
www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Nginx Module Extension

Customize and regulate the robust Nginx web server,
and write your own Nginx modules efficiently

Usama Dar

BIRMINGHAM - MUMBAI

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Nginx Module Extension

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1191213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-304-6

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Credits

Author
Usama Dar

Reviewer
Alex Kapranoff

Acquisition Editor
Rebecca Youe

Commissioning Editor
Manasi Pandire

Technical Editors
Aparna Chand

Aparna Kumari

Adrian Raposo

Copy Editors
Janbal Dharmaraj

Dipti Kapadia

Karuna Narayanan

Alfida Paiva

Project Coordinator
Amey Sawant

Proofreader
Ting Baker

Indexer
Rekha Nair

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

About the Author

Usama Dar has over 13 years' experience working with software systems.
During this period, he has not only worked with large companies such as Nortel
Networks, Ericsson, and Huawei, but has also been involved with successful
startups such as EnterpriseDB. He has worked with systems with mission-critical
requirements of scalability and high availability. He writes actively on this website:
www.usamadar.com. These days, Usama works at the Huawei Research Centre
in Munich, where he spends most of his time researching highly scalable,
high-performing infrastructure software (such as operating systems),
databases, and web and application servers.

Big thanks to my parents for always providing me with confidence
to pursue my dreams. Thanks to my wife for putting up with my
crazy schedule and allowing me to work at odd hours to complete
this book.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

About the Reviewer

Alex Kapranoff was born into the family of an electronics engineer and
programmer for the old Soviet "Big Iron" computers. He started programming at the
age of 12 and has never worked outside the IT industry since. After earning a degree
in Software Engineering with honors, he had a short stint in the world of enterprise
databases and Windows. Then he settled on open source, Unix-like environments
for good, first FreeBSD and then Linux, working as a developer for many Russian
companies from ISPs to search engines. Most of his experience has been with e-mail
and messaging systems and web security. Right now, he is trying his hand at a
product and project management position in Yandex, one of the biggest search
engines in the world.

He took his first look at Nginx working in Rambler side by side with the author of
Nginx, Igor Sysoev, before the initial public release of the product. Since then, Nginx
has been an essential tool in his kit. He doesn't launch a website—no matter how
complex it is—without using Nginx.

He strongly believes in the Free Software Movement, loves Perl, plain C, LISP,
cooking, and fishing, and lives with a beautiful girlfriend and an old cat in
Moscow, Russia.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Installing Nginx Core and Modules from Source 5

Installing binary distribution 5
Red Hat, Fedora, and CentOS 6
Official Debian/Ubuntu packages 6
FreeBSD 7
OpenBSD 8
Official Win32 binaries 8

Installing source distribution 8
Nginx library dependencies 9
Configuring options 9

Files and permissions 10
The Event loop 11
Optional modules 11
Compilation controls 12
Example 12
The Custom module 13
Debugging 13

Installing on other platforms 13
Verifying your Nginx installation 14

Summary 14
Chapter 2: Configuring Core Modules 15

Understanding the Main module 15
Explaining directives 16

daemon 16
master_process 16
timer_resolution 16
pid 17
lock_file 17
worker_processes 17

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Table of Contents

[ii]

debug_points 17
user 17
worker_priority 18
worker_cpu_affinity 18
worker_rlimit_nofile 18
worker_rlimit_core 18
worker_rlimit_sigpending 18
working_directory 19
env 19

Understanding the Events module 19
Explaining directives 20

accept_mutex 20
accept_mutex_delay 20
debug_connection 20
devpoll_changes and devpoll_events 21
kqueue_changes and kqueue_events 21
epoll_events 21
multi_accept 22
rtsig_signo 22
rtsig_overflow_events, rtsig_overflow_test, and rtsig_overflow_threshold 22
use 23
worker_connections 23

Summary 23
Chapter 3: Installing and Configuring HTTP Modules 25

Standard HTTP modules 25
The core module (HttpCoreModule) 25
Explaining directives 26

server 26
server_name 26

Controlling access (HttpAccessModule) 32
Authenticating users (HttpBasicAuthModule) 33

Explaining directives 33
Load balancing (HttpUpstreamModule) 34

Explaining directives 34
Acting as a proxy (HttpProxyModule) 36

Explaining directives 36
Compressing content (HttpGzipModule) 42

Explaining directives 42
Controlling logging (HttpLogModule) 43

Explaining directives 44
Setting response headers (HttpHeadersModule) 45

Explaining directives 45
Rewriting requests (HttpRewriteModule) 46

Explaining directives 46
Interacting with FastCGI (HttpFastcgiModule) 50
Simple caching (HttpMemcachedModule) 50

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Table of Contents

[iii]

Explaining directives 51
Limiting requests (HttpLimitReqModule) 52

Explaining directives 52
Limiting connections (HttpLimitConnModule) 53

Explaining directives 54
Summary 55

Chapter 4: Installing Third-party Modules 57
Compiling third-party modules 57

Communicating with PostgreSQL (ngx_postgres) 58
Explaining directives 58

Communicating with MySQL and drizzle (drizzle-nginx) 61
Explaining directives 61

Digest Authentication (ngx_http_auth_digest) 64
Explaining directives 64

Speeding up web pages (ngx_pagespeed) 66
Configuring handlers 67

Lua scripting (ngx_lua) 68
Explaining directives 71

Reverse IP lookup using the GeoIP module (ngx_http_geoip_module) 76
Explaining directives 76

Doing healthchecks 78
ngx_http_healthcheck_module 78
Explaining directives 79
Load balancing 81

Summary 82
Chapter 5: Creating Your Own Module 83

Nginx module delegation 83
Handlers 84
Load balancers 84
Filters 84

Order of execution 84
The extended "Hello world" module 85

Writing and compiling a module 85
The "Hello world" source code 86

Components of the Nginx module 90
Module configuration structures 90
Module directives 91
The module context 94
The module definition 98
The handler function 100

Nginx Development Toolkit (NDK) 104
Summary 105

Index 107

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Preface
This book is for advanced users such as system administrators and developers
who want to extend Nginx's functionality using its highly flexible add-on system.
We look at the existing modules available and how to compile and install them,
along with practical examples of how to configure them with focus on optimizing
the configuration. It also goes beyond what is available off the shelf and teaches
you how to write your own module, in case something is not available from the
big Nginx open source community.

What this book covers
Chapter 1, Installing Nginx Core and Modules from Source, serves as a quick reference
for downloading and installing Nginx and compilation options related to different
modules and add-ons.

Chapter 2, Configuring Core Modules, is a reference to the core modules in Nginx,
which cannot be disabled, and explores different configuration options for them.

Chapter 3, Installing and Configuring HTTP Modules, is a reference to the standard
and optional HTTP modules, their synopsis, directives as well as practical
configuration examples.

Chapter 4, Installing Third-party Modules, introduces third-party modules, mostly
available on GitHub. It talks about some well-known third-party modules, their
installation and configuration, and also some guidelines on how to find different
third-party modules out there.

Chapter 5, Creating Your Own Module, gives a brief introduction to creating your
own modules. This chapter is a quick reference to the module system in Nginx.
It also has a quick reference to the internal architecture of Nginx, which makes
extension possible.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Preface

[2]

What you need for this book
This book will help you understand the module-based architecture of Nginx.
You will learn to install Nginx as well as extend it with several available modules.
This book specially touches on the topic of creating your own Nginx modules.
Most people have to read heaps of code to get this done. This book will make
it easier for advanced users who are looking to extend Nginx by not only using
existing modules, but also writing something of their own.

Who this book is for
This book is intended for advanced users, system administrators, and developers
of Nginx modules.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can reload the Nginx configuration once you edit the nginx.conf file."

A block of code is set as follows:

[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/$releasever/
 $basearch/
gpgcheck=0
enabled=1

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

ngx_uint_t spare0;
ngx_uint_t spare1;
ngx_uint_t spare2;
ngx_uint_t spare3;

ngx_uint_t version;
void *ctx;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Preface

[3]

Any command-line input or output is written as follows:

cd /usr/ports/www/nginx

make install clean

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes, for example, appear in the text like this: "For example,
according to the following configuration, this module will make sure that it prints
Hello World."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Nginx Core and
Modules from Source

This chapter serves as a quick reference to downloading and installing Nginx using
binary and source distribution and compilation options related to different modules
and add-ons.

If you are reading this book, you are already familiar with Nginx (pronounced
as engine-x). Therefore, we will not spend too much time discussing the basics.
However, you will need a working copy of Nginx before proceeding to
advanced topics.

Installing binary distribution
Most UNIX and Linux distributions have Nginx included in their package manager
repositories. Use package manager commands on your platform to install it. For
example, use apt-get on Ubuntu or Debian, and emerge on Gentoo. For Red Hat,
Fedora, or CentOS, see the instructions that follow.

You can find binary installation instructions for different platforms such as Red Hat
and Ubuntu on the Nginx installation wiki at http://wiki.nginx.org/Install.
However, we will briefly describe the process here, quoting from the wiki.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Nginx Core and Modules from Source

[6]

Red Hat, Fedora, and CentOS
To add the Nginx yum repository, create a file named /etc/yum.repos.d/nginx.
repo and paste one of the following configurations:

• For CentOS:
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/$releasever/
 $basearch/
gpgcheck=0
enabled=1

• For RHEL:
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/rhel/$releasever/
 $basearch/
gpgcheck=0
enabled=1

CentOS, RHEL, and Scientific Linux, each populate the $releasever variable
differently. Therefore, depending on your OS version, replace $releasever with 5
(for 5.x) or 6 (for 6.x). Therefore, baseurl for 6.x would look like baseurl=http://
nginx.org/packages/rhel/6/$basearch/.

Official Debian/Ubuntu packages
Append the following lines to the /etc/apt/sources.list file, and replace the
codename with the one appropriate for the release that you are using, for example,
Ubuntu 13.10 is codenamed saucy:

• For Ubuntu 12.10:
deb http://nginx.org/packages/ubuntu/ saucy nginx
deb-src http://nginx.org/packages/ubuntu/ saucy nginx

Please note that when you will run the apt-get update after adding the
repository, you will get a GPG error of not being able to verify keys.
If this happens and you find it hard to ignore it, do the following:

wget http://nginx.org/packages/keys/nginx_signing.key
cat nginx_signing.key | sudo apt-key add -

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

[7]

• For Debian 6:
deb http://nginx.org/packages/debian/ squeeze nginx
deb-src http://nginx.org/packages/debian/ squeeze nginx

• For Ubuntu PPA: This PPA is maintained by volunteers and is not
distributed by nginx.org. It has some additional compiled-in modules,
and it may be more fitting for your environment. You can get the latest
stable version of Nginx from Nginx PPA on Launchpad: You will require
root privileges to execute the following commands.

 ° For Ubuntu 10.04 and newer:
sudo -s

nginx=stable # use nginx=development for latest
development version

add-apt-repository ppa:nginx/$nginx

apt-get update

apt-get install nginx

If you get an error about add-apt-repository not existing, you will want
to install python-software-properties. For other Debian/Ubuntu based
distributions, you can try the lucid variant of the PPA that is the most
likely to work on older package sets.

sudo -s

nginx=stable # use nginx=development for latest development
 version

echo "deb http://ppa.launchpad.net/nginx/$nginx/ubuntu lucid
 main" > /etc/apt/sources.list.d/nginx-$nginx-lucid.list

apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
 C300EE8C

apt-get update

apt-get install nginx

FreeBSD
Update the BSD ports tree using the following command:

portsnap fetch update

Install the web server using the following commands:

cd /usr/ports/www/nginx

make install clean

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Nginx Core and Modules from Source

[8]

Type the following command to turn the Nginx server on:

echo 'nginx_enable="YES"' >> /etc/rc.conf

To start Nginx, enter:

/usr/local/etc/rc.d/nginx start

OpenBSD
OpenBSD, as of Version 5.1, includes Nginx as part of the base system. This means
Nginx comes pre-installed along with all the library dependencies. The version is
not always the latest and greatest one. However, this allows you to start migrating
Apache applications over to Nginx. In the future, it is expected that the default httpd
will be Nginx instead of Apache.

Official Win32 binaries
As of Version 0.8.50 of Nginx, the official Windows binary is now available.

The Windows version is provided as binary-only due to the current build process,
which uses WineTools at the moment. You will not be able to compile a Windows
version from source. Once you download the Windows ZIP file, perform the
following steps:

1. Installation:
cd c:\

unzip nginx-1.2.3.zip

ren nginx-1.2.3 nginx

cd nginx

start nginx

2. Control:
nginx -s [stop | quit | reopen | reload]

For problems, look in the c:\nginx\logs\error.log file or in EventLog.

Installing source distribution
Nginx binary packages are outdated and usually have an older version. If the
binaries on your platform are not the latest and up-to-date, you can download the
source from http://nginx.org/en/download.html. At the time of writing this
chapter, Version 1.4.3 is the stable downloadable version.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

[9]

You can also checkout or clone the latest source.

Read-only Subversion repositories:

code: svn://svn.nginx.org/nginx

Read-only Mercurial repositories:

site: http://hg.nginx.org/nginx.org

After you have downloaded the source archive, un-tar it and use the following
standard build commands to build a standard binary:

./configure

make

sudo make install

This places the Nginx binary under user/local. However, you can override this
path through configure options.

Nginx library dependencies
If you want to build Nginx from source, the following libraries are needed at
the minimum:

• GCC
• Autotools (automake and autoconf)
• PCRE (Perl Compatible Regular Expressions)
• zlib
• OpenSSL

You also have the option to disable the dependency on PCRE, zlib, and OpenSSL
by disabling the compilation of rewrite, gzip, and ssl modules. These modules are
enabled by default.

Configuring options
Compile-time options are provided through configure. You can also find
documentation related to the configure-time options online at http://wiki.nginx.
org/InstallOptions.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Nginx Core and Modules from Source

[10]

The configure command defines various aspects of the system including the
methods that Nginx is allowed to use for connection processing. At the end, it creates
a makefile. You can use ./configure --help to see a full list of options supported
by the configure command.

The following section is extracted from the Nginx online wiki.

Files and permissions
• --prefix=path: It is set to the /usr/local/nginx directory by default.

The path specified here is the root folder for keeping the server files.
This includes the executable files, server log files, configuration files,
and html documentation.

• --sbin-path=path: The default Nginx executable name is /sbin/nginx.
You can change the name using this configure option.

• --conf-path=path: The default for this option is prefix/conf/nginx.conf.
This is the default path for the Nginx configuration file. This file, as you will
learn later, is used to configure everything about the Nginx server. The path
also contains a number of other configuration files such as a sample fastcgi
configuration file and character-set maps. You can always change this path
later on in the configuration file.

• --pid-path=path: This option allows you to change the name of the pid
file. The pid files are used by various utilities (including start/stop scripts)
to determine if the server is running. Normally, it is a plain text file with the
server process ID in it. By default, the file is named prefix/logs/nginx.pid.

• --error-log-path=path: This option allows you to specify the location of
the error log. By default, the file is named prefix/logs/error.log. You can
set this value to stderr. It will redirect all the error messages to the standard
error on your system. Normally, this will be your console or the screen.

• --http-log-path=path: This sets the name of the log file where all HTTP
requests are logged. By default, the file is named prefix/logs/access.log.
Like other options, this can be changed anytime by providing the access_
log directive in the configuration file.

• --user=USER: This sets the username that will be used to run the Nginx
worker processes. You should make sure that this is an unprivileged or
non-root user. The default user name is nobody. You can change it later
through the user directive in the configuration file.

• --group=name: This sets the name of the group used to run the worker
processes. The default group name is nobody. You can change this through
the user directive in the configuration file.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

[11]

The Event loop
One of the reasons for Nginx being so fast and stable is its ability to use event-based
functions. Input/Output. The event-based coding ensures maximum performance
within a single core by allowing it to be non-blocking. However, event-based
code needs the underlying platform support such as kqueue (FreeBSD, NetBSD,
OpenBSD, and OSX), epoll (Linux), and /dev/poll (Solaris, HPUX).In cases where
these methods are not available, Nginx can work with more traditional select()
and poll() methods as well. The following options affect this behavior:

• --with-select_module

• --without-select_module

These enable or disable building of a module that allows the server to work with the
select() method. This module is built automatically if the platform does not appear
to support more appropriate methods such as kqueue, epoll, rtsig, or /dev/poll.

• --with-poll_module

• --without-poll_module

These enable or disable the building of a module that allows the server to work
with the poll() method. This module is built automatically if the platform does not
appear to support more appropriate methods such as kqueue, epoll, rtsig, or /
dev/poll.

Optional modules
The optional modules are as follows:

• --without-http_gzip_module: This option allows you to disable over-the-
wire compression. This can be quite useful if you are sending or receiving
large text documents over HTTP. However, if you don't want to build this
compression into Nginx binary, or you don't have access to the zlib library
that is required to enable this support, you can disable it using this option.

• --without-http_rewrite_module: This option allows you to disable the
HTTP rewrite module. The HTTP rewrite module allows you to redirect
HTTP requests by modifying URIs that match a given pattern. You need the
PCRE library to enable this module.

• --without-http_proxy_module: This disables ngx_http_proxy_module.
The proxy module allows you to pass the HTTP request to another server.

• --with-http_ssl_module: This enables the SSL support in the server.
This is not enabled by default and you need OpenSSL in order to build SSL
support in the Nginx binary.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Nginx Core and Modules from Source

[12]

• --with-pcre=path: If you have downloaded the PCRE source on your
machine, you can provide its path through this parameter. Nginx will
automatically build this library before building the Nginx server. Please
make sure that the version of PCRE source is 4.4 or higher.

• --with-pcre-jit: This builds the PCRE library with the "just-in-time
compilation" support. This is significantly to improve the pattern matching
or rewriting speed by converting the regular expressions into machine code.

• --with-zlib=path: If you have already downloaded the zlib library source,
you can provide its path here. Nginx will build the zlib library before
building the server binary. Please make sure that the source version is 1.1.3
or higher.

Compilation controls
The compilation controls are as follows:

• --with-cc-opt=parameters: Additional options for the CFLAGS variable
• --with-ld-opt=parameters: Additional parameters for the linker (LD_

LIBRAY_PATH) that you should provide --with-ld-opt="-L /usr/local/
lib when building on FreeBSD

Example
Example of parameters usage (all of this needs to be typed in one line):

 ./configure

 --sbin-path=/usr/local/nginx/nginx

 --conf-path=/usr/local/nginx/nginx.conf

 --pid-path=/usr/local/nginx/nginx.pid

 --with-http_ssl_module

 --with-pcre=../pcre-4.4

 --with-zlib=../zlib-1.1.3

When using the system PCRE library under FreeBSD, the following
options should be specified:

• --with-ld-opt="-L /usr/local/lib" \
• --with-cc-opt="-I /usr/local/include"

If the number of files supported by select() needs to be increased, it
can also be specified like this:

• --with-cc-opt="-D FD_SETSIZE=2048"

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

[13]

The Custom module
One of the great strengths of Nginx is its modular design. You are able to hook
in third-party modules or modules that you write yourself.

--add-module=path compiles the module located at path into Nginx
binary. You can find a list of third-party modules available for Nginx at
http://wiki.nginx.org/3rdPartyModules.

Debugging
--with-debug enables debug logging. This option is already enabled in the
Windows binary. Once you compile Nginx with this option, you then have to
set the debug level with the error_log directive in the configuration file,
and so on:

error_log /path/to/log debug

In addition to debug logging, you can also attach a debugger to a running version
of Nginx. If you intend to do so, enable the debugging symbols in the Nginx binary.
Compile with -g or -ggdb and recommended compiler optimization level of O0 or
O2 (this makes the debugger output easier to understand). The optimization level
O3 auto-vectorizes the code and introduces certain other optimizations that make
debugging harder. Set the CFLAGS environment variable as follows and
run configure:

CFLAGS="-g -O0" ./configure ...

Installing on other platforms
Let us install Nginx on other platforms such as the following:

• Gentoo: To get the latest version of Nginx, add a platform mask in your
portage configuration file /etc/portage/package.keywords
www-servers/nginx ~x86 (or ~amd64, etc)

• X86/ 64 builds for Solaris are available on http://joyent.com/blog/ok-
nginx-is-cool

• MacOSX: Install Xcode or Xcode command-line tools to get all the required
compilers and libraries

• A detailed account of how to resolve dependencies like PCRE and others is
described in detail for Solaris 10 u5 http://wiki.nginx.org/Installing_
on_Solaris_10_u5

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Nginx Core and Modules from Source

[14]

Verifying your Nginx installation
Following are the steps to verify that Nginx has been installed:

1. Once you have successfully compiled and built Nginx, verify it by running
the nginx -V command.

2. As a root user, run the Nginx server using prefix/ nginx/sbin/nginx.
3. You will see the nginx.pid file once the server is running. The location

of this file depends on the option that you provided while running the
configure script. On Ubuntu, the default location is /var/run/nginx.pid.

You can reload the Nginx configuration once you edit the nginx.conf file. To do
this, send SIGNUP to the main process. The PID of this process is in the nginx.pid
file. The following command will reload the configuration on Ubuntu:

kill -HUP `cat var/run/nginx.pid

Summary
In this chapter, we learned how to download binary and source releases of Nginx
and install binary releases. We have also learned how to compile and install Nginx
from source, how to override installation paths and other properties using configure
options, how to compile Nginx with debugging symbols, and finally, how to verify
the installation.

In the next chapter, we will learn more about configuration of core Nginx modules.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Configuring Core Modules
In this chapter we will explore the configuration of the Main and Events modules of
Nginx, which are also called the core modules. We will discuss the module-related
configuration options and important points that one needs to remember while using
these options.

Understanding the Main module
The Nginx Main module consists of the following configuration directives
or commands:

Name Value Default Example
daemon on, off on
master_process on, off on
timer_resolution interval 0 100ms
pid file logs/nginx.pid /var/log/nginx.pid
lock_file file logs/nginx.lock /var/log/nginx.lock
worker_processes number, auto 1 2
debug_points stop, abort null stop
user user [group] nobody nobody www users
worker_priority number 0 15
worker_cpu_affinity cpu mask 0101 1010
worker_rlimit_nofile number 1000
worker_rlimit_core size 500M
worker_rlimit_sigpending number 1000
working_directory directory compile time /usr/local/nginx
env variable = value PERL5LIB=/data/

site/modules

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Configuring Core Modules

[16]

Explaining directives
We will now discuss all the Main module's directives mentioned in the preceding
table in detail.

daemon
The daemon directive determines if Nginx will run in the daemon mode. A daemon
(or a service) is a background process that is designed to run autonomously, with little
or no user intervention. Since Version 1.0.9 of Nginx, it is safe to run Nginx with this
option turned off. It is not possible to do a binary upgrade of Nginx without stopping
it, if this option is off.

Nginx's master process is responsible for nonstop binary upgrades. The signal that is
used for this purpose is SIGUSR2. However, when the daemon mode is off, this signal
is ignored because the master process will still have the old binary. This is unlike
the daemon mode, where the parent of the new worker process is switched to the
Init process, and therefore, you can start a new worker process with new binaries.
The only reason you might want to run the daemon mode with master_process off
would be for debugging purposes. Turning these options off will run Nginx in the
foreground without a master process, and you can terminate it simply by pressing
Ctrl + R. However, you should not run Nginx in production without the daemon
mode and master_process.

master_process
The master_process directive determines if Nginx will run with a master process.
It has many responsibilities in Nginx, including spawning off worker processes. Nginx
will run in the single-process mode if you set master_process off. You should always
run in production with the master_process option turned on. The only reason you
might want to turn master_process off is for debugging reasons, as it might be much
simpler to debug the code in a single-process mode.

timer_resolution
Setting the timer_resolution directive will reduce the number of gettimeofday()
system calls. Instead of doing this system call for each kernel event, gettimeofday()
is only called once per specified interval. You might want to turn this option off if
gettimeofday() shows up as an overhead on a busy server. You won't notice any
difference on an idle server though. One good reason to use timer_resolution is
to get the exact time in logs for the upstream response times.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

[17]

pid
The pid directive specifies the filename for the PID file of the master process.
The default value is relative to the --prefix configure option.

lock_file
The lock_file directive specifies the filename of the lock file. The default value is
relative to the --prefix configure option. You can also specify this option during
the compile time through the following configure script:

./configure --lock-path=/var/log/nginx.lock

worker_processes
The worker_processes directive defines the maximum number of worker processes.
A worker process is a single-threaded process spawned by the master process. If
you set this option to auto, Nginx will automatically try to determine the number of
CPUs/core and set this option equal to that number. The auto parameter is supported
starting from Versions 1.3.8 and 1.2.5. If you want Nginx to only use a limited number
of cores on your server, setting this value explicitly would be a good idea.

debug_points
The debug_points directive is useful to debug Nginx. If you set this directive to
abort, Nginx will produce a core dump file whenever there is an internal error.
You can use this core dump file to obtain an error trace in a system debugger such
as gdb. In order to obtain the core dump file, you will also need to configure the
working_rlimit_core and working_directory directives.

If this directive is set to stop, any internal error will lead to the stopping of the process.

user
The user directive is used to specify the user and the group of the worker processes.
If no group name is specified, the same group name as that of the user is used. You
can override the default nobody nobody by specifying the user and the group with
the following configure script:

./configure --user=www --group=users

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Configuring Core Modules

[18]

worker_priority
The worker_priority directive allows you to set the nice priority of the worker
processes. Nginx will use the setpriority() system call to set the priority. Setting the
priority to a lower value can result in favorable scheduling of the worker processes.

The actual priority range varies between kernel versions. Before 1.3.36, Linux had
a range from –infinity to 15. Since kernel 1.3.43, Linux has the range from -20 to 19.
On some systems, the range of nice values is from -20 to 20.

worker_cpu_affinity
The worker_cpu_affinity directive allows you to set the affinity masks for the
worker processes. Affinity masks are bit masks, which can bind a process to a certain
CPU. This can lead to better performance on some systems such as Windows, where
several system processes are restricted to the first CPU/core. Therefore, excluding
the first CPU/core can lead to better performance. We can bind each worker process
to a different CPU with the following code snippet:

worker_processes 4;
worker_cpu_affinity 0001 0010 0100 1000;

You can set the CPU affinity value to up to 64 CPU/core.

worker_rlimit_nofile
The worker_rlimit_nofile directive sets the maximum limit on open files
(RLIMIT_NOFILE) that a worker process can use. When this directive is set, the
setrlimit() system call is used to set the resource limit. Any attempt to exceed
this limit will result in an error EFILE (signifying too many open files).

worker_rlimit_core
The worker_rlimit_core directive sets the maximum size of the core dump file
created by a worker process. When this option is set, the setrlimit() system call is
used to set the resource limit of the file size. When this option is 0, no core dump files
are created.

worker_rlimit_sigpending
The worker_rlimit_sigpending directive specifies the limit on the number of
signals that may be queued for the real user ID of the calling process. If you are using
a Linux kernel version newer than 2.6.6, it will support real-time signals (rtsig),
and each process will have its own queue as opposed to a system-wide queue in the
earlier implementations. When this option is set, a setrlimit() system call is used

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

[19]

to set the resource limit RLIMIT_SIGPENDING. In order to enforce this limit, both
standard and real-time signals are counted.

working_directory
The working_directory directive specifies the path where the core dump files are
created. This path should be an absolute path. You must make sure that the user or
group specified via the user option has a write permission in this folder.

env
The env directive allows you to set some environment variables, which will be
inherited by the worker processes. If you set some environment variables on a shell,
they will be erased by Nginx, except TZ. This directive allows you to preserve some
of the inherited variables, change their values, or create new environment variables.
The environment variable NGINX is used internally by the server and should not be
set by the user.

If you specify an environment variable's name without specifying its value, the value
from the parent process, that is, the shell will be retained by Nginx. But if you specify
a value as well, this new value will be used by the server.

env MALLOC_OPTIONS;
env PERL5LIB=/data/site/modules;
env OPENSSL_ALLOW_PROXY_CERTS=1;

In the preceding code snippet, the value of the environment variable MALLOC_OPTIONS
is retained from the parent process, while the other two environment variables are
defined or redefined and any value set by the parent process is wiped off.

Understanding the Events module
The Events module deals with the configuration of epoll, kqueue, select, poll,
and more. This module consists of the following directives:

Name Value Default Example
accept_mutex on, off on off
accept_mutex_delay interval (ms) 500ms 500ms
debug_connection ip, cidr none 192.168.1.1
devpoll_changes number 32 64
devpoll_events number 32 64
kqueue_changes number 512 512

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Configuring Core Modules

[20]

Name Value Default Example
kqueue_events number 512 512
epoll_events number 512 512
multi_accept on, off off on
rtsig_signo signal number SIGRTMIN+10
rtsig_overflow_events number 16 24
rtsig_overflow_test number 32 40
rtsig_overflow_threshold number 10 3
use Kqueue, rtsig,

epoll, /dev/poll,
select

decided by the
configure script

rtsig

worker_connections number 512 200

Explaining directives
We will now discuss the Events module's directives summarized in the preceding
table, in detail.

accept_mutex
The accept_mutex directive tries to prevent workers from competing over accept()
for listing sockets (in the kernel). In other words, without accept_mutex, workers
may try to simultaneously check for new events on sockets, which may lead to a
slight increase in the CPU usage. Depending on your OS and the event-notification
mechanisms, the results may vary. If you are using rtsig as the signal-processing
mechanism, this option needs to be enabled.

accept_mutex_delay
As enabling accept_mutex serializes the accept() call from worker processes, that
is, one worker process does one accept at a time, the accept_mutex_delay directive
determines how long the other worker processes will wait before they are ready to
accept new connections while another process is already doing it.

debug_connection
In order to use the debug_connection directive, Nginx needs to be built with the
--debug-enabled option while running the configure script. You can specify the
IPv4 or IPv6 address of the clients for which the debugging log will be enabled. You
can also provide a domain name or unix: for Unix domain socket connections. The
log level for the rest of the clients is determined through the error_log option. The

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

[21]

debug log is written to the logfile specified in the error_log option as defined in the
following code snippet:

error_log /var/log/nginx-error.log;
events {
 debug_connection 127.0.0.1;
 debug_connection localhost;
 debug_connection 192.0.2.0/24;
 debug_connection ::1;
 debug_connection 2001:0db8::/32;
 debug_connection unix:;
 ...
}

devpoll_changes and devpoll_events
The /dev/poll directive is an efficient method used in Solaris 7 11/99+, HP/UX
11.22+ (eventport), IRIX 6.5.15+, and Tru64 UNIX 5.1A+. The devpoll_changes and
devpoll_events parameters define the number of changes and events that can move
to and from the kernel. Nginx only writes the devpoll_changes or devpoll_events
number of events and changes to /dev/poll at a time while processing events.

kqueue_changes and kqueue_events
The kqueue directive is an efficient event-notification interface used in FreeBSD 4.1+,
OpenBSD 2.9+, NetBSD 2.0, and Mac OS X. It provides efficient input and output
event pipelines between the kernel and user processes. It is possible to receive
pending events while using only a single system call kevent(). This contrasts
with older traditional polling system calls such as poll and select, which are less
efficient, especially while polling for events on a large number of file descriptors.
Other advanced event mechanisms such as /dev/poll and epoll allow you to do
the same.

These parameters control how many changes and events are passed at a time to the
kevent() system call.

epoll_events
The epoll_events directive is an efficient event-notification method used in Linux
2.6+. There are patches present to port this functionality to older kernels as well.
This parameter determines the buffer size where the events are returned at a time
before they are processed.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://en.wikipedia.org/wiki/Kernel_(computing)#_blank
http://en.wikipedia.org/wiki/Userland_(computing)#_blank
http://en.wikipedia.org/wiki/System_call#_blank
http://en.wikipedia.org/wiki/Polling_(computer_science)#_blank
http://www.it-ebooks.info/

Configuring Core Modules

[22]

multi_accept
The worker process will try to accept all or as many incoming connections as
possible when the multi_accept directive is enabled. Turning this option off will
result in worker processes only accepting one connection at a time. This option is
ignored if the kqueue_events notification method is used. If you use the rtsig
method, this option is automatically enabled. By default, this option is turned off.
It can be a high-performance tweak; however, the bad thing with multi_accept
is that if you have a constant stream of incoming connections at a high rate, it may
overflow your worker_connections directive without any chance of processing the
already-accepted connections.

rtsig_signo
Linux supports 32 real-time signals, numbered from 32 (SIGRTMIN) to 63 (SIGRTMAX).
Programs should always refer to real-time signals using the notation SIGRTMIN+n,
since the range of real-time signal numbers varies across *nix platforms. Nginx uses
two signals when the rtsig method is used. The directive specifies the first signal
number. The second signal number is one more than the first signal number. By
default, rtsig_signo is SIGRTMIN+10 (42), and the second signal number in this
case would be 43.

rtsig_overflow_events, rtsig_overflow_test, and
rtsig_overflow_threshold
The rtsig_overflow_events, rtsig_overflow_test, and rtsig_overflow_
threshold directives define how the queue overflow is handled while using
real-time signals. When overflow occurs, Nginx flushes the rtsig queue, then
handles the switching of events between poll() and rtsig poll(), and handles
all the unhandled events consecutively, while rtsig periodically drains the queues
to prevent a new overflow. When the overflow is handled completely, Nginx
switches to the rtsig method again.

The rtsig_overflow_events directive specifies the number of events to be passed
via poll().

The rtsig_overflow_test directive specifies the number of events handled by
poll(), after which, Nginx will drain the rtsig queue.

The rtsig_overflow_threshold directive works in Linux 2.4.x only. Before
draining the rtsig queue, Nginx looks at the extent to which the queue has been
filled up. The default is 1/10. rtsig_overflow_threshold 3 means a value of 1/3.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

[23]

use
The use directive specifies the event-notification method that should be used
(kqueue, epoll, and more). This is useful for platforms where multiple options are
available. During the configuration time, the best method for event notification is
selected automatically, so in most cases, you don't need to set this directive.

worker_connections
The worker_connections directive specifies the maximum number of simultaneous
connections that can be opened by a worker process.

It should be kept in mind that this number includes all the connections and not
just the client connections. Another consideration is that the actual number of
simultaneous connections should not exceed the current limit on the maximum
number of open files that can be changed by worker_rlimit_nofile.

Summary
In this chapter, we have looked at the configuration details of the two core modules
of Nginx, that is, the Main and Events modules. These modules can't be opted out
of, and you can't disable them. So, we went through each option and the suitable
situations to use them.

In the next chapter, we will look at installing and configuring HTTP modules and the
configuration options related to those modules.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring
HTTP Modules

In this chapter, we will explore the installation and configuration of standard HTTP
modules. Standard HTTP modules are built into Nginx by default unless you disable
them while running the configure script. The optional HTTP modules are only
installed if you specify them explicitly while running configure. These modules deal
with functionalities such as SSL, HTTP authentication, HTTP proxy, gzip compression,
and many others. We will look at some optional HTTP modules in the next chapter.

All the configuration directives we have talked about so far and the ones that we will
be discussing in this and the remaining chapters are specified in the nginx.conf file.
The default location of this file is /usr/local/conf/nginx.conf.

Standard HTTP modules
As mentioned earlier, standard HTTP modules are built into Nginx by default unless
you explicitly disable them. As the name suggests, these modules provide standard
HTTP functionality to the web server. We will now have a look at some of the
important standard HTTP modules.

The core module (HttpCoreModule)
The core module deals with the core HTTP features. This includes the protocol version,
HTTP keepalive, location (different configurations based on URI), documents' roots,
and so on. There are over 74 configuration directives and over 30 environment variables
related to the HTTP Core module. We will discuss the most important ones briefly.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[26]

Explaining directives
The following is an explanation of some of the key core module directives.
This list is not exhaustive, and you can find the full list at http://wiki.nginx.org/
HttpCoreModule.

server
The server directive defines the server context. It is defined as a server {...}
block in the configuration file. Each server block refers to a virtual server. You have
to specify a listen directive inside a server block to define the host IP and the port
for this virtual server. Alternatively, you can specify a server_name directive to
define all the hostnames of this virtual server.

server {
 server_name www.acme.com *.acme.com www.acme.org;

}
server {
 listen myserver.com:8001;

}

server_name
The server_name directive defines the name of the virtual server. It can contain
a list of hostnames, and the first one becomes the default name of the server.
The hostnames can be exact string literals, wildcards, regular expressions, or a
combination of all of these. You can also define an empty hostname as "". This
allows the processing of requests when the host HTTP header is empty.

The wildcard name can only use the asterisk (*) on the dot border and at the
beginning or ending of the name. For example, *.example.com is a valid name;
however, ac*e.example.com is an invalid name.

The regular expression server name can be any PCRE-compatible regular expression
that must start with ~.

server_name ~^www\d+\.acme\.org$

If you specify the environment variable $hostname in this directive, the hostname
of the machine is used.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[27]

listen
The listen directive specifies the listen address of the server. The listen address
can be a combination of an IP address and a port, hostname and port, or just a port.

server {
 listen 8001
 server_name www.acme.com *.acme.com www.acme.org
 ...
}

If no port is specified in the listen directive, the port 80 is used by default if the
Nginx server is running as a superuser, otherwise the port 8000 is used.

Nginx can also listen on a UNIX socket using the following syntax:

listen unix:/var/lock/nginx

IPv6 addresses can be specified using the [] brackets:

listen [::]:80
listen [2001:db8::1]

Specifying an IPv6 address can enable the IPv4 address as well. In the first of the
preceding examples, when you enable the [::]:80 address, binding port 80 using
IPv6 in the listen directive, the IPv4 port 80 is also enabled by default in Linux.

The listen directive accepts several parameters as well; a couple of important ones
are stated in the following paragraphs.

SSL
The listen parameter allows you to specify that the connection accepted on this
listen address will work in the SSL mode.

default_server
The default_server parameter sets the listen address as the default location.
If none of the listen addresses have a default specification, the first listen
declaration becomes the default. For an HTTP request, Nginx tests the request's
header field, Host, to determine which server the request should be routed. If its
value does not match any server name or the request does not contain this header
field at all, Nginx will route the request to the default server.

listen 8001
listen 443 default_server ssl

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[28]

The ssl option specifies that all connections on this address should work with SSL.
The ssl option will only work if the server was compiled using SSL support.

There are other parameters of the listen directive that correspond to the listen
and bind system calls. For example, you can modify the send and receive buffers of
the listening socket by providing the rcvbuf and sndbuf parameters. You can read
about them in more detail in the official documentation at http://nginx.org/en/
docs/http/ngx_http_core_module.html.

location
The location directive is a server context configuration. There can be several
location configuration blocks inside the server block, each referring to a unique URI
within that server. It is one of the most important and widely used directives, which
allows you to specify a configuration based on a URI. A location matching the user
request URI will result in that specific configuration block to be the handler of user
request. You have a lot of flexibility in how you want to specify the configuration.
This can be a string literal or a regular expression. The regular expressions can
be used to do a case-sensitive (prefixed with ~) or a case-insensitive comparison
(prefixed with ~*). You can also disable the regular expression matching by prefixing
the string with ^~.

The order of matching is as follows:

1. First, string literals with = are evaluated, and the searching stops on a match.
2. Remaining strings are matched; a match encountering ^~ also stops the

search. Among all the non-regular-expression strings, the one with the
longest matched prefix is chosen.

3. Regular expressions are searched in the order in which they appear in the
nginx.conf file.

4. In case there are two matches, one from a regular expression and one from
a string, the string is used.
location = / matches only /
location / matches any URI
location ~/index matches a lower case /index as a subsring in any
 position

It does not matter in which order the configurations are defined. They will always be
evaluated in the order mentioned previously.

location ^~/index/main.jpg
location ~^/index/.*\.jpg$

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[29]

In the example, a URI such as /index/main.jpg will select the first rule even
though both the patterns match. This is due to the ^~ prefix, which disables regular
expression search.

It is also possible to define named locations with @, which are for internal use.
For example:

location @internalerror (
 proxy_pass http://myserver/internalerror.html
)

You can then use the @internalerror in another configuration, that is:

location / (
 error_page /500.html @internalerror;
)

server_names_hash_bucket_size
Nginx stores static data in hash tables for quick access. There is a hash table
maintained for each set of static data, such as server names. The identical names go
into a hash bucket, and the server_names_hash_bucket_size parameter controls
the size of a hash bucket in the server name hash table.

This parameter (and other hash_bucket_size parameters) should be a multiple of
the processor's cache line size. This allows for an optimized search within a hash
bucket ensuring that any entry can be found in a maximum of two memory reads.
On Linux, you can find the cache line size as follows:

$ getconf LEVEL1_DCACHE_LINESIZE

server_names_hash_max_size
The server_names_hash_max_size directive specifies the maximum size of the hash
table, which contains the server names. The size of the hash table calculated using
the server_names_hash_bucket_size parameter cannot exceed this value. The
default value is 512.

http {
 ...
 ...
 server_names_hash_bucket_size 128;
 server_names_hash_max_size 1024;

 server {
 ...
 ...

 }
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[30]

tcp_nodelay/tcp_nopush
The tcp_nodelay and tcp_nopush directives allow you to control the socket
settings of tcp_nodelay and tcp_nopush or tcp_nocork for Linux. tcp_nodelay
is useful for servers that send frequent small bursts of packets without caring
about the response. This directive essentially disables the Nagle algorithm on the
TCP/IP socket. tcp_nopush or tcp_nocork will only have an effect if you use the
sendfile() kernel option.

sendfile
The sendfile directive activates or deactivates the usage of Linux kernel's
sendfile(). This offers significant performance benefits to applications such as
web servers that need to efficiently transfer files. A web server spends much of its
time transferring files stored on a disk to a network connection connected to a client
running a web browser. Typically, this includes the read() and write() calls, which
require context switching and data copying to and from user or kernel buffers. The
sendfile system call allows Nginx to copy files from the disk to the socket using the
fast track sendfile(), which stays within the kernel space. As of Linux 2.6.22, if you
want to use the Aio with direct I/O (O_DIRECT) you should turn off sendfile. This
can be more efficient if the web server serves large files (> 4 MB). In FreeBSD before
5.2.1 and Nginx 0.8.12, you must disable sendfile support as well.

sendfile_max_chunk
When set to a nonzero value, the sendfile_max_chunk directive limits the amount
of data that can be transferred in a single sendfile() call.

root
root specifies the document root for the requests by appending a path to the request.
For example, with the following configuration:

location /images/ {
 root /var/www;
}

A request for /web/logo.gif will return the file /var/www/images/logo.gif.

resolver/resolver_timeout
This allows you to specify the DNS server address or name. You can also define the
timeout for name resolution, for example:

resolver 192.168.220.1;
resolver_timeout 2s;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[31]

aio
The aio directive allows Nginx to use the POSIX aio support in Linux. This
asynchronous I/O mechanism allows multiple nonblocking reads and writes.

location /audio {
 aio on;
 directio 512;
 output_buffers 1 128k;
}

On Linux this will disable the sendfile support. In FreeBSD before 5.2.1 and Nginx
0.8.12, you must disable the sendfile support.

location /audio {
 aio on;
 sendfile off;
}

As of FreeBSD 5.2.1 and Nginx 0.8.12, you can use it with sendfile.

alias
The alias directive is similar to the root directive with a subtle difference. When
you define an alias for a location, the alias path is searched instead of the actual
location. This is slightly different from the root directive where the root path is
appended to the location. For example:

location /img/ {
 alias /var/www/images/;
}

A request for /img/logo.gif will instruct Nginx to serve the file /var/www/images/
logo.gif.

Aliases can also be used in a location specified by a regular expression.

error_page
The error_page directive allows you to show error pages based on error code.
For example:

error_page 404 /404.html;
error_page 502 503 504 /50x.html;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[32]

It is possible to show a different error code instead of the original error. It is also
possible to specify a script like a php file (which in turn generates the content of
the error page). This can allow you to write one generic error handler that creates
a customized page depending on the error code and type:

error_page 404 =200 /empty.gif;
error_page 500 =errors.php;

If there is no need to change the URL in the browser during redirection, it is possible
to redirect the processing of error pages to a named location:

location / (
 error_page 404 @errorhandler;
)
location @ errorhandler (
 proxy_pass http://backend/errors.php;
)

keepalive_disable, keepalive_timeout, and keepalive_
requests
The keepalive_disable directive allows you to disable the HTTP keepalive
for certain browsers.

keepalive_timeout assigns the timeout for the keepalive connections with the
client. The server will close connections after this time. You can also specify a zero
value to disable the keepalive for client connections. This adds an HTTP header
Keep-Alive: timeout=time to the response.

keepalive_requests parameter determines how many client requests will
be served through a single keepalive connection. Once this limit is reached
the connection is closed, and new keepalive session will be initiated.

Controlling access (HttpAccessModule)
The HttpAccessModule allows IP-based access control. You can specify both IPv4
and IPv6 addresses. Another alternative is using the GeoIP module.

Rules are checked according to the order of their declaration. There are two
directives called allow and deny which control the access. The first rule that
matches a particular address or a set of addresses is the one that is obeyed.

location / {
 deny 192.168.1.1;
 allow 192.168.1.0/24;
 allow 10.1.1.0/16;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[33]

 allow 2620:100:e000::8001;
 deny all;
}

In this example access is granted to the networks 10.1.1.0/16 and 192.168.1.0/24 with
the exception of the address 192.168.1.1, which is denied access together with all the
other addresses as defined by the deny all rule that is matched last in this location
block. In addition, it allows one specific IPv6 address. All others would be denied.

The order is of utmost importance. The rules are interpreted according to the order.
So, if you move deny all to the top of the list, all requests will be denied because
that's the first rule that is encountered, and therefore, it takes precedence.

Authenticating users (HttpBasicAuthModule)
You can use the HttpBasicAuthModule to protect your site or parts of it with a
username and password based on HTTP Basic authentication. It is the simplest
technique for enforcing access controls to web resources because it doesn't require
cookies, session identifier, and login pages. Rather, HTTP Basic authentication uses
static, standard HTTP headers, which mean that no handshakes have to be done
in anticipation.

The following is an example configuration:

location / {
 auth_basic "Registered Users Only";
 auth_basic_user_file htpasswd;
}

Explaining directives
Now let us look at some of the important directives of this module.

auth_basic
This auth_basic directive includes testing the name and password with HTTP Basic
authentication. The assigned value is used as authentication realm.

auth_basic_user_file
The auth_basic_user_file directive sets the password filename for the
authentication realm. The path is relative to the directory of the Nginx
configuration file.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[34]

The format of the file is as follows:

user:pass
user2:pass2:comment
user3:pass3

Passwords must be encoded by the function crypt (3). You can use PLAIN, MD5, SSHA,
and SHA1 encryption methods. If you have Apache installed on your system, you can
use the htpasswd utility to generate the htpasswd file.

This file should be readable by Nginx worker processes, running from an
unprivileged user.

Load balancing (HttpUpstreamModule)
The HttpUpstreamModule allows simple load balancing based on a variety
of techniques such as Round-robin, weight, IP address, and so on to a collection
of upstream servers.

Example:

upstream servers {
 server server1.example.com weight=5;
 server server2.example.com:8080;
 server unix:/tmp/server3;
}
server {
 location / {
 proxy_pass http://servers;
 }
}

Explaining directives
Some of the important directives of the HttpUpstreamModule are as follows:

ip_hash
The ip_hash directive causes requests to be distributed between servers based on the
IP address of the client.

The key for the hash is the IP address (IPv4 or IPv6) of the client. This method
guarantees that the client request will always be transferred to the same server.
If the server is not available, the request is transferred to another server.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[35]

You can combine ip_hash and weight based methods. If one of the servers needs to
be taken offline, you must mark that server as down.

For example:

upstream backend {
 ip_hash;
 server server1.example.com weight=2;
 server server2.example.com;
 server server3.example.com down;
 server server4.example.com;
}

server
The server directive is used to specify the name of the upstream server. It is possible
to use a domain name, address, port, or UNIX socket. If the domain name resolves to
several addresses, all are used.

This directive accepts several parameters, which are given as follows:

• weight: This sets the weight of the server. If it is not set, weight is equal
to one.

• max_fails: This is the number of unsuccessful attempts at communicating
with the server within the time period fail_timeout after which it is
considered down. If it is not set, only one attempt is made. A value of 0
turns off this check. What is considered a failure is defined by proxy_next_
upstream or fastcgi_next_upstream (except http_404 errors, which do
not count toward max_fails).

• fail_timeout: The time period within which failed attempts to connect
to an upstream server are attempted before the server is considered down.
It is also the time for which the server will be considered inoperative
(before another attempt is made). The default value is 10 seconds.

• down: This parameter marks the server as offline.

If you use only one upstream server, Nginx will ignore the max_fails and fail_
timeout parameters. This may cause your request to be lost if the upstream server is
not available. You can use the same server name several times to simulate retries.

upstream
The upstream directive describes a set of upstream or backend servers to which the
requests are sent. These are the servers that can be used in the directives proxy_pass
and fastcgi_pass as a single entity. Each of the defined servers can be on different
ports. You can also specify servers listening on local sockets.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[36]

Servers can be assigned different weights. If it is not specified, the weight is equal
to one.

upstream servers {
 server server1.example.com weight=5;
 server 127.0.0.1:8080 max_fails=3 fail_timeout=30s;
 server unix:/tmp/localserver;
}

Requests are distributed according to the servers in the Round-robin manner with
respect to the server weight.

For example, for every seven requests given previously, their distribution will be as
follows: five requests will be sent to server1.example.com and one request each to
the second and the third server. If there is an error in connecting to the server, the
request is sent to the next server. In the previous example, there will be three tries
within 30 s for server 2 in case of a failure before the request is forwarded to server 3.

Acting as a proxy (HttpProxyModule)
The HttpProxyModule allows Nginx to act as a proxy and pass requests to
another server.

location / {
 proxy_pass http://app.localhost:8000;
}

Note when using the HttpProxyModule (or even when using FastCGI), the entire
client request will be buffered in Nginx before being passed on to the proxy server.

Explaining directives
Some of the important directives of the HttpProxyModule are as follows:

proxy_pass
The proxy_pass directive sets the address of the proxy server and the URI to which
the location will be mapped. The address may be given as a hostname or an address
and port, for example:

proxy_pass http://localhost:8000/uri/;

Or, the address may be given as an UNIX socket path:

proxy_pass http://unix:/path/to/backend.socket:/uri/;

path is given after the word unix between two colons.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[37]

You can use the proxy_pass directive to forward headers from the client request to
the proxied server.

proxy_set_header Host $host;

While passing requests, Nginx replaces the location in the URI with the location
specified by the proxy_pass directive.

If inside the proxied location, URI is changed by the rewrite directive and this
configuration will be used to process the request. For example:

location /name/ {
 rewrite /name/([^/] +) /users?name=$1 break;
 proxy_pass http://127.0.0.1;
}

A request URI is passed to the proxy server after normalization as follows:

• Double slashes are replaced by a single slash
• Any references to current directory like "./" are removed
• Any references to the previous directory like "../" are removed.

If proxy_pass is specified without a URI (for example in "http://example.com/
request", /request is the URI part), the request URI is passed to the server in the
same form as sent by a client.

 location /some/path/ {
 proxy_pass http://127.0.0.1;
 }

If you need the proxy connection to an upstream server group to use SSL, your
proxy_pass rule should use https:// and you will also have to set your SSL port
explicitly in the upstream definition. For example:

upstream https-backend {
 server 10.220.129.20:443;
}

server {
 listen 10.220.129.1:443;
 location / {
 proxy_pass https://backend-secure;
 }
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[38]

proxy_pass_header
The proxy_pass_header directive allows transferring header lines forbidden
for response.

For example:
location / {
 proxy_pass_header X-Accel-Redirect;
}

proxy_connect_timeout
The proxy_connect_timeout directive sets a connection timeout to the upstream
server. You can't set this timeout value to be more than 75 seconds. Please remember
that this is not the response timeout, but only a connection timeout.

This is not the time until the server returns the pages which is configured through
proxy_read_timeout directive. If your upstream server is up but hanging, this
statement will not help as the connection to the server has been made.

proxy_next_upstream
The proxy_next_upstream directive determines in which cases the request will be
transmitted to the next server:

• error: An error occurred while connecting to the server, sending a request to
it, or reading its response

• timeout: The timeout occurred during the connection with the server,
transferring the request, or while reading the response from the server

• invalid_header: The server returned an empty or incorrect response
• http_500: The server responded with code 500
• http_502: The server responded with code 502
• http_503: The server responded with code 503
• http_504: The server responded with code 504
• http_404: The server responded with code 404
• off: Disables request forwarding

Transferring the request to the next server is only possible if there is an error sending
the request to one of the servers. If the request sending was interrupted due to an
error or some other reason, the transfer of request will not take place.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[39]

proxy_redirect
The proxy_redirect directive allows you to manipulate the HTTP redirection by
replacing the text in the response from the upstream server. Specifically, it replaces
text in the Location and Refresh headers.

The HTTP Location header field is returned in response from a proxied server for
the following reasons:

• To indicate that a resource has moved temporarily or permanently.
• To provide information about the location of a newly created resource.

This could be the result of an HTTP PUT.

Let us suppose that the proxied server returned the following:

Location: http://localhost:8080/images/new_folder

If you have the proxy_redirect directive set to the following:

proxy_redirect http://localhost:8080/images/ http://xyz/;

The Location text will be rewritten to be similar to the following:

Location: http://xyz/new_folder/.

It is possible to use some variables in the redirected address:

proxy_redirect http://localhost:8000/ http://$location:8000;

You can also use regular expressions in this directive:

proxy_redirect ~^(http://[^:]+):\d+(/.+)$ $1$2;

The value off disables all the proxy_redirect directives at its level.

proxy_redirect off;

proxy_set_header
The proxy_set_header directive allows you to redefine and add new HTTP headers
to the request sent to the proxied server.

You can use a combination of static text and variables as the value of the proxy_set_
header directive.

By default, the following two headers will be redefined:

proxy_set_header Host $proxy_host;
proxy_set_header Connection Close;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[40]

You can forward the original Host header value to the server as follows:

proxy_set_header Host $http_host;

However, if this header is absent in the client request, nothing will be transferred.

It is better to use the variable $host; its value is equal to the request header Host or
to the basic name of the server in case the header is absent from the client request.

proxy_set_header Host $host;

You can transmit the name of the server together with the port of the proxied server:

proxy_set_header Host $host:$proxy_port;

If you set the value to an empty string, the header is not passed to the upstream
proxied server. For example, if you want to disable the gzip compression on
upstream, you can do the following:

proxy_set_header Accept-Encoding "";

proxy_store
The proxy_store directive sets the path in which upstream files are stored, with paths
corresponding to the directives alias or root. The off directive value disables local
file storage. Please note that proxy_store is different from proxy_cache. It is just a
method to store proxied files on disk. It may be used to construct cache-like setups
(usually involving error_page-based fallback). This proxy_store directive parameter
is off by default. The value can contain a mix of static strings and variables.

proxy_store /data/www$uri;

The modification date of the file will be set to the value of the Last-Modified header
in the response. A response is first written to a temporary file in the path specified by
proxy_temp_path and then renamed. It is recommended to keep this location path
and the path to store files the same to make sure it is a simple renaming instead of
creating two copies of the file.

Example:

location /images/ {
 root /data/www;
 error_page 404 = @fetch;
}

location /fetch {
 internal;
 proxy_pass http://backend;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[41]

 proxy_store on;
 proxy_store_access user:rw group:rw all:r;
 proxy_temp_path /data/temp;
 alias /data/www;
}

In this example, proxy_store_access defines the access rights of the created file.

In the case of an error 404, the fetch internal location proxies to a remote server and
stores the local copies in the /data/temp folder.

proxy_cache
The proxy_cache directive either turns off caching when you use the value off or
sets the name of the cache. This name can then be used subsequently in other places
as well. Let's look at the following example to enable caching on the Nginx server:

http {
 proxy_cache_path /var/www/cache levels=1:2 keys_zone=my-
 cache:8m max_size=1000m inactive=600m;
 proxy_temp_path /var/www/cache/tmp;

 server {
 location / {
 proxy_pass http://example.net;
 proxy_cache my-cache;
 proxy_cache_valid 200 302 60m;
 proxy_cache_valid 404 1m;
 }
 }
}

The previous example creates a named cache called my-cache. It sets up the validity
of the cache for response codes 200 and 302 to 60m, and for 404 to 1m, respectively.

The cached data is stored in the /var/www/cache folder. The levels parameter sets
the number of subdirectory levels in the cache. You can define up to three levels.

The name of key_zone is followed by an inactive interval. All the inactive items
in my-cache will be purged after 600m. The default value for inactive intervals is
10 minutes.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[42]

Compressing content (HttpGzipModule)
The HttpGzipModule allows for on-the-fly gzip compression.

 gzip on;
 gzip_min_length 1000;
 gzip_proxied expired no-cache no-store private auth;
 gzip_types text/plain application/xml;

The achieved compression ratio, computed as the ratio between the original and the
compressed response size, is available via the variable $gzip_ratio.

Explaining directives
Some of the important directives of the HttpGzipModule are as follows:

gzip
The gzip directive enables or disables gzip compression.

gzip_buffers
The gzip_buffers directive assigns the number and size of the buffers in which the
compressed response will be stored. If unset, the size of one buffer is equal to the size
of the page; depending on the platform, this is either 4K or 8K.

gzip_comp_level
The gzip_comp_level directive sets a gzip compression level of a response.
The compression level, between 1 and 9, where 1 is the least compression (fastest)
and 9 is the most compression (slowest).

gzip_disable
The gzip_disable directive disables gzip compression for browsers or user agents
matching the given regular expression. For example, to disable gzip compression for
Internet Explorer 6 use:

gzip_disable "msie6";

This is a useful setting to have since some browsers such as MS Internet Explorer 6
don't handle the compressed response correctly.

gzip_http_version
The gzip_http_version directive turns gzip compression on or off depending on
the HTTP request version, which is 1.0 or 1.1.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[43]

gzip_min_length
The gzip_min_length directive sets the minimum length, in bytes, of the response
that will be compressed. Responses shorter than this byte length will not be
compressed. Length is determined from the Content-Length header.

gzip_proxied
The gzip_proxied directive enables or disables compression for proxied requests.
The proxied requests are identified through the Via HTTP header. This header
informs the server of proxies through which the request was sent. Depending
on various HTTP headers, we can enable or disable the compression for proxied
requests as follows:

• off: This disables compression for requests having a Via header
• expired: This enables compression if a response header includes the field

Expires with a value that disables caching
• no-cache: This enables compression if the Cache-Control header is set to

no-cache

• no-store: This enables compression if the Cache-Control header is set to
no-store

• private: This enables compression if the Cache-Control header is set to
private

• no_last_modified: This enables compression if Last-Modified isn't set
• no_etag: This enables compression if there is no ETag header
• auth: This enables compression if there is an Authorization header
• any: This enables compression for all proxied requests

gzip_types
The gzip_types directive enables compression for additional MIME types besides
text or html. text/html is always compressed.

Controlling logging (HttpLogModule)
The HttpLogModule controls how Nginx logs the requests for resources, for example:

access_log /var/log/nginx/access.log gzip buffer=32k;

Please note that this does not include logging errors.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[44]

Explaining directives
Some of the important directives of HttpLogModule are the following.

access_log
The access_log directive sets the path, format, and buffer size for the access logfile.
Using off as the value disables logging at the current level. If the format is not
indicated, it defaults to combined. The size of the buffer must not exceed the size of
the atomic record for writing into the disk file. This size is not limited for FreeBSD
3.0-6.0. If you specify gzip, the log is compressed before it's written to the disk. The
default buffer size is 64K with compression level as 1.

The atomic size that can be written is called PIPE_BUF. The capacity of a pipe buffer
varies across systems.

Mac OS X, for example, uses a capacity of 16,384 bytes by default but can switch
to 65,336 byte capacities if large writes are made to the pipe. Or it will switch to a
capacity of a single system page if too much kernel memory is already being used by
pipe buffers (see xnu/bsd/sys/pipe.h and xnu/bsd/kern/sys_pipe.c; since these
are from FreeBSD, the same behavior may happen here too).

According to the Linux pipe(7) man page, pipe capacity is 65,536 bytes since Linux
2.6.11 and a single system page prior to that (for example, 4096 bytes on 32-bit x86
systems). The buffer for each pipe can be changed using fcntl system call to the
maximum of /proc/sys/fs/pipe-max-size.

log_format
The log_format directive describes the format of a log entry. You can use general
variables in the format as well as variables that exist only at the moment of writing
into the log. An example of log_format is as follows:

log_format gzip '$msec $request $remote-addr $status $bytes_sent';

You can specify the format of a log entry by specifying what information should be
logged. Some of the options you can specify are as follows:

• $body_bytes_sent: This is the number of bytes transmitted to the client
minus the response headers

• $bytes_sent: This is the number of bytes transmitted to the client
• $connection: This is the number of connections
• $msec: This is the current time at the moment of writing the log entry

(microsecond accuracy)
• $pipe: This is p if request was pipelined

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[45]

• $request_length: This is the length of the body of the request
• $request_time: This is the time it took Nginx to work on the request, in

seconds, with millisecond precision
• $status: This is the status of the answer
• $time_iso8601: This is the time in ISO 8601 format, for example, 2011-03-

21T18:52:25+03
• $time_local: This is the local time in common log format

Setting response headers
(HttpHeadersModule)
The HttpHeadersModule allows setting arbitrary HTTP headers.

Explaining directives
Some of the important directives of the HttpHeadersModule are the following:

add_header
The add_header directive adds a header to the header list of the response when the
response code is 200, 201, 204, 206, 301, 302, 303, 304, or 307. The value can contain
variables and can contain negative or positive time value.

Note that you should not use this directive to replace or override the value of a header.
The headers specified with this directive are simply appended to the header list.

expires
The expires directive is used to set the Expires and Cache-Control headers in
the response. You can set the value to off to leave these headers as it is. The time
in this field is computed as a sum of the current time and the time specified in the
directive. If the modified parameter is used, time is computed as a sum of the file's
modification time and the time specified in the directive.

• epoch: This sets the Expires header to the absolute value of 1 January,
1970 00:00:01 GMT.

• max: This sets the Expires header to 31 December 2037 23:59:59 GMT,
and the Cache-Control header to 10 years.

You can specify a time interval using @:
@5h40m

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[46]

The contents of the Cache-Control header depend on the sign of the specified
time. A negative value of time sets it to no-cache. A positive value sets it to time
in seconds.

The following is an example configuration:

expires 12h;
expires modified +14h;
expires @5h;
expires 0;
expires -1;
expires epoch;
add_header X-Name example.org

Rewriting requests (HttpRewriteModule)
The HttpRewriteModule is used to change request URIs using regular expressions,
redirect the client, and select different configurations based on conditions and variable
values. In order to use this module, you should compile Nginx with PCRE support.

The processing of the directives starts at the server level. After this, the location block
matching the request is searched and any rewrite directives there are executed. If this
processing results in further rewrites, a new location block is search for the changed
URI. This cycle continues 10 times before the server throws the 500 error.

Explaining directives
Some of the important directives of the HttpRewriteModule are the following:

break
The break directive stops the processing of any other rewrite block directives in the
current block.

if ($slow) {
 limit_rate 10k;
 break;
}

if
The if directive checks a condition. If the condition evaluates to true, the code
indicated in the curly braces is carried out and the request is processed in accordance
with the configuration within the following block. The configuration inside the if
block is inherited from the previous level.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[47]

Following are considered to be valid conditions.

• The name of a variable is a condition. The condition evaluates to false if the
variable contains an empty string "" or a 0.

• Using comparison operator with the variable to compare it to another
variable or a string.

• Matching a variable against a regular expression using ~, *~, or !~ operator.
*~ is used for case-insensitive comparison, while !~ is a not-equals operator.

• You can check for the existence of a file using the -f or !-f operators (similar
to BASH tests).

• Checking for the existence of a directory using -d or !-d.
• Checking for the existence of a file, directory, or symbolic link using -e or

!-e.
• Checking whether a file is executable using -x or !-x.

By placing part of a regular expression inside round brackets or parentheses, you
can group that part of the regular expression together. This allows you to apply
a quantifier to the entire group or to restrict alternation to part of the regular
expression. These parts can be accessed in the $1 to $9 variables.

Example:

if ($http_user_agent ~ MSIE) {
 rewrite ^(.*)$ /msie/$1 break;
}
if ($http_cookie ~* "val=([^;] +)(?:;|$)") {
 set $val $1;
}
if ($request_method = GET) {
 return 405;
}
if ($args ~ post=140){
 rewrite ^ http://acme.com/ permanent
}

return
The return directive stops execution and returns a status code. It is possible to use
any HTTP return code ranging in number from 0 to 999.

If you want to terminate the connection and don't want to send any headers in
response, use the return code 444.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[48]

rewrite
The rewrite directive does the actual rewrite and changes URI according to the
regular expression and the replacement string. Directives are carried out in the order
of definition in the configuration file. The flag parameter makes it possible to stop
the rewriting process in the current block.

If the replacement string begins with http://, the client will be redirected and any
further rewrite directives will be terminated.

The value of the flag parameter can be one of the following:

• last: This completes the processing of current rewrite directives and
searches for a new block that matches the rewritten URI

• break: This stops the rewriting process in the current block
• redirect: This returns a temporary redirect with the code 302, and is used

if a replacement string does not start with http:// or https://
• permanent: This returns a permanent redirect with code 301

Note that outside location blocks, last and break are effectively the same.

Example:

rewrite ^(/media/.*)/video/(.*)\..*$ $1/mp3/$2.avi last;
rewrite ^(/media/.*)/audio/(.*)\..*$ $1/mp3/$2.ra break;
return 403;

But if we place these directives in the location block, it is necessary to replace the
flag last by break, otherwise Nginx will hit the 10-cycle limit and return error 500:

location /download/ {
 rewrite ^(/media/.*)/video/(.*)\..*$ $1/mp3/$2.avi break;
 rewrite ^(/media/.*)/audio/(.*)\..*$ $1/mp3/$2.ra break;
 return 403;
}

If there are arguments in the replacement string, the rest of the request arguments
are appended to them. To avoid having them appended, place a question mark as
the last character:

rewrite ^/pages/(.*)$ /show?page=$1? last;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[49]

Note that for curly braces ({ and }), as they are used both in regex and for block
control, to avoid conflicts, regex with curly braces are to be enclosed with double
quotes (or single quotes). For example, to rewrite URLs such as /users/123456 to /
path/to/users/12/1234/123456.html, use the following (note the quotes):

rewrite "/users/([0-9]{2})([0-9]{2})([0-9]{2})"
 /path/to/users/$1/$1$2/$1$2$3.html;

If you specify a ? at the end of a rewrite, Nginx will drop the original query string.
A good use case is when using $request_uri, you should specify the ? at the end of
the rewrite to avoid Nginx doubling the query string.

An example of using $request_uri in a rewrite from www.acme.com to acme.com:

server {
 server_name www.acme.com;
 rewrite ^ http://acme.com$request_uri? permanent;
}

Also, rewrite operates only on paths, not on parameters. To rewrite a URL with
parameters to another URL, use the following instead:

if ($args ~ post=200){
 rewrite ^ http://acme.com/new-address.html?;
}

rewrite_log
The rewrite_log directive enables the logging of information about rewrites to the
error log at notice level.

set
The set directive establishes the value for the variable indicated. It is possible to use
text, variables, and their combination as the value.

You can use set to define a new variable. Note that you can't set the value of a
$http_xxx header variable.

uninitialized_variable_warn
The uninitialized_variable_warn directive enables or disables warnings of
variables that are not initialized.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[50]

Interacting with FastCGI (HttpFastcgiModule)
The HttpFastcgiModule allows Nginx to interact with the FastCGI processes
(that is, PHP) and controls which parameters will be passed to the process.

Example:

location / {
 fastcgi_pass localhost:9090;
 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME
 $document_root/php/$fastcgi_script_name;
 fastcgi_param QUERY_STRING $query_string;
 fastcgi_param REQUEST_METHOD $request_method;
 fastcgi_param CONTENT_TYPE $content_type;
 fastcgi_param CONTENT_LENGTH $content_length;
}

The name of the FastCGI server is provided in the fastcgi_pass parameter.
This name can be an IP address or a domain name with a port. This can also be
an UNIX domain socket.

If you want to pass a parameter to the FastCGI server, you use the fastcgi_param
parameter. The value of this parameter can be a static value, a variable, or a
combination of both.

Following is a minimum configuration for PHP:

fastcgi_param SCRIPT_FILENAME /php$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;

Simple caching (HttpMemcachedModule)
You can use this module to perform simple caching using memcached. Memcached is
an in-memory, key-value store for small chunks of arbitrary data (strings, objects)
from the results of database calls, API calls, or page rendering.

Example:

server {
 location / {
 set $memcached_key uriargs;
 memcached_pass http://mem-server:1211
 default_type text/html;
 error_page 404 502 504 @error;
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[51]

 location @error {
 proxy_pass http://backend;
 }
}

Explaining directives
Some of the important directives of the HttpMemcachedModule are as follows:

memcached_pass
The memcached_pass directive specifies the memcached server name as an IP
or domain name. It can also contain a port. If the domain name translates into
various addresses, all of them are tried in the Round-robin fashion.

memcached_connect_timeout
The memcached_connect_timeout directive is the timeout for connecting to
the memcached server. The time of the timeout usually can be 75s at maximum.
The default value is 60s.

memcached_read_timeout
The memcached_read_timeout directive is the timeout for reading keys from the
memcached server. This time is measured between two successive reads, and if the
memcached server does not respond, the timeout occurs. The default value is 60s.

memcached_send_timeout
The memcached_send_timeout directive is the timeout for sending a request to the
memcached server. A timeout is only set between two successive write operations
and not for the transmission of the whole request. If a memcached server does not
receive anything within this time, a connection is closed.

memcached_buffer_size
The memcached_buffer_size directive is the receive or send buffer size in bytes.
It sets the size of the buffer used for reading a response received from the
memcached server. A response is passed to a client synchronously and
immediately when it is received. Default value is 4K or 8K.

memcached_next_upstream
Which failure conditions should cause the request to be forwarded to
another memcached upstream server? The answer is only when the value
in memcached_pass is an upstream block with two or more servers.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[52]

Limiting requests (HttpLimitReqModule)
The HttpLimitReqModule allows limiting the request processing rate by key, in
particular by the address. The limitation is done using the leaky bucket method.
A counter associated with each address transmitting on a connection is incremented
whenever the user sends a request and is decremented periodically. If the counter
exceeds a threshold upon being incremented, Nginx delays the request.

The following is an example configuration:

http {
 limit_req_zone $binary_remote_addr zone=one:10m rate=1r/s;

 ...

 server {

 ...

 location /search/ {
 limit_req zone=one burst=5;
 }

Explaining directives
Some of the important directives of the HttpLimitReqModule are as follows:

limit_req
The limit_req directive sets a shared memory zone and the maximum burst size
of requests. Excessive requests are delayed until their number exceeds the maximum
burst size in which case the request is terminated with an error 503 (Service
Temporarily Unavailable). By default, the maximum burst size is equal to zero.
For example, for the directive limit_req_zone:

 $binary_remote_addr zone=one:10m rate=1r/s;
 server {
 location /search/ {
 limit_req zone=one burst=5;
 }

It allows a user no more than one request per second on average with bursts of no
more than five requests.

If delaying excess requests within a burst is not necessary, you should use the
option nodelay:

limit_req zone=one burst=5 nodelay;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[53]

limit_req_log_level
The limit_req_log_level directive controls the log level of the delayed or rejected
requests. The log levels can be info, notice, warn, or error. The default log level
is error for rejected requests. Delays are logged at the next lower level, for example
when limit_req_log_level is set to "error", delayed requests are logged at "warn".

limit_req_zone
The limit_req_zone directive sets the name and parameters of a shared memory
zone that keeps states for various keys. The state stores the current number of
excessive requests in particular. The key is any nonempty value of the specified
variable (empty values are not accounted). An example usage of this is as follows:

limit_req_zone $binary_remote_addr zone=myzone:20m rate=5r/s;

In this case, there is a 20 MB zone called myzone, and the average speed of queries
for this zone is limited to 5 requests per second.

The sessions are tracked per user in this case. A 1 MB zone can hold approximately
16,000 states of 64 bytes. If the storage for a zone is exhausted, the server will return
error 503 (Service Temporarily Unavailable) to all further requests.

The speed is set in requests per second or requests per minute. The rate must be an
integer; so if you need to specify less than one request per second, say, one request
every two seconds, you would specify it as 30r/m.

Limiting connections (HttpLimitConnModule)
The HttpLimitConnModule makes it possible to limit the number of concurrent
connections for a key such as an IP address.

An example configuration:

http {
 limit_conn_zone $binary_remote_addr zone=addr:10m;

 ...

 server {

 ...

 location /download/ {
 limit_conn addr 1;
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing and Configuring HTTP Modules

[54]

Explaining directives
Some of the important directives of HttpLimitConnModule are as follows:

limit_conn
The value of the limit_conn directive defines the limit of connection per
zone. When this limit is exceeded, the server will return a status error 503
(Service Temporarily Unavailable) in reply to the request.

Multiple limit directives for different zones can be used in the same context.
For example:

limit_conn_zone $binary_remote_addr zone=addr:10m;

server {
 location /download/ {
 limit_conn addr 1;
 }

This is allowed for only a single connection at a time per unique IP address.

limit_conn_zone
The limit_conn_zone directive sets the parameters for a zone that keeps the state
for various keys. This state stores the current number of connections in particular.
The key is the value of the specified variable. For example:

limit_conn_zone $binary_remote_addr zone=addr:10m;

Here, an IP address of the client serves as a key. If the storage for a zone
is exhausted, the server will return error 503 (Service Temporarily Unavailable)
to all further requests.

limit_conn_log_level
The limit_conn_log_level directive sets the error log level, which is used when
a connection limit is reached. The default log level is error.

limit_conn_status
The limit_conn_status directive defines the response code when a limit is reached.
The default value is 503 (Service Unavailable).

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

[55]

Summary
In this chapter we looked at several standard HTTP modules. These modules
provide a very rich set of functionalities by default. You can disable these modules
if you please at the time of configuration. However, they will be installed by default
if you don't. The list of modules and their directives in this chapter is by no means
exhaustive. Nginx's online documentation can provide you with more details.

In the next chapter we will look into some optional HTTP modules.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules
In this chapter we will explore the installation of third-party modules. Third-party
modules are developed by a vast variety of developers around the world and are
hosted on various open source repositories such as GitHub and SourceForge. Some
of these modules are well tested while others are not quite ready for production.
These modules are not officially supported by Nginx developers and might have
issues across different Nginx versions. In this chapter, we will talk about some of the
most well-known Nginx modules. A bigger list of available options can be browsed
on the Nginx website at http://wiki.nginx.org/3rdPartyModules.

All the configuration directives that we have discussed so far, and the ones that we
will discuss in this and the remaining chapters, are specified in the nginx.conf file.
The default location of the nginx.conf file is /usr/local/conf/.

Compiling third-party modules
None of the third-party modules that we will be covering in this chapter are
distributed with the source code. You will have to download the source code and
compile it by specifying its location while compiling Nginx. You can do that by
specifying the --add-module parameters while running configure. For example,
if you downloaded the module's source code present in /opt/downloads, you can
compile it in the Nginx binary with the following code:

configure --add-module=/opt/downloads/module-folder

Some of these modules may have additional dependencies, which you will have to
resolve. Please refer to the documentation of the module you are trying to install, to
make sure you understand the consequences and dependencies of the module you
are about to compile.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://wiki.nginx.org/3rdPartyModules
http://www.it-ebooks.info/

Installing Third-party Modules

[58]

Communicating with PostgreSQL
(ngx_postgres)
The Nginx PostgreSQL module is currently hosted at http://labs.frickle.com/
nginx_ngx_postgres/ and maintained by Frickle Labs. It is an upstream module
that allows direct communication with the PostgreSQL database. The output of this
module is in a custom binary format named Resty DBD Stream (RDS).This module
is useful if you want to directly connect Nginx to a PostgreSQL database. There can
be several use-cases of why you would want to do that. You might want to serve
pages by directly querying results from a table. You might also want to log things in
a database or check certain conditions by querying a database table. Or you might
want to authenticate a user from an upstream PostgreSQL database. For all such
situations and more, the ngx_postgres module will be useful.

An example configuration is as follows:

http {
 upstream database {
 postgres_server 127.0.0.1 dbname=test
 user=user password=password;
 }

 server {
 location / {
 postgres_pass database;
 postgres_query "select * from users";
 }
 }
}

Explaining directives
Some important directives of the ngx_postgres module are as follows:

postgres_server
The postgres_server directive sets the details of the database server. You can
specify the hostname or IP address along with a port, username, and password.

An example configuration is as follows:

postgres_server 127.0.0.1 dbname=test user=test password=test;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://labs.frickle.com/nginx_ngx_postgres/
http://labs.frickle.com/nginx_ngx_postgres/
http://www.it-ebooks.info/

Chapter 4

[59]

postgres_keepalive
The postgres_keepalive directive is used to configure keepalive parameters.
The syntax is as follows:

postgres_keepalive off | max=count [mode=single|multi]
[overflow=ignore|reject]
default: max=10 mode=single overflow=ignore

Here, the max parameter determines the maximum number of keepalive
connections. The mode parameter has two possible values, multi and single.
The single mode means that the connection pool will not differentiate between
multiple postgres_server definitions in the current block and will apply to all
of them, that is, you have one pool for all the postgres_server definitions. In the
multi mode, the pool will re-use connections that have identical server hostnames
and ports. The default value is single. The overflow option specifies what to do
when the connection pool is already full and a new database connection is required.
Either reject or ignore can be specified. In case of reject, it will reject the current
request and return the 503 Service Unavailable error page. On using ignore, this
module will create a new database connection.

postgres_pass
The postgres_pass directive holds the name of the upstream block that contains the
PostgreSQL connection's configurations. It can also contain variables.

postgres_query
The postgres_query directive is used to specify a PostgreSQL query. If an HTTP
method such as GET, POST, PUT, or DELETE is specified, the query is used only for the
specified methods; otherwise, it will run for all the methods. A query can contain
variables and you can specify multiple query directives in one location. An example
configuration is as follows:

postgres_query GET POST "SELECT * FROM employees";

postgres_rewrite
The postgres_rewrite directive should be used to send a specific response code
when a condition is met. The condition can be one of the following:

• no_changes: This is the condition when no rows are affected by the query
• changes: This is the condition when at least one row is affected by the query
• no_rows: This is the condition when no rows are returned in the result set
• rows: This is the condition when at least one row is returned in the result set

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[60]

If you want to send the original response body to the client, prefix the code with = as
shown in the following example configuration:

postgres_rewrite no_rows =403;

postgres_output
The postgres_output directive determines the output type of the response.
The possible values are rds, text, binary, value, and none. The none value is
used when you don't want any output. value is used when you want a single value
as an output in the text format. All response types set the appropriate HTTP header.

postgres_set
The postgres_set directive is used to set a variable from a single value from the
result set. You can specify the row and column to pick the value from. An example
configuration is as follows:

postgres_set $empname 00 required

If you set this directive to required, the module will generate a 500 internal
server error if the value to be set is null or out of range.

postgres_escape
The postgres_escape directive will escape, quote a value in the $unquoted
variable, and store the result in the $escaped variable, which can be safely used
in SQL queries. An example configuration is given as follows:

postgres_escape $user $remote_user;
postgres_escape $pass $remote_passwd;

postgres_connect_timeout
The postgres_connect_timeout directive sets a timeout value for connecting
to the database.

postgres_result_timeout
The postgres_result_timeout directive sets a timeout value for receiving results
from the database.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

[61]

Communicating with MySQL and drizzle
(drizzle-nginx)
The drizzle-nginx module is an upstream module to communicate with a MySQL or
drizzle server. Drizzle is a fork of MySQL, which is optimized for multicore processing
and scalability. This module essentially integrates libdrizzle into an Nginx module.
Like the Nginx PostgreSQL module, this module does not create human-readable text
output, but rather a Resty DB format, which is a custom binary format.

You can download the source code for this module from the GitHub repository at
https://github.com/chaoslawful/drizzle-nginx-module. Please note that you
will need to install drizzle and libdrizzle in order to be able to successfully compile
this module. You can download drizzle from launchpad at https://launchpad.
net/drizzle.

This module is useful if you want to directly connect Nginx with a MySQL database.
There can be several use-cases of why you would want to do that. You might want
to serve pages by directly querying results from a table. You might also want to log
things in a database or check certain conditions by querying a database table. Or else,
you might want to authenticate a user from an upstream MySQL database. For all
such situations and more, this module will be useful.

Explaining directives
The most important directives from the drizzle-nginx module are as follows:

drizzle_server
We use the drizzle_server directive to specify the drizzle server's name in the
form of an IP address or a domain name, and optionally a port. The default port
number is 3306. You can also specify a username and a password. The following
options are supported by this directive:

• user=: This option defines the database username for login
• password=: This option defines the database password, optionally enclosed in

quotes, for special characters as shown in the following example configuration:
drizzle_server 127.0.0.1:3306 user=user "password=1 2 3"
 dbname=mysql protocol=mysql;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://github.com/chaoslawful/drizzle-nginx-module
https://github.com/chaoslawful/drizzle-nginx-module
https://launchpad.net/drizzle
http://www.it-ebooks.info/

Installing Third-party Modules

[62]

• dbname=: This option defines the database to be used for the default connection
• protocol=: This option defines the target database type, drizzle, or mysql

(the default value is drizzle)
• charset=: This option is used to explicitly specify the character set for the

MySQL connections as shown in the following example configuration:
drizzle_server localhost:3306 user=mysqluser password=passwd
 dbname=mydb charset=utf8;

drizzle_keepalive
The drizzle_keepalive directive is used to maintain a keepalive pool for the
target database. The following options are supported by this directive:

• max=: This option is set to 0 by default, which means that the keepalive
connection pooling is disabled. In order to enable it, you must set this value
to a value greater than 0.

• mode=: The possible values for this parameter are multi and single. The
single mode means that the connection pool will not differentiate between
multiple drizzle_server definitions in the current block, and the pool will
apply to all of them, that is, you have one pool for all the drizzle_server
definitions. In the multi mode, the pool will re-use connections that have
identical server host names and ports. The default value is single.

• overflow=: This option specifies what to do when the connection pool is
already full while a new database connection is required. Either reject or
ignore can be specified. In case of reject, it will reject the current request
and return the 503 Service Unavailable error page. For ignore, this module
will create a new database connection.

drizzle_query
The drizzle_query directive defines the SQL query to be run on the
database's backend.

You are allowed to use Nginx variables in place of queries, but you must be careful
with SQL injection attacks. You are, therefore, advised to properly sanitize and quote
your SQL queries. An example configuration is as follows:

location /employees {
 set_unescape_uri $name $arg_name;
 set_quote_sql_str $quoted_name $name;

 drizzle_query "select * from empl where name = $quoted_name";
 drizzle_pass my_backend;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

[63]

drizzle_pass
Using the drizzle_pass directive, you can pass the current location to another
defined MySQL or drizzle-upstream block.

You can use the Nginx variables as values to perform dynamic passing. An example
configuration is as follows:

upstream backend { localhost:3306 dbname=mydb; }

server {
 location /emp {
 set $srv backend;

 drizzle_query ...;
 drizzle_pass $srv;
 }
 }

drizzle_connect_timeout
The drizzle_connect_timeout directive specifies the timeout value for connecting
to the remote server. The value can be an integer with an optional time unit, such as
s (second), ms (millisecond), or m (minute). The default time unit is s and the default
value is 60 s.

drizzle_send_query_timeout
The drizzle_send_query_timeout directive specifies the timeout value for sending
a SQL query to a remote server. The value can be an integer with an optional time
unit, such as s (second), ms (millisecond), or m (minute). The default time unit is s
and the default value is 60 s.

drizzle_recv_cols_timeout
The drizzle_recv_cols_timeout directive specifies the timeout value for receiving
the columns' metadata of the result set to a remote server. The value can be an integer
with an optional time unit, such as s (second), ms (millisecond), or m (minute). The
default time unit is s and the default value is 60 s.

drizzle_recv_rows_timeout
The drizzle_recv_rows_timeout directive specifies the timeout value for receiving
the rows' data of the result set (if any) to a remote server. The value can be an integer
with an optional time unit, such as s (second), ms (millisecond), or m (minute).
The default time unit is s and the default value is 60 s.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[64]

drizzle_buffer_size
The drizzle_buffer_size directive specifies the buffer size for server outputs. The
default value of this directive depends on the OS page size which would be 4K/8K
normally. Larger buffer sizes can result in lower network overheads. However, you
have to find the correct value for your workload by experimenting with this number.

drizzle_module_header
The drizzle_module_header directive controls whether to output the drizzle
header in the response or not. By default, the sending of the header is enabled.
This directive can be configured with the following script:

X-Resty-DBD-Module: ngx_drizzle 0.1.0

Digest Authentication (ngx_http_auth_digest)
In today's world, HTTP basic authentication is too basic and doesn't provide adequate
security required by the modern web servers. The reason is that usernames and
passwords are sent in clear text unless you use HTTPS. The ngx_http_auth_digest
module can be used to protect your resources using the HTTP Digest Authentication
based on RFC 2617.

The digest authentication module works, and is considered quite stable. However,
it is perhaps not tested enough for the real world, so make sure it works in your
situation. As this module deals with security, it is always a good idea to test the
software thoroughly.

You can download the source code at https://github.com/samizdatco/nginx-
http-auth-digest.

You can password-protect a directory tree by adding the following code lines into
a server section in your Nginx configuration file:

auth_digest_user_file /opt/passwd.digest;
location /members{
 auth_digest 'members area; # set the realm for this location block
}

Currently, the digest authentication module works with a file generated through the
htdigest script. The htdigest script can be found in your Apache installation or
source code. There is also an htdigest.py script in this module's source code,
which will help you generate a compatible file.

Explaining directives
Some of the most important directives of ngx_http_auth_digest are as follows:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://github.com/samizdatco/nginx-http-auth-digest
https://github.com/samizdatco/nginx-http-auth-digest
https://github.com/samizdatco/nginx-http-auth-digest
http://nginx.net/
http://www.it-ebooks.info/

Chapter 4

[65]

auth_digest
The auth_digest directive can be defined in the contexts of the server and location.
This parameter defines the realm name for authentication. This name should match
the name used in creating the htdigest file. To selectively disable authentication, set
auth_digest to off. The default value for this directive is off.

auth_digest_user_file
The auth_digest_user_file directive can be defined in the contexts of the
server and location. This directive is used to specify the name of the password
file. The password file should be created by the Apache htdigest command
(or the included htdigest.py script).

auth_digest_timeout
The auth_digest_timeout directive can be defined in the contexts of the server and
location. This timeout value defines the expiry time of the challenge sent to the client.
If the user does not provide the response within this time, the challenge is considered
stale, and a new challenge is sent to the client when a resource is requested again or
the response comes from the client. The default timeout value is 60 s.

auth_digest_expires
The auth_digest_expires directive can be defined in the contexts of the server and
location. This parameter is used to define the expiry time of the nonce value. Once a
client successfully authenticates, the nonce value is cached and subsequent requests
use the cached value. This parameter defines the duration for which a client can
continue to use the nonce value. The default digest expiry value is 10 s.

auth_digest_replays
The auth_digest_replays directive can be defined in the contexts of the server and
location. The validity of a cached nonce can also be specified in terms of the number
of requests instead of time, by using this directive. Having a high value will increase
your shared memory requirements. The default value is 20 replays per nonce.

auth_digest_shm_size
The auth_digest_shm_size directive can only be defined in the server's context.
This directive specifies the fixed size memory cache used to store information about
the active authenticated requests. Once this cache is full, no further authentication
will be possible until the active sessions expire. The default size is about 4 MB.
The default value allows around 82,000 non-replay requests every 70 seconds.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[66]

An example configuration is as follows:

auth_digest_user_file /opt/htdigest;
auth_digest_shm_size 4m; # the storage space allocated for tracking
active sessions

location /restricted {
 auth_digest 'this is a restricted location';
 auth_digest_timeout 60s;
 auth_digest_expires 10s;
 auth_digest_replays 20;
}

location / {
 auth_digest 'restricted';
 location /img {
 auth_digest off; # this location will be accessible }
}

Speeding up web pages (ngx_pagespeed)
The ngx_pagespeed module optimizes the web pages and associated resources
to reduce latency and bandwidth. It is capable of rewriting HTML pages and
automatically eliminates deficiencies that reduce the performance of your website
or web pages. This module is written by Google and is similar to Apache's
mod_pagespeed module.

This module reduces the page's load time by automatically applying web
performance best practices to pages and associated assets (CSS, JavaScript,
and images). It can perform the following types of optimizations:

• Image optimization
• CSS and JavaScript optimization
• Resource inlining
• HTML rewriting
• Cache lifetime extension

In order to enable the module, you have to put pagespeed On in the server or the
HTTP block. In addition, you should define the FileCache location and specify which
rewrite filters you would like to enable. The following is an example configuration:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

[67]

http {
 pagespeed On;
 pagespeed FileCachePath "/var/cache/ngx_pagespeed/";
 pagespeed EnableFilters combine_css,combine_javascript, add_
instrumentation;
 ...
 ...
}

The FileCachePath parameter provides the location where rewritten files are
cached, and should be a valid path. The EnableFilters parameter defines which
optimizations will be enabled for the specific location.

Configuring handlers
When the ngx_pagespeed module is configured and enabled, a default handler
is automatically created, but there are additional handlers in order to monitor the
module's activity in more details, which are as follows:

• Statistics handler: This handler shows the statistics related to page or
resource optimizations, including which pages have been optimized so far,
as well as various latency and cache-effectiveness metrics. You can also view
the summary of the current configuration that is active at the moment.

• Messages handler: If you have enabled and specified a size for the
MessageBufferSize parameter, this handler will contain a server-wide
history of recent logging output from pagespeed, including messages that
are omitted from the server's logfile based on its log level.

• Console handler: This handler shows graphs of issue metrics over time.
• Beacon handler: This handler can be used by the add_instrumentation

filter to report the loading time of pages for your sites, which you can then
view via the statistics page.

The following is an example configuration from the module's documentation page:

pagespeed on;

Needs to exist and be writable by nginx.
pagespeed FileCachePath /var/ngx_pagespeed_cache;

Ensure requests for pagespeed optimized resources go to the
pagespeed handler
and no extraneous headers get set.
location ~ "\.pagespeed\.([a-z]\.)?[a-z]{2}\.[^.]{10}\.[^.]+" {
 add_header "" "";

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[68]

}
location ~ "^/ngx_pagespeed_static/" { }
location ~ "^/ngx_pagespeed_beacon$" { }
location /ngx_pagespeed_statistics { allow 127.0.0.1; deny all; }
Recent log messages. Like statistics, these are generally not to be
shown to the public, so this has access controls as well.
pagespeed MessageBufferSize 100000;
location /ngx_pagespeed_message { allow 127.0.0.1; deny all; }

In order to check if the module is processing your pages or not, you can check the
source of a page, which you should be able to see at the X-Page-Speed header
through the following code lines:

$ curl -I 'http://localhost /index.html/' | grep X-Page-Speed
X-Page-Speed: 1.6.29.5-...

You can find a complete list of pagespeed filters in the online documentation
available at https://developers.google.com/speed/pagespeed/module/using.

Lua scripting (ngx_lua)
If you want the ability to write scripts in your Nginx configuration file, then
utilizing the power of Lua by using the ngx_lua module can be a great move.
This is a very powerful module with a large number of uses, and provides you
with a full programming capability inside the Nginx configuration. It has the
following advantages and features:

• This will allow you to perform complicated processing on the incoming
request before it's executed, or change the response afterwards

• You can add new headers or remove the existing ones
• You can perform redirects and routing based on complicated

program-like logic
• You can create a sophisticated logging framework entirely based

on Lua scripts
• You can either block or allow IP addresses
• You can build your own authentication or preprocessing layer on top,

without having to write your own C modules and recompiling the Nginx code

Lua is a lightweight, embeddable scripting language, which makes it very suitable
for scripting in the configuration file.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://developers.google.com/speed/pagespeed/module/using
http://www.it-ebooks.info/

Chapter 4

[69]

This module allows you to run the Lua code during different phases in the Nginx
request handling. Before we look at more details of Lua scripting, it is worth looking
at the different phases of Nginx request handling.

Each request handled by Nginx goes through the following phases:

Sl.
No.

Nginx request-handling phase Description

1 server selection A server block is selected based on the request.
2 post read This phase is executed after a request is read.

This allows you to perform actions on the
request before it is processed. For example,
HttpRealIpModule can use this phase to add
IP addresses in the request headers.

3 server rewrite During this phase, URL rewriting can take
place. You can select the configuration based
on variable values. The HttpRewrite module
allows you to do so.

4 location selection During this phase, a location configuration block
is selected or matched based on the requested
URL.

5 location rewrite This phase allows you to do rewrites within a
selected location-configuration block.

6 preaccess This phase allows you to carry out certain filters,
that is, limit the number of requests per session.

7 access This phase runs authentications, such as auth_
basic or auth_digest. You can also allow
or deny requests based on criteria, such as IP
addresses.

8 try files The core module's try_files directive is
executed in this phase.

9 content The actual content generation takes place in this
phase. All upstream modules are executed in this
phase.

10 log During this phase, information is logged in the
logfiles. Modules such as access_log operate
within this phase.

11 post action During this phase, the post_action directive
of the core module is executed, which allows you
to send subrequests to a location or upstream
when a request is finished, for example, logging
competed requests in a remote MySQL database.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[70]

The nginx_lua module embeds Lua via the standard Lua interpreter or LuaJIT
into Nginx. Please note that you need to install Lua or LuaJIT before you can use
this module. This module also has a dependency on another Nginx module called
ngx_devel_kit. It facilitates the development of new Nginx modules. We will have a
detailed look at this module in this chapter as well as in Chapter 5, Creating Your Own
Module, where we will learn to write our own Nginx module.

Using the Lua API for Nginx, you can communicate with upstream servers in a
non-blocking manner in your Lua script. The Lua VM is shared across all the
requests handled by a single Nginx worker process to minimize memory usage.

It is possible to use a number of upstream Nginx modules with the nginx_lua
module. These modules are as follows:

• lua-resty-memcached

• lua-resty-mysql

• lua-resty-redis

• lua-resty-dns

• lua-resty-upload

• ngx_memc

• ngx_postgres

• ngx_redis2

• ngx_redis

• ngx_proxy

• ngx_fastcgi

An example configuration of the ngx_lua module is as follows:

 # set search paths for pure Lua external libraries (';;' is the
default path):
 lua_package_path '/home/user/?.lua;/scripts/?.lua;;';

 # set search paths for Lua external libraries written in C (can
also use ';;'):
 lua_package_cpath '/bar/for/?.so;/blah/blah/?.so;;';

 server {
 location /inline_concat {
 # MIME type determined by default_type:
 default_type 'text/plain';

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

[71]

 set $a "hello";
 set $b "world";
 # inline Lua script
 set_by_lua $res "return ngx.arg[1]..ngx.arg[2]" $a $b;
 echo $res;
 }

Explaining directives
Some of the most important directives of ngx_lua are as follows:

lua_package_path
The lua_package_path directive is used to specify the path of the Lua scripts.
This value is used by the directives such as set_by_lua and content_by_lua.

You can use the special notation $prefix or ${prefix} in the search path string
to indicate the path of the server prefix usually determined by the -p PATH
command-line option while starting the Nginx server.

The default value is taken from the LUA_PATH environment variable. If this variable
is not defined, then the default search path is used to locate Lua scripts.

set_by_lua or set_by_lua_file
The set_by_lua or set_by_lua_file directives are used to execute a small
embedded and blocked Lua script provided as a string. This script can take two
parameters as an input and return the result through a return variable. The Nginx
event loop is blocked when this code gets executed. You should, therefore, not use
this directive to execute long-running codes.

Note that the following API functions are currently disabled within this context.
This directive can only write out a value to a single Nginx variable at a time,
as shown in the following code snippet:

location /testlua {
 set_by_lua $sum '
 local a = 32
 local b = 56
 return a + b;
-- return the $sum value normally
 ';

 echo "sum = $sum
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[72]

This directive can be freely mixed with all directives of the HttpRewriteModule,
HttpSetMiscModule, and HttpArrayVarModule modules. All these directives will
be executed in the same order as they appear in the configuration file. An example
configuration is given as follows:

set $num 32;
set_by_lua $num2 'tonumber(ngx.var.num) + 1';

You can freely use the $ sign inside the Lua scripts provided in this directive
as the Nginx variable interpolation is disabled. This directive requires the
ngx_devel_kit module.

The set_by_lua_file directive is similar to the set_by_lua directive. The only
difference is that the Lua script here is provided in a file. This file can also contain
Lua or LuaJIT bytecode instead of a text script.

When a relative path such as path/file.lua is given, it will be turned into
an absolute path relative to the server prefix path determined by the -p PATH
command-line option while starting the Nginx server.

By default, the Lua code cache is turned on. This means that the script file is loaded
the first time. If you make changes, Nginx configuration will be reloaded. If you are in
a development cycle, the code cache can be turned off by using the lua_code_cache_
off parameter in the configuration file. The following is an example configuration:

 location /rel_file_concat {
 set $a "foo";
 set $b "bar";
 # script path relative to nginx prefix
 # $ngx_prefix/conf/concat.lua contents:
 #
 # return ngx.arg[1]..ngx.arg[2]
 #
 set_by_lua_file $res conf/concat.lua $a $b;
 echo $res;
 }

content_by_lua or content_by_lua_file
The content_by_lua or content_by_lua_file directives are used to specify a Lua
script to execute for every request during the content phase. You can use API calls in
this script, and the script is executed in an independent global sandbox.

Since this directive is a content handler, do not use it and the other content handler
directives at the same location. For example, this directive and the proxy_pass
directive should not be used at the same location.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

[73]

The content_by_lua_file directive is equivalent to content_by_lua, except that
in this directive you have to provide the path to a Lua script file instead of writing
inline codes. The code in this file is loaded only once if the code cache is turned on,
and the relative paths are resolved to absolute paths using the server prefix.
An example configuration is shown as follows:

 location /request_body {
 # force reading request body (default off)
 lua_need_request_body on;
 client_max_body_size 50k;
 client_body_buffer_size 50k;

 content_by_lua 'ngx.print(ngx.var.request_body)';
 }
 # transparent non-blocking I/O in Lua via subrequests
 location /lua {
 # MIME type determined by default_type:
 default_type 'text/plain';

 content_by_lua '
 local res = ngx.location.capture("/some_other_location")
 if res.status == 200 then
 ngx.print(res.body)
 end';
 }

rewrite_by_lua or rewrite_by_lua_file
The rewrite_by_lua or rewrite_by_lua_file directive executes the Lua code
during the rewrite phase. The Lua code can use API calls and is run in a spawned
global sandbox.

Note that this handler always runs after the standard HTTP rewrite. So, the
following piece of code will not work as expected:

 location /foo {
 set $a 5; # create and initialize $a
 set $b 13; # create and initialize $b
 rewrite_by_lua 'ngx.var.b = tonumber(ngx.var.a) + 1';
 if ($b = '6') {
 rewrite ^ /bar redirect;
 break;
 }
 echo "res = $b";
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[74]

This is because the if condition runs before rewrite_by_lua even if it is placed after
rewrite_by_lua in the configuration script.

The correct way of doing this by using Nginx API calls is as follows:

location /foo {
 set $a 5; # create and initialize $a
 set $b 13; # create and initialize $b
 rewrite_by_lua '
 ngx.var.b = tonumber(ngx.var.a) + 1
 if tonumber(ngx.var.b) == 6 then
 return ngx.redirect("/bar");
 end
 ';

 echo "res = $b";
}

The rewrite_by_lua code will always run at the end of the rewrite-request-processing
phase unless rewrite_by_lua_no_postpone is turned on.

The rewrite_by_lua_file directive also runs in the rewrite phase after the
standard HTTP rewrite. However, the code is executed from a Lua script file
or a bytecode file as shown in the following configuration script:

 location /script {
 content_by_lua_file /path/to/script/$1.lua;
 }

access_by_lua or access_by_lua_file
The access_by_lua or access_by_lua_file directive executes the Lua code during
the access phase. This means that the code in this directive will run once per request,
and no subrequest will be able to trigger the code.

The Lua code is run after the standard HttpAccessModule. Therefore, if you have
any blacklisted IPs, they will be denied before this code is executed.

You can use these directives to implement more complex access mechanisms, that is,
the ones that communicate with upstream servers, such as a database.

Let us now have a look at a sample ngx_lua configuration to understand the usage
of access_by_lua:

location / {
 access_by_lua '

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

[75]

 local ret = ngx.location.capture("/ldap_auth")

 if ret.status == ngx.HTTP_OK then
 return
 end

 if ret.status == ngx.HTTP_FORBIDDEN then
 ngx.exit(ret.status)
 end

 ngx.exit(ngx.HTTP_INTERNAL_SERVER_ERROR)
 ';
 }
 access_by_lua '
 if ngx.var.remote_addr == "10.11.60.220" then
 ngx.exit(ngx.HTTP_FORBIDDEN)
 end ';

In the preceding example configuration, the Lua code will run the configuration for a
defined location called ldap_auth, which will authenticate the user against an LDAP
server, and based on a return value, the request either exits with a proper error code
(403) or returns normally.

The access_by_lua directive allows you to run a Lua script or bytecode using a file.
You need to specify the path of the script file in the directive.

Nginx variables can be used in the file to provide flexibility. This, however, carries
some risks, and is not ordinarily recommended.

Relative file paths are converted to absolute paths using the server prefix.

It is recommended that you turn on the code cache in the production environment,
so that the Lua code is loaded only once. This can provide performance benefits.
However, in a development environment, you should not enable the code cache in
order to avoid reloading the server every time there is a code change.

The ngx_lua module provides complete scripting capabilities while offering very
high performance levels. This is especially true if you use the Just In Time (JIT)
compilation using LuaJIT. This allows you a very wide range of use-cases where
this module can be useful.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[76]

Reverse IP lookup using the GeoIP module
(ngx_http_geoip_module)
The ngx_http_geoip_module does a reverse lookup on the IP of the client using
the MaxMind IP database. It resolves the IP address to the place of origin and sets
a number for the variables.

This module is not built by default; it should be enabled with the --with-http_
geoip_module configuration parameter. As already mentioned, this module has
dependency on the MaxMind GeoIP library.

You need an account with MaxMind and will also need to download several
database files that map IP addresses to countries, cities, and even organizations.

One of the key applications, in addition to providing you with more information
about the clients, can also be against DDOS attacks. Using the information looked up
by this module, you can block or allow traffic coming from countries, cities, regions,
and so on. This is a bit crude, but it works. You can use this module as a complement
to HttpLimitReqModule and HttpLimitZoneModule. An example configuration is
as follows:

http {
 geoip_country countries.dat;
 geoip_city city.dat;
 geoip_org org.dat
 geoip_proxy 10.220.136.0/24;
 geoip_proxy 2331:0fb9::/32;
 geoip_proxy_recursive on;
 ...

Explaining directives
The following is a list of directives you can use for configuring this module:

geoip_country
The geoip_country directive allows you to specify the name and path of the
database file that contains the IP for a country's lookup information. The following
variables are available (as well as set by this module) while using this database:

• $geoip_country_code: This is a two-letter country code, for example,
DE or US. These codes correspond to ISO 3166-1 alpha-2 standard.

• $geoip_country_code3: This is a three-letter country code, for example,
DEU or USA. These codes correspond to ISO 3166-1 alpha-3 standard.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

[77]

• $geoip_country_name: This gives the complete country name, for example,
Russian Federation or United States.

geoip_city
The geoip_city directive allows you to set the name and path of a database
file to lookup the city's and region's information based on the client's IP address.
The following variables are available and set as well while using this database:

• $geoip_area_code: This gives the telephone area code (US only) associated
with the client's IP address. This field in the MaxMind database has been
depreciated, so you might not get any information or get outdated information.

• $geoip_city_continent_code: This is a two-letter continent code, for
example, EU or AS.

• $geoip_city_country_code: This is a two-letter country code, for example,
DE or US. These codes correspond to ISO 3166-1 alpha-2 standard.

• $geoip_city_country_code3: This is a three-letter country code, for example,
DEU or USA. These codes correspond to ISO 3166-1 alpha-3 standard.

• $geoip_city_country_name: This gives the country name, for example,
Russian Federation or United States.

• $geoip_dma_code: This gives the DMA region code in the US (also known
as metro code), which can be found at https://developers.google.com/
adwords/api/docs/appendix/cities-DMAregions.

• $geoip_latitude: This gives the latitudinal value of the city.
• $geoip_longitude: This gives the longitudinal value of the city.
• $geoip_region: This is a two-symbol country region code (region, territory,

state, province, federal land, and the like), for example, 48 or DC.
• $geoip_region_name: This gives the country's region name (region,

territory, state, province, federal land, and the like), for example, Bavaria
or District of Columbia.

• $geoip_city: This gives the full city name, for example, Munich or London.
• $geoip_postal_code: This gives the postal code information if available.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[78]

geoip_org
The geoip_org directive allows you to specify the name and path of the database
file to resolve the IP address to an organization. This can be a company name or
an institution. Normally, this kind of information is available through the whois
databases. The following variable is available and set as well while using this option:

• $geoip_org: This contains the organization's name, for example,
Facebook, Inc.

geoip_proxy
The geoip_proxy directive allows you to specify the IP addresses or CIDR of the
proxy servers that you "trust". If the client IP address matches this trusted address,
the IP address sent in the HTTP header X-Forwarded-For is used to do the IP
lookup. The X-Forwarded-For header is a standard header that is sent by proxy
servers to reveal the real IP address of the client. If the proxy server does not choose
to do so, it is essentially an anonymizer. The correctness of the IP sent in this header
is purely up to the proxy server; therefore, if you trust a specific proxy server to send
correct information, you can use this directive to enable lookup on the IP address
sent in the X-Forwarded-For header.

geoip_proxy_recursive
The geoip_proxy_recursive directive allows you to enable recursive IP lookup.
If recursive lookup is enabled, the last untrusted address sent in the X-Forwarded-
For header will be used for the IP lookup.

If Nginx is working behind a proxy, you can also use HttpRealIpModule.
This module allows you to change the client's IP address to a value from the
request header (for example, X-Real-IP or X-Forwarded-For).

Doing healthchecks
Here we will learn about various modules to keep a track of the healthy upstreams.

ngx_http_healthcheck_module
If your Nginx server works with a lot of upstream servers for providing various
services and content, keeping track of which upstream servers are still healthy and
working is very important, especially if they are third-party or external servers.
This module allows you to keep track of healthy backends.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

[79]

This is how it works. When an upstream server responds with a 200+ status code,
and the response optionally comes back with a body, it is marked as good; otherwise,
it is marked as bad. This module also has an HTTP healthcheck page where you
can see the current status of the backends. This is quite similar to the haproxy or
varnish healthchecks.

This module inserts a healthcheck event into Nginx's event tree. When that triggers,
it starts a peer connection with the backend and sends as well as receives data.
When the heathcheck is over or gets timed out, it updates the health of the backend
in a shared memory area. The following is an example configuration:

http {

 upstream check_upstreams {
 server server1.com;
 server server2.com;
 healthcheck_enabled;
 healthcheck_delay 1000;
 healthcheck_timeout 1000;
 healthcheck_failcount 1;
 healthcheck_expected 'BACKEND_ALIVE';
 healthcheck_send "GET /health HTTP/1.0" 'Host: www.websitename.
com';
 }
...
 location /health_status {
 healthcheck_status;
 }
...
}

Explaining directives
Some of the most important directives of the ngx_http_healthcheck_module
are as follows:

healthcheck_enabled
The healthcheck_enabled module's context is upstream and enables health
checking on the upstream servers defined in the specific upstream block.
This, in the preceding example, would be server1 and server2.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Installing Third-party Modules

[80]

healthcheck_delay
For each upstream server, the healthcheck_delay directive defines the delay
between two healthchecks. The default value is 1000 ms.

healthcheck_timeout
The healthcheck_timeout directive defines the timeout value for the healthcheck
operation. If the healthcheck operation is taking too long because the backend is slow
in responding, the process will stop after the timeout has elapsed. The default value
is 2000 ms.

healthcheck_failcount
The healthcheck_failcount directive gives the number of good or bad healthchecks
in a row it takes to switch the current health status (good to bad or bad to good). The
default value is 2.

healthcheck_send
The healthcheck_send directive is a required directive that allows you to decide what
to send to do a healthcheck. This can be a simple HTTP GET command or something
more complex. Each argument is appended by \r\n and the entire block is suffixed
with another \r\n. The following is an example configuration:

 healthcheck_send 'GET /health HTTP/1.0'
 'Host: www.yourhost.com';

Note that you probably want to end your healthcheck with some directive that closes
the connection, for example, Connection: close.

healthcheck_expected
The healthcheck_expected directive allows you to specify what to expect in return
from the upstream server as a response to mark it as healthy. Any other response
or no response will mark the host as down. This refers to the response in the HTTP
body and not the headers. If this directive is missing, a simple response code of 200
will be enough.

healthcheck_buffer
The healthcheck_buffer directive gives the size of the buffer where the response
from the backend will be temporarily stored for checking. Make sure you allocate
enough memory not only for the body but also for the headers that you expect to
receive back in response.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

[81]

Load balancing
There are a number of third-party Nginx modules available, which allow you to
distribute load among upstream servers based on a hashing mechanism or on a
least-busy basis. There are various hashing mechanisms available for load balancing,
some of which are available via third-party modules. Here, we will just take a brief
look at some of the options available to you.

Consistent hashing
The ngx_http_upstream_consistent_hash module allows you to load balance
using a consistent hash ring. Consistent hashing is a special hashing algorithm
that is quite good when you have to rehash frequently because a new machine
or server is added or removed from the pool.

This module is compatible with the php-memcached module, and you can
store values in the memcached cluster that this module can read from. You
can find more details about this module at http://wiki.nginx.org/
HttpUpstreamConsistentHash.

There is another similar module that uses the Ketama consistent hashing
library to compute a hash on a configuration variable, that is, Request
URI. Check out more information about this at http://wiki.nginx.org/
HttpUpstreamKetamaCHashModule.

Least busy
The ngx_http_upstream_fair_module module allows you to do load balancing
based on which upstream is least busy.

This module also provides a status page where you can view the current status
of load balancing.

This module uses Weighted Least-Connection Round Robin (WLC-RR) with a
number of possible variations. More information on this module is available at
http://wiki.nginx.org/HttpUpstreamFairModule.

Configuration variable hashing
Configuration variable hashing is probably the most random hashing you can do.
You can choose to do a hash on one of the available variables, that is, $request_uri
or HTTP headers or a combination of both. This module uses CRC-32 to compute
the hash on a specified variable.

More information on this is available at http://wiki.nginx.org/
HttpUpstreamRequestHashModule.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://wiki.nginx.org/HttpUpstreamConsistentHash
http://wiki.nginx.org/HttpUpstreamConsistentHash
http://wiki.nginx.org/HttpUpstreamKetamaCHashModule
http://wiki.nginx.org/HttpUpstreamKetamaCHashModule
http://wiki.nginx.org/HttpUpstreamFairModule
http://wiki.nginx.org/HttpUpstreamFairModule
http://wiki.nginx.org/HttpUpstreamRequestHashModule
http://wiki.nginx.org/HttpUpstreamRequestHashModule
http://www.it-ebooks.info/

Installing Third-party Modules

[82]

Summary
In this chapter, we looked at various useful third-party Nginx modules that are not
distributed with the source code by default. There are many more useful modules
available that you can find on GitHub. Please do pay attention to the fact that the
module is stable enough to be used in the production environment. Always do some
testing first and then carefully move the modules in the production environments.
The Nginx community will take no responsibility for any problems that you may
encounter as a result of using these modules.

In the next chapter, we will discuss developing our own Nginx module,
which will be the first step into the world of custom module development.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module
Nginx allows you to extend functionality by writing new modules in plain C.
This chapter gives a brief introduction to creating your own modules. It is a quick
reference to the module system in Nginx, and the internal architecture of Nginx,
which makes extension possible. It introduces different categories of modules
and add-ons you can create at a high level. This chapter will also contain a quick
introduction of NDK, a special module in Nginx used as a basis of other modules.

The topics covered are as follows:

• Concept of module chaining and delegation in Nginx
• Handler modules
• Filter modules
• Load balancer modules
• Nginx Development Toolkit (NDK): The NDK is an Nginx module that is

designed to extend the core functionality of the excellent Nginx web server,
in a way that can be used as a basis of other Nginx modules

• Sample source code of a custom Nginx module

At the end of this chapter, the advanced users will have an idea about internal Nginx
architecture, and what is the basis of creating your own third-party module. Readers
should be able to know how to use NDK; the source code will help them see a very
simple self-written module in action.

Nginx module delegation
Nginx has a very modular architecture. All major operations that Nginx performs are
carried out by modules. All Nginx modules are built in at compile time and are not
loaded dynamically.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[84]

Module delegation can also be called module chaining. The core pretty much does
the basic stuff related to setting up the connection and taking care of things related
to the protocol. It then sets up a chain of modules to execute, each taking care of a
certain phase or stage of request processing.

The module-based noncentralized architecture makes it possible for advanced users
to develop a module that does something they want.

The following are the different types of Nginx modules.

Handlers
There is a handler for each defined location in the configuration file. When the server
starts up, handlers are attached or bound to a location. Ideally there should only be
one handler to a location; if there are more than one defined in the configuration file,
only one of them will be valid (typically the last one). Handlers end in the following
three ways: successfully when all is good, fail when there is an error, or they will not
process the request and will let the default handler process it.

Load balancers
The load balancer or upstream module forwards your requests to one of the many
configured backends or upstreams. Nginx, by default, has two load-balancing modules
built in: Round Robin and the IP Hash method (look at ngx_http_upstream_module).
There are other third-party modules available that allow you to do load balancing
based on various hashing mechanisms, for example, Consistent Hashing.

Filters
After a handler produces a response, the filters are executed. Filters do the
postprocessing on the handler's response. One example can be that you need to
compress the response, or add certain headers to it. Multiple filters can associate
with each location.

Order of execution
The order of execution of Nginx filters is determined when they are compiled. You can
see the order of the execution after compiling the code in ngx_modules.c. This file is
generated on the fly by the modules script, which is found at nginx/auto/. This script
makes sure that it maintains the correct order of the module and filter execution.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[85]

The built-in modules do need a specific order, for example, a gzip filter should run
after the header and body filters have been executed. The new custom modules are
generally executed in the end.

Filters do not execute in a fully blocked manner, rather the output of the filters is
streamed through the chain of filters. By default, one filter processes some data and
passes it on to the next module and so on. The amount of data processed at a time is
usually a multiple of the page size. Different modules, for example, gzip, allow you
to adjust this value.

The extended "Hello world" module
Now we will proceed towards creating a simple Nginx module. This module will
print a configurable text in your browser whenever you enter a specific location. This
is a very simple module and the idea is to just introduce the core concepts of how to
create an Nginx module. This is based on and is an enhanced version of the simple
Hello world module found at http://blog.zhuzhaoyuan.com/2009/08/creating-
a-hello-world-nginx-module/. This module is an example of a handler module.

Writing and compiling a module
The first thing you have to do is to obviously create a folder for your new module.
Create it anywhere other than the Nginx source tree. You should create the following
two files to start with:

• config

• ngx_http_hello_module.c

The contents of the config file will depend on what kind of module you are writing.

For this simple module, it will look like the following code:

ngx_addon_name=ngx_http_hello_module
HTTP_MODULES="$HTTP_MODULES ngx_http_hello_module"
NGX_ADDON_SRCS="$NGX_ADDON_SRCS $ngx_addon_dir/ngx_http_hello_
module.c"

The file is quite self-explanatory. In the second line we are adding the module to a
list of HTTP modules. Depending on which module type you are writing, you will
need to add it to a different list. You can see the full list in the modules script found
at nginx/auto/.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[86]

Before compiling, the module needs to be explicitly specified using the configure
script as in the following code. The add-module list should contain a list of all
third-party modules you want to include in the compilation.

./configure --add-module=path/to/your/new/module/directory

This has to be followed by make and make install as usual.

The "Hello world" source code
The following code is from ngx_http_hello_module.c:

#include <ngx_config.h>
#include <ngx_core.h>
#include <ngx_http.h>

static char *ngx_http_hello(ngx_conf_t *cf, void *post, void
 *data);

static ngx_conf_post_handler_pt ngx_http_hello_p = ngx_http_hello;

/*
 * The structure will hold the value of the
 * module directive hello
 */
typedef struct {
 ngx_str_t name;
} ngx_http_hello_loc_conf_t;

/* The function which initializes memory for the module configuration
structure
 */
static void *
ngx_http_hello_create_loc_conf(ngx_conf_t *cf)
{
 ngx_http_hello_loc_conf_t *conf;

 conf = ngx_pcalloc(cf->pool, sizeof(ngx_http_hello_loc_conf_t));
 if (conf == NULL) {
 return NULL;
 }

 return conf;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[87]

/*
 * The command array or array, which holds one subarray for each
module
 * directive along with a function which validates the value of the
 * directive and also initializes the main handler of this module
 */
static ngx_command_t ngx_http_hello_commands[] = {
 { ngx_string("hello"),
 NGX_HTTP_LOC_CONF|NGX_CONF_TAKE1,
 ngx_conf_set_str_slot,
 NGX_HTTP_LOC_CONF_OFFSET,
 offsetof(ngx_http_hello_loc_conf_t, name),
 &ngx_http_hello_p },

 ngx_null_command
};

static ngx_str_t hello_string;

/*
 * The module context has hooks , here we have a hook for creating
 * location configuration
 */
static ngx_http_module_t ngx_http_hello_module_ctx = {
 NULL, /* preconfiguration */
 NULL, /* postconfiguration */

 NULL, /* create main configuration */
 NULL, /* init main configuration */

 NULL, /* create server configuration */
 NULL, /* merge server configuration */

 ngx_http_hello_create_loc_conf, /* create location configuration */
 NULL /* merge location configuration */
};

/*
 * The module which binds the context and commands
 *
 */
ngx_module_t ngx_http_hello_module = {
 NGX_MODULE_V1,

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[88]

 &ngx_http_hello_module_ctx, /* module context */
 ngx_http_hello_commands, /* module directives */
 NGX_HTTP_MODULE, /* module type */
 NULL, /* init master */
 NULL, /* init module */
 NULL, /* init process */
 NULL, /* init thread */
 NULL, /* exit thread */
 NULL, /* exit process */
 NULL, /* exit master */
 NGX_MODULE_V1_PADDING
};

/*
 * Main handler function of the module.
 */
static ngx_int_t
ngx_http_hello_handler(ngx_http_request_t *r)
{
 ngx_int_t rc;
 ngx_buf_t *b;
 ngx_chain_t out;

 /* we response to 'GET' and 'HEAD' requests only */
 if (!(r->method & (NGX_HTTP_GET|NGX_HTTP_HEAD))) {
 return NGX_HTTP_NOT_ALLOWED;
 }

 /* discard request body, since we don't need it here */
 rc = ngx_http_discard_request_body(r);

 if (rc != NGX_OK) {
 return rc;
 }

 /* set the 'Content-type' header */
 r->headers_out.content_type_len = sizeof("text/html") - 1;
 r->headers_out.content_type.len = sizeof("text/html") - 1;
 r->headers_out.content_type.data = (u_char *) "text/html";

 /* send the header only, if the request type is http 'HEAD' */
 if (r->method == NGX_HTTP_HEAD) {
 r->headers_out.status = NGX_HTTP_OK;
 r->headers_out.content_length_n = hello_string.len;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[89]

 return ngx_http_send_header(r);
 }

 /* allocate a buffer for your response body */
 b = ngx_pcalloc(r->pool, sizeof(ngx_buf_t));
 if (b == NULL) {
 return NGX_HTTP_INTERNAL_SERVER_ERROR;
 }

 /* attach this buffer to the buffer chain */
 out.buf = b;
 out.next = NULL;

 /* adjust the pointers of the buffer */
 b->pos = hello_string.data;
 b->last = hello_string.data + hello_string.len;
 b->memory = 1; /* this buffer is in memory */
 b->last_buf = 1; /* this is the last buffer in the buffer chain
 */

 /* set the status line */
 r->headers_out.status = NGX_HTTP_OK;
 r->headers_out.content_length_n = hello_string.len;

 /* send the headers of your response */
 rc = ngx_http_send_header(r);

 if (rc == NGX_ERROR || rc > NGX_OK || r->header_only) {
 return rc;
 }

 /* send the buffer chain of your response */
 return ngx_http_output_filter(r, &out);
}

/*
 * Function for the directive hello , it validates its value
 * and copies it to a static variable to be printed later
 */
static char *
ngx_http_hello(ngx_conf_t *cf, void *post, void *data)
{
 ngx_http_core_loc_conf_t *clcf;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[90]

 clcf = ngx_http_conf_get_module_loc_conf(cf,
 ngx_http_core_module);
 clcf->handler = ngx_http_hello_handler;

 ngx_str_t *name = data; // i.e., first field of
 ngx_http_hello_loc_conf_t

 if (ngx_strcmp(name->data, "") == 0) {
 return NGX_CONF_ERROR;
 }
 hello_string.data = name->data;
 hello_string.len = ngx_strlen(hello_string.data);

 return NGX_CONF_OK;
}

A sample configuration for this extended hello world module could look
as follows:

server {
listen 8080;
server_name localhost;

location / {
hello 'Hello World';
 }
}

Components of the Nginx module
There are many components on an Nginx module depending on the type of the
module. We will now discuss those parts that are common to almost all the modules.
The intention is to present to you a reference in an easy to understand way so that
you can be ready to write your own module.

Module configuration structures
Modules can define one configuration for each of the configuration file's configuration
contexts—there is an individual structure for the main, server, and location contexts.
It is OK for most modules to simply have a location structure. These structures should
be named as convention ngx_http_<module name>_(main|srv|loc)_conf_t.
The following is the code snippet from the sample module:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[91]

typedef struct {
 ngx_str_t name;
} ngx_http_hello_loc_conf_t;

The members of this structure should use Nginx's special data types (ngx_uint_t,
ngx_flag_t, and ngx_str_t), which are simply aliases for basic/primitive types.
You can look into core/nginx_config.h in the source tree for the data
type definitions.

There should be as many members of this structure as the module directives. In the
preceding example our module only has one directive, so we can already tell that
this module will support a single directive/option at the location level, which will
populate the member name of this structure.

As it must be obvious by now, that the elements in the configuration structure are
filled by module directives defined in the configuration file.

Module directives
After you have defined the place where the value of the module directives will be
stored, it is time to define the name of the module directives and what kind and type
of arguments they will accept. A module's directives are defined in a static array
of the ngx_command_t type structure. Looking at the example code we previously
wrote, the following is what the directives structure looks like:

static ngx_command_t ngx_http_hello_commands[] = {
 { ngx_string("hello"),
 NGX_HTTP_LOC_CONF|NGX_CONF_TAKE1,
 ngx_conf_set_str_slot,
 NGX_HTTP_LOC_CONF_OFFSET,
 offsetof(ngx_http_hello_loc_conf_t, name),
 &ngx_http_hello_p },

 ngx_null_command
};

The preceding structure may look a little bit complicated. However, we will now
look at each one of those to understand them a little better.

The first argument defines the name of the directive. This is of type ngx_str and
is instantiated with the directive name, for example, ngx_str("hello"). An ngx_
str_t data type is a struct type with data and length elements. Nginx uses this data
structure for all the strings.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[92]

The second argument defines the type of the directive, and what kind of arguments
it accepts. The acceptable values for these parameters should be bitwise ordered with
each other. The possibilities are as follows:

NGX_HTTP_MAIN_CONF: directive should be used in main section
NGX_HTTP_SRV_CONF : directive should be used in the server section
NGX_HTTP_LOC_CONF : directive should be used in the location
 section
NGX_HTTP_UPS_CONF : directive should be used in the upstream
 section
NGX_CONF_NOARGS : directive will take no arguments
NGX_CONF_TAKE1 : directive will take 1 argument
NGX_CONF_TAKE2 : directive will take 2 arguments
…
NGX_CONF_TAKE7 : directive will take 7 arguments
NGX_CONF_TAKE12 : directive will take 1 or 2 arguments
NGX_CONF_TAKE13 : directive will take 1 or 3 arguments
NGX_CONF_TAKE23 : directive will take 2 or 3 arguments
NGX_CONF_TAKE123 : directive will take 1, 2 or 3 arguments
NGX_CONF_TAKE1234 : directive will take 1, 2 , 3 or 4 arguments

NGX_CONF_FLAG : directive accepts a boolean value from "on" or
 "off"
NGX_CONF_1MORE : directive requires at least one argument
NGX_CONF_2MORE : directive requires at least at least two
 arguments

Please see the full details in ngx_conf_file.h found in the core folder.

The maximum number of arguments that a directive can take is eight (0-7) as defined
in core/ngx_conf_file.h, as shown in the following code:

#define NGX_CONF_MAX_ARGS 8

In the preceding example, we only use a single element in the array, as we are
providing values for a single ngx_command_t structure.

The third argument is a function pointer. This is a setup function that takes the value
provided for the directive in the configuration file and stores it in the appropriate
element of the structure. This function can take the following three arguments:

• Pointer to ngx_conf_t (main, srv, or loc) structure, which contains the
values of the directive in the configuration file

• Pointer to the target ngx_command_t structure where the value will be stored
• Pointer to the module's custom configuration structure (can be NULL)

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[93]

Nginx provides a number of functions that can be used to set the values for the
built-in data types. These functions include:

• ngx_conf_set_flag_slot

• ngx_conf_set_str_slot

• ngx_conf_set_str_array_slot

• ngx_conf_set_keyval_slot

• ngx_conf_set_num_slot

• ngx_conf_set_size_slot

• ngx_conf_set_off_slot

• ngx_conf_set_msec_slot

• ngx_conf_set_sec_slot

• ngx_conf_set_bufs_slot

• ngx_conf_set_enum_slot

• ngx_conf_set_bitmask_slot

Some of these are described as follows:

• ngx_conf_set_flag_slot: This translates on or off to 1 or 0
• ngx_conf_set_str_slot: This saves a string as ngx_str_t
• ngx_conf_set_num_slot: This parses a number and saves it to an integer
• ngx_conf_set_size_slot: This parses a data size (5k, 2m, and so on) and

saves it to size_t

Module authors can also pass the pointer to their own function here, if the built-in
functions are not sufficient for their purpose, for example, if the string needs to be
interpreted in a certain way instead of just being stored as it is.

In order to specify where these built-in (or custom) functions will store the directive
values, you have to specify conf and offset as the next two arguments. conf
specifies the type of the structure where the value will be stored (main, srv, loc)
and offset specifies which part of this configuration structure to store it in. The
following is the offset of the element in the structure, that is, offsetof(ngx_http_
hello_loc_conf_t, name).

The last element is often NULL, and at the moment we can choose to ignore it.

The last element of the command array is ngx_null_command, which indicates
the termination.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[94]

The module context
The third structure in an Nginx module that needs to be defined is a static ngx_http_
module_t structure, which just has the function pointers for creating the main, srv,
and loc configurations, and merging them together. Its name is ngx_http_<module
name>_module_ctx. The function references that you can provide are as follows:

• Pre configuration
• Post configuration
• Creating the main conf
• Initializing the main conf
• Creating the server conf
• Merging it with the main conf
• Creating the location conf
• Merging it with the server conf

These take different arguments depending on what they're doing. The following is
the structure definition, taken from http/ngx_http_config.h, so you can see the
different function signatures of the callbacks:

typedef struct {
 ngx_int_t (*preconfiguration)(ngx_conf_t *cf);
 ngx_int_t (*postconfiguration)(ngx_conf_t *cf);

 void *(*create_main_conf)(ngx_conf_t *cf);
 char *(*init_main_conf)(ngx_conf_t *cf, void *conf);

 void *(*create_srv_conf)(ngx_conf_t *cf);
 char *(*merge_srv_conf)(ngx_conf_t *cf, void *prev, void
 *conf);

 void *(*create_loc_conf)(ngx_conf_t *cf);
 char *(*merge_loc_conf)(ngx_conf_t *cf, void *prev, void
 *conf);
} ngx_http_module_t;

You can set functions you don't need to NULL, and Nginx will accept it, and do the
right thing.

The create functions such as create main conf, create server conf, and create location
conf normally just allocate memory for the structures (such as malloc()) and
initialize the elements as default values. The functions such as initialize main conf,
and merge with main conf provide the opportunity to override the default values.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[95]

During merging, the module authors can look for duplicate definitions of elements
and throw errors if there is a problem with directives provided by configuration
authors in the configuration file.

Most module authors just use the last two elements as such: a function to allocate
memory for ngx_loc_conf (main , srv, or loc) configuration, and a function to set
defaults and merge this configuration into a merged location configuration (called
ngx_http_<module name >_merge_loc_conf).

The following is an example module context structure:

/*
 * The module context has hooks , here we have a hook for creating
 * location configuration
 */
static ngx_http_module_t ngx_http_hello_module_ctx = {
 NULL, /* preconfiguration */
 NULL, /* postconfiguration */
 NULL, /* create main configuration */
 NULL, /* init main configuration */
 NULL, /* create server configuration */
 NULL, /* merge server configuration */
 ngx_http_hello_create_loc_conf, /* create location configuration
 */
 NULL /* merge location configuration
 */
};

We can have a closer look now at these functions, which set up the location based
on configuration.

create_loc_conf
The following is what a basic create_loc_conf function looks like. It takes
a directive structure (ngx_conf_t) and returns a module configuration structure
that is newly allocated.

/* The function which initializes memory for the module configuration
structure
 */
static void *
ngx_http_hello_create_loc_conf(ngx_conf_t *cf)
{
 ngx_http_hello_loc_conf_t *conf;

 conf = ngx_pcalloc(cf->pool, sizeof(ngx_http_hello_loc_conf_t));
 if (conf == NULL) {

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[96]

 return NULL;
 }

 return conf;
}

The Nginx memory allocation takes care of freeing the memory if you use the
built-ins ngx_palloc (a malloc wrapper) or ngx_pcalloc (a calloc wrapper).

merge_loc_conf
The sample module we created does not contain a merge location conf function.
However, we can look at the following sample code just to explain some basic
concepts. You generally need a merge function if a directive can be defined multiple
times. It is your job to define a merge function that can set the appropriate value in
case it is defined multiple times or in multiple locations.

static char *
 ngx_http_example_merge_loc_conf(ngx_conf_t *cf, void *parent,
 void *child)
{
 ngx_http_example_loc_conf_t *prev = parent;
 ngx_http_example_loc_conf_t *conf = child;

 ngx_conf_merge_uint_value(conf->val1, prev->val1, 10);
 ngx_conf_merge_uint_value(conf->val2, prev->val2, 20);

 if (conf->val1 < 1) {
 ngx_conf_log_error(NGX_LOG_EMERG, cf, 0,
 "value 1 must be equal or more than 1");
 return NGX_CONF_ERROR;
 }
 if (conf->val2 < conf->val1) {
 ngx_conf_log_error(NGX_LOG_EMERG, cf, 0,
 "val2 must be equal or more than val1");
 return NGX_CONF_ERROR;
 }

 return NGX_CONF_OK;
}

Nginx provides very useful merging built-in functions for various data types (ngx_
conf_merge_<data type>_value). These functions take the arguments as follows:

• The location's value (can refer to an element in a structure)
• The value to use if the first value is not set
• The default value if both first and second values are not set

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[97]

The first argument stores the result. See core/ngx_conf_file.h for a full list
of available merge functions. The following is an extract from the file:

#define ngx_conf_merge_value(conf, prev, default) \
 if (conf == NGX_CONF_UNSET) { \
 conf = (prev == NGX_CONF_UNSET) ? default : prev; \
 }

#define ngx_conf_merge_ptr_value(conf, prev, default) \
 if (conf == NGX_CONF_UNSET_PTR) { \
 conf = (prev == NGX_CONF_UNSET_PTR) ? default : prev; \
 }

#define ngx_conf_merge_uint_value(conf, prev, default) \
 if (conf == NGX_CONF_UNSET_UINT) { \
 conf = (prev == NGX_CONF_UNSET_UINT) ? default : prev; \
 }

#define ngx_conf_merge_msec_value(conf, prev, default) \
 if (conf == NGX_CONF_UNSET_MSEC) { \
 conf = (prev == NGX_CONF_UNSET_MSEC) ? default : prev; \
 }

#define ngx_conf_merge_sec_value(conf, prev, default) \
 if (conf == NGX_CONF_UNSET) { \
 conf = (prev == NGX_CONF_UNSET) ? default : prev; \
 }

#define ngx_conf_merge_size_value(conf, prev, default) \
 if (conf == NGX_CONF_UNSET_SIZE) { \
 conf = (prev == NGX_CONF_UNSET_SIZE) ? default : prev; \
 }

#define ngx_conf_merge_off_value(conf, prev, default) \
 if (conf == NGX_CONF_UNSET) { \
 conf = (prev == NGX_CONF_UNSET) ? default : prev; \
 }

#define ngx_conf_merge_str_value(conf, prev, default) \
 if (conf.data == NULL) { \
 if (prev.data) { \
 conf.len = prev.len; \
 conf.data = prev.data; \
 } else { \
 conf.len = sizeof(default) - 1; \
 conf.data = (u_char *) default; \
 } \
 }

#define ngx_conf_merge_bufs_value(conf, prev, default_num,

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[98]

 default_size) \
 if (conf.num == 0) { \
 if (prev.num) { \
 conf.num = prev.num; \
 conf.size = prev.size; \
 } else { \
 conf.num = default_num; \
 conf.size = default_size; \
 } \
 }

As you can see these functions are defined as macros, and they are expanded and
placed inline in the code during compilation.

Another thing to learn is how to log errors. The function outputs to the log file using
the ngx_conf_log_error function—where you specify a log level—and returns
NGX_CONF_ERROR, which stops server startup.

There are several log levels defined in Nginx. These are defined in ngx_log.h.
The following is an extract from the code:

#define NGX_LOG_STDERR 0
#define NGX_LOG_EMERG 1
#define NGX_LOG_ALERT 2
#define NGX_LOG_CRIT 3
#define NGX_LOG_ERR 4
#define NGX_LOG_WARN 5
#define NGX_LOG_NOTICE 6
#define NGX_LOG_INFO 7
#define NGX_LOG_DEBUG 8

The module definition
The next structure a new module should define is the module definition structure
or the ngx_module_t structure. The variable is called ngx_http_<module name>_
module. This structure binds together the structures we have been defining until now.
You have to provide the pointers to the context and directives structures, as well as
the remaining callbacks (exit thread, exit process, and so on). The module definition
can act like a key to look up data associated with a particular module. The module
definition of our custom module looks as follows:

#define NGX_MODULE_V1 0, 0, 0, 0, 0, 0, 1
#define NGX_MODULE_V1_PADDING 0, 0, 0, 0, 0, 0, 0, 0

struct ngx_module_s {
 ngx_uint_t ctx_index;
 ngx_uint_t index;

 ngx_uint_t spare0;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[99]

 ngx_uint_t spare1;
 ngx_uint_t spare2;
 ngx_uint_t spare3;
 ngx_uint_t version;

 void *ctx;
 ngx_command_t *commands;
 ngx_uint_t type;

 ngx_int_t (*init_master)(ngx_log_t *log);

 ngx_int_t (*init_module)(ngx_cycle_t *cycle);

 ngx_int_t (*init_process)(ngx_cycle_t *cycle);
 ngx_int_t (*init_thread)(ngx_cycle_t *cycle);
 void (*exit_thread)(ngx_cycle_t *cycle);
 void (*exit_process)(ngx_cycle_t *cycle);

 void (*exit_master)(ngx_cycle_t *cycle);

 uintptr_t spare_hook0;
 uintptr_t spare_hook1;
 uintptr_t spare_hook2;
 uintptr_t spare_hook3;
 uintptr_t spare_hook4;
 uintptr_t spare_hook5;
 uintptr_t spare_hook6;
 uintptr_t spare_hook7;
};

You can see that the macros NGX_MODULE_V1 and NGX_MODULE_V1_PADDING provide
the values for the structure elements before and after the highlighted section in the
preceding code. This is a detail we don't need to get into at the moment. For now,
look at the following example on how to use them:

/*
 * The module which binds the context and commands
 *
 */
ngx_module_t ngx_http_hello_module = {
 NGX_MODULE_V1,
 &ngx_http_hello_module_ctx, /* module context */
 ngx_http_hello_commands, /* module directives */
 NGX_HTTP_MODULE, /* module type */
 NULL, /* init master */
 NULL, /* init module */
 NULL, /* init process */
 NULL, /* init thread */
 NULL, /* exit thread */
 NULL, /* exit process */
 NULL, /* exit master */
 NGX_MODULE_V1_PADDING
};

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[100]

You can see from the comments in the preceding code what each argument means.
The first and last elements are the masks that hide the additional structure elements
mainly because we don't need them, and they are place holders for the future. We also
provide a module type, which in this case is HTTP. Most of the user-defined custom
modules will be of this type. You can define other types such as CORE, MAIL, EVENT
and so on; however, they are mostly not used as add-on module types.

The handler function
The final piece of the puzzle after all the preparation work and configuration
structures is the actual handler function which does all the work. The handler
function for our sample module is as follows:

/*
 * Main handler function of the module.
 */
static ngx_int_t
 ngx_http_hello_handler(ngx_http_request_t *r)
{
 ngx_int_t rc;
 ngx_buf_t *b;
 ngx_chain_t out;

 /* we response to 'GET' and 'HEAD' requests only */
 if (!(r->method & (NGX_HTTP_GET|NGX_HTTP_HEAD))) {
 return NGX_HTTP_NOT_ALLOWED;
 }

 /* discard request body, since we don't need it here */
 rc = ngx_http_discard_request_body(r);

 if (rc != NGX_OK) {
 return rc;
 }

 /* set the 'Content-type' header */
 r->headers_out.content_type_len = sizeof("text/html") - 1;
 r->headers_out.content_type.data = (u_char *) "text/html";
 /* send the header only, if the request type is http 'HEAD' */
 if (r->method == NGX_HTTP_HEAD) {
 r->headers_out.status = NGX_HTTP_OK;
 r->headers_out.content_length_n = hello_string.len;

 return ngx_http_send_header(r);
 }

 /* allocate a buffer for your response body */
 b = ngx_pcalloc(r->pool, sizeof(ngx_buf_t));

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[101]

 if (b == NULL) {
 return NGX_HTTP_INTERNAL_SERVER_ERROR;
 }

 /* attach this buffer to the buffer chain */
 out.buf = b;
 out.next = NULL;

 /* adjust the pointers of the buffer */
 b->pos = hello_string.data;
 b->last = hello_string.data + hello_string.len;
 b->memory = 1; /* this buffer is in memory */
 b->last_buf = 1; /* this is the last buffer in the buffer chain
 */

 /* set the status line */
 r->headers_out.status = NGX_HTTP_OK;
 r->headers_out.content_length_n = hello_string.len;

 /* send the headers of your response */
 rc = ngx_http_send_header(r);

 if (rc == NGX_ERROR || rc > NGX_OK || r->header_only) {
 return rc;
 }

 /* send the buffer chain of your response */
 return ngx_http_output_filter(r, &out);
}

There are a few things to learn in the code. As explained earlier, this module
basically prints whatever you had provided in the configuration. For example,
according to the following configuration, this module will make sure that it prints
Hello World whenever you open http://localhost:8080:

server {
listen 8080;
server_name localhost;

location / {
hello 'Hello World';
 }
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[102]

This method receives the HTTP request as an argument. If your module only
responds to a certain type of HTTP requests, you can check by looking at the
HTTP request structure. For example, our module only responds to HTTP GET
and HEAD requests as checked by this chunk of code; otherwise it returns "error code
405 (not allowed)".

All the HTTP error codes are defined in ngx_http_request.h as follows:

 /* we response to 'GET' and 'HEAD' requests only */
 if (!(r->method & (NGX_HTTP_GET|NGX_HTTP_HEAD))) {
 return NGX_HTTP_NOT_ALLOWED;
 }

Next, we discard the request body as in this module we don't need it. In several
modules, one will write a body that will be important, however, right now we don't
care about it. By discarding the request body, Nginx will not read the request body
fully for processing and will not allocate memory for it internally.

Next we set some HTTP headers in our response. All headers you can set in the
response can be accessed through the headers_out member of the HTTP request
structure. The headers_out structure allows you to set a number of outgoing
headers. The extract from ngx_http_request.h is as follows:

typedef struct {
 ngx_list_t headers;

 ngx_uint_t status;
 ngx_str_t status_line;

 ngx_table_elt_t *server;
 ngx_table_elt_t *date;
 ngx_table_elt_t *content_length;
 ngx_table_elt_t *content_encoding;
 ngx_table_elt_t *location;
 ngx_table_elt_t *refresh;
 ngx_table_elt_t *last_modified;
 ngx_table_elt_t *content_range;
 ngx_table_elt_t *accept_ranges;
 ngx_table_elt_t *www_authenticate;
 ngx_table_elt_t *expires;
 ngx_table_elt_t *etag;

 ngx_str_t *override_charset;

 size_t content_type_len;
 ngx_str_t content_type;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[103]

 ngx_str_t charset;
 u_char *content_type_lowcase;
 ngx_uint_t content_type_hash;

 ngx_array_t cache_control;

 off_t content_length_n;
 time_t date_time;
 time_t last_modified_time;
} ngx_http_headers_out_t;

The next important step in our module is allocating memory for the response buffer.
This memory should be allocated using Nginx's own APIs as mentioned in earlier
chapters (since it also automatically takes care of freeing it). This can be done because
the memory is allocated from a local memory pool, so that all memory allocations
are tracked.

The response is created in a linked list or chain of buffers, each of which is of the size
of ngx_buf_s. This allows Nginx to process the response in a parallel way. If there
are other handlers or filters that need to postprocess the response, they can start
their work as soon as the first buffer in the chain is ready, while you are filling up
the second buffer. This allows Nginx to keep operating in a parallel fashion without
waiting for any module to completely finish processing first.

When you are finished with creating the response in the last buffer, you should set
b->last_buf = 1. This, as it is obvious from the name, will tell Nginx that this is
the last response buffer from your module.

If the response processing was successful, you would want to set the status of the
response header to HTTP_OK. This is done by r->headers_out.status = NGX_
HTTP_OK.

You will then need to initiate the chain of header filters by calling ngx_http_
send_header. This will indicate to Nginx that processing of the output headers has
finished, and now Nginx can pass them to a chain of filters, which might want to do
further postprocessing to the headers.

The final step is returning from the function by calling ngx_http_output_filter.
This will initiate the process of the HTTP body filter chain. That is, Nginx or custom
filter modules that might have been installed to do postprocessing on the HTTP
response body you have just created in the buffer.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Creating Your Own Module

[104]

The summary of creating the Nginx custom module can be as follows:

1. Create a module configuration that is structured either for location , main,
or server; each with a specific naming convention (see ngx_http_hello_
loc_conf_t).
The allowed directives of the module are in a static array of typengx_
command_t (see ngx_http_hello_commands). This will also have the
function's pointers that will have the code to validate the value of each
directive as well as initialize the handler.

2. Create a module context struct such as ngx_http_<module name>_module_
ctx of type ngx_http_module_t which has a bunch of hooks for setting up
configuration. Here you can have the post configuration hook, for example, to
set up the main handler of your module (see ngx_http_hello_module_ctx).

3. Then we do the module definition, which is also a struct of type ngx_module_t
and contains references to the module context and module commands that you
created in the previous steps (see ngx_http_hello_module).

4. Create the main module handler function that processes the HTTP request.
This function also outputs the response headers and body in a series of fixed
size buffers.

Nginx Development Toolkit (NDK)
NDK is an Nginx module that makes it easier for the module developers to develop
Nginx modules. As you have seen in this chapter so far, there are certain generic
tasks that are repetitive as you are developing modules. NDK provides you with
some built-in macros and functions that will reduce the amount of code you will
have to write to develop a module.

In order to use NDK, you will have to add it as a module just like any other module.
If you wish to use the macros and functions provided by this module, you will have
to include the ndk.h file in your module source as well.

NDK provides useful utilities such as conf set functions for complex types such as
paths and regular expressions, utility methods for NULL checking, returning values,
and setting data to zero.

NDK also includes an Auto Lib Core that allows the developers and users to include
external libraries in Nginx in a consistent, cross-platform manner.

You can see more details and documentation at https://github.com/simpl/ngx_
devel_kit.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

[105]

Summary
In this chapter we have learned the process of creating a simple Nginx handler
module. We also looked at which basic structures a new module should define, and
how to link them to each other. Finally, we looked at a small handler function that does
a basic task, but provides you the basis of writing a much more complicated module.

If you are an Nginx module developer, you must extensively browse other modules
and Nginx source code, which will help you learn how to do different things within
your code and which API to use in general.

You will also find Nginx Development Kit at https://github.com/simpl/
ngx_devel_kit. This will provide you additional conf_set functions for regexes,
complex/script values, paths, and macros to simplify tasks such as checking for
NULL values when doing ngx_array_push and much more, which will simplify
your life while writing custom Nginx modules.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Index
Symbols
--conf-path=path 10
--error-log-path=path 10
--group=name 10
--http-log-path=path 10
--pid-path=path option 10
--prefix=path 10
--sbin-path=path 10
--user=USER 10
--with-debug 13
--with-http_ssl_module option 11
--without-http_gzip_module option 11
--without-http_proxy_module option 11
--without-http_rewrite_module option 11
--with-pcre-jit option 12
--with-pcre=path option 12

A
accept_mutex_delay directive 20
accept_mutex directive 20
access_by_lua directive 74, 75
access_by_lua_file directive 74, 75
access_log directive 44
add_header directive 45
aio directive 31
alias directive 31
auth_basic directive 33
auth_basic_user_file directive 33
auth_digest directives 65
auth_digest_expires directives 65
auth_digest_replays directives 65
auth_digest_timeout directives 65
auth_digest_user_file directives 65
Auto Lib Core 105

B
Binary Distribution

FreeBSD 7
installing 5
Official Win32 binaries 8
OpenBSD 8

Binary Distribution installation
CentOS 6
Fedora 6
RedHat 6

break directive 46

C
compilation controls

--with-cc-opt=parameters 12
configuring options

compilation controls 12
custom module 13
debugging 13
event loop 11
files and permissions 10
optional modules 11, 12
parameter usage examples 12

content_by_lua directive 72, 73
content_by_lua_file directive 72, 73
content_by_lua or content_by_lua_file

directive 73
create_loc_conf function 95, 96

D
daemon directive 16
debug_connection directive 20
debug-enabled option 20
debug_points directive 17

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

[108]

default_server parameter 27
devpoll_changes directive 21
devpoll_events directive 21
directives, Events module

accept_mutex 20
accept_mutex_delay 20
debug_connection 20
devpoll_changes 21
devpoll_events 21
epoll_events 21
kqueue_changes 21
kqueue_events 21
multi_accept 22
rtsig_overflow_events 22
rtsig_overflow_test 22
rtsig_overflow_threshold 22
rtsig_signo 22
use 23
worker_connections 23

directives, Main module
daemon 16
debug_points 17
env 19
lock_file 17
master_process 16
pid 17
timer_resolution 16
user 17
worker_cpu_affinity 18
worker_priority 18
worker_processes 17
worker_rlimit_core 18
worker_rlimit_nofile 18
worker_rlimit_sigpending 18
working_directory 19

drizzle_buffer_size directive 64
drizzle_connect_timeout directive 63
drizzle_module_header directive 64
drizzle-nginx module

about 61
directives 61-64

drizzle-nginx module, directives
drizzle_buffer_size 64
drizzle_connect_timeout 63
drizzle_keepalive 62
drizzle_module_header 64
drizzle_pass 63

drizzle_query 62
drizzle_recv_cols_timeout 63
drizzle_recv_rows_timeout 63
drizzle_send_query_timeout 63
drizzle_server 61, 62

drizzle_pass directive 63
drizzle_query directive 62
drizzle_recv_cols_timeout directive 63
drizzle_recv_rows_timeout directive 63
drizzle_send_query_timeout directive 63
drizzle_server directive 61, 62

E
env directive 19
epoll_events directive 21
error_page directive 31
event loop 11
Events module

accept_mutex 19
accept_mutex_delay 19
debug_connection 19
devpoll_changes 19
devpoll_events 19
directives 20
epoll_events 20
kqueue_changes 20
kqueue_events 20
multi_accept 20
rtsig_overflow_events 20
rtsig_overflow_test 20
rtsig_overflow_threshold 20
rtsig_signo 20
use 20
worker_connections 20

expires directive 45
extended hello world module

about 85
Hello world source code 86, 90
modules 85, 86
Nginx module, components 90
writing 85, 86

F
fastcgi_param parameter 50
filters

about 84

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

[109]

order of execution 84, 85
flag parameter 48
FreeBSD 7

G
geoip_city directive 77
geoip_country directive 76, 77
geoip_org directive 78
geoip_proxy directive 78
geoip_proxy_recursive directive 78
GPG error 6
gzip_buffers directive 42
gzip_comp_level directive 42
gzip_disable directive 42
gzip_http_version directive 42
gzip_min_length directive 43
gzip_proxied directive 43
gzip_types directive 43

H
handler function 100-103
handlers 84
healthcheck_buffer directive 80
healthcheck_delay directive 80
healthcheck_enabled directive 79
healthcheck_enabled module 79
healthcheck_expected directive 80
healthcheck_failcount directive 80
healthcheck_send directive 80
healthcheck_timeout directive 80
HttpAccessModule 32
HttpBasicAuthModule

auth_basic directive 33
auth_basic_user_file directive 33
directives 33
using 33

HttpCoreModule
about 25
directives 26-31

HttpCoreModule, directives
server 26
server_name 26

HttpFastcgiModule
using 50

HttpGzipModule
directives 42, 43

gzip_buffers directive 42
gzip_comp_level directive 42
gzip directive 42
gzip_disable directive 42
gzip_http_version directive 42
gzip_min_length directive 43
gzip_proxied directive 43
gzip_types directive 43
using 42

HttpHeadersModule
about 45
add_header directive 45
directives 45
expires directive 45

HttpLimitConnModule
directives 54
limit_conn directive 54
limit_conn_log_level directive 54
limit_conn_status directive 54
limit_conn_zone directive 54
using 53

HttpLimitReqModule
about 52
directives 52, 53

HttpLogModule
access_log directive 44
directives 44
log_format directive 44
using 43

HttpMemcachedModule
directives 51
memcached_buffer_size directive 51
memcached_connect_timeout directive 51
memcached_next_upstream directive 51
memcached_pass directive 51
memcached_read_timeout directive 51
memcached_send_timeout directive 51
using 50

HttpProxyModule
directives 36-41
proxy_cache directive 41
proxy_connect_timeout directive 38
proxy_next_upstream directive 38
proxy_pass directive 36
proxy_pass_header directive 38
proxy_redirect directive 39
proxy_set_header directive 39

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

[110]

proxy_store directive 40
using 36

HttpRewriteModule
break directive 46
directives 46-49
if directive 46, 47
rewrite directive 48
rewrite_log directive 49
set directive 49
using 46

HttpUpstreamModule
directives 34-36
ip_hash directive 34
server directive 35
upstream directive 35
using 34

I
if directive 46
ip_hash directive 34
IP Hash load-balancing modules 84

K
keepalive_disable directive 32
keepalive_timeout directive 32
kqueue_changes directive 21
kqueue_events directive 21

L
limit_conn directive 54
limit_conn_log_level directive 54
limit_conn_status directive 54
limit_conn_zone directive 54
limit_req directive 52
limit_req_log_level directive 53
limit_req_zone directive 53
listen directive

about 27
default_server parameter 27
listen parameter 27

load balancers 84
load balancing

about 81

ngx_http_upstream_consistent_hash
module 81

ngx_http_upstream_fair_module module
81

variable hashing, configuring 81
location directive 28
lock_file directive 17
log_format directive 44
lua_package_path directive 71

M
Main module

daemon 15
debug_points 15
directives 16
env 15
lock_file 15
master_process 15
pid 15
timer_resolution 15
user 15
worker_cpu_affinity 15
worker_priority 15
worker_processes 15
worker_rlimit_core 15
worker_rlimit_nofile 15
worker_rlimit_sigpending 15
working_directory 15

master_process directive 16
Memcached 50
memcached_buffer_size directive 51
memcached_connect_timeout directive 51
memcached_next_upstream directive 51
memcached_pass directive 51
memcached_read_timeout directive 51
memcached_send_timeout directive 51
merge_loc_conf function 96, 98
module chaining 84
module context

about 94, 95
create_loc_conf function 95, 96
example 95
function references 94
merge_loc_conf function 96, 97, 98

module definition 98-100
multi_accept directive 22

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

[111]

N
NDK

about 83, 104
Auto Lib Core 105

Nginx
about 83
Events module 19
installing, on Gentoo 13
installing, on MacOSX 13
Main module 15
modules, delegating 83

nginx.conf file 14
Nginx custom module

creating 104
Nginx Development Toolkit. See NDK
Nginx library

dependencies 9
nginx_lua module

directives 71-75
rewrite_by_lua_file directive 73
upstream Nginx modules, using 70

nginx_lua module, directives
access_by_lua 75
access_by_lua directive 74
content_by_lua 72
lua_package_path 71
rewrite_by_lua directive 73
set_by_lua 71, 72

Nginx module, components
configuration structures 90
directives 91-93
handler function 100-103
module context 94
module definition 98-100

Nginx modules
about 83, 84
filters 84
handlers 84
load balancers 84

Nginx PPA 7
Nginx request-handling phases

access 69
content 69
location rewrite 69
location selection 69
log 69

post action 69
post read 69
pre-access 69
server rewrite 69
server selection 69
try files 69

nginx -V command 14
Nginx yum repository

adding, for CentOS 6
adding, for RHEL 6
official Debian/Ubuntu packages 6

ngx_conf_log_error function 98
ngx_conf_set_flag_slot function 93
ngx_conf_set_num_slot function 93
ngx_conf_set_size_slot function 93
ngx_conf_set_str_slot function 93
ngx_http_auth_digest module

about 64
directives 64, 65

ngx_http_auth_digest module, directives
auth_digest 65
auth_digest_expires 65
auth_digest_replays 65
auth_digest_timeout 65
auth_digest_user_file 65

ngx_http_geoip_module
directives 76-80
using, for reverse IP lookup 76, 79
using, for reverse IP lookup 77-80

ngx_http_healthcheck_module 78, 79
ngx_http_upstream_consistent_hash

module 81
ngx_lua module

features 68
Nginx request-handling phases 69

ngx_pagespeed module
Beacon handler, configuring 67
console handler, configuring 67
handlers, configuring 67, 68
message handler, configuring 67
optimizations 66
speeding up 66
statics handler, configuring 67

ngx_postgres module
about 58
directives 58-60

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

[112]

ngx_postgres module, directives
postgres_connect_timeout 60
postgres_escape 60
postgres_keepalive 59
postgres_output 60
postgres_pass 59
postgres_query 59
postgres_result_timeout 60
postgres_rewrite 59
postgres_server 58
postgres_set 60

O
official Debian/Ubuntu packages

for Debian 6 7
for Ubuntu 10.04 7
for Ubuntu 12.10 6
for Ubuntu PPA 7

official Win32 binaries 8
OpenBSD 8
optional modules

--with-http_ssl_module option 11
--without-http_gzip_module option 11
--without-http_proxy_module option 11
--without-http_rewrite_module option 11
--with-pcre-jit option 12
--with-pcre=path option 12

P
php-memcached module 81
pid directive 17
postgres_connect_timeout directive 60
postgres_escape directive 60
postgres_keepalive directive 59
postgres_output directive 60
postgres_pass directive 59
PostgreSQL. See ngx_postgres module
postgres_query directive 59
postgres_result_timeout directive 60
postgres_rewrite directive 59, 60
postgres_server directive 58
postgres_set directive 60
proxy_cache directive 41
proxy_connect_timeout directive 38
proxy_next_upstream directive 38
proxy_pass directive 36

proxy_pass_header directive 38
proxy_redirect directive 39
proxy_set_header directive 39
proxy_store directive 40

R
Resty DBD Stream (RDS) 58
return directive 47
rewrite_by_lua directive 73, 74
rewrite_by_lua_file directive 73, 74
rewrite directive 48
rewrite_log directive 49
Round Robin load-balancing modules 84
rtsig_overflow_events 22
rtsig_overflow_test directive 22
rtsig_overflow_threshold directive 22
rtsig_signo directive 22

S
select() method 11
sendfile directive 30
sendfile_max_chunk 30
server directive

about 26, 35
down parameter 35
fail_timeout parameter 35
max_fails parameter 35
weight parameter 35

server_name directive
about 26
aio 31
alias 31
error_page 31, 32
keepalive_disable 32
keepalive_requests 32
keepalive_timeout 32
listen 27
location 28
resolver/resolver_timeout 30
root 30
sendfile 30
sendfile_max_chunk 30
server_names_hash_bucket_size 29
server_names_hash_max_size 29
tcp_nodelay/tcp_nopush 30

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

[113]

server_names_hash_bucket_size directive
29

server_names_hash_max_size directive 29
set_by_lua directive 71, 72
set_by_lua_file directive 71, 72
set directive 49
source distribution

installing 8, 9
source distribution installation

configuring options 10
Nginx installation, verifying 14
Nginx, installing on other platforms 13
Nginx library dependencies 9

T
tcp_nodelay directive 30
tcp_nopush directives 30
third-party modules

compiling 57
drizzle-nginx module 61
drizzle-nginx module , communicating 61
MySQL, communicating 61
ngx_http_auth_digest module 64
ngx_http_geoip_module 76
ngx_http_healthcheck_module 78, 79
ngx_lua module 68, 70

ngx_pagespeed module, speeding up 66
ngx_postgres, communicating 58

timer_resolution directive 16

U
uninitialized_variable_warn directive 49
upstream directive 35, 36
use directive 23
user directive 17

W
Weighted Least-Connection Round Robin

(WLC-RR) 81
worker_connections 23
worker_cpu_affinity directive 18
worker_priority directive 18
worker_processes directive 17
worker_rlimit_core directive 18
worker_rlimit_nofile directive 18
worker_rlimit_sigpending directive 18
working_directory directive 19

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Thank you for buying
Nginx Module Extension

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Instant Nginx Starter
ISBN: 978-1-78216-512-5 Paperback: 48 pages

Implement the nifty features of nginx with this
focused guide

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Understand Nginx and its relevance to the
modern web

3. Install Nginx and explore the different methods
of installation

4. Configure and customize Nginx

Nginx HTTP Server
Second Edition
ISBN: 978-1-78216-232-2 Paperback: 318 pages

Make the most of your infrastructure and serve pages
faster than ever with Nginx

1. Complete configuration directive and module
reference

2. Discover possible interactions between Nginx
and Apache to get the best of both worlds

3. Learn to configure your servers and virtual
hosts efficiently

4. A step-by-step guide to switching from Apache
to Nginx

Please check www.PacktPub.com for information on our titles

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Mastering NGINX
ISBN: 978-1-84951-744-7 Paperback: 322 pages

An in-depth guide to configuring NGINX for
any situation, including numerous examples and
reference tables describing each directive

1. An in-depth configuration guide to help you
understand how to best configure NGINX for
any situation

2. Includes useful code samples to help you
integrate NGINX into your application
architecture

3. Full of example configuration snippets, best-
practice descriptions, and reference tables for
each directive

web2py Application Development
Cookbook
ISBN: 978-1-84951-546-7 Paperback: 364 pages

Over 110 recipes to master this full-stack Python web
framework

1. Take your web2py skills to the next level by
dipping into delicious, usable recipes in this
cookbook

2. Learn advanced web2py usage from building
advanced forms to creating PDF reports

3. Written by developers of the web2py project
with plenty of code examples for interesting
and comprehensive learning

Please check www.PacktPub.com for information on our titles

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Nginx Core and Modules from Source
	Installing binary distribution
	Red Hat, Fedora, and CentOS
	Official Debian/Ubuntu packages
	FreeBSD
	OpenBSD
	Official Win32 binaries

	Installing source distribution
	Nginx library dependencies
	Configuring options
	Files and permissions
	The Event loop
	Optional modules
	Compilation controls
	Example
	The Custom module
	Debugging

	Installing on other platforms
	Verifying your Nginx installation

	Summary

	Chapter 2: Configuring Core Modules
	Understanding the Main module
	Explaining directives
	daemon
	master_process
	timer_resolution
	pid
	lock_file
	worker_processes
	debug_points
	user
	worker_priority
	worker_cpu_affinity
	worker_rlimit_nofile
	worker_rlimit_core
	worker_rlimit_sigpending
	working_directory
	env

	Understanding the Events module
	Explaining directives
	accept_mutex
	accept_mutex_delay
	debug_connection
	devpoll_changes and devpoll_events
	kqueue_changes and kqueue_events
	epoll_events
	multi_accept
	rtsig_signo
	rtsig_overflow_events, rtsig_overflow_test, and rtsig_overflow_threshold
	use
	worker_connections

	Summary

	Chapter 3: Installing and Configuring HTTP Modules
	Standard HTTP modules
	The core module (HttpCoreModule)
	Explaining directives
	server
	server_name

	Controlling access (HttpAccessModule)
	Authenticating users (HttpBasicAuthModule)
	Explaining directives

	Load balancing (HttpUpstreamModule)
	Explaining directives

	Acting as a proxy (HttpProxyModule)
	Explaining directives

	Compressing content (HttpGzipModule)
	Explaining directives

	Controlling logging (HttpLogModule)
	Explaining directives

	Setting response headers (HttpHeadersModule)
	Explaining directives

	Rewriting requests (HttpRewriteModule)
	Explaining directives

	Interacting with FastCGI (HttpFastcgiModule)
	Simple caching (HttpMemcachedModule)
	Explaining directives

	Limiting requests (HttpLimitReqModule)
	Explaining directives

	Limiting connections (HttpLimitConnModule)
	Explaining directives

	Summary

	Chapter 4: Installing Third-party Modules
	Compiling third-party modules
	Communicating with PostgreSQL
(ngx_postgres)
	Explaining directives

	Communicating with MySQL and drizzle (drizzle-nginx)
	Explaining directives

	Digest Authentication (ngx_http_auth_digest)
	Explaining directives

	Speeding up web pages (ngx_pagespeed)
	Configuring handlers

	Lua scripting (ngx_lua)
	Explaining directives

	Reverse IP lookup using the GeoIP module (ngx_http_geoip_module)
	Explaining directives

	Doing healthchecks
	ngx_http_healthcheck_module
	Explaining directives
	Load balancing

	Summary

	Chapter 5: Creating Your Own Module
	Nginx module delegation
	Handlers
	Load balancers
	Filters
	Order of execution

	The extended "Hello world" module
	Writing and compiling a module
	The "Hello world" source code

	Components of the Nginx module
	Module configuration structures
	Module directives
	The module context
	The module definition
	The handler function

	Nginx Development Toolkit (NDK)
	Summary

	Index

