
www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Data
Visualization
Cookbook

Over 35 hands-on recipes to create impressive, stunning
visuals for a wide range of real-time, interactive
applications using OpenGL

Raymond C. H. Lo

William C. Y. Lo

BIRMINGHAM - MUMBAI

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Data Visualization Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1210815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-972-7

www.packtpub.com

www.it-ebooks.infosee more please visit: https://homeofpdf.com

www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Raymond C. H. Lo

William C. Y. Lo

Reviewers
Samar Agrawal

Sebastian Eichelbaum

Oscar Ripolles

Qing Zhang

Commissioning Editor
Erol Staveley

Acquisition Editors
Subho Gupta

James Jones

Content Development Editor
Adrian Raposo

Technical Editor
Mohita Vyas

Copy Editor
Stuti Srivastava

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Sheetal Aute

Jason Monteiro

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

Cover Image
Raymond C. H. Lo

William C. Y. Lo

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

About the Authors

Raymond C. H. Lo is currently the CTO and cofounder of Meta (http://www.getameta.
com), a company in Silicon Valley that is creating the world's first augmented reality eyeglasses
with 3D gesture input and 3D stereoscopic display. This next-generation wearable computing
technology, which is the result of his PhD research, has been featured extensively in news
media, including CNN, MIT News, CNET, and Forbes magazine. During his PhD, Raymond
worked with Professor Steve Mann, who is widely recognized as the father of wearable
computing. Together, they published and presented papers at leading conferences, including
the SIGGRAPH and IEEE conferences, on real-time high-dynamic-range (HDR) imaging,
augmented reality, and digital eyeglasses, which involve high-performance computation
using CUDA and visualization using OpenGL.

William C. Y. Lo is currently an MD-PhD candidate at Harvard Medical School. He
is pursuing his PhD degree in the joint Harvard-MIT Medical Engineering and Medical
Physics program under the guidance of Professor Brett Bouma (and co-advisor Professor
Benjamin Vakoc) at Massachusetts General Hospital, who founded the NIH-funded Center
for Biomedical OCT Research and Translation. He obtained his bachelor of applied science
degree in computer engineering and his MSc degree in medical biophysics from the University
of Toronto, where he worked with Professor Lothar Lilge and Professor Jonathan Rose on
high-performance computing for photodynamic therapy planning using custom FPGA
hardware and graphics processors with CUDA.

He, along with J. Rose and L. Lilge, worked on Computational Acceleration for Medical
Treatment Planning: Monte Carlo Simulation of Light Therapies Accelerated using GPUs
and FPGAs, VDM Verlag, 2010.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.getameta.com
http://www.getameta.com
http://www.it-ebooks.info/

About the Reviewers

Samar Agrawal is a Python enthusiast with experience in developing large, scalable ERPs,
SaaS systems, and other cloud-based live operational systems. In his current organization,
he is responsible for the internal operational systems and automation systems. He loved
computers from an early age of 6, much before Windows 95 debuted. He values clean code,
admires new cutting-edge technologies, and likes taking on complex problems. In his free
time, Samar can be found reading, trying new stuff, or exploring new places. He is currently
based in Dubai. He holds a master's degree in advanced software engineering from the
University of Sheffield, UK, and a bachelor's degree in computer science and engineering.

Sebastian Eichelbaum was born in 1983 in Leipzig, Germany. After school, he studied
computer science and got his PhD in 2014. Since he got his first graphical calculator in
school, he has enjoyed conducting the pixel's dance programmatically. During his PhD,
Sebastian involved himself in the practical use of modern computer graphics (CG) in scientific
visualization. He fortified his knowledge of visualization and modern CG technologies, both
theoretically and practically. As he collaborated with users, developers, and scientists from
different practical and scientific fields, he gained a broad insight into visualization and
its tremendous application specificness. The enormous demand for usable and specific
visualization tools made Sebastian start his own company. His visualization-centric software,
technologies, and knowledge help others better understand and analyze data of all sorts
and sources.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Oscar Ripolles received his degree in computer engineering in 2004 and his PhD in
2009 from Universitat Jaume I in Castellon, Spain. He was also a researcher at Université
de Limoges, France, and Universidad Politecnica de Valencia, Spain. He is currently working
in neuroimaging at Neuroelectrics in Barcelona, Spain. His research interests include
multiresolution modeling, geometry optimization, hardware programming, and medical
imaging. Some of the books he has worked on are OpenGL Development Cookbook and
GLSL Essentials.

I would like to thank my other half, Anna, for her patience and support
during the nights and weekends I spent reviewing this book.

Qing Zhang is currently a PhD candidate in the Department of Computer Science at the
University of Kentucky, working with Professor Ruigang Yang. He obtained his bachelor of
science degree in computer science from Tsinghua University in 2006 and his MS degree in
mathematics from the University of Kentucky in 2010. His research interests span computer
graphics and computer vision, in particular, human reconstruction and motion analysis.
He was a research intern in the communication and collaboration systems group Microsoft
Research (MSR) in 2008, and in the visual computing group Microsoft Research Asia (MSRA)
in 2010. He is currently a reviewer on IEEE CVPR, ICCV, and TPAMI.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

i

Table of Contents
Preface v
Chapter 1: Getting Started with OpenGL 1

Introduction 1
Setting up a Windows-based development platform 2
Setting up a Mac-based development platform 5
Setting up a Linux-based development platform 9
Installing the GLFW library in Windows 10
Installing the GLFW library in Mac OS X and Linux 13
Creating your first OpenGL application with GLFW 16
Compiling and running your first OpenGL application in Windows 18
Compiling and running your first OpenGL application in Mac OS X or Linux 23

Chapter 2: OpenGL Primitives and 2D Data Visualization 27
Introduction 27
OpenGL primitives 28
Creating a 2D plot using primitives 38
Real-time visualization of time series 41
2D visualization of 3D/4D datasets 44

Chapter 3: Interactive 3D Data Visualization 49
Introduction 49
Setting up a virtual camera for 3D rendering 50
Creating a 3D plot with perspective rendering 53
Creating an interactive environment with GLFW 60
Rendering a volumetric dataset – MCML simulation 68

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

ii

Table of Contents

Chapter 4: Rendering 2D Images and Videos with Texture Mapping 79
Introduction 79
Getting started with modern OpenGL (3.2 and higher) 80
Setting up the GLEW, GLM, SOIL, and OpenCV libraries in Windows 81
Setting up the GLEW, GLM, SOIL, and OpenCV libraries in Mac OS X/Linux 86
Creating your first vertex and fragment shader using GLSL 89
Rendering 2D images with texture mapping 98
Real-time video rendering with filters 111

Chapter 5: Rendering of Point Cloud Data for 3D Range-sensing
Cameras 121

Introduction 121
Getting started with the Microsoft Kinect (PrimeSense) 3D
range-sensing camera 122
Capturing raw data from depth-sensing cameras 123
OpenGL point cloud rendering with texture mapping and overlays 126

Chapter 6: Rendering Stereoscopic 3D Models using OpenGL 141
Introduction 141
Installing the Open Asset Import Library (Assimp) 142
Loading the first 3D model in the Wavefront Object (.obj) format 144
Rendering 3D models with points, lines, and triangles 150
Stereoscopic 3D rendering 161

Chapter 7: An Introduction to Real-time Graphics Rendering on a
Mobile Platform using OpenGL ES 3.0 169

Introduction 169
Setting up the Android SDK 170
Setting up the Android Native Development Kit (NDK) 173
Developing a basic framework to integrate the Android NDK 174
Creating your first Android application with OpenGL ES 3.0 180

Chapter 8: Interactive Real-time Data Visualization on Mobile Devices 193
Introduction 193
Visualizing real-time data from built-in Inertial Measurement Units (IMUs) 194
Part I – handling multi-touch interface and motion sensor inputs 213
Part II – interactive, real-time data visualization with mobile GPUs 219

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

iii

Table of Contents

Chapter 9: Augmented Reality-based Visualization on Mobile or
Wearable Platforms 233

Introduction 233
Getting started I: Setting up OpenCV on Android 234
Getting started II: Accessing the camera live feed using OpenCV 236
Displaying real-time video using texture mapping 244
AR-based data visualization over real-world scenes 256

Index 271

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

iv

Table of Contents

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

v

Preface
OpenGL is a multiplatform, cross-language, and hardware-accelerated application
programming interface for the high-performance rendering of 2D and 3D graphics.
An emerging use of OpenGL is the development of real-time, high-performance data
visualization applications in fields ranging from medical imaging, simulation or modeling
in architecture and engineering, to cutting-edge mobile/wearable computing. Indeed, data
visualization has become increasingly challenging using conventional approaches without
graphics hardware acceleration as datasets become larger and more complex, especially
with the evolution of big data. From a mobile device to a sophisticated high-performance
computing cluster, the OpenGL libraries provide developers with an easy-to-use interface
to create stunning visuals in 3D in real time for a wide range of interactive applications.

This book contains a series of hands-on recipes that are tailored to both beginners who
have very little experience with OpenGL and more advanced users who would like to explore
state-of-the-art techniques. We begin with a basic introduction to OpenGL in chapters 1 to 3
by demonstrating how to set up the environment in Windows, Mac OS X, and Linux and
learning how to render basic 2D datasets with primitives, as well as more complex 3D
volumetric datasets interactively. This part requires only OpenGL 2.0 or higher so that even
readers with older graphics hardware can experiment with the code. In chapters 4 to 6, we
transition to more advanced techniques (which requires OpenGL 3.2 or higher), such as
texture mapping for image/video processing, point cloud rendering of depth sensor data
from 3D range-sensing cameras, and stereoscopic 3D rendering. Finally, in chapters 7 to 9,
we conclude this book by introducing the use of OpenGL ES 3.0 on the increasingly powerful
mobile (Android-based) computing platform and the development of highly interactive,
augmented reality applications on mobile devices.

Each recipe in this book gives readers a set of standard functions that can be imported to
an existing project and can form the basis for the creation of a diverse array of real-time,
interactive data visualization applications. This book also utilizes a set of popular open-source
libraries, such as GLFW, GLM, Assimp, and OpenCV, to simplify application development and
extend the capabilities of OpenGL by enabling OpenGL context management and 3D model
loading, as well as image/video processing using state-of-the-art computer vision algorithms.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Preface

vi

What this book covers
Chapter 1, Getting Started with OpenGL, introduces the essential development tools required
to create OpenGL-based data visualization applications and provides a step-by-step tutorial on
how to set up the environment for our first OpenGL demo application in Windows, Mac OS X,
and Linux.

Chapter 2, OpenGL Primitives and 2D Data Visualization, focuses on the use of OpenGL 2.0
primitives, such as points, lines, and triangles, to enable the basic 2D visualization of data,
including time series such as an electrocardiogram (ECG).

Chapter 3, Interactive 3D Data Visualization, builds upon the fundamental concepts
discussed previously and extends the demos to incorporate more sophisticated OpenGL
features for 3D rendering.

Chapter 4, Rendering 2D Images and Videos with Texture Mapping, introduces OpenGL
techniques to visualize another important class of datasets—those involving images or
videos. Such datasets are commonly encountered in many fields, including medical
imaging applications.

Chapter 5, Rendering of Point Cloud Data for 3D Range-sensing Cameras, introduces
the techniques used to visualize another interesting and emerging class of data—depth
information from 3D range sensing cameras.

Chapter 6, Rendering Stereoscopic 3D Models using OpenGL, demonstrates how to visualize
data with stunning stereoscopic 3D technology using OpenGL. OpenGL does not provide any
mechanism to load, save, or manipulate 3D models. Thus, to support this, we will integrate a
new library named Assimp into our code.

Chapter 7, An Introduction to Real-time Graphics Rendering on a Mobile Platform using
OpenGL ES 3.0, transitions to an increasingly powerful and ubiquitous computing platform
by demonstrating how to set up the Android development environment and create the first
Android-based application on the latest mobile devices, from smartphones to tablets,
using OpenGL for Embedded Systems (OpenGL ES).

Chapter 8, Interactive Real-time Data Visualization on Mobile Devices, demonstrates how to
visualize data interactively by using built-in motion sensors called Inertial Measurement Units
(IMUs) and the multitouch interface found on mobile devices.

Chapter 9, Augmented Reality-based Visualization on Mobile or Wearable Platforms,
introduces the fundamental building blocks required to create your first AR-based application
on a commodity Android-based mobile device: OpenCV for computer vision, OpenGL for
graphics rendering, as well as Android's sensor framework for interaction.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Preface

vii

What you need for this book
This book supports a wide range of platforms and open source libraries, ranging from
Windows, Mac OS X, or Linux-based desktop applications to portable Android-based mobile
applications. You will need a basic understanding of C/C++ programming and background in
basic linear algebra for geometric models.

The following are the requirements for chapters 1 to 3:

 f OpenGL version: 2.0 or higher (easy to test on legacy graphics hardware).

 f Platforms: Windows, Mac OS X, or Linux.

 f Libraries: GLFW for OpenGL Windows/context management and handling user
inputs. No additional libraries are needed, which makes it very easy to integrate
into existing projects.

 f Development tools: Windows Visual Studio or Xcode, CMake, and gcc.

The following are the requirements for chapters 4 to 6:

 f OpenGL version: 3.2 or higher.

 f Platforms: Windows, Mac OS X, or Linux.

 f Libraries: Assimp for 3D model loading, SOIL for image and texture loading, GLEW
for runtime OpenGL extension support, GLM for matrix operations, and OpenCV for
image processing

 f Development tools: Windows Visual Studio or Xcode, CMake, and gcc.

The following are the requirements for chapters 7 to 9:

 f OpenGL version: OpenGL ES 3.0

 f Platforms: Linux or Mac OS X for development, and Android OS 4.3 and
higher (API 18 and higher) for deployment

 f Libraries: OpenCV for Android and GLM

 f Development tools: Android SDK, Android NDK, and Apache Ant in Mac OS X or Linux

For more information, keep in mind that the code in this book was built and tested with the
following libraries and development tools in all supported platforms:

 f OpenCV 2.4.9 (http://opencv.org/downloads.html)

 f OpenCV 3.0.0 for Android (http://opencv.org/downloads.html)

 f SOIL (http://www.lonesock.net/soil.html)

 f GLEW 1.12.0 (http://glew.sourceforge.net/)

 f GLFW 3.0.4 (http://www.glfw.org/download.html)

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://opencv.org/downloads.html
http://opencv.org/downloads.html
http://www.lonesock.net/soil.html
http://glew.sourceforge.net/
http://www.glfw.org/download.html
http://www.it-ebooks.info/

Preface

viii

 f GLM 0.9.5.4 (http://glm.g-truc.net/0.9.5/index.html)

 f Assimp 3.0 (http://assimp.sourceforge.net/main_downloads.html)

 f Android SDK r24.3.3 (https://developer.android.com/sdk/index.html)

 f Android NDK r10e (https://developer.android.com/ndk/downloads/
index.html)

 f Windows Visual Studio 2013 (https://www.visualstudio.com/en-us/
downloads/download-visual-studio-vs.aspx)

 f CMake 3.2.1 (http://www.cmake.org/download/)

Who this book is for
This book is aimed at anyone interested in creating impressive data visualization tools using
modern graphics hardware. Whether you are a developer, engineer, or scientist, if you are
interested in exploring the power of OpenGL for data visualization, this book is for you. While
familiarity with C/C++ is recommended, no previous experience with OpenGL is assumed.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the
previous section.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://glm.g-truc.net/0.9.5/index.html
http://assimp.sourceforge.net/main_downloads.html
https://developer.android.com/sdk/index.html
https://developer.android.com/ndk/downloads/index.html
https://developer.android.com/ndk/downloads/index.html
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
https://www.visualstudio.com/en-us/downloads/download-visual-studio-vs.aspx
http://www.cmake.org/download/
http://www.it-ebooks.info/

Preface

ix

There's more...
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We assume that all files are saved to a top-level directory called code and the
main.cpp file is saved inside the /code/Tutorial1 subdirectory."

A block of code is set as follows:

typedef struct
{
 GLfloat x, y, z;
} Data;

Any command-line input or output is written as follows:

sudo port install glfw

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Check the Empty
project option, and click on Finish."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Preface

x

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from: https://www.packtpub.com/sites/default/files/
downloads/9727OS.pdf.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/9727OS.pdf
https://www.packtpub.com/sites/default/files/downloads/9727OS.pdf
http://www.it-ebooks.info/

Preface

xi

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

1

1
Getting Started

with OpenGL

In this chapter, we will cover the following topics:

 f Setting up a Windows-based development platform

 f Setting up a Mac-based development platform

 f Setting up a Linux-based development platform

 f Installing the GLFW library in Windows

 f Installing the GLFW library in Mac OS X and Linux

 f Creating your first OpenGL application with GLFW

 f Compiling and running your first OpenGL application in Windows

 f Compiling and running your first OpenGL application in Mac OS X or Linux

Introduction
OpenGL is an ideal multiplatform, cross-language, and hardware-accelerated graphics
rendering interface that is well suited to visualize large 2D and 3D datasets in many fields.
In fact, OpenGL has become the industry standard to create stunning graphics, most notably
in gaming applications and numerous professional tools for 3D modeling. As we collect more
and more data in fields ranging from biomedical imaging to wearable computing (especially
with the evolution of Big Data), a high-performance platform for data visualization is becoming
an essential component of many future applications. Indeed, the visualization of massive
datasets is becoming an increasingly challenging problem for developers, scientists, and
engineers in many fields. Therefore, OpenGL can provide a unified solution for the creation
of impressive, stunning visuals in many real-time applications.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Getting Started with OpenGL

2

The APIs of OpenGL encapsulate the complexity of hardware interactions while allowing
users to have low-level control over the process. From a sophisticated multiserver setup
to a mobile device, OpenGL libraries provide developers with an easy-to-use interface for
high-performance graphics rendering. The increasing availability and capability of graphics
hardware and mass storage devices, coupled with their decreasing cost, further motivate the
development of interactive OpenGL-based data visualization tools.

Modern computers come with dedicated Graphics Processing Units (GPUs), highly
customized pieces of hardware designed to accelerate graphics rendering. GPUs can also be
used to accelerate general-purpose, highly parallelizable computational tasks. By leveraging
hardware and OpenGL, we can produce highly interactive and aesthetically pleasing results.

This chapter introduces the essential tools to develop OpenGL-based data visualization
applications and provides a step-by-step tutorial on how to set up the environment for our
first demo application. In addition, this chapter outlines the steps to set up a popular tool
called CMake, which is a cross-platform software that automates the process of generating
standard build files (for example, makefiles in Linux that define the compilation parameters
and commands) with simple configuration files. The CMake tool will be used to compile
additional libraries in the future, including the GLFW (OpenGL FrameWork) library introduced
later in this chapter. Briefly, the GLFW library is an open source, multiplatform library that
allows users to create and manage windows with OpenGL contexts as well as handle inputs
from peripheral devices such as the mouse and keyboard. By default, OpenGL itself does not
support other peripherals; thus, the GLFW library is used to fill in the gap. We hope that this
detailed tutorial will be especially useful for beginners who are interested in exploring OpenGL
for data visualization but have little or no prior experience. However, we will assume that you
are familiar with the C/C++ programming language.

Setting up a Windows-based development
platform

There are various development tools available to create applications in the Windows
environment. In this book, we will focus on creating OpenGL applications using Visual
C++ from Microsoft Visual Studio 2013, given its extensive documentation and support.

Installing Visual Studio 2013
In this section, we outline the steps to install Visual Studio 2013.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

3

Getting ready
We assume that you have already installed Windows 7.0 or higher. For optimal performance,
we recommend that you get a dedicated graphics card, such as NVIDIA GeForce graphics
cards, and have at least 10 GB of free disk space as well as 4 GB of RAM on your computer.
Download and install the latest driver for your graphics card.

How to do it...
To install Microsoft Visual Studio 2013 for free, download the Express 2013 version for
Windows Desktop from Microsoft's official website (refer to https://www.visualstudio.
com/en-us/downloads/). Once you have downloaded the installer executable, we can start
the process. By default, we will assume that programs are installed in the following path:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://www.visualstudio.com/en-us/downloads/
https://www.visualstudio.com/en-us/downloads/
http://www.it-ebooks.info/

Getting Started with OpenGL

4

To verify the installation, click on the Launch button at the end of the installation, and it will
execute the VS Express 2013 for Desktop application for the first time.

Installing CMake in Windows
In this section, we outline the steps to install CMake, which is a popular tool that automates
the process of creating standard build files for Visual Studio (among other tools).

Getting ready
To obtain the CMake tool (CMake 3.2.1), you can download the executable
(cmake-3.2.1-win32-x86.exe) from http://www.cmake.org/download/.

How to do it…
The installation wizard will guide you through the process (select Add CMake to the system
PATH for all users when prompted for installation options). To verify the installation, run
CMake(cmake-gui).

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.cmake.org/download/
http://www.it-ebooks.info/

Chapter 1

5

At this point, you should have both Visual Studio 2013 and CMake successfully installed
on your machine and be ready to compile/install the GLFW library to create your first
OpenGL application.

Setting up a Mac-based development
platform

One important advantage of using OpenGL is the possibility of cross-compiling the same
source code on different platforms. If you are planning to develop your application on a Mac
platform, you can easily set up your machine for development using the upcoming steps.
We assume that you have either Mac OS X 10.9 or higher installed. OpenGL updates are
integrated into the system updates for Mac OS X through the graphics driver.

Installing Xcode and command-line tools
The Xcode development software from Apple provides developers with a comprehensive set of
tools, which include an IDE, OpenGL headers, compilers, and debugging tools, to create native
Mac applications. To simplify the process, we will compile our code using the command-line
interface that shares most of the common features in Linux.

Getting ready
If you are using Mac OS X 10.9 or higher, you can download Xcode through the App Store
shipped with Mac OS. Full installation support and instructions are available on the Apple
Developer website (https://developer.apple.com/xcode/).

How to do it...
We can install the command-line tools in Xcode through the following steps:

1. Search for the keyword Terminal in Spotlight and run Terminal.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://developer.apple.com/xcode/
http://www.it-ebooks.info/

Getting Started with OpenGL

6

2. Execute the following command in the terminal:
 xcode-select --install

Note that if you have previously installed the command-line tools, an error stating
"command-line are already installed" will appear. In this case, simply skip to step 4
to verify the installation.

3. Click on the Install button to directly install the command-line tools. This will install
basic compiling tools such as gcc and make for application development purposes
(note that CMake needs to be installed separately).

4. Finally, enter gcc --version to verify the installation.

See also
If you encounter the command not found error or other similar issues, make sure that
the command-line tools are installed successfully. Apple provides an extensive set
of documentation, and more information on installing Xcode can be found at
https://developer.apple.com/xcode.

Installing MacPorts and CMake
In this section, we outline the steps to install MacPorts, which greatly simplifies the
subsequent setup steps, and CMake for Mac.

Getting ready
Similar to the Windows installation, you can download the binary distribution of CMake
from http://www.cmake.org/cmake/resources/software.html and manually
configure the command-line options. However, to simplify the installation and automate
the configuration process, we highly recommend that you use MacPorts.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://developer.apple.com/xcode
http://www.cmake.org/cmake/resources/software.html
http://www.it-ebooks.info/

Chapter 1

7

How to do it...
To install MacPorts, follow these steps:

1. Download the MacPorts package installer for the corresponding version of Mac OS X
(https://guide.macports.org/#installing.macports):

 � Mac OS X 10.10 Yosemite: https://distfiles.macports.org/
MacPorts/MacPorts-2.3.3-10.10-Yosemite.pkg

 � Mac OS X 10.9 Mavericks: https://distfiles.macports.org/
MacPorts/MacPorts-2.3.3-10.9-Mavericks.pkg

2. Double-click on the package installer and follow the onscreen instructions.

3. Verify the installation in the terminal by typing in port version, which
returns the version of MacPorts currently installed (Version: 2.3.3 in
the preceding package).

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://guide.macports.org/#installing.macports
https://distfiles.macports.org/MacPorts/MacPorts-2.3.3-10.10-Yosemite.pkg
https://distfiles.macports.org/MacPorts/MacPorts-2.3.3-10.10-Yosemite.pkg
https://distfiles.macports.org/MacPorts/MacPorts-2.3.3-10.9-Mavericks.pkg
https://distfiles.macports.org/MacPorts/MacPorts-2.3.3-10.9-Mavericks.pkg
http://www.it-ebooks.info/

Getting Started with OpenGL

8

To install CMake on Mac, follow these steps:

1. Open the Terminal application.

2. Execute the following command:

sudo port install cmake +gui

To verify the installation, enter cmake –version to show the current version installed and
enter cmake-gui to explore the GUI.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

9

At this point, your Mac is configured for OpenGL development and is ready to compile your
first OpenGL application. For those who have been more accustomed to GUIs, using the
command-line interface in Mac can initially be an overwhelming experience. However, in the
long run, it is a rewarding learning experience due to its overall simplicity. Command-line tools
and interfaces are often more time-invariant compared to constantly evolving GUIs. At the end
of the day, you can just copy and paste the same command lines, thereby saving precious
time needed to consult new documentation every time a GUI changes.

Setting up a Linux-based development
platform

To prepare your development environment on the Linux platform, we can utilize the powerful
Debian Package Management system. The apt-get or aptitude program automatically
retrieves the precompiled packages from the server and also resolves and installs all
dependent packages that are required. If you are using non-Debian based platform, such as
Fedora, you can find the equivalents by searching for the keywords of each packages listed in
this recipe.

Getting ready
We assume that you have successfully installed all updates and latest graphics drivers
associated with your graphics hardware. Ubuntu 12.04 or higher has support for third-party
proprietary NVIDIA and AMD graphics drivers, and more information can be found at
https://help.ubuntu.com/community/BinaryDriverHowto.

How to do it…
Use the following steps to install all development tools and the associated dependencies:

1. Open a terminal.

2. Enter the update command:
sudo apt-get update

3. Enter the install command and enter y for all prompts:
sudo apt-get install build-essential cmake-gui xorg-dev
libglu1-mesa-dev mesa-utils

4. Verify the results:

gcc --version

If successful, this command should return the current version of gcc installed.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://help.ubuntu.com/community/BinaryDriverHowto
http://www.it-ebooks.info/

Getting Started with OpenGL

10

How it works…
In summary, the apt-get update command automatically updates the local database in
the Debian Package Management system. This ensures that the latest packages are retrieved
and installed in the process. The apt-get system also provides other package management
features, such as package removal (uninstall), dependency retrieval, as well as package
upgrades. These advanced functions are outside the scope of this book, but more
information can be found at https://wiki.debian.org/apt-get.

The preceding commands install a number of packages to your machine. Here, we will briefly
explain the purpose of each package.

The build-essential package, as the name itself suggests, encapsulates the essential
packages, namely gcc and g++, that are required to compile C and C++ source code in Linux.
Additionally, it will download header files and resolve all dependencies in the process.

The cmake-gui package is the CMake program described earlier in the chapter. Instead
of downloading CMake directly from the website and compiling from the source, it retrieves
the latest supported version that had been compiled, tested, and released by the Ubuntu
community. One advantage of using the Debian Package Management system is the stability
and ease of updating in the future. However, for users who are looking for the cutting-edge
version, apt-get based systems would be a few versions behind.

The xorg-dev and libglu1-mesa-dev packages are the development files required to
compile the GLFW library. These packages include header files and libraries required by other
programs. If you choose to use the precompiled binary version of GLFW, you may be able to
skip some of the packages. However, we highly recommend that you follow the steps for the
purpose of this tutorial.

See also
For more information, most of the steps described are documented and explained in
depth in this online documentation: https://help.ubuntu.com/community/
UsingTheTerminal.

Installing the GLFW library in Windows
There are two ways to install the GLFW library in Windows, both of which will be discussed
in this section. The first approach involves compiling the GLFW source code directly with
CMake for full control. However, to simplify the process, we suggest that you download the
precompiled binary distribution.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://wiki.debian.org/apt-get
https://help.ubuntu.com/community/UsingTheTerminal
https://help.ubuntu.com/community/UsingTheTerminal
http://www.it-ebooks.info/

Chapter 1

11

Getting ready
We assume that you have successfully installed both Visual Studio 2013 and CMake,
as described in the earlier section. For completeness, we will demonstrate how to install
GLFW using CMake.

How to do it...
To use the precompiled binary package for GLFW, follow these steps:

1. Create the C:/Program Files (x86)/glfw-3.0.4 directory. Grant the
necessary permissions when prompted.

2. Download the glfw-3.0.4.bin.WIN32.zip package from http://
sourceforge.net/projects/glfw/files/glfw/3.0.4/glfw-3.0.4.bin.
WIN32.zip and unzip the package.

3. Copy all the extracted content inside the glfw-3.0.4.bin.WIN32 folder (for
example, include lib-msvc2012) into the C:/Program Files (x86)/glfw-
3.0.4 directory. Grant permissions when prompted.

4. Rename the lib-msvc2012 folder to lib inside the C:/Program Files (x86)/
glfw-3.0.4 directory. Grant permissions when prompted.

Alternatively, to compile the source files directly, follow these procedures:

1. Download the source package from http://sourceforge.net/projects/
glfw/files/glfw/3.0.4/glfw-3.0.4.zip and unzip the package on the
desktop. Create a new folder called build inside the extracted glfw-3.0.4 folder
to store the binaries.and open cmake-gui.

2. Select glfw-3.0.4 (from the desktop) as the source directory and glfw-3.0.4/
build as the build directory. The screenshot is shown as follows:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://sourceforge.net/projects/glfw/files/glfw/3.0.4/glfw-3.0.4.bin.WIN32.zip/download
http://sourceforge.net/projects/glfw/files/glfw/3.0.4/
http://sourceforge.net/projects/glfw/files/glfw/3.0.4/
http://sourceforge.net/projects/glfw/files/glfw/3.0.4/glfw-3.0.4.zip
http://sourceforge.net/projects/glfw/files/glfw/3.0.4/glfw-3.0.4.zip
http://www.it-ebooks.info/

Getting Started with OpenGL

12

3. Click on Generate and select Visual Studio 12 2013 in the prompt.

4. Click on Generate again.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

13

5. Open the build directory and double-click on GLFW.sln to open Visual Studio.

6. In Visual Studio, click Build Solution (press F7).

7. Copy build/src/Debug/glfw3.lib to C:/Program Files (x86)/glfw-3.0.4/lib.

8. Copy the include directory (inside glfw-3.0.4/include) to C:/Program Files
(x86)/glfw-3.0.4/.

After this step, we should have the include (glfw3.h) and library (glfw3.lib) files
inside the C:/Program Files (x86)/glfw-3.0.4 directory, as shown in the setup
procedure using precompiled binaries.

Installing the GLFW library in Mac OS X and
Linux

The installation procedures for Mac and Linux are essentially identical using the
command-line interface. To simplify the process, we recommend that you use
MacPorts for Mac users.

Getting ready
We assume that you have successfully installed the basic development tools, including
CMake, as described in the earlier section. For maximum flexibility, we can compile the library
directly from the source code (refer to http://www.glfw.org/docs/latest/compile.
html and http://www.glfw.org/download.html).

How to do it...
For Mac users, enter the following command in a terminal to install GLFW using MacPorts:

sudo port install glfw

For Linux users (or Mac users who would like to practice using the command-line tools),
here are the steps to compile and install the GLFW source package directly with the
command-line interface:

1. Create a new folder called opengl_dev and change the current directory to the
new path:
mkdir ~/opengl_dev

cd ~/opengl_dev

2. Obtain a copy of the GLFW source package (glfw-3.0.4) from the official
repository: http://sourceforge.net/projects/glfw/files/glfw/3.0.4/
glfw-3.0.4.tar.gz.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.glfw.org/docs/latest/compile.html
http://www.glfw.org/docs/latest/compile.html
http://www.glfw.org/download.html
http://sourceforge.net/projects/glfw/files/glfw/3.0.4/glfw-3.0.4.tar.gz
http://sourceforge.net/projects/glfw/files/glfw/3.0.4/glfw-3.0.4.tar.gz
http://www.it-ebooks.info/

Getting Started with OpenGL

14

3. Extract the package.
tar xzvf glfw-3.0.4.tar.gz

4. Perform the compilation and installation:

cd glfw-3.0.4

mkdir build

cd build

cmake ../

make && sudo make install

How it works...
The first set of commands create a new working directory to store the new files retrieved
using the wget command, which downloads a copy of the GLFW library to the current
directory. The tar xzvf command extracts the compressed packages and creates a
new folder with all the contents.

Then, the cmake command automatically generates the necessary build files that are
needed for the compilation process to the current build directory. This process also
checks for missing dependencies and verifies the versioning of the applications.

The make command then takes all instructions from the Makefile script that is generated
automatically and compiles the source code into libraries.

The sudo make install command installs the library header files as well as the static or
shared libraries onto your machine. As this command requires writing to the root directory, the
sudo command is needed to grant such permissions. By default, the files will be copied to the
/usr/local directory. In the rest of the book, we will assume that the installations follow
these default paths.

For advanced users, we can optimize the compilation by configuring the packages with the
CMake GUI (cmake-gui).

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

15

For example, you can enable the BUILD_SHARED_LIBS option if you are planning
to compile the GLFW library as a shared library. In this book, we will not explore the full
functionality of the GLFW library, but these options can be useful to developers who are
looking for further customizations. Additionally, you can customize the installation prefix
(CMAKE_INSTALL_PREFIX) if you would like to install the library files at a separate location.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Getting Started with OpenGL

16

Creating your first OpenGL application with
GLFW

Now that you have successfully configured your development platform and installed the GLFW
library, we will provide a tutorial on how to create your first OpenGL-based application.

Getting ready
At this point, you should already have all the pre requisite tools ready regardless of which
operating system you may have, so we will immediately jump into building your first OpenGL
application using these tools.

How to do it...
The following code outlines the basic steps to create a simple OpenGL program that utilizes
the GLFW library and draws a rotating triangle:

1. Create an empty file, and then include the header file for the GLFW library and
standard C++ libraries:
#include <GLFW/glfw3.h>
#include <stdlib.h>
#include <stdio.h>

2. Initialize GLFW and create a GLFW window object (640 x 480):
int main(void)
{
 GLFWwindow* window;
 if (!glfwInit())
 exit(EXIT_FAILURE);
 window = glfwCreateWindow(640, 480, "Chapter 1: Simple
 GLFW Example", NULL, NULL);
 if (!window)
 {
 glfwTerminate();
 exit(EXIT_FAILURE);
 }
 glfwMakeContextCurrent(window);

3. Define a loop that terminates when the window is closed:
 while (!glfwWindowShouldClose(window))
 {

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

17

4. Set up the viewport (using the width and height of the window) and clear the screen
color buffer:
 float ratio;
 int width, height;

 glfwGetFramebufferSize(window, &width, &height);
 ratio = (float) width / (float) height;

 glViewport(0, 0, width, height);
 glClear(GL_COLOR_BUFFER_BIT);

5. Set up the camera matrix. Note that further details on the camera model will be
discussed in Chapter 3, Interactive 3D Data Visualization:
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(-ratio, ratio, -1.f, 1.f, 1.f, -1.f);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

6. Draw a rotating triangle and set a different color (red, green, and blue channels) for
each vertex (x, y, and z) of the triangle. The first line rotates the triangle over time:
 glRotatef((float)glfwGetTime() * 50.f, 0.f, 0.f, 1.f);
 glBegin(GL_TRIANGLES);
 glColor3f(1.f, 0.f, 0.f);
 glVertex3f(-0.6f, -0.4f, 0.f);
 glColor3f(0.f, 1.f, 0.f);
 glVertex3f(0.6f, -0.4f, 0.f);
 glColor3f(0.f, 0.f, 1.f);
 glVertex3f(0.f, 0.6f, 0.f);
 glEnd();

7. Swap the front and back buffers (GLFW uses double buffering) to update the screen
and process all pending events:
 glfwSwapBuffers(window);
 glfwPollEvents();
 }

8. Release the memory and terminate the GLFW library. Then, exit the application:
 glfwDestroyWindow(window);
 glfwTerminate();
 exit(EXIT_SUCCESS);
}

9. Save the file as main.cpp using the text editor of your choice.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Getting Started with OpenGL

18

How it works...
By including the GLFW library header, glfw3.h, we automatically import all necessary files
from the OpenGL library. Most importantly, GLFW automatically determines the platform and
thus allows you to write portable source code seamlessly.

In the main function, we must first initialize the GLFW library with the glfwInit function in
the main thread. This is required before any GLFW functions can be used. Before a program
exits, GLFW should be terminated to release any allocated resources.

Then, the glfwCreateWindow function creates a window and its associated context, and
it also returns a pointer to the GLFWwindow object. Here, we can define the width, height,
title, and other properties for the window. After the window is created, we then call the
glfwMakeContextCurrent function to switch the context and make sure that the
context of the specified window is current on the calling thread.

At this point, we are ready to render our graphics element on the window. The while loop
provides a mechanism to redraw our graphics as long as the window remains open. OpenGL
requires an explicit setup on the camera parameters; further details will be discussed in the
upcoming chapters. In the future, we can provide different parameters to simulate perspective
and also handle more complicated issues (such as anti-aliasing). For now, we have set up a
simple scene to render a basic primitive shape (namely a triangle) and fixed the color for the
vertices. Users can modify the parameters in the glColor3f and glVertex3f functions to
change the color as well as the position of the vertices.

This example demonstrates the basics required to create graphics using OpenGL. Despite the
simplicity of the sample code, it provides a nice introductory framework on how you can create
high-performance graphics rendering applications with graphics hardware using OpenGL
and GLFW.

Compiling and running your first OpenGL
application in Windows

There are several ways to set up an OpenGL project. Here, we create a sample project
using Visual Studio 2013 or higher and provide a complete walkthrough for the first-time
configuration of the OpenGL and GLFW libraries. These same steps can be incorporated
into your own projects in the future.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

19

Getting ready
Assuming that you have both Visual Studio 2013 and GLFW (version 3.0.4) installed
successfully on your environment, we will start our project from scratch.

How to do it...
In Visual Studio 2013, use the following steps to create a new project and compile the
source code:

1. Open Visual Studio 2013 (VS Express 2013 for desktop).

2. Create a new Win32 Console Application and name it as Tutorial1.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Getting Started with OpenGL

20

3. Check the Empty project option, and click on Finish.

4. Right-click on Source Files, and add a new C++ source file (Add | New Item) called
main.cpp.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

21

5. Copy and paste the source code from the previous section into the main.cpp and
save it.

6. Open Project Properties (Alt + F7).

7. Add the include path of the GLFW library, C:\Program Files (x86)\glfw-
3.0.4\include, by navigating to Configuration Properties | C/C++ | General |
Additional Include Directories.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Getting Started with OpenGL

22

8. Add the GLFW library path, C:\Program Files (x86)\glfw-3.0.4\lib,
by navigating to Configuration Properties | Linker | General | Additional Library
Directories.

9. Add the GLFW and OpenGL libraries (glu32.lib, glfw3.lib and opengl32.
lib) by navigating to Configuration Properties | Linker | Input | Additional
Dependencies.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

23

10. Build Solution (press F7).

11. Run the program (press F5).

Here is your first OpenGL application showing a rotating triangle that is running natively on
your graphics hardware. Although we have only defined the color of the vertices to be red,
green, and blue, the graphics engine interpolates the intermediate results and all calculations
are performed using the graphics hardware. The screenshot is shown as follows:

Compiling and running your first OpenGL
application in Mac OS X or Linux

Setting up a Linux or Mac machine is made much simpler with the command-line interface.
We assume that you have all the components that were discussed earlier ready, and all
default paths are used as recommended.

Getting ready
We will start by compiling the sample code described previously. You can download the
complete code package from the official website of Packt Publishing https://www.
packtpub.com. We assume that all files are saved to a top-level directory called code
and the main.cpp file is saved inside the /code/Tutorial1 subdirectory.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://www.packtpub.com
https://www.packtpub.com
http://www.it-ebooks.info/

Getting Started with OpenGL

24

How to do it...
1. Open a terminal or an equivalent command-line interface.

2. Change the current directory to the working directory:
cd ~/code

3. Enter the following command to compile the program:
gcc -Wall `pkg-config --cflags glfw3` -o main Tutorial1/main.cpp
`pkg-config --static --libs glfw3`

4. Run the program:

./main

Here is your first OpenGL application that runs natively on your graphics hardware and
displays a rotating triangle. Although we have defined the color of only three vertices to
be red, green, and blue, the graphics engine interpolates the intermediate results and all
calculations are performed using the graphics hardware.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 1

25

To further simplify the process, we have provided a compile script in the sample code. You can
execute the script by simply typing the following commands in a terminal:

chmod +x compile.sh

./compile.sh

You may notice that the OpenGL code is platform-independent. One of the most powerful
features of the GLFW library is that it handles the windows management and other
platform-dependent functions behind the scene. Therefore, the same source code
(main.cpp) can be shared and compiled on multiple platforms without the need
for any changes.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

27

2
OpenGL Primitives and

2D Data Visualization
In this chapter, we will cover the following topics:

 f OpenGL primitives
 f Creating a 2D plot using primitives
 f Real-time visualization of time series
 f 2D visualization of 3D/4D datasets

Introduction
In the previous chapter, we provided a sample code to render a triangle on the screen using
OpenGL and the GLFW library. In this chapter, we will focus on the use of OpenGL primitives,
such as points, lines, and triangles, to enable the basic 2D visualization of data, including
time series such as an electrocardiogram (ECG). We will begin with an introduction to each
primitive, along with sample code to allow readers to experiment with the OpenGL primitives
with a minimal learning curve.

One can think of primitives as the fundamental building blocks to create graphics using
OpenGL. These building blocks can be easily reused in many applications and are highly
portable among different platforms. Frequently, programmers struggle with displaying their
results in a visually appealing manner, and an enormous amount of time may be spent
on performing simple drawing tasks on screen. In this chapter, we will introduce a rapid
prototyping approach to 2D data visualization using OpenGL so that impressive graphics can
be created with minimal efforts. Most importantly, the proposed framework is highly intuitive
and reusable, and it can be extended to be used in more sophisticated applications. Once
you have mastered the basics of the OpenGL language, you will be equipped with the skills to
create impressive applications that harness the true potential of OpenGL for data visualization
using modern graphics hardware.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

28

OpenGL primitives
In the simplest terms, primitives are just basic shapes that are drawn in OpenGL. In this
section, we will provide a brief overview of the main geometric primitives that are supported
by OpenGL and focus specifically on three commonly used primitives (which will also appear
in our demo applications): points, lines, and triangles.

Drawing points
We begin with a simple, yet very useful, building block for many visualization problems:
a point primitive. A point can be in the form of ordered pairs in 2D, or it can be visualized
in the 3D space.

Getting ready
To simplify the workflow and improve the readability of the code, we first define a structure
called Vertex, which encapsulates the fundamental elements such as the position and color
of a vertex.

typedef struct
{
 GLfloat x, y, z; //position
 GLfloat r, g, b, a; //color and alpha channels
} Vertex;

Now, we can treat every object and shape in terms of a set of vertices (with a specific color) in
space. In this chapter, as our focus is on 2D visualization, the z positions of vertices are often
manually set to 0.0f.

We can create a vertex at the center of the screen (0, 0, 0) with a white color as an example:

Vertex v = {0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};

Note that the color element consists of the red, green, blue, and alpha channels.
These values range from 0.0 to 1.0. The alpha channel allows us to create transparency
(0: fully transparent; 1: fully opaque) so that objects can be blended together.

How to do it…
We can first define a function called drawPoint to encapsulate the complexity of OpenGL
primitive functions, illustrated as follows:

1. Create a function called drawPoint to draw points which takes in two parameters
(the vertex and size of the point):
void drawPoint(Vertex v1, GLfloat size){

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

29

2. Specify the size of the point:
 glPointSize(size);

3. Set the beginning of the list of vertices to be specified and indicate the primitive type
associated with the vertices (GL_POINTS in this case):
 glBegin(GL_POINTS);

4. Set the color and the vertex position using the fields from the Vertex structure:
 glColor4f(v1.r, v1.g, v1.b, v1.a);
 glVertex3f(v1.x, v1.y, v1.z);

5. Set the end of the list:
 glEnd();
}

6. In addition, we can define a function called drawPointsDemo to encapsulate the
complexity further. This function draws a series of points with an increasing size:

void drawPointsDemo(int width, int height){
 GLfloat size=5.0f;
 for(GLfloat x = 0.0f; x<=1.0f; x+=0.2f, size+=5)
 {
 Vertex v1 = {x, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};
 drawPoint(v1, size);
 }
}

Finally, let's integrate these two functions into a complete OpenGL demo program (refer to
identical steps in Chapter 1, Getting Started withOpenGL):

1. Create a source file called main_point.cpp, and then include the header file for the
GLFW library and standard C++ libraries:
#include <GLFW/glfw3.h>
#include <stdlib.h>
#include <stdio.h>

2. Define the size of the window for display:
const int WINDOWS_WIDTH = 640*2;
const int WINDOWS_HEIGHT = 480;

3. Define the Vertex structure and function prototypes:
typedef struct
{
 GLfloat x, y, z;
 GLfloat r, g, b, a;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

30

} Vertex;
void drawPoint(Vertex v1, GLfloat size);
void drawPointsDemo(int width, int height);

4. Implement the drawPoint and drawPointsDemo functions, as shown previously.

5. Initialize GLFW and create a GLFW window object:
int main(void)
{
 GLFWwindow* window;
 if (!glfwInit())
 exit(EXIT_FAILURE);
 window = glfwCreateWindow(WINDOWS_WIDTH, WINDOWS_HEIGHT,
 "Chapter 2: Primitive drawings", NULL, NULL);
 if (!window){
 glfwTerminate();
 exit(EXIT_FAILURE);
 }
 glfwMakeContextCurrent(window);

6. Enable anti-aliasing and smoothing:
 glEnable(GL_POINT_SMOOTH);
 glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

7. Define a loop that terminates when the window is closed. Set up the viewport (using
the size of the window) and clear the color buffer at the beginning of each iteration to
update with new content:
 while (!glfwWindowShouldClose(window))
 {
 float ratio;
 int width, height;
 glfwGetFramebufferSize(window, &width, &height);
 ratio = (float) width / (float)height;
 glViewport(0, 0, width, height);
 glClear(GL_COLOR_BUFFER_BIT);

8. Set up the camera matrix for orthographic projection:
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 //Orthographic Projection
 glOrtho(-ratio, ratio, -1.f, 1.f, 1.f, -1.f);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

31

9. Call the drawPointsDemo function:
 drawPointsDemo(width, height);

10. Swap the front and back buffers of the window and process the event queue (such as
keyboard inputs) to avoid lock-up:
 glfwSwapBuffers(window);
 glfwPollEvents();
 }

11. Release the memory and terminate the GLFW library. Then, exit the application:

 glfwDestroyWindow(window);
 glfwTerminate();
 exit(EXIT_SUCCESS);
}

Here is the result (with anti-aliasing disabled) showing a series of points with an increasing
size (that is, the diameter of each point as specified by glPointSize):

How it works…
The glBegin and glEnd functions delimit the list of vertices corresponding to a desired
primitive (GL_POINTS in this demo). The glBegin function accepts a set of symbolic
constants that represent different drawing methods, including GL_POINTS, GL_LINES,
and GL_TRIANGLES, as discussed in this chapter.

There are several ways to control the process of drawing points. First, we can set the diameter
of each point (in pixels) with the glPointSize function. By default, a point has a diameter of
1 without anti-aliasing (a method to smooth sampling artifacts) enabled. Also, we can define
the color of each point as well as the alpha channel (transparency) using the glColor4f
function. The alpha channel allows us to overlay points and blend graphics elements. This is a
powerful, yet very simple, technique used in graphics design and user interface design. Lastly,
we define the position of the point in space with the glVertex3f function.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

32

In OpenGL, we can define the projection transformation in two different ways: orthographic
projection or perspective projection. In 2D drawing, we often use orthographic projection
which involves no perspective correction (for example, the object on screen will remain the
same size regardless of its distance from the camera). In 3D drawing, we use perspective
projection to create more realistic-looking scenes similar to how the human eye sees. In the
code, we set up an orthographic projection with the glOrtho function. The glOrtho function
takes these parameters: the coordinates of the vertical clipping plane, the coordinates of the
horizontal clipping plane, and the distance of the nearer and farther depth clipping planes.
These parameters determine the projection matrix, and the detailed documentation can be
found in https://developer.apple.com/library/mac/documentation/Darwin/
Reference/ManPages/man3/glOrtho.3.html.

Anti-aliasing and smoothing are necessary to produce the polished look seen in modern
graphics. Most graphics cards support native smoothing and in OpenGL, it can be enabled
as follows:

glEnable(GL_POINT_SMOOTH);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

Here is the final result with anti-aliasing enabled, showing a series of circular points with an
increasing size:

Note that in the preceding diagram, the points are now rendered as circles instead of squares
with the anti-aliasing feature enabled. Readers are encouraged to disable and enable the
features of the preceding diagram to see the effects of the operation.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man3/glOrtho.3.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man3/glOrtho.3.html
http://www.it-ebooks.info/

Chapter 2

33

See also
In this tutorial, we have focused on the C programming style due to its simplicity. In the
upcoming chapters, we will migrate to an object-oriented programming style using C++. In
addition, in this chapter, we focus on three basic primitives (and discuss the derivatives of
these primitives where appropriate): GL_POINTS, GL_LINES, and GL_TRIANGLES. Here is a
more extensive list of primitives supported by OpenGL (refer to https://www.opengl.org/
wiki/Primitive for more information):

GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_LINE_LOOP, GL_TRIANGLES,
GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_QUADS, GL_QUAD_STRIP, and GL_
POLYGON

Drawing line segments
One natural extension now is to connect a line between data points and then to connect
the lines together to form a grid for plotting. In fact, OpenGL natively supports drawing line
segments, and the process is very similar to that of drawing a point.

Getting ready
In OpenGL, we can simply define a line segment with a set of 2 vertices, and a line will be
automatically formed between them by choosing GL_LINES as the symbolic constant in the
glBegin statement.

How to do it…
Here, we define a new line drawing function called drawLineSegment which users can test
by simply replacing the drawPointsDemo function in the previous section:

1. Define the drawLineSegment function which takes in two vertices and the width of
the line as inputs:
void drawLineSegment(Vertex v1, Vertex v2, GLfloat width) {

2. Set the width of the line:
 glLineWidth(width);

3. Set the primitive type for line drawing:
 glBegin(GL_LINES);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://www.opengl.org/wiki/Primitive
https://www.opengl.org/wiki/Primitive
http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

34

4. Set the vertices and the color of the line:

 glColor4f(v1.r, v1.g, v1.b, v1.a);
 glVertex3f(v1.x, v1.y, v1.z);
 glColor4f(v2.r, v2.g, v2.b, v2.a);
 glVertex3f(v2.x, v2.y, v2.z);
 glEnd();
}

In addition, we define a new grid drawing function called drawGrid, built on top of the
drawLineSegment function as follows:

void drawGrid(GLfloat width, GLfloat height, GLfloat grid_width){
 //horizontal lines
 for(float i=-height; i<height; i+=grid_width){
 Vertex v1 = {-width, i, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};
 Vertex v2 = {width, i, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};
 drawLineSegment(v1, v2);
 }
 //vertical lines
 for(float i=-width; i<width; i+=grid_width){
 Vertex v1 = {i, -height, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};
 Vertex v2 = {i, height, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};
 drawLineSegment(v1, v2);
 }
}

Finally, we can execute the full demo by replacing the call for the drawPointsDemo function
in the previous section with the following drawLineDemo function:

void drawLineDemo(){
 //draw a simple grid
 drawGrid(5.0f, 1.0f, 0.1f);
 //define the vertices and colors of the line segments
 Vertex v1 = {-5.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.7f};
 Vertex v2 = {5.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.7f};
 Vertex v3 = {0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.7f};
 Vertex v4 = {0.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.7f};
 //draw the line segments
 drawLineSegment(v1, v2, 10.0f);
 drawLineSegment(v3, v4, 10.0f);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

35

Here is a screenshot of the demo showing a grid with equal spacing and the x and y axes
drawn with the line primitives:

How it works…
There are multiple ways of drawing line segments in OpenGL. We have demonstrated the use
of GL_LINES which takes every consecutive pair of vertices in the list to form an independent
line segment for each pair. On the other hand, if you would like to draw a line without gaps,
you can use the GL_LINE_STRIP option, which connects all the vertices in a consecutive
fashion. Finally, to form a closed loop sequence in which the endpoints of the lines are
connected, you would use the GL_LINE_LOOP option.

In addition, we can modify the width and the color of a line with the glLineWidth and
glColor4f functions for each vertex, respectively.

Drawing triangles
We will now move on to another very commonly used primitive, namely a triangle, which forms
the basis for drawing all possible polygons.

Getting ready
Similar to drawing a line segment, we can simply define a triangle with a set of 3 vertices,
and line segments will be automatically formed by choosing GL_TRIANGLES as the symbolic
constant in the glBegin statement.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

36

How to do it…
Finally, we define a new function called drawTriangle, which users can test by simply
replacing the drawPointsDemo function. We will also reuse the drawGrid function from
the previous section:

1. Define the drawTriangle function, which takes in three vertices as the input:
void drawTriangle(Vertex v1, Vertex v2, Vertex v3){

2. Set the primitive type to draw triangles:
 glBegin(GL_TRIANGLES);

3. Set the vertices and the color of the triangle:
 glColor4f(v1.r, v1.g, v1.b, v1.a);
 glVertex3f(v1.x, v1.y, v1.z);
 glColor4f(v2.r, v2.g, v2.b, v2.a);
 glVertex3f(v2.x, v2.y, v2.z);
 glColor4f(v3.r, v3.g, v3.b, v3.a);
 glVertex3f(v3.x, v3.y, v3.z);
 glEnd(),
}

4. Execute the demo by replacing the call for the drawPointsDemo function in the full
demo code with the following drawTriangleDemo function:

void drawTriangleDemo(){
 //Triangle Demo
 Vertex v1 = {0.0f, 0.8f, 0.0f, 1.0f, 0.0f, 0.0f, 0.6f};
 Vertex v2 = {-1.0f, -0.8f, 0.0f, 0.0f, 1.0f, 0.0f, 0.6f};
 Vertex v3 = {1.0f, -0.8f, 0.0f, 0.0f, 0.0f, 1.0f, 0.6f};
 drawTriangle(v1, v2, v3);
}

Here is the final result with a triangle rendered with 60 percent transparency overlaid on top
of the grid lines:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

37

How it works…
While the process of drawing a triangle in OpenGL appears similar to previous examples,
there are some subtle differences and further complexities that can be incorporated.
There are three different modes in this primitive (GL_TRIANGLES, GL_TRIANGLE_STRIP,
and GL_TRIANGLE_FAN), and each handles the vertices in a different manner. First,
GL_TRIANGLES takes three vertices from a given list to create a triangle. The triangles are
independently formed from each triplet of the vertices (that is, every three vertices are turned
into a different triangle). On the other hand, GL_TRIANGLE_STRIP forms a triangle with
the first three vertices, and each subsequent vertex forms a new triangle using the previous
two vertices. Lastly, GL_TRIANGLE_FAN creates an arbitrarily complex convex polygon by
creating triangles that have a common vertex in the center specified by the first vertex v_1,
which forms a fan-shaped structure consisting of triangles. In other words, triangles will be
generated in the grouping order specified as follows:

(v
1
, v

2
, v

3
), (v

1
, v

3
, v

4
),...,(v

1
, v

n-1
, v

n
)

for n vertices

Although a different color is set for each vertex, OpenGL handles color transition (linear
interpolation) automatically, as shown in the triangle drawing in the previous example.
The vertices are set to red, green, and blue, but the spectrum of colors can be clearly seen.
Additionally, transparency can be set using the alpha channel, which enables us to clearly
see the grid behind the triangle. With OpenGL, we can also add other elements, such as the
advanced handling of color and shading, which will be discussed in the upcoming chapters.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

38

Creating a 2D plot using primitives
Creating a 2D plot is a common way of visualizing trends in datasets in many applications.
With OpenGL, we can render such plots in a much more dynamic way compared to
conventional approaches (such as basic MATLAB plots) as we can gain full control over the
graphics shader for color manipulation and we can also provide real-time feedback to the
system. These unique features allow users to create highly interactive systems, so that, for
example, time series such as an electrocardiogram can be visualized with minimal effort.

Here, we first demonstrate the visualization of a simple 2D dataset, namely a sinusoidal
function in discrete time.

Getting ready
This demo requires a number of functions (including the drawPoint, drawLineSegment,
and drawGrid functions) implemented earlier. In addition, we will reuse the code structure
introduced in the Chapter 1, Getting Started with OpenGL to execute the demo.

How to do it…
We begin by generating a simulated data stream for a sinusoidal function over a time interval.
In fact, the data stream can be any arbitrary signal or relationship:

1. Let's define an additional structure called Data to simplify the interface:
typedef struct
{
 GLfloat x, y, z;
} Data;

2. Define a generic 2D data plotting function called draw2DscatterPlot with the
input data stream and number of points as the input:
void draw2DscatterPlot (const Data *data, int num_points){

3. Draw the x and y axes using the drawLineSegment function described earlier:
 Vertex v1 = {-10.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};
 Vertex v2 = {10.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f};
 drawLineSegment(v1, v2, 2.0f);
 v1.x = 0.0f;
 v2.x = 0.0f;
 v1.y = -1.0f;
 v2.y = 1.0f;
 drawLineSegment(v1, v2, 2.0f);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

39

4. Draw the data points one by one with the drawPoint function:
 for(int i=0; i<num_points; i++){
 GLfloat x=data[i].x;
 GLfloat y=data[i].y;
 Vertex v={x, y, 0.0f, 1.0f, 1.0f, 1.0f, 0.5f};
 drawPoint(v, 8.0f);
 }
}

5. Create a similar function called draw2DlineSegments to connect the dots
together with the line segments so that both the curve and the data points can
be shown simultaneously:
void draw2DlineSegments(const Data *data, int num_points){
 for(int i=0; i<num_points-1; i++){
 GLfloat x1=data[i].x;
 GLfloat y1=data[i].y;
 GLfloat x2=data[i+1].x;
 GLfloat y2=data[i+1].y;
 Vertex v1={x1, y1, 0.0f, 0.0f, 1.0f, 1.0f, 0.5f};
 Vertex v2={x2, y2, 0.0f, 0.0f, 1.0f, 0.0f, 0.5f};
 drawLineSegment(v1, v2, 4.0f);
 }
}

6. Integrate everything into a full demo by creating the grid, generating the simulated
data points using a cosine function and plotting the data points:
void linePlotDemo(float phase_shift){
 drawGrid(5.0f, 1.0f, 0.1f);
 GLfloat range = 10.0f;
 const int num_points = 200;
 Data *data=(Data*)malloc(sizeof(Data)*num_points);
 for(int i=0; i<num_points; i++){
 data[i].x=((GLfloat)i/num_points)*range-range/2.0f;
 data[i].y= 0.8f*cosf(data[i].x*3.14f+phase_shift);
 }
 draw2DScatterPlot(data, num_points);
 draw2DLineSegments(data, num_points);
 free(data);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

40

7. Finally, in the main program, include the math.h header file for the cosine function
and add a new variable called phase_shift outside the loop to execute this demo.
You can download the code package from Packt Publishing website for the complete
demo code:

#include <math.h>
...
int main(void){
 ...
 float phase_shift=0.0f;
 while (!glfwWindowShouldClose(window)){
 ...
 phase_shift+=0.02f;
 linePlotDemo(phase_shift);
 ...

 //finished all demo calls
 glfwSwapBuffers(window);
 glfwPollEvents();
 }
 ...
}

The final result simulating a real-time input data stream with a sinusoidal shape is plotted on
top of grid lines using a combination of basic primitives discussed in previous sections.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

41

How it works…
Using the simple toolkit we created earlier using basic OpenGL primitives, we plotted a
sinusoidal function with the data points (sampled at a constant time interval) overlaid on
top of the curve. The smooth curve consists of many individual line segments drawn using
the draw2DlineSegments function, while the samples were plotted using the drawPoint
function. This intuitive interface serves as the basis for the visualization of more interesting
time series for real-world applications in the next section.

Real-time visualization of time series
In this section, we further demonstrate the versatility of our framework to plot general time
series data for biomedical applications. In particular, we will display an ECG in real time. As a
brief introduction, an ECG is a very commonly used diagnostic and monitoring tool to detect
abnormalities in the heart. ECG surface recording essentially probes the electrical activities of
the heart. For example, the biggest spike (called a QRS complex) typically corresponds to the
depolarization of the ventricles of the heart (the highly muscular chambers of the heart that
pump blood). A careful analysis of the ECG can be a very powerful, noninvasive method for
distinguishing many heart diseases clinically, including many forms of arrhythmia and
heart attacks.

Getting ready
We begin by importing a computer-generated ECG data stream. The ECG data stream is stored
in data_ecg.h (only a small portion of the data stream is provided here):

float data_ecg[]={0.396568808f, 0.372911844f, 0.311059085f, 0.220346775f,
0.113525529f, 0.002200333f, -0.103284775f, -0.194218528f, -0.266285973f,
-0.318075979f, -0.349670132f, -0.362640042f, -0.360047348f,
-0.346207663f, -0.325440887f, -0.302062532f, -0.279400804f, -0.259695686f
… };

How to do it…
1. Use the following code to plot the ECG data by drawing line segments:

void plotECGData(int offset, int size, float offset_y,
 float scale){
 //space between samples
 const float space = 2.0f/size*ratio;
 //initial position of the first vertex to render
 float pos = -size*space/2.0f;
 //set the width of the line
 glLineWidth(5.0f);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

42

 glBegin(GL_LINE_STRIP);
 //set the color of the line to green
 glColor4f(0.1f, 1.0f, 0.1f, 0.8f);
 for (int i=offset; i<size+offset; i++){
 const float data = scale*data_ecg[i]+offset_y;
 glVertex3f(pos, data, 0.0f);
 pos += space;
 }
 glEnd();
}

2. Display multiple ECG data streams (simulating recording from different leads):
void ecg_demo(int counter){
 const int data_size=ECG_DATA_BUFFER_SIZE;
 //Emulate the presence of multiple ECG leads (just for demo/
 display purposes)
 plotECGData(counter, data_size*0.5, -0.5f, 0.1f);
 plotECGData(counter+data_size, data_size*0.5, 0.0f, 0.5f);
 plotECGData(counter+data_size*2, data_size*0.5, 0.5f, -0.25f);
}

3. Finally, in the main program, include the data_ecg.h header file and add the
following lines of code to the loop. You can download the code package from the
Packt Publishing website for the complete demo code:

#include "data_ecg.h"
...
int main(void){
 ...
 while (!glfwWindowShouldClose(window)){
 ...
 drawGrid(5.0f, 1.0f, 0.1f);
 //reset counter to 0 after reaching the end of the
 sample data
 if(counter>5000){
 counter=0;
 }
 counter+=5;
 //run the demo visualizer
 ecg_demo(counter);
 ...
 }
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

43

Here are two snapshots of the real-time display across multiple ECG leads simulated at two
different time points. If you execute the demo, you will see the ECG recording from multiple
leads move across the screen as the data stream is processed for display.

Here is the second snapshot at a later time point:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

44

How it works…
This demo shows the use of the GL_LINE_STRIP option, described previously, to plot an ECG
time series. Instead of drawing individual and independent line segments (using the GL_LINE
option), we draw a continuous stream of data by calling the glVertex3f function for each
data point. Additionally, the time series animates through the screen and provides dynamic
updates on an interactive frame with minimal impact on the CPU computation cycles.

2D visualization of 3D/4D datasets
We have now learned multiple methods to generate plots on screen using points and lines.
In the last section, we will demonstrate how to visualize a million data points in a 3D dataset
using OpenGL in real time. A common strategy to visualize a complex 3D dataset is to encode
the third dimension (for example, the z dimension) in the form of a heat map with a desirable
color scheme. As an example, we show a heat map of a 2D Gaussian function with its
height z, encoded using a simple color scheme. In general, a 2-D Gaussian function,
(),f x y , is defined as follows:

()
() ()2 2

0 0
2 22 2, x y

x x y y

z f x y Ae σ σ

 − − − +
 
 = =

Here, A is the amplitude (()1 2 x yπσ σ) of the distribution centered at ()0 0,x y and ,x yσ σ are the
standard deviations (spread) of the distribution in the x and y directions. To make this demo
more interesting and more visually appealing, we vary the standard deviation or sigma
term (equally in the x and y directions) over time. Indeed, we can apply the same method to
visualize very complex 3D datasets.

Getting ready
By now, you should be very familiar with the basic primitives described in previous sections.
Here, we employ the GL_POINTS option to generate a dense grid of data points with different
colors encoding the z dimension.

How to do it…
1. Generate a million data points (1,000 x 1,000 grid) with a 2-D Gaussian function:

void gaussianDemo(float sigma){
 //construct a 1000x1000 grid
 const int grid_x = 1000;
 const int grid_y = 1000;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

45

 const int num_points = grid_x*grid_y;
 Data *data=(Data*)malloc(sizeof(Data)*num_points);
 int data_counter=0;
 for(int x = -grid_x/2; x<grid_x/2; x+=1){
 for(int y = -grid_y/2; y<grid_y/2; y+=1){
 float x_data = 2.0f*x/grid_x;
 float y_data = 2.0f*y/grid_y;
 //compute the height z based on a
 //2D Gaussian function.
 float z_data = exp(-0.5f*(x_data*x_data)/(sigma*sigma)
 -0.5f*(y_data*y_data)/(sigma*sigma))/
 (sigma*sigma*2.0f*M_PI);
 data[data_counter].x = x_data;
 data[data_counter].y = y_data;
 data[data_counter].z = z_data;
 data_counter++;
 }
 }
 //visualize the result using a 2D heat map
 draw2DHeatMap(data, num_points);
 free(data);
}

2. Draw the data points using a heat map function for color visualization:
void draw2DHeatMap(const Data *data, int num_points){
 //locate the maximum and minimum values in the dataset
 float max_value=-999.9f;
 float min_value=999.9f;
 for(int i=0; i<num_points; i++){
 const Data d = data[i];
 if(d.z > max_value){
 max_value = d.z;
 }
 if(d.z < min_value){
 min_value = d.z;
 }
 }
 const float halfmax = (max_value + min_value) / 2;

 //display the result
 glPointSize(2.0f);
 glBegin(GL_POINTS);
 for(int i = 0; i<num_points; i++){

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

46

 const Data d = data[i];
 float value = d.z;
 float b = 1.0f - value/halfmax;
 float r = value/halfmax - 1.0f;
 if(b < 0){
 b=0;
 }
 if(r < 0){
 r=0;
 }
 float g = 1.0f - b - r;
 glColor4f(r, g, b, 0.5f);
 glVertex3f(d.x, d.y, 0.0f);
 }
 glEnd();
}

3. Finally, in the main program, include the math.h header file and add the following
lines of code to the loop to vary the sigma term over time. You can download the
example code from the Packt Publishing website for the complete demo code:

#define _USE_MATH_DEFINES // M_PI constant
#include <math.h>
...
int main(void){
 ...
 float sigma = 0.01f;
 while (!glfwWindowShouldClose(window)){
 ...
 drawGrid(5.0f, 1.0f, 0.1f);
 sigma+=0.01f;
 if(sigma>1.0f)
 sigma=0.01;
 gaussianDemo(sigma);
 ...
 }
}

Here are four figures illustrating the effect of varying the sigma term of the 2-D Gaussian
function over time (from 0.01 to 1):

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 2

47

How it works…
We have demonstrated how to visualize a Gaussian function using a simple heat map in
which the maximum value is represented by red, while the minimum value is represented
by blue. In total, a million data points (1,000 x 1,000) were plotted using vertices for each
Gaussian function with a specific sigma term. This sigma term was varied from 0.01 to 1
to show a time-varying Gaussian distribution. To reduce the overhead, vertex buffers can
be implemented in the future (we can perform the memory copy operation all at once and
remove the glVertex3f calls). Similar techniques can be applied to the color channel
as well.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

OpenGL Primitives and 2D Data Visualization

48

There's more…
The heat map we have described here provides a powerful visualization tool for complex
3D datasets seen in many scientific and biomedical applications. Indeed, we have actually
extended our demo to the visualization of a 4D dataset, to be precise, since a time-varying
3D function; with the height encoded using a color map was displayed. This demo shows the
many possibilities for displaying data in an interesting, dynamic way using just 2D techniques
based on OpenGL primitives. In the next chapter, we will demonstrate the potential of OpenGL
further by incorporating 3D rendering and adding user inputs to enable the 3D, interactive
visualization of more complex datasets.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

49

3
Interactive 3D Data

Visualization

In this chapter, we will cover the following topics:

 f Setting up a virtual camera for 3D rendering

 f Creating a 3D plot with perspective rendering

 f Creating an interactive environment with GLFW

 f Rendering a volumetric dataset – MCML simulation

Introduction
OpenGL is a very attractive platform for creating dynamic, highly interactive tools for
visualizing data in 3D. In this chapter, we will build upon the fundamental concepts discussed
in the previous chapter and extend our demos to incorporate more sophisticated OpenGL
features for 3D rendering. To enable 3D visualization, we will first introduce the basic steps
of setting up a virtual camera in OpenGL. In addition, to create more interactive demos,
we will introduce the use of GLFW callback functions for handling user inputs. Using these
concepts, we will illustrate how to create an interactive 3D plot with perspective rendering
using OpenGL. Finally, we will demonstrate how to render a 3D volumetric dataset generated
from a Monte Carlo simulation of light transport in biological tissue. By the end of this chapter,
readers will be able to visualize data in 3D with perspective rendering and interact with the
environment dynamically through user inputs for a wide range of applications.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

50

Setting up a virtual camera for 3D rendering
Rendering a 3D scene is similar to taking a photograph with a digital camera in the real world.
The steps that are taken to create a photograph can also be applied in OpenGL.

For example, you can move the camera from one position to another and adjust the
viewpoint freely in space, which is known as viewing transformation. You can also adjust
the position and orientation of the the object of interest in the scene. However, unlike in
the real world, in the virtual world you can position the object at any orientation freely without
any physical constraints, termed as modeling transformation. Finally, we can exchange
camera lenses to adjust the zoom and create different perspectives the process is called
projection transformation.

When you take a photo applying the viewing and modeling transformation, the digital
camera takes the information and creates an image on your screen. This process is
called rasterization.

These sets of matrices—encompassing the viewing transformation, modeling transformation,
and projection transformation—are the fundamental elements we can adjust at run-time,
which allows us to create an interactive and dynamic rendering of the scene. To get started,
we will first look into the setup of the camera matrix, and how we can create a scene with
different perspectives.

Getting ready
The source code in this chapter is based on the final demo from the previous chapter.
Basically, we will be modifying the previous implementation by setting up a camera model
using a perspective matrix. In the upcoming chapters, we will explore the use of the OpenGL
Shading Language (GLSL) to enable even more complex rendering techniques and
higher performance.

How to do it...
Let's get started on the first new requirement for handling perspective transformation
in OpenGL. Since the camera parameters depend on the window size, we need to first
implement a callback function that handles a window resize event and updates the
matrices accordingly:

1. Define the function prototype for the callback function:
void framebuffer_size_callback(GLFWwindow* window, int width,
 int height)
{

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

51

2. Preset the camera parameters: the vertical field of view angle (fovY), the distance
to the Near clipping plane (front), the distance to Far clipping plane (back), and the
screen aspect ratio (width/height):

Near clipping plane

Far clipping plane

 const float fovY = 45.0f;
 const float front = 0.1f;
 const float back = 128.0f;
 float ratio = 1.0f;
 if (height > 0)
 ratio = (float) width / (float) height;

3. Set up the viewport of the virtual camera (using the window size):
 glViewport(0, 0, width, height);

4. Specify the matrix mode as GL_PROJECTION and allow subsequent matrix
operations to be applied to the projection matrix stack:
 glMatrixMode(GL_PROJECTION);

5. Load the identity matrix to the current matrix (that is, reset the matrix to its
default state):
 glLoadIdentity();

6. Set up the perspective projection matrix for the virtual camera:

 gluPerspective(fovY, ratio, front, back);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

52

How it works...
The purpose of the framebuffer_size_callback function is to handle callback events
from the GLFW library. Upon resizing the window, an event will be captured and the callback
function provides a mechanism to update the virtual camera parameters accordingly. One
important problem is that changing the aspect ratio of the screen can introduce distortion
if we do not adjust our virtual camera rendering parameters appropriately. Therefore, the
update function also calls the glViewport function to ensure that the graphic is rendered
onto the new viewable area.

Furthermore, imagine we are taking a photo of a scene with a camera physically in the real
world. The gluPerspective function basically controls the camera lens' zoom (that is, the
field of view angle) as well as the camera sensor (that is, the image plane) aspect ratio. One
major difference between the virtual and real camera is the concept of a near clipping and far
clipping plane (front and back variables) that limits the viewable area of the rendered image.
These constraints are related to more advanced topics (the depth buffer and depth testing)
and how the graphical engine works with a virtual 3D scene. One rule of thumb is, we should
never set an unnecessarily large value as it will affect the precision of the depth testing result,
which can lead to z-fighting issue. Z-fighting is a phenomenon that occurs when objects share
very similar depth values and the precision of the depth value is not sufficient to resolve the
ambiguity (due to precision loss in the floating-point representation during the 3D rendering
process). Setting a higher resolution depth buffer, or reducing the distance between the
clipping planes, is often the simplest way to mitigate such problems.

The sample code provides perspective rendering of a scene that resembles how the human
eye sees the world. For example, an object will appear larger if it is closer to the camera and
smaller if it is farther away. This allows for a more realistic view of a scene. On the other hand,
by controlling the field of view angle, we can exaggerate perspective distortion, similar to
capturing a scene with an ultra-wide angle lens.

There's more...
Alternatively, we can set up the camera with the glFrustum() function by replacing the
gluPerspective() function with the following code:

 const double DEG2RAD = 3.14159265 / 180;
 // tangent of half fovY
 double tangent = tan(fovY/2 * DEG2RAD);
 // half height of near plane
 double height_f = front * tangent;
 // half width of near plane
 double width_f = height_f * ratio;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

53

 //Create the projection matrix based on the near clipping
 //plane and the location of the corners
 glFrustum(-width_f, width_f, -height_f, height_f, front, back);
}

The glFrustum function takes the corners of the near clipping and far clipping planes
to construct the projective matrix. Fundamentally, there is no difference between the
gluPerspective and glFrustum functions, so they are interchangeable.

As we can see, the virtual camera in OpenGL can be updated upon changes to the screen
frame buffer (window size) and these event updates are captured with the callback
mechanism of the GLFW library. Of course, we can also handle other events such as keyboard
and mouse inputs. Further details on how to handle additional events will be discussed
later. In the next section, let's implement the rest of the demo to create our first 3D plot
with perspective rendering.

Creating a 3D plot with perspective
rendering

In the previous chapter, we showed a heat map of a 2D Gaussian distribution with varying
standard deviation over time. Now, we will continue with more advanced rendering of the
same dataset in 3D and demonstrate the effectiveness of visualizing multi-dimensional
data with OpenGL. The code base from the previous chapter will be modified to enable
3D rendering.

Instead of rendering the 2D Gaussian distribution function on a plane, we take the output of
the Gaussian function (),f x y as the z (height) value as follows:

()
() ()2 2

0 0
2 22 2, x y

x x y y

z f x y Ae σ σ

 − − − +
 
 = =

Here A is the amplitude of the distribution centered at ()0 0,x y , and ,x yσ σ are the standard
deviations (spread) of the distribution in the x and y directions. In our example, we will vary
the spread of the distribution over time to change its shape in 3D. Additionally, we will apply
a heat map to each vertex based on the height for better visualization effect.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

54

Getting ready
With the camera set up using the projection model, we can render our graph in 3D with the
desired effects by changing some of the virtual camera parameters such as the field of view
angle for perspective distortion as well as the rotation angles for different viewing angles.
To reduce coding complexity, we will re-use the draw2DHeatMap and gaussianDemo
functions implemented in Chapter 2, OpenGL Primitives and 2D Data Visualization with minor
modifications. The rendering techniques will be based on the OpenGL primitives described in
the previous chapter.

How to do it...
Let's modify the final demo in Chapter 2, OpenGL Primitives and 2D Data Visualization
(main_gaussian_demo.cpp in the code package) to enable perspective rendering in 3D.
The overall code structure is provided here to orient readers first and major changes will be
discussed in smaller blocks sequentially:

#include <GLFW/glfw3.h>
...

// Window size
const int WINDOWS_WIDTH = 1280;
const int WINDOWS_HEIGHT = 720;

// NEW: Callback functions and helper functions for 3D plot
void framebuffer_size_callback(GLFWwindow* window, int width,
 int height);
void draw2DHeatMap(const Data *data, int num_points);
void gaussianDemo(float sigma);
...

int main(void)
{
 GLFWwindow* window;
 int width, height;
 if (!glfwInit()){
 exit(EXIT_FAILURE);
 }
 window = glfwCreateWindow(WINDOWS_WIDTH, WINDOWS_HEIGHT,
 "Chapter 3: 3D Data Plotting", NULL, NULL);
 if (!window){
 glfwTerminate();
 exit(EXIT_FAILURE);
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

55

 glfwMakeContextCurrent(window);
 glfwSwapInterval(1);
 // NEW: Callback functions
 ...

 //enable anti-aliasing
 glEnable(GL_BLEND);
 //smooth the points
 glEnable(GL_LINE_SMOOTH);
 //smooth the lines
 glEnable(GL_POINT_SMOOTH);
 glHint(GL_LINE_SMOOTH_HINT, GL_NICEST);
 glHint(GL_POINT_SMOOTH_HINT, GL_NICEST);
 //needed for alpha blending
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 glEnable(GL_ALPHA_TEST) ;
 // NEW: Initialize parameters for perspective rendering
 ...
 while (!glfwWindowShouldClose(window))
 {
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
 // NEW: Perspective rendering
 ...
 }
 glfwDestroyWindow(window);
 glfwTerminate();
 exit(EXIT_SUCCESS);
}

With the preceding framework in mind, inside the main function let's add the new callback
function for handling window resizing implemented in the previous section:

glfwGetFramebufferSize(window, &width, &height);
framebuffer_size_callback(window, width, height);

Let's define several global variables and initialize them for perspective rendering, including the
zoom level (zoom) and rotation angles around the x (beta) and z (alpha) axes, respectively:

GLfloat alpha=210.0f, beta=-70.0f, zoom=2.0f;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

56

In addition, outside the main loop, let's initialize some parameters for rendering the Gaussian
distribution, including the standard deviation (sigma), sign, and step size for dynamically
changing the function over time:

float sigma = 0.1f;
float sign = 1.0f;
float step_size = 0.01f;

In the while loop, we perform the following transformations to render the Gaussian function
in 3D:

1. Specify the matrix mode as GL_MODELVIEW to allow subsequent matrix operations to
be applied to the MODELVIEW matrix stack:
glMatrixMode(GL_MODELVIEW);

2. Perform the translation and rotation of the object:
glLoadIdentity();
glTranslatef(0.0, 0.0, -2.0);
// rotate by beta degrees around the x-axis
glRotatef(beta, 1.0, 0.0, 0.0);
// rotate by alpha degrees around the z-axis
glRotatef(alpha, 0.0, 0.0, 1.0);

3. Draw the origin (with the x, y, and z axes) and the Gaussian function in 3D.
Dynamically plot a series of Gaussian functions with varying sigma values
over time and reverse the sign once a certain threshold is reached:

drawOrigin();
sigma=sigma+sign*step_size;
if(sigma>1.0f){
 sign = -1.0f;
}
if(sigma<0.1){
 sign = 1.0f;
}
gaussianDemo(sigma);

For handling each of the preceding drawing tasks, we implement the origin visualizer,
Guassian function generator, and 3D point visualizer in separate functions.

To visualize the origin, implement the following drawing function:

1. Define the function prototype:
void drawOrigin(){

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

57

2. Draw the x, y, and z axes in red, green, and blue, respectively:

 glLineWidth(4.0f);
 glBegin(GL_LINES);
 float transparency = 0.5f;

 //draw a red line for the x-axis
 glColor4f(1.0f, 0.0f, 0.0f, transparency);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glColor4f(1.0f, 0.0f, 0.0f, transparency);
 glVertex3f(0.3f, 0.0f, 0.0f);

 //draw a green line for the y-axis
 glColor4f(0.0f, 1.0f, 0.0f, transparency);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glColor4f(0.0f, 1.0f, 0.0f, transparency);
 glVertex3f(0.0f, 0.0f, 0.3f);

 //draw a blue line for the z-axis
 glColor4f(0.0f, 0.0f, 1.0f, transparency);
 glVertex3f(0.0f, 0.0f, 0.0f);
 glColor4f(0.0f, 0.0f, 1.0f, transparency);
 glVertex3f(0.0f, 0.3f, 0.0f);
 glEnd();
}

For the implementation of the Gaussian function demo, we have broken down the problem
into two parts: a Gaussian data generator and a heat map visualizer function with point
drawing. Together with 3D rendering and the heat map, we can now clearly see the shape
of the Gaussian distribution and how the samples animate and move in space over time:

1. Generate the Gaussian distribution:
void gaussianDemo(float sigma){
 const int grid_x = 400;
 const int grid_y = 400;
 const int num_points = grid_x*grid_y;
 Data *data=(Data*)malloc(sizeof(Data)*num_points);
 int data_counter=0;

 //standard deviation
 const float sigma2=sigma*sigma;
 //amplitude
 const float sigma_const = 10.0f*(sigma2*2.0f*(float)M_PI);

 for(float x = -grid_x/2.0f; x<grid_x/2.0f; x+=1.0f){
 for(float y = -grid_y/2.0f; y<grid_y/2.0f; y+=1.0f){
 float x_data = 2.0f*x/grid_x;
 float y_data = 2.0f*y/grid_y;
 //Set the mean to 0

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

58

 float z_data = exp(-0.5f*(x_data*x_data)/(sigma2)
 -0.5f*(y_data*y_data)/(sigma2)) /sigma_const;
 data[data_counter].x = x_data;
 data[data_counter].y = y_data;
 data[data_counter].z = z_data;
 data_counter++;
 }
 }
 draw2DHeatMap(data, num_points);
 free(data);
}

2. Next, implement the draw2DHeatMap function to visualize the result. Note that,
unlike in Chapter 2, OpenGL Primitives and 2D Data Visualization, we use the
z value inside the glVertex3f function:

void draw2DHeatMap(const Data *data, int num_points){
 glPointSize(3.0f);
 glBegin(GL_POINTS);
 float transparency = 0.25f;
 //locate the maximum and minimum values in the dataset
 float max_value=-999.9f;
 float min_value=999.9f;
 for(int i=0; i<num_points; i++){
 Data d = data[i];
 if(d.z > max_value)
 max_value = d.z;
 if(d.z < min_value)
 min_value = d.z;
 }
 float halfmax = (max_value + min_value) / 2;
 //display the result
 for(int i = 0; i<num_points; i++){
 Data d = data[i];
 float value = d.z;
 float b = 1.0f - value/halfmax;
 float r = value/halfmax - 1.0f;
 if(b < 0)
 b=0;
 if(r < 0)
 r=0;
 float g = 1.0f - b - r;
 glColor4f(r, g, b, transparency);
 glVertex3f(d.x, d.y, d.z);
 }
 glEnd();
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

59

The rendered result is shown in the following screenshot. We can see that the
transparency (alpha blending) allows us to see through the data points and provides
a visually appealing result:

How it works...
This simple example demonstrates the use of perspective rendering as well as OpenGL
transformation functions to rotate and translate the rendered objects in virtual space. As you
can see, the overall code structure remains the same as in Chapter 2, OpenGL Primitives
and 2D Data Visualization and the major changes primarily include setting up the camera
parameters for perspective rendering (inside the framebuffer_size_callback function)
and performing the required transformations to render the Gaussian function in 3D (after
setting the matrix mode to GL_MODELVIEW). Two very commonly used transformation
functions to manipulate virtual objects include glRotatef and glTranslatef, which
allow us to position objects at any orientation and position. These functions can significantly
improve the dynamics of your own application, with very minimal cost in development and
computation time since they are heavily optimized.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

60

The glRotatef function takes four parameters: the rotation angle and three components of
the direction vector (x, y, z), which define the axis of rotation. The function also replaces the
current matrix with the product of the rotation matrix and the current matrix:

() () ()
() () ()
() () ()

2

2

2

1 1 1 0
1 1 1 0
1 1 1 0
0 0 0 1

x c c xy c zs xz c ys
yx c zs y c c yz c xs
xz c ys yz c xs z c c

 − + − − − +
 − + − + − − 
 − − − + − +
 
 

Here () ()cos , sinc angle s angle= = and (), , 1x y z = .

There's more...
One may ask, what if we would like to position two objects at different orientations and
positions? What if we would like to position many parts in space relative to one another?
The answer to these is to use the glPushMatrix and glPopMatrix functions to control
the stack of transformation matrices. The concept behind this can get relatively complex for
a model with a large number of parts and keeping a history of the state machine with many
components can be tedious. To address this issue, we will look into newer versions of GLSL
support (OpenGL 3.x and higher).

Creating an interactive environment with
GLFW

In the previous two sections, we focused on the creation of 3D objects and on utilizing basic
OpenGL rendering techniques with a virtual camera. Now, we are ready to incorporate user
inputs, such as mouse and keyboard inputs, to enable more dynamic interactions using
camera control features such as zoom and rotate. These features will be the fundamental
building blocks for the upcoming applications and the code will be reused in later chapters.

Getting ready
The GLFW library provides a mechanism to handle user inputs from different environments.
The event handlers are implemented as callback functions in C/C++, and, in the previous
tutorials, we bypassed these options for the sake of simplicity. To get started, we first
need to enable these callback functions and implement basic features to control the
rendering parameters.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

61

How to do it...
To handle keyboard inputs, we attach our own implementation of the callback
functions back to the event handler of GLFW. We will perform the following operations
in the callback function:

1. Define the following global variables (including a new variable called locked to track
whether the mouse button is pressed down, as well as the angles of rotation and
zoom level) that will be updated by the callback functions:
GLboolean locked = GL_FALSE;
GLfloat alpha=210.0f, beta=-70.0f, zoom=2.0f;

2. Define the keyboard callback function prototype:
void key_callback(GLFWwindow* window, int key, int scancode,
 int action, int mods)
{

3. If we receive any event other than the key press event, ignore it:
 if (action != GLFW_PRESS)
 return;

4. Create a switch statement to handle each key press case:
 switch (key)
 {

5. If the Esc key is pressed, exit the program:
 case GLFW_KEY_ESCAPE:
 glfwSetWindowShouldClose(window, GL_TRUE);
 break;

6. If the space bar is pressed, start or stop the animation by toggling the variable:
 case GLFW_KEY_SPACE:
 freeze=!freeze;
 break;

7. If the direction keys (up, down, left, and right) are pressed, update the variables that
control the angles of rotation for the rendered object:
 case GLFW_KEY_LEFT:
 alpha += 5.0f;
 break;
 case GLFW_KEY_RIGHT:
 alpha -= 5.0f;
 break;
 case GLFW_KEY_UP:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

62

 beta -= 5.0f;
 break;
 case GLFW_KEY_DOWN:
 beta += 5.0f;
 break;

8. Lastly, if the Page Up or Page Down keys are pressed, zoom in and out from the
object by updating the zoom variable:

 case GLFW_KEY_PAGE_UP:
 zoom -= 0.25f;
 if (zoom < 0.0f)
 zoom = 0.0f;
 break;
 case GLFW_KEY_PAGE_DOWN:
 zoom += 0.25f;
 break;
 default:
 break;
 }
}

To handle mouse click events, we implement another callback function similar to the
one for the keyboard. The mouse click event is rather simple as there is only a limited set
of buttons available:

1. Define the mouse press callback function prototype:
void mouse_button_callback(GLFWwindow* window, int button,
 int action, int mods)
{

2. Ignore all inputs except for the left click event for simplicity:
 if (button != GLFW_MOUSE_BUTTON_LEFT)
 return;

3. Toggle the lock variable to store the mouse hold event. The lock variable will be
used to determine whether the mouse movement is used for rotating the object:

 if (action == GLFW_PRESS)
 {
 glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
 locked = GL_TRUE;
 }
 else
 {

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

63

 locked = GL_FALSE;
 glfwSetInputMode(window, GLFW_CURSOR,GLFW_CURSOR_NORMAL);
 }
}

For handling mouse movement events, we need to create another callback function.
The callback function for mouse movement takes the x and y coordinates from the
window instead of unique key inputs:

1. Define the callback function prototype that takes in the mouse coordinates:
void cursor_position_callback(GLFWwindow* window, double x,
 double y)
{

2. Upon mouse press and mouse movement, we update the rotation angles of the
object with the x and y coordinates of the mouse:

 //if the mouse button is pressed
 if (locked)
 {
 alpha += (GLfloat) (x - cursorX) / 10.0f;
 beta += (GLfloat) (y - cursorY) / 10.0f;
 }
 //update the cursor position
 cursorX = (int) x;
 cursorY = (int) y;
}

Finally, we will implement the mouse scroll callback function, which allows users to scroll up
and down to zoom in and zoom out of the object.

1. Define the callback function prototype that captures the x and y scroll variables:
void scroll_callback(GLFWwindow* window, double x, double y)
{

2. Take the y parameter (up and down scroll) and update the zoom variable:

 zoom += (float) y / 4.0f;
 if (zoom < 0.0f)
 zoom = 0.0f;
}

With all of the callback functions implemented, we are now ready to link these functions
to the GLFW library event handlers. The GLFW library provides a platform-independent API
for handling each of these events, so the same code will run in Windows, Linux, and
Mac OS X seamlessly.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

64

To integrate the callbacks with the GLFW library, call the following functions in the
main function:

//keyboard input callback
glfwSetKeyCallback(window, key_callback);

//framebuffer size callback
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);

//mouse button callback
glfwSetMouseButtonCallback(window, mouse_button_callback);

//mouse movement callback
glfwSetCursorPosCallback(window, cursor_position_callback);

//mouse scroll callback
glfwSetScrollCallback(window, scroll_callback);

The end result is an interactive interface that allows the user to control the rendering object
freely in space. First, when the user scrolls the mouse (see the following screenshots), we
translate the object forward or backward. This creates the visual perception that the object
is zoomed in or zoomed out of the camera:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

65

Here is another screenshot at a different zoom level:

These simple yet powerful techniques allow users to manipulate virtual objects in real-time
and can be extremely useful when visualizing complex datasets. Additionally, we can rotate
the object at different angles by holding the mouse button and dragging the object in various
directions. The screenshots below show how we can render the graph at any arbitrary angle to
better understand the data distribution.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

66

Here is a screenshot showing the side view of the Gaussian function:

Here is a screenshot showing the Gaussian function from the top:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

67

Finally, here is a screenshot showing the Gaussian function from the bottom:

How it works...
This sample code illustrates the basic interface needed to build interactive applications that
are highly portable across multiple platforms using OpenGL and the GLFW library. The use of
callback functions in the GLFW library allows non-blocking calls that run in parallel with the
rendering engine. This concept is particularly useful since input devices such as the mouse,
keyboard, and joysticks all have different input rates and latency. These callback functions
allow for asynchronous execution without blocking the main rendering loop.

The glfwSetKeyCallback, glfwSetFramebufferSizeCallback,
glfwSetScrollCallback, glfwSetMouseBcuttonCallback, and
glfwSetCursorPosCallback functions provide controls over the mouse buttons and
scrolling wheel, keyboard inputs, and window resizing events. These are only some of the
many handlers we can implement with the GLFW library support. For example, we can further
extend the error handling capabilities by adding additional callback functions. Also, we
can handle window closing and opening events, thereby enabling even more sophisticated
interfaces with multiple windows. With the examples provided thus far, we have introduced
the basics of how to create interactive interfaces with relatively simple API calls.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

68

See also
For complete coverage of GLFW library function calls, this website provides a comprehensive
set of examples and documentation for all callback functions as well as the handling of inputs
and other events: http://www.glfw.org/docs/latest/.

Rendering a volumetric dataset – MCML
simulation

In this section, we will demonstrate the rendering of a 3D volumetric dataset generated
from a Monte Carlo simulation of light transport in biological tissue, called Monte Carlo for
multi-layered media (MCML). For simplicity, the simulation output file is included with the
code bundle for this chapter so that readers can directly run the demo without setting up the
simulation code. The source code for the Monte Carlo simulation is described in detail in a
series of publications listed in the See also section and the GPU implementation is available
online for interested readers (https://code.google.com/p/gpumcml/).

Light transport in biological tissue can be modeled with the radiative transport
equation (RTE), which has proven difficult to solve analytically for complex geometry.
The time-dependent RTE can be expressed as:

() () () () ()

() () ()
4

1 , , , , , ,

, , , , ,

a s

s

L t L t L t
t

L t d S t
π

µ µ
υ

µ

∂
+ ⋅∇ + + =  ∂

′ ′ ′→ +∫

r r r r r

r r r

Ω Ω Ω Ω

Ω Ω Ω Ω Ω

Here (), ,L r tΩ is the radiance [W m−2sr−1] defined as the radiant power [W] crossing an
infinitesimal area at location r perpendicular to the direction Ω per unit solid angle, μs is the
scattering coefficient, μa is the absorption coefficient, ν is the speed of light, and (), ,S r tΩ is the
source term. To solve the RTE numerically, Wilson and Adam introduced the Monte Carlo (MC)
method, which is widely accepted as a gold-standard approach for photon migration modeling
due to its accuracy and versatility (especially for complex tissue geometry).

The MC method is a statistical sampling technique that has been applied to a number of
important problems in many different fields, ranging from radiation therapy planning in
medicine to option pricing in finance. The name Monte Carlo is derived from the resort city in
Monaco that is known for its casinos, among other attractions. As its name implies, the key
feature of the MC method involves the exploitation of random chance (through the generation
of random numbers with a particular probability distribution) to model the physical process
in question.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.glfw.org/docs/latest/
https://code.google.com/p/gpumcml/
http://www.it-ebooks.info/

Chapter 3

69

In our case, we are interested in modeling photon propagation in biological tissue. The MCML
algorithm provides an MC model of steady-state light transport in multi-layered media. In
particular, we will simulate photon propagation in a homogeneous medium with a circular
light source incident on the tissue surface in order to compute the light dose (absorbed
energy) distribution. Such computations have a wide range of applications, including
treatment planning for light therapies such as photodynamic therapy (this can be
considered a light-activated chemotherapy for cancer).

Here, we demonstrate how to integrate our code base for displaying volumetric data with
OpenGL rendering functions. We will take advantage of techniques such as alpha blending,
perspective rendering, and heat map rendering. Together with the GLFW interface for
capturing user inputs, we can create an interactive visualizer that can display a large
volumetric dataset in real-time and control a slicer that magnifies a plane of data points
within the volumetric dataset using a few simple key inputs.

Getting ready
The simulation result is stored in an ASCII text file that contains a 3D matrix. Each value in
the matrix represents the absorbed photon energy density at some fixed position within the
voxelized geometry. Here, we will provide a simple parser that extracts the simulation output
matrix from the file and stores it in the local memory.

How to do it...
Let's get started by implementing the MCML data parser, the jet color scheme heat map
generator, as well as the slicer in OpenGL:

1. Take the data from the simulation output text file and store it in floating-point arrays:
#define MCML_SIZE_X 50
#define MCML_SIZE_Y 50
#define MCML_SIZE_Z 200
float mcml_data[MCML_SIZE_X][MCML_SIZE_Y][MCML_SIZE_Z];
Vertex mcml_vertices[MCML_SIZE_X][MCML_SIZE_Y][MCML_SIZE_Z];
float max_data, min_data;
int slice_x = 0, slice_z = 0, slice_y = 0;
float point_size=5.0f;

//load the data from a text file
void loadMCML(){
 FILE *ifp;
 //open the file for reading
 ifp = fopen("MCML_output.txt", "r");
 if (ifp == NULL) {

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

70

 fprintf(stderr, "ERROR: Can't open MCML Data file!\n");
 exit(1);
 }
 float data;
 float max=0, min=9999999;
 for(int x=0; x<MCML_SIZE_X; x++){
 for(int z=0; z<MCML_SIZE_Z; z++){
 for(int y=0; y<MCML_SIZE_Y; y++){
 if (fscanf(ifp, "%f\n", &data) == EOF){
 fprintf(stderr, "ERROR: Missing MCML Data file!\n");
 exit(1);
 }
 //store the log compressed data point
 data = log(data+1);
 mcml_data[x][y][z]=data;
 //find the max and min from the data set for heatmap
 if(data>max){
 max=data;
 }
 if(data<min){
 min=data;
 }
 //normalize the coordinates
 mcml_vertices[x][y][z].x=(float)(x-MCML_SIZE_X/2.0f)/
 MCML_SIZE_X;
 mcml_vertices[x][y][z].y=(float)(y-MCML_SIZE_Y/2.0f)/
 MCML_SIZE_Y;
 mcml_vertices[x][y][z].z=(float)(z-MCML_SIZE_Z/2.0f)/
 MCML_SIZE_Z*2.0f;
 }
 }
 }
 fclose(ifp);
 max_data = max;
 min_data = min;
 halfmax= (max+min)/2.0f;

2. Encode the simulation output values using a custom color map for display:
 //store the heat map representation of the data
 for(int z=0; z<MCML_SIZE_Z; z++){
 for(int x=0; x<MCML_SIZE_X; x++){
 for(int y=0; y<MCML_SIZE_Y; y++){
 float value = mcml_data[x][y][z];
 COLOUR c = GetColour(value, min_data,max_data);
 mcml_vertices[x][y][z].r=c.r;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

71

 mcml_vertices[x][y][z].g=c.g;
 mcml_vertices[x][y][z].b=c.b;
 }
 }
 }
}

3. Implement the heat map generator with the jet color scheme:
Color getHeatMapColor(float value, float min, float max)
{
 //remapping the value to the JET color scheme
 Color c = {1.0f, 1.0f, 1.0f}; // default value
 float dv;
 //clamp the data
 if (value < min)
 value = min;
 if (value > max)
 value = max;
 range = max - min;
 //the first region (0%-25%)
 if (value < (min + 0.25f * range)) {
 c.r = 0.0f;
 c.g = 4.0f * (value - min) / range;
 }
 //the second region of value (25%-50%)
 else if (value < (min + 0.5f * range)) {
 c.r = 0.0f;
 c.b = 1.0f + 4.0f * (min + 0.25f * range - value) / range;
 }
 //the third region of value (50%-75%)
 else if (value < (min + 0.75f * range)) {
 c.r = 4.0f * (value - min - 0.5f * range) / range;
 c.b = 0.0f;
 }
 //the fourth region (75%-100%)
 else {
 c.g = 1.0f + 4.0f * (min + 0.75f * range - value) / range;
 c.b = 0.0f;
 }
 return(c);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

72

4. Draw all data points on screen with transparency enabled:
void drawMCMLPoints(){
 glPointSize(point_size);
 glBegin(GL_POINTS);
 for(int z=0; z<MCML_SIZE_Z; z++){
 for(int x=0; x<MCML_SIZE_X; x++){
 for(int y=0; y<MCML_SIZE_Y; y++){
 glColor4f(mcml_vertices[x][y][z].r,mcml_vertices[x][y]
 [z].g,mcml_vertices[x][y][z].b, 0.15f);
 glVertex3f(mcml_vertices[x][y][z].x,mcml_vertices[x][y]
 [z].y,mcml_vertices[x][y][z].z);
 }
 }
 }
 glEnd();
}

5. Draw three slices of data points for cross-sectional visualization:
void drawMCMLSlices(){
 glPointSize(10.0f);
 glBegin(GL_POINTS);

 //display data on xy plane
 for(int x=0; x<MCML_SIZE_X; x++){
 for(int y=0; y<MCML_SIZE_Y; y++){
 int z = slice_z;
 glColor4f(mcml_vertices[x][y][z].r,mcml_vertices[x][y]
 [z].g,mcml_vertices[x][y][z].b, 0.9f);
 glVertex3f(mcml_vertices[x][y][z].x,mcml_vertices[x][y]
 [z].y,mcml_vertices[x][y][z].z);
 }
 }

 //display data on yz plane
 for(int z=0; z<MCML_SIZE_Z; z++){
 for(int y=0; y<MCML_SIZE_Y; y++){
 int x = slice_x;
 glColor4f(mcml_vertices[x][y][z].r,mcml_vertices[x][y]
 [z].g,mcml_vertices[x][y][z].b, 0.9f);
 glVertex3f(mcml_vertices[x][y][z].x,mcml_vertices[x][y]
 [z].y,mcml_vertices[x][y][z].z);
 }
 }

 //display data on xz plane
 for(int z=0; z<MCML_SIZE_Z; z++){
 for(int x=0; x<MCML_SIZE_X; x++){
 int y = slice_y;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

73

 glColor4f(mcml_vertices[x][y][z].r,mcml_vertices[x][y]
 [z].g,mcml_vertices[x][y][z].b, 0.9f);
 glVertex3f(mcml_vertices[x][y][z].x,mcml_vertices[x][y]
 [z].y,mcml_vertices[x][y][z].z);
 }
 }
 glEnd();
}

6. In addition, we need to update the key_callback function for moving the slices:
void key_callback(GLFWwindow* window, int key, int scancode,
 int action, int mods)
{
 if (action != GLFW_PRESS)
 return;
 switch (key)
 {
 case GLFW_KEY_ESCAPE:
 glfwSetWindowShouldClose(window, GL_TRUE);
 break;
 case GLFW_KEY_P:
 point_size+=0.5;
 break;
 case GLFW_KEY_O:
 point_size-=0.5;
 break;
 case GLFW_KEY_A:
 slice_y -=1;
 if(slice_y < 0)
 slice_y = 0;
 break;
 case GLFW_KEY_D:
 slice_y +=1;
 if(slice_y >= MCML_SIZE_Y-1)
 slice_y = MCML_SIZE_Y-1;
 break;
 case GLFW_KEY_W:
 slice_z +=1;
 if(slice_z >= MCML_SIZE_Z-1)
 slice_z = MCML_SIZE_Z-1;
 break;
 case GLFW_KEY_S:
 slice_z -= 1;
 if (slice_z < 0)
 slice_z = 0;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

74

 break;
 case GLFW_KEY_E:
 slice_x -=1;
 if(slice_x < 0)
 slice_x = 0;
 break;
 case GLFW_KEY_Q:
 slice_x +=1;
 if(slice_x >= MCML_SIZE_X-1)
 slice_x = MCML_SIZE_X-1;
 break;
 case GLFW_KEY_PAGE_UP:
 zoom -= 0.25f;
 if (zoom < 0.f)
 zoom = 0.f;
 break;
 case GLFW_KEY_PAGE_DOWN:
 zoom += 0.25f;
 break;
 default:
 break;
 }
}

7. Finally, to complete the demo, simply call the drawMCMLPoints and
drawMCMLSlices functions inside the main loop using the same code
structure for perspective rendering introduced in the previous demo for
plotting a Gaussian function:

while (!glfwWindowShouldClose(window))
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -zoom);
 glRotatef(beta, 1.0, 0.0, 0.0);
 glRotatef(alpha, 0.0, 0.0, 1.0);
 //disable depth test so we can render the points with blending
 glDisable(GL_DEPTH_TEST);
 drawMCMLPoints();
 //must enable this to ensure the slides are rendered in the
 right order

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

75

 glEnable(GL_DEPTH_TEST);
 drawMCMLSlices();

 //draw the origin with the x,y,z axes for visualization
 drawOrigin();
 glfwSwapBuffers(window);
 glfwPollEvents();
}

The simulation results, representing the photon absorption distribution in a voxelized
geometry, are displayed in 3D in the following screenshot. The light source illuminates the
tissue surface (z=0 at the bottom) and propagates through the tissue (positive z direction)
that is modeled as an infinitely wide homogeneous medium. The photon absorption
distribution follows the expected shape for a finite-sized, flat, and circular beam:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

76

How it works...
This demo illustrates how we can take a volumetric dataset generated from a Monte Carlo
simulation (and, more generally, a volumetric dataset from any application) and render it with
a highly interactive interface using OpenGL. The data parser takes an ASCII text file as input.
Then, we turn the floating-point data into individual vertices that can fit into our rendering
pipeline. Upon initialization, the variables mcml_vertices and mcml_data store the
pre-computed heat map data as well as the position of each data point. The parser function
also computes the maximum and minimum value in the dataset for heat map visualization.
The getHeatMapColor function takes the simulation output value and maps it to a color
in the jet color scheme. The algorithm basically defines a color spectrum and we remap the
value based on its range.

In the following screenshot, we show a top view of the simulation result, which allows us to
visualize the symmetry of the light distribution:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 3

77

The drawMCMLSlices function takes a slice (that is, a plane) of data and renders the data
points at the full opacity and a larger point size. This provides a useful and very common
visualization method (especially in medical imaging) that allows users to examine the
volumetric data in detail by moving the cross-sectional slices. As we can see in the following
screenshot, we can shift the slicer in the x, y, and z directions to visualize the desired regions
of interest:

There's more...
This demo provides an example of real-time volumetric data visualization for rendering
simulation data in an interactive 3D environment. The current implementation can be easily
modified for a wide range of applications that require volumetric dataset visualization. Our
approach provides an intuitive way to render complex 3D datasets with a heat map generator
and a slicer as well as 3D perspective rendering techniques using OpenGL.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive 3D Data Visualization

78

One important observation is that this demo required a significant number of glVertex3f
calls, which can become a major performance bottleneck. To address this, in the upcoming
chapters, we will explore more sophisticated ways to handle memory transfer and draw
even more complex models with Vertex Buffer Objects (VBOs), a memory buffer in your
graphics card designed to store information about vertices. This will lead us towards fragment
programs and custom vertex shader programs (that is, moving from OpenGL 2.0 to OpenGL
3.2 or higher). However, the simplicity of using classical OpenGL 2.0 calls is an important
consideration if we are aiming for a short development cycle, minimal overhead, and
backward compatibility with older hardware.

See also
For further information, please consult the following references:

 f E. Alerstam & W. C. Y. Lo, T. Han, J. Rose, S. Andersson-Engels, and L. Lilge,
"Next-generation acceleration and code optimization for light transport in turbid
media using GPUs," Biomed. Opt. Express 1, 658-675 (2010).

 f W. C. Y. Lo, K. Redmond, J. Luu, P. Chow, J. Rose, and L. Lilge, "Hardware acceleration
of a Monte Carlo simulation for photodynamic therapy treatment planning,"
J. Biomed. Opt. 14, 014019 (2009).

 f L. Wang, S. Jacques, and L. Zheng, "MCML - Monte Carlo modeling of light transport
in multi-layered tissues," Comput. Meth. Prog. Biol. 47, 131–146 (1995).

 f B. Wilson and G. Adam, "A Monte Carlo model for the absorption and flux distributions
of light in tissue," Med. Phys. 10, 824 (1983).

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

79

4
Rendering 2D Images

and Videos with
Texture Mapping

In this chapter, we will cover the following topics:

 f Getting started with modern OpenGL (3.2 or higher)

 f Setting up the GLEW, GLM, SOIL, and OpenCV libraries in Windows

 f Setting up the GLEW, GLM, SOIL, and OpenCV libraries in Mac OS X/Linux

 f Creating your first vertex and fragment shader using GLSL

 f Rendering 2D images with texture mapping

 f Real-time video rendering with filters

Introduction
In this chapter, we will introduce OpenGL techniques to visualize another important class of
datasets: those involving images or videos. Such datasets are commonly encountered in many
fields, including medical imaging applications. To enable the rendering of images, we will
discuss fundamental OpenGL concepts for texture mapping and transition to more advanced
techniques that require newer versions of OpenGL (OpenGL 3.2 or higher). To simplify our
tasks, we will also employ several additional libraries, including OpenGL Extension Wrangler
Library (GLEW) for runtime OpenGL extension support, Simple OpenGL Image Loader
(SOIL) to load different image formats, OpenGL Mathematics (GLM) for vector and matrix
manipulation, as well as OpenCV for image/video processing. To get started, we will first
introduce the features of modern OpenGL 3.2 and higher.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

80

Getting started with modern OpenGL
(3.2 or higher)

Continuous evolution of OpenGL APIs has led to the emergence of a modern standard. One
of the biggest changes happened in 2008 with OpenGL version 3.0, in which a new context
creation mechanism was introduced and most of the older functions, such as Begin/End
primitive specifications, were marked as deprecated. The removal of these older standard
features also implies a more flexible yet more powerful way of handling the graphics pipeline.
In OpenGL 3.2 or higher, a core and a compatible profile were defined to differentiate the
deprecated APIs from the current features. These profiles provide clear definitions for various
features (core profile) while enabling backward compatibility (compatibility profile). In OpenGL
4.x, support for the latest graphics hardware that runs Direct3D 11 is provided, and a detailed
comparison between OpenGL 3.x and OpenGL 4.x is available at http://www.g-truc.
net/post-0269.html.

Getting ready
Starting from this chapter, we need compatible graphics cards with OpenGL 3.2 (or higher)
support. Most graphics cards released before 2008 will most likely not be supported. For
example, NVIDIA GeForce 100, 200, 300 series and higher support the OpenGL 3 standard.
You are encouraged to consult the technical specifications of your graphics cards to confirm
the compatibility (refer to https://developer.nvidia.com/opengl-driver).

How to do it...
To enable OpenGL 3.2 support, we need to incorporate the following lines of code at the
beginning of every program for initialization:

glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

How it works...
The glfwWindowHint function defines a set of constraints for the creation of the GLFW
windows context (refer to Chapter 1, Getting Started with OpenGL). The first two lines of code
here define the current version of OpenGL that will be used (3.2 in this case). The third line
enables forward compatibility, while the last line specifies that the core profile will be used.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.g-truc.net/post-0269.html
http://www.g-truc.net/post-0269.html
https://developer.nvidia.com/opengl-driver
http://www.it-ebooks.info/

Chapter 4

81

See also
Detailed explanation of the differences between various OpenGL versions can be found at
http://www.opengl.org/wiki/History_of_OpenGL.

Setting up the GLEW, GLM, SOIL, and
OpenCV libraries in Windows

In this section, we will provide step-by-step instructions to set up several popular libraries that
will be used extensively in this chapter (and in subsequent chapters), including the GLEW,
GLM, SOIL, and OpenCV libraries:

 f The GLEW library is an open-source OpenGL extension library.

 f The GLM library is a header-only C++ library that provides an easy-to-use set of
common mathematical operations. It is built on the GLSL specifications and as
it is a header-only library, it does not require tedious compilation steps.

 f The SOIL library is a simple C library that is used to load images in a variety of
common formats (such as BMP, PNG, JPG, TGA, TIFF, and HDR) in OpenGL textures.

 f The OpenCV library is a very powerful open source computer vision library that we will
use to simplify image and video processing in this chapter.

Getting ready
We will first need to download the prerequisite libraries from the following websites:

 f GLEW (glew-1.10.0): http://sourceforge.net/projects/glew/files/
glew/1.10.0/glew-1.10.0-win32.zip

 f GLM (glm-0.9.5.4): http://sourceforge.net/projects/ogl-math/files/
glm-0.9.5.4/glm-0.9.5.4.zip

 f SOIL: http://www.lonesock.net/files/soil.zip

 f OpenCV (opencv-2.4.9): http://sourceforge.net/projects/
opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe

How to do it...
To use the precompiled package from GLEW, follow these steps:

1. Unzip the package.

2. Copy the directory to C:/Program Files (x86).

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.opengl.org/wiki/History_of_OpenGL
http://sourceforge.net/projects/glew/files/glew/1.10.0/glew-1.10.0-win32.zip
http://sourceforge.net/projects/glew/files/glew/1.10.0/glew-1.10.0-win32.zip
http://sourceforge.net/projects/ogl-math/files/glm-0.9.5.4/glm-0.9.5.4.zip
http://sourceforge.net/projects/ogl-math/files/glm-0.9.5.4/glm-0.9.5.4.zip
http://www.lonesock.net/files/soil.zip
http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe
http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe
http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

82

3. Ensure that the glew32.dll file (C:\Program Files (x86)\glew-1.10.0\
bin\Release\Win32) can be found at runtime by placing it either in the same
folder as the executable or including the directory in the Windows system PATH
environment variable (Navigate to Control Panel | System and Security | System |
Advanced Systems Settings | Environment Variables).

To use the header-only GLM library, follow these steps:

1. Unzip the package.

2. Copy the directory to C:/Program Files (x86).

3. Include the desired header files in your source code. Here is an example:

#include <glm/glm.hpp>

To use the SOIL library, follow these steps:

1. Unzip the package.

2. Copy the directory to C:/Program Files (x86).

3. Generate the SOIL.lib file by opening the Visual Studio solution file (C:\Program
Files (x86)\Simple OpenGL Image Library\projects\VC9\SOIL.sln)
and compiling the project files. Copy this file from C:\Program Files (x86)\
Simple OpenGL Image Library\projects\VC9\Debug to C:\Program
Files (x86)\Simple OpenGL Image Library\lib.

4. Include the header file in your source code:

#include <SOIL.h>

Finally, to install OpenCV, we recommend that you use prebuilt binaries to simplify
the process:

1. Download the prebuilt binaries from http://sourceforge.net/projects/
opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe and extract
the package.

2. Copy the directory (the opencv folder) to C:\Program Files (x86).

3. Add this to the system PATH environment variable (Navigate to Control Panel |
System and Security | System | Advanced Systems Settings | Environment
Variables) – C:\Program Files (x86)\opencv\build\x86\vc12\bin.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe
http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9/opencv-2.4.9.exe
http://www.it-ebooks.info/

Chapter 4

83

4. Include the desired header files in your source code:

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

Now, we generate our Microsoft Visual Studio Solution files (the build environment) using
CMake. We create the CMakeList.txt file within each project directory, which lists all the
libraries and dependencies for the project. The following is a sample CMakeList.txt file for
our first demo application:

cmake_minimum_required (VERSION 2.8)
set(CMAKE_CONFIGURATION_TYPES Debug Release)
set(PROGRAM_PATH "C:/Program Files \(x86\)")
set(OpenCV_DIR ${PROGRAM_PATH}/opencv/build)
project (code_simple)
#modify these path based on your configuration
#OpenCV
find_package(OpenCV REQUIRED)
INCLUDE_DIRECTORIES(${OpenCV_INCLUDE_DIRS})
INCLUDE_DIRECTORIES(${PROGRAM_PATH}/glm)
INCLUDE_DIRECTORIES(${PROGRAM_PATH}/glew-1.10.0/include)
LINK_DIRECTORIES(${PROGRAM_PATH}/glew-1.10.0/lib/Release)
INCLUDE_DIRECTORIES(${PROGRAM_PATH}/glfw-3.0.4/include)
LINK_DIRECTORIES(${PROGRAM_PATH}/glfw-3.0.4/lib)
INCLUDE_DIRECTORIES(${PROGRAM_PATH}/Simple\ OpenGL\ Image\ Library/
src)
LINK_DIRECTORIES(${PROGRAM_PATH}/Simple\ OpenGL\ Image\ Library/lib)
add_subdirectory (../common common)
add_executable (main main.cpp)
target_link_libraries (main LINK_PUBLIC shader controls texture
glew32s glfw3 opengl32 ${OpenCV_LIBS} SOIL)

As you can see in the CMakeList.txt file, the various dependencies, including the OpenCV,
SOIL, GLFW, and GLEW libraries, are all included.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

84

Finally, we run the CMake program to generate the Microsoft Visual Studio Solution for the
project (refer to Chapter 1, Getting Started with OpenGL for details). Note that the output path
for the binary must match the project folder due to dependencies of the shader programs. The
following is a screenshot of the CMake window after generating the first sample project called
code_simple:

We will repeat this step for each project we create, and the corresponding Microsoft Visual
Studio Solution file will be generated accordingly (for example, code_simple.sln in this
case). To compile the code, open code_simple.sln with Microsoft Visual Studio 2013 and
build the project using the Build (press F7) function as usual. Make sure that you set main
as the start up project (by right-clicking on the main project in the Solution Explorer and left-
clicking on the Set as StartUp Project option) before running the program, as shown follows:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

85

See also
Further documentation on each of the libraries installed can be found here:

 f GLEW: http://glew.sourceforge.net/

 f GLM: http://glm.g-truc.net/0.9.5/index.html

 f SOIL: http://www.lonesock.net/soil.html

 f OpenCV: http://opencv.org/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://glew.sourceforge.net/
http://glm.g-truc.net/0.9.5/index.html
http://www.lonesock.net/soil.html
http://opencv.org/
http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

86

Setting up the GLEW, GLM, SOIL, and
OpenCV libraries in Mac OS X/Linux

In this section, we will outline the steps required to set up the same libraries in Mac OS X
and Linux.

Getting ready
We will first need to download the prerequisite libraries from the following websites:

1. GLEW (glew-1.10.0): https://sourceforge.net/projects/glew/files/
glew/1.10.0/glew-1.10.0.tgz

2. GLM (glm-0.9.5.4): http://sourceforge.net/projects/ogl-math/files/
glm-0.9.5.4/glm-0.9.5.4.zip

3. SOIL: http://www.lonesock.net/files/soil.zip

4. OpenCV (opencv-2.4.9): http://sourceforge.net/projects/
opencvlibrary/files/opencv-unix/2.4.9/opencv-2.4.9.zip

To simplify the installation process for Mac OS X or Ubuntu users, the use of MacPorts in
Mac OS X or the apt-get command in Linux (as described in Chapter 1, Getting Started
with OpenGL) is highly recommended.

The following section assumes that the download directory is ~/opengl_dev (refer to
Chapter 1, Getting Started with OpenGL).

How to do it...
There are two methods to install the prerequisite libraries. The first method uses precompiled
binaries. These binary files are fetched from remote repository servers and the version
updates of the library are controlled externally. An important advantage of this method is
that it simplifies the installation, especially in terms of resolving dependencies. However, in
a release environment, it is recommended that you disable the automatic updates and thus
protect the binary from version skewing. The second method requires users to download and
compile the source code directly with various customizations. This method is recommended
for users who would like to control the installation process (such as the paths), and it also
provides more flexibility in terms of tracking and fixing bugs.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://sourceforge.net/projects/glew/files/glew/1.10.0/glew-1.10.0.tgz
https://sourceforge.net/projects/glew/files/glew/1.10.0/glew-1.10.0.tgz
http://sourceforge.net/projects/ogl-math/files/glm-0.9.5.4/glm-0.9.5.4.zip
http://sourceforge.net/projects/ogl-math/files/glm-0.9.5.4/glm-0.9.5.4.zip
http://www.lonesock.net/files/soil.zip
http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.9/opencv-2.4.9.zip
http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/2.4.9/opencv-2.4.9.zip
http://www.it-ebooks.info/

Chapter 4

87

For beginners or developers who are looking for rapid prototyping, we recommend that you
use the first method as it will simplify the workflow and have short-term maintenance. On an
Ubuntu or Debian system, we can install the various libraries using the apt-get command.
To install all the prerequisite libraries and dependencies on Ubuntu, simply run the following
commands in the terminal:

sudo apt-get install libglm-dev libglew1.6-dev libsoil-dev libopencv

Similarly, on Mac OS X, we can install GLEW, OpenCV, and GLM with MacPorts through
command lines in the terminal:

sudo port install opencv glm glew

However, the SOIL library is not currently supported by MacPorts, and thus, the installation
has to be completed manually, as described in the following section.

For advanced users, we can install the latest packages by directly compiling from the source,
and the upcoming steps are common among Mac OS as well as other Linux OS.

To compile the GLEW package, follow these steps:

1. Extract the glew-1.10.0.tgz package:
tar xzvf glew-1.10.0.tgz

2. Install GLEW in /usr/include/GL and /usr/lib:

cd glew-1.10.0

make && sudo make install

To set up the header-only GLM library, follow these steps:

1. Extract the unzip glm-0.9.5.4.zip package:
unzip glm-0.9.5.4.zip

2. Copy the header-only GLM library directory (~/opengl_dev/glm/glm) to /usr/
include/glm:

sudo cp -r glm/glm/ /usr/include/glm

To set up the SOIL library, follow these steps:

1. Extract the unzip soil.zip package:
unzip soil.zip

2. Edit makefile (inside the projects/makefile directory) and add -arch
x86_64 and -arch i386 to CXXFLAGS to ensure proper support:
CXXFLAGS =-arch x86_64 –arch i386 -O2 -s -Wall

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

88

3. Compile the source code library:

cd Simple\ OpenGL\ Image\ Library/projects/makefile

mkdir obj

make && sudo make install

To set up the OpenCV library, follow these steps:

1. Extract the opencv-2.4.9.zip package:
unzip opencv-2.4.9.zip

2. Build the OpenCV library using CMake:
cd opencv-2.4.9/

mkdir build

cd build

cmake ../

make && sudo make install

3. Configure the library path:
sudo sh -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf'

sudo ldconfig –v

4. With the development environment fully configured, we can now create the
compilation script (Makefile) within each project folder:

CFILES = ../common/shader.cpp ../common/texture.cpp ../common/
controls.cpp main.cpp

CFLAGS = -O3 -c -Wall

INCLUDES = -I/usr/include -I/usr/include/SOIL -I../common `pkg-
config --cflags glfw3` `pkg-config --cflags opencv`

LIBS = -lm -L/usr/local/lib -lGLEW -lSOIL `pkg-config --static
--libs glfw3` `pkg-config --libs opencv`

CC = g++

OBJECTS=$(CFILES:.cpp=.o)

EXECUTABLE=main

all: $(CFILES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)

 $(CC) $(INCLUDES) $(OBJECTS) -o $@ $(LIBS)

.cpp.o:

 $(CC) $(CFLAGS) $(INCLUDES) $< -o $@

clean:

 rm -v -f *~ ../common/*.o *.o *.obj $(EXECUTABLE)

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

89

To compile the code, we simply run the make command in the project directory and it
generates the executable (main) automatically.

See also
Further documentation on each of the libraries installed can be found here:

 f GLEW: http://glew.sourceforge.net/

 f GLM: http://glm.g-truc.net/0.9.5/index.html

 f SOIL: http://www.lonesock.net/soil.html

 f OpenCV: http://opencv.org/

 f MacPorts: http://www.macports.org/

Creating your first vertex and fragment
shader using GLSL

Before we can render images using OpenGL, we need to first understand the basics of the
GLSL. In particular, the concept of shader programs is essential in GLSL. Shaders are simply
programs that run on graphics processors (GPUs), and a set of shaders is compiled and
linked to form a program. This concept emerges as a result of the increasing complexity
of various common processing tasks in modern graphics hardware, such as vertex and
fragment processing, which necessitates greater programmability of specialized processors.
Accordingly, the vertex and fragment shader are two important types of shaders that we will
cover here, and they run on the vertex processor and fragment processor, respectively.
A simplified diagram illustrating the overall processing pipeline is shown as follows:

vertex data Vertex Shader

framebuffer
Fragment
Shader

Tessellation

Rasterization

Geometry
Shader

Clipping

The main purpose of the vertex shader is to perform the processing of a stream of vertex data.
An important processing task involves the transformation of the position of each vertex from
the 3D virtual space to a 2D coordinate for display on the screen. Vertex shaders can also
manipulate the color and texture coordinates. Therefore, vertex shaders serve as an important
component of the OpenGL pipeline to control movement, lighting, and color.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://glew.sourceforge.net/
http://glm.g-truc.net/0.9.5/index.html
http://www.lonesock.net/soil.html
http://opencv.org/
http://www.macports.org/
http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

90

A fragment shader is primarily designed to compute the final color of an individual pixel
(fragment). Oftentimes, we implement various image post-processing techniques, such as
blurring or sharpening, at this stage; the end results are stored in the framebuffer, which will
be displayed on screen.

For readers interested in understanding the rest of the pipeline, a detailed summary of these
stages, such as the clipping, rasterization, and tessellation, can be found at https://
www.opengl.org/wiki/Rendering_Pipeline_Overview. Additionally, a detailed
documentation of GLSL can be found at https://www.opengl.org/registry/doc/
GLSLangSpec.4.40.pdf.

Getting ready
At this point, we should have all the prerequisite libraries, such as GLEW, GLM, and SOIL.
With GLFW configured for the OpenGL core profile, we are now ready to implement the first
simple example code, which takes advantage of the modern OpenGL pipeline.

How to do it...
To keep the code simple, we will divide the program into two components: the main program
(main.cpp) and shader programs (shader.cpp, shader.hpp, simple.vert, and
simple.frag). The main program performs the essential tasks to set up the simple demo,
while the shader programs perform the specialized processing in the modern OpenGL
pipeline. The complete sample code can be found in the code_simple folder.

First, let's take a look at the shader programs. We will create two extremely simple vertex and
fragment shader programs (specified inside the simple.vert and simple.frag files) that
are compiled and loaded by the program at runtime.

For the simple.vert file, enter the following lines of code:

#version 150
in vec3 position;
in vec3 color_in;
out vec3 color;
void main() {
 color = color_in;
 gl_Position = vec4(position, 1.0);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://www.opengl.org/wiki/Rendering_Pipeline_Overview
https://www.opengl.org/wiki/Rendering_Pipeline_Overview
https://www.opengl.org/registry/doc/GLSLangSpec.4.40.pdf
https://www.opengl.org/registry/doc/GLSLangSpec.4.40.pdf
http://www.it-ebooks.info/

Chapter 4

91

For the simple.frag file, enter the following lines of code:

#version 150
in vec3 color;
out vec4 color_out;
void main() {
 color_out = vec4(Color, 1.0);
}

First, let's define a function to compile and load the shader programs (simple.frag and
simple.vert) called LoadShaders inside shader.hpp:

#ifndef SHADER_HPP
#define SHADER_HPP
GLuint LoadShaders(const char * vertex_file_path,const char *
 fragment_file_path);
#endif

Next, we will create the shader.cpp file to implement the LoadShaders function and two
helper functions to handle file I/O (readSourceFile) and the compilation of the shaders
(CompileShader):

1. Include prerequisite libraries and the shader.hpp header file:
#include <iostream>
#include <fstream>
#include <algorithm>
#include <vector>
#include "shader.hpp"

2. Implement the readSourceFile function as follows:
std::string readSourceFile(const char *path){
 std::string code;
 std::ifstream file_stream(path, std::ios::in);
 if(file_stream.is_open()){
 std::string line = "";
 while(getline(file_stream, line))
 code += "\n" + line;
 file_stream.close();
 return code;
 }else{
 printf("Failed to open \"%s\".\n", path);
 return "";
 }
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

92

3. Implement the CompileShader function as follows:
void CompileShader(std::string program_code, GLuint
 shader_id){
 GLint result = GL_FALSE;
 int infolog_length;
 char const * program_code_pointer = program_code.c_str();
 glShaderSource(shader_id, 1, &program_code_pointer ,
 NULL);
 glCompileShader(shader_id);
 //check the shader for successful compile
 glGetShaderiv(shader_id, GL_COMPILE_STATUS, &result);
 glGetShaderiv(shader_id, GL_INFO_LOG_LENGTH,
 &infolog_length);
 if (infolog_length > 0){
 std::vector<char> error_msg(infolog_length+1);
 glGetShaderInfoLog(shader_id, infolog_length, NULL,
 &error_msg[0]);
 printf("%s\n", &error_msg[0]);
 }
}

4. Now, let's implement the LoadShaders function. First, create the shader ID
and read the shader code from two files specified by vertex_file_path and
fragment_file_path:
GLuint LoadShaders(const char * vertex_file_path,const char
 * fragment_file_path){
 GLuint vertex_shader_id =
 glCreateShader(GL_VERTEX_SHADER);
 GLuint fragment_shader_id =
 glCreateShader(GL_FRAGMENT_SHADER);
 std::string vertex_shader_code =
 readSourceFile(vertex_file_path);
 if(vertex_shader_code == ""){
 return 0;
 }
 std::string fragment_shader_code =
 readSourceFile(fragment_file_path);
 if(fragment_shader_code == ""){
 return 0;
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

93

5. Compile the vertex shader and fragment shader programs:
 printf("Compiling Vertex shader : %s\n",
 vertex_file_path);
 CompileShader(vertex_shader_code, vertex_shader_id);
 printf("Compiling Fragment shader :
 %s\n",fragment_file_path);
 CompileShader(fragment_shader_code, fragment_shader_id);

6. Link the programs together, check for errors, and clean up:

 GLint result = GL_FALSE;
 int infolog_length;
 printf("Linking program\n");
 GLuint program_id = glCreateProgram();
 glAttachShader(program_id, vertex_shader_id);
 glAttachShader(program_id, fragment_shader_id);
 glLinkProgram(program_id);
 //check the program and ensure that the program is linked properly
 glGetProgramiv(program_id, GL_LINK_STATUS, &result);
 glGetProgramiv(program_id, GL_INFO_LOG_LENGTH,
 &infolog_length);
 if (infolog_length > 0){
 std::vector<char> program_error_msg(infolog_length+1);
 glGetProgramInfoLog(program_id, infolog_length, NULL,
 &program_error_msg[0]);
 printf("%s\n", &program_error_msg[0]);
 }else{
 printf("Linked Successfully\n");
 }

 //flag for delete, and will free all memories
 //when the attached program is deleted
 glDeleteShader(vertex_shader_id);
 glDeleteShader(fragment_shader_id);
 return program_id;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

94

Finally, let's put everything together with the main.cpp file:

1. Include prerequisite libraries and the shader program header file inside the
common folder:
#include <stdio.h>
#include <stdlib.h>
//GLFW and GLEW libraries
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include "common/shader.hpp"

2. Create a global variable for the GLFW window:
//Global variables
GLFWwindow* window;

3. Start the main program with the initialization of the GLFW library:
int main(int argc, char **argv)
{
 //Initialize GLFW
 if(!glfwInit()){
 fprintf(stderr, "Failed to initialize GLFW\n");
 exit(EXIT_FAILURE);
 }

4. Set up the GLFW window:
 //enable anti-aliasing 4x with GLFW
 glfwWindowHint(GLFW_SAMPLES, 4);
 /* specify the client API version that the created context
 must be compatible with. */
 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2);
 //make the GLFW forward compatible
 glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
 //use the OpenGL Core
 glfwWindowHint(GLFW_OPENGL_PROFILE,
 GLFW_OPENGL_CORE_PROFILE);

5. Create the GLFW window object and make the context of the specified window
current on the calling thread:
 window = glfwCreateWindow(640, 480, "Chapter 4 - GLSL",
 NULL, NULL);
 if(!window){
 fprintf(stderr, "Failed to open GLFW window. If you
 have an Intel GPU, they are not 3.3 compatible. Try
 the 2.1 version of the tutorials.\n");

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

95

 glfwTerminate();
 exit(EXIT_FAILURE);
 }
 glfwMakeContextCurrent(window);
 glfwSwapInterval(1);

6. Initialize the GLEW library and include support for experimental drivers:
 glewExperimental = true;
 if (glewInit() != GLEW_OK) {
 fprintf(stderr, "Final to Initialize GLEW\n");
 glfwTerminate();
 exit(EXIT_FAILURE);
 }

7. Set up the shader programs:
 GLuint program = LoadShaders("simple.vert",
 "simple.frag");
 glBindFragDataLocation(program, 0, "color_out");
 glUseProgram(program);

8. Set up Vertex Buffer Object (and color buffer) and copy the vertex data to it:
 GLuint vertex_buffer;
 GLuint color_buffer;
 glGenBuffers(1, &vertex_buffer);
 glGenBuffers(1, &color_buffer);
 const GLfloat vertices[] = {
 -1.0f, -1.0f, 0.0f,
 1.0f, -1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 -1.0f, -1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 -1.0f, 1.0f, 0.0f
 };
 const GLfloat colors[]={
 0.0f, 0.0f, 1.0f,
 0.0f, 1.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 0.0f, 0.0f, 1.0f,
 1.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f
 };

 glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices,
 GL_STATIC_DRAW);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

96

 glBindBuffer(GL_ARRAY_BUFFER, color_buffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(colors), colors,
 GL_STATIC_DRAW);

9. Specify the layout of the vertex data:
 GLint position_attrib = glGetAttribLocation(program,
 "position");
 glEnableVertexAttribArray(position_attrib);
 glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
 glVertexAttribPointer(position_attrib, 3, GL_FLOAT,
 GL_FALSE, 0, (void*)0);

 GLint color_attrib = glGetAttribLocation(program,
 "color_in");
 glEnableVertexAttribArray(color_attrib);
 glBindBuffer(GL_ARRAY_BUFFER, color_buffer);
 glVertexAttribPointer(color_attrib, 3, GL_FLOAT,
 GL_FALSE, 0, (void*)0);

10. Run the drawing program:
 while(!glfwWindowShouldClose(window)){
 // Clear the screen to black
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 glClear(GL_COLOR_BUFFER_BIT);
 // Draw a rectangle from the 2 triangles using 6
 vertices
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glfwSwapBuffers(window);
 glfwPollEvents();
 }

11. Clean up and exit the program:

 //clean up the memories
 glDisableVertexAttribArray(position_attrib);
 glDisableVertexAttribArray(color_attrib);
 glDeleteBuffers(1, &vertex_buffer);
 glDeleteBuffers(1, &color_buffer);
 glDeleteVertexArrays(1, &vertex_array);
 glDeleteProgram(program);
 // Close OpenGL window and terminate GLFW
 glfwDestroyWindow(window);
 glfwTerminate();
 exit(EXIT_SUCCESS);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

97

Now we have created the first GLSL program by defining custom shaders:

How it works...
As there are multiple components in this implementation, we will highlight the key features
inside each component separately, organized in the same order as the previous section using
the same file name for simplicity.

Inside simple.vert, we defined a simple vertex shader. In the first simple implementation,
the vertex shader simply passes information forward to the rest of the rendering pipeline.
First, we need to define the GLSL version that corresponds to the OpenGL 3.2 support,
which is 1.50 (#version 150). The vertex shader takes two parameters: the position of
the vertex (in vec3 position) and the color (in vec3 color_in). Note that only the
color is defined explicitly in an output variable (out vec3 color) as gl_Position is a
built-in variable. In general, variable names with the prefix gl should not be used inside
shader programs in OpenGL as these are reserved for built-in variables. Notice that the
final position, gl_Position, is expressed in homogeneous coordinates.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

98

Inside simple.frag, we defined the fragment shader, which again passes the color
information forward to the output framebuffer. Notice that the final output (color_out)
is expressed in the RGBA format, where A is the alpha value (transparency).

Next, in shader.cpp, we created a framework to compile and link shader programs.
The workflow shares some similarity with conventional code compilation in C/C++.
Briefly, there are six major steps:

1. Create a shader object (glCreateShader).

2. Read and set the shader source code (glShaderSource).

3. Compile (glCompileShader).

4. Create the final program ID (glCreateProgram).

5. Attach a shader to the program ID (glAttachShader).

6. Link everything together (glLinkProgram).

Finally, in main.cpp, we set up a demo to illustrate the use of the compiled shader program.
As described in the Getting Started with Modern OpenGL section of this chapter, we need to
use the glfwWindowHint function to properly create the GLFW window context in OpenGL
3.2. An interesting aspect to point out about this demo is that even though we defined only
six vertices (three vertices for each of the two triangles drawn using the glDrawArrays
function) and their corresponding colors, the final result is an interpolated color gradient.

Rendering 2D images with texture mapping
Now that we have introduced the basics of GLSL using a simple example, we will incorporate
further complexity to provide a complete framework that enables users to modify any part of
the rendering pipeline in the future.

The code in this framework is divided into smaller modules to handle the shader programs
(shader.cpp and shader.hpp), texture mapping (texture.cpp and texture.hpp), and
user inputs (controls.hpp and controls.hpp). First, we will reuse the mechanism to
load shader programs in OpenGL introduced previously and incorporate new shader programs
for our purpose. Next, we will introduce the steps required for texture mapping. Finally, we
will describe the main program, which integrates all the logical pieces and prepares the final
demo. In this section, we will show how we can load an image and convert it into a texture
object to be rendered in OpenGL. With this framework in mind, we will further demonstrate
how to render a video in the next section.

Getting ready
To avoid redundancy here, we will refer readers to the previous section for part of this demo
(in particular, shader.cpp and shader.hpp).

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

99

How to do it...
First, we aggregate all the common libraries used in our program into the common.h header
file. The common.h file is then included in shader.hpp, controls.hpp, texture.hpp,
and main.cpp:

#ifndef _COMMON_h
#define _COMMON_h
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <string>
#include <GL/glew.h>
#include <GLFW/glfw3.h>
using namespace std;
#endif

We previously implemented a mechanism to load a fragment and vertex shader program from
files, and we will reuse the code here (shader.cpp and shader.hpp). However, we will
modify the actual vertex and shader programs as follows.

For the vertex shader (transform.vert), we will implement the following:

#version 150
in vec2 UV;
out vec4 color;
uniform sampler2D textureSampler;
void main(){
 color = texture(textureSampler, UV).rgba;
}

For the fragment shader (texture.frag), we will implement the following:

#version 150
in vec3 vertexPosition_modelspace;
in vec2 vertexUV;
out vec2 UV;
uniform mat4 MVP;
void main(){
 //position of the vertex in clip space
 gl_Position = MVP * vec4(vertexPosition_modelspace,1);
 UV = vertexUV;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

100

For the texture objects, in texture.cpp, we provide a mechanism to load images or video
stream into the texture memory. We also take advantage of the SOIL library for simple image
loading and the OpenCV library for more advanced video stream handling and filtering (refer
to the next section).

In texture.cpp, we will implement the following:

1. Include the texture.hpp header and SOIL library header for simple image loading:
#include "texture.hpp"
#include <SOIL.h>

2. Define the initialization of texture objects and set up all parameters:
GLuint initializeTexture(const unsigned char *image_data,
 int width, int height, GLenum format){
 GLuint textureID=0;
 //create and bind one texture element
 glGenTextures(1, &textureID);
 glBindTexture(GL_TEXTURE_2D, textureID);
 glPixelStorei(GL_UNPACK_ALIGNMENT,1);
 /* Specify target texture. The parameters describe the
 format and type of the image data */
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0,
 format, GL_UNSIGNED_BYTE, image_data);
 /* Set the wrap parameter for texture coordinate s & t to
 GL_CLAMP, which clamps the coordinates within [0, 1] */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_EDGE);
 /* Set the magnification method to linear and return
 weighted average of four texture elements closest to
 the center of the pixel */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
 /* Choose the mipmap that most closely matches the size of
 the pixel being textured and use the GL_NEAREST
 criterion (the texture element nearest to the center
 of the pixel) to produce a texture value. */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_LINEAR);
 glGenerateMipmap(GL_TEXTURE_2D);
 return textureID;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

101

3. Define the routine to update the texture memory:
void updateTexture(const unsigned char *image_data, int width, int
height, GLenum format){
 // Update Texture
 glTexSubImage2D (GL_TEXTURE_2D, 0, 0, 0, width, height,
 format, GL_UNSIGNED_BYTE, image_data);
 /* Sets the wrap parameter for texture coordinate s & t to
 GL_CLAMP, which clamps the coordinates within [0, 1]. */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_EDGE);
 /* Set the magnification method to linear and return
 weighted average of four texture elements closest to
 the center of the pixel */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
 /* Choose the mipmap that most closely matches the size of
 the pixel being textured and use the GL_NEAREST
 criterion (the texture element nearest to the center
 of the pixel) to produce a texture value. */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_LINEAR);
 glGenerateMipmap(GL_TEXTURE_2D);
}

4. Finally, implement the texture-loading mechanism for images. The function takes the
image path and automatically converts the image into various compatible formats for
the texture object:

GLuint loadImageToTexture(const char * imagepath){
 int width, height, channels;
 GLuint textureID=0;
 //Load the images and convert them to RGBA format
 unsigned char* image = SOIL_load_image(imagepath, &width,
 &height, &channels, SOIL_LOAD_RGBA);
 if(!image){
 printf("Failed to load image %s\n", imagepath);
 return textureID;
 }
 printf("Loaded Image: %d x %d - %d channels\n", width,
 height, channels);
 textureID=initializeTexture(image, width, height,
 GL_RGBA);
 SOIL_free_image_data(image);
 return textureID;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

102

On the controller front, we capture the arrow keys and modify the camera model parameter in
real time. This allows us to change the position and orientation of the camera as well as the
angle of view. In controls.cpp, we implement the following:

1. Include the GLM library header and the controls.hpp header for the projection
matrix and view matrix computations:
#define GLM_FORCE_RADIANS
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include "controls.hpp"

2. Define global variables (camera parameters as well as view and projection matrices)
to be updated after each frame:
//initial position of the camera
glm::vec3 g_position = glm::vec3(0, 0, 2);
const float speed = 3.0f; // 3 units / second
float g_initial_fov = glm::pi<float>()*0.4f;
//the view matrix and projection matrix
glm::mat4 g_view_matrix;
glm::mat4 g_projection_matrix;

3. Create helper functions to return the most updated view matrix and projection matrix:
glm::mat4 getViewMatrix(){
 return g_view_matrix;
}
glm::mat4 getProjectionMatrix(){
 return g_projection_matrix;
}

4. Compute the view matrix and projection matrix based on the user input:

void computeViewProjectionMatrices(GLFWwindow* window){
 static double last_time = glfwGetTime();
 // Compute time difference between current and last frame
 double current_time = glfwGetTime();
 float delta_time = float(current_time - last_time);
 int width, height;
 glfwGetWindowSize(window, &width, &height);
 //direction vector for movement
 glm::vec3 direction(0, 0, -1);
 //up vector
 glm::vec3 up = glm::vec3(0,-1,0);
 if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS){
 g_position += direction * delta_time * speed;
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

103

 else if (glfwGetKey(window, GLFW_KEY_DOWN) ==
 GLFW_PRESS){
 g_position -= direction * delta_time * speed;
 }
 else if (glfwGetKey(window, GLFW_KEY_RIGHT) ==
 GLFW_PRESS){
 g_initial_fov -= 0.1 * delta_time * speed;
 }
 else if (glfwGetKey(window, GLFW_KEY_LEFT) ==
 GLFW_PRESS){
 g_initial_fov += 0.1 * delta_time * speed;
 }
 /* update projection matrix: Field of View, aspect ratio,
 display range : 0.1 unit <-> 100 units */
 g_projection_matrix = glm::perspective(g_initial_fov,
 (float)width/(float)height, 0.1f, 100.0f);

 // update the view matrix
 g_view_matrix = glm::lookAt(
 g_position, // camera position
 g_position+direction, // viewing direction
 up // up direction
);
 last_time = current_time;
}

In main.cpp, we will use the various previously defined functions to complete the
implementation:

1. Include the GLFW and GLM libraries as well as our helper functions, which are stored
in separate files inside a folder called the common folder:
#define GLM_FORCE_RADIANS
#include <stdio.h>
#include <stdlib.h>
#include <GL/glew.h>
#include <GLFW/glfw3.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
using namespace glm;
#include <common/shader.hpp>
#include <common/texture.hpp>
#include <common/controls.hpp>
#include <common/common.h>

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

104

2. Define all global variables for the setup:
GLFWwindow* g_window;
const int WINDOWS_WIDTH = 1280;
const int WINDOWS_HEIGHT = 720;
float aspect_ratio = 3.0f/2.0f;
float z_offset = 2.0f;
float rotateY = 0.0f;
float rotateX = 0.0f;
//Our vertices
static const GLfloat g_vertex_buffer_data[] = {
 -aspect_ratio,-1.0f,z_offset,
 aspect_ratio,-1.0f,z_offset,
 aspect_ratio,1.0f,z_offset,
 -aspect_ratio,-1.0f,z_offset,
 aspect_ratio,1.0f,z_offset,
 -aspect_ratio,1.0f,z_offset
};
//UV map for the vertices
static const GLfloat g_uv_buffer_data[] = {
 1.0f, 0.0f,
 0.0f, 0.0f,
 0.0f, 1.0f,
 1.0f, 0.0f,
 0.0f, 1.0f,
 1.0f, 1.0f
};

3. Define the keyboard callback function:
static void key_callback(GLFWwindow* window, int key, int
 scancode, int action, int mods)
{
 if (action != GLFW_PRESS && action != GLFW_REPEAT)
 return;
 switch (key)
 {
 case GLFW_KEY_ESCAPE:
 glfwSetWindowShouldClose(window, GL_TRUE);
 break;
 case GLFW_KEY_SPACE:
 rotateX=0;
 rotateY=0;
 break;
 case GLFW_KEY_Z:
 rotateX+=0.01;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

105

 break;
 case GLFW_KEY_X:
 rotateX-=0.01;
 break;
 case GLFW_KEY_A:
 rotateY+=0.01;
 break;
 case GLFW_KEY_S:
 rotateY-=0.01;
 break;
 default:
 break;
 }
}

4. Initialize the GLFW library with the OpenGL core profile enabled:
int main(int argc, char **argv)
{
 //Initialize the GLFW
 if(!glfwInit()){
 fprintf(stderr, "Failed to initialize GLFW\n");
 exit(EXIT_FAILURE);
 }

 //enable anti-alising 4x with GLFW
 glfwWindowHint(GLFW_SAMPLES, 4);
 //specify the client API version
 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2);
 //make the GLFW forward compatible
 glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
 //enable the OpenGL core profile for GLFW
 glfwWindowHint(GLFW_OPENGL_PROFILE,
 GLFW_OPENGL_CORE_PROFILE);

5. Set up the GLFW windows and keyboard input handlers:
 //create a GLFW windows object
 window = glfwCreateWindow(WINDOWS_WIDTH, WINDOWS_HEIGHT,
 "Chapter 4 - Texture Mapping", NULL, NULL);
 if(!window){
 fprintf(stderr, "Failed to open GLFW window. If you
 have an Intel GPU, they are not 3.3 compatible. Try
 the 2.1 version of the tutorials.\n");
 glfwTerminate();
 exit(EXIT_FAILURE);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

106

 }
 /* make the context of the specified window current for
 the calling thread */
 glfwMakeContextCurrent(window);
 glfwSwapInterval(1);
 glewExperimental = true; // Needed for core profile
 if (glewInit() != GLEW_OK) {
 fprintf(stderr, "Final to Initialize GLEW\n");
 glfwTerminate();
 exit(EXIT_FAILURE);
 }
 //keyboard input callback
 glfwSetInputMode(window,GLFW_STICKY_KEYS,GL_TRUE);
 glfwSetKeyCallback(window, key_callback);

6. Set a black background and enable alpha blending for various visual effects:
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);

7. Load the vertex shader and fragment shader:
 GLuint program_id = LoadShaders("transform.vert",
 "texture.frag");

8. Load an image file into the texture object using the SOIL library:
 char *filepath;
 //load the texture from image with SOIL
 if(argc<2){
 filepath = (char*)malloc(sizeof(char)*512);
 sprintf(filepath, "texture.png");
 }
 else{
 filepath = argv[1];
 }

 int width;
 int height;
 GLuint texture_id = loadImageToTexture(filepath, &width,
 &height);

 aspect_ratio = (float)width/(float)height;
 if(!texture_id){
 //if we get 0 with no texture
 glfwTerminate();
 exit(EXIT_FAILURE);
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

107

9. Get the locations of the specific variables in the shader programs:
 //get the location for our "MVP" uniform variable
 GLuint matrix_id = glGetUniformLocation(program_id,
 "MVP");
 //get a handler for our "myTextureSampler" uniform
 GLuint texture_sampler_id =
 glGetUniformLocation(program_id, "textureSampler");
 //attribute ID for the variables
 GLint attribute_vertex, attribute_uv;
 attribute_vertex = glGetAttribLocation(program_id,
 "vertexPosition_modelspace");
 attribute_uv = glGetAttribLocation(program_id,
 "vertexUV");

10. Define our Vertex Array Objects (VAO):
 GLuint vertex_array_id;
 glGenVertexArrays(1, &vertex_array_id);
 glBindVertexArray(vertex_array_id);

11. Define our VAO for vertices and UV mapping:
 //initialize the vertex buffer memory.
 GLuint vertex_buffer;
 glGenBuffers(1, &vertex_buffer);
 glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
 glBufferData(GL_ARRAY_BUFFER,
 sizeof(g_vertex_buffer_data), g_vertex_buffer_data,
 GL_STATIC_DRAW);
 //initialize the UV buffer memory
 GLuint uv_buffer;
 glGenBuffers(1, &uv_buffer);
 glBindBuffer(GL_ARRAY_BUFFER, uv_buffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(g_uv_buffer_data),
 g_uv_buffer_data, GL_STATIC_DRAW);

12. Use the shader program and bind all texture units and attribute buffers:
 glUseProgram(program_id);
 //binds our texture in Texture Unit 0
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, texture_id);
 glUniform1i(texture_sampler_id, 0);
 //1st attribute buffer: vertices for position
 glEnableVertexAttribArray(attribute_vertex);
 glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
 glVertexAttribPointer(attribute_vertex, 3, GL_FLOAT,
 GL_FALSE, 0, (void*)0);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

108

 //2nd attribute buffer: UVs mapping
 glEnableVertexAttribArray(attribute_uv);
 glBindBuffer(GL_ARRAY_BUFFER, uv_buffer);
 glVertexAttribPointer(attribute_uv, 2, GL_FLOAT,
 GL_FALSE, 0, (void*)0);

13. In the main loop, clear the screen and depth buffers:
 //time-stamping for performance measurement
 double previous_time = glfwGetTime();
 do{
 //clear the screen
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glClearColor(1.0f, 1.0f, 1.0f, 0.0f);

14. Compute the transforms and store the information in the shader variables:
 //compute the MVP matrix from keyboard and mouse input
 computeMatricesFromInputs(g_window);
 //obtain the View and Model Matrix for rendering
 glm::mat4 projection_matrix = getProjectionMatrix();
 glm::mat4 view_matrix = getViewMatrix();
 glm::mat4 model_matrix = glm::mat4(1.0);
 model_matrix = glm::rotate(model_matrix,
 glm::pi<float>() * rotateY, glm::vec3(0.0f, 1.0f,
 0.0f));
 model_matrix = glm::rotate(model_matrix,
 glm::pi<float>() * rotateX, glm::vec3(1.0f, 0.0f,
 0.0f));
 glm::mat4 mvp = projection_matrix * view_matrix *
 model_matrix;
 //send our transformation to the currently bound shader
 //in the "MVP" uniform variable
 glUniformMatrix4fv(matrix_id, 1, GL_FALSE, &mvp[0][0]);

15. Draw the elements and flush the screen:
 glDrawArrays(GL_TRIANGLES, 0, 6); //draw a square
 //swap buffers
 glfwSwapBuffers(window);
 glfwPollEvents();

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

109

16. Finally, define the conditions to exit the main loop and clear all the memory to exit
the program gracefully:

 } // Check if the ESC key was pressed or the window was closed
 while(!glfwWindowShouldClose(window) &&
 glfwGetKey(window, GLFW_KEY_ESCAPE)!=GLFW_PRESS);
 glDisableVertexAttribArray(attribute_vertex);
 glDisableVertexAttribArray(attribute_uv);
 // Clean up VBO and shader
 glDeleteBuffers(1, &vertex_buffer);
 glDeleteBuffers(1, &uv_buffer);
 glDeleteProgram(program_id);
 glDeleteTextures(1, &texture_id);
 glDeleteVertexArrays(1, &vertex_array_id);
 // Close OpenGL window and terminate GLFW
 glfwDestroyWindow(g_window);
 glfwTerminate();
 exit(EXIT_SUCCESS);
}

How it works...
To demonstrate the use of the framework for data visualization, we will apply it to the
visualization of a histology slide (an H&E cross-section of a skin sample), as shown in the
following screenshot:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

110

An important difference between this demo and the previous one is that here, we actually
load an image into the texture memory (texture.cpp). To facilitate this task, we use the
SOIL library call (SOIL_load_image) to load the histology image in the RGBA format
(GL_RGBA) and the glTexImage2D function call to generate a texture image that can
be read by shaders.

Another important difference is that we can now dynamically recompute the view
(g_view_matrix) and projection (g_projection_matrix) matrices to enable an
interactive and interesting visualization of an image in the 3D space. Note that the GLM
library header is included to facilitate the matrix computations. Using the keyboard inputs
(up, down, left, and right) defined in controls.cpp with the GLFW library calls, we can zoom
in and out of the slide as well as adjust the view angle, which gives an interesting perspective
of the histology image in the 3D virtual space. Here is a screenshot of the image viewed with a
different perspective:

Yet another unique feature of the current OpenGL-based framework is illustrated by the
following screenshot, which is generated with a new image filter implemented into the
fragment shader that highlights the edges in the image. This shows the endless possibilities
for the real-time interactive visualization and processing of 2D images using OpenGL
rendering pipeline without compromising on CPU performance. The filter implemented
here will be discussed in the next section.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

111

Real-time video rendering with filters
The GLSL shader provides a simple way to perform highly parallelized processing. On top of
the texture mapping shown previously, we will demonstrate how to implement a simple video
filter that postprocesses the end results of the buffer frame using the fragment shader. To
illustrate this technique, we implement the Sobel Filter along with a heat map rendered
using the OpenGL pipeline. The heat map function that was previously implemented in
Chapter 3, Interactive 3D Data Visualization, will now be directly ported to GLSL with
very minor changes.

The Sobel operator is a simple image processing technique frequently used in computer vision
algorithms such as edge detection. This operator can be defined as a convolution operation
with a 3 x 3 kernel, shown as follows:

()
1 0 1
2 0 2 , ,
1 0 1

xG I x y
− 
 = − ∗ 
 − 

()
1 2 1
0 0 0 ,
1 2 1

yG I x y
 
 = ∗ 
 − − − 

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

112

xG and yG are results of the horizontal and vertical derivatives of an image, respectively,
from the convolution operation of image I at the pixel location (x, y).

We can also perform a sum of squares operation to approximate the gradient magnitude
of the image:

2 2 2
x yG G G= +

Getting ready
This demo builds on top of the previous section, where an image was rendered. In this
section, we will demonstrate the rendering of an image sequence or a video with the use of
OpenCV library calls to handle videos. Inside common.h, we will add the following lines to
include the OpenCV libraries:

#include <opencv2/opencv.hpp>
using namespace cv;

How to do it...
Now, let's complete the implementation as follows:

1. First, modify main.cpp to enable video processing using OpenCV. Essentially,
instead of loading an image, feed the individual frames of a video into the
same pipeline:
char *filepath;
if(argc<2){
 filepath = (char*)malloc(sizeof(char)*512);
 sprintf(filepath, "video.mov");
}
else{
 filepath = argv[1];
}
//Handling Video input with OpenCV
VideoCapture cap(filepath); // open the default camera
Mat frame;
if (!cap.isOpened()){ // check if we succeeded
 printf("Cannot open files\n");
 glfwTerminate();
 exit(EXIT_FAILURE);
 }else{
 cap >> frame; // get a new frame from camera

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

113

 printf("Got Video, %d x %d\n",frame.size().width,
 frame.size().height);
 }
 cap >> frame; // get a new frame from camera
 GLuint texture_id = initializeTexture(frame.data,
 frame.size().width, frame.size().height, GL_BGR);
 aspect_ratio = (float)frame.size().width/
 (float)frame.size().height;

2. Then, add the update function in the main loop to update the texture in every frame:
 /* get the video feed, reset to beginning if it reaches
 the end of the video */
 if(!cap.grab()){
 printf("End of Video, Resetting\n");
 cap.release();
 cap.open(filepath); // open the default camera
 }
 cap >> frame; // get a new frame from camera
 //update the texture with the new frame
 updateTexture(frame.data, frame.size().width,
 frame.size().height, GL_BGR);

3. Next, modify the fragment shader and rename it texture_sobel.frag (from
texture.frag). In the main function, we will outline the overall processing
(process the texture buffers with the Sobel filter and heat map renderer):
 void main(){
 //compute the results of Sobel filter
 float graylevel = sobel_filter();
 color = heatMap(graylevel, 0.1, 3.0);
 }

4. Now, implement the Sobel filter algorithm that takes the neighboring pixels to
compute the result:
 float sobel_filter()
 {
 float dx = 1.0 / float(1280);
 float dy = 1.0 / float(720);

 float s00 = pixel_operator(-dx, dy);
 float s10 = pixel_operator(-dx, 0);
 float s20 = pixel_operator(-dx,-dy);
 float s01 = pixel_operator(0.0,dy);
 float s21 = pixel_operator(0.0, -dy);
 float s02 = pixel_operator(dx, dy);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

114

 float s12 = pixel_operator(dx, 0.0);
 float s22 = pixel_operator(dx, -dy);
 float sx = s00 + 2 * s10 + s20 - (s02 + 2 * s12 + s22);
 float sy = s00 + 2 * s01 + s02 - (s20 + 2 * s21 + s22);
 float dist = sx * sx + sy * sy;
 return dist;
 }

5. Define the helper function that computes the brightness value:
 float rgb2gray(vec3 color) {
 return 0.2126 * color.r + 0.7152 * color.g + 0.0722 *
 color.b;
 }

6. Create a helper function for the per-pixel operator operations:
 float pixel_operator(float dx, float dy){
 return rgb2gray(texture(textureSampler, UV +
 vec2(dx,dy)).rgb);
 }

7. Lastly, define the heat map renderer prototype and implement the algorithm for
better visualization of the range of values:

 vec4 heatMap(float v, float vmin, float vmax){
 float dv;
 float r, g, b;
 if (v < vmin)
 v = vmin;
 if (v > vmax)
 v = vmax;
 dv = vmax - vmin;
 if(v == 0){
 return vec4(0.0, 0.0, 0.0, 1.0);
 }
 if (v < (vmin + 0.25f * dv)) {
 r = 0.0f;
 g = 4.0f * (v - vmin) / dv;
 } else if (v < (vmin + 0.5f * dv)) {
 r = 0.0f;
 b = 1.0f + 4.0f * (vmin + 0.25f * dv - v) / dv;
 } else if (v < (vmin + 0.75f * dv)) {

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

115

 r = 4.0f * (v - vmin - 0.5f * dv) / dv;
 b = 0.0f;
 } else {
 g = 1.0f + 4.0f * (vmin + 0.75f * dv - v) / dv;
 b = 0.0f;
 }
 return vec4(r, g, b, 1.0);
}

How it works...
This demo effectively opens up the possibility of rendering any image sequence
with real-time processing using the OpenGL pipeline at the fragment shading stage.
The following screenshot is an example that illustrates the use of this powerful
OpenGL framework to display one frame of a video (showing the authors of the
book) without the Sobel filter enabled:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

116

Now, with the Sobel filter and heat map rendering enabled, we see an interesting way
to visualize the world using real-time OpenGL texture mapping and processing using
custom shaders:

Further fine-tuning of the threshold parameters and converting the result into grayscale
(in the texture_sobel.frag file) leads to an aesthetically interesting output:

void main(){
 //compute the results of Sobel filter
 float graylevel = sobel_filter();
 color = vec4(graylevel, graylevel, graylevel, 1.0);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

117

In addition, we can blend these results with the original video feed to create filtered effects in
real time by modifying the main function in the shader program (texture_sobel.frag):

void main(){
 //compute the results of Sobel filter
 float graylevel = sobel_filter();
 //process the right side of the image
 if(UV.x > 0.5)
 color = heatMap(graylevel, 0.0, 3.0) + texture
 (textureSampler, UV);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering 2D Images and Videos with Texture Mapping

118

 else
 color = vec4(graylevel, graylevel, graylevel, 1.0) + texture
 (textureSampler, UV);
}

To illustrate the use of the exact same program to visualize imaging datasets, here is an
example that shows a volumetric dataset of a human finger imaged with Optical Coherence
Tomography (OCT), simply by changing the input video's filename:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 4

119

This screenshot represents one of 256 cross-sectional images of the nail bed in this
volumetric OCT dataset (which is exported in a movie file format).

Here is another example that shows a volumetric dataset of a scar specimen imaged with
Polarization-Sensitive Optical Coherence Tomography (PS-OCT), which provides label-free,
intrinsic contrast to the scar region:

In this case, the volumetric PS-OCT dataset was rendered with the ImageJ 3D Viewer and
converted into a movie file. The colors denote the Degree of Polarization (DOP), which is a
measure of the randomness of the polarization states of light (a low DOP in yellow/green and
a high DOP in blue), in the skin. The scar region is characterized by a high DOP compared to
the normal skin.

As we have demonstrated here, this program can be easily adopted (by changing the input
video source) to display many types of datasets, such as endoscopy videos or other volumetric
imaging datasets. The utility of OpenGL becomes apparent in demanding applications that
require real-time processing of very large datasets.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

121

5
Rendering of Point

Cloud Data for
3D Range-sensing

Cameras

In this chapter, we will cover the following topics:

 f Getting started with the Microsoft Kinect (PrimeSense) 3D range-sensing camera

 f Capturing raw data from depth-sensing cameras

 f OpenGL point cloud rendering with texture mapping and overlays

Introduction
The purpose of this chapter is to introduce the techniques to visualize another interesting
and emerging class of data: depth information from 3D range-sensing cameras. Devices with
3D depth sensors are hitting the market everyday, and companies such as Intel, Microsoft,
SoftKinetic, PMD, Structure Sensor, and Meta (wearable Augmented Reality eyeglasses)
are all using these novel 3D sensing devices to track user inputs, such as hand gestures for
interaction and/or tracking a user's environment. An interesting integration of 3D sensors
with OpenGL is the ability to look at a scene in 3D from different perspectives, thereby
enabling a virtual 3D fly-through of a scene captured with the depth sensors. In our case,
for data visualization, being able to walk through a massive 3D dataset could be particularly
powerful in scientific computing, urban planning, and many other applications that involve the
visualization of 3D structures of a scene.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

122

In this chapter, we propose a simplified pipeline that takes any 3D point data (X, Y, Z) with
color (r, g, b) and renders these point clouds on the screen in real time. The point clouds
will be obtained directly from real-world data using a 3D range-sensing camera. We will also
provide ways to fly around the point cloud and have dynamic ways to adjust the camera's
parameters. This chapter will build on the OpenGL graphics rendering pipeline discussed in
the previous chapter, and we will show you a few additional tricks to filter the data with GLSL.
We will display our depth information using our heat map generator to see the depth in 2D
and remap this data to a 3D point cloud using texture mapping and perspective projection.
This will allow us to see the real-life depth-based rendering of a scene and navigate around
the scene from any perspective.

Getting started with the Microsoft Kinect
(PrimeSense) 3D range-sensing camera

The Microsoft Kinect 3D range-sensing camera based on the PrimeSense technology is an
interesting piece of equipment that enables the estimation of the 3D geometry of a scene
through depth-sensing using light patterns. The 3D sensor has an active infrared laser
projector, which emits encoded speckle light patterns. The sensors allow users to capture
color images and provide a 3D depth map at a resolution of 640 x 480. Since the Kinect
sensor is an active sensor, it is invariant to indoor lighting condition (that is, it even works in
the dark) and enables many applications, such as gesture and pose tracking as well as 3D
scanning and reconstruction.

In this section, we will demonstrate how to set up this type of range-sensing camera, as an
example. While we do not require readers to purchase a 3D range-sensing camera for this
chapter (since we will provide the raw data captured on this device for the purpose of running
our demos), we will demonstrate how one can set up the device to capture data directly,
primarily for those who are interested in further experimenting with real-time 3D data.

How to do it...
Windows users can download the OpenNI 2 SDK and driver from http://structure.
io/openni (or using the direct download link: http://com.occipital.openni.
s3.amazonaws.com/OpenNI-Windows-x64-2.2.0.33.zip) and follow the on-screen
instructions. Linux users can download the OpenNI 2 SDK from the same website at
http://structure.io/openni.

Mac users can install the OpenNI2 driver as follows:

1. Install libraries with Macport:
sudo port install libtool

sudo port install libusb +universal

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://structure.io/openni
http://structure.io/openni
http://com.occipital.openni.s3.amazonaws.com/OpenNI-Windows-x64-2.2.0.33.zip
http://com.occipital.openni.s3.amazonaws.com/OpenNI-Windows-x64-2.2.0.33.zip
http://structure.io/openni
http://www.it-ebooks.info/

Chapter 5

123

2. Download OpenNI2 from https://github.com/occipital/openni2.

3. Compile the source code with the following commands:
cd OpenNI2-master

make

cd Bin/x64-Release/

4. Run the SimpleViewer executable:

./SimpleViewer

If you are using a computer with a USB 3.0 interface, it is important that you first upgrade
the firmware for the PrimeSense sensor to version 1.0.9 (http://dasl.mem.drexel.
edu/wiki/images/5/51/FWUpdate_RD109-112_5.9.2.zip). This upgrade requires a
Windows platform. Note that the Windows driver for the PrimeSense sensor must be installed
(http://structure.io/openni) for you to proceed. Execute the FWUpdate_RD109-
112_5.9.2.exe file, and the firmware will be automatically upgraded. Further details on
the firmware can be found at http://dasl.mem.drexel.edu/wiki/index.php/4._
Updating_Firmware_for_Primesense.

See also
Detailed technical specifications of the Microsoft Kinect 3D system can be obtained from
http://msdn.microsoft.com/en-us/library/jj131033.aspx, and further
installation instructions and prerequisites to build OpenNI2 drivers can be found at
https://github.com/occipital/openni2.

In addition, Microsoft Kinect V2 is also available and is compatible with Windows. The new
sensor provides higher resolution images and better depth fidelity. More information about the
sensor, as well as the Microsoft Kinect SDK, can be found at https://www.microsoft.
com/en-us/kinectforwindows.

Capturing raw data from depth-sensing
cameras

Now that you have installed the prerequisite libraries and drivers, we will demonstrate how to
capture raw data from your depth-sensing camera.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://github.com/occipital/openni2
http://dasl.mem.drexel.edu/wiki/images/5/51/FWUpdate_RD109-112_5.9.2.zip
http://dasl.mem.drexel.edu/wiki/images/5/51/FWUpdate_RD109-112_5.9.2.zip
http://structure.io/openni
http://dasl.mem.drexel.edu/wiki/index.php/4._Updating_Firmware_for_Primesense
http://dasl.mem.drexel.edu/wiki/index.php/4._Updating_Firmware_for_Primesense
http://msdn.microsoft.com/en-us/library/jj131033.aspx
https://github.com/occipital/openni2
https://www.microsoft.com/en-us/kinectforwindows
https://www.microsoft.com/en-us/kinectforwindows
http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

124

How to do it...
To capture sensor data directly in a binary format, implement the following function:

void writeDepthBuffer(openni::VideoFrameRef depthFrame){
 static int depth_buffer_counter=0;
 char file_name [512];
 sprintf(file_name, "%s%d.bin", "depth_frame",
 depth_buffer_counter);
 openni::DepthPixel *depthPixels = new
 openni::DepthPixel[depthFrame.getHeight()*depthFrame.getWidth()];
 memcpy(depthPixels, depthFrame.getData(),
 depthFrame.getHeight()*depthFrame.getWidth()*sizeof(uint16_t));
 std::fstream myFile (file_name, std::ios::out
 |std::ios::binary);
 myFile.write ((char*)depthPixels,
 depthFrame.getHeight()*depthFrame.getWidth()*sizeof(uint16_t));
 depth_buffer_counter++;
 printf("Dumped Depth Buffer %d\n",depth_buffer_counter);
 myFile.close();
 delete depthPixels;
}

Similarly, we also capture the raw RGB color data with the following implementation:

 void writeColorBuffer(openni::VideoFrameRef colorFrame){
 static int color_buffer_counter=0;
 char file_name [512];
 sprintf(file_name, "%s%d.bin", "color_frame",
 color_buffer_counter);
 //basically unsigned char*
 const openni::RGB888Pixel* imageBuffer = (const
 openni::RGB888Pixel*)colorFrame.getData();
 std::fstream myFile (file_name, std::ios::out |
 std::ios::binary);
 myFile.write ((char*)imageBuffer,
 colorFrame.getHeight()*colorFrame.getWidth()*sizeof(uint8_t)*3);
 color_buffer_counter++;
 printf("Dumped Color Buffer %d, %d, %d\n",
 colorFrame.getHeight(), colorFrame.getWidth(),
 color_buffer_counter);
 myFile.close();
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

125

The preceding code snippet can be added to any sample code within the OpenNI2 SDK that
provides depth and color data visualization (to enable raw data capture). We recommend that
you modify the Viewer.cpp file in the OpenNI2-master/Samples/SimpleViewer folder.
The modified sample code is included in our code package. To capture raw data, press R and
the data will be stored in the depth_frame0.bin and color_frame0.bin files.

How it works...
The depth sensor returns two streams of data in real time. One data stream is a 3D depth
map, which is stored in 16-bits unsigned short data type (see the following figure on the left-
hand side). Another data stream is a color image (see the following figure on the right-hand
side), which is stored in a 24 bits per pixel, RGB888 format (that is, the memory is aligned in
the R, G, and B order, and 8 bits * 3 channels = 24 bits are used per pixel).

The binary data is written directly to the hard disk without compression or modification to the
data format. On the client side, we read the binary files as if there is a continuous stream
of data and color data pairs arriving synchronously from the hardware device. The OpenNI2
driver provides the mechanism to interface with the PrimeSense-based sensors (Microsoft
Kinect or PS1080).

The openni::VideoFrameRef depthFrame variable, for example, stores the reference
to the depth data buffer. By calling the depthFrame.getData() function, we obtain a
pointer to the buffer in the DepthPixel format, which is equivalent to the unsigned short
data type. Then, we write the binary data to a file using the write() function in the fstream
library. Similarly, we perform the same task with the color image, but the data is stored in the
RGB888 format.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

126

Additionally, we can enable the setImageRegistrationMode (openni::IMAGE_
REGISTRATION_DEPTH_TO_COLOR) depth map registration function in OpenNI2 to
automatically compute and map a depth value onto the color image. The depth map is
overlaid onto the color image and is shown in the following figure:

In the next section, we will assume that the raw depth map is precalibrated with image
registration by OpenNI2 and can be used to compute the real-world coordinates and UV
mapping indices directly.

OpenGL point cloud rendering with texture
mapping and overlays

We will build on the OpenGL framework discussed in the previous chapter for point cloud
rendering in this section. The texture mapping technique introduced in the previous chapter
can also be applied in the point cloud format. Basically, the depth sensor provides a set of
vertices in real-world space (the depth map), and the color camera provides us with the color
information of the vertices. UV mapping is a simple lookup table once the depth map and
color camera are calibrated.

Getting ready
Readers should use the raw data provided for the subsequent demo or obtain their own raw
data from a 3D range-sensing camera. In either case, we assume these filenames will be used
to denote the raw data files: depth_frame0.bin and color_frame0.bin.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

127

How to do it...
Similar to the previous chapter, we will divide the program into three major components: the
main program (main.cpp), shader programs (shader.cpp, shader.hpp, pointcloud.
vert, pointcloud.frag), and texture-mapping functions (texture.cpp, texture.
hpp). The main program performs the essential tasks to set up the demo, while the shader
programs perform the specialized processing. The texture-mapping functions provide a
mechanism to load and map the color information onto the vertices. Finally, we modify the
control.cpp file to provide more refined controls over the fly-through experience through
various additional keyboard inputs (using the up, down, left, and right arrow keys to zoom in
and out in addition to adjusting the rotation angles using the a, s, x, and z keys).

First, let's take a look at the shader programs. We will create two vertex and fragment
shader programs inside the pointcloud.vert and pointcloud.frag files that are
compiled and loaded by the program at runtime by using the LoadShaders function in
the shader.cpp file.

For the pointcloud.vert file, we implement the following:

#version 150 core
// Input vertex data
in vec3 vertexPosition_modelspace;
in vec2 vertexUV;
// Output data: interpolated for each fragment.
out vec2 UV;
out vec4 color_based_on_position;
// Values that stay constant for the whole mesh
uniform mat4 MVP;
//heat map generator
vec4 heatMap(float v, float vmin, float vmax){
 float dv;
 float r=1.0f, g=1.0f, b=1.0f;
 if (v < vmin)
 v = vmin;
 if (v > vmax)
 v = vmax;
 dv = vmax - vmin;
 if (v < (vmin + 0.25f * dv)) {
 r = 0.0f;
 g = 4.0f * (v - vmin) / dv;
 } else if (v < (vmin + 0.5f * dv)) {
 r = 0.0f;
 b = 1.0f+4.0f*(vmin+0.25f*dv-v)/dv;
 } else if (v < (vmin + 0.75f * dv)) {
 r = 4.0f*(v-vmin-0.5f*dv)/dv;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

128

 b = 0.0f;
 } else {
 g = 1.0f+4.0f*(vmin+0.75f*dv-v)/dv;
 b = 0.0f;
 }
 return vec4(r, g, b, 1.0);
}
void main(){
 // Output position of the vertex, in clip space: MVP * position
 gl_Position = MVP * vec4(vertexPosition_modelspace,1);
 color_based_on_position = heatMap(vertexPosition_modelspace.z, -
 3.0, 0.0f);
 UV = vertexUV;
}

For the pointcloud.frag file, we implement the following:

#version 150 core
in vec2 UV;
out vec4 color;
uniform sampler2D textureSampler;
in vec4 color_based_on_position;
void main(){
 //blend the depth map color with RGB
 color = 0.5f*texture(textureSampler,
 UV).rgba+0.5f*color_based_on_position;
}

Finally, let's put everything together with the main.cpp file:

1. Include prerequisite libraries and the shader program header files inside the
common folder:
#include <stdio.h>
#include <stdlib.h>
//GLFW and GLEW libraries
#include <GL/glew.h>
#include <GLFW/glfw3.h>
//GLM library
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include "../common/shader.hpp"
#include "../common/texture.hpp"
#include "../common/controls.hpp"
#include "../common/common.h"
#include <fstream>

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

129

2. Create a global variable for the GLFW window:
GLFWwindow* window;

3. Define the width and height of the input depth dataset as well as other
window/camera properties for rendering:
const int WINDOWS_WIDTH = 640;
const int WINDOWS_HEIGHT = 480;
const int IMAGE_WIDTH = 320;
const int IMAGE_HEIGHT = 240;
float z_offset = 0.0f;
float rotateY = 0.0f;
float rotateX = 0.0f;

4. Define helper functions to parse the raw depth and color data:
unsigned short *readDepthFrame(const char *file_path){
 int depth_buffer_size =
 DEPTH_WIDTH*DEPTH_HEIGHT*sizeof(unsigned short);
 unsigned short *depth_frame = (unsigned
 short*)malloc(depth_buffer_size);
 char *depth_frame_pointer = (char*)depth_frame;
 //read the binary file
 ifstream myfile;
 myfile.open (file_path, ios::binary | ios::in);
 myfile.read(depth_frame_pointer, depth_buffer_size);
 return depth_frame;
}
unsigned char *readColorFrame(const char *file_path){
 int color_buffer_size =
 DEPTH_WIDTH*DEPTH_HEIGHT*sizeof(unsigned char)*3;
 unsigned char *color_frame = (unsigned
 char*)malloc(color_buffer_size);
 //read the binary file
 ifstream myfile;
 myfile.open (file_path, ios::binary | ios::in);
 myfile.read((char *)color_frame, color_buffer_size);
 return color_frame;
}

5. Create callback functions to handle key strokes:
static void key_callback(GLFWwindow* window, int key, int
 scancode, int action, int mods)
{
 if (action != GLFW_PRESS && action != GLFW_REPEAT)
 return;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

130

 switch (key)
 {
 case GLFW_KEY_ESCAPE:
 glfwSetWindowShouldClose(window, GL_TRUE);
 break;
 case GLFW_KEY_SPACE:
 rotateX=0;
 rotateY=0;
 break;
 case GLFW_KEY_Z:
 rotateX+=0.01;
 break;
 case GLFW_KEY_X:
 rotateX-=0.01;
 break;
 case GLFW_KEY_A:
 rotateY+=0.01;
 break;
 case GLFW_KEY_S:
 rotateY-=0.01;
 break;
 default:
 break;
 }
}

6. Start the main program with the initialization of the GLFW library:
int main(int argc, char **argv)
{
 if(!glfwInit()){
 fprintf(stderr, "Failed to initialize GLFW\n");
 exit(EXIT_FAILURE);
 }

7. Set up the GLFW window:
 glfwWindowHint(GLFW_SAMPLES, 4);
 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 2);
 glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
 glfwWindowHint(GLFW_OPENGL_PROFILE,
 GLFW_OPENGL_CORE_PROFILE);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

131

8. Create the GLFW window object and make it current for the calling thread:
 g_window = glfwCreateWindow(WINDOWS_WIDTH,
 WINDOWS_HEIGHT, "Chapter 5 - 3D Point Cloud
 Rendering", NULL, NULL);
 if(!g_window){
 fprintf(stderr, "Failed to open GLFW window. If you
 have an Intel GPU, they are not 3.3 compatible. Try
 the 2.1 version of the tutorials.\n");
 glfwTerminate();
 exit(EXIT_FAILURE);
 }
 glfwMakeContextCurrent(g_window);
 glfwSwapInterval(1);

9. Initialize the GLEW library and include support for experimental drivers:
 glewExperimental = true;
 if (glewInit() != GLEW_OK) {
 fprintf(stderr, "Final to Initialize GLEW\n");
 glfwTerminate();
 exit(EXIT_FAILURE);
 }

10. Set up keyboard callback:
 glfwSetInputMode(g_window,GLFW_STICKY_KEYS,GL_TRUE);
 glfwSetKeyCallback(g_window, key_callback);

11. Set up the shader programs:
 GLuint program_id = LoadShaders("pointcloud.vert",
 "pointcloud.frag");

12. Create the vertex (x, y, z) for all depth pixels:
 GLfloat *g_vertex_buffer_data =
 (GLfloat*)malloc(IMAGE_WIDTH*IMAGE_HEIGHT *
 3*sizeof(GLfloat));
 GLfloat *g_uv_buffer_data =
 (GLfloat*)malloc(IMAGE_WIDTH*IMAGE_HEIGHT *
 2*sizeof(GLfloat));

13. Read the raw data using the helper functions defined previously:
 unsigned short *depth_frame =
 readDepthFrame("depth_frame0.bin");
 unsigned char *color_frame =
 readColorFrame("color_frame0.bin");

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

132

14. Load the color information into a texture object:
 GLuint texture_id = loadRGBImageToTexture(color_frame,
 IMAGE_WIDTH, IMAGE_HEIGHT);

15. Create a set of vertices in a real-world space based on the depth map and also define
the UV mapping for the color mapping:
 //divided by two due to 320x240 instead of 640x480 resolution
 float cx = 320.0f/2.0f;
 float cy = 240.0f/2.0f;
 float fx = 574.0f/2.0f;
 float fy = 574.0f/2.0f;
 for(int y=0; y<IMAGE_HEIGHT; y++){
 for(int x=0; x<IMAGE_WIDTH; x++){
 int index = y*IMAGE_WIDTH+x;
 float depth_value =
 (float)depth_frame[index]/1000.0f; //in meter
 int ver_index = index*3;
 int uv_index = index*2;
 if(depth_value != 0){
 g_vertex_buffer_data[ver_index+0] = ((float)x-
 cx)*depth_value/fx;
 g_vertex_buffer_data[ver_index+1] = ((float)y-
 cy)*depth_value/fy;
 g_vertex_buffer_data[ver_index+2] = -depth_value;
 g_uv_buffer_data[uv_index+0] =
 (float)x/IMAGE_WIDTH;
 g_uv_buffer_data[uv_index+1] =
 (float)y/IMAGE_HEIGHT;
 }
 }
 }
 //Enable depth test to ensure occlusion:
 //uncommented glEnable(GL_DEPTH_TEST);

16. Get the location for various uniform and attribute variables:
 GLuint matrix_id = glGetUniformLocation(program_id,
 "MVP");
 GLuint texture_sampler_id =
 glGetUniformLocation(program_id, "textureSampler");
 GLint attribute_vertex, attribute_uv;
 attribute_vertex = glGetAttribLocation(program_id,
 "vertexPosition_modelspace");
 attribute_uv = glGetAttribLocation(program_id,
 "vertexUV");

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

133

17. Generate the vertex array object:
 GLuint vertex_array_id;
 glGenVertexArrays(1, &vertex_array_id);
 glBindVertexArray(vertex_array_id);

18. Initialize the vertex buffer memory:
 GLuint vertex_buffer;
 glGenBuffers(1, &vertex_buffer);
 glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
 glBufferData(GL_ARRAY_BUFFER,
IMAGE_WIDTH*IMAGE_HEIGHT*2* sizeof(GLfloat),
g_uv_buffer_data, GL_STATIC_DRAW);

19. Create and bind the UV buffer memory:
 GLuint uv_buffer;
 glGenBuffers(1, &uv_buffer);
 glBindBuffer(GL_ARRAY_BUFFER, uv_buffer);
 glBufferData(GL_ARRAY_BUFFER,
IMAGE_WIDTH*IMAGE_HEIGHT*3* sizeof(GLfloat),
g_vertex_buffer_data, GL_STATIC_DRAW);

20. Use our shader program:
 glUseProgram(program_id);

21. Bind the texture in Texture Unit 0:
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, texture_id);
 glUniform1i(texture_sampler_id, 0);

22. Set up attribute buffers for vertices and UV mapping:
 glEnableVertexAttribArray(attribute_vertex);
 glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
 glVertexAttribPointer(attribute_vertex, 3, GL_FLOAT,
 GL_FALSE, 0, (void*)0);
 glEnableVertexAttribArray(attribute_uv);
 glBindBuffer(GL_ARRAY_BUFFER, uv_buffer);
 glVertexAttribPointer(attribute_uv, 2, GL_FLOAT,
 GL_FALSE, 0, (void*)0);

23. Run the draw functions and loop:
 do{
 //clear the screen
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glClearColor(1.0f, 1.0f, 1.0f, 0.0f);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

134

 //compute the MVP matrix from keyboard and mouse input
 computeViewProjectionMatrices(g_window);
 //get the View and Model Matrix and apply to the rendering
 glm::mat4 projection_matrix = getProjectionMatrix();
 glm::mat4 view_matrix = getViewMatrix();
 glm::mat4 model_matrix = glm::mat4(1.0);
 model_matrix = glm::rotate(model_matrix,
 glm::pi<float>() * rotateY, glm::vec3(0.0f, 1.0f, 0.0f));
 model_matrix = glm::rotate(model_matrix,
 glm::pi<float>() * rotateX, glm::vec3(1.0f, 0.0f, 0.0f));
 glm::mat4 mvp = projection_matrix * view_matrix *
 model_matrix;
 //send our transformation to the currently bound
 //shader in the "MVP" uniform variable
 glUniformMatrix4fv(matrix_id, 1, GL_FALSE,
 &mvp[0][0]);
 glPointSize(2.0f);
 //draw all points in space
 glDrawArrays(GL_POINTS, 0, IMAGE_WIDTH*IMAGE_HEIGHT);
 //swap buffers
 glfwSwapBuffers(g_window);
 glfwPollEvents();
 }
 // Check if the ESC key was pressed or the window was closed
 while(!glfwWindowShouldClose(g_window) &&
 glfwGetKey(g_window, GLFW_KEY_ESCAPE)!=GLFW_PRESS);

24. Clean up and exit the program:
 glDisableVertexAttribArray(attribute_vertex);
 glDisableVertexAttribArray(attribute_uv);
 glDeleteBuffers(1, &vertex_buffer);
 glDeleteBuffers(1, &uv_buffer);
 glDeleteProgram(program_id);
 glDeleteTextures(1, &texture_id);
 glDeleteVertexArrays(1, &vertex_array_id);
 glfwDestroyWindow(g_window);
 glfwTerminate();
 exit(EXIT_SUCCESS);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

135

25. In texture.cpp, we implement the additional image-loading functions based on the
previous chapter:
/* Handle loading images to texture memory and setting
 up the parameters */
GLuint loadRGBImageToTexture(const unsigned char *
 image_buffer, int width, int height){
 int channels;
 GLuint textureID=0;
 textureID=initializeTexture(image_buffer, width,
 height, GL_RGB);
 return textureID;
}
GLuint initializeTexture(const unsigned char *image_data,
 int width, int height, GLenum input_format){
 GLuint textureID=0;
 //for the first time we create the image,
 //create one texture element
 glGenTextures(1, &textureID);
 //bind the one element
 glBindTexture(GL_TEXTURE_2D, textureID);
 glPixelStorei(GL_UNPACK_ALIGNMENT,1);
 /* Specify the target texture. Parameters describe the
 format and type of image data */
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0,
 input_format, GL_UNSIGNED_BYTE, image_data);
 /* Set the magnification method to linear, which returns
 an weighted average of 4 texture elements */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
 GL_CLAMP);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
 GL_CLAMP);
 /* Set the magnification method to linear, which //returns
 an weighted average of 4 texture elements */
 //closest to the center of the pixel
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
 GL_LINEAR);
 /* Choose the mipmap that most closely matches the size
 of the pixel being textured and use the GL_NEAREST
 criterion (texture element nearest to the center of
 the pixel) to produce texture value. */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
 GL_LINEAR_MIPMAP_LINEAR);
 glGenerateMipmap(GL_TEXTURE_2D);
 return textureID;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

136

26. In texture.hpp, we simply define the function prototypes:
GLuint loadRGBImageToTexture(const unsigned char
 *image_data, int width, int height);
GLuint initializeTexture(const unsigned char *image_data,
 int width, int height, GLenum input_format = GL_RGBA);

27. In control.cpp, we modify the computeViewProjectionMatrices function
with the following code to support additional translation controls:

//initial position of the camera
glm::vec3 g_position = glm::vec3(0, 0, 3.0);
const float speed = 3.0f; // 3 units / second
float g_initial_fov = glm::pi<float>()*0.25f;
//compute the view matrix and projection matrix based on
//user input
void computeViewProjectionMatrices(GLFWwindow* window){
 static double last_time = glfwGetTime();
 // Compute time difference between current and last frame
 double current_time = glfwGetTime();
 float delta_time = float(current_time - last_time);
 int width, height;
 glfwGetWindowSize(window, &width, &height);
 //direction vector for movement
 glm::vec3 direction_z(0, 0, -0.5);
 glm::vec3 direction_y(0, 0.5, 0);
 glm::vec3 direction_x(0.5, 0, 0);
 //up vector
 glm::vec3 up = glm::vec3(0,-1,0);
 if (glfwGetKey(window, GLFW_KEY_UP) == GLFW_PRESS){
 g_position += direction_y * delta_time * speed;
 }
 else if (glfwGetKey(window, GLFW_KEY_DOWN) ==
 GLFW_PRESS){
 g_position -= direction_y * delta_time * speed;
 }
 else if (glfwGetKey(window, GLFW_KEY_RIGHT) ==
 GLFW_PRESS){
 g_position += direction_z * delta_time * speed;
 }
 else if (glfwGetKey(window, GLFW_KEY_LEFT) ==
 GLFW_PRESS){
 g_position -= direction_z * delta_time * speed;
 }
 else if (glfwGetKey(window, GLFW_KEY_PERIOD) ==
 GLFW_PRESS){
 g_position -= direction_x * delta_time * speed;
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

137

 else if (glfwGetKey(window, GLFW_KEY_COMMA) ==
 GLFW_PRESS){
 g_position += direction_x * delta_time * speed;
 }
 /* update projection matrix: Field of View, aspect ratio,
 display range : 0.1 unit <-> 100 units */
 g_projection_matrix = glm::perspective(g_initial_fov,
 (float)width/(float)height, 0.01f, 100.0f);

 // update the view matrix
 g_view_matrix = glm::lookAt(
 g_position, // camera position
 g_position+direction_z, //viewing direction
 up // up direction
);
 last_time = current_time;
}

Now we have created a way to visualize the depth sensor information in a 3D fly-through style;
the following figure shows the rendering of the point cloud with a virtual camera at the central
position of the frame:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

138

By rotating and translating the virtual camera, we can create various representations of the
scene from different perspectives. With a bird's eye view or side view of the scene, we can see
the contour of the face and hand more apparently from these two angles, respectively:

This is the side view of the same scene:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 5

139

By adding an additional condition to the remapping loop, we can render the unknown regions
(holes) from the scene where the depth camera fails to reconstruct due to occlusion, field of
view limitation, range limitation, and/or surface properties such as reflectance:

if(depth_value != 0){
 g_vertex_buffer_data[ver_index+0] = ((float)x-cx)*depth_value/fx;
 g_vertex_buffer_data[ver_index+1] = ((float)y-cy)*depth_value/fy;
 g_vertex_buffer_data[ver_index+2] = -depth_value;
 g_uv_buffer_data[uv_index+0] = (float)x/IMAGE_WIDTH;
 g_uv_buffer_data[uv_index+1] = (float)y/IMAGE_HEIGHT;
}
else{
 g_vertex_buffer_data[ver_index+0] = ((float)x-cx)*0.2f/fx;
 g_vertex_buffer_data[ver_index+1] = ((float)y-cy)*0.2f/fy;
 g_vertex_buffer_data[ver_index+2] = 0;
}

This condition allows us to segment the region and project the regions with depth values of 0
onto a plane that is 0.2 meters away from the virtual camera, as shown in the following figure:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering of Point Cloud Data for 3D Range-sensing Cameras

140

How it works...
In this chapter, we exploited the GLSL pipeline and texture-mapping technique to create an
interactive point cloud visualization tool that enables the 3D navigation of a scene captured
with a 3D range-sensing camera. The shader program also combines the result with the color
image to produce our desired effect. The program reads two binary images: the calibrated
depth map image and the RGB color image. The color is loaded into a texture object directly
using the new loadRGBImageToTexture() function, which converts the data from GL_
RGB to GL_RGBA. Then, the depth map data is converted into point cloud data in real-world
coordinates based on the intrinsic value of the cameras as well as the depth value at each
pixel, as follows:

() () ()), , Z / , / , /1000x x y yX Y d x c f d y c f d= − −

Here, d is the depth value in millimeter, x and y are the positions of the depth value in pixel
(projective) space, xc and yc are the principle axes of the depth camera, xf and yf are the
focal lengths of the camera, and (), ,X Y Z is the position of the point cloud in the real-world
coordinate.

In our example, we do not require fine alignment or registration as our visualizer uses a
primitive estimation of the intrinsic parameters:

320, 240,

574, 574
x y

x y

c c
f f
= =

= =

These numbers could be estimated with the camera calibration tools in OpenCV. The details of
these tools are beyond the scope of this chapter.

For our application, we are provided a set of 3D points (x, y, z) as well as the corresponding
color information (r, g, b) to compute the point cloud representation. However, the point
visualization does not support dynamic lighting and other more advanced rendering
techniques. To address this, we can extend the point cloud further into a mesh (that is,
a set of triangles to represent surfaces), which will be discussed in the next chapter.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

141

6
Rendering Stereoscopic

3D Models using
OpenGL

In this chapter, we will cover the following topics:

 f Installing the Open Asset Import Library (Assimp)

 f Loading the first 3D model in the Wavefront Object (.obj) format

 f Rendering 3D models with points, lines, and triangles

 f Stereoscopic 3D rendering

Introduction
In this chapter, we will demonstrate how to visualize data with stunning stereoscopic 3D
technology using OpenGL. Stereoscopic 3D devices are becoming increasingly popular, and
the latest generation's wearable computing devices (such as the 3D vision glasses from
NVIDIA, Epson, and more recently, the augmented reality 3D glasses from Meta) can now
support this feature natively.

The ability to visualize data in a stereoscopic 3D environment provides a powerful and highly
intuitive platform for the interactive display of data in many applications. For example, we may
acquire data from the 3D scan of a model (such as in architecture, engineering, and dentistry
or medicine) and would like to visualize or manipulate 3D objects in real time.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

142

Unfortunately, OpenGL does not provide any mechanism to load, save, or manipulate 3D
models. Thus, to support this, we will integrate a new library named Open Asset Import
Library (Assimp) into our code. The source code in this chapter is built on top of the OpenGL
point cloud rendering with texture mapping and overlays recipe in Chapter 5, Rendering of
Point Cloud Data for 3D Range-sensing Cameras. The main dependencies include the GLFW
library that requires OpenGL version 3.2 and higher. We will assume that you have all the
prerequisite packages installed from earlier chapters.

Installing the Open Asset Import Library
(Assimp)

Assimp is an open source library that loads and processes 3D geometric scenes from various
3D model data formats. The library provides a unified interface to load many different data
formats, such as Wavefront Object (.obj), 3ds Max 3DS (.3ds), and Stereolithography (.stl).
Moreover, this library is written in portable, ISO-compliant C++, and thus, it allows further
customization and long-term support. Since the library is cross-platform, we can easily install
it in Mac OS X, Linux, as well as Windows with the instructions given in the next section.

How to do it...
To obtain the library source files or binary library for Assimp 3.0, download them directly from
Assimp's official website at http://sourceforge.net/projects/assimp/files/
assimp-3.0/. Alternatively, for Linux and Mac OS X users, use the command-line interface
to simplify the installation steps described next.

In Mac OS X, install Assimp using the MacPort's command-line interface. It automatically
resolves all dependencies, so this is recommended:

sudo port install assimp

In Linux, install Assimp using the apt-get command interface:

sudo apt-get install install libassimp-dev

After the installation, modify the Makefile to ensure the libraries are linked to the source files
by appending the following to the LIBS variable:

`pkg-config --static --libs assimp`

and the INCLUDES path variable, respectively:

`pkg-config --cflags assimp`

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://sourceforge.net/projects/assimp/files/assimp-3.0/
http://sourceforge.net/projects/assimp/files/assimp-3.0/
http://www.it-ebooks.info/

Chapter 6

143

The final Makefile is shown here for your reference:

PKG_CONFIG_PATH=/usr/local/lib/pkgconfig/

CFILES = ../common/shader.cpp ../common/controls.cpp ../common/ObjLoader.
cpp main.cpp

CFLAGS = -c

OPT = -O3

INCLUDES = -I../common -I/usr/include -I/usr/include/SOIL -I. `pkg-
config --cflags glfw3` `pkg-config --cflags assimp`

LIBS = -lm -L/usr/local/lib -lGLEW `pkg-config --static --libs glfw3`
`pkg-config --static --libs assimp`

CC = g++

OBJECTS=$(CFILES:.cpp=.o)

EXECUTABLE=main

all: $(CFILES) $(EXECUTABLE)

$(EXECUTABLE): $(OBJECTS)

$(CC) $(OPT) $(INCLUDES) $(OBJECTS) -o $@ $(LIBS)

.cpp.o:

$(CC) $(OPT) $(CFLAGS) $(INCLUDES) $< -o $@

clean:

rm -v -f *~ ../common/*.o *.o $(EXECUTABLE)

To install Assimp in Windows, first, download the binary library from this link:
http://sourceforge.net/projects/assimp/files/assimp-3.0/assimp--
3.0.1270-full.zip/download.

Then, we configure the environment with the following steps:

1. Unpack assimp--3.0.1270-full.zip and save it in C:/Program Files
(x86)/.

2. Add the DLL path, C:/Program Files (x86)/assimp--3.0.1270-sdk/bin/
assimp_release-dll_win32, to the PATH environment variable.

3. Include the CMakeLists.txt file to the project:

cmake_minimum_required (VERSION 2.8)
set(CMAKE_CONFIGURATION_TYPES Debug Release)
set(PROGRAM_PATH "C:/Program Files \(x86\)")
set(OpenCV_DIR ${PROGRAM_PATH}/opencv/build)
project (code)
#modify these path based on your configuration
#OpenCV
find_package(OpenCV REQUIRED)
INCLUDE_DIRECTORIES(${OpenCV_INCLUDE_DIRS})
INCLUDE_DIRECTORIES(${PROGRAM_PATH}/glm)

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://sourceforge.net/projects/assimp/files/assimp-3.0/assimp--3.0.1270-full.zip/download
http://sourceforge.net/projects/assimp/files/assimp-3.0/assimp--3.0.1270-full.zip/download
http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

144

INCLUDE_DIRECTORIES(${PROGRAM_PATH}/glew-1.10.0/include)
LINK_DIRECTORIES(${PROGRAM_PATH}/glew-
 1.10.0/lib/Release/Win32)
INCLUDE_DIRECTORIES(${PROGRAM_PATH}/glfw-3.0.4/include)
LINK_DIRECTORIES(${PROGRAM_PATH}/glfw-3.0.4/lib)
INCLUDE_DIRECTORIES(${PROGRAM_PATH}/Simple\ OpenGL\ Image\
 Library/src)
INCLUDE_DIRECTORIES(${PROGRAM_PATH}/assimp--3.0.1270-
 sdk/include/assimp)
LINK_DIRECTORIES(${PROGRAM_PATH}/assimp--3.0.1270-
 sdk/lib/assimp_release-dll_win32)
add_subdirectory (../common common)
add_executable (main main.cpp)
target_link_libraries (main LINK_PUBLIC shader controls
 texture glew32s glfw3 opengl32 assimp ObjLoader)

Finally, generate the build files with the same steps as described in Chapter 4, Rendering 2D
Images and Videos with Texture Mapping and Chapter 5, Rendering of Point Cloud Data for
3D Range-sensing Cameras.

See also
In addition to importing 3D model objects, Assimp also supports the exporting of 3D models
in .obj, .stl, and .ply formats. By combining this library with the OpenGL graphics
rendering engine, we have created a simple yet powerful mechanism to visualize and
exchange 3D models collaboratively or remotely. The Assimp library can also handle some
postprocessing tasks of 3D scenes after importing the model (for example, splitting large
meshes to overcome certain GPU limitations on vertex count). These additional features
are documented on the official website and may be of interest to advanced users
(http://assimp.sourceforge.net/lib_html/index.html).

Loading the first 3D model in the Wavefront
Object (.obj) format

Now, we are ready to integrate a 3D object loader into our code. The first step is to create an
empty class called ObjLoader along with the source (.cpp) and header (.h) files. This class
handles all the functions related to 3D object loading, parsing, and drawing using the OpenGL
and Assimp libraries. The headers of the class will include the Assimp core functions for the
handling of the data structures and all I/O mechanisms of the 3D data format:

#include <cimport.h>
#include <scene.h>
#include <postprocess.h>

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://assimp.sourceforge.net/lib_html/index.html
http://www.it-ebooks.info/

Chapter 6

145

In the ObjLoader.h file, we provide interfaces for the main program to create, destroy,
load, and display the 3D data. In the ObjLoader.cpp file, we implement a set of functions
to parse the scene (a hierarchical representation of the 3D objects in terms of meshes and
faces) using the built-in functions from Assimp.

The Assimp library can support various 3D model data formats; however, in our example,
we will focus on the Wavefront Object (.obj) format due to its simplicity. The .obj file is a
simple geometric definition file that was first developed by Wavefront Technologies. The file
contains the core elements of graphics, such as vertex, vertex position, normal face and so
on, and is stored in a simple text format. Since the files are stored in ASCII text, we can easily
open and examine the files without any parsers. For example, the following is the .obj file of
a front-facing square:

This is a comment.
Front facing square.
vertices [x, y, z]
v 0 0 0 # Bottom left.
v 1 0 0 # Bottom right.
v 1 1 0 # Top right.
v 0 1 0 # Top left.
List of faces:
f 1 2 3 4 # Square.

As we can see from the preceding example, the representation is quite simple and intuitive
for beginners. The vertices can be read and extracted one line at a time, and then they can
be modified.

In the next section, we will show the full implementation, which allows users to load the
.obj file, store the scene in a vertex buffer object, and display the scene.

How to do it...
First, we create the ObjLoader.h file in the common folder and append the class function
definitions and variables that will be used in our implementation:

#ifndef OBJLOADER_H_
#define OBJLOADER_H_
/* Assimp include files. These three are usually needed. */
#include <cimport.h>
#include <scene.h>
#include <postprocess.h>
#include <common.h>
#define aisgl_min(x,y) (x<y?x:y)
#define aisgl_max(x,y) (y>x?y:x)
class ObjLoader {

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

146

 public:
 ObjLoader();
 virtual ~ObjLoader();
 int loadAsset(const char* path);
 void setScale(float scale);
 unsigned int getNumVertices();
 void draw(const GLenum draw_mode);
 void loadVertices(GLfloat *g_vertex_buffer_data);
private:
 //helper functions and variables
 const struct aiScene* scene;
 GLuint scene_list;
 aiVector3D scene_min, scene_max, scene_center;
 float g_scale;
 unsigned int num_vertices;
 unsigned int recursiveDrawing(const struct aiNode* nd,
 unsigned int v_count, const GLenum);
 unsigned int recursiveVertexLoading(const struct aiNode *nd,
 GLfloat *g_vertex_buffer_data, unsigned int v_counter);
 unsigned int recursiveGetNumVertices(const struct aiNode *nd);
 void get_bounding_box (aiVector3D* min, aiVector3D* max);
 void get_bounding_box_for_node (const struct aiNode* nd,
 aiVector3D* min, aiVector3D* max, aiMatrix4x4* trafo);
};
#endif

The names of classes from the Assimp library are preceded by the prefix ai- (for example,
aiScene and aiVector3D). The ObjLoader file provides ways to dynamically load and draw
the object loaded into the memory. It also handles simple dynamic scaling so that the object
will fit on the screen.

In the source file, ObjLoader.cpp, we start by adding the constructor for the class:

#include <ObjLoader.h>
ObjLoader::ObjLoader() {
 g_scale=1.0f;
 scene = NULL; //empty scene
 scene_list = 0;
 num_vertices = 0;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 6

147

Then, we implement the file-loading mechanism with the aiImportFile function. The scene
is processed to extract the bounding box size for proper scaling to fit the screen. The number
of vertices of the scene is then used to allow dynamic vertex buffer creation in later steps:

int ObjLoader::loadAsset(const char *path){
 scene = aiImportFile(path,
 aiProcessPreset_TargetRealtime_MaxQuality);
 if (scene) {
 get_bounding_box(&scene_min,&scene_max);
 scene_center.x = (scene_min.x + scene_max.x) / 2.0f;
 scene_center.y = (scene_min.y + scene_max.y) / 2.0f;
 scene_center.z = (scene_min.z + scene_max.z) / 2.0f;
 printf("Loaded file %s\n", path);
 g_scale =4.0/(scene_max.x-scene_min.x);

 printf("Scaling: %lf", g_scale);
 num_vertices = recursiveGetNumVertices(scene->mRootNode);
 printf("This Scene has %d vertices.\n", num_vertices);
 return 0;
 }
 return 1;
}

To extract the total number of vertices required to draw the scene, we recursively walk through
every node in the tree hierarchy. The implementation requires a simple recursive function that
returns the number of vertices in each node, and then the total is calculated based on the
summation of all nodes upon the return of the function:

unsigned int ObjLoader::recursiveGetNumVertices(const struct
 aiNode *nd){
 unsigned int counter=0;
 unsigned int i;
 unsigned int n = 0, t;
 // draw all meshes assigned to this node
 for (; n < nd->mNumMeshes; ++n) {
 const struct aiMesh* mesh = scene-> mMeshes[nd->mMeshes[n]];
 for (t = 0; t < mesh->mNumFaces; ++t) {
 const struct aiFace* face = &mesh-> mFaces[t];
 counter+=3*face->mNumIndices;
 }
 printf("recursiveGetNumVertices: mNumFaces %d\n",
 mesh->mNumFaces);
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

148

 //traverse all children nodes
 for (n = 0; n < nd->mNumChildren; ++n) {
 counter+=recursiveGetNumVertices(nd-> mChildren[n]);
 }
 printf("recursiveGetNumVertices: counter %d\n", counter);
 return counter;
}

Similarly, to calculate the size of the bounding box (that is, the minimum volume that is
required to contain the scene), we recursively examine each node and extract the points
that are farthest away from the center of the object:

void ObjLoader::get_bounding_box (aiVector3D* min,
 aiVector3D* max)
{
 aiMatrix4x4 trafo;
 aiIdentityMatrix4(&trafo);
 min->x = min->y = min->z = 1e10f;
 max->x = max->y = max->z = -1e10f;
 get_bounding_box_for_node(scene-> mRootNode,min,max,&trafo);
}
void ObjLoader::get_bounding_box_for_node (const struct aiNode*
 nd, aiVector3D* min, aiVector3D* max, aiMatrix4x4* trafo)
{
 aiMatrix4x4 prev;
 unsigned int n = 0, t;
 prev = *trafo;
 aiMultiplyMatrix4(trafo,&nd->mTransformation);
 for (; n < nd->mNumMeshes; ++n) {
 const struct aiMesh* mesh = scene-> mMeshes[nd->mMeshes[n]];
 for (t = 0; t < mesh->mNumVertices; ++t) {
 aiVector3D tmp = mesh->mVertices[t];
 aiTransformVecByMatrix4(&tmp,trafo);
 min->x = aisgl_min(min->x,tmp.x);
 min->y = aisgl_min(min->y,tmp.y);
 min->z = aisgl_min(min->z,tmp.z);
 max->x = aisgl_max(max->x,tmp.x);
 max->y = aisgl_max(max->y,tmp.y);
 max->z = aisgl_max(max->z,tmp.z);
 }
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 6

149

 for (n = 0; n < nd->mNumChildren; ++n) {
 get_bounding_box_for_node(nd-> mChildren[n],min,max,trafo);
 }
 *trafo = prev;
}

The resulting bounding box allows us to calculate the scaling factor and recenter the object
coordinate to fit within the viewable screen.

In the main.cpp file, we integrate the code by first inserting the header file:

#include <ObjLoader.h>

Then, we create the ObjLoader object and load the model with the given filename in the
main function:

ObjLoader *obj_loader = new ObjLoader();
int result = 0;
if(argc > 1){
 result = obj_loader->loadAsset(argv[1]);
}
else{
 result = obj_loader-> loadAsset("dragon.obj");
}
if(result){
 fprintf(stderr, "Final to Load the 3D file\n");
 glfwTerminate();
 exit(EXIT_FAILURE);
}

The ObjLoader contains an algorithm that recursively examines each mesh and computes
the bounding box and the number of vertices in the scene. Then, we dynamically allocate the
vertex buffer based on the number of vertices and load the vertices into the buffer:

GLfloat *g_vertex_buffer_data = (GLfloat*)
malloc (obj_loader->getNumVertices()*sizeof(GLfloat));
//load the scene data to the vertex buffer
obj_loader->loadVertices(g_vertex_buffer_data);

Now, we have all the necessary vertex information for display with our custom shader program
written in OpenGL.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

150

How it works...
Assimp provides the mechanism to load and parse the 3D data format efficiently. The key
feature we utilized is the hierarchical way to import 3D objects, which allows us to unify our
rendering pipeline regardless of the 3D format. The aiImportFile function reads the given
file and returns its content in the aiScene structure. The second parameter of this function
specifies the optional postprocessing steps to be executed after a successful import. The
aiProcessPreset_TargetRealtime_MaxQuality flag is a predefined variable, which
combines the following set of parameters:

(\
 aiProcessPreset_TargetRealtime_Quality | \
 aiProcess_FindInstances | \
 aiProcess_ValidateDataStructure | \
 aiProcess_OptimizeMeshes | \
 aiProcess_Debone | \
0)

These postprocessing options are described in further detail at http://assimp.
sourceforge.net/lib_html/postprocess_8h.html#a64795260b95f5a4b3f3d
c1be4f52e410. Advanced users can look into each option and understand whether these
functions need to be enabled or disabled based on the content.

At this point, we have a simple mechanism to load graphics into the Assimp aiScene object,
present the bounding box size, as well as extract the number of vertices required to render
the scene. Next, we will create a simple shader program as well as various drawing functions
to visualize the content with different styles. In short, by integrating this with the OpenGL
graphics rendering engine, we now have a flexible way to visualize 3D models using the
various tools we developed in the previous chapters.

Rendering 3D models with points, lines, and
triangles

The next step after importing the 3D model is to display the content on the screen using an
intuitive and aesthetically pleasing way. Many complex scenes consist of multiple surfaces
(meshes) and many vertices. In the previous chapter, we implemented a simple shader
program to visualize the point cloud at various depth values based on a heat map. In this
section, we will utilize very simple primitives (points, lines, and triangles) with transparency
to create skeleton-like rendering effects.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://assimp.sourceforge.net/lib_html/postprocess_8h.html#a64795260b95f5a4b3f3dc1be4f52e410
http://assimp.sourceforge.net/lib_html/postprocess_8h.html#a64795260b95f5a4b3f3dc1be4f52e410
http://assimp.sourceforge.net/lib_html/postprocess_8h.html#a64795260b95f5a4b3f3dc1be4f52e410
http://www.it-ebooks.info/

Chapter 6

151

How to do it...
We will continue the implementation of the ObjLoader class to support loading vertices and
draw the graphics for each mesh in the scene.

In the source file of ObjLoader.cpp, we add a recursive function to extract all vertices from
the scene and store them in a single vertex buffer array. This allows us to reduce the number
of vertex buffers to be managed, thus reducing the complexity of the code:

void ObjLoader::loadVertices(GLfloat *g_vertex_buffer_data)
{
 recursiveVertexLoading(scene->mRootNode, g_vertex_buffer_data,
 0);
}
unsigned int ObjLoader::recursiveVertexLoading (const struct
 aiNode *nd, GLfloat *g_vertex_buffer_data, unsigned int
 v_counter)
{
 unsigned int i;
 unsigned int n = 0, t;
 /* save all data to the vertex array, perform offset and scaling
 to reduce the computation */
 for (; n < nd->mNumMeshes; ++n) {
 const struct aiMesh* mesh = scene-> mMeshes[nd->mMeshes[n]];
 for (t = 0; t < mesh->mNumFaces; ++t) {
 const struct aiFace* face = &mesh->mFaces[t];
 for(i = 0; i < face->mNumIndices; i++) {
 int index = face->mIndices[i];
 g_vertex_buffer_data[v_counter]=
 (mesh->mVertices[index].x-scene_center.x)*g_scale;
 g_vertex_buffer_data[v_counter+1]=
 (mesh->mVertices[index].y-scene_center.y)*g_scale;
 g_vertex_buffer_data[v_counter+2]=
 (mesh->mVertices[index].z-scene_center.z)*g_scale;
 v_counter+=3;
 }
 }
 }
 //traverse all children nodes
 for (n = 0; n < nd->mNumChildren; ++n) {
 v_counter = recursiveVertexLoading(nd-> mChildren[n],
 g_vertex_buffer_data, v_counter);
 }
 return v_counter;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

152

To draw the graphics, we traverse the aiScene object from the root node and draw the
meshes one piece at a time:

void ObjLoader::draw(const GLenum draw_mode){
 recursiveDrawing(scene->mRootNode, 0, draw_mode);
}
unsigned int ObjLoader::recursiveDrawing(const struct aiNode* nd,
 unsigned int v_counter, const GLenum draw_mode){
 /* break up the drawing, and shift the pointer to draw different
 parts of the scene */
 unsigned int i;
 unsigned int n = 0, t;
 unsigned int total_count = v_counter;
 // draw all meshes assigned to this node
 for (; n < nd->mNumMeshes; ++n) {
 unsigned int count=0;
 const struct aiMesh* mesh = scene-> mMeshes[nd->mMeshes[n]];
 for (t = 0; t < mesh->mNumFaces; ++t) {
 const struct aiFace* face = &mesh-> mFaces[t];
 count+=3*face->mNumIndices;
 }
 glDrawArrays(draw_mode, total_count, count);
 total_count+=count;
 }
 v_counter = total_count;
 // draw all children nodes recursively
 for (n = 0; n < nd->mNumChildren; ++n) {
 v_counter = recursiveDrawing(nd-> mChildren[n], v_counter,
 draw_mode);
 }
 return v_counter;
}

In the vertex shader, pointcloud.vert, we compute the color of vertices based on their
positions in space. The remapping algorithm creates a heat map representation of the object
in space, and it serves as an important depth cue for the human eye (depth perception):

#version 150 core
// Input
in vec3 vertexPosition_modelspace;
// Output
out vec4 color_based_on_position;
// Uniform/constant variable.
uniform mat4 MVP;
//heat map generator

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 6

153

vec4 heatMap(float v, float vmin, float vmax){
 float dv;
 float r=1.0f, g=1.0f, b=1.0f;
 if (v < vmin)
 v = vmin;
 if (v > vmax)
 v = vmax;
 dv = vmax - vmin;
 if (v < (vmin + 0.25f * dv)) {
 r = 0.0f;
 g = 4.0f * (v - vmin) / dv;
 } else if (v < (vmin + 0.5f * dv)) {
 r = 0.0f;
 b = 1.0f + 4.0f * (vmin + 0.25f * dv - v) / dv;
 } else if (v < (vmin + 0.75f * dv)) {
 r = 4.0f * (v - vmin - 0.5f * dv) / dv;
 b = 0.0f;
 } else {
 g = 1.0f + 4.0f * (vmin + 0.75f * dv - v) / dv;
 b = 0.0f;
 }
 //with 0.2 transparency - can be dynamic if we pass in variables
 return vec4(r, g, b, 0.2f);
}

void main () {
 // Output position of the vertex, in clip space : MVP * position
 gl_Position = MVP * vec4(vertexPosition_modelspace, 1.0f);
 // remapping the color based on the depth (z) value.
 color_based_on_position = heatMap(vertexPosition_modelspace.z,
 -1.0f, 1.0f);
}

The vertex shader passes the heat-mapped color information along to the fragment
shader through the color_based_on_position variable. Then, the final color is
returned through the fragment shader (pointcloud.frag) directly without further
processing. The implementation of such a simple pipeline is shown as follows:

#version 150 core
out vec4 color;
in vec4 color_based_on_position;
void main(){
 color = color_based_on_position;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

154

Finally, we draw the scene with various styles: lines, points, and triangles with transparency.
The following is the code snippet inside the drawing loop:

//draw the left eye (but full screen)
glViewport(0, 0, width, height);
//compute the MVP matrix from the IOD and virtual image plane distance
computeStereoViewProjectionMatrices(g_window, IOD, depthZ, true);
//get the View and Model Matrix and apply to the rendering
glm::mat4 projection_matrix = getProjectionMatrix();
glm::mat4 view_matrix = getViewMatrix();
glm::mat4 model_matrix = glm::mat4(1.0);
model_matrix = glm::translate(model_matrix, glm::vec3(0.0f, 0.0f,
 -depthZ));
model_matrix = glm::rotate(model_matrix,
glm::pi<float>()*rotateY, glm::vec3(0.0f, 1.0f, 0.0f));
model_matrix = glm::rotate(model_matrix,
glm::pi<float>()*rotateX, glm::vec3(1.0f, 0.0f, 0.0f));
glm::mat4 mvp = projection_matrix * view_matrix * model_matrix;
//send our transformation to the currently bound shader,
//in the "MVP" uniform variable
glUniformMatrix4fv(matrix_id, 1, GL_FALSE, &mvp[0][0]);
/* render scene with different modes that can be enabled separately
 to get different effects */
obj_loader->draw(GL_TRIANGLES);
if(drawPoints)
 obj_loader->draw(GL_POINTS);
if(drawLines)
 obj_loader->draw(GL_LINES);

The series of screenshots that follow illustrate the aesthetically pleasing results we can
achieve with our custom shader. The color mapping based on the depth position using
the heat map shader provides a strong depth perception that helps us understand the
3D structure of the objects more easily. Furthermore, we can enable and disable various
rendering options separately to achieve various effects. For example, the same object can
be rendered with different styles: points, lines, and triangles (surfaces) with transparency.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 6

155

To demonstrate the effects, we will first render two objects with points only. The first example
is a dragon model:

The second example is an architectural model:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

156

The point-based rendering style is great for visualizing a large dataset with unknown relations
or distribution. Next, we will render the same objects with lines only:

Here's the architectural model rendered with lines only:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 6

157

With the lines, now we can see the structure of the object more easily. This rendering
technique is great for simple structures, such as architectural models and other well-defined
models. In addition, we can render the scene with both points and lines enabled, as
shown here:

Here's the architectural model rendered with points and lines enabled:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

158

The combination of both points and lines provides additional visual cue to the structure of
the object (that is, emphasis on the intersection points). Finally, we render the scene with all
options enabled: points, lines, and triangles (surfaces) with transparency:

Here's the architectural model rendered using points, lines and triangles with transparency:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 6

159

The final combination with all the options enabled provides an even more intuitive
visualization of the volume of the object as well as the overall 3D structure. Alternatively,
we can also enable the depth test and render the solid model with no transparency:

Instructions on how to enable/disable these options at runtime are documented in the
source code.

How it works...
By combining the Assimp library and OpenGL, we can now dynamically load 3D models on
the screen and create visually appealing 3D effects through an OpenGL-based interactive
visualization tool.

In ObjLoader.cpp, the loadVertices function converts the scene into a single vertex
buffer array to reduce the complexity of memory management. In particular, this approach
reduces the number of OpenGL memory copies and the number of memory buffers on
the rendering side (that is, glBufferData and glGenBuffers). In addition, the loading
function handles the scaling and centering of vertices based on the bounding box. This step
is critical as most 3D formats do not normalize their coordinate system.

Next, the draw function in ObjLoader.cpp traverses the aiScene object and draws each
part of the scene with the vertex buffer. In the case of point-based rendering, we can skip this
step and directly draw the entire array using glDrawArray because there is no dependency
among the neighboring vertices.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

160

The vertex shader (pointcloud.vert) contains the implementation of the heat map color
generator. The heatmap function takes in three parameters: the input value (that is, the
depth or z value), the minimum value, and maximum value. It returns the heat map color
representation in the RGBA format.

Inside the drawing loop, the computeStereoViewProjectionMatrices function
constructs the view and projection matrices. The details are explained in the next section.

Finally, we can mix and match various rendering techniques; for example, by enabling both
points and lines only for skeleton-based rendering. Various depth visual cues, such as
occlusion and motion parallax, can be easily added by supporting rotation or translation
of the object. To further improve the result, other rendering techniques such as lighting or
shading can be added based on the application requirements.

See also
The Assimp library also supports many file formats in addition to .obj files. For example,
we can load .stl files into our system without changing the source code at all.

To download more 3D models, visit various 3D model-sharing websites such as Makerbot
ThingiVerse (http://www.thingiverse.com/) or Turbosquid (http://www.
turbosquid.com/):

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.thingiverse.com/
http://www.turbosquid.com/
http://www.turbosquid.com/
http://www.it-ebooks.info/

Chapter 6

161

Stereoscopic 3D rendering
3D television and 3D glasses are becoming much more prevalent with the latest trends in
consumer electronics and technological advances in wearable computing. In the market,
there are currently many hardware options that allow us to visualize information with
stereoscopic 3D technology. One common format is side-by-side 3D, which is supported by
many 3D glasses as each eye sees an image of the same scene from a different perspective.
In OpenGL, creating side-by-side 3D rendering requires asymmetric adjustment as well
as viewport adjustment (that is, the area to be rendered) – asymmetric frustum parallel
projection or equivalently to lens-shift in photography. This technique introduces no vertical
parallax and widely adopted in the stereoscopic rendering. To illustrate this concept, the
following diagram shows the geometry of the scene that a user sees from the right eye:

far Z

Screen Viewport

near Z

Intraocular distance /2

Frustum Shift

Intraocular distance /2

Center Eye Viewpoint Right Eye

The intraocular distance (IOD) is the distance between two eyes. As we can see from the
diagram, the Frustum Shift represents the amount of skew/shift for asymmetric frustrum
adjustment. Similarly, for the left eye image, we perform the transformation with a mirrored
setting. The implementation of this setup is described in the next section.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

162

How to do it...
The following code illustrates the steps to construct the projection and view matrices for
stereoscopic 3D visualization. The code uses the intraocular distance, the distance of the
image plane, and the distance of the near clipping plane to compute the appropriate frustum
shifts value. In the source file, common/controls.cpp, we add the implementation for the
stereo 3D matrix setup:

void computeStereoViewProjectionMatrices(GLFWwindow* window,
 float IOD, float depthZ, bool left_eye){
 int width, height;
 glfwGetWindowSize(window, &width, &height);
 //up vector
 glm::vec3 up = glm::vec3(0,-1,0);
 glm::vec3 direction_z(0, 0, -1);
 //mirror the parameters with the right eye
 float left_right_direction = -1.0f;
 if(left_eye)
 left_right_direction = 1.0f;
 float aspect_ratio = (float)width/(float)height;
 float nearZ = 1.0f;
 float farZ = 100.0f;
 double frustumshift = (IOD/2)*nearZ/depthZ;
 float top = tan(g_initial_fov/2)*nearZ;
 float right =
aspect_ratio*top+frustumshift*left_right_direction;
//half screen
 float left =
 -aspect_ratio*top+frustumshift*left_right_direction;
 float bottom = -top;
 g_projection_matrix = glm::frustum(left, right, bottom, top,
 nearZ, farZ);
 // update the view matrix
 g_view_matrix =
 glm::lookAt(
 g_position-direction_z+
 glm::vec3(left_right_direction*IOD/2, 0, 0),
 //eye position
 g_position+
 glm::vec3(left_right_direction*IOD/2, 0, 0),
 //centre position
 up //up direction
);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 6

163

In the rendering loop in main.cpp, we define the viewports for each eye (left and right) and
set up the projection and view matrices accordingly. For each eye, we translate our camera
position by half of the intraocular distance, as illustrated in the previous figure:

if(stereo){
 //draw the LEFT eye, left half of the screen
 glViewport(0, 0, width/2, height);
 //computes the MVP matrix from the IOD and virtual image plane distance
 computeStereoViewProjectionMatrices(g_window, IOD, depthZ, true);
 //gets the View and Model Matrix and apply to the rendering
 glm::mat4 projection_matrix = getProjectionMatrix();
 glm::mat4 view_matrix = getViewMatrix();
 glm::mat4 model_matrix = glm::mat4(1.0);
 model_matrix = glm::translate(model_matrix, glm::vec3(0.0f,
 0.0f, -depthZ));
 model_matrix = glm::rotate(model_matrix, glm::pi<float>() *
 rotateY, glm::vec3(0.0f, 1.0f, 0.0f));
 model_matrix = glm::rotate(model_matrix, glm::pi<float>() *
 rotateX, glm::vec3(1.0f, 0.0f, 0.0f));
 glm::mat4 mvp = projection_matrix * view_matrix * model_matrix;
 //sends our transformation to the currently bound shader,
 //in the "MVP" uniform variable
 glUniformMatrix4fv(matrix_id, 1, GL_FALSE, &mvp[0][0]);
 //render scene, with different drawing modes

 if(drawTriangles)
 obj_loader->draw(GL_TRIANGLES);

 if(drawPoints)
 obj_loader->draw(GL_POINTS);

 if(drawLines)
 obj_loader->draw(GL_LINES);
 //Draw the RIGHT eye, right half of the screen
 glViewport(width/2, 0, width/2, height);
 computeStereoViewProjectionMatrices(g_window, IOD, depthZ,
 false);
 projection_matrix = getProjectionMatrix();
 view_matrix = getViewMatrix();
 model_matrix = glm::mat4(1.0);
 model_matrix = glm::translate(model_matrix, glm::vec3(0.0f,
 0.0f, -depthZ));
 model_matrix = glm::rotate(model_matrix, glm::pi<float>() *
 rotateY, glm::vec3(0.0f, 1.0f, 0.0f));

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

164

 model_matrix = glm::rotate(model_matrix, glm::pi<float>() *
 rotateX, glm::vec3(1.0f, 0.0f, 0.0f));
 mvp = projection_matrix * view_matrix * model_matrix;
 glUniformMatrix4fv(matrix_id, 1, GL_FALSE, &mvp[0][0]);
 if(drawTriangles)
 obj_loader->draw(GL_TRIANGLES);
 if(drawPoints)
 obj_loader->draw(GL_POINTS);
 if(drawLines)
 obj_loader->draw(GL_LINES);
}

The final rendering result consists of two separate images on each side of the display, and
note that each image is compressed horizontally by a scaling factor of two. For some display
systems, each side of the display is required to preserve the same aspect ratio depending on
the specifications of the display.

Here are the final screenshots of the same models in true 3D using stereoscopic 3D rendering:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 6

165

Here's the rendering of the architectural model in stereoscopic 3D:

How it works...
The stereoscopic 3D rendering technique is based on the parallel axis and asymmetric
frustum perspective projection principle. In simpler terms, we rendered a separate image for
each eye as if the object was seen at a different eye position but viewed on the same plane.
Parameters such as the intraocular distance and frustum shift can be dynamically adjusted to
provide the desired 3D stereo effects.

For example, by increasing or decreasing the frustum asymmetry parameter, the object will
appear to be moved in front or behind the plane of the screen. By default, the zero parallax
plane is set to the middle of the view volume. That is, the object is set up so that the center
position of the object is positioned at the screen level, and some parts of the object will
appear in front of or behind the screen. By increasing the frustum asymmetry (that is, positive
parallax), the scene will appear to be pushed behind the screen. Likewise, by decreasing the
frustum asymmetry (that is, negative parallax), the scene will appear to be pulled in front of
the screen.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

166

The glm::frustum function sets up the projection matrix, and we implemented the
asymmetric frustum projection concept illustrated in the drawing. Then, we use the
glm::lookAt function to adjust the eye position based on the IOP value we have selected.

To project the images side by side, we use the glViewport function to constrain the
area within which the graphics can be rendered. The function basically performs an affine
transformation (that is, scale and translation) which maps the normalized device coordinate to
the window coordinate. Note that the final result is a side-by-side image in which the graphic
is scaled by a factor of two vertically (or compressed horizontally). Depending on the hardware
configuration, we may need to adjust the aspect ratio.

The current implementation supports side-by-side 3D, which is commonly used in most
wearable Augmented Reality (AR) or Virtual Reality (VR) glasses. Fundamentally, the
rendering technique, namely the asymmetric frustum perspective projection described
in our chapter, is platform-independent. For example, we have successfully tested our
implementation on the Meta 1 Developer Kit (https://www.getameta.com/products)
and rendered the final results on the optical see-through stereoscopic 3D display:

Here is the front view of the Meta 1 Developer Kit, showing the optical see-through
stereoscopic 3D display and 3D range-sensing camera (introduced in Chapter 5,
Rendering of Point Cloud Data for 3D Range-sensing Cameras):

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://www.getameta.com/products
http://www.it-ebooks.info/

Chapter 6

167

The result is shown as follows, with the stereoscopic 3D graphics rendered onto the real world
(which forms the basis of augmented reality):

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Rendering Stereoscopic 3D Models using OpenGL

168

In the upcoming chapters, we will transition to the increasingly powerful and ubiquitous
mobile platform and introduce how to use OpenGL to visualize data in interesting ways using
built-in motion sensors on mobile devices. Further details on implementing augmented reality
applications will be covered in Chapter 9, Augmented reality-based visualization on mobile or
wearable platforms.

See also
In addition, we can easily extend our code to support shutter glasses-based 3D monitors by
utilizing the Quad Buffered OpenGL APIs (refer to the GL_BACK_RIGHT and GL_BACK_LEFT
flags in the glDrawBuffer function). Unfortunately, such 3D formats require specific
hardware synchronization and often require higher frame rate display (for example, 120Hz) as
well as a professional graphics card. Further information on how to implement stereoscopic
3D in your application can be found at http://www.nvidia.com/content/GTC-2010/
pdfs/2010_GTC2010.pdf.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.nvidia.com/content/GTC-2010/pdfs/2010_GTC2010.pdf
http://www.nvidia.com/content/GTC-2010/pdfs/2010_GTC2010.pdf
http://www.it-ebooks.info/

169

7
An Introduction to

Real-time Graphics
Rendering on a Mobile

Platform using
OpenGL ES 3.0

In this chapter, we will cover the following topics:

 f Setting up the Android SDK

 f Setting up the Android Native Development Kit (NDK)

 f Developing a basic framework to integrate the Android NDK

 f Creating your first Android application with OpenGL ES 3.0

Introduction
In this chapter, we will transition to an increasingly powerful and ubiquitous computing
platform by demonstrating how to visualize data on the latest mobile devices, from smart
phones to tablets, using OpenGL for Embedded Systems (OpenGL ES). As mobile devices
become more ubiquitous and with their increasing computing capability, we now have an
unprecedented opportunity to develop novel interactive data visualization tools using
high-performance graphics hardware directly integrated into modern mobile devices.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

170

OpenGL ES plays an important role in standardizing the 2D and 3D graphics APIs to allow the
large-scale deployment of mobile applications on embedded systems with various hardware
settings. Among the various mobile platforms (predominantly Google Android, Apple iOS, and
Microsoft Windows Phone), the Android mobile operating system is currently one of the most
popular ones. Therefore, in this chapter, we will focus primarily on the development of an
Android-based application (API 18 and higher) using OpenGL ES 3.0, which provides a newer
version of GLSL support (including full support for integer and 32-bit floating point operations)
and enhanced texture rendering support. Nevertheless, OpenGL ES 3.0 is also supported on
other mobile platforms, such as Apple iOS and Microsoft Phone.

Here, we will first introduce how to set up the Android development platform, including the
SDK that provides the essential tools to build mobile applications, and the NDK, which
enables the use of native-code languages (C/C++) for high-performance scientific computing
and simulations by exploiting direct hardware acceleration. We will provide a script to simplify
the process of deploying your first Android-based application on your mobile device.

Setting up the Android SDK
The Google Android OS website provides a standalone package for Android application
development called the Android SDK. It contains all the necessary compilation and debugging
tools to develop an Android application (except native code support, which is provided by the
Android NDK). The upcoming steps explain the installation procedure in Mac OS X or, similarly,
in Linux, with minor modifications to the script and binary packages required.

How to do it...
To install the Android SDK, follow these steps:

1. Download the standalone package from the Android Developers website at
http://dl.google.com/android/android-sdk_r24.3.3-macosx.zip.

2. Create a new directory called 3rd_party/android and move the setup file
into this folder:
mkdir 3rd_party/android
mv android-sdk_r24.3.3-macosx.zip 3rd_party/android

3. Unzip the package:
cd 3rd_party/android && unzip android-sdk_r24.3.3-macosx.zip

4. Execute the Android SDK Manager:
./android-sdk-macosx/tools/android

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://dl.google.com/android/android-sdk_r24.3.3-macosx.zip
http://www.it-ebooks.info/

Chapter 7

171

5. Select Android 4.3.1 (API 18) from the list of packages in addition to the default
options. Deselect Android M (API22, MBC preview) and Android 5.1.1 (API 22).
Press the Install 9 packages... button on the Android SDK Manager screen, as
shown here:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

172

6. Select Accept License and click on the Install button:

7. To verify the installation, type the following command into the terminal:
./android-sdk-macosx/tools/android list

8. This is an example that illustrates the successful installation of the
Android 4.3.1 platform:
Available Android targets:

id: 1 or "android-18"
Name: Android 4.3.1
Type: Platform
API level: 18
Revision: 3
Skins: HVGA, QVGA, WQVGA400, WQVGA432, WSVGA, WVGA800
 (default), WVGA854, WXGA720, WXGA800, WXGA800-7in
Tag/ABIs : default/armeabi-v7a, default/x86
...

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 7

173

9. Finally, we will install Apache Ant to automate the software build process for
Android application development. We can easily obtain the Apache Ant package
by using MacPort with the command line or from its official website at
http://ant.apache.org/:

sudo port install apache-ant

See also
To install the Android SDK in Linux or Windows, download the corresponding installation files
and follow the instructions on the Android developer website at https://developer.
android.com/sdk/index.html.

The setup procedures to set up the Android SDK in Linux are essentially identical using the
command-line interface, except that a different standalone package should be downloaded
using this link: http://dl.google.com/android/android-sdk_r24.3.3-linux.tgz.

In addition, for Windows users, the standalone package can be obtained using this link:
http://dl.google.com/android/installer_r24.3.3-windows.exe.

To verify that your mobile phone has proper OpenGL ES 3.0 support, consult the Android
documentation on how to check the OpenGL ES version at runtime: http://developer.
android.com/guide/topics/graphics/opengl.html#version-check.

Setting up the Android Native Development
Kit (NDK)

The Android NDK environment is essential for native-code language development.
Here, we will outline the setup steps for the Mac OS X platform again.

How to do it...
To install the Android NDK, follow these steps:

1. Download the NDK installation package from the Android developer website
at http://dl.google.com/android/ndk/android-ndk-r10e-
darwin-x86_64.bin.

2. Move the setup file into the same installation folder:
mv android-ndk-r10e-darwin-x86_64.bin 3rd_party/android

3. Set the permission of the file to be an executable:
cd 3rd_party/android && chmod +x android-ndk-r10e-darwin-
 x86_64.bin

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://ant.apache.org/
https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html
http://dl.google.com/android/android-sdk_r24.3.3-linux.tgz
http://dl.google.com/android/installer_r24.3.3-windows.exe
http://developer.android.com/guide/topics/graphics/opengl.html#version-check
http://developer.android.com/guide/topics/graphics/opengl.html#version-check
http://dl.google.com/android/ndk/android-ndk-r10e-darwin-x86_64.bin
http://dl.google.com/android/ndk/android-ndk-r10e-darwin-x86_64.bin
http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

174

4. Run the NDK installation package:
./android-ndk-r10e-darwin-x86_64.bin

5. The installation process is fully automated and the following output confirms the
successful installation of the Android NDK:

...
Extracting android-ndk-r10e/build/tools
Extracting android-ndk-r10e/build/gmsl
Extracting android-ndk-r10e/build/core
Extracting android-ndk-r10e/build/awk
Extracting android-ndk-r10e/build
Extracting android-ndk-r10e

Everything is Ok

See also
To install the Android NDK on Linux or Windows, download the corresponding installation
files and follow the instructions on the Android developer website at https://developer.
android.com/tools/sdk/ndk/index.html.

Developing a basic framework to integrate
the Android NDK

Now that we have successfully installed the Android SDK and NDK, we will demonstrate
how to develop a basic framework to integrate native C/C++ code into a Java-based Android
application. Here, we describe the general mechanism to create high-performance code for
deployment on mobile devices using OpenGL ES 3.0.

OpenGL ES 3.0 supports both Java and C/C++ interfaces. Depending on the specific
requirements of the application, you may choose to implement the solution in Java due to
its flexibility and portability. For high-performance computing and applications that require
a high memory bandwidth, it is preferable that you use the NDK for fine-grain optimization
and memory management. In addition, we can port our existing libraries, such as OpenCV
with Android NDK, using static library linking. The cross-platform compilation capability opens
up many possibilities for real-time image and signal processing on a mobile platform with
minimal development effort.

Here, we introduce a basic framework that consists of three classes: GL3JNIActivity,
GL3JNIView, and GL3JNIActivity. We show a simplified class diagram in the following
figure, illustrating the relationship between the classes. The native code (C/C++) is
implemented separately and will be described in detail in the next section:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://developer.android.com/tools/sdk/ndk/index.html
https://developer.android.com/tools/sdk/ndk/index.html
http://www.it-ebooks.info/

Chapter 7

175

GLSurfaceViewActivity

GL3JNIActivity GL3JNIView

Java

C/C++

JNI

GL3JNILib
native

native

init(int width, int
height)

step()

main_simple.cpp
Java_com_android_gl3jni_GL3JNILib_init(JNIEnv
* env, jobject obj, jint width, jint height)
Java_com_android_gl3jni_GL3JNILib_step(JNIEnv
* env, jobject obj)

main_simple.cpp
setupGraphics(int width,
int height)
renderFrame()

How to do it...
First, we will create the core Java source files that are essential to an Android application.
These files serve as a wrapper for our OpenGL ES 3.0 native code:

1. In the project directory, create a folder named src/com/android/gl3jni with the
following command:
mkdir src/com/android/gl3jni

2. Create the first class, GL3JNIActivity, in the Java source file, GL3JNIActivity.
java, within the new folder, src/com/android/gl3jni/:
package com.android.gl3jni;

import android.app.Activity;
import android.os.Bundle;
/**
 * Main application for Android
 */
public class GL3JNIActivity extends Activity {

 GL3JNIView mView;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

176

 @Override protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 mView = new GL3JNIView(getApplication());
 setContentView(mView);
 }

 @Override protected void onPause() {
 super.onPause();
 mView.onPause();
 }

 @Override protected void onResume() {
 super.onResume();
 mView.onResume();
 }
}

3. Next, implement the GL3JNIView class, which handles the OpenGL rendering setup
in the GL3JNIView.java source file inside src/com/android/gl3jni/:
package com.android.gl3jni;

import android.content.Context;
import android.opengl.GLSurfaceView;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

/**
* A simple application that uses OpenGL ES3 and GLSurface
*/
class GL3JNIView extends GLSurfaceView {
 public GL3JNIView(Context context) {
 super(context);
 /* Pick an EGLConfig with RGB8 color, 16-bit depth,
 no stencil, supporting OpenGL ES 3.0 or later */
 setEGLConfigChooser(8, 8, 8, 0, 16, 0);
 setEGLContextClientVersion(3);
 setRenderer(new Renderer());
 }
 private static class Renderer implements
 GLSurfaceView.Renderer {
 public void onDrawFrame(GL10 gl) {

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 7

177

 GL3JNILib.step();
 }

 public void onSurfaceChanged(GL10 gl, int width,
 int height) {
 GL3JNILib.init(width, height);
 }
 public void onSurfaceCreated(GL10 gl, EGLConfig
 config) {
 }
 }
}

4. Finally, create the GL3JNILib class to handle native library loading and calling in
GL3JNILib.java inside src/com/android/gl3jni:
package com.android.gl3jni;

public class GL3JNILib {
 static {
 System.loadLibrary("gl3jni");
 }

 public static native void init(int width, int height);
 public static native void step();
}

5. Now, in the project directory of the project, add the AndroidManifest.xml
file, which contains all the essential information about your application on the
Android system:
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.android.gl3jni">
 <application android:label=
 "@string/gl3jni_activity">
 <activity android:name="GL3JNIActivity"
android:theme=
 "@android:style/Theme.NoTitleBar.Fullscreen"
 android:launchMode="singleTask"
android:configChanges=
 "orientation|keyboardHidden">

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

178

 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-feature android:glEsVersion="0x00030000"/>
 <uses-sdk android:minSdkVersion="18"/>
</manifest>

6. In the res/values/ directory, add the strings.xml file, which saves our
application's name:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="gl3jni_activity">OpenGL ES Demo</string>
</resources>

How it works...
The following class diagram illustrates the core functions and relationships between the
classes. Similar to all other Android applications with a user interface, we define the Activity
class, which handles the core interactions. The implementation of GL3JNIActivity is
straightforward. It captures the events from the Android application (for example, onPause
and onResume) and also creates an instance of the GL3JNIView class, which handles
graphics rendering. Instead of adding UI elements, such as textboxes or labels, we create a
surface based on GLSurfaceView, which handles hardware-accelerated OpenGL rendering:

GLSurfaceView

GL3JNIActivity

Activity

*1

1

*

GL3JNILibRenderer
*

1

GL3JNIView

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 7

179

The GL3JNIView class is a subclass of the GLSurfaceView class, which provides a
dedicated surface for OpenGL rendering. We choose the RGB8 color mode, a 16-bit depth
buffer, and no stencil with the setEGLConfigChooser function and ensure that the
environment is set up for OpenGL ES 3.0 by using the setEGLContextClientVersion
function. The setRenderer function then registers the custom Renderer class, which is
responsible for the actual OpenGL rendering.

The Renderer class implements the key event functions—onDrawFrame,
onSurfaceChanged, and onSurfaceCreated—in the rendering loop. These functions
connect to the native implementation (C/C++) portion of the code that is handled by the
GL3JNILib class.

Finally, the GL3JNILib class creates the interface to communicate with the native code
functions. First, it loads the native library named gl3jni, which contains the actual OpenGL
ES 3.0 implementation. The function prototypes, step and init, are used to interface with
the native code, which will be defined separately in the next section. Note that we can also
pass in the canvas width and height values to the native functions as parameters.

The AndroidManifest.xml and strings.xml files are the configuration files
required by the Android application, and they must be stored in the root directory of the
project in the XML format. The AndroidManifest.xml file defines all the essential
information including the name of the Java package and the declaration of permission
requirements (for example, file read/write access), as well as the minimum version of the
Android API that the application requires.

See also
For further information on Android application development, the Android Developers website
provides detailed documentation on the API at http://developer.android.com/
guide/index.html.

For further information on using OpenGL ES within an Android application, the Android
programming guide describes the programming workflow in detail and provides useful
examples at http://developer.android.com/training/graphics/opengl/
environment.html.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html
http://developer.android.com/training/graphics/opengl/environment.html
http://developer.android.com/training/graphics/opengl/environment.html
http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

180

Creating your first Android application with
OpenGL ES 3.0

In this section, we will complete our implementation with native code in C/C++ to create
the first Android application with OpenGL ES 3.0. As illustrated in the simplified class diagram,
the Java code only provides the basic interface on the mobile device. Now, on the C/C++
side, we implement all the functionalities previously defined on the Java side and also
include all the required libraries from OpenGL ES 3.0 (inside the main_simple.cpp file).
The main_simple.cpp file also defines the key interface between the C/C++ and Java side
by using the Java Native Interface (JNI):

GL3JNILib
native

native

init(int width, int
height)

step()

GLSurfaceViewActivity

GL3JNIActivity GL3JNIView

Java

C/C++

JNI main_simple.cpp
Java_com_android_gl3jni_GL3JNILib_init(JNIEnv
* env, jobject obj, jint width, jint height)
Java_com_android_gl3jni_GL3JNILib_step(JNIEnv
* env, jobject obj)

main_simple.cpp
setupGraphics(int width,
int height)
renderFrame()

Getting ready
We assume that you have installed all the prerequisite tools from the Android SDK and NDK in
addition to setting up the basic framework introduced in the previous section. Also, you should
review the basics of shader programming, introduced in earlier chapters, before you proceed.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 7

181

How to do it...
Here, we describe the implementation of the OpenGL ES 3.0 native code to complete the
demo application:

1. In the project directory, create a folder named jni by using the following command:
mkdir jni

2. Create a file named main_simple.cpp and store it inside the jni directory.

3. Include all necessary header files for JNI and OpenGL ES 3.0:
//header for JNI
#include <jni.h>

//header for the OpenGL ES3 library
#include <GLES3/gl3.h>

4. Include the logging header and define the macros to show the debug messages:
#include <android/log.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

//android error log interface
#define LOG_TAG "libgl3jni"
#define LOGI(...) __android_log_print(ANDROID_LOG_INFO,LOG_
TAG,__VA_ARGS__)
#define LOGE(...) __android_log_print(ANDROID_LOG_ERROR,LOG_
TAG,__VA_ARGS__)

5. Declare the shader program variables for our demo application:
GLuint gProgram;
GLuint gvPositionHandle;
GLuint gvColorHandle;

int width = 1280;
int height = 720;

6. Define the shader program code for the vertex shader and the fragment shader:
// Vertex shader source code
static const char g_vshader_code[] =
 "#version 300 es\n"
 "in vec4 vPosition;\n"

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

182

 "in vec4 vColor;\n"
 "out vec4 color;\n"
 "void main() {\n"
 " gl_Position = vPosition;\n"
 " color = vColor;\n"
 "}\n";

// fragment shader source code
static const char g_fshader_code[] =
 "#version 300 es\n"
 "precision mediump float;\n"
 "in vec4 color;\n"
 "out vec4 color_out;\n"
 "void main() {\n"
 " color_out = color;\n"
 "}\n";

7. Implement the error call handlers for OpenGL ES, using the Android log:
/**
 * Print out the error string from OpenGL
 */
static void printGLString(const char *name, GLenum s) {
 const char *v = (const char *) glGetString(s);
 LOGI("GL %s = %s\n", name, v);
}

/**
* Error checking with OpenGL calls
*/
static void checkGlError(const char* op) {
 for (GLint error = glGetError(); error; error
 = glGetError()) {
 LOGI("After %s() glError (0x%x)\n", op, error);
 }
}

8. Implement the vertex or fragment program-loading mechanisms. The warning and
error messages are redirected to the Android log output:
GLuint loadShader(GLenum shader_type, const char* p_source) {
 GLuint shader = glCreateShader(shader_type);
 if (shader) {
 glShaderSource(shader, 1, &p_source, 0);
 glCompileShader(shader);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 7

183

 GLint compiled = 0;
 glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);

 //Report error and delete the shader
 if (!compiled) {
 GLint infoLen = 0;
 glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen);
 if (infoLen) {
 char* buf = (char*) malloc(infoLen);
 if (buf) {
 glGetShaderInfoLog(shader, infoLen, 0, buf);
 LOGE("Could not compile shader %d:\n%s\n",
 shader_type, buf);
 free(buf);
 }
 glDeleteShader(shader);
 shader = 0;
 }
 }
 }
 return shader;
}

9. Implement the shader program creation mechanism. The function also attaches and
links the shader program:
GLuint createShaderProgram(const char *vertex_shader_code,
 const char *fragment_shader_code){
 //create the vertex and fragment shaders
 GLuint vertex_shader_id = loadShader(GL_VERTEX_SHADER,
 vertex_shader_code);
 if (!vertex_shader_id) {
 return 0;
 }

 GLuint fragment_shader_id =
 loadShader(GL_FRAGMENT_SHADER, fragment_shader_code);
 if (!fragment_shader_id) {
 return 0;
 }

 GLint result = GL_FALSE;
 //link the program
 GLuint program_id = glCreateProgram();
 glAttachShader(program_id, vertex_shader_id);
 checkGlError("glAttachShader");

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

184

 glAttachShader(program_id, fragment_shader_id);
 checkGlError("glAttachShader");
 glLinkProgram(program_id);

 //check the program and ensure that the program is linked properly
 glGetProgramiv(program_id, GL_LINK_STATUS, &result);
 if (result != GL_TRUE){
 //error handling with Android
 GLint bufLength = 0;
 glGetProgramiv(program_id, GL_INFO_LOG_LENGTH,
 &bufLength);
 if (bufLength) {
 char* buf = (char*) malloc(bufLength);
 if (buf) {
 glGetProgramInfoLog(program_id, bufLength, 0, buf);
 LOGE("Could not link program:\n%s\n",
 buf);
 free(buf);
 }
 }
 glDeleteProgram(program_id);
 program_id = 0;
 }
 else {
 LOGI("Linked program Successfully\n");
 }

 glDeleteShader(vertex_shader_id);
 glDeleteShader(fragment_shader_id);

 return program_id;
}

10. Create a function to handle the initialization. This function is a helper function that
handles requests from the Java side:
bool setupGraphics(int w, int h) {
 printGLString("Version", GL_VERSION);
 printGLString("Vendor", GL_VENDOR);
 printGLString("Renderer", GL_RENDERER);
 printGLString("Extensions", GL_EXTENSIONS);

 LOGI("setupGraphics(%d, %d)", w, h);
 gProgram = createShaderProgram(g_vshader_code,
 g_fshader_code);
 if (!gProgram) {
 LOGE("Could not create program.");
 return false;
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 7

185

 gvPositionHandle = glGetAttribLocation(gProgram,
 "vPosition");
 checkGlError("glGetAttribLocation");
 LOGI("glGetAttribLocation(\"vPosition\") = %d\n",
 gvPositionHandle);

 gvColorHandle = glGetAttribLocation(gProgram,
 "vColor");
 checkGlError("glGetAttribLocation");
 LOGI("glGetAttribLocation(\"vColor\") = %d\n",
 gvColorHandle);

 glViewport(0, 0, w, h);
 width = w;
 height = h;

 checkGlError("glViewport");

 return true;
}

11. Set up the rendering function that draws a triangle on the screen with red, green,
and blue vertices:
//vertices
GLfloat gTriangle[9]={-1.0f, -1.0f, 0.0f,
 1.0f, -1.0f, 0.0f,
 0.0f, 1.0f, 0.0f};
GLfloat gColor[9]={1.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 1.0f};

void renderFrame() {
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 checkGlError("glClearColor");

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 checkGlError("glClear");

 glUseProgram(gProgram);
 checkGlError("glUseProgram");

 glVertexAttribPointer(gvPositionHandle, 3, GL_FLOAT,
 GL_FALSE, 0, gTriangle);
 checkGlError("glVertexAttribPointer");

 glVertexAttribPointer(gvColorHandle, 3, GL_FLOAT,
 GL_FALSE, 0, gColor);
 checkGlError("glVertexAttribPointer");

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

186

 glEnableVertexAttribArray(gvPositionHandle);
 checkGlError("glEnableVertexAttribArray");

 glEnableVertexAttribArray(gvColorHandle);
 checkGlError("glEnableVertexAttribArray");

 glDrawArrays(GL_TRIANGLES, 0, 9);
 checkGlError("glDrawArrays");
}

12. Define the JNI prototypes that connect to the Java side. These calls are the interfaces
to communicate between the Java code and the C/C++ native code:
//external calls for Java
extern "C" {
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_init(JNIEnv * env,
 jobject obj, jint width, jint height);
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_step(JNIEnv * env,
 jobject obj);
};

13. Set up the internal function calls with the helper functions:
//link to internal calls
JNIEXPORT void JNICALL
Java_com_android_gl3jni_GL3JNILib_init(JNIEnv * env,
 jobject obj, jint width, jint height)
{
 setupGraphics(width, height);
}

JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_step(JNIEnv * env,
 jobject obj)
{
 renderFrame();
}
//end of file

14. Now that we have completed the implementation of the native code, we must compile
the code and link it to the Android application. To compile the code, create a build
file that is similar to a Makefile, called Android.mk, in the jni folder:
LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 7

187

LOCAL_MODULE := libgl3jni
LOCAL_CFLAGS := -Werror
#for simplified demo
LOCAL_SRC_FILES := main_simple.cpp
LOCAL_LDLIBS := -llog -lGLESv3

include $(BUILD_SHARED_LIBRARY)

15. In addition, we must create an Application.mk file that provides information about
the build type, such as the Application Binary Interface (ABI). The Application.
mk file must be stored inside the jni directory:
APP_ABI := armeabi-v7a
#required for GLM and other static libraries
APP_STL := gnustl_static

16. At this point, we should have the following list of files in the root directory:

src/com/android/gl3jni/GL3JNIActivity.java
src/com/android/gl3jni/GL3JNILib.java
src/com/android/gl3jni/GL3JNIView.java
AndroidManifest.xml
res/value/strings.xml
jni/Android.mk
jni/Application.mk
jni/main_simple.cpp

To compile the native source code and deploy our application on a mobile phone, run the
following build script in the terminal, which is shown as follows:

1. Set up our environment variables for the SDK and the NDK. (Note that the following
relative paths assume that the SDK and NDK are installed 3 levels outside the
current directory, where the compile.sh and install.sh scripts are executed
in the code package. These paths should be modified to match your code directory
structure as necessary.):
export ANDROID_SDK_PATH="../../../3rd_party/android/android-sdk-
macosx"
export ANDROID_NDK_PATH="../../../3rd_party/android/android-ndk-
r10e"

2. Initialize the project with the android update command for the first-time compilation.
This will generate all the necessary files (such as the build.xml file) for later steps:
$ANDROID_SDK_PATH/tools/android update project -p . -s
 --target "android-18"

3. Compile the JNI native code with the build command:
$ANDROID_NDK_PATH/ndk-build

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

188

4. Run the build command. Apache Ant takes the build.xml script and builds the
Android Application Package (APK) file that is ready for deployment:
ant debug

5. Install the Android application by using the Android Debug Bridge (adb) command:

$ANDROID_SDK_PATH/platform-tools/adb install -r
 bin/GL3JNIActivity-debug.apk

For this command to work, before connecting the mobile device through the USB port,
ensure that the USB Debugging mode is enabled and accept any prompts for security-related
warnings. On most devices, you can find this option by navigating to Settings | Applications
| Development or Settings | Developer. However, on Android 4.2 or higher, this option is
hidden by default and must be enabled by navigating to Settings | About Phone (or About
Tablet) and tapping Build Number multiple times. For further details, follow the instructions
provided on the official Android Developer website at http://developer.android.com/
tools/device.html. Here is a sample screenshot of an Android phone with the USB
debugging mode successfully configured:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://developer.android.com/tools/device.html
http://developer.android.com/tools/device.html
http://www.it-ebooks.info/

Chapter 7

189

After the application is installed, we can execute the application as we normally do with
any other Android application by opening it directly using the application icon on the phone,
as shown here:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

190

A screenshot after launching the application is shown next. Note that the CPU monitor has
been enabled to show the CPU utilization. This is not enabled by default but can be found in
Developer Options. The application supports both the portrait and landscape modes and the
graphics automatically scale to the window size upon changing the frame buffer size:

Here is another screenshot of the landscape mode:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 7

191

How it works...
This chapter demonstrates the portability of our approach in previous chapters. Essentially,
the native code developed in this chapter resembles what we covered in previous chapters. In
particular, the shader program's creation and loading mechanism is virtually identical, except
that we have used a predefined string (static char[]) to simplify the complexity of loading
files in Android. However, there are some subtle differences. Here, we will list the differences
and new features.

In the fragment program and vertex program, we need to add the #version 300 es
directive to ensure that the shader code can access the new features, such as uniform
blocks and the full support of integer and floating point operations. For example, OpenGL
ES 3.0 replaces the attribute and varying qualifiers with the in and out keywords. This
standardization allows much faster code development of OpenGL on various platforms.

The other notable difference is that we have replaced the GLFW library completely with the
EGL library, which comes as a standard library in Android, for context management. All event
handling, such as Windows management and user inputs, are now handled through the
Android API and the native code is only responsible for graphics rendering.

The Android log and error reporting system is now accessible through the Android adb
program. The interaction is similar to a terminal output, and we can see the log in real
time with the following command:

adb logcat

For example, our application reports the OpenGL ES version, as well as the extensions
supported by the mobile device in the log. With the preceding command, we can extract
the following information:

I/libgl3jni(6681): GL Version = OpenGL ES 3.0 V@66.0
AU@04.04.02.048.042 LNXBUILD_AU_LINUX_ANDROID_LNX.LA.3.5.1_
RB1.04.04.02.048.042+PATCH[ES]_msm8974_LNX.LA.3.5.1_RB1__release_ENGG
(CL@)
I/libgl3jni(6681): GL Vendor = Qualcomm
I/libgl3jni(6681): GL Renderer = Adreno (TM) 330
I/libgl3jni(6681): GL Extensions = GL_AMD_compressed_ATC_texture
GL_AMD_performance_monitor GL_AMD_program_binary_Z400 GL_EXT_debug_
label GL_EXT_debug_marker GL_EXT_discard_framebuffer GL_EXT_robustness
GL_EXT_texture_format_BGRA8888 GL_EXT_texture_type_2_10_10_10_REV
GL_NV_fence GL_OES_compressed_ETC1_RGB8_texture GL_OES_depth_texture
GL_OES_depth24 GL_OES_EGL_image GL_OES_EGL_image_external GL_OES_
element_index_uint GL_OES_fbo_render_mipmap GL_OES_fragment_precision_
high GL_OES_get_program_binary GL_OES_packed_depth_stencil GL_OES_
depth_texture_cube_map GL_OES_rgb8_rgba8 GL_OES_standard_derivatives
GL_OES_texture_3D GL_OES_texture_float GL_OES_texture_half_float
GL_OES_texture_half_float_linear GL_OES_texture_npot GL_OES_vertex_
half_float GL_OES_vertex_type_10_10_10_2 GL_OES_vertex_array_object

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

192

GL_QCOM_alpha_test GL_QCOM_binning_control GL_QCOM_driver_control
GL_QCOM_perfmon_global_mode GL_QCOM_extended_get GL_QCOM_extended_get2
GL_QCOM_tiled_rendering GL_QCOM_writeonly_rendering GL_EXT_sRGB GL_
EXT_sRGB_write_control GL_EXT_
I/libgl3jni(6681): setupGraphics(1440, 2560)

The real-time log data is very useful for debugging and can allow developers to quickly analyze
the problem.

One common question is how the Java and C/C++ elements communicate with each other.
The JNI syntax is rather puzzling to understand in the first place, but we can decode it by
carefully analyzing the following code snippet:

JNIEXPORT void JNICALL Java_com_android_gl3jni_GL3JNILib_init
(JNIEnv *env, jobject obj, jint width, jint height)

The JNIEXPORT and JNICALL tags allow the functions to be located in the shared library
at runtime. The class name is specified by com_android_gl3jni_GL3JNILib (com.
android.gl3jni.GL3JNILib), and init is the method name of the Java native function.
As we can see, the period in the class name is replaced by an underscore. In addition, we
have two additional parameters, namely the width and height of the frame buffer. More
parameters can be simply appended to the end of the parameters' list in the function,
as required.

In terms of backward compatibility, we can see that OpenGL 4.3 is a complete superset
of OpenGL ES 3.0. In OpenGL 3.1 and higher, we can see that the embedded system
version of OpenGL and the standard Desktop version of OpenGL are slowly converging,
which reduces the underlying complexity in maintaining various versions of OpenGL in
the application life cycle.

See also
A detailed description of the Android OS architecture is beyond the scope of this book.
However, you are encouraged to consult the official developer workflow guide at
http://developer.android.com/tools/workflow/index.html.

Further information on the OpenGL ES Shading Language can be found at https://www.
khronos.org/registry/gles/specs/3.0/GLSL_ES_Specification_3.00.3.pdf.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://developer.android.com/tools/workflow/index.html
https://www.khronos.org/registry/gles/specs/3.0/GLSL_ES_Specification_3.00.3.pdf
https://www.khronos.org/registry/gles/specs/3.0/GLSL_ES_Specification_3.00.3.pdf
http://www.it-ebooks.info/

193

8
Interactive Real-time
Data Visualization on

Mobile Devices

In this chapter, we will cover the following topics:

 f Visualizing real-time data from built-in Inertial Measurement Units (IMUs)

 f Part I – handling multi-touch interface and motion sensor inputs

 f Part II – interactive, real-time data visualization with mobile GPUs

Introduction
In this chapter, we will demonstrate how to visualize data interactively using built-in
motion sensors called Inertial Measurement Units (IMUs) and the multi-touch interface
on mobile devices. We will further explore the use of shader programs to accelerate
computationally intensive operations to enable real-time visualization of 3D data with
mobile graphics hardware. We will assume familiarity with the basic framework for building
an Android-based OpenGL ES 3.0 application introduced in the previous chapter and add
significantly more complexity in the implementation in this chapter to achieve interactive,
real-time 3D visualization of a Gaussian function using both motion sensors and the
multi-touch gesture interface. The final demo is designed to work on any Android-based
mobile device with proper sensor hardware support.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

194

Here, we will first introduce how to extract data directly from the IMUs and plot the real-time
data stream acquired on an Android device. We will divide the final demo into two parts given
its complexity. In part I, we will demonstrate how to handle the multi-touch interface and
motion sensor inputs on the Java side. In part II, we will demonstrate how to implement the
shader program in OpenGL ES 3.0 and other components of the native code to finish our
interactive demo.

Visualizing real-time data from built-in
Inertial Measurement Units (IMUs)

Many modern mobile devices now integrate a plethora of built-in sensors including
various motion and position sensors (such as an accelerometer, gyroscope, and
magnetometer/digital compass) to enable novel forms of user interaction (such as
complex gesture and motion control) as well as other environmental sensors, which can
measure environmental conditions (such as an ambient light sensor and proximity sensor)
to enable smart wearable applications. The Android Sensor Framework provides
a comprehensive interface to access many types of sensors, which can be either
hardware-based (physical sensors) or software-based (virtual sensors that derive inputs
from hardware sensors). In general, there are three major categories of sensors—motion
sensors, position sensors, and environmental sensors.

In this section, we will demonstrate how to utilize the Android Sensor Framework to
communicate with the sensors available on your device, register sensor event listeners to
monitor changes in the sensors, and acquire raw sensor data for display on your mobile
device. To create this demo, we will implement the Java code and native code using the same
framework design introduced in the previous chapter. The following block diagram illustrates the
core functions and the relationship among the classes that will be implemented in this demo:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

195

main_sensor.cpp

Java_com_android_gl3jni_GL3JNILib_init(JNIEnv *
env, jobject obj, jint width, jint height)
Java_com_android_gl3jni_GL3JNILib_step(JNIEnv *
env, jobject obj)
Java_com_android_gl3jni_GL3JNILib_addAccelData
(JNIEnv * env, jobject obj, jfloat ax, jfloat ay, jfloat
az);
Java_com_android_gl3jni_GL3JNILib_addGyroData(
JNIEnv * env, jobject obj, jfloat gx, jfloat gy, jfloat gz);
Java_com_android_gl3jni_GL3JNILib_addMagData(
JNIEnv * env, jobject obj, jfloat mx, jfloat my, jfloat
mz);

GL3JNILib
init(int width, int

height)
step()
addGyroData()
addMagData()
addAccelData()

GLSurfaceView

GL3JNIActivity GL3JNIView

Java

C/C++

JNI

Activity

SensorEventListener

Sensor.cpp

appendData(…)
getData(…)
init(int size)
getScale(…)

main_sensor.cpp

setupGraphics(int width, int height)
renderFrame()
addAccelData(float x, float y, float z)
addGyroData(float x, float y, float z)
addMagData(float x, float y, float z)

Getting ready
This demo requires an Android device with OpenGL ES 3.0 support as well as physical sensor
hardware support. Unfortunately, at the moment these functions cannot be simulated with
an emulator shipped with the Android SDK. Specifically, an Android mobile device with the
following set of sensors, which are now commonly available, would be required to run this
demo: an accelerometer, gyroscope, and magnetometer (digital compass).

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

196

In addition, we assume that the Android SDK and Android NDK are configured as discussed
in Chapter 7, An Introduction to Real-time Graphics Rendering on a Mobile Platform using
OpenGL ES 3.0.

How to do it…
First, we will create the core Java source files similar to the previous chapter. Since the
majority of the code is similar, we will only discuss the new and significant elements that
are introduced in the current code. The rest of the code is abbreviated with the "…" notation.
Please download the complete source code from the official Packt Publishing website.

In the GL3JNIActivity.java file, we first integrate Android Sensor Manager, which
allows us to read and parse sensor data. The following steps are required to complete
the integration:

1. Import the classes for the Android Sensor Manager:
package com.android.gl3jni;
…
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
…

2. Add the SensorEventListener interface to interact with the sensors:
public class GL3JNIActivity extends Activity implements
SensorEventListener{

3. Define the SensorManager and the Sensor variables to handle the data from the
accelerometer, gyroscope, and magnetometer:
 …
 private SensorManager mSensorManager;
 private Sensor mAccelerometer;
 private Sensor mGyro;
 private Sensor mMag;

4. Initialize the SensorManager as well as all other sensor services:
@Override protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 setRequestedOrientation(
 ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 mSensorManager =
 (SensorManager)getSystemService(SENSOR_SERVICE);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

197

 mAccelerometer = mSensorManager.getDefaultSensor(
 Sensor.TYPE_ACCELEROMETER);
 mGyro = mSensorManager.getDefaultSensor(
 Sensor.TYPE_GYROSCOPE);
 mMag = mSensorManager.getDefaultSensor(
 Sensor.TYPE_MAGNETIC_FIELD);
 mView = new GL3JNIView(getApplication());
 setContentView(mView);
}

5. Register the callback functions and start listening to these events:
@Override protected void onPause() {
 super.onPause();
 mView.onPause();
 //unregister accelerometer and other sensors
 mSensorManager.unregisterListener(this, mAccelerometer);
 mSensorManager.unregisterListener(this, mGyro);
 mSensorManager.unregisterListener(this, mMag);
}

@Override protected void onResume() {
 super.onResume();
 mView.onResume();
 /* register and activate the sensors. Start streaming
 data and handle with callback functions */
 mSensorManager.registerListener(this,
 mAccelerometer, SensorManager.SENSOR_DELAY_GAME);
 mSensorManager.registerListener(this,
 mGyro, SensorManager.SENSOR_DELAY_GAME);
 mSensorManager.registerListener(this,
 mMag, SensorManager.SENSOR_DELAY_GAME);
}

6. Handle the sensor events. The onSensorChanged and onAccuracyChanged
functions capture any changes detected and the SensorEvent variable holds all
the information about the sensor type, time-stamp, accuracy, and so on:

@Override
public void onAccuracyChanged(Sensor sensor, int
 accuracy) {
 //included for completeness
}
@Override
public void onSensorChanged(SensorEvent event) {
 //handle the accelerometer data
 //All values are in SI units (m/s^2)

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

198

 if (event.sensor.getType() ==
 Sensor.TYPE_ACCELEROMETER) {
 float ax, ay, az;
 ax = event.values[0];
 ay = event.values[1];
 az = event.values[2];
 GL3JNILib.addAccelData(ax, ay, az);
 }
 /* All values are in radians/second and measure the
 rate of rotation around the device's local X, Y,
 and Z axes */
 if (event.sensor.getType() ==
 Sensor.TYPE_GYROSCOPE) {
 float gx, gy, gz;
 //angular speed
 gx = event.values[0];
 gy = event.values[1];
 gz = event.values[2];
 GL3JNILib.addGyroData(gx, gy, gz);
 }
 //All values are in micro-Tesla (uT) and measure
 the ambient magnetic field in the X, Y and Z axes.
 if (event.sensor.getType() ==
 Sensor.TYPE_MAGNETIC_FIELD) {
 float mx, my, mz;
 mx = event.values[0];
 my = event.values[1];
 mz = event.values[2];
 GL3JNILib.addMagData(mx, my, mz);
 }
}

Next implement the GL3JNIView class, which handles OpenGL rendering, in the
GL3JNIView.java source file inside the src/com/android/gl3jni/ directory. Since this
implementation is identical to content in the Chapter 7, An Introduction to Real-time Graphics
Rendering on a Mobile Platform using OpenGL ES 3.0, we will not discuss it again here.

Finally, integrate all the new features in the GL3JNILib class, which handles native library
loading and calling, in the GL3JNILib.java file inside the src/com/android/gl3jni
directory:

package com.android.gl3jni;

public class GL3JNILib {
 static {

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

199

 System.loadLibrary("gl3jni");
 }

 public static native void init(int width, int height);
 public static native void step();

 public static native void addAccelData(float ax,
 float ay, float az);
 public static native void addGyroData(float gx,
 float gy, float gz);
 public static native void addMagData(float mx,
 float my, float mz);
}

Now, on the JNI/C++ side, create a class called Sensor for managing the data buffer for
each sensor, including the accelerometer, gyroscope, and magnetometer (digital compass).
First, create a header file for the Sensor class called Sensor.h:

#ifndef SENSOR_H_
#define SENSOR_H_
#include <stdlib.h>
#include <jni.h>
#include <GLES3/gl3.h>
#include <math.h>

class Sensor {
 public:
 Sensor();
 Sensor(unsigned int size);
 virtual ~Sensor();

 //Resize buffer size dynamically with this function
 void init(unsigned int size);
 //Append new data to the buffer
 void appendAccelData(GLfloat x, GLfloat y,GLfloat z);
 void appendGyroData(GLfloat x, GLfloat y, GLfloat z);
 void appendMagData(GLfloat x, GLfloat y, GLfloat z);

 //Get sensor data buffer
 GLfloat *getAccelDataPtr(int channel);
 GLfloat *getGyroDataPtr(int channel);
 GLfloat *getMagDataPtr(int channel);
 GLfloat *getAxisPtr();

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

200

 //Auto rescale factors based on max and min
 GLfloat getAccScale();
 GLfloat getGyroScale();
 GLfloat getMagScale();

 unsigned int getBufferSize();

private:
 unsigned int buffer_size;

 GLfloat **accel_data;
 GLfloat **gyro_data;
 GLfloat **mag_data;
 GLfloat *x_axis;

 GLfloat abs_max_acc;
 GLfloat abs_max_mag;
 GLfloat abs_max_gyro;

 void createBuffers(unsigned int size);
 void free_all();

 void findAbsMax(GLfloat *src, GLfloat *max);
 void appendData(GLfloat *src, GLfloat data);
 void setNormalizedAxis(GLfloat *data,
 unsigned int size, float min, float max);
};

#endif /* SENSOR_H_ */

Then, implement the Sensor class in the Sensor.cpp file with the following steps:

1. Implement the constructor and destructor for the Sensor class. Set the default size
of the buffer to 256:
#include "Sensor.h"
Sensor::Sensor() {
 //use default size
 init(256);
}
// Initialize with different buffer size
Sensor::Sensor(unsigned int size) {
 init(size);
}
Sensor::~Sensor() {
 free_all();
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

201

2. Add the initialization function, which sets all default parameters, and allocate and
deallocate memory at runtime:
void Sensor::init(unsigned int size){
 buffer_size = size;
 //delete the old memory if already exist
 free_all();
 //allocate the memory for the buffer
 createBuffers(size);
 setNormalizedAxis(x_axis, size, -1.0f, 1.0f);
 abs_max_acc = 0;
 abs_max_gyro = 0;
 abs_max_mag = 0;
}

3. Implement the createBuffers function for memory allocation:
// Allocate memory for all sensor data buffers
void Sensor::createBuffers(unsigned int buffer_size){
 accel_data = (GLfloat**)malloc(3*sizeof(GLfloat*));
 gyro_data = (GLfloat**)malloc(3*sizeof(GLfloat*));
 mag_data = (GLfloat**)malloc(3*sizeof(GLfloat*));

 //3 channels for accelerometer
 accel_data[0] =
 (GLfloat*)calloc(buffer_size,sizeof(GLfloat));
 accel_data[1] =
 (GLfloat*)calloc(buffer_size,sizeof(GLfloat));
 accel_data[2] =
 (GLfloat*)calloc(buffer_size,sizeof(GLfloat));

 //3 channels for gyroscope
 gyro_data[0] =
 (GLfloat*)calloc(buffer_size,sizeof(GLfloat));
 gyro_data[1] =
 (GLfloat*)calloc(buffer_size,sizeof(GLfloat));
 gyro_data[2] =
 (GLfloat*)calloc(buffer_size,sizeof(GLfloat));

 //3 channels for digital compass
 mag_data[0] =
 (GLfloat*)calloc(buffer_size,sizeof(GLfloat));
 mag_data[1] =
 (GLfloat*)calloc(buffer_size,sizeof(GLfloat));
 mag_data[2] =
 (GLfloat*)calloc(buffer_size,sizeof(GLfloat));

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

202

 //x-axis precomputed
 x_axis = (GLfloat*)calloc(buffer_size,sizeof(GLfloat));
}

4. Implement the free_all function for deallocating memory:
// Deallocate all memory
void Sensor::free_all(){
 if(accel_data){
 free(accel_data[0]);
 free(accel_data[1]);
 free(accel_data[2]);
 free(accel_data);
 }
 if(gyro_data){
 free(gyro_data[0]);
 free(gyro_data[1]);
 free(gyro_data[2]);
 free(gyro_data);
 }
 if(mag_data){
 free(mag_data[0]);
 free(mag_data[1]);
 free(mag_data[2]);
 free(mag_data);
 }
 if(x_axis){
 free(x_axis);
 }
}

5. Create routines for appending data to the data buffer of each sensor:
// Append acceleration data to the buffer
void Sensor::appendAccelData(GLfloat x, GLfloat y, GLfloat z){
 abs_max_acc = 0;
 float data[3] = {x, y, z};
 for(int i=0; i<3; i++){
 appendData(accel_data[i], data[i]);
 findAbsMax(accel_data[i], &abs_max_acc);
 }
}

// Append the gyroscope data to the buffer
void Sensor::appendGyroData(GLfloat x, GLfloat y, GLfloat z){

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

203

 abs_max_gyro = 0;
 float data[3] = {x, y, z};
 for(int i=0; i<3; i++){
 appendData(gyro_data[i], data[i]);
 findAbsMax(gyro_data[i], &abs_max_gyro);
 }
}

// Append the magnetic field data to the buffer
void Sensor::appendMagData(GLfloat x, GLfloat y, GLfloat z){
 abs_max_mag = 0;
 float data[3] = {x, y, z};
 for(int i=0; i<3; i++){
 appendData(mag_data[i], data[i]);
 findAbsMax(mag_data[i], &abs_max_mag);
 }
}

// Append Data to the end of the buffer
void Sensor::appendData(GLfloat *src, GLfloat data){
 //shift the data by one
 int i;
 for(i=0; i<buffer_size-1; i++){
 src[i]=src[i+1];
 }
 //set the last element with the new data
 src[buffer_size-1]=data;
}

6. Create routines for returning the pointer to the memory buffer of each sensor:
// Return the x-axis buffer
GLfloat* Sensor::getAxisPtr() {
 return x_axis;
}

// Get the acceleration data buffer
GLfloat* Sensor::getAccelDataPtr(int channel) {
 return accel_data[channel];
}

// Get the Gyroscope data buffer
GLfloat* Sensor::getGyroDataPtr(int channel) {
 return gyro_data[channel];
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

204

// Get the Magnetic field data buffer
GLfloat* Sensor::getMagDataPtr(int channel) {
 return mag_data[channel];
}

7. Implement methods for displaying/plotting the data stream properly from each
sensor (for example, determining the maximum value of the data stream from
each sensor to scale the data properly):

// Return buffer size
unsigned int Sensor::getBufferSize() {
 return buffer_size;
}

/* Return the global max for the acceleration data
 buffer (for rescaling and fitting purpose) */
GLfloat Sensor::getAccScale() {
 return abs_max_acc;
}

/* Return the global max for the gyroscope data
 buffer (for rescaling and fitting purpose) */
GLfloat Sensor::getGyroScale() {
 return abs_max_gyro;
}

/* Return the global max for the magnetic field data
 buffer (for rescaling and fitting purpose) */
GLfloat Sensor::getMagScale() {
 return abs_max_mag;
}

// Pre-compute the x-axis for the plot
void Sensor::setNormalizedAxis(GLfloat *data,
 unsigned int size, float min, float max){
 float step_size = (max - min)/(float)size;
 for(int i=0; i<size; i++){
 data[i]=min+step_size*i;
 }
}

// Find the absolute maximum from the buffer
void Sensor::findAbsMax(GLfloat *src, GLfloat *max){
 int i=0;
 for(i=0; i<buffer_size; i++){
 if(*max < fabs(src[i])){

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

205

 *max= fabs(src[i]);
 }
 }
}

Finally, we describe the implementation of the OpenGL ES 3.0 native code to complete the
demo application (main_sensor.cpp). The code is built upon the structure introduced
in the previous chapter, so only new changes and modifications will be described in the
following steps:

1. In the project directory, create a file named main_sensor.cpp and store it inside
the jni directory.

2. Include all necessary header files, including Sensor.h at the beginning of the file:
#include <Sensor.h>
...

3. Declare shader program handlers and variables for handling sensor data:
GLuint gProgram;
GLuint gxPositionHandle;
GLuint gyPositionHandle;
GLuint gColorHandle;
GLuint gOffsetHandle;
GLuint gScaleHandle;
static Sensor g_sensor_data;

4. Define the shader program code for both the vertex shader and fragment shader to
render points and lines:
// Vertex shader source code
static const char g_vshader_code[] =
 "#version 300 es\n"
 "in float yPosition;\n"
 "in float xPosition;\n"
 "uniform float scale;\n"
 "uniform float offset;\n"
 "void main() {\n"
 " vec4 position = vec4(xPosition,
 yPosition*scale+offset, 0.0, 1.0);\n"
 " gl_Position = position;\n"
 "}\n";

// fragment shader source code
static const char g_fshader_code[] =
 "#version 300 es\n"
 "precision mediump float;\n"
 "uniform vec4 color;\n"

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

206

 "out vec4 color_out;\n"
 "void main() {\n"
 " color_out = color;\n"
 "}\n";

5. Set up all attribute variables in the setupGraphics function. These variables will be
used to communicate with the shader programs:
bool setupGraphics(int w, int h) {

 ...

 gxPositionHandle = glGetAttribLocation(gProgram,
 "xPosition");
 checkGlError("glGetAttribLocation");
 LOGI("glGetAttribLocation(\"vPosition\") =
 %d\n", gxPositionHandle);

 gyPositionHandle = glGetAttribLocation(gProgram, "yPosition");
 checkGlError("glGetAttribLocation");
 LOGI("glGetAttribLocation(\"vPosition\") = %d\n",
 gyPositionHandle);

 gColorHandle = glGetUniformLocation(gProgram,
 "color");
 checkGlError("glGetUniformLocation");
 LOGI("glGetUniformLocation(\"color\") = %d\n",
 gColorHandle);

 gOffsetHandle = glGetUniformLocation(gProgram,
 "offset");
 checkGlError("glGetUniformLocation");
 LOGI("glGetUniformLocation(\"offset\") = %d\n",
 gOffsetHandle);

 gScaleHandle = glGetUniformLocation(gProgram,
 "scale");
 checkGlError("glGetUniformLocation");
 LOGI("glGetUniformLocation(\"scale\") = %d\n",
 gScaleHandle);

 glViewport(0, 0, w, h);
 width = w;
 height = h;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

207

 checkGlError("glViewport");

 return true;
}

6. Create a function for drawing 2D plots to display real-time sensor data:
void draw2DPlot(GLfloat *data, unsigned int size, GLfloat scale,
GLfloat offset){
 glVertexAttribPointer(gyPositionHandle, 1, GL_FLOAT,
 GL_FALSE, 0, data);
 checkGlError("glVertexAttribPointer");

 glEnableVertexAttribArray(gyPositionHandle);
 checkGlError("glEnableVertexAttribArray");

 glUniform1f(gOffsetHandle, offset);
 checkGlError("glUniform1f");

 glUniform1f(gScaleHandle, scale);
 checkGlError("glUniform1f");

 glDrawArrays(GL_LINE_STRIP, 0,
 g_sensor_data.getBufferSize());
 checkGlError("glDrawArrays");
}

7. Set up the rendering function which draws the various 2D time series with the data
stream from the sensors:
void renderFrame() {
 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 checkGlError("glClearColor");

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 checkGlError("glClear");

 glUseProgram(gProgram);
 checkGlError("glUseProgram");

 glVertexAttribPointer(gxPositionHandle, 1, GL_FLOAT,
 GL_FALSE, 0, g_sensor_data.getAxisPtr());
 checkGlError("glVertexAttribPointer");

 glEnableVertexAttribArray(gxPositionHandle);
 checkGlError("glEnableVertexAttribArray");

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

208

 //Obtain the scaling factor based on the dataset
 //0.33f for 1/3 of the screen for each graph
 float acc_scale = 0.33f/g_sensor_data.getAccScale();
 float gyro_scale =
 0.33f/g_sensor_data.getGyroScale();
 float mag_scale = 0.33f/g_sensor_data.getMagScale();

 glLineWidth(4.0f);

 //set the rendering color
 glUniform4f(gColorHandle, 1.0f, 0.0f, 0.0f, 1.0f);
 checkGlError("glUniform1f");
 /* Render the accelerometer, gyro, and digital compass data.
As the vertex shader does not use any projection matrix, every
visible vertex has to be in the range of [-1, 1]. 0.67f, 0.0f,
and -0.67f define the vertical positions of each graph */
 draw2DPlot(g_sensor_data.getAccelDataPtr(0),
 g_sensor_data.getBufferSize(), acc_scale, 0.67f);
 draw2DPlot(g_sensor_data.getGyroDataPtr(0),
 g_sensor_data.getBufferSize(), gyro_scale, 0.0f);
 draw2DPlot(g_sensor_data.getMagDataPtr(0),
 g_sensor_data.getBufferSize(), mag_scale, -0.67f);

 glUniform4f(gColorHandle, 0.0f, 1.0f, 0.0f, 1.0f);
 checkGlError("glUniform1f");
 draw2DPlot(g_sensor_data.getAccelDataPtr(1),
 g_sensor_data.getBufferSize(), acc_scale, 0.67f);
 draw2DPlot(g_sensor_data.getGyroDataPtr(1),
 g_sensor_data.getBufferSize(), gyro_scale, 0.0f);
 draw2DPlot(g_sensor_data.getMagDataPtr(1),
 g_sensor_data.getBufferSize(), mag_scale, -0.67f);

 glUniform4f(gColorHandle, 0.0f, 0.0f, 1.0f, 1.0f);
 checkGlError("glUniform1f");
 draw2DPlot(g_sensor_data.getAccelDataPtr(2),
 g_sensor_data.getBufferSize(), acc_scale, 0.67f);
 draw2DPlot(g_sensor_data.getGyroDataPtr(2),
 g_sensor_data.getBufferSize(), gyro_scale, 0.0f);
 draw2DPlot(g_sensor_data.getMagDataPtr(2),
 g_sensor_data.getBufferSize(), mag_scale, -0.67f);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

209

8. Define the JNI prototypes that connect to the Java side. These calls are the interfaces
for communicating between the Java code and C/C++ native code:

//external calls for Java
extern "C" {
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_init(JNIEnv *
 env, jobject obj, jint width, jint height);
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_step(JNIEnv *
 env, jobject obj);
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_addAccelData
 (JNIEnv * env, jobject obj, jfloat ax, jfloat ay, jfloat az);
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_addGyroData
 (JNIE nv * env, jobject obj, jfloat gx, jfloat
 gy, jfloat gz);
 JNIEXPORT void JNICALL
Java_com_android_gl3jni_GL3JNILib_addMagData
(JNIEnv * env, jobject obj, jfloat mx, jfloat my, jfloat mz)
{
 g_sensor_data.appendMagData(mx, my, mz);
}
};

//link to internal calls
JNIEXPORT void JNICALL Java_com_android_gl3jni_GL3JNILib_
init(JNIEnv * env, jobject obj, jint width, jint height)
{
 setupGraphics(width, height);
}
JNIEXPORT void JNICALL Java_com_android_gl3jni_GL3JNILib_
step(JNIEnv * env, jobject obj)
{
 renderFrame();
}
JNIEXPORT void JNICALL Java_com_android_gl3jni_GL3JNILib_
addAccelData(JNIEnv * env, jobject obj, jfloat ax, jfloat ay,
jfloat az){
 g_sensor_data.appendAccelData(ax, ay, az);
}
JNIEXPORT void JNICALL Java_com_android_gl3jni_GL3JNILib_
addGyroData(JNIEnv * env, jobject obj, jfloat gx, jfloat gy,
jfloat gz){
 g_sensor_data.appendGyroData(gx, gy, gz);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

210

JNIEXPORT void JNICALL Java_com_android_gl3jni_GL3JNILib_
addMagData(JNIEnv * env, jobject obj, jfloat mx, jfloat my,
jfloat mz){
 g_sensor_data.appendMagData(mx, my, mz);
}

Finally, we need to compile and install the Android application with the same instructions
as outlined in the previous chapter.

The following screenshots show the real-time sensor data stream from the accelerometer,
gyroscope, and digital compass (top panel, middle panel, and bottom panel, respectively) on
our Android device. Red, green, and blue are used to differentiate the channels from each
sensor data stream. For example, the red plot in the top panel represents the acceleration
value of the device along the x axis (the blue plot for the y axis and the green plot for the z
axis). In the first example, we rotated the phone freely at various orientations and the plots
show the corresponding changes in the sensor values. The visualizer also provides an
auto-scale function, which automatically computes the maximum values to rescale the
plots accordingly:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

211

Next, we positioned the phone on a stationary surface and we plotted the values of the
sensors. Instead of observing constant values over time, the time series plots show that there
are some very small changes (jittering) in the sensor values due to sensor noise. Depending
on the application, you will often need to apply filtering techniques to ensure that the user
experience is jitter-free. One simple solution is to apply a low-pass filter to smooth out any
high-frequency noise. More details on the implementation of such filters can be found at
http://developer.android.com/guide/topics/sensors/sensors_motion.html.

How it works…
The Android Sensor Framework allows users to access the raw data from various types of
sensors on a mobile device. This framework is part of the android.hardware package and
the sensor package includes a set of classes and interfaces for sensor-specific features.

The SensorManager class provides an interface and methods for accessing and listing
the available sensors from the device. Some common hardware sensors include the
accelerometer, gyroscope, proximity sensor, and the magnetometer (digital compass). These
sensors are represented by constant variables (such as TYPE_ACCELEROMETER for the
accelerometer, TYPE_MAGNETIC_FIELD for the magnetometer, and TYPE_GYROSCOPE for
the gyroscope) and the getDefaultSensor function returns an instance of the Sensor
object based on the type requested.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://developer.android.com/guide/topics/sensors/sensors_motion.html
http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

212

To enable data streaming, we must register the sensor to the SensorEventListener
class such that the raw data is reported back to the application upon updates. The
registerListener function then creates the callback to handle updates to the sensor
value or sensor accuracy. The SensorEvent variable stores the name of the sensor, the
timestamp and accuracy of the event, as well as the raw data.

The raw data stream from each sensor is reported back with the onSensorChange function.
Since sensor data may be acquired and streamed at a high rate, it is important that we do not
block callback function calls or perform any computationally intensive processes within the
onSensorChange function. In addition, it is a good practice to reduce the data rate of the
sensor based on your application requirements. In our case, we set the sensor to run at the
optimal rate for gaming purposes by passing the constant preset variable SENSOR_DELAY_
GAME to the registerListener function.

The GL3JNILib class then handles all the data passing to the native code using the new
functions. For simplicity, we have created separate functions for each sensor type, which
makes it easier for the reader to understand the data flow for each sensor.

At this point, we have created the interfaces that redirect data to the native side. However,
to plot the sensor data on the screen, we need to create a simple buffering mechanism that
stores the data points over some period of time. We have created a custom Sensor class in
C++ to handle data creation, updates, and processing needed to manage these interactions.
The implementation of the class is straightforward, and we preset the buffer size to store 256
data points by default.

On the OpenGL ES side, we create the 2D plot by appending the data stream to our vertex
buffer. The scale of the data stream is adjusted dynamically based on the current values to
ensure that the values fit on the screen. Notice that we have also performed all data scaling
and translation on the vertex shader to reduce any overhead in the CPU computation.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

213

See also
 f For more information on the Android Sensor Framework, consult the documentation

online at http://developer.android.com/guide/topics/sensors/
sensors_overview.html.

Part I – handling multi-touch interface and
motion sensor inputs

Now that we have introduced the basics of handling sensor inputs, we will develop an
interactive, sensor-based data visualization tool. In addition to using motion sensors, we will
introduce a multi-touch interface for user interaction. The following is a preview of the final
application, integrating all the elements in this chapter:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://developer.android.com/guide/topics/sensors/sensors_overview.html
http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

214

In this section, we will focus solely on the Java side of the implementation and the native code
will be described in part II. The following class diagram illustrates the various components of
the Java code (part I) that provide the basic interface for user interaction on the mobile device
and demonstrates how the native code (part II) completes the entire implementation:

Java

C/C++

JNI

GLSurfaceViewActivity

GL3JNIActivity GL3JNIView

SensorEventListener ScaleGestureDetector

ScaleGestureDetector.SimpleO
nScaleGestureListener

GL3JNILib
native

native

native

native

init(int width, int
height)

step()
addRotData(float rx,

float ry, float rz)
setScale(float scale)

main.cpp

Java_com_android_gl3jni_GL3JNILib_init(JNIEnv
* env, jobject obj, jint width, jint height)
Java_com_android_gl3jni_GL3JNILib_step(JNIEnv
* env, jobject obj)
Java_com_android_gl3jni_GL3JNILib_addRotData
JNIEnv * env, jobject obj, jfloat rx, jfloat ry,
jfloat rz);
Java_com_android_gl3jni_GL3JNILib_setScale(JNIEnv
* env, jobject obj, jfloat jscale);

main.cpp

setupGraphics(int width, int height)
renderFrame()
setAngles(rx, ry, rz)

How to do it…
First, we will create the core Java source files that are essential to an Android application.
These files serve as a wrapper for our OpenGL ES 3.0 native code. The code structure is
based on the gl3jni package described in the previous section. Here we will highlight the
major changes made to the code and discuss the interaction of these new components.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

215

In the project directory, modify the GL3JNIActivity class in the GL3JNIActivity.java
file within the src/com/android/gl3jni directory. Instead of using the raw sensor data,
we will utilize the Android sensor fusion algorithm, which intelligently combines all sensor data
to recover the orientation of the device as a rotation vector. The steps to enable this feature
are described as follows:

1. In the GL3JNIActivity class, add the new variables for handling the rotation
matrix and vector:
public class GL3JNIActivity extends Activity implements
SensorEventListener{
 GL3JNIView mView;
 private SensorManager mSensorManager;
 private Sensor mRotate;
 private float[] mRotationMatrix=new float[16];
 private float[] orientationVals=new float[3];

2. Initialize the Sensor variable with the TYPE_ROTATION_VECTOR type, which returns
the device orientation as a rotation vector/matrix:
@Override protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 //lock the screen orientation for this demo
 //otherwise the canvas will rotate
 setRequestedOrientation
 (ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);

 mSensorManager = (SensorManager)getSystemService
 (SENSOR_SERVICE);
 //TYPE_ROTATION_VECTOR for device orientation
 mRotate = mSensorManager.getDefaultSensor
 (Sensor.TYPE_ROTATION_VECTOR);

 mView = new GL3JNIView(getApplication());
 setContentView(mView);
}

3. Register the Sensor Manager object and set the sensor response rate to
SENSOR_DELAY_GAME, which is used for gaming or real-time applications:
@Override protected void onResume() {
 super.onResume();
 mView.onResume();
 mSensorManager.registerListener(this, mRotate,
 SensorManager.SENSOR_DELAY_GAME);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

216

4. Retrieve the device orientation and save the event data as a rotation matrix. Then
convert the rotation matrix into Euler angles that are passed to the native code:

@Override
public void onSensorChanged(SensorEvent event) {
 if (event.sensor.getType() ==
 Sensor.TYPE_ROTATION_VECTOR){
 SensorManager.getRotationMatrixFromVector
 (mRotationMatrix,event.values);
 SensorManager.getOrientation (mRotationMatrix,
 orientationVals);
 GL3JNILib.addRotData(orientationVals[0],
 orientationVals[1],orientationVals[2]);
 }
}

Next, modify the GL3JNIView class, which handles OpenGL rendering, in the
GL3JNIView.java file inside the src/com/android/gl3jni/ directory. To make
the application interactive, we also integrate the touch-based gesture detector that handles
multi-touch events. Particularly, we add the ScaleGestureDetector class that enables
the pinch gesture for scaling the 3D plot. To implement this feature, we make the following
modifications to the GL3JNIView.java file:

1. Import the MotionEvent and ScaleGestureDetector classes:
package com.android.gl3jni;
...
import android.view.MotionEvent;
import android.view.ScaleGestureDetector;
...

2. Create a ScaleGestureDetector variable and initialize with ScaleListener:
class GL3JNIView extends GLSurfaceView {
 private ScaleGestureDetector mScaleDetector;
 ...

 public GL3JNIView(Context context) {
 super(context);
 ...
 //handle gesture input
 mScaleDetector = new ScaleGestureDetector
 (context, new ScaleListener());
 }

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

217

3. Pass the motion event to the gesture detector when a touch screen event occurs
(onTouchEvent):
@Override
public boolean onTouchEvent(MotionEvent ev) {
 // Let ScaleGestureDetector inspect all events.
 mScaleDetector.onTouchEvent(ev);
 return true;
}

4. Implement SimpleOnScaleGestureListener and handle the callback (onScale)
on pinch gesture events:

private class ScaleListener extends
 ScaleGestureDetector.SimpleOnScaleGestureListener {
 private float mScaleFactor = 1.f;
 @Override
 public boolean onScale(ScaleGestureDetector
 detector)
 {
 //scaling factor
 mScaleFactor *= detector.getScaleFactor();
 //Don't let the object get too small/too large.
 mScaleFactor = Math.max(0.1f,
 Math.min(mScaleFactor, 5.0f));
 invalidate();
 GL3JNILib.setScale(mScaleFactor);
 return true;
 }
}

Finally, in the GL3JNILib class, we implement the functions to handle native library loading
and calling in the GL3JNILib.java file inside the src/com/android/gl3jni directory:

package com.android.gl3jni;

public class GL3JNILib {
 static {
 System.loadLibrary("gl3jni");
 }

 public static native void init(int width, int height);
 public static native void step();

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

218

 /* pass the rotation angles and scaling factor to the
 native code */
 public static native void addRotData(float rx, float
 ry, float rz);
 public static native void setScale(float scale);
}

How it works…
Similar to the previous demo, we will use the Android Sensor Framework to handle the sensor
inputs. Notice that, in this demo, we specify TYPE_ROTATION_VECTOR for the sensor type
inside the getDefaultSensor function in GL3JNIActivity.java, which allows us to
detect the device orientation. This is a software type sensor in which all IMUs data (from
the accelerometer, gyroscope, and magnetometer) are fused together to create the rotation
vector. The device orientation data is first stored in the rotation matrix mRotationMatrix
using the getRotationMatrixFromVector function and the azimuth, pitch, and roll angles
(rotation around the x, y, and z axes, respectively) are retrieved using the getOrientation
function. Finally, we pass the three orientation angles to the native code portion of the
implementation using the GL3JNILib.addRotData call. This allows us to control 3D
graphics based on the device's orientation.

Next we will explain how the multi-touch interface works. Inside the GL3JNIView
class, you will notice that we have created an instance (mScaleDetector) of a new
class called ScaleGestureDetector. The ScaleGestureDetector class detects
scaling transformation gestures (pinching with two fingers) using the MotionEvent
class from the multi-touch screen. The algorithm returns the scale factor that
can be redirected to the OpenGL pipeline to update the graphics in real time. The
SimpleOnScaleGestureListener class provides a callback function for the onScale
event and we pass the scale factor (mScaleFactor) to the native code using the
GL3JNILib.setScale call.

See also
 f For further information on the Android multi-touch interface, see the detailed

documentation at http://developer.android.com/training/gestures/
index.html.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://developer.android.com/training/gestures/index.html
http://developer.android.com/training/gestures/index.html
http://www.it-ebooks.info/

Chapter 8

219

Part II – interactive, real-time data
visualization with mobile GPUs

Now we will complete our demo with the native code implementation to create our highly
interactive Android-based data visualization application with OpenGL ES 3.0 as well as the
Android sensor and gesture control interface.

The following class diagram highlights what remains to be implemented on the C/C++ side:

Java

C/C++

JNI

GLSurfaceViewActivity

GL3JNIActivity GL3JNIView

SensorEventListener ScaleGestureDetector

ScaleGestureDetector.SimpleO
nScaleGestureListener

GL3JNILib
native

native

native

native

init(int width, int
height)

step()
addRotData(float rx,

float ry, float rz)
setScale(float scale)

main.cpp

Java_com_android_gl3jni_GL3JNILib_init(JNIEnv
* env, jobject obj, jint width, jint height)
Java_com_android_gl3jni_GL3JNILib_step(JNIEnv
* env, jobject obj)
Java_com_android_gl3jni_GL3JNILib_addRotData
JNIEnv * env, jobject obj, jfloat rx, jfloat ry,
jfloat rz);
Java_com_android_gl3jni_GL3JNILib_setScale(JNIEnv
* env, jobject obj, jfloat jscale);

main.cpp

setupGraphics(int width, int height)
renderFrame()
setAngles(rx, ry, rz)

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

220

How to do it…
Here, we describe the implementation of the OpenGL ES 3.0 native code to complete the
demo application. We will preserve the same code structure from Chapter 7, An Introduction
to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0. In the following
steps, only the new codes are highlighted, and all changes are implemented in the main.cpp
file inside the jni folder:

1. Include all necessary header files, including JNI, OpenGL ES 3.0, and the GLM library:
#define GLM_FORCE_RADIANS

//header for JNI
#include <jni.h>
...

//header for GLM library
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

2. Declare the shader program variables:
//shader program handlers
GLuint gProgram;
GLuint gvPositionHandle;
GLuint matrixHandle;
GLuint sigmaHandle;
GLuint scaleHandle;

3. Declare variables for setting up the camera as well as other relevant variables such
as the rotation angles and grid:
//the view matrix and projection matrix
glm::mat4 g_view_matrix;
glm::mat4 g_projection_matrix;

//initial position of the camera
glm::vec3 g_position = glm::vec3(0, 0, 4);

//FOV of the camera
float g_initial_fov = glm::pi<float>()*0.25f;
//rotation angles, set by sensors or by touch screen
float rx, ry, rz;
float scale=1.0f;
//vertices for the grid
const unsigned int GRID_SIZE=400;
GLfloat gGrid[GRID_SIZE*GRID_SIZE*3]={0};

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

221

4. Define the shader program code for both the vertex shader and fragment
shader. Note the similarity in the heat map generation code between this
implementation in OpenGL ES 3.0 and an earlier implementation in standard
OpenGL (see chapters 4-6):
// Vertex shader source code
static const char g_vshader_code[] =
 "#version 300 es\n"
 "in vec4 vPosition;\n"
 "uniform mat4 MVP;\n"
 "uniform float sigma;\n"
 "uniform float scale;\n"
 "out vec4 color_based_on_position;\n"
 "// Heat map generator \n"
 "vec4 heatMap(float v, float vmin, float vmax){\n"
 " float dv;\n"
 " float r=1.0, g=1.0, b=1.0;\n"
 " if (v < vmin){\n"
 " v = vmin;}\n"
 " if (v > vmax){\n"
 " v = vmax;}\n"
 " dv = vmax - vmin;\n"
 " if (v < (vmin + 0.25 * dv)) {\n"
 " r = 0.0;\n"
 " g = 4.0 * (v - vmin) / dv;\n"
 " } else if (v < (vmin + 0.5 * dv)) {\n"
 " r = 0.0;\n"
 " b = 1.0 + 4.0 * (vmin + 0.25 * dv - v) / dv;\n"
 " } else if (v < (vmin + 0.75 * dv)) {\n"
 " r = 4.0 * (v - vmin - 0.5 * dv) / dv;\n"
 " b = 0.0;\n"
 " } else {\n"
 " g = 1.0 + 4.0 * (vmin + 0.75 * dv - v) / dv;\n"
 " b = 0.0;\n"
 " }\n"
 " return vec4(r, g, b, 0.1);\n"
 "}\n"
 "void main() {\n"
 " //Simulation on GPU \n"
 " float x_data = vPosition.x;\n"
 " float y_data = vPosition.y;\n"
 " float sigma2 = sigma*sigma;\n"
 " float z = exp(-0.5*(x_data*x_data)/(sigma2)
 -0.5*(y_data*y_data)/(sigma2));\n"
 " vec4 position = vPosition;\n"

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

222

 // scale the graphics based on user gesture input
 " position.z = z*scale;\n"
 " position.x = position.x*scale;\n"
 " position.y = position.y*scale;\n"
 " gl_Position = MVP*position;\n"
 " color_based_on_position = heatMap(position.z, 0.0, 0.5);\n"
 " gl_PointSize = 5.0*scale;\n"
 "}\n";

// fragment shader source code
static const char g_fshader_code[] =
 "#version 300 es\n"
 "precision mediump float;\n"
 "in vec4 color_based_on_position;\n"
 "out vec4 color;\n"
 "void main() {\n"
 " color = color_based_on_position;\n"
 "}\n";

5. Initialize the grid pattern for data visualization:
void computeGrid(){
 float grid_x = GRID_SIZE;
 float grid_y = GRID_SIZE;
 unsigned int data_counter = 0;
 //define a grid ranging from -1 to +1
 for(float x = -grid_x/2.0f; x<grid_x/2.0f; x+=1.0f){
 for(float y = -grid_y/2.0f; y<grid_y/2.0f; y+=1.0f){
 float x_data = 2.0f*x/grid_x;
 float y_data = 2.0f*y/grid_y;
 gGrid[data_counter] = x_data;
 gGrid[data_counter+1] = y_data;
 gGrid[data_counter+2] = 0;
 data_counter+=3;
 }
 }
}

6. Set the rotation angles that are used to control the model viewing angles.
These angles (device orientation) are passed from the Java side:
void setAngles(float irx, float iry, float irz){
 rx = irx;
 ry = iry;
 rz = irz;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

223

7. Compute the projection and view matrices based on camera parameters:
void computeProjectionMatrices(){
 //direction vector for z
 glm::vec3 direction_z(0, 0, -1.0);
 //up vector
 glm::vec3 up = glm::vec3(0,-1,0);

 float aspect_ratio = (float)width/(float)height;
 float nearZ = 0.1f;
 float farZ = 100.0f;
 float top = tan(g_initial_fov/2*nearZ);
 float right = aspect_ratio*top;
 float left = -right;
 float bottom = -top;
 g_projection_matrix = glm::frustum(left, right,
 bottom, top, nearZ, farZ);

 // update the view matrix
 g_view_matrix = glm::lookAt(
 g_position, // camera position
 g_position+direction_z, // view direction
 up // up direction
);
}

8. Create a function for handling the initialization of all attribute variables for the shader
program and other one-time setups, such as the memory allocation and initialization
for the grid:
bool setupGraphics(int w, int h) {
 ...
 gvPositionHandle = glGetAttribLocation(gProgram,
 "vPosition");
 checkGlError("glGetAttribLocation");
 LOGI("glGetAttribLocation(\"vPosition\") = %d\n",
 gvPositionHandle);

 matrixHandle = glGetUniformLocation(gProgram, "MVP");
 checkGlError("glGetUniformLocation");
 LOGI("glGetUniformLocation(\"MVP\") = %d\n",
 matrixHandle);

 sigmaHandle = glGetUniformLocation(gProgram, "sigma");
 checkGlError("glGetUniformLocation");

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

224

 LOGI("glGetUniformLocation(\"sigma\") = %d\n",
 sigmaHandle);

 scaleHandle = glGetUniformLocation(gProgram,
 "scale");
 checkGlError("glGetUniformLocation");
 LOGI("glGetUniformLocation(\"scale\") = %d\n",
 scaleHandle);

 ...

 computeGrid();
 return true;
}

9. Set up the rendering function for the 3D plot of the Gaussian function:
void renderFrame() {
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 static float sigma;

 //update the variables for animations
 sigma+=0.002f;
 if(sigma>0.5f){
 sigma = 0.002f;
 }

 /* gets the View and Model Matrix and apply to the
 rendering */
 computeProjectionMatrices();
 glm::mat4 projection_matrix = g_projection_matrix;
 glm::mat4 view_matrix = g_view_matrix;
 glm::mat4 model_matrix = glm::mat4(1.0);
 model_matrix = glm::rotate(model_matrix, rz,
 glm::vec3(-1.0f, 0.0f, 0.0f));
 model_matrix = glm::rotate(model_matrix, ry,
 glm::vec3(0.0f, -1.0f, 0.0f));
 model_matrix = glm::rotate(model_matrix, rx,
 glm::vec3(0.0f, 0.0f, 1.0f));
 glm::mat4 mvp = projection_matrix * view_matrix *
 model_matrix;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

225

 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 checkGlError("glClearColor");

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 checkGlError("glClear");

 glUseProgram(gProgram);
 checkGlError("glUseProgram");

 glUniformMatrix4fv(matrixHandle, 1, GL_FALSE,
 &mvp[0][0]);
 checkGlError("glUniformMatrix4fv");

 glUniform1f(sigmaHandle, sigma);
 checkGlError("glUniform1f");

 glUniform1f(scaleHandle, scale);
 checkGlError("glUniform1f");

 glVertexAttribPointer(gvPositionHandle, 3,
 GL_FLOAT, GL_FALSE, 0, gGrid);
 checkGlError("glVertexAttribPointer");

 glEnableVertexAttribArray(gvPositionHandle);
 checkGlError("glEnableVertexAttribArray");

 glDrawArrays(GL_POINTS, 0, GRID_SIZE*GRID_SIZE);
 checkGlError("glDrawArrays");
}

10. Define the JNI prototypes that connect to the Java side. These calls are the interfaces
for communicating between the Java code and C/C++ native code:
extern "C" {
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_init(JNIEnv
 * env, jobject obj, jint width, jint height);
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_step(JNIEnv
 * env, jobject obj);
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_addRotData(JNIEnv
 * env, jobject obj, jfloat rx,
 jfloat ry, jfloat rz);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

226

 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setScale(JNIEnv
 * env, jobject obj, jfloat jscale);
};

11. Set up the internal function calls with the helper functions:

JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_init(JNIEnv
 * env, jobject obj, jint width, jint height)
{
 setupGraphics(width, height);
}
JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_step(JNIEnv
 * env, jobject obj)
{
 renderFrame();
}
JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_addRotData(JNIEnv
 * env, jobject obj, jfloat rx, jfloat ry, jfloat rz)
{
 setAngles(rx, ry, rz);
}
JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setScale(JNIEnv
 * env, jobject obj, jfloat jscale)
{
 scale = jscale;
 LOGI("Scale is %lf", scale);
}

Finally, in terms of the compilation steps, modify the build files Android.mk and
Application.mk accordingly as follows:

1. Add in the GLM path to the LOCAL_C_INCLUDES variable in Android.mk:
LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := libgl3jni

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

227

LOCAL_CFLAGS := -Werror
LOCAL_SRC_FILES := main.cpp
LOCAL_LDLIBS := -llog -lGLESv3
#The GLM library is installed in one of these two folders by
default
LOCAL_C_INCLUDES := /opt/local/include /usr/local/include

include $(BUILD_SHARED_LIBRARY)

2. Add in gnustl_static to the APP_STL variable to use GNU STL as a static library.
This allows for all runtime supports from C++, which is needed by the GLM library. See
more at http://www.kandroid.org/ndk/docs/CPLUSPLUS-SUPPORT.html:
APP_ABI := armeabi-v7a
#required for GLM and other static libraries
APP_STL := gnustl_static

3. Run the compilation script (this is similar to what we did in the previous chapter).
Please note that the ANDROID_SDK_PATH and ANDROID_NDK_PATH variables
should be changed to the correct directories based on the local environment setup:
#!/bin/bash

ANDROID_SDK_PATH="../../../3rd_party/android/android-sdk-macosx"

ANDROID_NDK_PATH="../../../3rd_party/android/android-ndk-r10e"

$ANDROID_SDK_PATH/tools/android update project -p . -s --target
"android-18"

$ANDROID_NDK_PATH/ndk-build

ant debug

4. Install the Android Application Package (APK) on the Android phone, using the
following commands in the terminal:

ANDROID_SDK_PATH="../../../3rd_party/android/android-sdk-macosx"

$ANDROID_SDK_PATH/platform-tools/adb install -r bin/
GL3JNIActivity-debug.apk

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.kandroid.org/ndk/docs/CPLUSPLUS-SUPPORT.html
http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

228

The final results of our implementation are shown next. By changing the orientation of the
phone, the Gaussian function can be viewed from different angles. This provides a very
intuitive way to visualize 3D datasets. Here is a photo showing the Gaussian function when
the device is oriented parallel to the ground:

Finally, we test our multi-touch gesture interface by pinching on the touch screen with
2 fingers. This provides an intuitive way to zoom into and out of the 3D data. Here is the
first photo that shows the close-up view after zooming into the data:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 8

229

Here is another photo that shows what the data looks like when you zoom out by pinching
your fingers:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Interactive Real-time Data Visualization on Mobile Devices

230

Finally, here is a screenshot of the demo application that shows a Gaussian distribution in 3D
rendered in real-time with our OpenGL ES 3.0 shader program:

How it works…
In the second part of the demo, we demonstrated the use of a shader program written
in OpenGL ES 3.0 to perform all the simulation and heat map-based 3D rendering steps
to visualize a Gaussian distribution on a mobile GPU. Importantly, the shader code in
OpenGL ES 3.0 is very similar to the code written in standard OpenGL 3.2 and above (see
chapters 4 to 6). However, we recommend that you consult the specification to ensure
that a particular feature of interest co-exists in both versions. More details on the OpenGL
ES 3.0 specifications can be found at https://www.khronos.org/registry/gles/
specs/3.0/es_spec_3.0.0.pdf.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.0.pdf
https://www.khronos.org/registry/gles/specs/3.0/es_spec_3.0.0.pdf
http://www.it-ebooks.info/

Chapter 8

231

The hardware-accelerated portion of the code is programmed within the vertex shader
program and stored inside the g_vshader_code variable; then the fragment shade
program passes the processed color information onto the screen's color buffer. The vertex
program handles the computation related to the simulation (in our case, we have a Gaussian
function with a time-varying sigma value as demonstrated in Chapter 3, Interactive 3D Data
Visualization) in the graphics hardware. We pass in the sigma value as a uniform variable and
it is used to compute the surface height. In addition, we also compute the heat map color
value within the shader program based on the height value. With this approach, we have
significantly improved the speed of the graphic rendering step by completely eliminating
the use of the CPU cycles on these numerous floating point operations.

In addition, we have included the GLM library used in previous chapters into the Android
platform by adding the headers as well as the GLM path in the build script Android.mk.
The GLM library handles the view and projection matrix computation and also allows us to
migrate most of our previous work, such as setting up 3D rendering, to the Android platform.

Finally, our Android-based application also utilizes the inputs from the multi-touch screen
interface and the device orientation derived from the motion sensor data. These values are
passed through the JNI directly to the shader program as uniform variables.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

233

9
Augmented

Reality-based
Visualization on Mobile
or Wearable Platforms

In this chapter, we will cover the following topics:

 f Getting started I: Setting up OpenCV on Android

 f Getting started II: Accessing the camera live feed using OpenCV

 f Displaying real-time video processing with texture mapping

 f Augmented reality-based data visualization over real-world scenes

Introduction
The field of digital graphics has traditionally been living within its own virtual world since
computers were invented. Often, computer-generated content has no awareness of the user
and how the information is relevant to the user in the real world. The application is always
simply waiting for a user command such as the mouse or keyboard input. One major limiting
factor in the early design of computer applications is that computers are typically sitting on a
desk in an office or in a home environment. The lack of mobility and the inability to interact
with its environment or user ultimately limited the development of real-world interactive
visualization applications.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

234

Today, with the evolution of mobile computing, we have redefined many of our daily
interactions with the world—for example, through applications that enable navigation with
GPS using a mobile phone. However, instead of enabling users to seamlessly interact with the
world, mobile devices still draw users away from the real world. In particular, as in previous
generations of desktop computing, users are still required to look away from the real world
into a virtual world (in many cases, just a tiny mobile screen).

The notion of Augmented Reality (AR) is a step towards reconnecting the user with the real
world through the fusion of the virtual world (generated by the computer) with the real world.
This is distinctly different from virtual reality, in which the user is immersed into the virtual
world and detached from the real world. For example, a typical embodiment of AR involves
the use of a video see-through display in which virtual content (such as a computer-generated
map) is combined with a real-world scene (captured continuously with a built-in camera). Now,
the user is engaged with the real world—a step closer to a truly human-centric application.

Ultimately, the emergence of AR-enabled wearable computing devices (such as Meta's AR
eyeglasses, which features the world's first holographic interface with 3D gesture detection
and 3D stereoscopic display) will create a new era of computing that will greatly revolutionize
the way humans interact with computers. Developers interested in data visualization now
have another set of tools that are significantly more human-centric and intuitive. Such a
design, needless to say, truly connects human, machine, and the real world together.
Having information directly overlaid onto the real world (for example, by overlaying a
virtual guidance map for navigation) is so much more powerful and meaningful.

This final chapter introduces the fundamental building blocks for creating your first AR-based
application on a commodity Android-based mobile device: OpenCV for computer vision,
OpenGL for graphics rendering, as well as Android's sensor framework for interaction. With
these tools, the graphics rendering capability that used to only exist in Hollywood movie
production can now be made available at everyone's fingertips. While we will only focus on the
use of an Android-based mobile device in this chapter, the conceptual framework for AR-based
data visualization introduced in this chapter can be similarly extended to state-of-the-art
wearable computing platforms, such as Meta's AR eyeglasses.

Getting started I: Setting up OpenCV on
Android

In this section, we will outline the steps to set up the OpenCV library on the Android platform,
which is needed to enable access to the live camera stream central to any Augmented
Reality applications.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

235

Getting ready
We assume that the Android SDK and NDK are configured exactly as discussed in Chapter 7,
An Introduction to Real-time Graphics Rendering on a Mobile Platform Using OpenGL ES 3.0.
Here, we add in the support of OpenCV for Android. We will import and integrate the OpenCV
library into our existing code structure from the previous chapter.

How to do it...
Here, we describe the major steps for setting up the OpenCV library, mainly path setup and
pre-configuration of the Java SDK project setup:

1. Download the OpenCV for Android SDK package, Version 3.0.0 (OpenCV-
3.0.0-android-sdk-1.zip) at http://sourceforge.net/projects/
opencvlibrary/files/opencv-android/3.0.0/OpenCV-3.0.0-android-
sdk-1.zip.

2. Move the package (OpenCV-3.0.0-android-sdk-1.zip) to the 3rd_party/
android folder created in Chapter 7, An Introduction to Real-time Graphics
Rendering on a Mobile Platform Using OpenGL ES 3.0.

3. Unzip the package with the following commands
cd 3rd_party/android && unzip OpenCV-3.0.0-android-sdk-1.zip

4. Then in the project folder (for example ch9/code/opencv_demo_1), run the
following script to initialize the project for Android. Note that the 3rd_party folder
is assumed to be in the same top-level directory as in previous chapters:
#!/bin/bash
ANDROID_SDK_PATH="../../../3rd_party/android/android-sdk-macosx"
OPENCV_SDK_PATH="../../../3rd_party/android/OpenCV-android-sdk"

#initialize the SDK Java library
$ANDROID_SDK_PATH/tools/android update project -p $OPENCV_SDK_
PATH/sdk/java -s --target "android-18"
$ANDROID_SDK_PATH/tools/android update project -p . -s --target
"android-18" --library $OPENCV_SDK_PATH/sdk/java

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://sourceforge.net/projects/opencvlibrary/files/opencv-android/3.0.0/OpenCV-3.0.0-android-sdk-1.zip
http://sourceforge.net/projects/opencvlibrary/files/opencv-android/3.0.0/OpenCV-3.0.0-android-sdk-1.zip
http://sourceforge.net/projects/opencvlibrary/files/opencv-android/3.0.0/OpenCV-3.0.0-android-sdk-1.zip
http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

236

5. Finally, include the OpenCV path in the build script jni/Android.mk.

LOCAL_PATH:= $(call my-dir)
#build the OpenGL + OpenCV code in JNI
include $(CLEAR_VARS)
#including OpenCV SDK
include ../../../3rd_party/android/OpenCV-android-sdk/sdk/native/
jni/OpenCV.mk

Now, the project is linked to the OpenCV library, both from the Java side as well as from the
native side.

Next we must install the OpenCV Manager on the mobile phone. The OpenCV Manager
allows us to create applications without statically linking all the required libraries, and it is
recommended. To install the package, we can execute the following adb command from the
same project folder (ch9/code/opencv_demo_1). Again, note the relative location of the
3rd_party folder. You can also execute this command within the Android SDK folder and
modify the relative path of the 3rd_party folder accordingly.

$ANDROID_SDK_PATH/platform-tools/adb install ../../../3rd_party/
android/OpenCV-android-sdk/apk/OpenCV_3.0.0_Manager_3.00_armeabi-v7a.
apk

After we have successfully completed the setup, we are ready to create our first OpenCV
Android application on the phone.

See also
Windows users should consult the following tutorials on Android development with OpenCV
for setup instructions: http://docs.opencv.org/doc/tutorials/introduction/
android_binary_package/android_dev_intro.html and http://docs.opencv.
org/doc/tutorials/introduction/android_binary_package/dev_with_OCV_
on_Android.html#native-c.

For further information on using OpenCV in an Android application, consult the online
documentation at http://opencv.org/platforms/android.html.

Getting started II: Accessing the camera
live feed using OpenCV

Next we need to demonstrate how to integrate OpenCV into our Android-based development
framework. The following block diagram illustrates the core functions and relationship among
the classes that will be implemented in this chapter (only the functions or classes relevant to
the introduction of OpenCV will be discussed in this section):

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://docs.opencv.org/doc/tutorials/introduction/android_binary_package/android_dev_intro.html
http://docs.opencv.org/doc/tutorials/introduction/android_binary_package/android_dev_intro.html
http://docs.opencv.org/doc/tutorials/introduction/android_binary_package/dev_with_OCV_on_Android.html#native-c
http://docs.opencv.org/doc/tutorials/introduction/android_binary_package/dev_with_OCV_on_Android.html#native-c
http://docs.opencv.org/doc/tutorials/introduction/android_binary_package/dev_with_OCV_on_Android.html#native-c
http://opencv.org/platforms/android.html
http://www.it-ebooks.info/

Chapter 9

237

C/C++

GLSurfaceViewActivity

GL3OpenCVDemo GL3JNIView

SensorEventListener ScaleGestureDetector

CvCameraViewListener2 ScaleGestureDetector.SimpleOn
ScaleGestureListener

GL3JNILib

main.cpp

Texture.cpp

VideoRenderer.cpp

Shader.cpp

main.cpp

Java

JNI

In particular, we will demonstrate how to extract an image frame from the camera video
stream for further image processing steps. The OpenCV library provides camera support
for accessing the live camera feed (the raw data buffer of the video data stream) as well as
controlling the camera parameters. This feature allows us to get the raw frame data from the
live preview camera with optimal resolution, frame rate, and image format.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

238

Getting ready
The demos in this chapter build upon the basic structure introduced in the sample code of
Chapter 8, Interactive Real-time Data Visualization on Mobile Devices which utilizes the multi-
touch interface and motion sensor inputs to enable interactive real-time data visualization on
mobile devices. The major changes that are made to support OpenCV will be highlighted. For
the complete code, download the code package from the Packt Publishing website.

How to do it...
First, we will highlight the changes to the Java source files required to enable the use of
OpenCV and the OpenCV camera module. Rename GL3JNIActivity.java (src/com/
android/gl3jni/) as GL3OpenCVDemo.java and modify the code as follows:

1. Include the packages for the OpenCV library:
package com.android.gl3jni;
...
import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;
import org.opencv.android.CameraBridgeViewBase;
import org.opencv.android.CameraBridgeViewBase.CvCameraViewFrame;
import org.opencv.android.CameraBridgeViewBase.
CvCameraViewListener2;
import org.opencv.core.CvType;
import org.opencv.core.Mat;

import android.widget.RelativeLayout;
import android.view.SurfaceView;

2. Add the CvCameraViewListener2 interface to the GL3OpenCVDemo class:
public class GL3OpenCVDemo extends Activity implements
 SensorEventListener, CvCameraViewListener2{

3. Create the variables to handle the camera view:
 private GL3JNIView mView=null;
 ...
 private boolean gl3_loaded = false;
 private CameraBridgeViewBase mOpenCvCameraView;
 private RelativeLayout l_layout;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

239

4. Implement the BaseLoaderCallback function for OpenCVLoader:
 private BaseLoaderCallback mLoaderCallback = new
 BaseLoaderCallback(this) {
 @Override
 public void onManagerConnected(int status) {
 switch (status) {
 case LoaderCallbackInterface.SUCCESS:{
 Log.i("OpenCVDemo", "OpenCV loaded successfully");
 // load the library *AFTER* we have OpenCV lib ready!
 System.loadLibrary("gl3jni");
 gl3_loaded = true;

 //load the view as we have all JNI loaded
 mView = new GL3JNIView(getApplication());
 l_layout.addView(mView);
 setContentView(l_layout);

 /* enable the camera, and push the images to the
 OpenGL layer */
 mOpenCvCameraView.enableView();
 } break;
 default:{
 super.onManagerConnected(status);
 } break;
 }
 }
};

5. Implement the OpenCV camera callback functions and pass the image data to the JNI
C/C++ side for processing and rendering:
public void onCameraViewStarted(int width, int height) {
}
public void onCameraViewStopped() {
}
public Mat onCameraFrame(CvCameraViewFrame inputFrame) {
 //Log.i("OpenCVDemo", "Got Frame\n");
 Mat input = inputFrame.rgba();
 if(gl3_loaded){
 GL3JNILib.setImage(input.nativeObj);
 }
 //don't show on the java side
 return null;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

240

6. Initialize the camera in the onCreate function, upon starting the application:
@Override protected void onCreate(Bundle icicle) {
 super.onCreate(icicle);
 ...
 //setup the Java Camera with OpenCV
 setContentView(R.layout.ar);
 l_layout =
 (RelativeLayout)findViewById(R.id.linearLayoutRest);
 mOpenCvCameraView =
 (CameraBridgeViewBase)findViewById(R.id.opencv_camera_
 surface_view);
 mOpenCvCameraView.setVisibility(SurfaceView.VISIBLE);
 mOpenCvCameraView.setMaxFrameSize(1280, 720); /* cap it at
 720 for performance issue */
 mOpenCvCameraView.setCvCameraViewListener(this);
 mOpenCvCameraView.disableView();
}

7. Load the OpenCV library using the asynchronized initialization function called
initAsync from the OpenCVLoader class. This event is captured by the
BaseLoaderCallback mLoaderCallback function defined earlier:
@Override
protected void onResume() {
 super.onResume();
 OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_0_0,
 this, mLoaderCallback);
 ...
}

8. Finally, handle the onPause event, which pauses the camera preview when the
application is no longer running in the foreground:
@Override
protected void onPause() {
 super.onPause();
 mSensorManager.unregisterListener(this);
 //stop the camera
 if(mView!=null){
 mView.onPause();
 }
 if (mOpenCvCameraView != null)
 mOpenCvCameraView.disableView();
 gl3_loaded = false;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

241

9. Now inside GL3JNILib.java (src/com/android/gl3jni/), add the native
setImage function to pass the camera raw data. The entire source file is shown
here, given its simplicity:
package com.android.gl3jni;

public class GL3JNILib {
 public static native void init(int width, int height);
 public static native void step();

 //pass the image to JNI C++ side
 public static native void setImage(long imageRGBA);

 //pass the device rotation angles and the scaling factor
 public static native void resetRotDataOffset();
 public static native void setRotMatrix(float[]
 rotMatrix);
 public static native void setScale(float scale);
}

10. Finally, the source code inside GL3JNIView.java is virtually identical except that
we offer the option to reset the rotation data and call the setZOrderOnTop function
to ensure that the OpenGL layer is on top of the Java layer:
class GL3JNIView extends GLSurfaceView {
 ...
 public GL3JNIView(Context context) {
 super(context);
 // Pick an EGLConfig with RGB8 color, 16-bit depth, no stencil
 setZOrderOnTop(true);
 setEGLConfigChooser(8, 8, 8, 8, 16, 0);
 setEGLContextClientVersion(3);
 getHolder().setFormat(PixelFormat.TRANSLUCENT);
 renderer = new Renderer();
 setRenderer(renderer);
 //handle gesture input
 mScaleDetector = new ScaleGestureDetector(context, new
 ScaleListener());
 }
 ...
 @Override
 public boolean onTouchEvent(MotionEvent ev) {
 mScaleDetector.onTouchEvent(ev);
 int action = ev.getActionMasked();
 switch (action) {

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

242

 case MotionEvent.ACTION_DOWN:
 GL3JNILib.resetRotDataOffset();
 break;
 }
 return true;
 }
 ...
}

11. Finally, define the JNI prototypes to interface with the Java side in the main.cpp file
that connects all components.
//external calls for Java
extern "C" {
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setImage(JNIEnv * jenv,
 jobject, jlong imageRGBA);
};
JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setImage(
 JNIEnv * jenv, jobject, jlong imageRGBA) {
 cv::Mat* image = (cv::Mat*) imageRGBA;
 /* use mutex lock to ensure the write/read operations
 are synced (to avoid corrupting the frame) */
 pthread_mutex_lock(&count_mutex);
 frame = image->clone();
 pthread_mutex_unlock(&count_mutex);
 //LOGI("Got Image: %dx%d\n", frame.rows, frame.cols);
}

12. To access the device camera, the following elements must be declared in the
AndroidManifest.xml file to ensure we have the permission to control the
camera. In our current example, we request access to the front and back cameras
with autofocus support.

<uses-permission android:name="android.permission.CAMERA"/>
<uses-feature android:name="android.hardware.camera"
 android:required="false"/>
<uses-feature
 android:name="android.hardware.camera.autofocus"
 android:required="false"/>
<uses-feature android:name="android.hardware.camera.front"
 android:required="false"/>
<uses-feature
 android:name="android.hardware.camera.front.autofocus"
 android:required="false"/>

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

243

At this point, we have developed a full demo application that supports OpenCV and real-time
camera feed. In the next section, we will connect the camera raw data stream to the OpenGL
layer and perform real-time feature extraction with OpenCV in C/C++.

How it works...
On the Java side, we have integrated the OpenCV Manager (installed previously) to handle
the dynamic loading of all libraries at runtime. Upon starting the application, we must call the
OpenCVLoader.initAsync function; all OpenCV-related JNI libraries must only be called
after the OpenCV libraries are successfully loaded. To synchronize these actions in our case,
the callback function (BaseLoaderCallback) checks the status of the initialization of
OpenCV, and we proceed with the System.loadLibrary function to initialize OpenGL and
other components only if the OpenCV loader returns success (LoaderCallbackInterface.
SUCCESS). For simplicity, we did not include the implementation to handle library loading
exceptions in this demo.

On the sensor side, we have also changed the implementation for the SensorManager
function to return the rotation matrix instead of the Euler angles to avoid the issue of
Gimbal lock (refer to http://en.wikipedia.org/wiki/Gimbal_lock). We also
remapped the coordinates (from device orientation to OpenGL camera orientation) using the
SensorManager.remapCoordinateSystem function. Then the rotation matrix is directed
to the OpenGL side with the native calls GL3JNILib.setRotMatrix. Also, we can allow
the user to reset the default orientation by touching the screen. This is achieved by calling
the GL3JNILib.resetRotDataOffset function, which resets the rotation matrix with the
touch event.

Additionally, we have added the OpenCV CvCameraViewListener2 interface
and CameraBridgeViewBase class to enable native camera access. The
CameraBridgeViewBase class is a basic class that handles the interaction with the
Android Camera class and OpenCV library. It is responsible for controlling the camera,
such as resolution, and processing the frame, such as changing the image format. The
client implements CvCameraViewListener to receive callback events. In the current
implementation, we manually set the resolution as 1280 x 720. However, we can increase or
decrease the resolution based on the application needs. Finally, the color frame buffers are
returned in RGBA format, and the data stream will be transferred to the JNI C/C++ side and
rendered using texture mapping.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://en.wikipedia.org/wiki/Gimbal_lock
http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

244

Displaying real-time video using texture
mapping

Today, most mobile phones are equipped with cameras that are capable of capturing
high-quality photos as well as videos. For example, the Samsung Galaxy Note 4 is
equipped with a 16MP back-facing camera as well as a 3.7MP front-facing camera for video
conferencing applications. With these built-in cameras, we can record high-definition videos
with exceptional image quality in both outdoor and indoor environments. The ubiquity of these
imaging sensors, as well as the increasing computational capability of mobile processors, now
enable us to develop much more interactive applications such as real-time tracking of objects
or faces.

By combining OpenGL with the OpenCV library, we can create interactive applications that
perform real-time video processing of the real world to register and augment 3D virtual
information onto real-world objects. Since both libraries are hardware-accelerated (GPU
and CPU optimized), it is important that we explore the use of these libraries to obtain
real-time performance.

In the previous section, we introduced the framework that provides access to the live camera
feed. Here, we will create a full demo that displays real-time video using OpenGL-based
texture mapping techniques (similar to those introduced in Chapter 4, Rendering 2D Images
and Videos with Texture Mapping to Chapter 6, Rendering Stereoscopic 3D Models using
OpenGL, except we will deploy OpenGL ES for mobile platforms), and processes the video
stream to perform corner detection using OpenCV. To help readers understand the additional
code needed to finalize the demo, here is an overview diagram of the implementation:

loadShader(shader_type,
*p_source);

createShaderProgram(
*vertex_shader_code,
*fragment_shader_code);

printGLString(*name, GLenum s) ;
checkGlError(*op);

Shader
initializeTexture(

*image_data,
width, height);

updateTexture(
*image_data,

width, height, format);

Texture

VideoRenderer
setup();
render(frame);
initTexture(

frame);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

245

Getting ready
This demo requires the completion of all the Getting ready steps to enable the capture of
the real-time video stream using OpenCV on an Android device. The implementation of the
shader program and texture mapping code is based on the demos from Chapter 8, Interactive
Real-time Data Visualization on Mobile Devices.

How to do it...
On the native code side, create two new files called VideoRenderer.hpp and
VideoRenderer.cpp. These files contain the implementation to render the video
using texture mapping. Also, we will import the Texture.cpp and Texture.hpp files
from the previous chapter to handle texture creation.

Inside the VideoRenderer.hpp file, define the VideoRenderer class as follows
(the details of each function will be discussed next):

#ifndef VIDEORENDERER_H_
#define VIDEORENDERER_H_
//The shader program and basic OpenGL calls
#include <Shader.hpp>
//for texture support
#include <Texture.hpp>
//opencv support
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

class VideoRenderer {
 public:
 VideoRenderer();
 virtual ~VideoRenderer();
 //setup all shader program and texture mapping variables
 bool setup();
 bool initTexture(cv::Mat frame);
 //render the frame on screen
 void render(cv::Mat frame);

 private:
 //this handles the generic camera feed view
 GLuint gProgram;
 GLuint gvPositionHandle;
 GLuint vertexUVHandle;
 GLuint textureSamplerID;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

246

 GLuint texture_id;
 Shader shader;
};

#endif /* VIDEORENDERER_H_ */

Inside the VideoRenderer.cpp file, we implement each of the three key member functions
(setup, initTexture, and render). Here is the complete implementation:

1. Include the VideoRenderer.hpp header file, define functions to print debug
messages, and define the constructor and destructor:
#include "VideoRenderer.hpp"

#define LOG_TAG "VideoRenderer"
#define LOGI(...)
 __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__)
#define LOGE(...)
 __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__)

VideoRenderer::VideoRenderer() {
}

VideoRenderer::~VideoRenderer() {
}

2. Define the vertex and fragment shaders as well as associated configuration steps
(similar to Chapter 8, Interactive Real-time Data Visualization on Mobile Devices):
bool VideoRenderer::setup(){
 // Vertex shader source code
 const char g_vshader_code[] =
 "#version 300 es\n"
 "layout(location = 1) in vec4 vPosition;\n"
 "layout(location = 2) in vec2 vertexUV;\n"
 "out vec2 UV;\n"
 "void main() {\n"
 " gl_Position = vPosition;\n"
 " UV=vertexUV;\n"
 "}\n";
 // fragment shader source code
 const char g_fshader_code[] =
 "#version 300 es\n"
 "precision mediump float;\n"
 "out vec4 color;\n"
 "uniform sampler2D textureSampler;\n"
 "in vec2 UV;\n"

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

247

 "void main() {\n"
 " color = vec4(texture(textureSampler, UV).rgb,
 1.0);\n"
 "}\n";

 LOGI("setupVideoRenderer");
 gProgram = shader.createShaderProgram(g_vshader_code,
 g_fshader_code);
 if (!gProgram) {
 LOGE("Could not create program.");
 return false;
 }

 gvPositionHandle = glGetAttribLocation(gProgram,
 "vPosition");
 shader.checkGlError("glGetAttribLocation");
 LOGI("glGetAttribLocation(\"vPosition\") = %d\n",
 gvPositionHandle);

 vertexUVHandle = glGetAttribLocation(gProgram,
 "vertexUV");
 shader.checkGlError("glGetAttribLocation");
 LOGI("glGetAttribLocation(\"vertexUV\") = %d\n",
 vertexUVHandle);

 textureSamplerID = glGetUniformLocation(gProgram,
 "textureSampler");
 shader.checkGlError("glGetUniformLocation");
 LOGI("glGetUniformLocation(\"textureSampler\") = %d\n",
 textureSamplerID);

 return true;
}

3. Initialize and bind the texture:
bool VideoRenderer::initTexture(cv::Mat frame){
 texture_id = initializeTexture(frame.data,
 frame.size().width, frame.size().height);
 //binds our texture in Texture Unit 0
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, texture_id);
 glUniform1i(textureSamplerID, 0);

 return true;
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

248

4. Render the camera feed on the screen with texture mapping:

void VideoRenderer::render(cv::Mat frame){
 //our vertices
 const GLfloat g_vertex_buffer_data[] = {
 1.0f,1.0f,0.0f,
 -1.0f,1.0f,0.0f,
 -1.0f,-1.0f,0.0f,
 1.0f,1.0f
 ,0.0f,
 -1.0f,-1.0f,0.0f,
 1.0f,-1.0f,0.0f
 };
 //UV map for the vertices
 const GLfloat g_uv_buffer_data[] = {
 1.0f, 0.0f,
 0.0f, 0.0f,
 0.0f, 1.0f,
 1.0f, 0.0f,
 0.0f, 1.0f,
 1.0f, 1.0f
 };

 glUseProgram(gProgram);
 shader.checkGlError("glUseProgram");

 glEnableVertexAttribArray(gvPositionHandle);
 shader.checkGlError("glEnableVertexAttribArray");

 glEnableVertexAttribArray(vertexUVHandle);
 shader.checkGlError("glEnableVertexAttribArray");

 glVertexAttribPointer(gvPositionHandle, 3, GL_FLOAT,
 GL_FALSE, 0, g_vertex_buffer_data);
 shader.checkGlError("glVertexAttribPointer");

 glVertexAttribPointer(vertexUVHandle, 2, GL_FLOAT,
 GL_FALSE, 0, g_uv_buffer_data);
 shader.checkGlError("glVertexAttribPointer");

 updateTexture(frame.data, frame.size().width,
 frame.size().height, GL_RGBA);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

249

 //draw the camera feed on the screen
 glDrawArrays(GL_TRIANGLES, 0, 6);
 shader.checkGlError("glDrawArrays");

 glDisableVertexAttribArray(gvPositionHandle);
 glDisableVertexAttribArray(vertexUVHandle);
}

To further enhance the readability of the code, we encapsulate the handling of the shader
program and texture mapping inside Shader.hpp (Shader.cpp) and Texture.hpp
(Texture.cpp), respectively. We will only show the header files here for completeness
and refer readers to the code package on the Packt Publishing website for the detailed
implementation of each function.

Here is the Shader.hpp file:

#ifndef SHADER_H_
#define SHADER_H_

#define GLM_FORCE_RADIANS
#include <jni.h>
#include <android/log.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <GLES3/gl3.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>

class Shader {
 public:
 Shader();
 virtual ~Shader();
 GLuint loadShader(GLenum shader_type, const char*p_source);
 GLuint createShaderProgram(const char*vertex_shader_code,
 const char*fragment_shader_code);
 void printGLString(const char *name, GLenum s) ;
 void checkGlError(const char* op);
};

#endif /* SHADER_H_ */

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

250

The Texture.hpp file should read:

#ifndef TEXTURE_HPP
#define TEXTURE_HPP

#include <GLES3/gl3.h>

class Texture {
 public:
 Texture();
 virtual ~Texture();
 GLuint initializeTexture(const unsigned char *image_data,
 int width, int height);
 void updateTexture(const unsigned char *image_data, int width,
 int height, GLenum format);
};

#endif

Finally, we integrate everything inside the main.cpp file with the following steps:

1. Include all headers. In particular, include pthread.h to handle synchronization and
OpenCV libraries for image processing.
...
#include <pthread.h>
#include <Texture.hpp>
#include <Shader.hpp>
#include <VideoRenderer.hpp>

//including opencv headers
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/features2d/features2d.hpp>
...

2. Define the VideoRenderer and Shader objects, as well as the pthread_mutex_t
lock variable to handle synchronization for data copying using a mutex lock.
//mutex lock for data copying
pthread_mutex_t count_mutex;
...
//pre-set image size.
const int IMAGE_WIDTH = 1280;
const int IMAGE_HEIGHT = 720;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

251

bool enable_process = true;
//main camera feed from the Java side
cv::Mat frame;
//all shader related code
Shader shader;
//for video rendering
VideoRenderer videorenderer;

3. Set up the VideoRenderer object in the setupGraphics function and initialize
the texture.
bool setupGraphics(int w, int h) {
 ...
 videorenderer.setup();
 //template for the first texture
 cv::Mat frameM(IMAGE_HEIGHT, IMAGE_WIDTH, CV_8UC4,
 cv::Scalar(0,0,0,255));
 videorenderer.initTexture(frameM);
 frame = frameM;
 ...
 return true;
}

4. Create a processFrame helper function to handle feature extraction with the
OpenCV goodFeaturesToTrack function. The function also draws the result
directly on the frame for visualization.
void processFrame(cv::Mat *frame_local){
 int maxCorners = 1000;
 if(maxCorners < 1) { maxCorners = 1; }
 cv::RNG rng(12345);
 // Parameters for Shi-Tomasi algorithm
 std::vector<cv::Point2f> corners;
 double qualityLevel = 0.05;
 double minDistance = 10;
 int blockSize = 3;
 bool useHarrisDetector = false;
 double k = 0.04;

 // Copy the source image
 cv::Mat src_gray;
 cv::Mat frame_small;
 cv::resize(*frame_local, frame_small, cv::Size(), 0.5,
 0.5, CV_INTER_AREA);
 cv::cvtColor(frame_small, src_gray, CV_RGB2GRAY);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

252

 // Apply feature extraction
 cv::goodFeaturesToTrack(src_gray, corners, maxCorners,
 qualityLevel, minDistance, cv::Mat(), blockSize,
 useHarrisDetector, k);

 // Draw corners detected on the image
 int r = 10;
 for(int i = 0; i < corners.size(); i++)
 {
 cv::circle(*frame_local, 2*corners[i], r,
 cv::Scalar(rng.uniform(0,255),
 rng.uniform(0,255), rng.uniform(0,255), 255), -1, 8, 0
);
 }
 //LOGI("Found %d features", corners.size());
}

5. Implement frame copying with mutex lock synchronization (to avoid frame corruption
due to shared memory and race condition) in the renderFrame function. Process
the frame with the OpenCV library and render the result using OpenGL texture-
mapping techniques.
void renderFrame() {
 shader.checkGlError("glClearColor");
 glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 shader.checkGlError("glClear");

 pthread_mutex_lock(&count_mutex);
 cv::Mat frame_local = frame.clone();
 pthread_mutex_unlock(&count_mutex);

 if(enable_process)
 processFrame(&frame_local);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

253

 //render the video feed on screen
 videorenderer.render(frame_local);
 //LOGI("Rendering OpenGL Graphics");
}

6. Define the JNI prototypes and implement the setImage function, which receives the
raw camera image data from the Java side using a mutex lock to ensure data copying
is protected. Also, implement the toggleFeatures function to turn feature tracking
on and off upon touching the screen.

extern "C" {
..
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setImage(JNIEnv *
 jenv, jobject, jlong imageRGBA);
 //toggle features
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_toggleFeatures(JNIEnv
 * jenv, jobject);
};

JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_toggleFeatures(JNIEnv *
 env, jobject obj){
 //toggle the processing on/off
 enable_process = !enable_process;
}
JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setImage(
 JNIEnv * jenv, jobject, jlong imageRGBA) {
 cv::Mat* image = (cv::Mat*) imageRGBA;
 /* use mutex lock to ensure the write/read operations
 are synced (to avoid corrupting the frame) */
 pthread_mutex_lock(&count_mutex);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

254

 frame = image->clone();
 pthread_mutex_unlock(&count_mutex);
 //LOGI("Got Image: %dx%d\n", frame.rows, frame.cols);
}

The resulting image is a post-processed frame from OpenCV. In addition to displaying the
raw video frame, we demonstrate that our implementation can easily be extended to support
real-time video processing with OpenCV. The processFrame function uses the OpenCV
goodFeaturesToTrack corner detection function and we overlay all corners extracted
from the scene on the image.

Image features are the fundamental elements for many tracking algorithms such as
Simultaneous localization and Mapping (SLAM) as well as recognition algorithms such as
image-based matching. For example, with the SLAM algorithm, we can construct a map of the
environment and, at the same time, keep track of the position of the device in space. Such
techniques are particularly useful in AR applications as we always need to align the virtual
world with the real world. Next, we can see a feature extraction algorithm (corner detection)
running in real-time on a mobile phone.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

255

How it works...
The VideoRenderer class has two primary functions:

 f Creating the shader program that handles texture mapping (Shader.cpp and
Texture.cpp).

 f Updating the texture memory with the OpenCV raw camera frame. Each time a new
frame is retrieved from OpenCV, we call the render function, which updates the
texture memory and also draws the frame on the screen.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

256

The main.cpp file connects all the components of the implementation, and encapsulates
all the logics for the interaction. It interfaces with the Java side (for example, setImage)
and we offload all computationally intensive tasks to the C++ native side. For example,
the processFrame function handles the OpenCV video processing pipeline, and we can
efficiently handle memory I/O and parallelization. On the other hand, the VideoRenderer
class accelerates rendering with OpenGL for real-time performance on the mobile platform.

One may notice that the implementations of OpenGL and OpenCV on Android are mostly
identical to the desktop version. That's the key reason why we employ such cross-platform
languages as we can easily extend our code to any future platform with minimal effort.

See also
On a mobile platform, computational resources are particularly limited and thus it is
important to optimize the use of all available hardware resources. With OpenGL-based
hardware acceleration, we can reduce most of our overhead in rendering graphics in 2D and
3D on the graphics processor. In the near future, especially with the emergence of mobile
processors supporting GPGPU (for example, Nvidia's K1 mobile processor), we will enable
more parallelized processing for computer vision algorithms and offer real-time performance
for many applications on a mobile device. For example, Nvidia now officially supports CUDA
for all its upcoming mobile processors, so we will see many more real-time image processing,
machine learning (such as deep learning algorithms), and high-performance graphics
emerging on the mobile platform. See the following website for more information:
https://developer.nvidia.com/embedded-computing.

Augmented reality-based data visualization
over real-world scenes

In our ultimate demo, we will introduce the basic framework for AR-based data visualization
by overlaying 3D data on real-world objects and scenes. We apply the same GPU-accelerated
simulation model and register it to the world with a sensor-based tracking approach. The
following diagram illustrates the final architecture of the implementation in this chapter:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://developer.nvidia.com/embedded-computing
http://www.it-ebooks.info/

Chapter 9

257

C/C++

GLSurfaceViewActivity

GL3OpenCVDemo GL3JNIView

SensorEventListener ScaleGestureDetector

CvCameraViewListener2
ScaleGestureDetector.SimpleOn
ScaleGestureListener

main.cpp
setupGraphics(…)
renderFrame()
setScale()
resetRotDataOffset ()
setRotMatrix ()
processFrame()
setDxDy();

main.cpp
Java_com_android_gl3jni_GL3JNILib_init(JNIEnv * env, jobject obj, jint width, jint height)
Java_com_android_gl3jni_GL3JNILib_step(JNIEnv * env, jobject obj)
Java_com_android_gl3jni_GL3JNILib_setScale(JNIEnv * env, jobject obj, jfloat jscale);
Java_com_android_gl3jni_GL3JNILib_resetRotDataOffset(JNIEnv * env, jobject obj);
Java_com_android_gl3jni_GL3JNILib_setRotMatrix (JNIEnv *env, jobject obj, jfloatArray ptr);
Java_com_android_gl3jni_GL3JNILib_setImage(JNIEnv *env, jobject obj, jlong imageRGBA);
Java_com_android_gl3jni_GL3JNILib_setIDxDy(JNIEnv *env, jobject obj, jfloat dx, jfloat dy);

GL3JNILib
native

native

native

native

native

native

native

init(int width, int height)
step()

setScale(float scale)
resetRotDataOffset()
setRotMatrix (float [] rotMatrix)

setImage(long ImageRGBA)
setDxDy(float dx, float dy)

AROverlayRenderer.cpp
setup()
setScale(…)
setRotMatrix(…)
setOldRotMatrix(…)
resetRotMatrix()
setScreenScreen(…)
setDxDy(…)

Texture.cpp

VideoRenderer.cpp

Shader.cpp
loadShader(…)
createShaderProgram(…)
printGLString()
checkGlError()

initializeTexture(…)
updateTexture(…)

setup(…)
render()
initTexture(…)

Java

JNI

Getting ready
This final demo integrates together all the concepts previously introduced in this chapter and
requires the capture (and possibly processing) of a real-time video stream using OpenCV
on an Android-based phone. To reduce the complexity of the code, we have created the
Augmented Reality layer (AROverlayRenderer) and we can improve the registration,
alignment, and calibration of the layer with more advanced algorithms in the future.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

258

How to do it...
Let's define a new class called AROverlayRenderer inside the AROverlayRenderer.hpp
file:

#ifndef AROVERLAYRENDERER_H_
#define AROVERLAYRENDERER_H_

#include<Shader.hpp>

class AROverlayRenderer {
 public:
 AROverlayRenderer();
 virtual ~AROverlayRenderer();
 void render();
 bool setup();
 void setScale(float s);

 void setOldRotMatrix(glm::mat4 r_matrix);
 void setRotMatrix(glm::mat4 r_matrix);
 void resetRotMatrix();
 void setScreenSize(int width, int height);
 void setDxDy (float dx, float dy);
 private:
 //this renders the overlay view
 GLuint gProgramOverlay;
 GLuint gvOverlayPositionHandle;
 GLuint gvOverlayColorHandle;
 GLuint matrixHandle;
 GLuint sigmaHandle;
 GLuint scaleHandle;

 //vertices for the grid
 int grid_size;
 GLfloat *gGrid;
 GLfloat sigma;

 //for handling the object rotation from user
 GLfloat dx, dy;
 GLfloat rotX, rotY;

 //the view matrix and projection matrix
 glm::mat4 g_view_matrix;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

259

 glm::mat4 g_projection_matrix;

 //initial position of the camera
 glm::vec3 g_position;
 //FOV of the virtual camera in OpenGL
 float g_initial_fov;

 glm::mat4 rotMatrix;
 glm::mat4 old_rotMatrix;

 float scale;
 int width;
 int height;

 Shader shader;
 void computeProjectionMatrices();
 void computeGrid();
};

#endif /* AROVERLAYRENDERER_H_ */

Now implement the AROverlayRenderer member functions inside the
AROverlayRenderer.cpp file:

1. Include the AROverlayRenderer.hpp header file and define functions to print
messages as well as the constructor and destructor:
#include "AROverlayRenderer.hpp"

#define LOG_TAG "AROverlayRenderer"
#define LOGI(...)
 __android_log_print(ANDROID_LOG_INFO,LOG_TAG,__VA_ARGS__)
#define LOGE(...)
 __android_log_print(ANDROID_LOG_ERROR,LOG_TAG,__VA_ARGS__)

AROverlayRenderer::AROverlayRenderer() {
 //initial position of the camera
 g_position = glm::vec3(0.0f, 0.0f, 0.0f);

 //FOV of the virtual camera in OpenGL
 //45 degree FOV
 g_initial_fov = 45.0f*glm::pi<float>()/180.0f;

 /* scale for the panel and other objects, allow for
 zooming in with pinch. */
 scale = 1.0f;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

260

 dx=0.0f; dy=0.0f;
 rotX=0.0f, rotY=0.0f;
 sigma = 0;

 grid_size = 400;
 //allocate memory for the grid
 gGrid = (GLfloat*)
 malloc(sizeof(GLfloat)*grid_size*grid_size*3);
}

AROverlayRenderer::~AROverlayRenderer() {
 //delete all dynamically allocated objects here
 free(gGrid);
}

2. Initialize the grid pattern for the simulation:
void AROverlayRenderer::computeGrid(){
 float grid_x = grid_size;
 float grid_y = grid_size;
 unsigned int data_counter = 0;
 //define a grid ranging from -1 to +1
 for(float x = -grid_x/2.0f; x<grid_x/2.0f; x+=1.0f){
 for(float y = -grid_y/2.0f; y<grid_y/2.0f; y+=1.0f){
 float x_data = x/grid_x;
 float y_data = y/grid_y;
 gGrid[data_counter] = x_data;
 gGrid[data_counter+1] = y_data;
 gGrid[data_counter+2] = 0;
 data_counter+=3;
 }
 }
}

3. Set up the shader program to overlay graphics:
bool AROverlayRenderer::setup(){
 // Vertex shader source code
 static const char g_vshader_code_overlay[] =
 "#version 300 es\n"
 "in vec4 vPosition;\n"
 "uniform mat4 MVP;\n"
 "uniform float sigma;\n"
 "uniform float scale;\n"
 "out vec4 color_based_on_position;\n"
 "// Heat map generator \n"

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

261

 "vec4 heatMap(float v, float vmin, float vmax){\n"
 " float dv;\n"
 " float r=1.0, g=1.0, b=1.0;\n"
 " if (v < vmin){\n"
 " v = vmin;}\n"
 " if (v > vmax){\n"
 " v = vmax;}\n"
 " dv = vmax - vmin;\n"
 " if (v < (vmin + 0.25 * dv)) {\n"
 " r = 0.0;\n"
 " g = 4.0 * (v - vmin) / dv;\n"
 " } else if (v < (vmin + 0.5 * dv)) {\n"
 " r = 0.0;\n"
 " b = 1.0 + 4.0 * (vmin + 0.25 * dv - v) / dv;\n"
 " } else if (v < (vmin + 0.75 * dv)) {\n"
 " r = 4.0 * (v - vmin - 0.5 * dv) / dv;\n"
 " b = 0.0;\n"
 " } else {\n"
 " g = 1.0 + 4.0 * (vmin + 0.75 * dv - v) / dv;\n"
 " b = 0.0;\n"
 " }\n"
 " return vec4(r, g, b, 0.1);\n"
 "}\n"
 "void main() {\n"
 " //Simulation on GPU \n"
 " float x_data = vPosition.x;\n"
 " float y_data = vPosition.y;\n"
 " float sigma2 = sigma*sigma;\n"
 " float z = exp(-0.5*(x_data*x_data)/(sigma2)-
 0.5*(y_data*y_data)/(sigma2));\n"
 " vec4 position = vPosition;\n"
 " position.z = z*scale;\n"
 " position.x = position.x*scale;\n"
 " position.y = position.y*scale;\n"
 " gl_Position = MVP*position;\n"
 " color_based_on_position = heatMap(position.z, 0.0,
 0.5);\n"
 " gl_PointSize = 5.0*scale;\n"
 "}\n";

 // fragment shader source code
 static const char g_fshader_code_overlay[] =
 "#version 300 es\n"
 "precision mediump float;\n"

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

262

 "in vec4 color_based_on_position;\n"
 "out vec4 color;\n"
 "void main() {\n"
 " color = color_based_on_position;\n"
 "}\n";

 //setup the shader for the overlay
 gProgramOverlay =
 shader.createShaderProgram(g_vshader_code_overlay,
 g_fshader_code_overlay);
 if (!gProgramOverlay) {
 LOGE("Could not create program for overlay.");
 return false;
 }
 //get handlers for the overlay side
 matrixHandle = glGetUniformLocation(gProgramOverlay, "MVP");
 shader.checkGlError("glGetUniformLocation");
 LOGI("glGetUniformLocation(\"MVP\") = %d\n",
 matrixHandle);

 gvOverlayPositionHandle = glGetAttribLocation(gProgramOverlay,
"vPosition");
 shader.checkGlError("glGetAttribLocation");
 LOGI("glGetAttribLocation(\"vPosition\") = %d\n",
 gvOverlayPositionHandle);

 sigmaHandle = glGetUniformLocation(gProgramOverlay,
 "sigma");
 shader.checkGlError("glGetUniformLocation");
 LOGI("glGetUniformLocation(\"sigma\") = %d\n",
 sigmaHandle);

 scaleHandle = glGetUniformLocation(gProgramOverlay,
 "scale");
 shader.checkGlError("glGetUniformLocation");
 LOGI("glGetUniformLocation(\"scale\") = %d\n",
 scaleHandle);

 computeGrid();
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

263

4. Create helper functions to set the scale, screen size, and rotation variables from the
touch interface:
void AROverlayRenderer::setScale(float s) {
 scale = s;
}

void AROverlayRenderer::setScreenSize(int w, int h) {
 width = w;
 height = h;
}

void AROverlayRenderer::setRotMatrix(glm::mat4 r_matrix){
 rotMatrix= r_matrix;
}

void AROverlayRenderer::setOldRotMatrix(glm::mat4
 r_matrix){
 old_rotMatrix = r_matrix;
}

void AROverlayRenderer::resetRotMatrix(){
 old_rotMatrix = rotMatrix;
}

void AROverlayRenderer::setDxDy(float dx, float dy){
 //update the angle of rotation for each
 rotX += dx/width;
 rotY += dy/height;
}

5. Compute the projection and view matrices based on the camera parameters:
void AROverlayRenderer::computeProjectionMatrices(){
 //direction vector for z
 glm::vec3 direction_z(0.0, 0.0, -1.0);
 //up vector
 glm::vec3 up = glm::vec3(0.0, -1.0, 0.0);

 float aspect_ratio = (float)width/(float)height;
 float nearZ = 0.01f;
 float farZ = 50.0f;
 float top = tan(g_initial_fov/2*nearZ);
 float right = aspect_ratio*top;
 float left = -right;
 float bottom = -top;

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

264

 g_projection_matrix = glm::frustum(left, right, bottom, top,
 nearZ, farZ);

 g_view_matrix = glm::lookAt(
 g_position, // camera position
 g_position+direction_z, //viewing direction
 up // up direction
);
}

6. Render the graphics on the screen:
void AROverlayRenderer::render(){
 //update the variables for animations
 sigma+=0.002f;
 if(sigma>0.5f){
 sigma = 0.002f;
 }
 glUseProgram(gProgramOverlay);
 /* Retrieve the View and Model matrices and apply them to
 the rendering */
 computeProjectionMatrices();
 glm::mat4 projection_matrix = g_projection_matrix;
 glm::mat4 view_matrix = g_view_matrix;
 glm::mat4 model_matrix = glm::mat4(1.0);

 model_matrix = glm::translate(model_matrix,
 glm::vec3(0.0f, 0.0f, scale-5.0f));
 //X,Y reversed for the screen orientation
 model_matrix = glm::rotate(model_matrix,
 rotY*glm::pi<float>(), glm::vec3(-1.0f, 0.0f, 0.0f));
 model_matrix = glm::rotate(model_matrix,
 rotX*glm::pi<float>(), glm::vec3(0.0f, -1.0f, 0.0f));
 model_matrix = glm::rotate(model_matrix,
 90.0f*glm::pi<float>()/180.0f, glm::vec3(0.0f, 0.0f,
 1.0f));
 /* the inverse of rotational matrix is to counter- rotate
 the graphics to the center. This allows us to reset the
 camera orientation since R*inv(R) = I. */
 view_matrix =
 rotMatrix*glm::inverse(old_rotMatrix)*view_matrix;

 //create the MVP (model view projection) matrix
 glm::mat4 mvp = projection_matrix * view_matrix *
 model_matrix;
 glUniformMatrix4fv(matrixHandle, 1, GL_FALSE,
 &mvp[0][0]);

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

265

 shader.checkGlError("glUniformMatrix4fv");
 glEnableVertexAttribArray(gvOverlayPositionHandle);
 shader.checkGlError("glEnableVertexAttribArray");
 glVertexAttribPointer(gvOverlayPositionHandle, 3,
 GL_FLOAT, GL_FALSE, 0, gGrid);
 shader.checkGlError("glVertexAttribPointer");
 glUniform1f(sigmaHandle, sigma);
 shader.checkGlError("glUniform1f");

 glUniform1f(scaleHandle, 1.0f);
 shader.checkGlError("glUniform1f");

 //draw the overlay graphics
 glDrawArrays(GL_POINTS, 0, grid_size*grid_size);
 shader.checkGlError("glDrawArrays");
 glDisableVertexAttribArray(gvOverlayPositionHandle);
}

7. Finally, we only need to make minor modifications to the main.cpp file used in
the previous demo to enable the AR overlay on top of the real-time video stream
(real-world scene). Only the relevant code snippets that highlight the required
modifications are shown here (download the complete code from the Packt
Publishing website):

...
#include <AROverlayRenderer.hpp>
...
AROverlayRenderer aroverlayrenderer;
...
bool setupGraphics(int w, int h) {
 ...
 videorenderer.setup();
 aroverlayrenderer.setup();
 ...
 videorenderer.initTexture(frame);
 aroverlayrenderer.setScreenSize(width, height);
}

void renderFrame() {
 ...
 videorenderer.render(frame);
 aroverlayrenderer.render();
}
...
extern "C" {
 ...

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

266

 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setScale(JNIEnv *
 env, jobject obj, jfloat jscale);
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_resetRotDataOffset(JNIEnv
 * env, jobject obj);
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setRotMatrix (JNIEnv
 *env, jobject obj, jfloatArray ptr);
 JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setDxDy(JNIEnv *env,
 jobject obj, jfloat dx, jfloat dy);
};
...
JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_resetRotDataOffset
 (JNIEnv * env, jobject obj){
 aroverlayrenderer.resetRotMatrix();
}
JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setScale (JNIEnv * env,
 jobject obj, jfloat jscale)
{
 aroverlayrenderer.setScale(jscale);
 LOGI("Scale is %lf", scale);
}
JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_resetRotDataOffset
 (JNIEnv * env, jobject obj){
 aroverlayrenderer.resetRotMatrix();
}
JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setRotMatrix
 (JNIEnv *env, jobject obj, jfloatArray ptr) {
 jsize len = env->GetArrayLength(ptr);
 jfloat *body = env->GetFloatArrayElements(ptr,0);
 //should be 16 elements from the rotation matrix
 glm::mat4 rotMatrix(1.0f);
 int count = 0;
 for(int i = 0; i<4; i++){
 for(int j=0; j<4; j++){
 rotMatrix[i][j] = body[count];
 count++;
 }
 }
 env->ReleaseFloatArrayElements(ptr, body, 0);
 aroverlayrenderer.setRotMatrix(rotMatrix);
}

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Chapter 9

267

JNIEXPORT void JNICALL
 Java_com_android_gl3jni_GL3JNILib_setDxDy(JNIEnv * env,
 jobject obj, jfloat dx, jfloat dy){
 aroverlayrenderer.setDxDy(dx, dy);
}

With this framework, one can overlay virtually any dataset on different real-world objects or
surfaces and enable truly interactive applications, using the built-in sensors and gesture
interface on mobile devices and emerging state-of-the-art wearable AR eyeglasses. Following
are the results demonstrating a real-time, interactive, AR-based visualization of a 3-D dataset
(in this case, a Gaussian distribution) overlaid on real-world scenes:

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Augmented Reality-based Visualization on Mobile or Wearable Platforms

268

How it works...
The key element for enabling an AR application is the ability is overlay information onto
the real world. The AROverlayRenderer class implements the core functions essential
to all AR applications. First, we create a virtual camera that matches the parameters of
the actual camera on the mobile phone. Parameters such as the field of view (FOV) and
aspect ratio of the camera are currently hard-coded, but we can easily modify them in the
computeProjectionMatrices function. Then, to perform the registration between the
real world and virtual world, we control the orientation of the virtual camera based on the
orientation of the device. The orientation values are fed through the rotation matrix passed
from the Java side (the setRotMatrix function) and we apply this directly to the OpenGL
camera view matrix (view_matrix). Also, we use the multi-touch interface of the mobile
phone to reset the default orientation of the rotation matrix. This is achieved by storing the
rotational matrix value upon the touch event (the resetRotDataOffset function) and we
apply the inverse to the rotational matrix to the view matrix (this is equivalent to rotating the
camera in the opposite direction).

In terms of user interaction, we have enabled the pinch and drag option to support
dynamic interaction with the virtual object. Upon the pinch event, we take the scale
factor and we position the rendered object at a farther distance by applying the
glm::translate function on the model_matrix variable. In addition, we rotate the
virtual object by capturing the dragging action from the Java side (the setDxDy function).
The user can control the orientation of the virtual object by dragging a finger across the
screen. Together, these multi-touch gestures enable a highly interactive application
interface that allows users to change the perspective of the rendered object intuitively.

Due to the underlying complexity of the calibration process, we will not cover these
details here. However, advanced users may consult the following website for a more
in-depth discussion: http://docs.opencv.org/doc/tutorials/calib3d/camera_
calibration/camera_calibration.html.

Also, the current registration process is purely based on the IMU, and it does not support
translation (that is, the virtual object does not move exactly with the real world). To address
this, we can apply various image-processing techniques such as mean shift tracking, feature-
based tracking, and marker-based tracking to recover the full 6 DOF (degree of freedom)
model of the camera. SLAM, for example, is a great candidate to recover the 6 DOF camera
model, but its detailed implementation is beyond the scope of this chapter.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://docs.opencv.org/doc/tutorials/calib3d/camera_calibration/camera_calibration.html
http://www.it-ebooks.info/

Chapter 9

269

See also
Indeed, in this chapter, we have only covered the fundamentals of AR. The field of AR is
becoming an increasingly hot topic in both academia and industry. If you are interested in
implementing AR data visualization applications on the latest wearable computing platforms
(such as the one provided by Meta that features 3D gesture input and 3D stereoscopic
output), visit the following websites:

 f https://www.getameta.com/

 f http://www.eyetap.org/publications/

For further technical details on AR eyeglasses, please consult the following publications:

 f Raymond Lo, Alexander Chen, Valmiki Rampersad, Jason Huang, Han Wu, Steve
Mann (2013). "Augmediated reality system based on 3D camera selfgesture sensing,"
IEEE International Symposium on Technology and Society (ISTAS) 2013, pp. 20-31.

 f Raymond Lo, Valmiki Rampersad, Jason Huang, Steve Mann (2013). "Three
Dimensional High Dynamic Range Veillance for 3D Range-Sensing Cameras," IEEE
International Symposium on Technology and Society (ISTAS) 2013, pp. 255-265.

 f Raymond Chun Hing Lo, Steve Mann, Jason Huang, Valmiki Rampersad, and Tao
Ai. 2012. "High Dynamic Range (HDR) Video Image Processing For Digital Glass." In
Proceedings of the 20th ACM international conference on Multimedia (MM '12). ACM,
New York, NY, USA, pp. 1477-1480.

 f Steve Mann, Raymond Lo, Jason Huang, Valmiki Rampersad, Ryan Janzen, Tao Ai
(2012). "HDRchitecture: Real-Time stereoscopic HDR Imaging for Extreme Dynamic
Range," In ACM SIGGRAPH 2012 Emerging Technologies (SIGGRAPH '12).

www.it-ebooks.infosee more please visit: https://homeofpdf.com

https://www.getameta.com/
http://www.eyetap.org/publications/
http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

271

Index
Symbols
2D images

rendering, with texture mapping 98-110
2D plot

creating, primitives used 38-41
2D visualization, of 3D/4D datasets 44-48
3D model

loading, in Wavefront Object (.obj)
format 144-150

rendering, with lines 150-160
rendering, with points 150-160
rendering, with triangles 150-160

3D plot
creating, with perspective rendering 53-60

3ds Max 3DS (.3ds) 142

A
Activity class 178
Android

OpenCV, setting up on 234-236
Android application

creating, with OpenGL ES 3.0 180-192
Android Application Package (APK) 188, 227
Android Debug Bridge (adb) command 188
Android Developers

URL 170
Android development, with OpenCV

URL, for tutorials 236
Android Native Development Kit (NDK)

integrating, by developing basic
framework 174-179

setting up 173, 174
URL 173

Android SDK
about 170
setting up 170-173

Android sensor framework
URL, for documentation 213

Apache Ant
URL 173

Application Binary Interface (ABI) 187
AR-based data visualization

over real-world scenes 256-268
AR eyeglasses

references 269
Assimp 3.0

URL 142
Augmented Reality (AR) 166, 234

B
built-in Inertial Measurement Units (IMUs)

real-time data, visualizing from 194-212

C
camera live feed

accessing, OpenCV used 236-243
computational resources 256
CUDA 256

D
Degree of Polarization (DOP) 119
depth-sensing cameras

raw data, capturing 124-126

E
electrocardiogram (ECG) 27

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

272

F
field of view angle (fovY) 51
field of view (FOV) 268
filters

reference link 211
fly-through experience 127
fragment shader

creating, GLSL used 89-98

G
Gimbal lock

URL 243
GLFW

about 60
interactive environment, creating with 60-67

GPGPU 256

I
Inertial Measurement Units (IMUs) 193
interactive Android-based data visualization

application
creating, with mobile GPUs 219-231

interactive environment
creating, with GLFW 60-67

intraocular distance (IOD) 161

J
Java Native Interface (JNI) 180

L
line segments

drawing 33-35

M
MCML simulation 68
Microsoft Kinect 3D range-sensing

camera 122, 123
mobile GPUs

interactive Android-based data visualization
application, creating with 219-231

modeling transformation 50

modern OpenGL
about 80
working 80

Monte Carlo for multi-layered
media (MCML) 68

motion sensor inputs
handling 213-218

multi-touch interface
handling 213-218
reference link 218

O
Open Asset Import Library (Assimp)

about 142
installing 142-144

OpenCV
setting up, on Android 234-236
for accessing camera live feed 236-243

OpenCV, for Android SDK package
download link 235

OpenCV libraries
setting up, in Mac OS X/Linux 86-88
setting up, in Windows 81-84

OpenGL 49
OpenGL ES 3.0

for creating Android application 180-192
URLs 192

OpenGL Extension Wrangler Library (GLEW)
about 79
setting up, in Mac OS X/Linux 86-88
setting up, in Windows 81-84

OpenGL for Embedded Systems (OpenGL ES)
about 169
URL 173

OpenGL Mathematics (GLM)
about 79
setting up, in Mac OS X/Linux 86-88
setting up, in Windows 81-84

OpenGL point cloud
rendering, with texture mapping and

overlays 126-140
OpenGL primitives

about 28
line segments, drawing 33-35
points, drawing 28-32

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

273

triangles, drawing 35-37
URL 33

OpenGL Shading Languages (GLSL) 50
OpenNI 2 SDK

references 122
Optical Coherence Tomography (OCT) 118

P
perspective rendering

3D plot, creating with 53-59
points, OpenGL primitives

drawing 28-32
Polarization-Sensitive Optical Coherence

Tomography (PS-OCT) 119
postprocessing options

reference 150
primitives

for creating 2D plot 38-41
projection transformation 50

R
radiative transport equation (RTE) 68
rasterization 50
raw data

capturing, from depth-sensing
cameras 123-126

real-time data
visualizing, from built-in Inertial Measurement

Units (IMUs) 194-212
real-time video

displaying, with texture mapping 244-256
rendering, with filters 111-119

real-time visualization, time series 41-44

S
Simple OpenGL Image Loader (SOIL)

about 79
setting up, in Windows 81-86

Simultaneous localization and Mapping
(SLAM) 254

Stereolithography (.stl) 142
stereoscopic 3D rendering

about 161-164
working 165-168

T
texture mapping

for displaying real-time video 244-256
time series

real-time visualization 41-44
triangles, OpenGL primitives

drawing 35-37

V
vertex shader

creating, with GLSL used 89-97
Vertex Array Objects (VAO) 107
Vertex Buffer Objects (VBOs) 78
VideoRenderer class

functions 255
viewing transformation 50
virtual camera

setting up, for 3D rendering 50-53
Virtual Reality (VR) 166
volumetric dataset

rendering 68-78

W
Wavefront Object (.obj)

3D model, loading in 144-149

Z
z-fighting 52

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Thank you for buying

OpenGL Data Visualization Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.infosee more please visit: https://homeofpdf.com

www.packtpub.com
http://www.it-ebooks.info/

OpenGL Development
Cookbook
ISBN: 978-1-84969-504-6 Paperback: 326 pages

Over 40 recipes to help you learn, understand, and
implement modern OpenGL in your applications

1. Explores current graphics programming
techniques including GPU-based methods from
the outlook of modern OpenGL 3.3.

2. Includes GPU-based volume rendering algorithms.

3. Discover how to employ GPU-based path and
ray tracing.

4. Create 3D mesh formats and skeletal animation
with GPU skinning.

OpenGL 4 Shading Language
Cookbook
Second Edition
ISBN: 978-1-78216-702-0 Paperback: 394 pages

Over 70 recipes demonstrating simple and advanced
techniques for producing high-quality, real-time 3D
graphics using OpenGL and GLSL 4.x

1. Discover simple and advanced techniques for
leveraging modern OpenGL and GLSL.

2. Learn how to use the newest features of GLSL
including compute shaders, geometry, and
tessellation shaders.

3. Get to grips with a wide range of techniques for
implementing shadows using shadow maps,
shadow volumes, and more.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

Learning Game Physics with
Bullet Physics and OpenGL
ISBN: 978-1-78328-187-9 Paperback: 126 pages

Practical 3D physics simulation experience with modern
feature-rich graphics and physics APIs

1. Create your own physics simulations and
understand the various design concepts of
modern games.

2. Build a real-time complete game application,
implementing 3D graphics and physics entirely
from scratch.

3. Learn the fundamental and advanced concepts of
game programming using step-by-step instructions
and examples.

MATLAB Graphics and Data
Visualization Cookbook
ISBN: 978-1-84969-316-5 Paperback: 284 pages

Tell data stories with compelling graphics using this
collection of data visualization recipes

1. Collection of data visualization recipes with
functionalized versions of common tasks for easy
integration into your data analysis workflow.

2. Recipes cross-referenced with MATLAB product
pages and MATLAB Central File Exchange
resources for improved coverage.

3. Includes hand created indices to find exactly
what you need; such as application driven, or
functionality driven solutions.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.infosee more please visit: https://homeofpdf.com

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with OpenGL

	Introduction
	Setting up a Windows-based development platform
	Setting up a Mac-based development platform
	Setting up a Linux-based development platform
	Installing the GLFW library in Windows
	Installing the GLFW library in Mac OS X and Linux
	Creating your first OpenGL application with GLFW
	Compiling and running your first OpenGL application in Windows
	Compiling and running your first OpenGL application in Mac OS X or Linux

	Chapter 2: OpenGL Primitives and 2D Data Visualization

	Introduction
	OpenGL primitives
	Creating a 2D plot using primitives
	Real-time visualization of time series
	2D visualization of 3D/4D datasets

	Chapter 3: Interactive 3D Data Visualization

	Introduction
	Setting up a virtual camera for 3D rendering
	Creating a 3D plot with perspective rendering
	Creating an interactive environment with GLFW
	Rendering a volumetric dataset – MCML simulation

	Chapter 4: Rendering 2D Images and Videos with Texture Mapping

	Introduction
	Getting started with modern OpenGL
(3.2 and higher)
	Setting up the GLEW, GLM, SOIL, and OpenCV libraries in Windows
	Setting up the GLEW, GLM, SOIL, and OpenCV libraries in Mac OS X/Linux
	Creating your first vertex and fragment shader using GLSL
	Rendering 2D images with texture mapping
	Real-time video rendering with filters

	Chapter 5: Rendering of Point Cloud Data for 3D Range-sensing Cameras

	Introduction
	Getting started with the Microsoft Kinect (PrimeSense) 3D range-sensing camera
	Capturing raw data from depth-sensing cameras
	OpenGL point cloud rendering with texture mapping and overlays

	Chapter 6: Rendering Stereoscopic 3D Models using OpenGL

	Introduction
	Installing the Open Asset Import Library (Assimp)
	Loading the first 3D model in the Wavefront Object (.obj) format
	Rendering 3D models with points, lines, and triangles
	Stereoscopic 3D rendering

	Chapter 7: An Introduction to Real-time Graphics Rendering on a Mobile Platform using OpenGL ES 3.0

	Introduction
	Setting up the Android SDK
	Setting up the Android Native Development Kit (NDK)
	Developing a basic framework to integrate the Android NDK
	Creating your first Android application with OpenGL ES 3.0

	Chapter 8: Interactive Real-time Data Visualization on Mobile Devices

	Introduction
	Visualizing real-time data from built-in Inertial Measurement Units (IMUs)
	Part I – handling multi-touch interface and motion sensor inputs
	Part II – interactive, real-time data visualization with mobile GPUs

	Chapter 9: Augmented
Reality-based Visualization on Mobile or Wearable Platforms

	Introduction
	Getting started I: Setting up OpenCV on Android
	Getting started II: Accessing the camera live feed using OpenCV
	Displaying real-time video using texture mapping
	AR-based data visualization over real-world scenes

	Index

