ ps
PID TTY TIME CMD
 48 hvc0 00:00:00 sh
 82 hvc0 00:00:00 ps

The result lists process that are sh and ps respectively. If we add an
option to the command ps, we can detailed result on our screens.
See the following example.
[gha@localhost ~]$ ps x
 PID TTY STAT TIME COMMAND
 1 ? S 0:00 /bin/sh /sbin/init
 2 ? S 0:00 [kthreadd]
 3 ? I 0:00 [kworker/0:0]

see more please visit: https://homeofbook.com

 4 ? I< 0:00 [kworker/0:0H]
 5 ? I 0:00 [kworker/u2:0]
 6 ? I< 0:00 [mm_percpu_wq]
 7 ? S 0:00 [ksoftirqd/0]
 8 ? S 0:00 [kdevtmpfs]
 9 ? I< 0:00 [netns]
 10 ? S 0:00 [oom_reaper]
 11 ? I< 0:00 [writeback]
 12 ? I< 0:00 [crypto]
 13 ? I< 0:00 [kblockd]
 14 ? S 0:00 [kswapd0]
 15 ? I 0:00 [kworker/0:1]
 33 ? S 0:00 [khvcd]
 43 ? Ss 0:00 dhcpcd
 48 hvc 0 Ss 0:00 sh -l
 71 ? I 0:00 [kworker/u2:1]
 102 hvc0 R+ 0:00 ps x

The x option informs ps that it needs to show all the processes, no
matter what terminal controls them. Because the system is running
many processes, a long list is produced, and more often than not, it
is helpful to pipe the ps output into less and view them that way.
Some combinations of options produce many output lines, and it is a
good idea to maximize the emulator window in the terminal.

Process States
Here is a rundown of process states.

see more please visit: https://homeofbook.com

The process state R denotes running. This process is either
running or is ready to run in the system.
The process state S denotes Sleeping. The process is in Sleep
mode and not running. It is waiting for a certain event to start,
such as a keystroke or network packet.
The process state Z denotes the zombie process. This is a
child process that has been terminated, but the parent process
has not cleaned it up.
The process state D denotes Uninterruptable sleep. This
process is waiting for the I/O like a disk drive.
The process state T denotes stopping. This process is
instructed to stop.
The process state N denotes a low-priority process. It’s a good
process that will obtain the processor time when all other high-
priority processes have been serviced.
The process state < denotes a high priority process. It is
possible to give away more importance to a process and
allowing it more time on your CPU. A process that has higher
priority is less nice because it takes more of the CPU’s time.

Other characters may follow this process and these indicate
characteristics of other processes. The aux command can be used
with ps to provide another set of options:
[gha@localhost ~]$ ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TI
ME COMMAND
root 1 0.0 1.3 3136 2516 ? S 14:35 0:00 /bin/sh /sbin/
i
root 2 0.0 0.0 0 0 ? S 14:35 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? I 14:35 0:00 [kworker/0:0]
root 4 0.0 0.0 0 0 ? I< 14:35 0:00 [kworker/0:0H]

see more please visit: https://homeofbook.com

root 5 0.0 0.0 0 0 ? I 14:35 0:00 [kworker/u2:0]
root 6 0.0 0.0 0 0 ? I< 14:35 0:00 [mm_percpu_w
q]
root 7 0.1 0.0 0 0 ? S 14:35 0:02 [ksoftirqd/0]
root 8 0.0 0.0 0 0 ? S 14:35 0:00 [kdevtmpfs]
root 9 0.0 0.0 0 0 ? I< 14:35 0:00 [netns]
root 10 0.0 0.0 0 0 ? S 14:35 0:00 [oom_reaper]
root 11 0.0 0.0 0 0 ? I< 14:35 0:00 [writeback]
root 12 0.0 0.0 0 0 ? I< 14:35 0:00 [crypto]
root 13 0.0 0.0 0 0 ? I< 14:35 0:00 [kblockd]
root 14 0.0 0.0 0 0 ? S 14:35 0:00 [kswapd0]
root 15 0.0 0.0 0 0 ? I 14:35 0:00 [kworker/0:1]
root 33 0.0 0.0 0 0 ? S 14:35 0:00 [khvcd]
root 43 0.0 0.7 1944 1472 ? Ss 14:35 0:00 dhcpcd
root 48 0.0 1.5 6204 2940 hvc0 Ss 14:35 0:00 sh -l
root 71 0.0 0.0 0 0 ? I 14:35 0:00 [kworker/u2:1]
root 160 0.0 1.4 8180 2740 hvc0 R+ 15:02 0:00 ps aux

This command displays the processes that belong to all users of a
system. When you use the options without a leading dash, it invokes
the command with BSD-style behavior. Here are the details of BSD-
Style ps Column Headers.

The BDS-style ps column header, namely USER alludes to
User ID. This denotes the owner of a process.
The BDS-style ps column header called RSS indicates
Resident Set Size. This denotes the amount of physical
memory (RAM) used by the process.

see more please visit: https://homeofbook.com

The BDS-style ps column header, namely VSZ alludes to the
virtual memory size of the system.
The BDS-style ps column header, namely %CPU alludes to the
CPU usage in percentage.

Using the Top Command to View Processes
The ps command reveals a lot about what your Linux machine is
doing. However, it provides you just a snapshot of the state of the
machine as the ps command is executed in the system. To see a
dynamic view of the machine's activity, I will use the top command.
[gha@localhost ~]$ top
top - 15:10:01 up 34 min, 0 users, load average: 0.05, 0.05, 0.02
Tasks: 20 total, 1 running, 19 sleeping, 0 stopped, 0 zombie
%Cpu(s): 1.9 us, 4.9 sy, 0.0 ni, 93.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0
st
MiB Mem : 182.0 total, 171.2 free, 4.9 used, 5.8 buff/cache
MiB Swap: 0.0 total, 0.0 free, 0.0 used. 172.1 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TI
ME+ COMMAND
 180 root 20 0 8424 3084 2584 R 7.4 1.7 0:01.82 top

 1 root 20 0 3136 2516 2148 S 0.0 1.4 0:00.95 init
 2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd
 3 root 20 0 0 0 0 I 0.0 0.0 0:00.00 kworker/0+
 4 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kworker/0+
 5 root 20 0 0 0 0 I 0.0 0.0 0:00.00 kworker/u+
 6 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 mm_percpu+
 7 root 20 0 0 0 0 S 0.0 0.0 0:02.45 ksoftirqd+

see more please visit: https://homeofbook.com

 8 root 20 0 0 0 0 S 0.0 0.0 0:00.10 kdevtmpfs
 9 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 netns
 10 root 20 0 0 0 0 S 0.0 0.0 0:00.00 oom_reaper
 11 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 writeback
 12 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 crypto
 13 root 0 -20 0 0 0 I 0.0 0.0 0:00.00 kblockd
 14 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kswapd0
 15 root 20 0 0 0 0 I 0.0 0.0 0:00.03 kworker/0+
 33 root 20 0 0 0 0 S 0.0 0.0 0:00.00 khvcd
 43 root 20 0 1944 1472 1196 S 0.0 0.8 0:00.22 dhcpc
d
 48 root 20 0 6204 2940 2380 S 0.0 1.6 0:01.04 sh
 71 root 20 0 0 0 0 I 0.0 0.0 0:00.01 kworker/u+

As you enter the top command in the command line, you will see that
the figures are continuously updating. They update every three
seconds.

see more please visit: https://homeofbook.com

Chapter Seven: Working with Linux Editors
Before moving on to Linux shell scripting, we should make ourselves
acquainted with the text editors that we will have to use to write shell
scripts. This chapter will walk you through the features like
searching, copying, cutting, and pasting. The more practice you do
to learn an editor, the faster you will learn to write shell scripts in
Linux.

The Vim Editor
If you are working in the command line mode, you may need to
become familiar with a text editor that will be operating in a Linux
console. The vim editor is the original editor that Unix uses. It makes
use of the console graphics mode for the emulation of a text-editing
window, which allows you to see different lines of the file, move
around across the files, and edit, insert or replace a piece of text.
The vim editor works well with the data that is in a memory buffer.
You have to type vim and the name of the file that you have to edit to
open the editor with the desired file.
If the editor is started without a filename being supplied, it opens but
with no file. The vim editor detects the session’s terminal type and
uses full-screen mode so the console window can use the editor
area. The initial window will show the file contents and a message
line at the bottom of the window. If the contents don’t take up the
entire screen, a tilde is placed on the lines excluded from the file.
The vim editor has two operational modes – normal and insert mode.
When you open a file for editing, vim goes into normal mode, and
certain keystrokes are interpreted as commands.
In the insert mode, each key typed at the cursor is inserted into a
buffer. To get into insert mode, press the i key, and to get out of it
and back to normal mode, press the ESC key.
You can use the arrow keys in normal mode to move around the text
so long as vim has detected the correct terminal type. The vim
command includes those for cursor navigation, as you can see
below:

see more please visit: https://homeofbook.com

The command h in vim Linux editor is used to move to the left
by one character.
The command l in vim Linux editor is used to move to the right
by one character.
The command j in vim Linux editor is used to move down the
cursor by one line.
The command k in vim Linux editor is used to move up the
cursor by one line.
The command PageDown or Ctrl-f in vim Linux editor is used
to move forward one screen of your data.
The command PageUp or Ctrl-b in vim Linux editor is used to
move forward one screen of your data.
The command gg in the vim Linux editor is used to shift to the
first line in the buffer.
The command G in vim Linux editor is used to move to the last
line in the buffer.
The command num G in vim Linux editor is used to move to
the line number in the buffer.

The vim editor carries a special feature in the normal mode that is
known as the command line mode. The command line mode offers
an interactive command line where you may enter additional
commands to control different types of actions in the vim editor. To
get to the command line mode in the vim editor, you have to press
the colon key while you are in the normal mode. The cursor will
move to the message line. Here you will see a colon popping up on
the screen which indicates that you should now enter a command.
When you are in the command line mode, you may enter several
commands to save the buffer to file and move out of the editor.

The command q in vim Linux editor is used to exit the system if
you have made no changes to buffer data.

see more please visit: https://homeofbook.com

The command wq in vim Linux editor is used to save buffer
data to file and then exit the editor.
The command q! in vim Linux editor is used to quit the editor
and then discard the changes that are made to the data of
buffer.
The command w filename in vim Linux editor is used to save
your file with a different filename.

Data Editing
When you are in the insert mode, you may insert data in the buffer.
Sometimes you have to add or remove some data after entering into
the buffer. While you are in normal mode, the vim editor will provide
certain commands for editing data in the buffer. You should take
extra care when you try to use a PC keyboard Delete or Backspace
keys while you are inside the vim editor. The vim editor recognizes
the keyboard Delete key as an x command functionality, which will
delete a character at the current cursor location.

Copy & Paste
A standard feature of these editors is their ability to make a cut or
copy data, and after that, paste it into the document. Cutting and
pasting text is easy. When vim removes your data, it will forward it
into a separate register. You can then retrieve that data by using the
p command. You can use the dd command to remove different lines
of text. When you try to copy text, you may find it a bit trickier.

x in vim Linux editor is used to delete a character at the
cursor's current position.
R text in vim Linux editor is used to overwrite the data at the
cursor's current position with the text until you hit the Escape
key.
r char in vim Linux editor is used to replace any single
character at the cursor's current position with char.

see more please visit: https://homeofbook.com

dd in vim Linux editor is used to delete a line at the cursor's
current position.
A in vim Linux editor is used to append data to the end point of
the line at the cursor's current position.
a in vim Linux editor is used to append data next to the cursor's
current position.
J in vim Linux editor is used to delete a line break to the end of
the line at the cursor's current position.
dw in vim Linux editor is used to delete a word at the cursor's
current position.
d$ in vim Linux editor is used to delete the text to the ending
point of a line from the cursor's current position.

The KDE Editor Family
If you are using a Linux distribution that uses KDE desktop, you will
see a couple of options in relation to text editors. The KDE project
will officially support a couple of editors, such as Kate and KWrite.
Both are graphical text editors containing a number of advanced
features and some extra niceties that are not found in some common
standard editors. This section will describe each editor and also the
features that you may use in shell scripting.

The KWrite Editor
This is the basic editor for the KDE environment. It offers word-style
text editing with support for code syntax editing and highlighting and
is used for different types of programming languages. It uses color-
coding to distinguish comments, constants, and functions. You
should notice that the for loop carries an icon that connects the
opening and closing braces. The editing window provides cut-and-
paste capabilities.
The editor has many command line parameters you may use to
customize how it starts.

see more please visit: https://homeofbook.com

The Kwrite editor command --stdin triggers the editor to read
the data from a standard input device in place of a file.
--column triggers the editor to specify a column number in a file
to initiate the process in the window of the editor.
--encoding triggers the editor to specify the type of character
encoding for a file.
--line triggers the editor to specify the number of a line in a file
to initiate in the window of the editor.

The KWrite editor offers a toolbar and a menu bar at the top of the
window used for editing, which allows you to select different features
and then change the editor's configuration settings. The menu bar
will contain the following items.

File helps you load up, save, export or print different pieces of
text from different files.
Edit aids you in manipulating text in buffer.
View helps you manage the appearance of the text in the editor
of the window.
Bookmarks helps you handle the pointers to get back to certain
locations in the text.
Tools has some specialized features for manipulation of the
text.
Settings helps you configure the way your editor handles the
text.
Help will give you the information about the editor and its
commands.

The Edit Menu of KWrite Editor
Here is a rundown of different commands of the Edit menu of the
KWrite editor.

Undo is used to reverse your latest action in the editor.

see more please visit: https://homeofbook.com

Redo is used to reverse the latest action you undid.
Cut is used to delete the text that you have selected and then
placed in the clipboard.
Copy is used to copy any piece of text that you have selected
to the clipboard.
Copy as HTML is used to copy the selected text to the
clipboard as the HTML code.
Paste is used to insert the current content of the clipboard at
the present position of the cursor on the screen.
Select All is used to select the entire text in your editor.
Deselect is used to deselect the piece of text that you have
currently selected.
Block Selection Mode permits you to select a piece of text
between the columns instead of all the lines.
Overwrite Mode is used to toggle between insert mode and
overwrite mode by replacing text with newly typed text instead
of inserting the new text.
Find is used to produce the Find Text dialog box, which allows
you to customize the text search.
Find Next is used to repeat the last find operation forward in
the buffer.
Find Previous is used to repeat the last find operation
backward in the buffer.
Replace is used to bring about on the screen the Replace With
Dialog box. You can use it to customize a text search.
Go to Line is used to produce the Goto dialog box. It allows
you to enter a certain line number. The cursor jumps to a
specified line.

The KWrite Editor Tools

see more please visit: https://homeofbook.com

KWrite offers a wide range of tools for users to write and edit their
shell scripts. Some of the tools are as under:

The KWrite editing tool, Read Only Mode will lock the text so
that no changes may be made while you are still using the
editor.
Filetype will select the file-type scheme used in a piece of text.
Spelling will start the spellcheck program at the starting point of
a piece of text.
Highlighting will highlight the text based on the content like
program code or the configuration file.
Indent will increase the indentation in a paragraph by one.
Indentation, will automate indentation based on the selection
you have made in the editor.
Spelling will initiate the spellcheck program at the beginning
point of the text.
Spellcheck Selection will initiate the spellcheck program on the
selected section of a piece of text.
Unindent will cut down on the indentation of a paragraph by
one.
Clean Indentation will return the paragraph indentation to the
original settings.
Align will bring back the selected lines' current line to the
default indentation settings.
Uncomment eliminates a comment symbol from the present
line based on the type of file.
Lowercase, will set the selected text or the character at the
cursor's present position to lower case.
Uppercase, will set the selected text or the character at the
cursor's present position to upper case.

see more please visit: https://homeofbook.com

Capitalize, will set the first letter of the selected text or the word
at the cursor's present position to uppercase.
Join Lines will pair up the selected text or lines at the present
position with the next line into a single line.
Word Wrap Document will enable word wrapping inside a piece
of text. If a line moves past the editor window edge, it will
continue on the next line.

The GNOME Editor
If you are operating a Linux operating system through the GNOME
editor, you will see a graphical text editor that you can use easily and
well. It is a basic text editor that has a couple of advanced features
for the fun of editing. When you start gedit with multiple files, it will
load the files into individual buffers and display each of them as a
tabbed window inside the editor's main window. The left frame inside
the gedit editor will show the documents that you have been editing.

Basic Features of the Editor
Besides a window for editing, gedit uses a menu bar and a toolbar
that allows you to set up the configure and feature settings. The
toolbar provides some real quick access to the menu bar items,
which are as under:

The menu item File helps you load up new files, save existing
files, and print different pieces of text from different files.
Edit aids you in manipulating text in the buffer and for setting
up the editor preferences.
View helps you set up features of the editor related to the
display. It also works on setting up the text-highlighting mode.
Search helps you find and replace pieces of text in the editor's
active buffer spot.
Tools is used to access the plugin tools that are installed in
gedit.

see more please visit: https://homeofbook.com

Documents helps you manage different files that are open in
buffer areas.
Help will give you information about the editor and its
commands. You will see a complete manual to use the editor
and work with the commands.

Preferences
The Edit menu offers you the Preferences item, which allows you to
customize the operations of the editor. The Preferences dialog box
carries tabbed areas that allow you to set up the features of the
editor as per your requirements.

View
The View tab offers many options for displaying the text in the editor
window.

The first option you will find in the View tab is named Text
Wrapping. It determines how you can handle long pieces of
text in your editor. When you enable the option, it wraps up
long pieces of text to your editor's next line. The Do Not Split
Words Over Two Lines option bars the auto-inserting of
hyphens into long words to prevent the same from splitting in
between the two lines.
The second option you will find in the View tab is named Line
Numbers. This option displays the numbers of lines in the left
margin in the window of the editor.
The third option you will find in the View tab is Current Line,
highlighting a line where the cursor is positioned. This enables
you to find out the cursor position easily.
The fourth option you will find in the View tab is named Right
Margin, which enables the right margin. This option also allows
you to set up the number of columns in the editor window. The
default value of the columns is 80.

see more please visit: https://homeofbook.com

The fifth option you will find in the View tab is named bracket
matching. When you enable this option, it will allow you to
easily match brackets when you are writing if-then statements,
for loops or while loops, and any other code lines that involve
brackets.

The line-numbering and matching brackets offer a handy
environment to users. This is easy for troubleshooting and is not
found in many other text editors.

Editor Tab
The Editor tab offers options to handle indentation and tabs. It also
oversees how you save the document after editing.

The Tab Stops option in the Editor tab allows you to set up the
number of spaces that should be skipped while you hit the Tab
key. The default value of skipping is 8. You can reset that. The
feature also has a checkbox that inserts spaces rather than tab
spaces.
The second option you will find in the Editor tab is named
Automatic Indentation. When you enable that, it allows the
gedit to automate line indentation in the text for code elements
and paragraphs like if-then statements and the loops.
The third option you will find in the Editor tab is named File
Saving, which offers two features to save files. You have the
option to create a backup copy of the file, which has been
opened in the edit window. You can also set up the option
whether you like to save the file at a preselected interval or not.

Font & Colors
The Font & Colors option offers a configuration of two items.

The Font option in the Font & Colors tab allows you to select
Monospace 10 as a default font or select a customized font
style and size from a dialog box.

see more please visit: https://homeofbook.com

The Colors option in the Font & Colors tab allows you to select
a default color scheme that is used for text, selected text,
background, and selection colors. It is used to choose a
custom color for different categories in the list.

The default colors match the standard desktop theme of GNOME,
which has been selected for the desktop. These colors change to
match the desktop theme when you select a different color.

Syntax Highlighting
The Syntax Highlighting tab gives options for the configuration of
how gedit highlights different elements in programming mode. The
gedit editor has the power to detect what programming language
exists in a text file. It automatically set up the appropriate syntax
highlighting for that text. Also, it allows you to customize the
highlighting feature by selecting your favorite colors to highlight
different elements of the code. The elements change based on the
programming code type that you have selected. For the shell scripts,
you may select the sh highlighting mode, which contains certain
color schemes.

Plugins
The Plugins tab offers control over the plugins that are used in gedit.
Plugins are individual programs that tend to interface with gedit and
provide added functionality. Many plugins are available for gedit.
However, not all of them are installed in the system by default. The
plugins that are enabled show a checkmark in a checkbox that is
next to their names. Some plugins like External Tools plugin provide
some additional configuration features after you have selected them.
It allows you to set up a shortcut key to start the terminal where gedit
displays the output.

You can use the plugin Change Case to change the case of a
piece of selected text.
You can use the plugin Document Statistics to report the
number of words, characters, lines, and non-space characters.

see more please visit: https://homeofbook.com

You can use the plugin Insert Date/Time to insert the current
time and date in multiple formats at the cursor's present
position.
You can use the plugin External Tools to provide a particular
shell environment in the editor to execute scripts and
commands.
You can use the plugin Indent Lines to provide un-indentation
and advanced line indentation.
You can use the plugin File Browser Pane to provide a file
browser to ease off the process of file selection and editing.
You can use the plugin Tag List to provide a particular list of
commonly used strings that you can easily enter into the text.
You can use the plugin Modelines to provide emacs-style
messages to the bottom side of your editor's window.
You can use the plugin Python Console to provide interactive
consoles to the bottom side of the editor window to enter
commands with the Python programming language's help.
You can use the plugin Spell Checker to provide proper
dictionary spellchecking for a text file.
You can use the plugin Snippets to store some often-used
pieces of text for retrieval in the text.
You can use the plugin Sort to sort out an entire file or a piece
of selected text.

The emacs Editor
Emacs is a popular editor that existed before Unix did, and
developers loved it because it could be ported into Linux. It began
life as a console editor, similar to vi, but soon migrated to the
graphical environment. It provides access to the original console
editor and uses a graphical X windows window for text editing in
graphical environments.

see more please visit: https://homeofbook.com

When the emacs editor is started from the command line, it
determines whether an active X Window session is present and
starts in graphical mode. The console mode version uses multiple
commands that you need to learn to edit a program. Certain key
combinations are required using the CTRL and Meta keys on the
keyboard. Typically, the Meta key is mapped to a PC’s ALT key,
although this may not be the case on all systems. Abbreviations are
used – CTRL is abbreviated as C- and Meta as M-.

Basic Commands of emacs Editor
To edit an emacs file from the command line, the following command
is required:
$ emacs myfile.c
When the emacs console window is opened, you see a short
introduction and a help screen. When a key is hit, a file is loaded in
the buffer, and the text is displayed. You see a standard menu bar at
the top of the window, but this cannot be used while in console
mode, only in graphical mode. Unlike the vim editor, the emacs
editor has a single mode, where you move into and out of insert
mode to flick between inserting commands and text. When you type
printable characters, emacs will insert them at the cursor’s current
position, and when a command is typed, it is executed. To move the
cursor around the buffer, the arrow keys and the PageUp and
PageDown keys are required. Other commands needed to move the
cursor include:

You can use the C-p command to move up the previous line in
the text.
You can use the C-n command to move down the next line in
the text.
You can use the C-b command to move back or to the left side
by one character.
You can use the C-f command to move forward or to the right
side by one character.

see more please visit: https://homeofbook.com

If you are looking forward to making longer jumps, you can use the
following commands.

You can use the M-f command to move to the right side onto
the next word.
You can use the M-b command to move to the left side, back to
the previous word.
You can use the M-a command to move to the start of the
present sentence.
You can use the M-e command to move to the ending point of
the present sentence.
You can use the C-e command to move to the ending point of
the present sentence.
You can use the C-a command to move to the starting point of
the present sentence.
You can use the M-> command to move to the ending line of
the text.
You can use the M-< command to move to the starting line of
the text.
You can use the M-v command to move back by a single
screen of the data.
You can use the C-v command to move forward by a single
data screen.

You can save the editor buffer as a file and exit the emacs editor
using the following commands:

You can use the C = x C = s command to save what you have
written in the current buffer into a file.
You can use the C = x C = c command to exit the emacs editor
and stop the operations of the editor.
You can use the C = z command to exit the emacs editor.
However, the command does not keep the session running, so

see more please visit: https://homeofbook.com

that you may come back to that.

Editing Data
The emacs editor is powerful in terms of inserting and deleting text.
Inserting text simply requires that you move your cursor to where
you want the text inserted and type the text. The backspace key is
used to delete the character immediately before the cursor’s position
to delete text. The delete key is also used to delete the character at
the cursor’s position.
The editor also offers options for killing text; the difference between
deleting and killing text is that when text is killed, it is placed into a
temporary area and can be retrieved at any time, whereas deleted
text is permanently removed. Emacs offers the following commands
to kill text:

You can use the M-Backspace command to kill a word before
the present position of the cursor.
You can use the M-k command to kill everything from the
cursor's present position to the ending point of the sentence.
You can use the M-D command to kill a word after the present
position of the cursor.
You can use the C-k command to kill everything from the
cursor's present position to the ending point of the line.

You can also kill text on a large scale by moving the cursor to the
beginning of the section you want to be killed, pressing C-spacebar
or C-@, and placing the cursor at the end of the section. Then press
C-w, and all the indicated text is killed.

Popular Linux Commands
There are far too many Linux commands to discuss in any detail but
we have covered some of the most common. If you want to know
what any Linux command does, simply access their manual page
using the syntax below and the name of the command:
$ man command-name

see more please visit: https://homeofbook.com

The table below shows you many more commands, with their syntax
and a description of what they do:

Command Syntax Description
adduser/addgroup $ sudo adduser

$ sudo addgroup
These two
commands add
users or groups
respectively to the
system

agetty $ agetty -L 9600
ttyS1 vt100

A program
managing virtual and
physical terminals.
Invoked by init, it
opens a tty port
when a connection
is made

alias $ alias home='cd

Creates a shortcut
or alias to a specific
Linux command on
the user’s system

apropos $ apropos adduser

Searches and
displays a command
or program’s man
page description

apt $ sudo apt update

High-level package
manager for Ubuntu
and Debian systems

apt-get $ sudo apt-get
update

Used to install,
remove and upgrade
software packages
and upgrade the
operating system

aptitude $ sudo aptitude
update

Text-based
GNU/Linux package

see more please visit: https://homeofbook.com

manager system
used for installing or
removing packages

arch $ arch Displays the
machine hardware
or architecture name

arp $ sudo arp-scan -- ARP maps IP
network addresses
to MAC addresses –
this command all live
hosts on a specified
network

at $ sudo echo Schedules tasks to
be executed at a
future specified time

atq $ atq Used for viewing
jobs queued in the at
command

atrm $ atrm (job number) Used for deleting
jobs from the at
command queue by
their job number

awk $ awk ' Program created for
processing text and
as a reporting and
data extraction tool

basename $ basename
bin/findhosts.sh

Prints a file name
from stripped of
directories in the
absolute path

bc $ echo 20.05 +
15.00 | bc

Powerful, recuses
CLI calculator
language – see

see more please visit: https://homeofbook.com

example under
syntax

bzip2 $ bzip2 -z
filename
#Compress
$ bzip2 -d
filename.bz2
#Decompress

Compresses or
decompresses
specified files

cal $ cal Prints a calendar
cat $ cat file.txt View file contents,

concatenate files or
data and display it

chgrp $ chgrp (new) (old) Changes a file’s
group ownership.
New name is
provided first with
the existing one
second

chmod $ chmod Changes or updates
access permissions
for specified files

chown $ chown Changes or updates
group and user
ownership of
directories or files

cksum $ cksum Displays an input
file’s byte count and
CRC checksum

clear $ clear Clears terminal
screen

cmp $ cmp file1 file2 Compares two files
byte-by-byte

comm $ comm file1 file2 Compares sorted

see more please visit: https://homeofbook.com

files on a line-by-line
basis

cp $ cp Copies directories
and files from place
to another –
locations must be
specified

date $ date Displays and sets
system time and
date

df $ df -h Displays the disk
space usage on a
specified file system

diff $ diff file1 file2 Compares specified
files line-by-line and
can also find and
locate differences
between directories

dir $ dir Similar to ls
command, it lists
directory contents

dmidecode $ sudo dmidecode Retrieves
information about a
Linux system’s
hardware

du $ du Shows how files use
disk space in a
directory and related
sub-directories

echo $ echo Takes a specified
line of text and prints
it

eject $ eject Ejects DVD, CD

see more please visit: https://homeofbook.com

ROM, and other
removeable media

env $ env Lists and sets
current environment
variables

exit $ exit Exits the shell
expr $ expr Calculates a

specified expression
factor $ factor Shows a specified

number’s prime
factors

find $ find Searches a directory
and sub-directories
for specified files
using attributes like
users, permissions,
data, file type size,
etc.

free $ free Shows the systems
memory use. Add -h
to the command to
show the info in
human readable
format

grep $ grep Searches files for
specified patterns
and displays those
lines with the pattern

groups $ groups Displays the groups
a specified user
belongs to

gzip $ gzip Compresses a
specified file and

see more please visit: https://homeofbook.com

replaces it with a file
with a .gz extension

gunzip $ gunzip Expands/restores
files compressed
using gzip

head $ (file or stdin) |
head

Displays the first 10
lines of the file or
stdin specified

history $ history Shows commands
or retrieves info
about commands a
user has already
executed

hostname $ hostname Prints or sets a
Linux system
hostname

hostnamectl $ hostnamectl Takes control of the
system hostname in
system and modifies
or prints the
hostname and
related settings

hwclock $ sudo hwclock Manages the
hardware clock and
reads or sets it

hwinfo $ hwinfo Looks into a system
to see what the
hardware is

id $ id Displays group and
user information
about current or
specified username

ifconfig $ ifconfig Configures, views

see more please visit: https://homeofbook.com

and controls the
network interfaces
for specified Linux
systems

ionice $ ionice Sets/views process
I/O scheduling class
and specified
process priority

iostat $ iostat Shows input/output
and CPU stats for
partitions and
devices and
produces reports on
how to update
configurations for
input/output
balancing

ip $ sudo ip Displays/manages
devices, routing,
tunnels and policy
routing

iptables $ sudo iptables Manages
incoming/outgoing
traffic using
configurable table
rules

iw $ iw list Manages wireless
devices and
configurations

iwlist $ iwlist Shows detailed info
from specified
wireless interfaces

kill $ kill Uses a specified
process’s PID to kill

see more please visit: https://homeofbook.com

it
killall $ killall (process

name)
Kills a specified
process using its
name

kmod $ kmod Manages kernel
modules

last $ last Shows the last users
logged in

ln $ ln -s Uses -s flag to
create soft links
between files

locate $ locate (file name) Finds a file by its
specified name

login $ sudo login Creates a new
system session

ls $ ls Lists a directory’s
contents and using
the -1 flag will create
a long listing

ishw $ sudo ishw Provides basic
details on the
machine’s hardware
configuration – use
superuser privileges
to get more detailed
info

iscpu $ iscpu Displays info about
the system
architecture

lsof $ lsof Shows details of
files a process has
opened

lsusb $ lsusb Shows information

see more please visit: https://homeofbook.com

about system USB
buses and any
connected devices

man $ man (command) Shows specified
command or
program manual
pages

mkdir $mkdir Creates one or more
directories

more $ more (file name) Displays long files
one screen at a time

mv $ mv Renames directories
or files or moves
them to specified
locations in the
structure

nc/netcat $ nc/netcat Performs UDP, TCP
or UNIX-domain
socket operations

netstat $ netstat Shows useful info
about the networking
subsystem

nice $ nice Shows or changes
nice value of a
specified running
program. Adjusted
niceness must be
specified otherwise
current niceness is
displayed

nmap $ nmap Open-source
network scanner

nproc $ nproc Displays available

see more please visit: https://homeofbook.com

processing unit
number for current
processes

passwd $ passwd Creates or updates
passwords for
specified accounts
and can also change
validity period.

pidof $ pidof Shows a running
command or
program’s process
ID

ping $ ping Determines
connectivity between
network or internet
hosts

ps $ ps Displays info about
active running
system processes

pstree $ pstree Shows running
processes in tree
format, rooted at init
or PID

pwd $ pwd Shows the current or
working directory’s
name

reboot $ reboot Used to stop, reboot
or turn off a system

rename $ rename Can rename multiple
files at a time, for
example renaming
all files with .html
extension to .php
extension

see more please visit: https://homeofbook.com

rm $ rm (file/directory
name)

Removes specified
directories or files

rmdir $ rmdir (directory
name)

Deletes or removes
empty directories

scp $ scp Allows files to be
securely copied
between network
hosts

shutdown $ shutdown Schedules a time to
stop, power off or
reboot the
system/machine

sleep $ sleep Delays or pauses a
command execution
for a specified time
period

sort $ sort (file name) Sorts text lines in a
specified file or stdin

split $ split Splits specified files
into smaller bits

ssh $ ssh Accesses and runs
commands on
specified remote
machines using an
encrypted and
secure
communication over
insecure networks

stat $ stat Shows the status of
a specified file or file
system

su $ su Switches from one
user ID to another or

see more please visit: https://homeofbook.com

to root in a login
session. If no
username is
specified, the default
is root

sudo $ sudo Allows system user
to run commands as
another user or root

sum $ sum Displays block
counts and
checksum for all
specified files

tac $ tac Concatenates
specified files and
displays them in
reverse

tail $ tail Displays last 10
lines of specified
files to standard
output

talk $ talk person (login
name)
$ talk ‘user@host’

Talks to other
network or system
users. Login name is
used to talk to a
person on the same
machine and
user@host to talk to
a user on a different
machine

tar $ tar Powerful file
archiving utility

tree $ tree Cross-platform
command-line
program for

see more please visit: https://homeofbook.com

recursively
displaying or listing
directory contents in
tree format

time $ time Runs a program and
provides a summary
of the system
resource used

top $ top Shows all Linux
system process
CPU and memory
usage

touch $ touch Changes the
timestamp of a file or
creates files

uname $ uname Shows system info,
such as version,
release date,
hostname kernel
name, operating
system and so on.
The -a flag is used
to display all
information

uptime $ uptime Displays length of
system running time,
how many users are
logged on and the
load averages

users $ users Displays names of
current users

vim/vi $ vim file Text editor used for
editing program and
text files

see more please visit: https://homeofbook.com

w $ w Shows load
averages, uptime
and info about
current users, along
with their processes,
etc.

wall $ wall (message) Sends a specified
message to all
system users

watch $ watch Repeatedly runs a
specified program
while showing the
program output. Can
also watch file or
directory changes

wc $ wc (filename) Displays the word,
newline and byte
counts for specified
files and totals for
multiple files

wget $ wget Downloads web files
non interactively

whatis $ whatis (command) Displays short man
page descriptions of
specified commands

which $ which Shows absolute
paths for specified
files that may be
executed in the
current environment

who $ who Shows info about
current logged-in
users

whereis $ whereis Shows manual,

see more please visit: https://homeofbook.com

(command) source and binary
files for specified
commands

yes $ yes (string) Repeatedly displays
a specified string
until killed or
terminated

zip $ zip Packages and
compresses archive
files

see more please visit: https://homeofbook.com

Chapter Eight: Linux Shell Scripting
The command-line tools are good for solving computing problems,
but they do not make you the master artist in the world of Linux. The
shell makes you the master of Linux. You should know how the shell
works and how you can write different types of scripts in a Linux
shell. By learning the command line and Linux shell, you will be able
to carry out a number of tasks by itself.
A shell script, in the simplest terms, is a file that contains a series of
commands. The shell will read the file and carry out the commands
as though they have been entered on the command line. The shell
emerges out as distinctive in that it is a robust command-line
interface system as well as a scripting language interpreter. Most of
the things that you can do on the command line can also be done
inside shell scripts. Most of the things that you can do in shell scripts
can also be done on the command line in Linux.
We now have covered most of the shell scripting features; however,
we have focused on the ones that are more often used on the
command line. The shell gives us many features when we are writing
programs.

Writing the Shell Script
Shell scripts are just like ordinary text files which is why you need a
text editor to write the scripts. The best text editors will provide you
syntax highlighting, which allows you to see a color-coded view of
different script elements. Syntax highlighting will help you spot
different kinds of common errors and use kate or vim to write shell
scripts. The system is a bit fussy about blocking old text files to run
as a program. All this happens for a good reason. You need to set up
permissions of the script file to allow the execution. You should also
put the script in a place where you can easily find it because the
shell searches the file and executes it.

The Format of Linux Shell Scripts

see more please visit: https://homeofbook.com

I will now enter the writing phase and show you how you can write a
shell script. The language of the script is simple. See the script as
under:
[gha@localhost ~]$ echo 'I am learning Linux'
I am learning Linux

This is shell scripting. Now I will add a comment to the same script.
[gha@localhost ~]$ echo 'I am learning Linux' # I have added a
comment to the code.
I am learning Linux
Now you have to make the script executable. See the following:
[gha@localhost ~]$ ls -1 Linux_learning

[gha@localhost ~]$ chmod 755 Linux_learning

The text Linux_learning is the name of the file in which I had saved
the script. The chmod command is used to make the script
executable in Linux.

Displaying Text
Most of the shell commands tend to produce a specific output, which
is displayed on your console monitor where you are running the
script. You may need to add text messages to help out the script
user know what is going to happen inside the script. You can do this
by using the echo command I have talked about in the past section.
The echo command displays simple text strings. There are different
techniques to write a script with the echo command. I will explore all
of them.

[gha@localhost ~]$ echo I am learning Linux shell scripting

see more please visit: https://homeofbook.com

I am learning Linux shell scripting

The most remarkable thing is that you do not have to use quotes to
enclose the string text, as is the case with other programming
languages. However, sometimes it becomes necessary to use
quotes. Either you need single or double quotes to display the text
strings.

[gha@localhost ~]$ echo ‘I am learning Linux shell scripting.’
I am learning Linux shell scripting

In the next example, using quotes is going to be inevitable.

[gha@localhost ~]$ echo 'Adam says,
"I am learning Linux shell scripting."'
Adam says, “I am learning Linux shell scripting."

You can see that when you have to add a text that is in the form of
direct speech, you will have to add quotation marks to the text.

The if-then Statement
Many Linux shell scripting programs require some logic flow control
between different commands inside the script, which means that the
shell tends to execute different commands. In addition, it keeps the
ability to execute different other commands that permit the script to
loop through the commands based on the result of different other
commands. We refer to them as structured commands. They are
also known as conditionals.
Structured commands allow you to shift the flow of the operations of
a program. Some commands are executed, while others are skipped

see more please visit: https://homeofbook.com

when they are caught up in certain conditions. In other programming
languages, the object after an if statement is the equation that the
system evaluates for True or False grounds. The bash shell if
statement does not work that way. Instead, it runs the command that
is defined on the if line. If this command's exit status is considered
zero, the commands that are listed under the then section tend to
execute. If this command's exit status is something else, the then
commands are put on hold, and the bash shell jumps over to the
next command in the script.

$ cat testing5
#!/bin/bash
I am now testing the if statement for bash shell
if date
then
echo "The structured command has completely worked"
fi

$bash -f main.sh
Tue Jan 26 05:02:54 UTC 2021
The structured command has completely worked

The script has used the date command on the if line. If this
command is executed successfully, the echo statement must display
the text string. When you are running the script from the command
line, you will be getting the same results as above. The shell will
execute the date command. Since the exit status was zero, it will
also execute the echo statement that is listed in the then section. In
the next example, I will test a bad command to see how it works.

see more please visit: https://homeofbook.com

$ cat testing2
#!/bin/bash
It is time to run a test on a bad command
if hgjdksllh
then
echo "it is not going to work"
fi
echo "I cannot run the command because you’re out of the if
statement."

$bash -f main.sh
I cannot run the command because you’re out of the if statement

Since the above command was a bad command, it produced an exit
status that is at the moment a non-zero. The bash shell will skip the
echo statement in the then section.

The if-then-else Statement
The if-then statement provides one option to determine whether the
command is successful. If a non-zero exit status code is returned,
the bash shell goes to the next script command. In a situation like
this, it would best if we had another set of commands we could
execute, and that is where the if-then-else statement comes in.
If the if-statement command produces the exit status zero code, the
commands in the then part of the statement are executed. If a non-
zero exit status code is returned, the commands in the else part of
the statement are executed.

see more please visit: https://homeofbook.com

$ cat testing4
#!/bin/bash
I am now going to test the else section
testinguser=thisisabadtest
if grep $testinguser /etc/passwd
then
echo The files for user $testinguser are:
ls -a /home/$testinguser/.b*
else
echo "The user name $testinguser cannot be found on the system"
fi
$./test4
The user name thisisabadtest cannot be found on the system
$

$bash -f main.sh
The user name thisisabadtest cannot be found on the system

On occasion, you may need to check things in the script code.
Rather than separate if-then statements, a different version of the
else statement can be used. This is called the elif, and this continues
the else statement with a subsequent if-then statement. It provides a
different evaluation command, which is much like the first if
statement. If a zero exit status code is returned, the commands in
the second then statement are executed by the bash shell.

Advanced if-then Features

see more please visit: https://homeofbook.com

There is a double parentheses command in Linux that allows you to
incorporate some advanced mathematical formulas when you are
making comparisons. The test command permits simple operations
in comparison. However, the double parentheses command offers
more mathematical symbols that a number of programmers from
different other languages are using.
The expression term may be any kind of mathematical assignment
or expression. Besides the standard operators that the test
command uses, additional operators are available for use in the
double parentheses command.
You also can use the double bracket command for advanced
features to do string comparisons. The double bracket command
format uses the standard string comparison that we have used in the
test command. Where it differs is by the option of pattern matching.
You will be able to define a regular expression that you need to
match against the string value.

$ cat testing2
#!/bin/bash
I will now be using pattern matching
if [[$MyUSER == r*]]
then
echo "Hello $MyUSER I know you from the days when you used to
work in a restaurant in Europe."
else
echo "Sorry, I have never seen you before. I don’t know you."
fi

$bash -f main.sh
Sorry, I have never seen you before. I don’t know you.

see more please visit: https://homeofbook.com

More often, you may find yourself attempting to evaluate the value of
some variables in a bid to find out a specific value inside a set of
possible values. In this typical scenario, you may end up writing a
lengthy if-then-else statement such as the following:

$ cat testing555
#!/bin/bash
I am now looking for some possible values
if [$MyUSER = "rich"]
then
echo "Welcome $MyUSER to the heavens on the earth."
echo "Please enjoy your visit in plush green fields and lush green
mountains. I wonder if you want to take a bath in the river beneath
the valley."
elif [$MyUSER = Jason]
then
echo "Welcome $MyUSER to the lakes of Madora."
echo "Please enjoy your stay in the shining waters of Madora lakes. I
hope you enjoy the resorts, the sun, the breeze, the food, and the
drinks."
elif [$MyUSER = Simra]
then
echo "Welcome $MyUSER to the lakes of Madora."
echo "Please enjoy your stay in the shining waters of Madora lakes. I
hope you enjoy the resorts, the sun, the breeze, the food, and the
drinks."
elif [$MyUSER = Linda]

see more please visit: https://homeofbook.com

then
echo "Don’t forget to logout when you’re done"
else
echo "Sorry, you’re not allowed here"
fi

The for Command
Iterations through a series of commands is normal practice when it
comes to programming. Many a time, you may have to repeat
different commands. Often you need to repeat a bunch of commands
until the program meets a specified condition like processing files
inside a directory or in all the lines inside a text file.
The bash shell offers the for command to develop a loop that iterates
through a set of values. Each iteration tends to perform a set of
commands by using a single value inside the series. One of the most
basic uses of the for command is iteration through a list of values
that are defined inside the for command itself.

v=$ cat testing111
#!/bin/bash
This is the basic for command in Linux
for mytest in Alabama Texas Alaska Virginia Arizona Ohio Arkansas
South Dakota California North Dakota Colorado New Jersey Florida
Michigan Georgia
do
echo I am planning to continue my travel circle across the United
States in the summer. The next state I will visit is $mytest
done

see more please visit: https://homeofbook.com

$bash -f main.sh
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Alabama
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Texas
And so on until the last line:
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Georgia

Each time the for command iterates through the list of objects, it
assigns the mytest variable to the next item in the list. The $mytest
variable is used like other script variables in the for command
statements. After the final iteration, the $test variable remains valid
throughout the shell script's remaining part. It will retain the final
iteration value unless you change it.

v=$ cat testing111
#!/bin/bash
This is the basic for command in Linux
for mytest in Alabama Texas Alaska Virginia Arizona Ohio Arkansas
South Dakota California North Dakota Colorado New Jersey Florida
Michigan Georgia
do
echo I am planning to continue my travel circle across the United
States in the summer. The next state I will visit is $mytest
done
echo "The last US state I traveled to was $mytest"
mytest=Connecticut
echo "Now I am going to visit $mytest"

see more please visit: https://homeofbook.com

$bash -f main.sh
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Alabama
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Texas
And so on, until the last line:
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Georgia
The last US state I traveled to was Georgia
Now I am going to visit Connecticut

You can see that the $mytest variable retained its original value and
permitted us to change it outside the for loop. Let’s see another for
loop example:

v=$ cat testing111
#!/bin/bash
This is the basic for command in Linux
for mytest in pumpkin potato tomato spinach ginger garlic cauliflower
cabbage pepper beet ladyfinger broccoli
do
echo I am planning to make a shift to the cooking schedule as the
summer sets in. I have bought lots of vegetables. However, today I
plan to cook $mytest.
done
echo "The last vegetable I cooked was $mytest"
mytest=onion

see more please visit: https://homeofbook.com

echo "Now I am going to cook $mytest"

$bash -f main.sh
I am planning to make a shift to the cooking schedule as the
summer sets in. I have bought lots of vegetables. However, today I
plan to cook pumpkin.
I am planning to make a shift to the cooking schedule as the
summer sets in. I have bought lots of vegetables. However, today I
plan to cook potato.
This continues through each of the vegetabes, ending with:
I am planning to make a shift to the cooking schedule as the
summer sets in. I have bought lots of vegetables. However, today I
plan to cook broccoli.
The last vegetable I cooked was broccoli
Now I am going to cook onion

When you are dealing with the for command, the biggest problem
you may encounter is using multi-word values. The for loop assumes
that each value ought to be separated by a space. If you have data
values to contain spaces, you may run into another problem. You
may see that in the example of US states. The bash editor
considered South and Dakota as two separate values.

The for command offers us the quotation marks to separate values
that have more than one word. You may use double quotes to
separate different values in the for command. See the following
example.

v=$ cat testing111
#!/bin/bash

see more please visit: https://homeofbook.com

This is the basic for command in Linux
for mytest in Alabama Texas "New York" Alaska Virginia Arizona
Ohio Arkansas "South Dakota" California "North Dakota" Colorado
"New Jersey" Florida Michigan Georgia "North Carolina" "South
Carolina" "New Mexico" "Rhode Island" "West Virginia" "New
Hampshire" Vermont
do
echo I am planning to continue my travel circle across the United
States in the summer. The next state I will visit is $mytest
done
echo "The last US state I traveled to was $mytest"
mytest=Connecticut
echo "Now I am going to visit $mytest"

$bash -f main.sh
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Alabama
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Texas
Continuing through the States until we get to the last one:
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Vermont
The last US state I traveled to was Vermont
Now I am going to visit Connecticut

Now the for command can distinguish between the single word and
multi-word values. Also, the best thing is that when you are using
double quotation marks, the shell sheds the quotation marks as a
part of the value.

see more please visit: https://homeofbook.com

Reading a List through a Variable
Often what happens inside a shell script is that you accumulate lists
of values that are stored inside a variable. Then it needs to iterate
through a list. You may do this with the help of the for command.

$ cat testing111
#!/bin/bash
This is the basic for command in Linux
list="Alabama Texas New York Alaska Virginia Arizona Ohio
Arkansas South Dakota California North Dakota Colorado New
Jersey Florida Michigan Georgia North Carolina South Carolina New
Mexico Rhode Island West Virginia New Hampshire Vermont"
list=$list" Idaho"

for state in $list
do
echo "I am planning to continue my travel circle across the United
States in the summer. The next state I will visit is $state"
done

$bash -f main.sh
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Alabama
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Texas
Right up to the last state:
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Idaho

see more please visit: https://homeofbook.com

The $list variable contains the list of values that have been used for
iterations. You should take note that the code uses another
assignment statement for the concatenation of items to the existing
list. Even when you forget to add items in the list, you can add them
up by the concatenation method later on. I will add five more items to
the list in the next example.

$ cat testing111
#!/bin/bash
This is the basic for command in Linux
list="Alabama Texas Alaska Virginia Arizona Ohio Arkansas
California Colorado Florida Michigan Georgia Vermont Iowa
Nebraska Arkansas Kansas Kentucky Tennessee Utah Maine
Missouri Minnesota"
list=$list" Idaho"
list=$list" Oregon"
list=$list" Montana"
list=$list" Delaware"

for state in $list
do
echo "I am planning to continue my travel circle across the United
States in the summer. The next state I will visit is $state"
done

$bash -f main.sh

see more please visit: https://homeofbook.com

I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Alabama
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Texas
This output continues to list the states, right up to the last one:
I am planning to continue my travel circle across the United States
in the summer. The next state I will visit is Delaware

There is a way to generate values for custom usage in a list to use
the output of a particular command.

$ cat testing111
#!/bin/bash
I will read values from files
myfile="states"

for state in `cat $myfile`
do
echo "I am planning to continue my travel circle across the United
States in the summer. The next state I will visit is $state"
done
$cat states
Alabama
Texas
Alaska
Virginia
Arizona

see more please visit: https://homeofbook.com

Ohio
Arkansas
California
Colorado
Florida
Michigan
Georgia
Vermont
Iowa
Nebraska
Arkansas
Kansas
Kentucky
Tennessee
Utah
Maine
Missouri
Minnesota
Idaho
Oregon
Montana
Delaware

The while Command
The while command is a cross between the if-then statement and
Linux for loop. It allows you to define a command to test a condition
and then looping through a set of commands until you reach a zero

see more please visit: https://homeofbook.com

exit status. It will analyze the test command at the start of each
iteration. Upon reaching the non-zero exit status, the while command
stops the execution of the set of commands.

$ cat test10
#!/bin/bash
This is a while command test in Linux
var15=20
while [$var15 -gt 0]
do
echo This is $var15 in the while loop.
var15=$[$var15 - 1]
done

$bash -f main.sh
This is 20 in the while loop.
This is 19 in the while loop.
This is 18 in the while loop.
The loop continues to the final line:
This is 1 in the while loop.

Multiple Test Commands
You can pack up multiple test commands in the while loop.

$ cat test1133
#!/bin/bash
Now I am testing a multicommand while loop in Linux shell

see more please visit: https://homeofbook.com

var15=20
while echo $var15
[$var15 -ge 0]
do
echo "This operation is being conducted inside the while loop."
var15=$[$var15 - 1]
done

$bash -f main.sh
20
This operation is being conducted inside the while loop.
19
This operation is being conducted inside the while loop.
18
This operation is being conducted inside the while loop.
17
This will continue until it reaches the last number:
This operation is being conducted inside the while loop.
0
This operation is being conducted inside the while loop.
-1
The first test command displays the present value of var15 variable.
The second command will use the test command to know the value
of var15 variable. The echo statement returns a simple message
within the loop that indicates that the loop has runs its course.

The until Command

see more please visit: https://homeofbook.com

The until command works opposite to the while command. It requires
a simple test command is specified, which will produce a non-zero
exit status, at which point the bash shell will execute the while loop
commands.
However, similar to the while command, the until command
statement can also contain multiple test commands, and the exit
status of the final command is the determining factor.

$ cat test1222
#!/bin/bash
In this code block I will be using the until command
var15=100
until [$var15 -eq 0]
do
echo You are seeing the operations of the until command. The next
digit in the loop is $var15
var15=$[$var15 - 5]
done

$bash -f main.sh
You are seeing the operations of the until command. The next digit
in the loop is 100
You are seeing the operations of the until command. The next digit
in the loop is 95
You are seeing the operations of the until command. The next digit
in the loop is 90
And continuing, until it reaches the final digit:

see more please visit: https://homeofbook.com

You are seeing the operations of the until command. The next digit
in the loop is 5

The example has successfully tested the var15 variable in order to
determine when the loop will stop - when the value of the variable
drops down to zero, the until command stops right away.

$ cat test1222
#!/bin/bash
In this code block, I will be using the until command
var15=100

until echo $var15
 [$var15 -eq 0]
do
echo You are seeing the operations of the until command. The next
digit in the loop is $var15
var15=$[$var15 - 5]
done

$bash -f main.sh
100
You are seeing the operations of the until command. The next digit
in the loop is 100
95
You are seeing the operations of the until command. The next digit
in the loop is 95

see more please visit: https://homeofbook.com

90
Again, this will continue to the last digit in the loop:
You are seeing the operations of the until command. The next digit
in the loop is 5
0

Nesting Loops
A loop statement may use another command inside of the loop,
including other commands of the same loop. The process is known
as nested looping. You will have an iteration inside another iteration,
which will multiply the number of times a command is being run. See
an example to get a grasp of how you can nest loops.

$ cat test1444
#!/bin/bash
The following code block shows nesting for loops
for ((x = 1; x <= 7; x++))
do
 echo "You are seeing the operations of the until command. The
next digit in the loop is $x:"
 for ((y = 1; y <= 7; y++))
 do
 echo " Now you are seeing what is going on inside loop: $y"
 done
done

$bash -f main.sh

see more please visit: https://homeofbook.com

You are seeing the operations of the until command. The next digit
in the loop is 1:
Now you are seeing what is going on inside loop: 1
Now you are seeing what is going on inside loop: 2
 And so on, finishing with
 Now you are seeing what is going on inside loop: 7
You are seeing the operations of the until command. The next digit
in the loop is 2:
Now you are seeing what is going on inside loop: 1
Now you are seeing what is going on inside loop: 2
 Again, this will continue until it ends with
 Now you are seeing what is going on inside loop: 7
You are seeing the operations of the until command. The next digit
in the loop is 3:
Now you are seeing what is going on inside loop: 1
Now you are seeing what is going on inside loop: 2
 Ending with:
 Now you are seeing what is going on inside loop: 7
You are seeing the operations of the until command. The next digit
in the loop is 4:
Now you are seeing what is going on inside loop: 1
Now you are seeing what is going on inside loop: 2
Ending with:
Now you are seeing what is going on inside loop: 7
The entire cycle continues through the loop, until it reaches:
Now you are seeing what is going on inside loop: 7

see more please visit: https://homeofbook.com

You can experiment with the numbers in the loop to contract or
expand the two loops' sizes. By changing the numbers of the loops,
you will be able to change how the loop will behave.

$ cat test1444
#!/bin/bash
The following code block shows nesting for loops
for ((x = 1; x <= 3; x++))
do
 echo "You are seeing the operations of the until command. The
next digit in the loop is $x:"
 for ((y = 1; y <= 5; y++))
 do
 echo " Now you are seeing what is going on inside loop: $y"
 done
done

$bash -f main.sh
You are seeing the operations of the until command. The next digit
in the loop is 1:
Now you are seeing what is going on inside loop: 1
 Repeated to:
 Now you are seeing what is going on inside loop: 5
You are seeing the operations of the until command. The next digit
in the loop is 2:
 Now you are seeing what is going on inside loop: 1
 Repeated to:

see more please visit: https://homeofbook.com

 Now you are seeing what is going on inside loop: 5
You are seeing the operations of the until command. The next digit
in the loop is 3:
Now you are seeing what is going on inside loop: 1
 And finishing on:
 Now you are seeing what is going on inside loop: 5

The nested loop iterates through the values for iterations of the outer
loop. There is no difference between the do and done commands for
two loops. You can create a nested loop by pairing up for loops and
while loops.

$ cat test15
#!/bin/bash
This is how we can place a for loop in a while loop
var15=15
while [$var15 -ge 0]
do
 echo "You are seeing the operations of nesting loops. The next
digit in the loop is $var15:"
 for ((var12 = 1; $var12 < 3; var12++))
 do
 var13=$[$var15 * $var12]
 echo " Now you are seeing what is going on inside loop: $var15 *
$var12 = $var13"
 done
 var15=$[$var15 - 1]

see more please visit: https://homeofbook.com

done

$bash -f main.sh
You are seeing the operations of nesting loops. The next digit in the
loop is 15:
Now you are seeing what is going on inside loop: 15 * 1 = 15
Now you are seeing what is going on inside loop: 15 * 2 = 30
This will continue down to the final line:
You are seeing the operations of nesting loops. The next digit in the
loop is 0:
Now you are seeing what is going on inside loop: 0 * 1 = 0
Now you are seeing what is going on inside loop: 0 * 2 = 0

In the next example, I will pair up until and while loops to test nesting
loops' limits. See the following example.

$ cat test16
#!/bin/bash
var15=10
until [$var15 -eq 0]
do
echo "You are seeing the operations of the nested until and while
loops: $var15"
var12=1
while [$var12 -lt 5]
do
var13=`echo "scale=4; $var15 / $var12" | bc`

see more please visit: https://homeofbook.com

echo " This is how the inner section of the nested loop functions:
$var15 / $var12 = $var13"
var12=$[$var12 + 1]
done
var15=$[$var15 - 1]
done

$bash -f main.sh
You are seeing the operations of the nested until and while loops:
10
This is how the inner section of the nested loop functions: 10 / 1 =
10.0000
This is how the inner section of the nested loop functions: 10 / 2 =
5.0000
This is how the inner section of the nested loop functions: 10 / 3 =
3.3333
This is how the inner section of the nested loop functions: 10 / 4 =
2.5000
This cycle is repeated, until it reaches the final one of:
You are seeing the operations of the nested until and while loops: 1
This is how the inner section of the nested loop functions: 1 / 1 =
1.0000
This is how the inner section of the nested loop functions: 1 / 2 =
.5000
This is how the inner section of the nested loop functions: 1 / 3 =
.3333
 This is how the inner section of the nested loop functions: 1 / 4 =
.2500

see more please visit: https://homeofbook.com

Loop Control
You might think that once a loop starts, you will be stuck in that until
the loop has runs its course. However, there is a way out. You can
add to the code a couple of commands that help you control the
inside of the loop.
The break command is the simplest way to move out of a loop that is
in progress. You may use the break command to exit while and until
loops.

$ cat test17
#!/bin/bash
for countries in 2 3 4 5 6 7 8 9 10 11 12 13 14
do
if [$countries -eq 12]
then
break
fi
echo "I am going to visit $countries after Covid-19 is over."
done
echo "I have visited all the countries."

$bash -f main.sh
I am going to visit 2 countries after Covid-19 is over.
I am going to visit 3 countries after Covid-19 is over.
I am going to visit 4 countries after Covid-19 is over.
I am going to visit 5 countries after Covid-19 is over.
I am going to visit 6 countries after Covid-19 is over.

see more please visit: https://homeofbook.com

I am going to visit 7 countries after Covid-19 is over.
I am going to visit 8 countries after Covid-19 is over.
I am going to visit 9 countries after Covid-19 is over.
I am going to visit 10 countries after Covid-19 is over.
I am going to visit 11 countries after Covid-19 is over.
I have visited all the countries.

The for loop has run its course until the use of the break keyword.
When the if-then condition was satisfied, the bash shell executed the
break command, which put a stopper to the for loop. This technique
works equally well for until and while loops.

$ cat test18
#!/bin/bash
breaking out of a while loop
countries=1
while [$countries -lt 15]
do
if [$countries -eq 8]
then
break
fi
echo "I am going to visit $countries after Covid-19 is over."
countries=$[$countries + 1]
done
echo "I have visited all the countries."

see more please visit: https://homeofbook.com

$bash -f main.sh
I am going to visit 1 countries after Covid-19 is over.
I am going to visit 2 countries after Covid-19 is over.
All the way down to:
I am going to visit 7 countries after Covid-19 is over.
I have visited all the countries.

In the next example, I will use the break statement in the for loop.

$ cat test1444
#!/bin/bash
The following code block shows nesting for loops
for ((x = 1; x <= 4; x++))
do
 echo "You are seeing the operations of the until command. The
next digit in the loop is $x:"
 for ((y = 1; y <= 7; y++))
 do
 if [$y -eq 5]
 then
 break
 fi
 echo " Now you are seeing what is going on inside loop: $y"
 done
done

see more please visit: https://homeofbook.com

$bash -f main.sh
You are seeing the operations of the until command. The next digit
in the loop is 1:
Now you are seeing what is going on inside loop: 1
Now you are seeing what is going on inside loop: 2
Now you are seeing what is going on inside loop: 3
Now you are seeing what is going on inside loop: 4
This cycle is repeated for four digits and ends with:
You are seeing the operations of the until command. The next digit
in the loop is 4:
Now you are seeing what is going on inside loop: 1
Now you are seeing what is going on inside loop: 2
Now you are seeing what is going on inside loop: 3
Now you are seeing what is going on inside loop: 4
You can either redirect the output of the a loop in the shell script or
pipe it out for use. You will be needing a processing command to add
to the end of the done command.
Loops are a integral part of many programming languages, including
Linux and there are three types of looping commands in the bash
shell that can be used in scripts.
The first is the for command, which lets you iterate through a list of
values in the command line, contained in a variable, or obtained
through file globbing (used for file extraction.).
The second is the while command, offering a method of looping by
using the command’s condition and ordinary commands. In this way,
different variable conditions can be tested and, so long as a zero exit
status is returned, the while loop will continue iterating through a set
of specified commands.

see more please visit: https://homeofbook.com

The third is the until command, offering a way of iterating through
commands, but based on a command or condition that produces a
non-zero exit status. Using this feature, you can set a condition that
must be met before the end of the iteration. Loops can be paired up
in shell scripts by producing different loop layers. The bash shell
provides the continue and break commands that we use to change
the normal loop flow process on multiple loop values.

More Basic Shell Scripts
Here are some more simple examples of bash shell scripts that you
can try for yourself:
The Hello World Program
Most new programmers start learning their chosen language using
the help world program. It is one of the most simple programs that
does nothing more than prints a simple string to the standard output,
reading "Hello World." In Linux, editors like nano or vim can be used
to create the hello-world.sh file and then copy and paste the code
below into it:
#!/bin/bash
echo "Hello World"
Save the file and exit.
This file needs to be made executable with the command below:
$ chmod a+x hello-world.sh
And then, you can run the file using either of these commands:
$ bash hello-world.sh
$./hello-world.sh
The result is the string you passed to echo being printed on the
screen.
How to Print With echo

see more please visit: https://homeofbook.com

The echo command will print information from bash and is not unlike
the printf function in C. Indeed, they share many of the same
options, including re-direction and escape sequences.
Create a new file and call it echo.sh. Make the file executable using
the directions in the first example:
#!/bin/bash
echo "Printing text"
echo -n "Print text without newline"
echo -e "\nRemoving \t special \t characters\n"
Run this script to see what it will do. There are two options in the
script: -n is used for newline, and -e tells echo that you have passed
a string containing some special characters and it needs extra
functionality.
How to Use Comments
Comments are one of the most useful parts of any script and are
required for higher-quality codes. They tell the coder and others
reading the code what it does but should not be long and rambling –
keep them short and to the point. Common practice has comments
places inside any code that contains critical logic. The # symbol is
used to comment a line, as you can see in the example below:
#!/bin/bash

Add two values
((sum=25+45))

#Print result
echo $sum
The script will give us a result of 70. Have a look at how comments
are used before each line, except for the first one. The first line is a

see more please visit: https://homeofbook.com

shebang, and it tells the system the interpreter it should use to run
the script.
How to Use Multi-Line Comments
Some coders document their scripts using multi-line comments, and
you can see how this is done below:
#!/bin/bash
: '
This script will calculate
the square of 5.
'
((area=5*5))
echo $area
Multi-line comments do not use the #; instead, they are enclosed in
the' and ' characters.
How to Use While Loops
The while loop is used when you want to run an instruction several
times. Have a look at the script below to see how this works:
#!/bin/bash
i=0

while [$i -le 2]
do
echo Number: $i
((i++))
done
The while loop takes the form you can see below:
while [condition]

see more please visit: https://homeofbook.com

do
commands 1
commands n
done
You must include the spaces surrounding the brackets – this is not
optional; it is mandatory. Missing it out will result in errors.
How to Use the For Loop
Another popular and much user construct is the for loop. This is used
for efficient iteration over a set of code, and you can see a simple
example here:
#!/bin/bash

for ((counter=1; counter<=10; counter++))
do
echo -n "$counter "
done

printf "\n"
Create a file and name it for.sh, save this code, and make it
executable. Then run it, and you should see the numbers from 1 to
10 printed on your screen.
How to Receive User Input
Implementing user interaction in bash shell scripts is critical and
requires that you get user input. The example below shows you how
to get user input in a shell program:
#!/bin/bash

echo -n "Enter anything:"

see more please visit: https://homeofbook.com

read anything

echo "You Entered: $anything."
In this script, a variable name follows the read construct, and this is
how we get user input. The variable is used to store the user input
and the $ symbol used to access it.
How to Use the If Statement
The if statement is the most common of the conditional constructs
using in shell scripting, and they take this format:
if CONDITION
then
STATEMENTS
fi
The statements will be executed if the CONDITION is true. The fi
keyword marks the end of the statement, and you can see how it all
works in the example below:
#!/bin/bash

echo -n "Enter a number: "
read num

if [[$num -gt 10]]
then
echo "Number is greater than 10."
fi
You will only get an output from this if the given input number is more
than 10. The -gt option indicates "greater than" while -lt, if used, will

see more please visit: https://homeofbook.com

indicate "less than." -le is for "less than equal," and -ge is for "greater
than equal." You must include the [[]] – they are not optional.
How to Get More Control Using If Else
You can get more control over the logic in the script by combining an
else and if construct. Have a look at the example:
#!/bin/bash

read n
if [$n -lt 10];
then
echo "It is a one-digit number."
else
echo "It is a two-digit number."
fi
The else section must go after the action bit of the if statement
before fi, which closes the statement.
How to Use the AND Operator
We can use the AND operator to check whether several conditions
have been satisfied. Every part that the operator separates has to be
true; otherwise, the AND statement will only return false. Have a look
at the script below to see how the operator works:
#!/bin/bash

echo -n "Enter Number:"
read num

if [[($num -lt 10) && ($num%2 -eq 0)]]; then

see more please visit: https://homeofbook.com

echo "Even Number"
else
echo "Odd Number"
fi
We use the double-ampersand (&&) to denote the AND operator.
How to Use the OR Operator
Another important construct is the OR operator. Using it helps us to
implement robust and complex logic in a shell script. Unlike the AND
operator, any statement with an OR operator will return true when
only one operand is true. False is returned when the operand on
each side of the OR operator is false. Here's an example:
#!/bin/bash

echo -n "Enter any number:"
read n

if [[($n -eq 15 || $n -eq 45)]]
then
echo "You won"
else
echo "You lost!"
fi
This is a simple example showing the OR operator working in a
Linux shell script. The user will only be declared a winner when the
number 15 or 45 is input.
We use the || sign to denote the OR operator.
How to Use Elif

see more please visit: https://homeofbook.com

The elif statement means "else-if" and is used to implement some
chain logic. Have a look at this example to see how it works:
#!/bin/bash

echo -n "Enter a number: "
read num

if [[$num -gt 10]]
then
echo "Number is greater than 10."
elif [[$num -eq 10]]
then
echo "Number is equal to 10."
else
echo "Number is less than 10."
fi
This is a self-explanatory example, so I won't go into too much detail.
You can play around and change the variable names or their values
to see how they function.
How to Use the Switch Construct
This is another very powerful construct in Linux scripts, and you can
use it when you need to use nested conditions, but you don't want to
write complicated of-else-elif chains. Here is an example of how it
works.
#!/bin/bash

echo -n "Enter a number: "

see more please visit: https://homeofbook.com

read num

case $num in
100)
echo "Hundred!!" ;;
200)
echo "Double Hundred!!" ;;
*)
echo "Neither 100 nor 200" ;;
esac
The conditions go in between two keywords – case and esac. And
we use *) to match all the inputs that are not 100 or 200.
How to Use Command Line Arguments
There are several reasons why you might want to get an argument
straight from the command shell, and the next example
demonstrates how you do this using bash shell:
#!/bin/bash
echo "Total arguments : $#"
echo "First Argument = $1"
echo "Second Argument = $2"
Run the script with an extra two parameters following the name. The
script is saved as test.sh, and you can see the calling procedure
here:
$./test.sh Hey Howdy
$1 accesses the first argument while $2 does the second and so on.
We use $# to get the total argument number.
How to Use Names to Get Arguments

see more please visit: https://homeofbook.com

The next example demonstrates how you can use their names to get
the command line arguments:
#!/bin/bash

for arg in "$@"
do
index=$(echo $arg | cut -f1 -d=)
val=$(echo $arg | cut -f2 -d=)
case $index in
X) x=$val;;
Y) y=$val;;
*)
esac
done
((result=x+y))
echo "X+Y=$result"
Save and call this script test.sh and call it like this:
$./test.sh X=44 Y=100
You should see a return of X+Y=144. We store the arguments in
'S@' and then use the cut command in Linux to get them.
How to Concatenate Strings
Many modern shell scripts use string processing and one of the most
common methods is string concatenation. Bash makes this easy and
precise and the example below shows you how it works:
#!/bin/bash

string1="Ubuntu"

see more please visit: https://homeofbook.com

string2="Pit"
string=$string1$string2
echo "$string is a fantastic Linux resource for beginners."
Running this should give you an output of "UbuntuPit is a great Linux
Resource for Beginners.:
How to Slice Strings
Most programming languages provide ready-made functions to help
you cut parts of a string. Bash doesn't but the example below shows
how to do it with a parameter expansion:
#!/bin/bash
Str="Learn the Bash Commands from UbuntuPit"
subStr=${Str:0:20}
echo $subStr
Running this script should result in "Learn the Bash Commands" as
an output. The parameter expansion is the form of
${VAR_NAME:S:L} with S denoting the start of the slice and L
indicating how long the slice should be.
How to Use Cut to Extract Substrings
Linux has a command called cut that you can use in your scripts to
cut a part out of the string – this is the substring and the next
example demonstrates how this works:
#!/bin/bash
Str="Learn the Bash Commands from UbuntuPit"
#subStr=${Str:0:20}

subStr=$(echo $Str| cut -d ' ' -f 1-3)
echo $subStr
How to Add Two Values

see more please visit: https://homeofbook.com

Arithmetic operations are easy to do in a Linux shell script. You can
see from the example below how two numbers are taken as an input
and added together:
#!/bin/bash
echo -n "Enter the first number:"
read x
echo -n "Enter the second number:"
read y
((sum=x+y))
echo "The result of the addition=$sum"
You can see from this that it is quite straightforward to add two
numbers in the bash shell.
How to Add Multiple Values
If you want to get multiple user inputs in your script and add them,
you would use loops. The next example shows how this is done:
#!/bin/bash
sum=0
for ((counter=1; counter<5; counter++))
do
echo -n "Enter the Number:"
read n
((sum+=n))
#echo -n "$counter "
done
printf "\n"
echo "Result is: $sum"

see more please visit: https://homeofbook.com

If you do not include the (()), you wont get an addition operation.
Instead it will be concatenation so make sure you double check your
script before executing it.
Bash Functions
All computer programming languages rely on functions and the Linux
Shell script is no exception. Functions allow you to create blocks of
code that you need to use frequently, rather than writing the same
code repeatedly. In the next demonstration, you can see how these
functions work in bash scripts:
#!/bin/bash
function Add()
{
echo -n "Enter a Number: "
read x
echo -n "Enter another Number: "
read y
echo "Addition is: $((x+y))"
}

Add
What we did here was added two numbers but, unlike the previous
addition example, this time we used a function named Add.
Whenever you need to do an addition calculation again, you can
simply call the function.
Functions with Return Values
One of the best things about functions is that you can use them to
pass data between functions. This is useful in lots of different
scenarios, so take a look at the next example to see how it works:
#!/bin/bash

see more please visit: https://homeofbook.com

function Greet() {

str="Hello $name, what brings you to UbuntuPit.com?"
echo $str
}

echo "-> what's your name?"
read name

val=$(Greet)
echo -e "-> $val"
The output will show data coming from the function called Greet.
How to Use Bash Scripts to Create Directories
One way that developers can increase their productivity is to use
shell scripts to run system commands. The next example is a simple
one demonstrating how directories are created in a shell script:
#!/bin/bash
echo -n "Enter directory name ->"
read newdir
cmd="mkdir $newdir"
eval $cmd
Take a close look at this script and you will see that it does nothing
more than call a shell command named mkdir and passing the
directory name to it. The result should be a new directory created in
your filesystem. The execution command can also be passed inside
backticks (") as you can see below:

see more please visit: https://homeofbook.com

`mkdir $newdir`
How to Create a Directory After Checking For Existence
The program we created above won't work if there is a folder named
the same in the current working directory. Instead, we need to check
if there is a folder called $dir first and, if there isn't we can create
one. Here's how it's done:
#!/bin/bash
echo -n "Enter the directory name ->"
read dir
if [-d "$dir"]
then
echo "The directory exists"
else
`mkdir $dir`
echo "Directory created"
fi
If you want to improve your bash scripting skills, write the above
program using eval.
How to Read Files
Bash scripts offer an effective way of reading files. The example
below demonstrates how to use shell scripts to read a file. First
create a new file and name it editors.txt, make it executable and add
the following:
1. Vim
2. Emacs
3. ed
4. nano
5. Code

see more please visit: https://homeofbook.com

This code will result in the five lines being printed on your screen.
#!/bin/bash
file='editors.txt'
while read line; do
echo $line
done < $file
How to Delete Files
In the next program, we will look at how files are deleted within a
shell script. First, the program asks the user for input in the form of
the filename. If it exists, the file will be deleted. In this example, the
rm command is used for the deletion:
#!/bin/bash
echo -n "Enter the filename ->"
read name
rm -i $name
Where it asks for the filename, type in editors.txt and, when you are
asked to confirm it, press the Y key. The file should be deleted.
How to Append to Files
The next shell example shows you how to use bash scripts to
append data to one of your filesystem files. This will add an extra line
into the editors.txt file:
#!/bin/bash
echo "Before you append the file"
cat editors.txt
echo "6. NotePad++" >> editors.txt
echo "After you append the file"
cat editors.txt

see more please visit: https://homeofbook.com

By now, you should have noticed that standard terminal commands
are being used from the bash scripts.
How to Test For File Existence
In the next example, we can see how to use bash programs to find
out if a file exists:
#!/bin/bash
filename=$1
if [-f "$filename"]; then
echo "File exists"
else
echo "File does not exist"
fi
The argument is the filename and it is passed directly from the
command-line.
How to Send Mail from Shell Scripts
Sending emails from a bash script is quite simple to do. In the
example below, you can see one way to do this:
#!/bin/bash
recipient=" admin@example.com"
subject=" Greetings"
message=" Welcome to UbuntuPit"
`mail -s $subject $recipient <<< $message`
This will send an email to the specified recipient with the specified
subject line and message.
How to Parse the Date and Time
In the next script example, you can see how to use scripts to handle
time and date. We use the data command to get the required
information and the script will do the necessary parsing:

see more please visit: https://homeofbook.com

#!/bin/bash
year=`date +%Y`
month=`date +%m`
day=`date +%d`
hour=`date +%H`
minute=`date +%M`
second=`date +%S`
echo `date`
echo "Current Date is: $day-$month-$year"
echo "Current Time is: $hour:$minute:$second"
Save and run the program to see how it all works and also run the
date command form your own terminal.
Run this program to see how it works. Also, try running the date
command from your terminal.
How to Use the Sleep Command
You can use the sleep command to make your shell script pause in
between each instruction. This can be useful for many things,
including when you want to perform system-level jobs. In the next
example, the sleep command can be seen working in a shell script:
#!/bin/bash
echo "How long should you wait?"
read time
sleep $time
echo "Waited for $time seconds!"
The program stops the execution of the final instruction for the
specified time – that time is provided by the user.
How to Use the Wait Command

see more please visit: https://homeofbook.com

We can use the wait command to pause bash script system
processes. The example below demonstrates in detail how this all
works in a bash script:
#!/bin/bash
echo "Testing the wait command"
sleep 5 &
pid=$!
kill $pid
wait $pid
echo $pid was terminated.
Save and run the program and see for yourself how it all works.
How to Display the Last Updated File
On occasion, you may need to locate the last file that was updated –
this may be needed for specific operations. Below you can see a
simple program that shows you how to use the awk command in
bash to do this. It will list one of two things – the last file updates or
the last file created in the current working directory.
#!/bin/bash

ls -lrt | grep ^- | awk 'END{print $NF}'
Copy this code into a file and run it to see how it all works.
How to Add Batch Extensions
In the program below, we are applying a custom extension to every
file inside a specified directory. For the purposes of this
demonstration, create a brand new directory and put a few files in it.
In my folder, I have five files. Each is called test followed by a
number between 0 and 4. For the sake of this demonstration the
script will add .UP to the end of each file – you can add whatever

see more please visit: https://homeofbook.com

extension you want, just make sure you change the script
accordingly.
#!/bin/bash
dir=$1
for file in `ls $1/*`
do
mv $file $file.UP
done
One important note – you should not try running this script from a
regular directory, only from a test one. You must also provide a
command-line argument containing the directory name for the files –
the period (.) should be used for the current working directory.
How to Print the Number of Files or Directories
The script below will find how many folders or files are in a specified
directory, using the find command provided in Linux to do it. The
name of the directory where you are looking for the files should be
passed from the command-line.
#!/bin/bash

if [-d "$@"]; then
echo "Files found: $(find "$@" -type f | wc -l)"
echo "Folders found: $(find "$@" -type d | wc -l)"
else
echo "[ERROR] Please retry with another folder."
exit 1
fi
If the directory you specify is not available you will be asked to try
again with a different one. The same message will appear if you do

see more please visit: https://homeofbook.com

not have permission to access the specified directory.
How to Clean Log Files
In the next demonstration, you can see how shell scripts can be
used easily in real life. We are going to delete every log file stored in
the directory called /var/log. If you want to clean up different logs,
simply change the variable holding the directory:
#!/bin/bash
LOG_DIR=/var/log
cd $LOG_DIR

cat /dev/null > messages
cat /dev/null > wtmp
echo "Logs cleaned up."
Important – this shell script must be run as root.
Using Bash to Back Up Your Script
Shell scripts provide a strong, effective way of backing up directories
and files. In the next example, you can see how to back up every file
and directory that was modified in the preceding 24 hours. The Linux
find command is used for this.
#!/bin/bash

BACKUPFILE=backup-$(date +%m-%d-%Y)
archive=${1:-$BACKUPFILE}

find . -mtime -1 -type f -print0 | xargs -0 tar rvf "$archive.tar"
echo "Directory $PWD backed up in archive file \"$archive.tar.gz\"."
exit 0

see more please visit: https://homeofbook.com

The file and directory names will be printed once the backup is
successfully completed.
How To See If a User is Root
In the next example, you can see how a bash script is used to see if
a user is root:
#!/bin/bash
ROOT_UID=0

if ["$UID" -eq "$ROOT_UID"]
then
echo "You are root."
else
echo "You are not root"
fi
exit 0
The output will depend entirely on which user is running the script.
Root users are matched by the $UID.
How to Remove Duplicate Lines From a File
It can take a lot of time to process files and it can reduce admin
productivity severely. One of the most time-consuming tasks is trying
to find duplicate lines in your files but a short, simple shell script can
save the day:
#! /bin/sh

echo -n "Enter the Filename-> "
read filename
if [-f "$filename"]; then

see more please visit: https://homeofbook.com

sort $filename | uniq | tee sorted.txt
else
echo "No $filename in $pwd...try again"
fi
exit 0
This script will look through every line of the specified file and will
remove any duplicate. Those lines are then put into a new file,
leaving the original file as it is.
How to do System Maintenance
If you want to make life a little easier for yourself, you can use a
small shell script to upgrade your system, rather than having to do it
all manually. Here's an example of how this is done:
#!/bin/bash

echo -e "\n$(date "+%d-%m-%Y --- %T") --- Starting work\n"

apt-get update
apt-get -y upgrade

apt-get -y autoremove
apt-get autoclean

echo -e "\n$(date "+%T") \t Script Terminated"
This script will also remove old packages that you do not need
anymore. Make sure to run it using sudo – if you don't, it won't work.
Shell scripting in Linux isn’t as hard as you might think it is, and your
scripts can be as diverse as you want. There is no limit in what they
can or cannot do and, if you are new to this, new to using Linux and

see more please visit: https://homeofbook.com

the bash script, take the time to learn these fundamental scripts –
they will form the basis of just about everything you want to do. Once
you have learned them, take the time to play around with them,
change things, learn how they work, and understand exactly what
they can do.
I’ve tried to give you a decent insight into what you need for Linux
shell scripting today. The subject goes far deeper than this, though,
so I’ve kept things basic and simple to help you learn. While it isn’t
too technical, it is a good starting point.

see more please visit: https://homeofbook.com

Chapter Nine: Linux Shell Scripting for Functions

When you write your scripts, there is every chance that you will use
the same code in several locations. If it is a small code, rewriting it
isn’t such a big deal but, where you have large code that needs to be
used in several places, it gets tedious. The bash shell provides the
solution – encapsulation. In this way, the code is encapsulated in a
function, and this can be used wherever it is needed throughout the
code.

The Basics
When you start to write more complex scripts, there is every chance
that parts of your code performing specific tasks will need to be
reused. That could be something as simple as displaying a message
multiple times to get answers from users. Or it could be more
complex, perhaps complicated calculations that need to be used
repeatedly in the script. No matter what it is, having to write the code
over and again starts to get tiring, but luckily, the bash shell makes it
easy. We simply write the code once and wrap it in a function. Name
it according to the contents and, when you need that piece of code
anywhere in the script, you can simply call the function name.

Function Creation
Functions can be created in two formats. The first is using the
keyword function with the function name assigned to it. The
function’s name attribute defines the function, but the name should
not be one of the reserved keywords; it should be unique and relate
to the function contents. The commands are made up of several
bash shell commands and when the function is called, the
commands are executed in the order they were written in the
function.
The second format follows the same function creation pattern used
in other programming languages.

see more please visit: https://homeofbook.com

$ cat test15567
#!/bin/bash
function Myfunction1 {
echo "You are looking at the example of a Linux shell function."
}
count=1
while [$count -le 10]
do
Myfunction1
count=$[$count + 1]
done
echo "You have reached the end of the loop."
Myfunction1
echo "This is the finishing point of your Linux shell script. Where do
you want to go now?"
$bash -f main.sh
You are looking at the example of a Linux shell function.
You are looking at the example of a Linux shell function.
Repeated eight more times, until the final line of:
You have reached the end of the loop.
You are looking at the example of a Linux shell function.
This is the finishing point of your Linux shell script. Where do you
want to go now?

When the name, Myfunction1, is referred to, the bash shell returns
its definition and the commands defined in it are executed. The

see more please visit: https://homeofbook.com

definition does not need to be first in the shell script but if you try
using a function before the definition, an error message is thrown:
$ cat test15567
#!/bin/bash
count=1
echo "You are seeing this line that comes before the function
definition."

function Myfunction1 {
echo "You are looking at the example of a Linux shell function."
}

while [$count -le 10]
do
Myfunction1
count=$[$count + 1]
done
echo "You have reached the end of the loop."
function Myfunction2
echo "This is a definition of another function"
$bash -f main.sh
You are seeing this line that comes before the function definition.
You are looking at the example of a Linux shell function.
Repeated nine more times, until the final line of:
You have reached the end of the loop.
main.sh: line 1: $: command not found

see more please visit: https://homeofbook.com

main.sh: line 17: syntax error near unexpected token `echo'
main.sh: line 17: `echo "This is a definition of another function"'

Food for thought

When we defined the first function, the shell was defined following a
series of commands. When we used Myfunction1 in the script, it was
immediately located by the shell. However, our script attempted to
use Myfunction2 before it had been defined, throwing an error
message.
The point here is that a function must be defined before it can be
used in a script and you need to be careful about function names.
These must be unique, and they must not be keywords. Where a
function is redefined, the new definition overrides the previous one.
What is important here is that we didn’t get an error message on the
screen but something has definitely gone wrong; finding out what it is
will be hard and these are all things you need to keep in mind when
you start writing Linux scripts.
$ cat test15567
#!/bin/bash
count=1
function Myfunction1 {
echo "You are looking at the example of a Linux shell function."
}

Myfunction1

function Myfunction1 {
echo "This is a definition of another function"
}

see more please visit: https://homeofbook.com

Myfunction1

echo "This Linux script ends here."
$bash -f main.sh
You are looking at the example of a Linux shell function.
This is a definition of another function
This Linux script ends here.

Returning a Value in Linux Functions
The bash shell tends to treat functions such as mini-scripts that have
an exit status. You can generate exit status for functions in three
different ways. The exit status by default is something that is
returned by the final command in a function. After the execution of
the function, you may use the standard $? variable to determine its
exit status.

Passing Parameters to a Function
The bash shell treats functions like mini-scripts, which means that
you may pass parameters to a function like a regular script.
Functions may use a standard parameter environment variables to
represent the parameters that are passed to a function on the
command line.
$ cat test6
#!/bin/bash
In this example, I will be passing parameters to a function
function addemdigits {
if [$# -eq 0] || [$# -gt 2]
then
echo -1
elif [$# -eq 1]

see more please visit: https://homeofbook.com

then
echo $[$1 + $1]
else
echo $[$1 + $2]
fi
}
echo -n "I am now Adding 30 and 85: "
valuedigits=`addemdigits 30 85`
echo $valuedigits
echo -n "Shall we try adding a single number: "
valuedigits=`addemdigits 10`
echo $valuedigits
echo -n "I am not trying to add any numbers now: "
valuedigits=`addemdigits`
echo $valuedigits
echo -n "Finally, I am trying to add three numbers: "
valuedigits=`addemdigits 40 15 90`
echo $valuedigits
$bash -f main.sh
I am now Adding 30 and 85: 115
Shall we try adding a single number: 20
I am not trying to add any numbers now: -1
Finally, I am trying to add three numbers: -1

The addemdigits function checks the number of parameters that are
passed to the function. If there are no parameters or more than two

see more please visit: https://homeofbook.com

parameters, the value is returned as -1. If there is a single
parameter, it adds that to itself for the result. If there are two
parameters, it adds all of them for the result. Since the function uses
a special parameter environment variable for its parameter values, it
cannot access the script parameter values from the command line of
the script.

Passing Arrays to Functions
Passing arrays into functions is a precise art but, to start with, it may
be confusing. If an array variable is passed as a single variable, it
will not work:
$ cat badtest3
#!/bin/bash
function func555 {
echo "The parameters being used in the function are: $@"
myarray=$1
echo "The array that is received is as follows: ${myarray[*]}"
}
thisarray=(1 2 3 4 5 6 7 8 9 10)
echo "This is the original array : ${thisarray[*]}"
func555 $thisarray
$bash -f main.sh
This is the original array : 1 2 3 4 5 6 7 8 9 10
The parameters being used in the function are: 1
The array that is received is as follows: 1
If you try to use the array variable as a function parameter, the
function takes the first value in the array variable. Fixing this requires
that the array variable is broken down into its individual values,
which are then used as function parameters. You can reassemble

see more please visit: https://homeofbook.com

those parameters in the function as a new array variable. Here’s an
example:
$ cat test10
#!/bin/bash
function testingfunction {
local myarray
myarray=(`echo "$@"`)
echo "This the new value of the array: ${myarray[*]}"
}
thisarray=(1 2 3 4 5 6 7 8 9 10)
echo "This the original value of the array ${thisarray[*]}"
testingfunction ${thisarray[*]}
$bash -f main.sh
This the original value of the array 1 2 3 4 5 6 7 8 9 10
This the new value of the array: 1 2 3 4 5 6 7 8 9 10

The variable named $thisarray contains the individual array values,
placing them on the function’s command line. The function then
builds the array variable using command line parameters and, once
you are in the function, you can use the array as you would any
other array.
$ cat test11
#!/bin/bash
function addingthearray {
local sum=0
local thisarray
thisarray=(`echo "$@"`)

see more please visit: https://homeofbook.com

for values in ${thisarray[*]}
do
sum=$[$sum + $values]
done
echo $sum
}
iarray=(1 2 3 4 5 6 7 8 9 10 11 12 13)
echo "This is the original value of the array: ${iarray[*]}"
arg1=`echo ${iarray[*]}`
theresult=`addingthearray $arg1`
echo "This is the final result : $theresult"
$bash -f main.sh
This is the original value of the array: 1 2 3 4 5 6 7 8 9 10 11 12 13
This is the final result: 91

Handling User Input
You have learned how to write shell scripts that interact with data,
files, and variables on a Linux operating system. However,
sometimes you need to write a script that must interact with a person
who is running the script. The shell gives us several methods to
retrieve data from people, including some command line parameters,
command-line options, and reading input from the keyboard. The
chapter will walk you through the process of incorporating different
methods in the bash shell scripts to get data from the person who is
running the script.
Variables called positional parameters are assigned to the command
line parameters by the bash shell, including the name of the program
executed by the shell. We use standard numbers for the positional
parameter variables - $0 is the program name, $1 is the first
parameter, $2 the second one, and so on up to $9.

see more please visit: https://homeofbook.com

Conclusion
Now that you have reached the end of the book, you should have a
good grasp of Linux command line and shell scripting. Unlike other
operating systems, the Linux operating system is complicated. You
don’t get to see a graphical interface where you can work with a
mouse. It is the “all-keyboard” thing that makes Linux hard to learn.
However, it is not that hard with this book in your pocket. You can
use this book as a reference guide whenever you operate the Linux
command line or jump to the editor to write shell scripts. Being
consistent and regularly practicing with codes will help you learn the
commands and codes faster than just reading the scripts.
Keep this book by your side and you’ll always have keyboard
shortcuts and commands at your fingertips. Now, let’s get started
with Linux!

see more please visit: https://homeofbook.com

References
22 best Linux text editors for coding {2020 Reviews} . (2020, July 12). Knowledge

Base by phoenixNAP. https://phoenixnap.com/kb/best-linux-text-editors-
for-coding

Bash while loop examples . (2020, November 5). nixCraft.
https://www.cyberciti.biz/faq/bash-while-loop/

Blum, R. (n.d.). Linux Command Line and Shell Scripting .
https://inf.ocs.ku.ac.th/Download/Wiley.Linux.Command.Line.and.Shell.Scri
pting.Bible.May.2008.pdf

Broida, R. (2017, February 9). How to install Linux . CNET.
https://www.cnet.com/how-to/how-to-install-linux/

Ward, B. (n.d.). How Linux Works . index-of.es/. https://index-of.es/Varios-
2/How%20Linux%20Works%20What%20Every%20Superuser%20Should
%20Know.pdf

see more please visit: https://homeofbook.com

https://phoenixnap.com/kb/best-linux-text-editors-for-coding
https://www.cyberciti.biz/faq/bash-while-loop/
https://inf.ocs.ku.ac.th/Download/Wiley.Linux.Command.Line.and.Shell.Scripting.Bible.May.2008.pdf
https://www.cnet.com/how-to/how-to-install-linux/
https://index-of.es/Varios-2/How%20Linux%20Works%20What%20Every%20Superuser%20Should%20Know.pdf

	Introduction
	Chapter One: What is Linux?
	The Birth of the Linux Operating System
	Linux Distributions
	Linux is Open-Source
	The Linux Shell
	Root
	Reasons to Use the Linux Operating System
	Installation of the Linux Operating System

	Chapter Two: Working with Linux Commands
	Let’s Start
	The First Commands for Your Linux Operating System
	Basic Commands
	File Navigation in Linux
	The ls command

	Options and Arguments Commands
	Finding Out the Type of File
	The less command

	Chapter Three: Files & Directories Commands
	Special Characters
	Command-Line Editing
	Linux Commands for Directories
	The cp command
	Examples of cp command
	The mv command
	Examples for mv command
	The rm command
	Examples of rm command

	Chapter Four: Practical Work with Commands
	The type command
	The which command
	Documentation of Commands
	The help command
	The man command
	The apropos command
	The whatis command
	The info command

	Chapter Five: Redirection Commands & Keyboard Tricks with Linux Commands
	Redirection
	Keyboard Tricks
	Text Modification

	Completion Commands
	Completion commands

	Searching History
	History Expansion

	Chapter Six: Process Commands
	Process States
	Using the Top Command to View Processes

	Chapter Seven: Working with Linux Editors
	The Vim Editor
	Data Editing
	Copy & Paste
	The KDE Editor Family
	The KWrite Editor
	The Edit Menu of KWrite Editor

	The KWrite Editor Tools
	The GNOME Editor
	Basic Features of the Editor
	Preferences
	View
	Editor Tab
	Syntax Highlighting

	Plugins
	The emacs Editor
	Basic Commands of emacs Editor
	Editing Data

	Popular Linux Commands

	Chapter Eight: Linux Shell Scripting
	Writing the Shell Script
	The Format of Linux Shell Scripts
	Displaying Text
	The if-then Statement
	The if-then-else Statement
	Advanced if-then Features
	The for Command
	Reading a List through a Variable
	The while Command

	Multiple Test Commands
	The until Command

	Nesting Loops
	Loop Control
	More Basic Shell Scripts

	Chapter Nine: Linux Shell Scripting for Functions
	The Basics
	Function Creation
	Returning a Value in Linux Functions
	Passing Parameters to a Function
	Passing Arrays to Functions
	Handling User Input

	Conclusion
	References

