

 The C++ Standard Library

A Tutorial and Reference

Second Edition

Nicolai M. Josuttis

[image: Image]

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

 Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus, and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales

international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Josuttis, Nicolai M.

 The C++ standard library : a tutorial and reference / Nicolai M. Josuttis.—2nd ed.

 p. cm.

 Includes bibliographical references and index.

 ISBN 978-0-321-62321-8 (hardcover : alk. paper)

 1. C++ (Computer program language) I. Title.

 QA76.73.C153J69 2012

 005.13’3-dc23

 2011045071

Copyright © 2012 Pearson Education, Inc.

This book was typeset by the author using the LATEX document processing system.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-62321-8

ISBN-10: 0-321-62321-5

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.

Third Printing, July 2013

 To those who care

for people and mankind

 Contents

Preface to the Second Edition

Acknowledgments for the Second Edition

Preface to the First Edition

Acknowledgments for the First Edition

1 About This Book

1.1 Why This Book

1.2 Before Reading This Book

1.3 Style and Structure of the Book

1.4 How to Read This Book

1.5 State of the Art

1.6 Example Code and Additional Information

1.7 Feedback

2 Introduction to C++ and the Standard Library

2.1 History of the C++ Standards

2.1.1 Common Questions about the C++11 Standard

2.1.2 Compatibility between C++98 and C++11

2.2 Complexity and Big-O Notation

3 New Language Features

3.1 New C++11 Language Features

3.1.1 Important Minor Syntax Cleanups

3.1.2 Automatic Type Deduction with auto

3.1.3 Uniform Initialization and Initializer Lists

3.1.4 Range-Based for
 Loops

3.1.5 Move Semantics and Rvalue References

 3.1.6 New String Literals

3.1.7 Keyword noexcept

3.1.8 Keyword constexpr

3.1.9 New Template Features

3.1.10 Lambdas

3.1.11 Keyword decltype

3.1.12 New Function Declaration Syntax

3.1.13 Scoped Enumerations

3.1.14 New Fundamental Data Types

3.2 Old “New” Language Features

3.2.1 Explicit Initialization for Fundamental Types

3.2.2 Definition of main()

4 General Concepts

4.1 Namespace std

4.2 Header Files

4.3 Error and Exception Handling

4.3.1 Standard Exception Classes

4.3.2 Members of Exception Classes

4.3.3 Passing Exceptions with Class exception_ptr

4.3.4 Throwing Standard Exceptions

4.3.5 Deriving from Standard Exception Classes

4.4 Callable Objects

4.5 Concurrency and Multithreading

4.6 Allocators

5 Utilities

5.1 Pairs and Tuples

5.1.1 Pairs

5.1.2 Tuples

5.1.3 I/O for Tuples

5.1.4 Conversions between tuple
 s and pair
 s

5.2 Smart Pointers

5.2.1 Class shared_ptr

5.2.2 Class weak_ptr

5.2.3 Misusing Shared Pointers

5.2.4 Shared and Weak Pointers in Detail

5.2.5 Class unique_ptr

 5.2.6 Class unique_ptr
 in Detail

5.2.7 Class auto_ptr

5.2.8 Final Words on Smart Pointers

5.3 Numeric Limits

5.4 Type Traits and Type Utilities

5.4.1 Purpose of Type Traits

5.4.2 Type Traits in Detail

5.4.3 Reference Wrappers

5.4.4 Function Type Wrappers

5.5 Auxiliary Functions

5.5.1 Processing the Minimum and Maximum

5.5.2 Swapping Two Values

5.5.3 Supplementary Comparison Operators

5.6 Compile-Time Fractional Arithmetic with Class ratio<>

5.7 Clocks and Timers

5.7.1 Overview of the Chrono Library

5.7.2 Durations

5.7.3 Clocks and Timepoints

5.7.4 Date and Time Functions by C and POSIX

5.7.5 Blocking with Timers

5.8 Header Files <cstddef>
 , <cstdlib>
 , and <cstring>

5.8.1 Definitions in <cstddef>

5.8.2 Definitions in <cstdlib>

5.8.3 Definitions in <cstring>

6 The Standard Template Library

6.1 STL Components

6.2 Containers

6.2.1 Sequence Containers

6.2.2 Associative Containers

6.2.3 Unordered Containers

6.2.4 Associative Arrays

6.2.5 Other Containers

6.2.6 Container Adapters

6.3 Iterators

6.3.1 Further Examples of Using Associative and Unordered Containers

6.3.2 Iterator Categories

 6.4 Algorithms

6.4.1 Ranges

6.4.2 Handling Multiple Ranges

6.5 Iterator Adapters

6.5.1 Insert Iterators

6.5.2 Stream Iterators

6.5.3 Reverse Iterators

6.5.4 Move Iterators

6.6 User-Defined Generic Functions

6.7 Manipulating Algorithms

6.7.1 “Removing” Elements

6.7.2 Manipulating Associative and Unordered Containers

6.7.3 Algorithms versus Member Functions

6.8 Functions as Algorithm Arguments

6.8.1 Using Functions as Algorithm Arguments

6.8.2 Predicates

6.9 Using Lambdas

6.10 Function Objects

6.10.1 Definition of Function Objects

6.10.2 Predefined Function Objects

6.10.3 Binders

6.10.4 Function Objects and Binders versus Lambdas

6.11 Container Elements

6.11.1 Requirements for Container Elements

6.11.2 Value Semantics or Reference Semantics

6.12 Errors and Exceptions inside the STL

6.12.1 Error Handling

6.12.2 Exception Handling

6.13 Extending the STL

6.13.1 Integrating Additional Types

6.13.2 Deriving from STL Types

7 STL Containers

7.1 Common Container Abilities and Operations

7.1.1 Container Abilities

7.1.2 Container Operations

7.1.3 Container Types

 7.2 Arrays

7.2.1 Abilities of Arrays

7.2.2 Array Operations

7.2.3 Using array
 s as C-Style Arrays

7.2.4 Exception Handling

7.2.5 Tuple Interface

7.2.6 Examples of Using Arrays

7.3 Vectors

7.3.1 Abilities of Vectors

7.3.2 Vector Operations

7.3.3 Using Vectors as C-Style Arrays

7.3.4 Exception Handling

7.3.5 Examples of Using Vectors

7.3.6 Class vector<bool>

7.4 Deques

7.4.1 Abilities of Deques

7.4.2 Deque Operations

7.4.3 Exception Handling

7.4.4 Examples of Using Deques

7.5 Lists

7.5.1 Abilities of Lists

7.5.2 List Operations

7.5.3 Exception Handling

7.5.4 Examples of Using Lists

7.6 Forward Lists

7.6.1 Abilities of Forward Lists

7.6.2 Forward List Operations

7.6.3 Exception Handling

7.6.4 Examples of Using Forward Lists

7.7 Sets and Multisets

7.7.1 Abilities of Sets and Multisets

7.7.2 Set and Multiset Operations

7.7.3 Exception Handling

7.7.4 Examples of Using Sets and Multisets

7.7.5 Example of Specifying the Sorting Criterion at Runtime

 7.8 Maps and Multimaps

7.8.1 Abilities of Maps and Multimaps

7.8.2 Map and Multimap Operations

7.8.3 Using Maps as Associative Arrays

7.8.4 Exception Handling

7.8.5 Examples of Using Maps and Multimaps

7.8.6 Example with Maps, Strings, and Sorting Criterion at Runtime

7.9 Unordered Containers

7.9.1 Abilities of Unordered Containers

7.9.2 Creating and Controlling Unordered Containers

7.9.3 Other Operations for Unordered Containers

7.9.4 The Bucket Interface

7.9.5 Using Unordered Maps as Associative Arrays

7.9.6 Exception Handling

7.9.7 Examples of Using Unordered Containers

7.10 Other STL Containers

7.10.1 Strings as STL Containers

7.10.2 Ordinary C-Style Arrays as STL Containers

7.11 Implementing Reference Semantics

7.12 When to Use Which Container

8 STL Container Members in Detail

8.1 Type Definitions

8.2 Create, Copy, and Destroy Operations

8.3 Nonmodifying Operations

8.3.1 Size Operations

8.3.2 Comparison Operations

8.3.3 Nonmodifying Operations for Associative and Unordered Containers

8.4 Assignments

8.5 Direct Element Access

8.6 Operations to Generate Iterators

8.7 Inserting and Removing Elements

8.7.1 Inserting Single Elements

8.7.2 Inserting Multiple Elements

8.7.3 Removing Elements

8.7.4 Resizing

 8.8 Special Member Functions for Lists and Forward Lists

8.8.1 Special Member Functions for Lists (and Forward Lists)

8.8.2 Special Member Functions for Forward Lists Only

8.9 Container Policy Interfaces

8.9.1 Nonmodifying Policy Functions

8.9.2 Modifying Policy Functions

8.9.3 Bucket Interface for Unordered Containers

8.10 Allocator Support

8.10.1 Fundamental Allocator Members

8.10.2 Constructors with Optional Allocator Parameters

9 STL Iterators

9.1 Header Files for Iterators

9.2 Iterator Categories

9.2.1 Output Iterators

9.2.2 Input Iterators

9.2.3 Forward Iterators

9.2.4 Bidirectional Iterators

9.2.5 Random-Access Iterators

9.2.6 The Increment and Decrement Problem of Vector Iterators

9.3 Auxiliary Iterator Functions

9.3.1 advance()

9.3.2 next()
 and prev()

9.3.3 distance()

9.3.4 iter_swap()

9.4 Iterator Adapters

9.4.1 Reverse Iterators

9.4.2 Insert Iterators

9.4.3 Stream Iterators

9.4.4 Move Iterators

9.5 Iterator Traits

9.5.1 Writing Generic Functions for Iterators

9.6 Writing User-Defined Iterators

10 STL Function Objects and Using Lambdas

10.1 The Concept of Function Objects

10.1.1 Function Objects as Sorting Criteria

10.1.2 Function Objects with Internal State

10.1.3 The Return Value of for_each()

10.1.4 Predicates versus Function Objects

10.2 Predefined Function Objects and Binders

10.2.1 Predefined Function Objects

10.2.2 Function Adapters and Binders

10.2.3 User-Defined Function Objects for Function Adapters

10.2.4 Deprecated Function Adapters

10.3 Using Lambdas

10.3.1 Lambdas versus Binders

10.3.2 Lambdas versus Stateful Function Objects

10.3.3 Lambdas Calling Global and Member Functions

10.3.4 Lambdas as Hash Function, Sorting, or Equivalence Criterion

11 STL Algorithms

11.1 Algorithm Header Files

11.2 Algorithm Overview

11.2.1 A Brief Introduction

11.2.2 Classification of Algorithms

11.3 Auxiliary Functions

11.4 The for_each()
 Algorithm

11.5 Nonmodifying Algorithms

11.5.1 Counting Elements

11.5.2 Minimum and Maximum

11.5.3 Searching Elements

11.5.4 Comparing Ranges

11.5.5 Predicates for Ranges

11.6 Modifying Algorithms

11.6.1 Copying Elements

11.6.2 Moving Elements

11.6.3 Transforming and Combining Elements

11.6.4 Swapping Elements

11.6.5 Assigning New Values

11.6.6 Replacing Elements

 11.7 Removing Algorithms

11.7.1 Removing Certain Values

11.7.2 Removing Duplicates

11.8 Mutating Algorithms

11.8.1 Reversing the Order of Elements

11.8.2 Rotating Elements

11.8.3 Permuting Elements

11.8.4 Shuffling Elements

11.8.5 Moving Elements to the Front

11.8.6 Partition into Two Subranges

11.9 Sorting Algorithms

11.9.1 Sorting All Elements

11.9.2 Partial Sorting

11.9.3 Sorting According to the n
 th Element

11.9.4 Heap Algorithms

11.10 Sorted-Range Algorithms

11.10.1 Searching Elements

11.10.2 Merging Elements

11.11 Numeric Algorithms

11.11.1 Processing Results

11.11.2 Converting Relative and Absolute Values

12 Special Containers

12.1 Stacks

12.1.1 The Core Interface

12.1.2 Example of Using Stacks

12.1.3 A User-Defined Stack Class

12.1.4 Class stack<>
 in Detail

12.2 Queues

12.2.1 The Core Interface

12.2.2 Example of Using Queues

12.2.3 A User-Defined Queue Class

12.2.4 Class queue<>
 in Detail

12.3 Priority Queues

12.3.1 The Core Interface

12.3.2 Example of Using Priority Queues

12.3.3 Class priority_queue<>
 in Detail

 12.4 Container Adapters in Detail

12.4.1 Type Definitions

12.4.2 Constructors

12.4.3 Supplementary Constructors for Priority Queues

12.4.4 Operations

12.5 Bitsets

12.5.1 Examples of Using Bitsets

12.5.2 Class bitset
 in Detail

13 Strings

13.1 Purpose of the String Classes

13.1.1 A First Example: Extracting a Temporary Filename

13.1.2 A Second Example: Extracting Words and Printing Them Backward

13.2 Description of the String Classes

13.2.1 String Types

13.2.2 Operation Overview

13.2.3 Constructors and Destructor

13.2.4 Strings and C-Strings

13.2.5 Size and Capacity

13.2.6 Element Access

13.2.7 Comparisons

13.2.8 Modifiers

13.2.9 Substrings and String Concatenation

13.2.10 Input/Output Operators

13.2.11 Searching and Finding

13.2.12 The Value npos

13.2.13 Numeric Conversions

13.2.14 Iterator Support for Strings

13.2.15 Internationalization

13.2.16 Performance

13.2.17 Strings and Vectors

13.3 String Class in Detail

13.3.1 Type Definitions and Static Values

13.3.2 Create, Copy, and Destroy Operations

13.3.3 Operations for Size and Capacity

13.3.4 Comparisons

13.3.5 Character Access

13.3.6 Generating C-Strings and Character Arrays

 13.3.7 Modifying Operations

13.3.8 Searching and Finding

13.3.9 Substrings and String Concatenation

13.3.10 Input/Output Functions

13.3.11 Numeric Conversions

13.3.12 Generating Iterators

13.3.13 Allocator Support

14 Regular Expressions

14.1 The Regex Match and Search Interface

14.2 Dealing with Subexpressions

14.3 Regex Iterators

14.4 Regex Token Iterators

14.5 Replacing Regular Expressions

14.6 Regex Flags

14.7 Regex Exceptions

14.8 The Regex ECMAScript Grammar

14.9 Other Grammars

14.10 Basic Regex Signatures in Detail

15 Input/Output Using Stream Classes

15.1 Common Background of I/O Streams

15.1.1 Stream Objects

15.1.2 Stream Classes

15.1.3 Global Stream Objects

15.1.4 Stream Operators

15.1.5 Manipulators

15.1.6 A Simple Example

15.2 Fundamental Stream Classes and Objects

15.2.1 Classes and Class Hierarchy

15.2.2 Global Stream Objects

15.2.3 Header Files

15.3 Standard Stream Operators <<
 and >>

15.3.1 Output Operator <<

15.3.2 Input Operator >>

15.3.3 Input/Output of Special Types

 15.4 State of Streams

15.4.1 Constants for the State of Streams

15.4.2 Member Functions Accessing the State of Streams

15.4.3 Stream State and Boolean Conditions

15.4.4 Stream State and Exceptions

15.5 Standard Input/Output Functions

15.5.1 Member Functions for Input

15.5.2 Member Functions for Output

15.5.3 Example Uses

15.5.4 sentry
 Objects

15.6 Manipulators

15.6.1 Overview of All Manipulators

15.6.2 How Manipulators Work

15.6.3 User-Defined Manipulators

15.7 Formatting

15.7.1 Format Flags

15.7.2 Input/Output Format of Boolean Values

15.7.3 Field Width, Fill Character, and Adjustment

15.7.4 Positive Sign and Uppercase Letters

15.7.5 Numeric Base

15.7.6 Floating-Point Notation

15.7.7 General Formatting Definitions

15.8 Internationalization

15.9 File Access

15.9.1 File Stream Classes

15.9.2 Rvalue and Move Semantics for File Streams

15.9.3 File Flags

15.9.4 Random Access

15.9.5 Using File Descriptors

15.10 Stream Classes for Strings

15.10.1 String Stream Classes

15.10.2 Move Semantics for String Streams

15.10.3 char*
 Stream Classes

15.11 Input/Output Operators for User-Defined Types

15.11.1 Implementing Output Operators

15.11.2 Implementing Input Operators

15.11.3 Input/Output Using Auxiliary Functions

 15.11.4 User-Defined Format Flags

15.11.5 Conventions for User-Defined Input/Output Operators

15.12 Connecting Input and Output Streams

15.12.1 Loose Coupling Using tie()

15.12.2 Tight Coupling Using Stream Buffers

15.12.3 Redirecting Standard Streams

15.12.4 Streams for Reading and Writing

15.13 The Stream Buffer Classes

15.13.1 The Stream Buffer Interfaces

15.13.2 Stream Buffer Iterators

15.13.3 User-Defined Stream Buffers

15.14 Performance Issues

15.14.1 Synchronization with C’s Standard Streams

15.14.2 Buffering in Stream Buffers

15.14.3 Using Stream Buffers Directly

16 Internationalization

16.1 Character Encodings and Character Sets

16.1.1 Multibyte and Wide-Character Text

16.1.2 Different Character Sets

16.1.3 Dealing with Character Sets in C++

16.1.4 Character Traits

16.1.5 Internationalization of Special Characters

16.2 The Concept of Locales

16.2.1 Using Locales

16.2.2 Locale Facets

16.3 Locales in Detail

16.4 Facets in Detail

16.4.1 Numeric Formatting

16.4.2 Monetary Formatting

16.4.3 Time and Date Formatting

16.4.4 Character Classification and Conversion

16.4.5 String Collation

16.4.6 Internationalized Messages

17 Numerics

17.1 Random Numbers and Distributions

17.1.1 A First Example

17.1.2 Engines

17.1.3 Engines in Detail

17.1.4 Distributions

17.1.5 Distributions in Detail

17.2 Complex Numbers

17.2.1 Class complex<>
 in General

17.2.2 Examples Using Class complex<>

17.2.3 Operations for Complex Numbers

17.2.4 Class complex<>
 in Detail

17.3 Global Numeric Functions

17.4 Valarrays

18 Concurrency

18.1 The High-Level Interface: async()
 and Futures

18.1.1 A First Example Using async()
 and Futures

18.1.2 An Example of Waiting for Two Tasks

18.1.3 Shared Futures

18.2 The Low-Level Interface: Threads and Promises

18.2.1 Class std::thread

18.2.2 Promises

18.2.3 Class packaged_task<>

18.3 Starting a Thread in Detail

18.3.1 async()
 in Detail

18.3.2 Futures in Detail

18.3.3 Shared Futures in Detail

18.3.4 Class std::promise
 in Detail

18.3.5 Class std::packaged_task
 in Detail

18.3.6 Class std::thread
 in Detail

18.3.7 Namespace this_thread

18.4 Synchronizing Threads, or the Problem of Concurrency

18.4.1 Beware of Concurrency!

18.4.2 The Reason for the Problem of Concurrent Data Access

18.4.3 What Exactly Can Go Wrong (the Extent of the Problem)

18.4.4 The Features to Solve the Problems

 18.5 Mutexes and Locks

18.5.1 Using Mutexes and Locks

18.5.2 Mutexes and Locks in Detail

18.5.3 Calling Once for Multiple Threads

18.6 Condition Variables

18.6.1 Purpose of Condition Variables

18.6.2 A First Complete Example for Condition Variables

18.6.3 Using Condition Variables to Implement a Queue for Multiple Threads

18.6.4 Condition Variables in Detail

18.7 Atomics

18.7.1 Example of Using Atomics

18.7.2 Atomics and Their High-Level Interface in Detail

18.7.3 The C-Style Interface of Atomics

18.7.4 The Low-Level Interface of Atomics

19 Allocators

19.1 Using Allocators as an Application Programmer

19.2 A User-Defined Allocator

19.3 Using Allocators as a Library Programmer

Bibliography

Newsgroups and Forums

Books and Web Sites

Index

 Preface to the Second Edition

I never thought that the first edition of this book would sell so long. But now, after twelve years, it’s time for a new edition that covers C++11, the new C++ standard.

Note that this means more than simply adding new libraries. C++ has changed. Almost all typical applications of parts of the library look a bit different now. This is not the result of a huge language change. It’s the result of many minor changes, such as using rvalue references and move semantics, range-based for
 loops, auto
 , and new template features. Thus, besides presenting new libraries and supplementary features of existing libraries, almost all of the examples in this book were rewritten at least partially. Nevertheless, to support programmers who still use “old” C++ environments, this book will describe differences between C++ versions whenever they appear.

I learned C++11 the hard way. Because I didn’t follow the standardization as it was happening I started to look at C++11 about two years ago. I really had trouble understanding it. But the people on the standardization committee helped me to describe and present the new features as they are intended to be used now.

Note, finally, that this book now has a problem: Although the book’s size grew from about 800 to more than 1,100 pages, I still can’t present the C++ standard library as a whole. The library part of the new C++11 standard alone now has about 750 pages, written in very condensed form without much explanation. For this reason, I had to decide which features to describe and in how much detail. Again, many people in the C++ community helped me to make this decision. The intent was to concentrate on what the average application programmer needs. For some missing parts, I provide a supplementary chapter on the Web site of this book, http://www.cppstdlib.com
 , but you still will find details not mentioned here in the standard.

The art of teaching is not the art of presenting everything. It’s the art of separating the wheat from the chaff so that you get the most out of it. May the exercise succeed.

 Acknowledgments for the Second Edition

This book presents ideas, concepts, solutions, and examples from many sources. Over the past several years, the C++ community introduced many ideas, concepts, proposals, and enhancements to C++ that became part of C++11. Thus, again I’d like to thank all the people who helped and supported me while preparing this new edition.

First, I’d like to thank everyone in the C++ community and on the C++ standardization committee. Besides all the work to add new language and library features, they had a hard time explaining everything to me, but they did so with patience and enthusiasm.

Scott Meyers and Anthony Williams allowed me to use their teaching material and book manuscripts so that I could find many useful examples not yet publicly available.

I’d also like to thank everyone who reviewed this book and gave valuable feedback and clarifications: Dave Abrahams, Alberto Ganesh Barbati, Pete Becker, Thomas Becker, Hans Boehm, Walter E. Brown, Paolo Carlini, Lawrence Crowl, Beman Dawes, Doug Gregor, David Grigsby, Pablo Halpern, Howard Hinnant, John Lakos, Bronek Kozicki, Dietmar Kühl, Daniel Krügler, Mat Marcus, Jens Maurer, Alisdair Meredith, Bartosz Milewski, P. J. Plauger, Tobias Schüle, Peter Sommerlad, Jonathan Wakely, and Anthony Williams.

There is one person who did an especially outstanding job. Whenever I had a question, Daniel Krügler answered almost immediately with incredible accuracy and knowledge. Everyone in the standardization process knows that he treats everybody this way. Without him, both the C++ standard and this book would not have the quality they have now.

Many thanks to my editor Peter Gordon, Kim Boedigheimer, John Fuller, and Anna Popick from Addison-Wesley. Besides their support, they found the right balance between patience and pressure. The copy editor Evelyn Pyle and the proofreader Diane Freed did an incredible job translating my German English into American English. In addition, thanks to Frank Mittelbach for solving my LATEX issues.

Last but not least, all my thanks go to Jutta Eckstein. Jutta has the wonderful ability to force and support people in their ideals, ideas, and goals. While most people experience this only when working with her, I have the honor to benefit in my day-to-day life.

 Preface to the First Edition

In the beginning, I only planned to write a small German book (400 pages or so) about the C++ standard library. That was in 1993. Now, in 1999 you see the result — a book in English with more than 800 pages of facts, figures, and examples. My goal is to describe the C++ standard library so that all (or almost all) your programming questions are answered before you think of the question. Note, however, that this is not a complete description of all aspects of the C++ standard library. Instead, I present the most important topics necessary for learning and programming in C++ by using its standard library.

Each topic is described based on the general concepts; this discussion then leads to the specific details needed to support everyday programming tasks. Specific code examples are provided to help you understand the concepts and the details.

That’s it — in a nutshell. I hope you get as much pleasure from reading this book as I did from writing it. Enjoy!

 Acknowledgments for the First Edition

This book presents ideas, concepts, solutions, and examples from many sources. In a way it does not seem fair that my name is the only name on the cover. Thus, I’d like to thank all the people and companies who helped and supported me during the past few years.

First, I’d like to thank Dietmar Kühl. Dietmar is an expert on C++, especially on input/output streams and internationalization (he implemented an I/O stream library just for fun). He not only translated major parts of this book from German to English, he also wrote sections of this book using his expertise. In addition, he provided me with invaluable feedback over the years.

Second, I’d like to thank all the reviewers and everyone else who gave me their opinion. These people endow the book with a quality it would never have had without their input. (Because the list is extensive, please forgive me for any oversight.) The reviewers for the English version of this book included Chuck Allison, Greg Comeau, James A. Crotinger, Gabriel Dos Reis, Alan Ezust, Nathan Myers, Werner Mossner, Todd Veldhuizen, Chichiang Wan, Judy Ward, and Thomas Wikehult. The German reviewers included Ralf Boecker, Dirk Herrmann, Dietmar Kühl, Edda Lörke, Herbert Scheubner, Dominik Strasser, and Martin Weitzel. Additional input was provided by Matt Austern, Valentin Bonnard, Greg Colvin, Beman Dawes, Bill Gibbons, Lois Goldthwaite, Andrew Koenig, Steve Rumsby, Bjarne Stroustrup, and David Vandevoorde.

Special thanks to Dave Abrahams, Janet Cocker, Catherine Ohala, and Maureen Willard who reviewed and edited the whole book very carefully. Their feedback was an incredible contribution to the quality of this book.

A special thanks goes to my “personal living dictionary” — Herb Sutter — the author of the famous “Guru of the Week” (a regular series of C++ programming problems that is published on the comp.lang.c++.moderated
 Internet newsgroup).

I’d also like to thank all the people and companies who gave me the opportunity to test my examples on different platforms with different compilers. Many thanks to Steve Adamczyk, Mike Anderson, and John Spicer from EDG for their great compiler and their support. It was a big help during the standardization process and the writing of this book. Many thanks to P. J. Plauger and Dinkumware, Ltd, for their early standard-conforming implementation of the C++ standard library. Many thanks to Andreas Hommel and Metrowerks for an evaluative version of their CodeWarrior Programming Environment. Many thanks to all the developers of the free GNU and egcs compilers. Many thanks to Microsoft for an evaluative version of Visual C++. Many thanks to Roland Hartinger
 from Siemens Nixdorf Informations Systems AG for a test version of their C++ compiler. Many thanks to Topjects GmbH for an evaluative version of the ObjectSpace library implementation.

Many thanks to everyone from Addison Wesley Longman who worked with me. Among others this includes Janet Cocker, Mike Hendrickson, Debbie Lafferty, Marina Lang, Chanda Leary, Catherine Ohala, Marty Rabinowitz, Susanne Spitzer, and Maureen Willard. It was fun.

In addition, I’d like to thank the people at BREDEX GmbH and all the people in the C++ community, particularly those involved with the standardization process, for their support and patience (sometimes I ask really silly questions).

Last but not least, many thanks and kisses for my family: Ulli, Lucas, Anica, and Frederic. I definitely did not have enough time for them due to the writing of this book.

Have fun and be human!

 Chapter 1. About This Book

1.1. Why This Book

Soon after its introduction, C++ became a de facto standard in object-oriented programming. This led to the goal of standardization. Only by having a standard could programs be written that would run on different platforms — from PCs to mainframes. Furthermore, a standard library
 would enable programmers to use general components and a higher level of abstraction without losing portability rather than having to develop all code from scratch.

Now, with the second standard, called C++11 (see Section 2.1, page 7
 , for the detailed history of C++ standards), we have a huge C++ standard library whose specification requires more than double the size of the core language features. The library enables the use of

• Input/output (I/O) classes

• String types and regular expressions

• Various data structures, such as dynamic arrays, linked lists, binary trees, and hash tables

• Various algorithms, such as a variety of sorting algorithms

• Classes for multithreading and concurrency

• Classes for internationalization support

• Numeric classes

• Plenty of utilities

However, the library is not self-explanatory. To use these components and to benefit from their power, you need an introduction that explains the concepts and the important details instead of simply listing the classes and their functions. This book is written exactly for that purpose. First, it introduces the library and all its components from a conceptual point of view. Next, the book describes the details needed for practical programming. Examples are included to demonstrate the exact use of the components. Thus, this book is a detailed introduction to the C++ library for both the beginner and the practicing programmer. Armed with the data provided herein, you should be able to take full advantage of the C++ standard library.

 Caveat:
 I don’t promise that everything described is easy and self-explanatory. The library provides a lot of flexibility, but flexibility for nontrivial purposes has a price. The library has traps and pitfalls, which I point out when we encounter them and suggest ways of avoiding them.

1.2. Before Reading This Book

To get the most from this book, you should already know C++. (The book describes the standard components of C++ but not the language itself.) You should be familiar with the concepts of classes, inheritance, templates, exception handling, and namespaces. However, you don’t have to know all the minor details about the language. The important details are described in the book; the minor details about the language are more important for people who want to implement the library rather than to use it.

Note that the language has changed during the standardization of C++11, just as it changed during the standardization of C++98, so your knowledge might not be up-to-date. Chapter 3
 provides a brief overview of and introduction to the latest language features that are important for using the C++11 library. Many of the new library features use these new language features, so you should read Chapter 3
 to review all the new features of C++. But I will also refer to that chapter when libraries use new language features.

1.3. Style and Structure of the Book

The C++ standard library provides components that are somewhat, but not totally, independent of one another, so there is no easy way to describe each part without mentioning others. I considered various approaches for presenting the contents of this book. One was on the order of the C++ standard. However, this is not the best way to explain the components of the C++ standard library from scratch. Another approach was to start with an overview of all components, followed by chapters that provided more details. Alternatively, I could have sorted the components, trying to find an order that had a minimum of cross-references to other sections. My solution was to use a mixture of all three approaches. I start with a brief introduction of the general concepts and the utilities that the library uses. Then, I describe all the components, each in one or more chapters. The first component is the standard template library (STL). There is no doubt that the STL is the most powerful, most complex, and most exciting part of the library. Its design influences other components heavily. Then, I describe the more self-explanatory components, such as special containers, strings, and regular expressions. The next component discussed is one you probably know and use already: the IOStream library. That component is followed by a discussion of internationalization, which had some influence on the IOStream library. Finally, I describe the library parts dealing with numerics, concurrency, and allocators.

Each component description begins with the component’s purpose, design, and some examples. Next, a detailed description begins with various ways to use the component, as well as any traps and pitfalls associated with it. The description usually ends with a reference section, in which you can find the exact signature and definition of a component’s classes and its functions.

 List of Contents

The first five chapters introduce this book and the C++ standard library in general:

•
Chapter 1
 : About This Book

 introduces the book’s subject and describes its contents.

•
Chapter 2
 : Introduction to C++ and the Standard Library

 provides a brief overview of the history of the C++ standard library and the context of its standardization and introduces the concept of complexity.

•
Chapter 3
 : New Language Features

 provides an overview of the new language features you should know to read this book and to use the C++ standard library.

•
Chapter 4
 : General Concepts

 describes the fundamental library concepts that you need to understand to work with all the components. In particular, the chapter introduces the namespace std
 , the format of header files, and the general support of error and exception handling.

•
Chapter 5
 : Utilities

 describes several small utilities provided for the user of the library and for the library itself. In particular, the chapter describes classes pair<>
 and tuple<>
 , smart pointers, numeric limits, type traits and type utilities, auxiliary functions, class ratio<>
 , clocks and timers, and available C functions.

Chapters 6
 through 11
 describe all aspects of the STL:

•
Chapter 6
 : The Standard Template Library

 presents a detailed introduction to the concept of the STL, which provides container classes and algorithms that are used to process collections of data. The chapter explains step-by-step the concept, the problems, and the special programming techniques of the STL, as well as the roles of its parts.

•
Chapter 7
 : STL Containers

 explains the concepts and describes the abilities of the STL’s container classes. The chapter describes arrays, vectors, deques, lists, forward lists, sets, maps, and unordered containers with their common abilities, differences, specific benefits, and drawbacks and provides typical examples.

•
Chapter 8
 : STL Container Members in Detail

 lists and describes all container members (types and operations) in the form of a handy reference.

•
Chapter 9
 : STL Iterators

 explains the various iterator categories, the auxiliary functions for iterators, and the iterator adapters, such as stream iterators, reverse iterators, insert iterators, and move iterators.

•
Chapter 10
 : STL Function Objects and Using Lambdas

 details the STL’s function object classes, including lambdas, and how to use them to define the behavior of containers and algorithms.

•
Chapter 11
 : STL Algorithms

 lists and describes the STL’s algorithms. After a brief introduction and comparison of the algorithms, each algorithm is described in detail, followed by one or more example programs.

Chapters 12
 through 14
 describe “simple” individual standard classes of the C++ standard library:

•
Chapter 12
 : Special Containers

 describes the container adapters for queues and stacks, as well as the class bitset
 , which manages a bitfield with an arbitrary number of bits or flags.

•
Chapter 13
 : Strings

 describes the string types of the C++ standard library (yes, there are more than one). The standard provides strings as “kind of” fundamental data types with the ability to use different types of characters.

 •
Chapter 14
 : Regular Expressions

 describes the interface to deal with regular expressions, which can be used to search and replace characters and substrings.

Chapters 15
 and 16
 deal with the two closely related subjects of I/O and internationalization:

•
Chapter 15
 : Input/Output Using Stream Classes

 covers the standardized form of the commonly known IOStream library. The chapter also describes details that are typically not so well known but that may be important to programmers, such as the correct way to define and integrate special I/O channels.

•
Chapter 16
 : Internationalization

 covers the concepts and classes for the internationalization of programs, such as the handling of different character sets and the use of different formats for floating-point numbers and dates.

The remaining chapters cover numerics, concurrency, and allocators:

•
Chapter 17
 : Numerics

 describes the numeric components of the C++ standard library: in particular, classes for random numbers and distributions, types for complex numbers, and some numeric C functions.

•
Chapter 18
 : Concurrency

 describes the features provided by the C++ standard library to enable and support concurrency and multithreading.

•
Chapter 19
 : Allocators

 describes the concept of different memory models in the C++ standard library.

The book concludes with a bibliography
 and an index
 .

Due to the size of this book I had to move material that is not so relevant for the average application programmer but should be covered to a supplementary chapter
 provided on the Web site of this book: http://www.cppstdlib.com
 . That material includes:

• Details of bitsets (introduced in Section 12.5
)

• Class valarray<>
 (very briefly introduced in Section 17.4
)

• Details of allocators (introduced in Chapter 19
)

1.4. How to Read This Book

This book is both an introductory user’s guide and a structured reference manual about the C++ standard library. The individual components of the C++ standard library are somewhat independent of one another, so after reading Chapters 2
 through 5
 you could read the chapters that discuss the individual components in any order. Bear in mind that Chapters 6
 through 11
 all describe the same component. To understand the other STL chapters, you should start with the introduction to the STL in Chapter 6
 .

If you are a C++ programmer who wants to know, in general, the concepts and all parts of the library, you could simply read the book from beginning to end. However, you should skip the reference sections. To program with certain components of the C++ standard library, the best way to find something is to use the index, which I have tried to make comprehensive enough to save you time when you are looking for something.

In my experience, the best way to learn something new is to look at examples. Therefore, you’ll find a lot of examples throughout the book. They may be a few lines of code or complete programs.
 In the latter case, you’ll find the name of the file containing the program as the first comment line. You can find the files on the Internet at the Web site of the book: http://www.cppstdlib.com
 .

1.5. State of the Art

The C++11 standard was completed while I was writing this book. Please bear in mind that some compilers might not yet conform to the standard. This will most likely change in the near future. As a consequence, you might discover that not all things covered in this book work as described on your system, and you may have to change example programs to fit your specific environment.

1.6. Example Code and Additional Information

You can access all example programs and acquire more information about this book and the C++ standard library from my Web site: http://www.cppstdlib.com
 . Also, you can find a lot of additional information about this topic on the Internet. See the bibliography, which is also provided on the Web site, for some of them.

1.7. Feedback

I welcome your feedback (good and bad) on this book. I tried to prepare it carefully; however, I’m human, and at some point I have to stop writing and tweaking. So, you may find some errors, inconsistencies, or subjects that could be described better. Your feedback will give me the chance to improve later editions.

The best way to reach me is by email. However, to avoid spam problems, I haven’t included an email address inside this book. (I had to stop using the email address I put in the first edition after I started getting thousands of spam emails per day.) Please refer to the book’s Web site, http://www.cppstdlib.com
 , to get an email address for feedback.

Many thanks.

 Chapter 2. Introduction to C++ and the Standard Library

In this chapter, I discuss the history and different versions of C++ and introduce the Big-O notation
 , which is used to specify the performance and scalability of library operations.

2.1. History of the C++ Standards

The standardization of C++ was started in 1989 by the International Organization for Standardization (ISO), which is a group of national standards organizations, such as ANSI in the United States. To date, this work has resulted in four milestones, which are more or less C++ standards available on different platforms throughout the world:

1. C++98
 , approved in 1998, was the first C++ standard. Its official title is Information Technology — Programming Languages — C++
 , and its document number is ISO/IEC 14882:1998.

2. C++03
 , a so-called “technical corrigendum” (“TC”), contains minor bug fixes to C++98. Its document number is ISO/IEC 14882:2003. Thus, both C++98 and C++03 refer to the “first C++ standard.”

3. TR1
 contains library extensions for the first standard. Its official title is Information Technology — Programming Languages — Technical Report on C++ Library Extensions
 , and its document number is ISO/IEC TR 19768:2007. The extensions specified here were all part of a namespace std::tr1
 .

4. C++11
 , approved in 2011, is the second C++ standard. C++11 has significant improvements in both the language and the library, for which the extensions of TR1 have become part of namespace std
). The official title is again Information Technology — Programming Languages — C++
 , but a new document number is used: ISO/IEC 14882:2011.

 This books covers C++11, which long had the working title “C++0x,” with the expectation that it would be done no later than 2009.
1

 So, both C++11 and C++0x mean the same thing. Throughout the book, I use the term C++11.

1

 The usual joke here is that x
 finally became a hexadecimal b
 .

Because some platforms and environments still do not support all of C++11 (both language features and libraries), I mention whether a feature or behavior is available only since C++11.

2.1.1. Common Questions about the C++11 Standard

Where Is the Standard Available?

The latest freely available draft of the C++11 standard is available as document N3242 (see [C++Std2011Draft
]
). While that draft should be adequate for most users and programmers, those who need the real standard have to pay ISO or a national body a price for it.

Why Did the Standardization Take So Long?

You may wonder why the standardization process for both standards took 10 years or more and why it is still not perfect. Note, however, that the standard is the result of many people and companies suggesting improvements and extensions, discussing them with others, waiting for implementations to test them, and solving all problems caused by the intersection of all the features. Nobody was working as a full-time employee for the new C++ standard. The standard is not the result of a company with a big budget and a lot of time. Standards organizations pay nothing or almost nothing to the people who work on developing standards. So, if a participant doesn’t work for a company that has a special interest in the standard, the work is done for fun. Thank goodness a lot of dedicated people had the time and the money to do just that. Between 50 and 100 people regularly met about three times a year for a week to discuss all topics and finish the task and used email throughout the rest of the year. As a result, you won’t get anything perfect or consistently designed. The result is usable in practice but is not perfect (nothing ever is).

The description of the standard library took up about 50% of the first standard, and that increased to 65% in the second standard. (With C++11, the number of pages covering the library rose from about 350 to about 750 pages.)

Note that the standard has various sources. In fact, any company or country or even individuals could propose new features and extensions, which then had to get accepted by the whole standardization organization. In principle, nothing was designed from scratch.
2

 Thus, the result is not very homogeneous. You will find different design principles for different components. A good example is the difference between the string class and the STL, which is a framework for data structures and algorithms:

2

 You may wonder why the standardization process did not design a new library from scratch. The major purpose of standardization is not to invent or to develop something; it is to harmonize an existing practice.

• String classes are designed as a safe and convenient component. Thus, they provide an almost self-explanatory interface and check for many errors in the interface.

 • The STL was designed to combine different data structures with different algorithms while achieving the best performance. Thus, the STL is not very convenient and is not required to check for many logical errors. To benefit from the powerful framework and great performance of the STL, you must know the concepts and apply them carefully.

Both of these components are part of the same library. They were harmonized a bit, but they still follow their individual, fundamental design philosophies.

Nevertheless, another goal of C++11 was to simplify things. For this reason, a lot of proposals were introduced in C++11 to solve problems, inconsistencies, and other flaws people found in practice. For example, the way to initialize values and objects was harmonized with C++11. Also, the more or less broken smart pointer class auto_ptr
 was replaced by multiple improved smart pointer classes, previously matured in Boost, a Web site dedicated to free peer-reviewed portable C++ source libraries (see [Boost
]
) to gain practical experience before being included in a new standard or another technical corrigendum.

Is This the Last C++ Standard?

C++11 is not the end of the road. People already have bug fixes, additional requirements, and proposals for new features. Thus, there will probably be another “technical corrigendum” with fixes of bugs and inconsistencies, and sooner or later, there might be a “TR2” and/or a third standard.

2.1.2. Compatibility between C++98 and C++11

A design goal of C++11 was that it remain backward compatible with C++98. In principle, everything that compiled with C++98 or C++03 should compile with C++11. However, there are some exceptions. For example, variables cannot have the name of newly introduced keywords anymore.

If code should work with different C++ versions but benefit from the improvements of C++11, if available, you can evaluate the predefined macro __cplusplus
 . For C++11, the following definition holds when compiling a C++ translation unit:

#define __cplusplus 201103L

By contrast, with both C++98 and C++03, it was:

#define __cplusplus 199711L

Note, however, that compiler vendors sometimes provide different values here.

Note that backward compatibility applies only to the source code. Binary compatibility is not guaranteed, which leads to problems, especially when an existing operation got a new return type, because overloading by the return type only is not allowed (for example, this applies to some STL algorithms and to some member functions of STL containers). So, compiling all parts, including the libraries, of a C++98 program using a C++11 compiler should usually work. Linking code compiled using a C++11 compiler with code compiled using a C++98 compiler might fail.

 2.2. Complexity and Big-O Notation

For certain parts of the C++ standard library — especially for the STL — the performance of algorithms and member functions was considered carefully. Thus, the standard requires a certain complexity
 of them. Computer scientists use a specialized notation to express the relative complexity of an algorithm. Using this measure, one can quickly categorize the relative runtime of an algorithm, as well as perform qualitative comparisons between algorithms. This measure is called Big-O notation
 .

Big-O notation expresses the runtime of an algorithm as a function of a given input of size n
 . For example, if the runtime grows linearly with the number of elements — doubling the input doubles the runtime — the complexity is O(n
). If the runtime is independent of the input, the complexity is O(1). Table 2.1
 lists typical values of complexity and their Big-O notation.

 Table 2.1. Typical Values of Complexity

[image: Image]

It is important to observe that Big-O notation hides factors with smaller exponents, such as constant factors. In particular, it doesn’t matter how long an algorithm takes. Any two linear algorithms are considered equally acceptable by this measure. There may even be some situations in which the constant is so huge in a linear algorithm that even an exponential algorithm with a small constant would be preferable in practice. This is a valid criticism of Big-O notation. Just be aware that it is only a rule of thumb; the algorithm with optimal complexity is not necessarily the best one.

Table 2.2
 lists all the categories of complexity with a certain number of elements to give you a feel of how fast the runtime grows with respect to the number of elements. As you can see, with a small number of elements, the running times don’t differ much. Here, constant factors that are hidden by Big-O notation may have a big influence. However, the more elements you have, the bigger the differences in the running times, so constant factors become meaningless. Remember to “think big” when you consider complexity.

 Table 2.2. Runtime with Respect to the Complexity and the Number of Elements

[image: Image]

Some complexity definitions in the C++ reference manual are specified as amortized
 . This means that the operations in the long term
 behave as described. However, a single operation may take longer than specified. For example, if you append elements to a dynamic array, the runtime depends on whether the array has enough memory for one more element. If there is enough memory, the complexity is constant because inserting a new last element always takes the same time. However, if there is not enough memory, the complexity is linear because, depending on the number of elements, you have to allocate new memory and copy all elements. Reallocations are rather rare, so any sufficiently long sequence of that operation behaves as if each operation has constant complexity. Thus, the complexity of the insertion is “amortized” constant time.

 Chapter 3. New Language Features

The core language and the library of C++ are usually standardized in parallel. In this way, the library can benefit from improvements in the language, and the language can benefit from experiences of library implementation. As a result, a C++ standard library always uses specific language features, which might not be available with previous versions of the standard.

Thus, C++11 is not the same language as C++98/C++03, and C++98/C++03 differs from C++ before it was standardized. If you didn’t follow its evolution, you may be surprised by the new language features the library uses. This chapter gives you a brief overview of the new features of C++11, which are important for the design, understanding, or application of the C++11 standard library. The end of this chapter covers some of the features that were available before C++11 but are still not widely known.

While I was writing this book (in 2010 and 2011), not all compilers were able to provide all the new language features of C++11. I expect that this will soon change because all major C++ compiler vendors were part of the standardization process. But for some period of time, you may be restricted in your use of the library. Throughout the book I’ll use footnotes to mention any restrictions that are typical and important.

3.1. New C++11 Language Features

3.1.1. Important Minor Syntax Cleanups

First, I’d like to introduce two new features of C++11 that are minor but important for your day-today programming.

Spaces in Template Expressions

The requirement to put a space between two closing template expressions has gone:

vector<list<int> >; // OK in each C++ version

vector<list<int>>; // OK since C++11

Throughout the book (as in real code) you will find both forms.

 nullptr
 and std::nullptr_t

C++11 lets you use nullptr
 instead of 0
 or NULL
 to specify that a pointer refers to no value (which differs from having an undefined value). This new feature especially helps to avoid mistakes that occurred when a null pointer was interpreted as an integral value. For example:

Click here to view code image

void f(int);

void f(void*);

f(0); // calls
 f(int)

f(NULL); // calls
 f(int) if
 NULL is
 0, ambiguous otherwise

f(nullptr); // calls
 f(void*)

nullptr
 is a new keyword. It automatically converts into each pointer type but not to any integral type. It has type std::nullptr_t
 , definedin <cstddef>
 (see Section 5.8.1, page 161
), so you can now even overload operations for the case that a null pointer is passed. Note that std::nullptr_t
 counts as a fundamental data type (see Section 5.4.2, page 127
).

3.1.2. Automatic Type Deduction with auto

With C++11, you can declare a variable or an object without specifying its specific type by using auto
 .
1

 For example:

auto i = 42; //
 i has type
 int

double f();

auto d = f(); //
 d has type
 double

1

 Note that auto
 is an old keyword of C. As the counterpart of static
 , declaring a variable as local, it was never used, because not specifying something as static implicitly declared it as auto
 .

The type of a variable declared with auto
 is deduced from its initializer. Thus, an initialization is required:

auto i; // ERROR: can't deduce the type of
 i

Additional qualifiers are allowed. For example:

static auto vat = 0.19;

Using auto
 is especially useful where the type is a pretty long and/or complicated expression. For example:

Click here to view code image

vector<string> v;

...

auto pos = v.begin(); //
 pos has type
 vector<string>::iterator

auto l = [] (int x) -> bool { //
 l has the type of a lambda

 ...
 , // taking an
 int and returning a
 bool

 };

The latter is an object, representing a lambda, which is introduced in Section 3.1.10, page 28
 .

 3.1.3. Uniform Initialization and Initializer Lists

Before C++11, programmers, especially novices, could easily become confused by the question of how to initialize a variable or an object. Initialization could happen with parentheses, braces, and/or assignment operators.

For this reason, C++11 introduced the concept of uniform initialization, which means that for any initialization, you can use one common syntax. This syntax uses braces, so the following is possible now:

Click here to view code image

int values[] { 1, 2, 3 };

std::vector<int> v { 2, 3, 5, 7, 11, 13, 17 };

std::vector<std::string> cities {

 "Berlin", "New York", "London", "Braunschweig", "Cairo", "Cologne"

};

std::complex<double> c{4.0,3.0}; // equivalent to
 c(4.0,3.0)

An initializer list forces so-called value initialization
 , which means that even local variables of fundamental data types, which usually have an undefined initial value, are initialized by zero (or nullptr
 , if it is a pointer):

int i; //
 i has undefined value

int j{}; //
 j is initialized by
 0

int* p; //
 p has undefined value

int* q{}; //
 q is initialized by
 nullptr

Note, however, that narrowing
 initializations — those that reduce precision or where the supplied value gets modified — are not possible with braces. For example:

Click here to view code image

int x1(5.3); // OK, but OUCH:
 x1 becomes
 5

int x2 = 5.3; // OK, but OUCH:
 x2 becomes
 5

int x3{5.0}; // ERROR: narrowing

int x4 = {5.3}; // ERROR: narrowing

char c1{7}; // OK: even though
 7 is an
 int, this is not narrowing

char c2{99999}; // ERROR: narrowing (if
 99999 doesn't fit into a
 char)

std::vector<int> v1 { 1, 2, 4, 5 }; // OK

std::vector<int> v2 { 1, 2.3, 4, 5.6 }; // ERROR: narrowing
 doubles to
 ints

As you can see, to check whether narrowing applies, even the current values might be considered, if available at compile time. As Bjarne Stroustrup writes in [Stroustrup:FAQ
]
 regarding this example: “The way C++11 avoids a lot of incompatibilities is by relying on the actual values of initializers (such as 7
 in the example above) when it can (and not just type) when deciding what is a narrowing conversion. If a value can be represented exactly as the target type, the conversion is not narrowing. Note that floating-point to integer conversions are always considered narrowing — even 7.0
 to 7
 .”

To support the concept of initializer lists for user-defined types, C++11 provides the class template std::initializer_list<>
 . It can be used to support initializations by a list of values or in any other place where you want to process just a list of values. For example:

Click here to view code image

 void print (std::initializer_list<int> vals)

{

 for (auto p=vals.begin(); p!=vals.end(); ++p) { // process a list of values

 std::cout << *p << "\n";

 }

}

print ({12,3,5,7,11,13,17}); // pass a list of values to
 print()

When there are constructors for both a specific number of arguments and an initializer list, the version with the initializer list is preferred:

class P

{

 public:

 P(int,int);

 P(std::initializer_list<int>);

};

P p(77,5); // calls
 P::P(int,int)

P q{77,5}; // calls
 P::P(initializer_list)

P r{77,5,42}; // calls
 P::P(initializer_list)

P s = {77,5}; // calls
 P::P(initializer_list)

Without the constructor for the initializer list, the constructor taking two int
 s would be called to initialize q
 and s
 , while the initialization of r
 would be invalid.

Because of initializer lists, explicit
 now also becomes relevant for constructors taking more than one argument. So, you can now disable automatic type conversions from multiple values, which is also used when an initialization uses the =
 syntax:

Click here to view code image

class P

{

 public:

 P(int a, int b) {

 ...

 }

 explicit P(int a, int b, int c) {

 ...

 }

};

P x(77,5); // OK

P y{77,5}; // OK

P z {77,5,42}; // OK

P v = {77,5}; // OK (implicit type conversion allowed)

P w = {77,5,42}; // ERROR due to
 explicit (no implicit type conversion allowed)

 void fp(const P&);

fp({47,11}); // OK, implicit conversion of
 {47,11} into
 P

fp({47,11,3}); // ERROR due to
 explicit

fp(P{47,11}); // OK, explicit conversion of
 {47,11} into
 P

fp(P{47,11,3}); // OK, explicit conversion of
 {47,11,3} into
 P

In the same manner, an explicit
 constructor taking an initializer list disables implicit conversions for initializer lists with zero, one, or more initial values.

3.1.4. Range-Based for
 Loops

C++11 introduces a new form of for
 loop, which iterates over all elements of a given range, array, or collection. It’s what in other programming languages would be called a foreach
 loop. The general syntax is as follows:

for (decl
 : coll
) {

 statement

}

where decl
 is the declaration of each element of the passed collection coll
 and for which the statements specified are called. For example, the following calls for each value of the passed initializer list the specified statement, which writes it on a line to the standard output cout
 :

for (int i : { 2, 3, 5, 7, 9, 13, 17, 19 }) {

 std::cout << i << std::endl;

}

To multiply each element elem
 of a vector vec
 by 3
 you can program as follows:

std::vector<double> vec;

...

for (auto& elem : vec) {

 elem *= 3;

}

Here, declaring elem
 as a reference is important because otherwise the statements in the body of the for
 loop act on a local copy of the elements in the vector (which sometimes also might be useful).

This means that to avoid calling the copy constructor and the destructor for each element, you should usually declare the current element to be a constant reference. Thus, a generic function to print all elements of a collection should be implemented as follows:

template <typename T>

void printElements (const T& coll)

{

 for (const auto& elem : coll) {

 std::cout << elem << std::endl;

 }

}

 Here, the range-based for
 statement is equivalent to the following:

Click here to view code image

{

 for (auto _pos=coll.begin(); _pos != coll.end(); ++_pos) {

 const auto& elem = *_pos;

 std::cout << elem << std::endl;

 }

}

In general, a range-based for
 loop declared as

for (decl
 : coll
) {

 statement

}

is equivalent to the following, if coll
 provides begin()
 and end()
 members:

Click here to view code image

{

 for (auto _pos=coll
 .begin(), _end=coll
 .end(); _pos!=_end; ++_pos) {

 decl
 = *_pos;

 statement

 }

}

or, if that doesn’t match, to the following by using a global begin()
 and end()
 taking coll
 as argument:

Click here to view code image

{

 for (auto _pos=begin(coll
), _end=end(coll
); _pos!=_end; ++_pos) {

 decl
 = *_pos;

 statement

 }

}

As a result, you can use range-based for
 loops even for initializer lists because the class template std::initializer_list<>
 provides begin()
 and end()
 members.

In addition, there is a rule that allows you to use ordinary C-style arrays of known size. For example:

Click here to view code image

int array[] = { 1, 2, 3, 4, 5 };

long sum=0; // process sum of all elements

for (int x : array) {

 sum += x;

}

for (auto elem : { sum, sum*2, sum*4 }) { // print some multiples of
 sum

 std::cout << elem << std::endl;

}

 has the following output:

15

30

60

Note that no explicit type conversions are possible when elements are initialized as decl
 inside the for
 loop. Thus, the following does not compile:

Click here to view code image

class C

{

 public:

 explicit C(const std::string& s); // explicit(!) type conversion from strings

 ...

};

std::vector<std::string> vs;

for (const C& elem : vs) { // ERROR, no conversion from string to
 C defined

 std::cout << elem << std::endl;

}

3.1.5. Move Semantics and Rvalue References

One of the most important new features of C++11 is the support of move semantics. This feature goes further into the major design goal of C++ to avoid unnecessary copies and temporaries.

This new feature is so complex that I recommend using a more detailed introduction to this topic, but I will try to give a brief introduction and summary here.
2

2

 This introduction is based on [Abrahams:RValues
]
 (with friendly permission by Dave Abrahams), on [Becker:RValues
]
 (with friendly permission by Thomas Becker), and some emails exchanged with Daniel Krügler, Dietmar Kühl, and Jens Maurer.

Consider the following code example:

void createAndInsert (std::multiset<X>& coll)

{

 X x; // create an object of type
 X

 ...

 coll.insert(x); // insert it into the passed collection

}

Here, we insert a new object into a collection, which provides a member function that creates an internal copy of the passed element:

namespace std {

 template <typename T, ...
 > class multiset {

 public:

 ...
 insert (const T& v); // copy value of
 v

 ...

 };

}

 This behavior is useful because the collection provides value semantics and the ability to insert temporary objects or objects that are used and modified after being inserted:

Click here to view code image

X x;

coll.insert(x); // inserts copy of
 x

...

coll.insert(x+x); // inserts copy of temporary rvalue

...

coll.insert(x); // inserts copy of
 x (although
 x is not used any longer)

However, for the last two insertions of x
 , it would be great to specify a behavior that the passed values (the result of x+x
 and x
) are no longer used by the caller so that coll
 internally could avoid creating a copy and somehow move
 the contents of them into its new elements. Especially when copying x
 is expensive — for example, if it is a large collection of strings — this could become a big performance improvement.

Since C++11, such a behavior is possible. The programmer, however, has to specify that a move is possible unless a temporary is used. Although a compiler might find this out in trivial cases, allowing the programmer to perform this task lets this feature be used in all cases, where logically appropriate. The preceding code simply has to get modified as follows:

Click here to view code image

X x;

coll.insert(x); // inserts copy of
 x (OK,
 x is still used)

...

coll.insert(x+x); // moves (or copies) contents of temporary rvalue

...

coll.insert(std::move(x)); // moves (or copies) contents of
 x into
 coll

With std::move()
 , declared in <utility>
 , x
 can be moved
 instead of being copied. However, std::move()
 doesn’t itself do any moving, but merely converts its argument into a so-called rvalue reference
 , which is a type declared with two ampersands: X&&
 . This new type stands for rvalues (anonymous temporaries that can appear only on the right-hand side of an assignment) that can be modified. The contract is that this is a (temporary) object that is not needed any longer so that you can steal
 its contents and/or its resources.

Now, the collection can provide an overloaded version of insert()
 , which deals with these rvalue references:

Click here to view code image

namespace std {

 template <typename T, ...
 > class multiset {

 public:

 ...
 insert (const T& x); // for lvalues: copies the value

 ...
 insert (T&& x); // for rvalues: moves the value

 ...

 };

}

 The version for rvalue references can now be optimized so that its implementation steals
 the contents of x
 . To do that, however, we need the help of the type of x
 , because only the type of x
 has access to its internals. So, for example, you could use internal arrays and pointers of x
 to initialize the inserted element, which would be a huge performance improvement if class x
 is itself a complex type, where you had to copy element-by-element instead. To initialize the new internal element, we simply call a so-called move constructor
 of class X
 , which steals
 the value of the passed argument to initialize a new object. All complex types should — and in the C++ standard library will — provide such a special constructor, which moves the contents of an existing element to a new element:

class X {

 public:

 X (const X& lvalue); // copy constructor

 X (X&& rvalue); // move constructor

 ...

};

For example, the move constructor for strings typically just assigns the existing internal character array to the new object instead of creating a new array and copying all elements. The same applies to all collection classes: Instead of creating a copy of all elements, you just assign the internal memory to the new object. If no move constructor is provided, the copy constructor will be used.

In addition, you have to ensure that any modification — especially a destruction — of the passed object, where the value was stolen
 from, doesn’t impact the state of the new object that now owns the value. Thus, you usually have to clear the contents of the passed argument (for example, by assigning nullptr
 to its internal member referring to its elements).

Clearing the contents of an object for which move semantics were called is, strictly speaking, not required, but not doing so makes the whole mechanism almost useless. In fact, for the classes of the C++ standard library in general, it is guaranteed that after a move, the objects are in a valid but unspecified
 state. That is, you can assign new values afterward, but the current value is not defined. For STL containers, it is guaranteed that containers where the value was moved from are empty afterward.

In the same way, any nontrivial class should provide both a copy assignment and a move assignment operator:

Click here to view code image

class X {

 public:

 X& operator= (const X& lvalue); // copy assignment operator

 X& operator= (X&& rvalue); // move assignment operator

 ...

};

For strings and collections these operators could be implemented by simply swapping the internal contents and resources. However, you should also clear the contents of *this
 because this object might hold resources, such as locks, for which it is better to release them sooner. Again, the move semantics don’t require that, but it is a quality of move support that, for example, is provided by the container classes of the C++ standard library.

Finally, note the following two remarks about this feature: (1) overloading rules for rvalue and lvalue references and (2) returning rvalue references.

 Overloading Rules for Rvalue and Lvalue References

The overloading rules for rvalues and lvalues are as follows:
3

3

 Thanks to Thomas Becker for providing this wording.

• If you implement only

void foo(X&);

without void foo(X&&)
 , the behavior is as in C++98: foo()
 can be called for lvalues but not for rvalues.

• If you implement

void foo(const X&);

without void foo(X&&)
 , the behavior is as in C++98: foo()
 can be called for rvalues and for lvalues.

• If you implement

void foo(X&);

void foo(X&&);

or

void foo(const X&);

void foo(X&&);

you can distinguish between dealing with rvalues and lvalues. The version for rvalues is allowed to and should provide move semantics. Thus, it can steal
 the internal state and resources of the passed argument.

• If you implement

void foo(X&&);

but neither void foo(X&)
 nor void foo(const X&)
 , foo()
 can be called on rvalues, but trying to call it on an lvalue will trigger a compile error. Thus, only move semantics are provided here. This ability is used inside the library: for example, by unique pointers (see Section 5.2.5, page 98
), file streams (see Section 15.9.2, page 795
), or string streams (see Section 15.10.2, page 806
),

This means that if a class does not provide move semantics and has only the usual copy constructor and copy assignment operator, these will be called for rvalue references. Thus, std::move()
 means to call move semantics, if provided, and copy semantics otherwise.

Returning Rvalue References

You don’t have to and should not move()
 return values. According to the language rules, the standard specifies that for the following code:
4

X foo ()

{

 X x;

 ...

 return x;

}

4

 Thanks to Dave Abrahams for providing this wording.

 the following behavior is guaranteed:

• If X
 has an accessible copy or move constructor, the compiler may choose to elide the copy. This is the so-called (named) return value optimization
 ((N)RVO
), which was specified even before C++11 and is supported by most compilers.

• Otherwise, if X
 has a move constructor, x
 is moved.

• Otherwise, if X
 has a copy constructor, x
 is copied.

• Otherwise, a compile-time error is emitted.

Note also that returning an rvalue reference is an error if the returned object is a local nonstatic object:

X&& foo ()

{

 X x;

 ...

 return x; // ERROR: returns reference to nonexisting object

}

An rvalue reference is a reference, and returning it while referring to a local object means that you return a reference to an object that doesn’t exist any more. Whether std::move()
 is used doesn’t matter.

3.1.6. New String Literals

Since C++11, you can define raw string and multibyte/wide-character string literals.

Raw String Literals

Such a raw string allows one to define a character sequence by writing exactly its contents as a raw character sequence. Thus, you save a lot of escapes necessary to mask special characters.

A raw string starts with R"(
 and ends with)"
 . The string might contain line breaks. For example, an ordinary string literal representing two backslashes and an n
 would be defined as an ordinary string literal as follows:

"\\\\n"

and as a raw string literal as follows:

R"(\\n)"

To be able to have)"
 inside the raw string, you can use a delimiter. Thus, the complete syntax of a raw string is R"
 delim
 (
 ...)
 delim
 "
 , where delim
 is a character sequence of at most 16 basic characters except the backslash, whitespaces, and parentheses.

 For example, the raw string literal

R"nc(a\

 b\nc()"

)nc";

is equivalent to the following ordinary string literal:

"a\\\n b\\nc()\"\n "

Thus, the string contains an a
 , a backslash, a newline character, some spaces, a b
 , a backslash, an n
 , a c
 , a double quote character, a newline character, and some spaces.

Raw string literals are especially useful when defining regular expressions. See Chapter 14
 for details.

Encoded String Literals

By using an encoding prefix
 , you can define a special character encoding for string literals. The following encoding prefixes are defined:

• u8
 defines a UTF-8 encoding. A UTF-8 string literal is initialized with the given characters as encoded in UTF-8. The characters have type const char
 .

• u
 defines a string literal with characters of type char16_t
 .

• U
 defines a string literal with characters of type char32_t
 .

• L
 defines a wide string literal with characters of type wchar_t
 .

For example:

L"hello" // defines ''hello'' as
 wchar_t string literal

The initial R
 of a raw string can be preceded by an encoding prefix.

See Chapter 16
 for details about using different encodings for internationalization.

3.1.7. Keyword noexcept

C++11 provides the keyword noexcept
 . It can be used to specify that a function cannot throw — or is not prepared to throw. For example:

void foo () noexcept;

declares that foo()
 won’t throw. If an exception is not handled locally inside foo()
 — thus, if foo()
 throws — the program is terminated, calling std::terminate()
 , which by default calls std::abort()
 (see Section 5.8.2, page 162
).

noexcept
 targets a lot of problems (empty) exception specifications have. To quote from [N3051:DeprExcSpec
]
 (with friendly permission by Doug Gregor):

• Runtime checking
 : C++ exception specifications are checked at runtime rather than at compile time, so they offer no programmer guarantees that all exceptions have been handled. The runtime failure mode (calling std::unexpected()
) does not lend itself to recovery.

• Runtime overhead
 : Runtime checking requires the compiler to produce additional code that also hampers optimizations.

 • Unusable in generic code
 : Within generic code, it is not generally possible to know what types of exceptions may be thrown from operations on template arguments, so a precise exception specification cannot be written.

In practice, only two forms of exception-throwing guarantees are useful: An operation might throw an exception (any exception) or an operation will never throw any exception. The former is expressed by omitting the exception-specification entirely, while the latter can be expressed as throw()
 but rarely is, due to performance considerations.

Especially because noexcept
 does not require stack unwinding, programmers can now express the nothrow guarantee without additional overhead. As a result, the use of exception specifications is deprecated since C++11.

You can even specify a condition under which a function throws no exception. For example, for any type Type
 , the global swap()
 usually is defined as follows:

Click here to view code image

void swap (Type
 & x, Type
 & y) noexcept(noexcept(x.swap(y)))

{

 x.swap(y);

}

Here, inside noexcept(
 ...)
 , you can specify a Boolean condition under which no exception gets thrown: Specifying noexcept
 without condition is a short form of specifying noexcept(true)
 .

In this case, the condition is noexcept(x.swap(y))
 . Here, the operator
 noexcept
 is used, which yields true
 if an evaluated expression, which is specified within parentheses, can’t throw an exception. Thus, the global swap()
 specifies that it does not throw an exception if the member function swap()
 called for the first argument does not throw.

As another example, the move assignment operator for value pairs is declared as follows:

Click here to view code image

pair& operator= (pair&& p)

 noexcept(is_nothrow_move_assignable<T1>::value &&

 is_nothrow_move_assignable<T2>::value);

Here, the is_nothrow_move_assignable
 type trait is used, which checks whether for the passed type, a move assignment that does not throw is possible (see Section 5.4.2, page 127
).

According to [N3279:LibNoexcept
]
 , noexcept
 was introduced inside the library with the following conservative approach (words and phrases in italics
 are quoted literally):

• Each library function ... that ... cannot throw
 and does not specify any undefined behavior — for example, caused by a broken precondition — should be marked as unconditionally
 noexcept
 .

• If a library swap function, move constructor, or move assignment operator ... can be proven not to throw by applying the
 noexcept
 operator, it should be marked as conditionally
 noexcept
 . No other function should use a conditional
 noexcept
 specification.

• No library destructor should throw. It must use the implicitly supplied (nonthrowing) exception specification.

• Library functions designed for compatibility with C code ... may be marked as unconditionally
 noexcept
 .

Note that noexcept
 was deliberately not applied to any C++ function having a precondition that, if violated, could result in undefined behavior. This allows library implementations to provide a “safe mode” throwing a “precondition violation” exception in the event of misuse.

 Throughout this book I usually skip noexcept
 specifications to improve readability and save space.

3.1.8. Keyword constexpr

Since C++11, constexpr
 can be used to enable that expressions be evaluated at compile time. For example:

constexpr int square (int x)

{

 return x * x;

}

float a[square(9)]; // OK since C++11:
 a has
 81 elements

This keyword fixes a problem C++98 had when using numeric limits (see Section 5.3, page 115
). Before C++11, an expression such as

std::numeric_limits<short>::max()

could not be used as an integral constant, although it was functionally equivalent to the macro INT_MAX
 . Now, with C++11, such an expression is declared as constexpr
 so that, for example, you can use it to declare arrays or in compile-time computations (metaprogramming):

std::array<float,std::numeric_limits<short>::max()> a;

Throughout this book I usually skip constexpr
 specifications to improve readability and save space.

3.1.9. New Template Features

Variadic Templates

Since C++11, templates can have parameters that accept a variable number of template arguments. This ability is called variadic templates
 . For example, you can use the following to call print()
 for a variable number of arguments of different types:

Click here to view code image

void print ()

{

}

template <typename T, typename... Types>

void print (const T& firstArg, const Types&... args)

{

 std::cout << firstArg << std::endl; // print first argument

 print(args...); // call
 print() for remaining arguments

}

If one or more arguments are passed, the function template is used, which by specifying the first argument separately allows the first argument to print and then recursively calls print()
 for the remaining arguments. To end the recursion, the non-template overload of print()
 is provided.

 For example, an input such as

print (7.5, "hello", std::bitset<16>(377), 42);

would output the following (see Section 12.5.1, page 652
 for details of bitsets):

7.5

hello

0000000101111001

42

Note that it is currently under discussion whether the following example also is valid. The reason is that formally for a single argument the variadic form is ambiguous with the nonvariadic form for a single argument; however, compilers usually accept this code:

Click here to view code image

template <typename T>

void print (const T& arg)

{

 std::cout << arg << std::endl;

}

template <typename T, typename... Types>

void print (const T& firstArg, const Types&... args)

{

 std::cout << firstArg << std::endl; // print first argument

 print(args...); // call
 print() for remaining arguments

}

Inside variadic templates, sizeof...(args)
 yields the number of arguments.

Class std::tuple<>
 makes heavy use of this feature (see Section 5.1.2, page 68
).

Alias Templates (Template Typedef)

Since C++11, template (partial) type definitions also are supported. However, because all approaches with the typename
 keyword failed for some reason, the keyword using
 was introduced here, and the term alias template
 is used for it. For example, after

Click here to view code image

template <typename T>

using Vec = std::vector<T,MyAlloc<T>>; // standard vector using own allocator

the term

Vec<int> coll;

is equivalent to

std::vector<int,MyAlloc<int>> coll;

See Section 5.2.5, page 108
 , for another example.

Other New Template Features

Since C++11, function templates (see Section 3.2, page 34
) may have default template arguments. In addition, local types can be used now as template arguments, and functions with internal linkage can now be used as arguments to nontype templates of function pointers or function references.

 3.1.10. Lambdas

C++11 introduced lambdas
 , allowing the definition of inline functionality, which can be used as a parameter or a local object.

Lambdas change the way the C++ standard library is used. For example, Section 6.9, page 229
 , and Section 10.3, page 499
 , discuss how to use lambdas with STL algorithms and containers. Section 18.1.2, page 958
 , demonstrates how to use lambdas to define code that can run concurrently.

Syntax of Lambdas

A lambda is a definition of functionality that can be defined inside statements and expressions. Thus, you can use a lambda as an inline function.

The minimal lambda function has no parameters and simply does something. For example:

[] {

 std::cout << "hello lambda" << std::endl;

}

You can call it directly:

[] {

 std::cout << "hello lambda" << std::endl;

} (); // prints ''
 hello lambda''

or pass it to objects to get called:

auto l = [] {

 std::cout << "hello lambda" << std::endl;

 };

...

l(); // prints ''
 hello lambda''

As you can see, a lambda is always introduced by a so-called lambda introducer:
 brackets within which you can specify a so-called capture
 to access nonstatic outside objects inside the lambda. When there is no need to have access to outside data, the brackets are just empty, as is the case here. Static objects such as std::cout
 can be used.

Between the lambda introducer and the lambda body, you can specify parameters, mutable
 , an exception specification, attribute specifiers, and the return type. All of them are optional, but if one of them occurs, the parentheses for the parameters are mandatory. Thus, the syntax of a lambda is either

[...
] {...
 }

or

[...
] (...
) mutable
opt

 throwSpec

opt

 ->retType

opt

 {...
 }

A lambda can have parameters specified in parentheses, just like any other function:

auto l = [] (const std::string& s) {

 std::cout << s << std::endl;

 };

l("hello lambda"); // prints ''
 hello lambda''

 Note, however, that lambdas can’t be templates. You always have to specify all types.

A lambda can also return something. Without any specific definition of the return type, it is deduced from the return value. For example, the return type of the following lambda is int
 :

[] {

 return 42;

}

To specify a return type, you can use the new syntax C++ also provides for ordinary functions (see Section 3.1.12, page 32
). For example, the following lambda returns 42.0
 :

[] () -> double {

 return 42;

}

In this case, you have to specify the return type after the parentheses for the arguments, which are required then, and the characters “->
 .”

Between the parameters and the return specification or body, you can also specify an exception specification like you can do for functions. However, as for functions exception specifications are deprecated now (see Section 3.1.7, page 24
).

Captures (Access to Outer Scope)

Inside the lambda introducer (brackets at the beginning of a lambda), you can specify a capture
 to access data of outer scope that is not passed as an argument:

• [=]
 means that the outer scope is passed to the lambda by value. Thus, you can read but not modify all data that was readable where the lambda was defined.

• [&]
 means that the outer scope is passed to the lambda by reference. Thus, you have write access to all data that was valid when the lambda was defined, provided that you had write access there.

You can also specify individually for each object that inside the lambda you have access to it by value or by reference. So, you can limit the access and mix different kinds of access. For example, the following statements:

int x=0;

int y=42;

auto qqq = [x, &y] {

 std::cout << "x: " << x << std::endl;

 std::cout << "y: " << y << std::endl;

 ++y; // OK

 };

x = y = 77;

qqq();

qqq();

std::cout << "final y: " << y << std::endl;

 produce the following output:

x: 0

y: 77

x: 0

y: 78

final y: 79

Because x
 gets passed by value, you are not allowed to modify it inside the lambda; calling ++x
 inside the lambda would not compile. Because y
 is passed by reference, you have write access to it and are affected by any value change; so calling the lambda twice increments the assigned value 77
 .

Instead of [x, &y]
 , you could also have specified [=, &y]
 to pass y
 by reference and all other objects by value.

To have a mixture of passing by value and passing by reference, you can declare the lambda as mutable
 . In that case, objects are passed by value, but inside the function object defined by the lambda, you have write access to the passed value. For example:

int id = 0;

auto f = [id] () mutable {

 std::cout << "id: " << id << std::endl;

 ++id; // OK

 };

id = 42;

f();

f();

f();

std::cout << id << std::endl;

has the following output:

id: 0

id: 1

id: 2

42

You can consider the behavior of the lambda to be like the following function object (see Section 6.10, page 233
):

class {

 private:

 int id; // copy of outside
 id

 public:

 void operator() () {

 std::cout << "id: " << id << std::endl;

 ++id; // OK

 }

};

 Due to mutable
 , operator ()
 is defined as a nonconstant member function, which means that write access to id
 is possible. So, with mutable
 , a lambda becomes stateful even if the state is passed by value. Without mutable
 , which is the usual case, operator ()
 becomes a constant member function so that you only have read access to objects that were passed by value. See Section 10.3.2, page 501
 , for another example of using mutable
 with lambdas, which also discusses possible problems.

Type of Lambdas

The type of a lambda is an anonymous function object (or functor) that is unique for each lambda expression. Thus, to declare objects of that type, you need templates or auto
 . If you need the type, you can use decltype()
 (see Section 3.1.11, page 32
), which is, for example, required to pass a lambda as hash function or ordering or sorting criterion to associative or unordered containers. See Section 6.9, page 232
 , and Section 7.9.7, page 379
 , for details.

Alternatively, you can use the std::function<>
 class template, provided by the C++ standard library, to specify a general type for functional programming (see Section 5.4.4, page 133
). That class template provides the only way to specify the return type of a function returning a lambda:

// lang/lambda1.cpp

#include<functional>

#include<iostream>

std::function<int(int,int)> returnLambda ()

{

 return [] (int x, int y) {

 return x*y;

 };

}

int main()

{

 auto lf = returnLambda();

 std::cout << lf(6,7) << std::endl;

}

The output of the program is (of course):

42

 3.1.11. Keyword decltype

By using the new decltype
 keyword, you can let the compiler find out the type of an expression. This is the realization of the often requested typeof
 feature. However, the existing typeof
 implementations were inconsistent and incomplete, so C++11 introduced a new keyword. For example:

std::map<std::string,float> coll;

decltype(coll)::value_type elem;

One application of decltype
 is to declare return types (see below). Another is to use it in metaprogramming (see Section 5.4.1, page 125
) or to pass the type of a lambda (see Section 10.3.4, page 504
).

3.1.12. New Function Declaration Syntax

Sometimes, the return type of a function depends on an expression processed with the arguments. However, something like

template <typename T1, typename T2>

decltype(x+y) add(T1 x, T2 y);

was not possible before C++11, because the return expression uses objects not introduced or in scope yet.

But with C++11, you can alternatively declare the return type of a function behind the parameter list:

template <typename T1, typename T2>

auto add(T1 x, T2 y) -> decltype(x+y);

This uses the same syntax as for lambdas to declare return types (see Section 3.1.10, page 28
).

3.1.13. Scoped Enumerations

C++11 allows the definition of scoped enumerations
 — also called strong enumerations
 , or enumeration classes
 — which are a cleaner implementation of enumeration values (enumerators
) in C++. For example:

enum class Salutation : char { mr, ms, co, none };

The important point is to specify keyword class
 behind enum
 .

Scoped enumerations have the following advantages:

• Implicit conversions to and from int
 are not possible.

• Values like mr
 are not part of the scope where the enumeration is declared. You have to use Salutation::mr
 instead.

• You can explicitly define the underlying type (char
 here) and have a guaranteed size (if you skip “: char
 ” here, int
 is the default).

• Forward declarations of the enumeration type are possible, which eliminates the need to recompile compilation units for new enumerations values if only the type is used.

 Note that with the type trait std::underlying_type
 , you can evaluate the underlying type of an enumeration type (see Section 5.4.2, page 130
).

As an example, error condition values of standard exceptions are scoped enumerators
 (see Section 4.3.2, page 45
).

3.1.14. New Fundamental Data Types

The following new fundamental data types are defined in C++11:

• char16_t
 and char32_t
 (see Section 16.1.3, page 852
)

• long long
 and unsigned long long

• std::nullptr_t
 (see Section 3.1.1, page 14
)

3.2. Old “New” Language Features

Although C++98 is more than 10 years old now, programmers still can be surprised by some of the language features. Some of those are presented in this section.

Nontype Template Parameters

In addition to type parameters, it is also possible to use nontype parameters. A nontype parameter is then considered part of the type. For example, for the standard class bitset<>
 (see Section 12.5, page 650
), you can pass the number of bits as the template argument. The following statements define two bitfields: one with 32 bits and one with 50 bits:

bitset<32> flags32; // bitset with 32 bits

bitset<50> flags50; // bitset with 50 bits

These bitsets have different types because they use different template arguments. Thus, you can’t assign or compare them unless a corresponding type conversion is provided.

Default Template Parameters

Class templates may have default arguments. For example, the following declaration allows one to declare objects of class MyClass
 with one or two template arguments:

template <typename T, typename container = vector<T>>

class MyClass;

If you pass only one argument, the default parameter is used as the second argument:

MyClass<int> x1; // equivalent to:
 MyClass<int,vector<int>>

Note that default template arguments may be defined in terms of previous arguments.

 Keyword typename

The keyword typename
 was introduced to specify that the identifier that follows is a type. Consider the following example:

template <typename T>

class MyClass {

 typename T::SubType * ptr;

 ...

};

Here, typename
 is used to clarify that SubType
 is a type defined within class T
 . Thus, ptr
 is a pointer to the type T::SubType
 . Without typename
 , SubType
 would be considered a static member, and thus

T::SubType * ptr

would be a multiplication of value SubType
 of type T
 with ptr
 .

According to the qualification of SubType
 being a type, any type that is used in place of T
 must provide an inner type SubType
 . For example, the use of type Q
 as a template argument is possible only if type Q
 has an inner type definition for SubType
 :

class Q {

 typedef int SubType;

 ...

};

MyClass<Q> x; // OK

In this case, the ptr
 member of MyClass<Q>
 would be a pointer to type int
 . However, the subtype could also be an abstract data type, such as a class:

class Q {

 class SubType;

 ...

};

Note that typename
 is always necessary to qualify an identifier of a template as being a type, even if an interpretation that is not a type would make no sense. Thus, the general rule in C++ is that any identifier of a template is considered to be a value except if it is qualified by typename
 .

Apart from this, typename
 can also be used instead of class
 in a template declaration:

template <typename T> class MyClass;

Member Templates

Member functions of classes may be templates. However, member templates may not be virtual. For example:

 class MyClass {

 ...

 template <typename T>

 void f(T);

};

Here, MyClass::f
 declares a set of member functions for parameters of any type. You can pass any argument as long as its type provides all operations used by f()
 .

This feature is often used to support automatic type conversions for members in class templates. For example, in the following definition, the argument x
 of assign()
 must have exactly the same type as the object it is called for:

Click here to view code image

template <typename T>

class MyClass {

 private:

 T value;

 public:

 void assign (const MyClass<T>& x) { //
 x must have same type as
 *this

 value = x.value;

 }

 ...

};

It would be an error to use different template types for the objects of the assign()
 operation even if an automatic type conversion from one type to the other is provided:

Click here to view code image

void f()

{

 MyClass<double> d;

 MyClass<int> i;

 d.assign(d); // OK

 d.assign(i); // ERROR:
 i is
 MyClass<int>

 // but
 MyClass<double> is required

}

By providing a different template type for the member function, you relax the rule of exact match. The member function template argument may have any template type, then, as long as the types are assignable:

Click here to view code image

template <typename T>

class MyClass {

 private:

 T value;

 public:

 template <typename X> // member template

 void assign (const MyClass<X>& x) { // allows different template types

 value = x.getValue();

 }

 T getValue () const {

 return value;

 }

 ...

};

void f()

{

 MyClass<double> d;

 MyClass<int> i;

 d.assign(d); // OK

 d.assign(i); // OK (
 int is assignable to
 double)

}

Note that the argument x
 of assign()
 now differs from the type of *this
 . Thus, you can’t access private and protected members of MyClass<>
 directly. Instead, you have to use something like getValue()
 in this example.

A special form of a member template is a template constructor
 . Template constructors are usually provided to enable implicit type conversions when objects are copied. Note that a template constructor does not suppress the implicit declaration of the copy constructor. If the type matches exactly, the implicit copy constructor is generated and called. For example:

Click here to view code image

template <typename T>

class MyClass {

 public:

 // copy constructor with implicit type conversion

 // - does not suppress implicit copy constructor

 template <typename U>

 MyClass (const MyClass<U>& x);

 ...

};

void f()

{

 MyClass<double> xd;

 ...

 MyClass<double> xd2(xd); // calls implicitly generated copy constructor

 MyClass<int> xi(xd); // calls template constructor

 ...

}

Here, the type of xd2
 is the same as the type of xd
 and so is initialized via the implicitly generated copy constructor. The type of xi
 differs from the type of xd
 and so is initialized by using the template constructor. Thus, if you implement a template constructor, don’t forget to provide a default constructor if its default behavior does not fit your needs. See Section 5.1.1, page 60
 , for another example of member templates.

 Nested Class Templates

Nested classes may also be templates:

template <typename T>

class MyClass {

 ...

 template <typename T2>

 class NestedClass;

 ...

};

3.2.1. Explicit Initialization for Fundamental Types

If you use the syntax of an explicit constructor call without arguments, fundamental types are initialized with zero:

int i1; // undefined value

int i2 = int(); // initialized with zero

int i3{}; // initialized with zero (since C++11)

This feature enables you to write template code that ensures that values of any type have a certain default value. For example, in the following function, the initialization guarantees that x
 is initialized with zero for fundamental types:

template <typename T>

void f()

{

 T x = T();

 ...

}

If a template forces the initialization with zero, its value is so-called zero initialized
 . Otherwise it’s default initialized
 .

3.2.2. Definition of main()

I’d also like to clarify an important, often misunderstood, aspect of the core language: namely, the only correct and portable versions of main()
 . According to the C++ standard, only two definitions of main()
 are portable:

int main()

{

 ...

}

and

 int main (int argc, char* argv[])

{

 ...

}

where argv
 (the array of command-line arguments) might also be defined as char**
 . Note that the return type int
 is required.

You may, but are not required to, end main()
 with a return
 statement. Unlike C, C++ defines an implicit

return 0;

at the end of main()
 . This means that every program that leaves main()
 without a return
 statement is successful. Any value other than 0
 represents a kind of failure (see Section 5.8.2, page 162
 , for predefined values). Therefore, my examples in this book have no return
 statement at the end of main()
 .

To end a C++ program without returning from main()
 , you usually should call exit()
 , quick_exit()
 (since C++11), or terminate()
 . See Section 5.8.2, page 162
 , for details.

 Chapter 4. General Concepts

This chapter describes the fundamental C++ standard library concepts that you need to work with all or most components:

• The namespace std

• The names and formats of header files

• The general concept of error and exception handling

• Callable objects

• Basic concepts about concurrency and multithreading

• A brief introduction to allocators

4.1. Namespace std

If you use different modules and/or libraries, you always have the potential for name clashes. This is because modules and libraries might use the same identifier for different things. This problem was solved by the introduction of namespaces
 to C++. A namespace is a certain scope for identifiers. Unlike a class, a namespace is open for extensions that might occur at any source. Thus, you could use a namespace to define components that are distributed over several physical modules. A typical example of such a component is the C++ standard library, so it follows that it uses a namespace.

In fact, all identifiers of the C++ standard library are defined in a namespace called std
 . With C++11, this also applies to identifiers that were introduced with TR1 and had namespace std::tr1
 there (see Section 2.1, page 7
). In addition, namespace posix
 is reserved now, although it is not used by the C++ standard library.

Note that the following namespaces nested within std
 are used inside the C++ standard library:

• std::rel_ops
 (see Section 5.5.3, page 138
)

• std::chrono
 (see Section 5.7.1, page 144
)

• std::placeholders
 (see Section 6.10.3, page 243
)

• std::regex_constants
 (see Section 14.6, page 732
)

• std::this_thread
 (see Section 18.3.7, page 981
)

 According to the concept of namespaces, you have three options when using an identifier of the C++ standard library:

1.
 You can qualify the identifier directly. For example, you can write std::ostream
 instead of ostream
 . A complete statement might look like this:

std::cout << std::hex << 3.4 << std::endl;

2.
 You can use a using declaration
 . For example, the following code fragment introduces the local ability to skip std::
 for cout
 and endl
 :

using std::cout;

using std::endl;

Thus, the example in option 1 could be written like this:

cout << std::hex << 3.4 << endl;

3.
 You can use a using directive
 . This is the easiest option. By using a using directive for namespace std
 , all identifiers of the namespace std
 are available as if they had been declared globally. Thus, the statement

using namespace std;

allows you to write

cout << hex << 3.4 << endl;

Note that in complex code, this might lead to accidental name clashes or, worse, to different behavior due to some obscure overloading rules. You should never use a using directive when the context is not clear, such as in header files.

The examples in this book are quite small, so for my own convenience, I usually use using directives throughout this book in complete example programs.

4.2. Header Files

The use of namespace std
 for all identifiers of the C++ standard library was introduced during the standardization process. This change is not backward compatible to old header files, in which identifiers of the C++ standard library are declared in the global scope. In addition, some interfaces of classes changed during the standardization process (however, the goal was to stay backward compatible if possible). So, a new style for the names of standard header files was introduced, thus allowing vendors to stay backward compatible by providing the old header files.

The definition of new names for the standard header files was a good opportunity to standardize the extensions of header files. Previously, several extensions for header files were used; for example, .h
 , .hpp
 , and .hxx
 . However, the new standard extension for header files might be a surprise: Standard headers no longer have extensions. Hence, include
 statements for standard header files look like this:

#include <iostream>

#include <string>

This convention also applies to header files assumed from the C standard. C header files now have the new prefix c
 instead of the old extension .h
 :

 #include <cstdlib> // was: <stdlib.h>

#include <cstring> // was: <string.h>

Inside these header files, all identifiers are declared in namespace std
 .

One advantage of this naming scheme is that you can distinguish the old string header for char*
 C functions from the new string header for the standard C++ class string
 :

#include <string> // C++ class
 string

#include <cstring> //
 char* functions from C

The new naming scheme of header files does not necessarily mean that the filenames of standard header files have no extensions from the point of view of the operating system. How include
 statements for standard header files are handled is implementation defined. C++ systems might add an extension or even use built-in declarations without reading a file. In practice, however, most systems simply include the header from a file that has exactly the same name as used in the include
 statement. So, in most systems, C++ standard
 header files simply have no extension. In general, it is still a good idea to use a certain extension for your own header files to help identify them in a file system.

To maintain compatibility with C, the “old” standard C header files are still available. So if necessary, you can still use, for example:

#include <stdlib.h>

In this case, the identifiers are declared in both the global scope and namespace std
 . In fact, these headers behave as if they declare all identifiers in namespace std
 , followed by an explicit using declaration.

For the C++ header files in the “old” format, such as <iostream.h>
 , there is no specification in the standard. Hence, they are not supported. In practice, most vendors will probably provide them to enable backward compatibility. Note that there were more changes in the headers than just the introduction of namespace std
 . In general, you should either use the old names of header files or switch to the new standardized names.

4.3. Error and Exception Handling

The C++ standard library is heterogeneous. It contains software from diverse sources that have different styles of design and implementation. Error and exception handling is a typical example of these differences. Parts of the library, such as string classes, support detailed error handling, checking for every possible problem that might occur and throwing an exception if there is an error. Other parts, such as the STL and valarrays, prefer speed over safety, so they rarely check for logical errors and throw exceptions only if runtime errors occur.

4.3.1. Standard Exception Classes

All exceptions thrown by the language or the library are derived from the base class exception
 , defined in <exception>
 . This class is the root of several standard exception classes, which form a hierarchy, as shown in Figure 4.1
 . These standard exception classes can be divided into three groups:

1.
 Language support

2.
 Logic errors

3.
 Runtime errors

 [image: Image]

Figure 4.1. Hierarchy of Standard Exceptions

Logic errors usually can be avoided because the reason is inside the scope of a program, such as a precondition violation. Runtime exceptions are caused by a reason that is outside the scope of the program, such as not enough resources.

Exception Classes for Language Support

Exceptions for language support are used by language features. So in a way they are part of the core language rather than the library. These exceptions are thrown when the following operations fail:

• An exception of class bad_cast
 , defined in <typeinfo>
 , is thrown by the dynamic_cast
 operator if a type conversion on a reference fails at runtime.

• An exception of class bad_typeid
 , defined in <typeinfo>
 , is thrown by the typeid
 operator for runtime type identification. If the argument to typeid
 is zero or the null pointer, this exception gets thrown.

• An exception of class bad_exception
 , defined in <exception>
 , is used to handle unexpected exceptions. It can be thrown by the function unexpected()
 , which is called if a function throws an exception that is not listed in an exception specification Note, however, that the use of exception specifications is deprecated since C++11 (see Section 3.1.7, page 24
).

 These exceptions might also be thrown by library functions. For example, bad_cast
 might be thrown by use_facet<>
 if a facet is not available in a locale (see Section 16.2.2, page 864
).

Exception Classes for Logic Errors

Exception classes for logic errors are usually derived from class logic_error
 . Logic errors are errors that, at least in theory, could be avoided by the program; for example, by performing additional tests of function arguments. Examples of such errors are a violation of logical preconditions or a class invariant. The C++ standard library provides the following classes for logic errors:

• An exception of class invalid_argument
 is used to report invalid arguments, such as when a bitset (array of bits) is initialized with a char
 other than '0'
 or '1'
 .

• An exception of class length_error
 is used to report an attempt to do something that exceeds a maximum allowable size, such as appending too many characters to a string.

• An exception of class out_of_range
 is used to report that an argument value is not in the expected range, such as when a wrong index is used in an array-like collection or string.

• An exception of class domain_error
 is used to report a domain error.

• Since C++11, an exception of class future_error
 is used to report logical errors when using asynchronous system calls (see Chapter 18
). Note that runtime errors in this domain are raised via class system_error
 .

In general, classes for logic errors are defined in <stdexcept>
 . However, class future_error
 is defined in <future>
 .

Exception Classes for Runtime Errors

Exceptions derived from runtime_error
 are provided to report events that are beyond the scope of a program and are not easily avoidable. The C++ standard library provides the following classes for runtime errors:

• An exception of class range_error
 is used to report a range error in internal computations. In the C++ standard library, the exception can occur since C++11 in conversions between wide strings and byte strings (see Section 16.4.4, page 901
).

• An exception of class overflow_error
 is used to report an arithmetic overflow. In the C++ standard library the exception can occur if a bitset is converted into an integral value (see Section 12.5.1, page 652
).

• An exception of class underflow_error
 is used to report an arithmetic underflow.

• Since C++11, an exception of class system_error
 is used to report errors caused by the underlying operating system. In the C++ standard library, this exception can be thrown in the context of concurrency, such as class thread
 , classes to control data races, and async()
 (see Chapter 18
).

• An exception of class bad_alloc
 , defined in <new>
 , is thrown whenever the global operator new
 fails, except when the nothrow
 version of new
 is used. This is probably the most important runtime exception because it might occur at any time in any nontrivial program.

Since C++11, bad_array_new_length
 , derived from bad_alloc
 , will be thrown by new
 if the size passed to new
 is less than zero or such that the size of the allocated object would exceed the implementation-defined limit (that is, if it’s a logic error rather than a runtime error).

 • An exception of class bad_weak_ptr
 , definedin <memory>
 , is thrown whenever the creation of a weak pointer out of a shared pointer fails. See Section 5.2.2, page 89
 , for details.

• An exception of class bad_function_call
 , defined in <functional>
 , is thrown whenever a function
 wrapper object gets invoked but has no target. See Section 5.4.4, page 133
 , for details.

In addition, for the I/O part of the library, a special exception class called ios_base::failure
 is provided in <ios>
 . An exception of this class may be thrown when a stream changes its state due to an error or end-of-file. Since C++11, this class is derived from system_error
 ; before C++11, it was directly derived from class exception
 . The exact behavior of this exception class is described in Section 15.4.4, page 762
 .

Conceptually, bad_alloc
 can be considered a system error. However, for historical reasons and because of its importance, implementations are encouraged to throw a bad_alloc
 rather than a system_error
 exception if an error represents an out-of-memory condition.

In general, classes for runtime errors are defined in <stdexcept>
 . Class system_error
 , however, is defined in <system_error>
 .

Exceptions Thrown by the Standard Library

As the previous description shows, almost all exception classes can be thrown by the C++ standard library. In particular, bad_alloc
 exceptions can be thrown whenever storage is allocated.

In addition, because library features might use code provided by the application programmer, functions might throw any exception indirectly.

Any implementation of the standard library might also offer additional exception classes either as siblings or as derived classes. However, the use of these nonstandard classes makes code nonportable because you could not use another implementation of the standard library without breaking your code. So, you should always use only the standard exception classes.

Header Files for Exception Classes

The exception classes are defined in many different header files. Thus, to be able to deal with all exceptions the library might throw, you have to include:

Click here to view code image

#include <exception> // for classes
 exception and
 bad_exception

#include <stdexcept> // for most logic and runtime error classes

#include <system_error> // for system errors (since C++11)

#include <new> // for out-of-memory exceptions

#include <ios> // for I/O exceptions

#include <future> // for errors with async() and futures (since C++11)

#include <typeinfo> // for
 bad_cast and
 bad_typeid

4.3.2. Members of Exception Classes

To handle an exception in a catch
 clause, you may use the interface provided by the exception classes. For all classes, what()
 is provided; for some classes, code()
 also is provided.

 The Member what()

For all standard exception classes, only one member can be used to get additional information besides the type itself: the virtual member function what()
 , which returns a null-terminated byte string:

namespace std {

 class exception {

 public:

 virtual const char* what() const noexcept;

 ...

 };

}

The content of the string returned by what()
 is implementation defined. Note that the string might be a null-terminated multibyte string that is suitable to convert and display as wstring
 (see Section 13.2.1, page 664
). The C-string returned by what()
 is valid until the exception object from which it is obtained gets destroyed or a new value is assigned to the exception object.

Error Codes versus Error Conditions

For the exception classes system_error
 and future_error
 , there is an additional member to get details about the exception. However, before going into details, we have to introduce the difference between error codes and error conditions:

• Error codes
 are light-weight objects that encapsulate error code values that might be implementation-specific. However, some error codes also are standardized.

• Error conditions
 are objects that provide portable abstractions of error descriptions.

Depending on the context, for exceptions the C++ standard library sometimes specifies error code and sometimes error conditions. In fact:

• Class std::errc
 provides error conditions
 for std::system_error
 exceptions corresponding to standard system error numbers defined in <cerrno>
 or <errno.h>
 .

• Class std::io_errc
 provides an error code
 for std::ios_base::failure
 exceptions thrown by stream classes since C++11 (see Section 15.4.4, page 762
).

• Class std::future_errc
 provides error codes
 for std::future_error
 exceptions thrown by the concurrency library (see Chapter 18
).

Tables 4.1
 and 4.2
 list the error condition values that are specified by the C++ standard library for system_error
 exceptions. These are scoped enumerators
 (see Section 3.1.13, page 32
), so the prefix std::errc::
 has to be used. The values of these conditions are required to have the corresponding errno
 value defined in <cerrno>
 or <errno.h>
 This is not
 the error code; the error codes usually will be implementation-specific.

 Table 4.1. Error Conditions of system_error
 s, Part 1

[image: Image]

[image: Image]

 Table 4.2. Error Conditions of system_error
 s, Part 2

[image: Image]

Table 4.3
 lists the error code values that are specified by the C++ standard library for exceptions of type future_errc
 . These are scoped enumerators
 (see Section 3.1.13, page 32
), so the prefix std::future_errc::
 has to be used.
1

1

 Note that in the C++11 standard, the error codes of future errors are defined explicitly with future_errc::broken_promise
 having the value 0
 . But because error code 0
 usually stands for “no error,” this was a design mistake. The fix is that all future error code values are now defined to be implementation-specific.

 Table 4.3. Error Codes of future_error
 s

[image: Image]

The only error code specified for ios_base::failure
 exceptions is std::io_errc::stream
 .

 Dealing with Error Codes and Error Conditions

For error codes and error conditions, two different types are provided by the C++ standard library: class std::error_code
 and class std::error_condition
 . This might lead to the impression that dealing with errors is pretty complicated. However, the library is designed so that you can always compare error codes with error conditions using both the objects or enumeration values. For example, for any error object ec
 of type std::error_code
 or std::error_condition
 the following is possible:

Click here to view code image

if (ec == std::errc::invalid_argument) { // check for specific error condition

 ...

}

if (ec == std::future_errc::no_state) { // check for specific error code

 ...

}

Thus, when dealing with errors only to check for specific error codes or conditions, the difference between codes and conditions doesn’t matter.

To be able to deal with error codes and error conditions, class std::system_error
 , including its derived class std::ios_base::failure
 , and class std::_future_error
 provide the additional nonvirtual member function code()
 returning an object of class std::error_code
 :
2

namespace std {

 class system_error : public runtime_error {

 public:

 virtual const char* what() const noexcept;

 const error_code& code() const noexcept;

 ...

 };

 class future_error : public logic_error {

 public:

 virtual const char* what() const noexcept;

 const error_code& code() const noexcept;

 ...

 };

}

2

 Strictly speaking, these declarations are in different header files, and what()
 is not declared as virtual here but derives its virtuality from its base class.

Class error_code
 then provides member functions to get some details of the error:

Click here to view code image

namespace std {

 class error_code {

 public:

 const error_category& category() const noexcept;

 int value() const noexcept;

 string message() const;

 explicit operator bool() const noexcept;

 error_condition default_error_condition() const noexcept;

 ...

 };

}

This interface is driven by the following design:

• Different libraries might use the same integral values for different error codes. So, each error has a category and a value. Only inside a category is each value distinct and has a clear specified meaning.

• message()
 yields a corresponding message, which usually is part of what what()
 yields in general for all exceptions, although this is not required.

• operator bool()
 yields whether an error code is set (0
 is the value that stands for “no error”). When exceptions are caught, this operator usually should yield true
 .

• default_error_condition()
 returns the corresponding error_condition
 , again providing category()
 , value()
 , message()
 , and operator bool()
 :

Click here to view code image

namespace std {

 class error_condition {

 public:

 const error_category& category() const noexcept;

 int value() const noexcept;

 string message() const;

 explicit operator bool() const noexcept;

 ...

 };

}

Class std::error_category
 provides the following interface:

Click here to view code image

namespace std {

 class error_category {

 public:

 virtual const char* name() const noexcept = 0;

 virtual string message (int ev) const = 0;

 virtual error_condition default_error_condition (int ev)

 const noexcept;

 bool operator == (const error_category& rhs) const noexcept;

 bool operator != (const error_category& rhs) const noexcept;

 ...

 };

}

 Here, name()
 yields the name of the category. message()
 and default_error_condition()
 return the message and the default error condition according to the passed value (this is what the corresponding error_code
 member functions call). Operators ==
 and !=
 allow you to compare error categories.

The following category names are defined by the C++ standard library:

• "iostream"
 for I/O stream exceptions of type ios_base::failure

• "generic"
 for system exceptions of type system_error
 , where the value corresponds to a POSIX errno value

• "system"
 for system exceptions of type system_error
 , where the value does not correspond to a POSIX errno value

• "future"
 for exceptions of type future_error

For each category, global functions are provided that return the category:
3

const error_category& generic_category() noexcept; // in
 <system_errror>

const error_category& system_category() noexcept; // in
 <system_error>

const error_category& iostream_category(); // in
 <ios>

const error_category& future_category() noexcept; // in
 <future>

3

 It’s probably an oversight that iostream_category()
 is not declared with noexcept
 .

Thus, for an error code object e
 , you can also call the following to find out whether it is an I/O failure:

if (e.code().category() == std::iostream_category())

The following code demonstrates how to use a generic function to process (here, print) different exceptions:

Click here to view code image

// util/exception.hpp

#include <exception>

#include <system_error>

#include <future>

#include <iostream>

template <typename T>

void processCodeException (const T& e)

{

 using namespace std;

 auto c = e.code();

 cerr << "- category: " << c.category().name() << endl;

 cerr << "- value: " << c.value() << endl;

 cerr << "- msg: " << c.message() << endl;

 cerr << "- def category: "

 << c.default_error_condition().category().name() << endl;

 cerr << "- def value: "

 << c.default_error_condition().value() << endl;

 cerr << "- def msg: "

 << c.default_error_condition().message() << endl;

}

void processException()

{

 using namespace std;

 try {

 throw; // rethrow exception to deal with it here

 }

 catch (const ios_base::failure& e) {

 cerr << "I/O EXCEPTION: " << e.what() << endl;

 processCodeException(e);

 }

 catch (const system_error& e) {

 cerr << "SYSTEM EXCEPTION: " << e.what() << endl;

 processCodeException(e);

 }

 catch (const future_error& e) {

 cerr << "FUTURE EXCEPTION: " << e.what() << endl;

 processCodeException(e);

 }

 catch (const bad_alloc& e) {

 cerr << "BAD ALLOC EXCEPTION: " << e.what() << endl;

 }

 catch (const exception& e) {

 cerr << "EXCEPTION: " << e.what() << endl;

 }

 catch (...) {

 cerr << "EXCEPTION (unknown)" << endl;

 }

}

 This allows to handle exceptions as follows:

try {

 ...

}

catch (...) {

 processException();

}

 Other Members

The remaining members of the standard exception classes create, copy, assign, and destroy exception objects.

Note that besides what()
 and code()
 , for any of the standard exception classes, no additional member is provided that describes the kind of exception. For example, there is no portable way to find out the context of an exception or the faulty index of a range error. Thus, a portable evaluation of an exception could print only the message returned from what()
 :

try {

 ...

}

catch (const std::exception& error) {

 // print implementation-defined error message

 std::cerr << error.what() << std::endl;

 ...

}

The only other possible evaluation might be an interpretation of the exact type of the exception. For example, when a bad_alloc
 exception is thrown, a program might try to get more memory.

4.3.3. Passing Exceptions with Class exception_ptr

Since C++11, the C++ standard library provides the ability to store exceptions into objects of type exception_ptr
 to process them later or in other contexts:

Click here to view code image

#include <exception>

std::exception_ptr eptr; // object to hold exceptions (or
 nullptr)

void foo ()

{

 try {

 throw ...;

 }

 catch (...
) {

 eptr = std::current_exception(); // save exception for later processing

 }

}

void bar ()

{

 if (eptr != nullptr) {

 std::rethrow_exception(eptr); // process saved exception

 }

}

 current_exception()
 returns an exception_ptr
 object that refers to the currently handled exception. The value returned by current_exception()
 is valid as long as an exception_ptr
 refers to it. rethrow_exception()
 rethrows the stored exception so that bar()
 behaves as the initial exception thrown in foo()
 would have occured inside bar()
 .

This feature is especially useful to pass exception between threads (see Section 18.2.1, page 964
).

4.3.4. Throwing Standard Exceptions

You can throw standard exceptions inside your own library or program. All logic error and runtime error standard exception classes that provide the what()
 interface have only a constructor for std::string
 and (since C++11) for const char*
 . The value passed here will become the description returned by what()
 . For example, the class logic_error
 is defined as follows:

Click here to view code image

namespace std {

 class logic_error : public exception {

 public:

 explicit logic_error (const string& whatString);

 explicit logic_error (const char* whatString); // since C++11

 ...

 };

}

Class std::system_error
 provides the ability to create an exception object by passing an error code, a what()
 string, and an optional category:

Click here to view code image

namespace std {

 class system_error : public runtime_error {

 public:

 system_error (error_code ec, const string& what_arg);

 system_error (error_code ec, const char* what_arg);

 system_error (error_code ec);

 system_error (int ev, const error_category& ecat,

 const string& what_arg);

 system_error (int ev, const error_category& ecat,

 const char* what_arg);

 ...

 };

}

To provide an error_code
 object, make_error_code()
 convenience functions are provided that take only the error code value.

Class std::ios_base::failure
 provides constructors taking a what()
 string and (since C++11) an optional error_code
 object. Class std::future_error
 provides only a constructor taking a single error_code
 object.

 Thus, throwing a standard exception is pretty easy:

Click here to view code image

throw std::out_of_range ("out_of_range (somewhere, somehow)");

throw

 std::system_error (std::make_error_code(std::errc::invalid_argument),

 "argument ... is not valid");

You can’t throw exceptions of the base class exception
 and any exception class that is provided for language support (bad_cast
 , bad_typeid
 , bad_exception
).

4.3.5. Deriving from Standard Exception Classes

Another possibility for using the standard exception classes in your code is to define a special exception class derived directly or indirectly from class exception
 . To do this, you must ensure that the what()
 mechanism or code()
 mechanism works, which is possible because what()
 is virtual. For an example, see class Stack
 in Section 12.1.3, page 635
 .

4.4. Callable Objects

At different places, the C++ standard library uses the term callable object
 , which means objects that somehow can be used to call some functionality:

• A function, where additional args
 are passed to as arguments

• A pointer to a member function, which is called for the object passed as the first additional argument (must be reference or pointer) and gets the remaining arguments as member function parameters

• A function object (operator ()
 for a passed object), where additional args
 are passed as arguments

• A lambda (see Section 3.1.10, page 28
), which strictly speaking is a kind of function object For example:

Click here to view code image

void func (int x, int y);

auto l = [] (int x, int y) {

 ...

 };

class C {

 public:

 void operator () (int x, int y) const;

 void memfunc (int x, int y) const;

};

 int main()

{

 C c;

 std::shared_ptr<C> sp(new C);

 //
 bind() uses callable objects to bind arguments:

 std::bind(func,77,33)(); // calls:
 func(77,33)

 std::bind(l,77,33)(); // calls:
 l(77,33)

 std::bind(C(),77,33)(); // calls:
 C::operator()(77,33)

 std::bind(&C::memfunc,c,77,33)(); // calls:
 c.memfunc(77,33)

 std::bind(&C::memfunc,sp,77,33)(); // calls:
 sp->memfunc(77,33)

 //
 async() uses callable objects to start (background) tasks:

 std::async(func,42,77); // calls:
 func(42,77)

 std::async(l,42,77); // calls:
 l(42,77)

 std::async(c,42,77); // calls:
 c.operator()(42,77)

 std::async(&C::memfunc,&c,42,77); // calls:
 c.memfunc(42,77)

 std::async(&C::memfunc,sp,42,77); // calls:
 sp->memfunc(42,77)

}

As you can see, even smart pointers (see Section 5.2, page 76
) can be used to pass an object a member function is called for. See Section 10.2.2, page 487
 , for details about std::bind()
 and Section 18.1, page 946
 , for details about std::async()
 .

To declare callable objects
 , in general class std::function<>
 can be used (see Section 5.4.4, page 133
).

4.5. Concurrency and Multithreading

Before C++11, there was no support for concurrency in the language and the C++ standard library, although implementations were free to give some guarantees. With C++11, this has changed. Both the core language and the library got improvements to support concurrent programming.

The following apply in the core language, for example:

• We now have a memory model, which guarantees that updates on two different objects used by two different threads are independent of each other. Before C++11, there was no guarantee that writing a char
 in one thread could not interfere with writing another
 char
 in another thread (see section “The memory model” in [Stroustrup:C++0x
]
).

• A new keyword, thread_local
 , was introduced for defining thread-specific variables and objects.

In the library, we got the following:

• Some guarantees regarding thread safety

• Supporting classes and functions for concurrency (starting and synchronizing multiple threads)

 The supporting classes and functions are discussed in Chapter 18
 . The guarantees are discussed throughout the book. However, I want to give an overview of the general guarantees here.

The General Concurrency Guarantees of the C++ Standard Library

The general constraints the C++ standard library provides regarding concurrency and multithreading since C++11 are as follows:

• In general, sharing a library object by multiple threads — where at least one thread modifies the object — might result in undefined behavior. To quote the standard: “Modifying an object of a standard library type that is shared between threads risks undefined behavior unless objects of that type are explicitly specified as being sharable without data races or the user supplies a locking mechanism.
 ”

• Especially during the construction of an object in one thread, using that object in another thread results in undefined behavior. Similarly, destructing an object in one thread while using it in another thread results in undefined behavior. Note that this applies even to objects that are provided for thread synchronization.

The most important places where concurrent access to library objects is
 supported are as follows:

• For STL containers (see Chapter 7
) and container adapters (see Chapter 12
), the following guarantees are given:

– Concurrent read-only access is possible. This explicitly implies calling the nonconstant member functions begin()
 , end()
 , rbegin()
 , rend()
 , front()
 , back()
 , data()
 , find()
 , lower_bound()
 , upper_bound()
 , equal_range()
 , at()
 , and except for associative containers, operator []
 as well as access by iterators, if they do not modify the containers.

– Concurrent access to different elements
 of the same container is possible (except for class vector<bool>
). Thus, different threads might concurrently read and/or write different elements of the same container. For example, each thread might process something and store the result in “its” element of a shared vector.

• For formatted input and output to a standard stream, which is synchronized with C I/O (see Section 15.14.1, page 845
), concurrent access is possible, although it might result in interleaved characters. This by default applies to std::cin
 , std::cout
 , std::cerr
 . However, for string streams, file streams, or stream buffers, concurrent access results in undefined behavior.

• Concurrent calls of atexit()
 and at_quick_exit()
 (see Section 5.8.2, page 162
) are synchronized. The same applies to functions that set or get the new, terminate, or unexpected handler (set_new_handler()
 , set_unexpected()
 , set_terminate()
 and the corresponding getters). Also, getenv()
 is synchronized.

• For all member functions of the default allocator (see Chapter 19
) except destructors, concurrent access is synchronized.

Note also that the library guarantees that the C++ standard library has no “hidden” side effects that break concurrent access to different objects. Thus, the C++ standard library

• Does not access reachable objects other than those required for a specific operation,

• Is not allowed to internally introduce shared static objects without synchronization,

• Allows implementations to parallelize operations only if there are no visible side effects for the programmer. However, see Section 18.4.2, page 983
 .

 4.6. Allocators

In several places, the C++ standard library uses special objects to handle the allocation and deallocation of memory. Such objects are called allocators
 . They represent a special memory model and are used as an abstraction to translate the need
 to use memory into a raw call
 for memory. The use of different allocator objects at the same time allows you to use different memory models in a program.

Originally, allocators were introduced as part of the STL to handle the nasty problem of different pointer types on PCs (such as near, far, and huge pointers). Now, allocators serve as a base for technical solutions that use certain memory models, such as shared memory, garbage collection, and object-oriented databases, without changing the interfaces. However, this use is relatively new and not yet widely adopted (this will probably change).

The C++ standard library defines a default allocator
 as follows:

namespace std {

 template <typename T>

 class allocator;

}

An object of the default allocator type is used as the default value everywhere an allocator can be used as an argument. It does the usual calls for memory allocation and deallocation; that is, it calls the new
 and delete
 operators. However, when or how often these operators are called is unspecified. Thus, an implementation of the default allocator might, for example, cache the allocated memory internally.

The default allocator is used in most programs. However, other libraries sometimes provide allocators to fit certain needs. In such cases, you must simply pass them as arguments. Only occasionally does it make sense to program allocators. In practice, the default allocator is typically used. The discussion of allocators is deferred until Chapter 19
 , which covers in detail not only allocators but also their interfaces.

 Chapter 5. Utilities

This chapter describes the general utilities of the C++ standard library. These utilities are small and simple classes, types, or functions that perform frequently needed tasks:

• Class pair<>
 and class tuple<>

• Smart pointer classes (class shared_ptr<>
 and class unique_ptr
)

• Numeric limits
1

1

 One could argue that numeric limits and class ratio<>
 should be part of Chapter 17
 , which covers numerics, but these classes are used in some other parts of the library, so I decided to describe them here.

• Type traits and type utilities

• Auxiliary functions (for example, min()
 , max()
 , and swap()
)

• Class ratio<>

1

• Clocks and timers

• Some important C functions

Most, but not all, of these utilities are described in clause 20, “General Utilities,” of the C++ standard. The rest are described along with more major components of the library either because they are used primarily with that particular component or due to historical reasons. For example, some general auxiliary functions are defined as part of the <algorithm>
 header, although they are not algorithms in the sense of the STL (which is described in Chapter 6
).

Several of these utilities are also used within the C++ standard library. For example, type pair<>
 is used whenever two values need to be treated as a single unit — for example, if a function has to return two values or when elements of containers are key/value pairs — and type traits are used wherever complicated type conversions are necessary.

 5.1. Pairs and Tuples

In C++98, the first version of the C++ standard library, a simple class was provided to handle value pairs of different types without having to define a specific class. The C++98 class was used when a value pair was returned by standard functions and the container elements were key/value pairs.

TR1 introduced a tuple class, which extended this concept for an arbitrary but still limited number of elements. Implementations did portably allow tuples with up to ten elements of different types.

With C++11, the tuple class was reimplemented by using the concept of variadic templates (see Section 3.1.9, page 26
). Now, there is a standard tuple class for a heterogeneous collection of any size. In addition, class pair
 is still provided for two elements and can be used in combination with a two-element tuple.

However, the pair
 class of C++11 was also extended a lot, which to some extent demonstrates the enhancements that C++ as a language and its library received with C++11.

5.1.1. Pairs

The class pair
 treats two values as a single unit. This class is used in several places within the C++ standard library. In particular, the container classes map
 , multimap
 , unordered_map
 , and unordered_multimap
 use pair
 s to manage their elements, which are key/value pairs (see Section 7.8, page 331
). Other examples of the use of pair
 s are functions that return two values, such as minmax()
 (see Section 5.5.1, page 134
).

The structure pair
 is defined in <utility>
 and provides the operations listed in Table 5.1
 . In principle, you can create, copy/assign/swap, and compare a pair<>
 . In addition, there are type definitions for first_type
 and second_type
 , representing the types of the first and second values.

 Table 5.1. Operations of pair
 s

[image: Image]

[image: Image]

Element Access

To process the values of the pair
 direct access to the corresponding members is provided. In fact, the type is declared as struct
 instead of class
 so that all members are public:

namespace std {

 template <typename T1, typename T2>

 struct pair {

 // member

 T1 first;

 T2 second;

 ...

 };

}

 For example, to implement a generic function template that writes a value pair to a stream, you have to program:
2

Click here to view code image

 // generic output operator for pairs (limited solution)

template <typename T1, typename T2>

std::ostream& operator << (std::ostream& strm,

 const std::pair<T1,T2>& p)

{

 return strm << "[" << p.first << "," << p.second << "]";

}

2

 Note that this output operator does not work where ADL
 (argument-dependent lookup
) does not work (see Section 15.11.1, page 812
 , for details).

In addition, a tuple-like interface (see Section 5.1.2, page 68
) is available since C++11. Thus, you can use tuple_size<>::value
 to yield the number of elements and tuple_element<>::type
 to yield the type of a specific element, and you can use get()
 to gain access to first
 or second
 :

Click here to view code image

typedef std::pair<int,float> IntFloatPair;

IntFloatPair p(42,3.14);

std::get<0>(p) // yields
 p.first

std::get<1>(p) // yields
 p.second

std::tuple_size<IntFloatPair>::value // yields
 2

std::tuple_element<0,IntFloatPair>::type // yields
 int

Constructors and Assignment Operators

The default constructor creates a value pair with values that are initialized by the default constructor of their type. Because of language rules, an explicit call of a default constructor also initializes fundamental data types, such as int
 . Thus, the declaration

std::pair<int,float> p; // initialize
 p.first and
 p.second with zero

initializes the values of p
 by using int()
 and float()
 , which yield zero in both cases. See Section 3.2.1, page 37
 , for a description of the rules for explicit initialization for fundamental types.

The copy constructor is provided with both versions for a pair of the same types and as member template, which is used when implicit type conversions are necessary. If the types match, the normal implicitly generated copy constructor is called.
3

 For example:

Click here to view code image

void f(std::pair<int,const char*>);

void g(std::pair<const int,std::string>);

...

void foo() {

 std::pair<int,const char*> p(42,"hello");

 f(p); // OK: calls implicitly generated copy constructor

 g(p); // OK: calls template constructor

}

3

 A template constructor does not hide the implicitly generated copy constructor. See Section 3.2, page 36
 , for more details about this topic.

 Since C++11, a pair<>
 using a type that has only a nonconstant copy constructor will no longer compile:
4

4

 Thanks to Daniel Krügler for pointing this out.

Click here to view code image

class A

{

 public:

 ...

 A(A&); // copy constructor with nonconstant reference

 ...

};

std::pair<A,int> p; // Error since C++11

Since C++11, the assignment operator is also provided as a member template so that implicit type conversions are possible. In addition, move semantics — moving the first and second elements — are supported.

Piecewise Construction

Class pair<>
 provides three constructors to initialize the first
 and second
 members with initial values:

namespace std {

 template <typename T1, typename T2>

 struct pair {

 ...

 pair(const T1& x, const T2& y);

 template<typename U, typename V> pair(U&& x, V&& y);

 template <typename... Args1, typename... Args2>

 pair(piecewise_construct_t,

 tuple<Args1...> first_args,

 tuple<Args2...> second_args);

 ...

 };

}

The first two of these constructors provide the usual behavior: passing one argument for first
 and one for second
 , including support of move semantics and implicit type conversions. However, the third constructor is something special. It allows passing two tuples — objects of a variable number of elements of different types (see Section 5.1.2, page 68
) — but processes them in a different way. Normally, by passing one or two tuples, the first two constructors would allow initializing a pair, where first
 and/or second
 are tuples. But the third constructor uses the tuples to pass their elements
 to the constructors of first
 and second
 . To force this behavior, you have to pass std::piecewise_construct
 as an additional first argument. For example:

Click here to view code image

 // util/pair1.cpp

#include <iostream>

#include <utility>

#include <tuple>

using namespace std;

class Foo {

 public:

 Foo (tuple<int, float>) {

 cout << "Foo::Foo(tuple)" << endl;

 }

 template <typename... Args>

 Foo (Args... args) {

 cout << "Foo::Foo(args...)" << endl;

 }

};

int main()

{

 // create tuple
 t:

 tuple<int,float> t(1,2.22);

 // pass the tuple as a whole to the constructor of
 Foo:

 pair<int,Foo> p1 (42, t);

 // pass the elements
 of the tuple to the constructor of
 Foo:

 pair<int,Foo> p2 (piecewise_construct, make_tuple(42), t);

}

The program has the following output:

Foo::Foo(tuple)

Foo::Foo(args...)

Only where std::piecewise_construct
 is passed as the first argument is class Foo
 forced to use a constructor that takes the elements
 of the tuple (an int
 and a float
) rather than a tuple as a whole. This means that in this example, the varargs constructor of Foo
 is called. If provided, a constructor Foo::Foo(int,float)
 would be called.

As you can see, both arguments have to be a tuple to force this behavior. Therefore, the first argument, 42
 , is explicitly converted into a tuple, using make_tuple()
 (you could instead pass std::tuple(42)
).

Note that this form of initialization is required to emplace()
 a new element into an (unordered) map or multimap (see Section 7.8.2, page 341
 , and Section 7.9.3, page 373
).

 Convenience Function make_pair()

The make_pair()
 function template enables you to create a value pair without writing the types explicitly.
5

 For example, instead of

5

 Using make_pair()
 should cost no runtime. The compiler should always optimize any implied overhead.

std::pair<int,char>(42,'@')

you can write the following:

std::make_pair(42,'@')

Before C++11, the function was simply declared and defined as follows:

Click here to view code image

namespace std {

 // create value pair only by providing the values

 template <template T1, template T2>

 pair<T1,T2> make_pair (const T1& x, const T2& y) {

 return pair<T1,T2>(x,y);

 }

}

However, since C++11, things have become more complicated because this class also deals with move semantics in a useful way. So, since C++11, the C++ standard library states that make_pair()
 is declared as:

namespace std {

 // create value pair only by providing the values

 template <template T1, template T2>

 pair<V1,V2> make_pair (T1&& x, T2&& y);

}

where the details of the returned values and their types V1
 and V2
 depend on the types of x
 and y
 . Without going into details, the standard now specifies that make_pair()
 uses move semantics if possible and copy semantics otherwise. In addition, it “decays” the arguments so that the expression make_pair("a","xy")
 yields a pair<const char*,const char*>
 instead of a pair<const char[2],const char[3]>
 (see Section 5.4.2, page 132
).

The make_pair()
 function makes it convenient to pass two values of a pair directly to a function that requires a pair
 as its argument. Consider the following example:

Click here to view code image

void f(std::pair<int,const char*>);

void g(std::pair<const int,std::string>);

...

void foo() {

 f(std::make_pair(42,"empty")); // pass two values as pair

 g(std::make_pair(42,"chair")); // pass two values as pair with type conversions

}

 As the example shows, make_pair()
 works even when the types do not match exactly, because the template constructor provides implicit type conversion. When you program by using maps or multimaps, you often need this ability (see Section 7.8.2, page 341
).

Note that since C++11, you can, alternatively, use initializer lists:

f({42,"empty"}); // pass two values as pair

g({42,"chair"}); // pass two values as pair with type conversions

However, an expression that has the explicit type description has an advantage because the resulting type of the pair is not derived from the values. For example, the expression

std::pair<int,float>(42,7.77)

does not
 yield the same as

std::make_pair(42,7.77)

The latter creates a pair that has double
 as the type for the second value (unqualified floating literals have type double
). The exact type may be important when overloaded functions or templates are used. These functions or templates might, for example, provide versions for both float
 and double
 to improve efficiency.

With the new semantics of C++11, you can influence the type make_pair()
 yields by forcing either move or reference semantics. For move semantics, you simply use std::move()
 to declare that the passed argument is no longer used:

std::string s, t;

...

auto p = std::make_pair(std::move(s),std::move(t));

...
 //
 s and
 t are no longer used

To force reference semantics, you have to use ref()
 , which forces a reference type, or cref()
 , which forces a constant reference type (both provided by <functional>
 ; see Section 5.4.3, page 132
). For example, in the following statements, a pair refers to an int
 twice so that, finally, i
 has the value 2
 :

Click here to view code image

#include <utility>

#include <functional>

#include <iostream>

int i = 0;

auto p = std::make_pair(std::ref(i),std::ref(i)); // creates
 pair<int&,int&>

++p.first; // increments
 i

++p.second; // increments
 i again

std::cout << "i: " << i << std::endl; // prints
 i: 2

Since C++11, you can also use the tie()
 interface, defined in <tuple>
 , to extract values out of a pair:

Click here to view code image

 #include <utility>

#include <tuple>

#include <iostream>

std::pair<char,char> p=std::make_pair('x','y'); // pair of two
 chars

char c;

std::tie(std::ignore,c) = p; // extract second value into
 c (ignore first one)

In fact, here the pair p
 is assigned to a tuple, where the second value is a reference to c
 (see Section 5.1.2, page 70
 , for details).

Pair Comparisons

For the comparison of two pairs, the C++ standard library provides the usual comparison operators. Two value pairs are equal if both values are equal:

Click here to view code image

namespace std {

 template <typename T1, typename T2>

 bool operator== (const pair<T1,T2>& x, const pair<T1,T2>& y) {

 return x.first == y.first && x.second == y.second;

 }

}

In a comparison of pairs, the first value has higher priority. Thus, if the first values of two pairs differ, the result of their comparison is used as the result of the overall comparison of the pairs. If the members first
 are equal, the comparison of the members second
 yields the overall result:

Click here to view code image

namespace std {

 template <typename T1, typename T2>

 bool operator< (const pair<T1,T2>& x, const pair<T1,T2>& y) {

 return x.first < y.first ||

 (!(y.first < x.first) && x.second < y.second);

 }

}

The other comparison operators are defined accordingly.

Examples of Pair Usage

The C++ standard library uses pairs a lot. For example, the (unordered) map and multimap containers use pair
 as a type to manage their elements, which are key/value pairs. See Section 7.8, page 331
 , for a general description of maps and multimaps, and in particular Section 6.2.2, page 179
 , for an example that shows the usage of type pair
 .

Objects of type pair
 are also used inside the C++ standard library in functions that return two values (see Section 7.7.2, page 323
 , for an example).

 5.1.2. Tuples

Tuples were introduced in TR1 to extend the concept of pair
 s to an arbitrary number of elements. That is, tuples represent a heterogeneous list of elements for which the types are specified or deduced at compile time.

However, with TR1 using the language features of C++98, it was not possible to define a template for a variable number of elements. For this reason, implementations had to specify all possible numbers of elements a tuple could have. The recommendation in TR1 was to support at least ten arguments, which meant that tuples were usually defined as follows, although some implementations did provide more template parameters:

Click here to view code image

template <typename T0 = ...
 , typename T1 = ...
 , typename T2 = ...
 ,

 typename T3 = ...
 , typename T4 = ...
 , typename T5 = ...
 ,

 typename T6 = ...
 , typename T7 = ...
 , typename T8 = ...
 ,

 typename T9 = ...
 >

class tuple;

That is, class tuple
 has at least ten template parameters of different types, with an implementation-specific default value used to give unused tuple elements a default type with no abilities. This was in fact an emulation of variadic templates, which in practice, however, was quite cumbersome and very limited.

With C++11, variadic templates were introduced to enable templates to accept an arbitrary number of template arguments (see Section 3.1.9, page 26
). As a consequence, the declaration for class tuple
 , which happens in <tuple>
 , is now reduced to the following:

namespace std {

 template <typename... Types>

 class tuple;

}

Tuple Operations

In principle, the tuple interface is very straightforward:

• You can create a tuple by declaring it either explicitly or implicitly with the convenience function make_tuple()
 .

• You can access elements with the get<>()
 function template.

Here is a basic example of this interface:

Click here to view code image

// util/tuple1.cpp

#include <tuple>

#include <iostream>

#include <complex>

#include <string>

using namespace std;

 int main()

{

 // create a four-element tuple

 // - elements are initialized with default value (0 for fundamental types)

 tuple<string,int,int,complex<double>> t;

 // create and initialize a tuple explicitly

 tuple<int,float,string> t1(41,6.3,"nico");

 // ''iterate'' over elements:

 cout << get<0>(t1) << " ";

 cout << get<1>(t1) << " ";

 cout << get<2>(t1) << " ";

 cout << endl;

 // create tuple with make
 _tuple()

 // -
 auto declares
 t2 with type of right-hand side

 // - thus, type of
 t2 is
 tuple

 auto t2 = make_tuple(22,44,"nico");

 // assign second value in
 t2 to
 t1

 get<1>(t1) = get<1>(t2);

 // comparison and assignment

 // - including type conversion from
 tuple<int,int,const char*>

 // to
 tuple<int,float,string>

 if (t1 < t2) { // compares value for value

 t1 = t2; // OK, assigns value for value

 }

}

The following statement creates a heterogeneous four-element tuple:

tuple<string,int,int,complex<double>> t;

The values are initialized with their default constructors. Fundamental types are initialized with 0
 (this guarantee applies only since C++11).

The statement

tuple<int,float,string> t1(41,6.3,"nico");

creates and initializes a heterogeneous three-element tuple.

 Alternatively, you can use make_tuple()
 to create a tuple in which the types are automatically derived from the initial values. For example, you can use the following to create and initialize a tuple of the corresponding types int
 , int
 , and const char*
 .
6

6

 The type of "nico"
 is const char[5]
 , but it decays
 to const char*
 using the type trait std::decay()
 (see Section 5.4.2, page 132
).

make_tuple(22,44,"nico")

Note that a tuple type can be a reference. For example:

string s;

tuple<string&> t(s); // first element of tuple
 t refers to
 s

get<0>(t) = "hello"; // assigns
 "hello" to
 s

A tuple is no ordinary container class where you can iterate over the elements. Instead, for element access, member templates are provided so that you have to know the index of elements you want to access at compile time. For example, you get access to the first element of tuple t1
 as follows:

get<0>(t1)

Passing an index at runtime is not possible:

int i;

get<i>(t1) // compile-time error:
 i is no compile-time value

The good news is that it is also a compile-time error to pass an invalid index:

get<3>(t1) // compile-time error if
 t1 has only three elements

In addition, tuples provide the usual copy, assignment, and comparison operations. For all of them, implicit type conversions are possible (because member templates are used), but the number of elements must match. Tuples are equal if all elements are equal. To check whether a tuple is less than another tuple, a lexicographical comparison is done (see Section 11.5.4, page 548
).

Table 5.2
 lists all operations provided for tuples.

 Table 5.2. Operations of tuple
 s

[image: Image]

Convenience Functions make_tuple()
 and tie()

The convenience function make_tuple()
 creates a tuple of values without explicitly specifying their types. For example, the expression

make_tuple(22,44,"nico")

creates and initializes a tuple of the corresponding types int
 , int
 , and const char*
 .

By using the special reference_wrapper<>
 function object and its convenience functions ref()
 and cref()
 (all available since C++11 in <functional>
 ; see Section 5.4.3, page 132
) you can influence the type that make_tuple()
 yields. For example, the following expression yields a tuple with a reference to variable/object x:

string s;

make_tuple(ref(s)) // yields type
 tuple<string&>, where the element refers to
 s

 This can be important if you want to modify an existing value via a tuple:

Click here to view code image

std::string s;

auto x = std::make_tuple(s); //
 x is of type
 tuple<string>

std::get<0>(x) = "my value"; // modifies
 x but not
 s

auto y = std::make_tuple(ref(s)); //
 y is of type
 tuple<string&>, thus
 y refers to
 s

std::get<0>(y) = "my value"; // modifies
 s via y

By using references with make_tuple()
 , you can extract values of a tuple back to some other variables. Consider the following example:

Click here to view code image

std::tuple <int,float,std::string> t(77,1.1,"more light");

int i;

float f;

std::string s;

// assign values of
 t to
 i,
 f, and
 s:

std::make_tuple(std::ref(i),std::ref(f),std::ref(s)) = t;

 To make the use of references in tuples even more convenient, the use of tie()
 creates a tuple of references:

Click here to view code image

std::tuple <int,float,std::string> t(77,1.1,"more light");

int i;

float f;

std::string s;

std::tie(i,f,s) = t; // assigns values of
 t to
 i,
 f, and
 s

Here, std::tie(i,f,s)
 creates a tuple with references to i
 , f
 , and s
 , so the assignment of t
 assigns the elements in t
 to i
 , f
 , and s
 .

The use of std::ignore
 allows ignoring tuple elements while parsing with tie()
 . This can be used to extract tuple values partially:

Click here to view code image

std::tuple <int,float,std::string> t(77,1.1,"more light");

int i;

std::string s;

std::tie(i,std::ignore,s) = t; // assigns first and third value of
 t to
 i and
 s

Tuples and Initializer Lists

The constructor taking a variable number of arguments to initialize a tuple is declared as explicit
 :

Click here to view code image

namespace std {

 template <typename... Types>

 class tuple {

 public:

 explicit tuple(const Types&...);

 template <typename... UTypes> explicit tuple(UTypes&&...);

 ...

 };

}

The reason is to avoid having single values implicitly converted into a tuple with one element:

Click here to view code image

template <typename... Args>

void foo (const std::tuple<Args...> t);

foo(42); // ERROR: explicit conversion to
 tuple<> required

foo(make_tuple(42)); // OK

This situation, however, has consequences when using initializer lists to define values of a tuple. For example, you can’t use the assignment syntax to initialize a tuple because that is considered to be an implicit conversion:

Click here to view code image

std::tuple<int,double> t1(42,3.14); // OK, old syntax

std::tuple<int,double> t2{42,3.14}; // OK, new syntax

std::tuple<int,double> t3 = {42,3.14}; // ERROR

 In addition, you can’t pass an initializer list where a tuple is expected:

std::vector<std::tuple<int,float>> v { {1,1.0}, {2,2.0} }; // ERROR

std::tuple<int,int,int> foo() {

 return { 1, 2, 3 }; // ERROR

}

Note that it works for pair<>
 s and containers (except array<>
 s):

std::vector<std::pair<int,float>> v1 { {1,1.0}, {2,2.0} }; // OK

std::vector<std::vector<float>> v2 { {1,1.0}, {2,2.0} }; // OK

std::vector<int> foo2() {

 return { 1, 2, 3 }; // OK

}

But for tuples, you have to explicitly convert the initial values into a tuple (for example, by using make_tuple()
):

std::vector<std::tuple<int,float>> v { std::make_tuple(1,1.0),

 std::make_tuple(2,2.0) }; // OK

std::tuple<int,int,int> foo() {

 return std::make_tuple(1,2,3); // OK

}

Additional Tuple Features

For tuples, some additional helpers are declared, especially to support generic programming:

• tuple_size<tupletype
 >::value
 yields the number of elements.

• tuple_element<idx,tupletype
 >::type
 yields the type of the element with index
idx

 (this is the type get()
 returns).

• tuple_cat()
 concatenates multiple tuples into one tuple.

The following example shows the use of tuple_size<>
 and tuple_element<>
 :

typedef std::tuple<int,float,std::string> TupleType;

std::tuple_size<TupleType>::value // yields
 3

std::tuple_element<1,TupleType>::type // yields
 float

You can use tuple_cat()
 to concatenate all forms of tuples, including pair<>
 s:

int n;

auto tt = std::tuple_cat (std::make_tuple(42,7.7,"hello"),

 std::tie(n));

Here, tt
 becomes a tuple with all elements of the passed tuples, including the fact that the last element is a reference to n
 .

 5.1.3. I/O for Tuples

The tuple
 class was first made public in the Boost library (see [Boost
]
). There, tuple
 had an interface to write values to output streams, but there is no support for this in the C++ standard library. With the following header file, you can print any tuple with the standard output operator <<
 :
7

7

 Note that this output operator does not work where ADL
 (argument-dependent lookup
) does not work (see Section 15.11.1, page 812
 , for details).

// util/printtuple.hpp

#include <tuple>

#include <iostream>

// helper: print elements with index
 IDX and higher of tuple
 t having
 MAX elements

template <int IDX, int MAX, typename... Args>

struct PRINT_TUPLE {

 static void print (std::ostream& strm, const std::tuple<Args...>& t) {

 strm << std::get<IDX>(t) << (IDX+1==MAX ? "" : ",");

 PRINT_TUPLE<IDX+1,MAX,Args...>::print(strm,t);

 }

};

// partial specialization to end the recursion

template <int MAX, typename... Args>

struct PRINT_TUPLE<MAX,MAX,Args...> {

 static void print (std::ostream& strm, const std::tuple<Args...>& t) {

 }

};

// output operator for tuples

template <typename... Args>

std::ostream& operator << (std::ostream& strm,

 const std::tuple<Args...>& t)

{

 strm << "[";

 PRINT_TUPLE<0,sizeof...(Args),Args...>::print(strm,t);

 return strm << "]";

}

This code makes heavy use of template metaprogramming to recursively iterate at compile time over the elements of a tuple. Each call of PRINT_TUPLE<>::print()
 prints one element and calls the
 same function for the next element. A partial specialization, where the current index IDX
 and the number of elements in the tuple MAX
 are equal, ends this recursion. For example, the program

// util/tuple2.cpp

#include "printtuple.hpp"

#include <tuple>

#include <iostream>

#include <string>

using namespace std;

int main()

{

 tuple <int,float,string> t(77,1.1,"more light");

 cout << "io: " << t << endl;

}

has the following output:

io: [77,1.1,more light]

Here, the output expression

cout << t

calls

PRINT_TUPLE<0,3,Args...>::print(cout,t);

5.1.4. Conversions between tuple
 s and pair
 s

As listed in Table 5.2
 on page 71
 , you can initialize a two-element tuple with a pair
 . Also, you can assign a pair
 to a two-element tuple.

Note that pair<>
 provides a special constructor to use tuples to initialize its elements. See Section 5.1.1, page 63
 , for details. Note also that other types might provide a tuple-like interface. In fact, class pair<>
 (see Section 5.1.1, page 62
) and class array<>
 (see Section 7.2.5, page 268
) do.

 5.2. Smart Pointers

Since C, we know that pointers are important but are a source of trouble. One reason to use pointers is to have reference semantics outside the usual boundaries of scope. However, it can be very tricky to ensure that their lifetime and the lifetime of the objects they refer to match, especially when multiple pointers refer to the same object. For example, to have the same object in multiple collections (see Chapter 7
), you have to pass a pointer into each collection, and ideally there should be no problems when one of the pointers gets destroyed (no “dangling pointers” or multiple deletions of the referenced object) and when the last reference to an object gets destroyed (no “resource leaks”).

A usual approach to avoid these kinds of problems is to use “smart pointers.” They are “smart” in the sense that they support programmers in avoiding problems such as those just described. For example, a smart pointer can be so smart that it “knows” whether it is the last pointer to an object and uses this knowledge to delete an associated object only when it, as “last owner” of an object, gets destroyed.

Note, however, that it is not sufficient to provide only one smart pointer class. Smart pointers can be smart about different aspects and might fulfill different priorities, because you might pay a price for the smartness. Note that with a specific smart pointer, it’s still possible to misuse a pointer or to program erroneous behavior.

Since C++11, the C++ standard library provides two types of smart pointer:

1.
 Class shared_ptr
 for a pointer that implements the concept of shared ownership
 . Multiple smart pointers can refer to the same object so that the object and its associated resources get released whenever the last reference to it gets destroyed. To perform this task in more complicated scenarios, helper classes, such as weak_ptr
 , bad_weak_ptr
 , and enable_shared_from_this
 , are provided.

2.
 Class unique_ptr
 for a pointer that implements the concept of exclusive ownership
 or strict ownership
 . This pointer ensures that only one smart pointer can refer to this object at a time. However, you can transfer ownership. This pointer is especially useful for avoiding resource leaks, such as missing calls of delete
 after or while an object gets created with new
 and an exception occurred.

Historically, C++98 had only one smart pointer class provided by the C++ standard library, class auto_ptr<>
 , which was designed to perform the task that unique_ptr
 now provides. However, due to missing language features, such as move semantics for constructors and assignment operators and other flaws, this class turned out to be difficult to understand and error prone. So, after class shared_ptr
 was introduced with TR1 and class unique_ptr
 was introduced with C++11, class auto_ptr
 officially became deprecated with C++11, which means that you should not use it unless you have old existing code to compile.

All smart pointer classes are defined in the <memory>
 header file.

5.2.1. Class shared_ptr

Almost every nontrivial program needs the ability to use or deal with objects at multiple places at the same time. Thus, you have to “refer” to an object from multiple places in your program. Although the language provides references and pointers, this is not enough, because you often have to ensure
 that when the last reference to an object gets deleted, the object itself gets deleted, which might require some cleanup operations, such as freeing memory or releasing a resource.

So we need a semantics of “cleanup when the object is nowhere used anymore.” Class shared_ptr
 provides this semantics of shared ownership
 . Thus, multiple shared_ptr
 s are able to share, or “own,” the same object. The last owner of the object is responsible for destroying it and cleaning up all resources associated with it.

By default, the cleanup is a call of delete
 , assuming that the object was created with new
 . But you can (and often must) define other ways to clean up objects. You can define your own destruction policy
 . For example, if your object is an array allocated with new[]
 , you have to define that the cleanup performs a delete[]
 . Other examples are the deletion of associated resources, such as handles, locks, associated temporary files, and so on.

To summarize, the goal of shared_ptr
 s is to automatically release resources associated with objects when those objects are no longer needed (but not before).

Using Class shared_ptr

You can use a shared_ptr
 just as you would any other pointer. Thus, you can assign, copy, and compare shared pointers, as well as use operators *
 and ->
 , to access the object the pointer refers to. Consider the following example:

// util/sharedptr1.cpp

#include <iostream>

#include <string>

#include <vector>

#include <memory>

using namespace std;

int main()

{

 // two shared pointers representing two persons by their name

 shared_ptr<string> pNico(new string("nico"));

 shared_ptr<string> pJutta(new string("jutta"));

 // capitalize person names

 (*pNico)[0] = 'N';

 pJutta->replace(0,1,"J");

 // put them multiple times in a container

 vector<shared_ptr<string>> whoMadeCoffee;

 whoMadeCoffee.push_back(pJutta);

 whoMadeCoffee.push_back(pJutta);

 whoMadeCoffee.push_back(pNico);

 whoMadeCoffee.push_back(pJutta);

 whoMadeCoffee.push_back(pNico);

 // print all elements

 for (auto ptr : whoMadeCoffee) {

 cout << *ptr << " ";

 }

 cout << endl;

 // overwrite a name again

 *pNico = "Nicolai";

 // print all elements again

 for (auto ptr : whoMadeCoffee) {

 cout << *ptr << " ";

 }

 cout << endl;

 // print some internal data

 cout << "use_count: " << whoMadeCoffee[0].use_count() << endl;

}

After including <memory>
 , where shared_ptr
 class is defined, two shared_ptr
 s representing pointers to strings are declared and initialized:

shared_ptr<string> pNico(new string("nico"));

shared_ptr<string> pJutta(new string("jutta"));

Note that because the constructor taking a pointer as single argument is explicit
 , you can’t use the assignment notation here because that is considered to be an implicit conversion. However, the new initialization syntax is also possible:

shared_ptr<string> pNico = new string("nico"); // ERROR

shared_ptr<string> pNico{new string("nico")}; // OK

You can also use the convenience function make_shared()
 here:

shared_ptr<string> pNico = make_shared<string>("nico");

shared_ptr<string> pJutta = make_shared<string>("jutta");

This way of creation is faster and safer because it uses one instead of two allocations: one for the object and one for the shared data the shared pointer uses to control the object (see Section 5.2.4, page 95
 , for details).

Alternatively, you can declare the shared pointer first and assign a new pointer later on. However, you can’t use the assignment operator; you have to use reset()
 instead:

shared_ptr<string> pNico4;

pNico4 = new string("nico"); // ERROR: no assignment for ordinary pointers

pNico4.reset(new string("nico")); // OK

 The following two lines demonstrate that using shared pointers is just like using ordinary pointers:

(*pNico)[0] = 'N';

pJutta->replace(0,1,"J");

With operator *
 , you yield the object pNico
 refers to to assign a capital 'N'
 to its first character. With operator ->
 , you get access to a member of the object pJutta
 refers to. Thus, here the member function replace()
 allows you to replace substrings (see Section 13.3.7, page 706
).

Next we insert both pointers multiple times into a container of type vector<>
 (see Section 7.3, page 270
). The container usually creates its own copy of the elements passed, so we would insert copies of strings if we inserted the strings directly. However, because we pass pointers to the strings, these pointers are copied, so the container now contains multiple references to the same object. This means that if we modify the objects, all occurrences of this object in the container get modified. Thus, after replacing the value of the string pNico

*pNico = "Nicolai";

all occurrences of this object now refer to the new value, as you can see in Figure 5.1
 and according to the corresponding output of the program:

Jutta Jutta Nico Jutta Nico

Jutta Jutta Nicolai Jutta Nicolai

use_count: 4

 [image: Image]

Figure 5.1. Using shared_ptr
 s

The last row of the output is the result of calling use_count()
 for the first shared pointer in the vector. use_count()
 yields the current number of owners an object referred to by shared pointers has. As you can see, we have four owners of the object referred to by the first element in the vector: pJutta
 and the three copies of it inserted into the container.

At the end of the program, when the last owner of a string gets destroyed, the shared pointer calls delete
 for the object it refers to. Such a deletion does not necessarily have to happen at the end of the scope. For example, assigning the nullptr
 (see Section 3.1.1, page 14
) to pNico
 or resizing the vector so that it contains only the first two elements would delete the last owner of the string initialized with nico
 .

 Defining a Deleter

We can declare our own deleter, which, for example, prints a message before it deletes the referenced object:

shared_ptr<string> pNico(new string("nico"),

 [](string* p) {

 cout << "delete " << *p << endl;

 delete p;

 });

...

pNico = nullptr; //
 pNico does not refer to the string any longer

whoMadeCoffee.resize(2); // all copies of the string in
 pNico are destroyed

Here, we pass a lambda (see Section 3.1.10, page 28
) as the second argument to the constructor of a shared_ptr
 . Having pNico
 declared that way, the lambda function gets called when the last owner of a string gets destroyed. So the preceding program with this modification would print

delete Nicolai

when resize()
 gets called after all statements as discussed before. The effect would be the same if we first changed the size of the vector and then assigned nullptr
 or another object to pNico
 .

For another example application of shared_ptr<>
 , see how elements can be shared by two containers in Section 7.11, page 388
 .

Dealing with Arrays

Note that the default deleter provided by shared_ptr
 calls delete
 , not delete[]
 . This means that the default deleter is appropriate only if a shared pointer owns a single object created with new
 . Unfortunately, creating a shared_ptr
 for an array is possible but wrong:

std::shared_ptr<int> p(new int[10]); // ERROR, but compiles

So, if you use new[]
 to create an array of objects you have to define your own deleter. You can do that by passing a function, function object, or lambda, which calls delete[]
 for the passed ordinary pointer. For example:

std::shared_ptr<int> p(new int[10],

 [](int* p) {

 delete[] p;

 });

You can also use a helper officially provided for unique_ptr
 , which calls delete[]
 as deleter (see Section 5.2.5, page 106
):

std::shared_ptr<int> p(new int[10],

 std::default_delete<int[]>());

Note, however, that shared_ptr
 and unique_ptr
 deal with deleters in slightly different ways. For example, unique_ptr
 s provide the ability to own an array simply by passing the corresponding element type as template argument, whereas for shared_ptr
 s this is not possible:

Click here to view code image

 std::unique_ptr<int[]> p(new int[10]); // OK

std::shared_ptr<int[]> p(new int[10]); // ERROR: does not compile

In addition, for unique_ptr
 s, you have to specify a second template argument to specify your own deleter:

std::unique_ptr<int,void(*)(int*)> p(new int[10],

 [](int* p) {

 delete[] p;

 });

Note also that shared_ptr
 does not provide an operator []
 . For unique_ptr
 , a partial specialization for arrays exists, which provides operator []
 instead of operators *
 and ->
 . The reason for this difference is that unique_ptr
 is optimized for performance and flexibility. See Section 5.2.8, page 114
 , for details.

Dealing with Other Destruction Policies

When the cleanup after the last owning shared pointer is something other than deleting memory, you have to specify your own deleter. You can understand this to specify your own destruction policy
 .

As a first example, suppose that we want to ensure that a temporary file gets removed when the last reference to it gets destroyed. This is how it could be done:

Click here to view code image

// util/sharedptr2.cpp

#include <string>

#include <fstream> // for
 ofstream

#include <memory> // for
 shared_ptr

#include <cstdio> // for
 remove()

class FileDeleter

{

 private:

 std::string filename;

 public:

 FileDeleter (const std::string& fn)

 : filename(fn) {

 }

 void operator () (std::ofstream* fp) {

 delete fp; // close file

 std::remove(filename.c_str()); // delete file

 }

};

int main()

{

 // create and open temporary file:

 std::shared_ptr<std::ofstream> fp(new std::ofstream("tmpfile.txt"),

 FileDeleter("tmpfile.txt"));

 ...

}

Here, we initialize a shared_ptr
 with a new
 ly created output file (see Section 15.9, page 791
). The passed FileDeleter
 ensures that this files gets closed and deleted with the standard C function remove()
 , provided in <cstdio>
 when the last copy of this shared pointer loses the ownership of this output stream. Because remove()
 needs the filename, we pass this as an argument to the constructor of FileDeleter
 .

Our second example demonstrates how to use shared_ptr
 s to deal with shared memory:
8

8

 There are multiple system-dependent ways to deal with shared memory. Here, the standard POSIX way with shm_open()
 and mmap()
 is used, which requires shm_unlink()
 to be called to release the (persistent) shared memory.

Click here to view code image

// util/sharedptr3.cpp

#include <memory> // for
 shared_ptr

#include <sys/mman.h> // for shared memory

#include <fcntl.h>

#include <unistd.h>

#include <cstring> // for
 strerror()

#include <cerrno> // for
 errno

#include <string>

#include <iostream>

class SharedMemoryDetacher

{

 public:

 void operator () (int* p) {

 std::cout << "unlink /tmp1234" << std::endl;

 if (shm_unlink("/tmp1234") != 0) {

 std::cerr << "OOPS: shm_unlink() failed" << std::endl;

 }

 }

};

std::shared_ptr<int> getSharedIntMemory (int num)

{

 void* mem;

 int shmfd = shm_open("/tmp1234", O_CREAT|O_RDWR, S_IRWXU|S_IRWXG);

 if (shmfd < 0) {

 throw std::string(strerror(errno));

 }

 if (ftruncate(shmfd, num*sizeof(int)) == -1) {

 throw std::string(strerror(errno));

 }

 mem = mmap(nullptr, num*sizeof(int), PROT_READ | PROT_WRITE,

 MAP_SHARED, shmfd, 0);

 if (mem == MAP_FAILED) {

 throw std::string(strerror(errno));

 }

 return std::shared_ptr<int>(static_cast<int*>(mem),

 SharedMemoryDetacher());

}

int main()

{

 // get and attach shared memory for 100
 ints
 :

 std::shared_ptr<int> smp(getSharedIntMemory(100));

 // init the shared memory

 for (int i=0; i<100; ++i) {

 smp.get()[i] = i*42;

 }

 // deal with shared memory somewhere else:

 ...

 std::cout << "<return>" << std::endl;

 std::cin.get();

 // release shared memory here:

 smp.reset();

 ...

}

*
OEBPS/Image00010.jpg
Operation

Effect

tuple<Ti,T2,..,Tn> t

tuple<T1,T2,..
tWI,02,..e
tuple<T1,T2> t(p)

t=1n

t=p

t1 == t2
t1 1= t2
t1 < t2
t1> t2
t1 <= t2
t1>= t2

t1.swap(£2)
swap(t1,t2)
make_tuple (v/,V.

tie(refl,ref2,...)

Creates a tuple with n elements of the specified types, initialized
with their default constructors (0 for fundamental types)

Creates a tuple with n elements of the specified types,

initialized with the specified values

Creates a tuple with two elements of the specified type, initialized
with the values of the passed pair p (ps types must match)
Assigns the values of 12 to t

Assigns a pair p to a tuple with two elements (the types of the pair
p must match)

Returns whether ¢1is equal to ¢2(true if a comparison with == of
all elements yields true)

Returns whether t1 is not equal to t2 (! (t1==t2))

Returns whether t1 is less than ¢2 (uses lexicographical
comparison)

Returns whether t1 is greater than t2 (t2<t1)

Returns whether t1 is less than or equal to t2 (! (t2<t1))
Returns whether t1 is greater than or equal to t2 (! (t1<t2))
Swaps the data of ¢1 and ¢2 (since C++11)

Same (as global function) (since C-++11)

Creates a tuple with types and values of all passed values, and
allows extracting values out of a tuple

Creates a tuple of references, which allows extracting (individual)
values out of a tuple

OEBPS/Image00011.jpg
pNico: ? pdutta: []

v
Jutta

=l

Q,I T

]
whoMadeCoffee: [T T'[' '] [[[>

-

phico: li] pouta: []

Nicolai" Jutta

e

]
‘whoMadeCoffee: [T "' '] [[[—>

OEBPS/Image00008.jpg
Operation

Effect

pair<Ti,T2>

pair<Ti,T2>

pair<T1,T2>

pair<Ti,T2>

pair<T1,T2>
pair<T1,T2>

p=p2

p.first
.second

s

P
p(vall vai2)
p(vl,v2)

p(piecewise_
construct,
tl,12)
p(p2)
()

Default constructor; creates a pair of values of types T1 and
T2, initialized with their default constructors

Creates a pair of values of types T1 and T2, initialized with
vall and val2

Creates a pair of values of types T1 and T2, move
initialized with rv/ and rv2

Creates a pair of values of types T1 and T2, initialized by
the elements of the tuples 7 and 12

Copy constructor: creates p as copy of p2

Move constructor; moves the contents of rv to p (implicit
type conversions are possible)

Assigns the values of p2 to p (implicit type conversions are
possible since C++11)

Move assigns the values of v to p (provided since C++11;
implicit type conversions are possible)

Yields the first value inside the pair (direct member access)
Yields the second value inside the pair (direct member
access)

OEBPS/Image00009.jpg
get<0>(p)
get<1>(p)

p1==p2

pl 1= p2
p1<p2

pl > p2
p1<=p2
p1>= p2

p1.swap(p2)
swap(p1,p2)
make_pair (vall ,val2)

Equivalent to p.first (since C++11)
Equivalent to p.second (since C++11)

Returns whether p1 is equal to p2 (equivalent to
pl.first==p2.first && pl.second==p2.second)
Returns whether p1 is not equal to p2 (! (p1==p2))
Returns whether p1 is less than p2 (compares first or if
equal second of both values)

Returns whether p1 is greater than p2 (p2<p1)

Returns whether p1 is less than or equal to p2 (! (p2<p1))
Returns whether p1 is greater than or equal to p2

(1 (p1<p2))

Swaps the data of p1 and p2 (since C++11)

Same (as global function) (since C++11)

Returns a pair with types and values of val/ and val2

OEBPS/Image00006.jpg
Error Condition Enum Value
not_a_strean ENOSTR
not_connected ENOTCONN
not_enough_memory ENOMEN
not_supported ENOTSUP
operation_canceled ECANCELED
operation_in_progress ETNPROGRESS
operation_not_permitted EPERM
operation_not_supported EOPNOTSUPP
operation_would_block EWOULDBLOCK
ouner_dead EOWNERDEAD
permission_denied EACCES
protocol_error EPROTO
protocol _not_supported EPROTONOSUPPORT
read_only_file_system EROFS
resource_deadlock_would_occur | EDEADLK
resource_unavailable_try_again | EAGAIN
Tesult_out_of_range ERANGE
state_not_recoverable ENOTRECOVERABLE
stream_timeout ETIME
text_file_busy ETXTBSY
timed_out ETIMEDOUT
too_many_files_open_in_system | ENFILE
too_many_£iles_open ENFILE
too_many_links EMLINK
too_many_symbolic_link_levels | ELOOP
value_too_large EOVERFLOW
wrong_protocol_type EPROTOTYPE

OEBPS/Image00007.jpg
Error Code

Meaning

broken_promise
future_already_retrieved
promise_already_satisfied
no_state

shared state abandoned

get_future() already called

Shared state already has a value/exception or already invoked
No shared state

OEBPS/Image01128.jpg
THE C++
STANDARD LIBRARY

Autoril

Reference

OEBPS/Image00000.jpg
vv Addison-Wesley

OEBPS/Image01125.jpg
THE C++
STANDARD LIBRARY

SECOND EDITION

A Tutorial and Reference

NICOLAI M. JOSUTTIS

OEBPS/Image00005.jpg
invalid_argument
invalid_seek

io_error

is_a_directory
message_size

network_down
netuork_reset
network_unreachable
no_buffer_space
no_child_process

no_link

no_lock_available
no_message_available
no_message
no_protocol_option
no_space_on_device
no_stream_resources
no_such_device_or_address
no_such_device
no_such_tile_or_directory
no_such_process
not_a_directory
not_a_socket.

EINVAL
ESPIPE
EIO
EISDIR
EMSGSIZE
ENETDOWN
ENETRESET
ENETUNREACH
ENOBUFS
ECHILD
ENOLINK
ENOLCK
ENODATA
ENOMSG
ENOPROTOOPT
ENOSPC
ENOSR
ENXIO
ENODEV
ENOENT
ESRCH
ENOTDIR
ENOTSOCK

OEBPS/Image00003.jpg
domain_error
invalid_argument

length_error
logic_error |

i

out_of_range

future_error

code()

oxception

system_error

whatg

ase:

code()

|

runtime_error —
2 range_error

overflow_error

v oror

nosted_oxception | |—{ bad_cost

bad_typeid
|—{oa_atoc [oad_array_now_tongen

bad_weak _ptr

bad_function_call

OEBPS/Image00004.jpg
irror Condition

Cnum Value

address_family_not_supported
address_in_use
address_not_available
already_connected
argument_1ist_too_long
argunent_out_of_domain
bad_address
bad_file_descriptor
bad_nessage

broken_pipe

connection_aborted
connection_already_in_progress
connection_refused
connection_reset
cross_device_link
destination_address_required
device_or_resource_busy
directory_not_empty
executable_format_error
file_exists

file_too_large
filename_too_long
function_not_supported
host_unreachable
identifier_removed
illegal_byte_sequence
inappropriate_io_control_operation
interrupted

EAFNOSUPPORT
EADDRINUSE
EADDRNOTAVAIL
ETSCONN
E2BIG

EDOM

EFAULT

EBADF
EBADNSG
EPIPE
ECONNABORTED
EALREADY
ECONNREFUSED
ECONNRESET
EXDEV
EDESTADDRREQ
EBUSY
ENOTEMPTY
ENOEXEC
EEXIST

EFBIG
ENAMETOOLONG
ENOSYS
EHOSTUNREACH
EIDRI

EILSEQ
ENOTTY

EINTR

OEBPS/Image00001.jpg
Type Notation Meaning

Constant o(1) The runtime is independent of the number of elements

Logarithmic | O(log(n)) The runtime grows logarithmically with respect to the number of
elements.

Linear o) The runtime grows linearly (with the same factor) as the number
of elements grows.

n-log-n O(n +log(n)) | The runtime grows as a product of linear and logarithmic com-
plexity.

Quadratic 0(n?) The runtime grows quadratically with respect to the number of

clements.

OEBPS/Image00002.jpg
‘Complexity Number of Elements

Type Notation 1[2] 5[0] so| 10 1,000 10,000
Constant o(l) 1)1 1 1 1 | 1 3
Logarithmic | O(log(n)) 12| 3] 4 6 7 10 13
Linear o) tl2f 5| 0| s0| 100 1000 10,000
n-log-n O xlog(n)) | 14| 15| 40| 300 | 700 | 10000 130,000
Quadratic | O(n?) 1] 425 100 | 2500 | 10,000 | 1,000,000 | 100,000,000

