
see more please visit: https://homeofpdf.com

OpenStack Object Storage
(Swift) Essentials

Design, implement, and successfully manage your
cloud storage using OpenStack Swift

Amar Kapadia
Kris Rajana
Sreedhar Varma

BIRMINGHAM - MUMBAI

see more please visit: https://homeofpdf.com

OpenStack Object Storage (Swift) Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014
Second edition: May 2015

Production reference: 1270515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-359-8

www.packtpub.com

see more please visit: https://homeofpdf.com

Credits

Authors
Amar Kapadia

Kris Rajana

Sreedhar Varma

Reviewers
Steve Martinelli

Juan J. Martínez

Christian Schwede

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Harsha Bharwani

Content Development Editor
Akashdeep Kundu

Technical Editors
Prajakta Mhatre

Tanmayee Patil

Copy Editor
Vikrant Phadke

Project Coordinator
Milton Dsouza

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

see more please visit: https://homeofpdf.com

About the Authors

Amar Kapadia is a storage technologist and blogger based in the San Francisco
Bay Area. He is currently the senior director of product marketing for Mirantis,
the #1 pure-play OpenStack company. Prior to Mirantis, he was the senior director
of strategy for EVault's Long-Term Storage Service, a public cloud storage offering
based on OpenStack Swift. He has over 20 years of experience in storage, server, and
I/O technologies at Emulex, Philips, and HP. Amar's current passion is in cloud and
object storage technologies. He holds a master's degree in electrical engineering from
the University of California, Berkeley.

When not working on OpenStack Swift, Amar can be found working on
technologies such as Kubernetes, MongoDB, PHP, or jQuery. His blogs can
be found at www.buildcloudstorage.com.

I would like to thank my wife for tolerating my late-night and
weekend book-writing sessions.

see more please visit: https://homeofpdf.com

Kris Rajana is a technologist and serial entrepreneur, passionate about building
globally distributed teams to deliver innovative infrastructure solutions. His areas
of interest include data infrastructure and fast-emerging open source cloud storage
technologies, such as OpenStack, Cloud Foundry, Dockers/Containers, and big data.
As the CEO of Vedams and Biarca (an offshoot of Vedams), he takes immense pride
in his team and its development, which leads to excellence in execution. Kris has
over 20 years of experience in managing engineering teams in fields such as space,
aviation, storage at BFGoodrich Aerospace, Snap Appliance (currently Overland
Storage), Adaptec, Xyratex, and Sullego. His current passion is DevOps, and he likes
to leverage leading open source cloud technologies to make enterprises more agile,
speed up the development and deployment of modern enterprise applications, and
make IT operations more efficient. Kris earned his doctorate in engineering science
from Pennsylvania State University.

He is a member of the board of the Pratham Bay Area Chapter. Along with the
Vedams team, he is a sponsor of an urban learning center in Hyderabad. He is a
student and sevak of the San Jose Chinmaya mission.

I would like to thank my family for their patience and support.
I would also like to thank all my mentors and teachers over the years.

Sreedhar Varma has more than 15 years of experience in the storage industry,
and has worked on various storage technologies such as SCSI, SAS, SATA,
FC HBA drivers (Adaptec, Emulex, Qlogic, Promise, and so on), RAID, storage
stacks of various operating systems, and system software for fault-tolerant and
high-availability systems. He has good experience with SAN, NAS, and iSCSI
networks; various storage arrays (Dothill, IBM, EMC, Netapp, Oracle Pillar, and so
on); object storage implementations (Swift and Ceph); and software development
using the corresponding REST APIs.

Sreedhar is currently working for Vedams software providing storage engineering
services. In the past, he has worked for Stratus Technologies, Compaq, Digital
Equipment Corp, and IBM. He has a master's degree in computer science from
the University of Massachusetts.

see more please visit: https://homeofpdf.com

About the Reviewers

Steve Martinelli is a software developer for IBM, and has been involved with
OpenStack since the Grizzly release. He is a core contributor to OpenStack's Identity
Service—Keystone. He primarily focuses on enabling Keystone to better integrate
into enterprise environments. Steve has helped federated identity, auditing, and
OAuth support to Keystone. In his spare time, he contributes to OpenStackClient,
PyCADF, and Oslo Policy as a core contributor.

Juan J. Martínez is an experienced software developer with a strong open source
background. He has been involved in OpenStack object storage since the Bexar
release. His work related to Swift includes the customization and deployment of an
award-winning cloud storage solution. He currently maintains a number of open
source projects that provide access to the storage using common protocols (FTP,
SFTP, and NBD). Juan is currently employed by Memset, a British cloud provider
based in Cranleigh.

Christian Schwede is a principal software engineer working at Red Hat. He started
working on OpenStack Swift in 2012. He is a core reviewer and contributor to Swift.

Christian's main interests are open source software, storage systems, cloud computing,
and software-defined infrastructure.

see more please visit: https://homeofpdf.com

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

[i]

Table of Contents
Preface vii
Chapter 1: Cloud Storage – Why Can't I Be Like Google? 1

What constitutes cloud storage? 2
Reduced TCO 2
Unlimited scalability 2
Elastic 2
On-demand 2
Universal access 3
Multitenancy 3
Data durability and availability 3

Limitations of cloud storage 3
Performance 3
New APIs 4

Object storage 5
The importance of being open 6
OpenStack Swift 7
Summary 8

Chapter 2: OpenStack Swift Architecture 9
Logical organization of objects 9
Swift implementation and architecture 10

Key architectural principles 10
Physical data organization 11
Data path software servers 13

A day in the life of a create operation 14
A day in the life of a read operation 15
A day in the life of an update operation 16
A day in the life of a delete operation 16

see more please visit: https://homeofpdf.com

Table of Contents

[ii]

Post-processing software components 16
Replication 16
Updaters 17
Auditors 17
Other processes 17

Inline middleware options 18
Authentication 18
Other modules 19

Additional features 20
Large object support 20
Metadata 21
Multirange support 21
CORS 21
Server-side copies 21
Cluster health 21

Summary 22
Chapter 3: Installing OpenStack Swift 23

Hardware planning 23
Server setup and network configuration 24

Pre-installation steps 25
Downloading and installing Swift 26
Setting up storage server nodes 27

Installing services 27
Formatting and mounting hard disks 29
RSYNC and RSYNCD 30

Setting up the proxy server node 31
The Keystone service 32

Installing MariaDB 32
Installing Keystone 33

The ring setup 37
Multiregion support 39

Finalizing the installation 40
Storage policies 40

Implementing storage policies 41
Applying storage policies 43

Summary 44
Chapter 4: Using Swift 45

Installing clients 45
Creating a token using Keystone authentication 46
Displaying metadata information for an account, container,
or object 47

Using the Swift client CLI 47

see more please visit: https://homeofpdf.com

Table of Contents

[iii]

Using cURL 48
Using the specialized REST API client 48

Listing containers 49
Using the Swift client CLI 49
Using cURL 50

Listing objects in a container 50
Using the Swift client CLI 50
Using cURL 51
Using the REST API 51

Updating the metadata for a container 52
Using the Swift client CLI 52
Using the REST API 52

Environment variables 52
The pseudo-hierarchical directories 53
Container ACLs 54
Transferring large objects 56
Amazon S3 API compatibility 57

Accessing Swift using S3 commands 59
Accessing Swift using client libraries 60

Java 60
Python 61
Ruby 61

Summary 61
Chapter 5: Additional Swift Interfaces 63

Using Swift for virtual machine storage 63
Swift in Sahara 65

Hadoop Cluster with Sahara 66
Using Swift with Sahara 66
Running a job in Sahara 67
Authenticating with Swift proxy 67

Summary 68
Chapter 6: Monitoring and Managing Swift 69

Routine management 69
Swift cluster monitoring 70

Swift Recon 70
Swift Informant 72
Swift dispersion tool 73
StatsD 73
Swift metrics 74

Tulsi – a Swift health monitoring tool 75

see more please visit: https://homeofpdf.com

Table of Contents

[iv]

Architecture of Tulsi 76
Deploying Tulsi 76
Running Tulsi 77
Anomaly detection in Tulsi 80

Logging using rsyslog 81
Failure management 81

Detecting drive failures 82
Handling drive failure 82
Handling node failure 83

Proxy server failure 83
Zone and region failure 84

Capacity planning 84
Adding new drives 84
Adding new storage and proxy servers 85

Migrations 85
Summary 87

Chapter 7: Docker Intercepts Swift 89
Swift with Docker 90
Installation of Docker 91
Basic commands for the Docker user 91

Setting up a Swift proxy container using the Docker image 93
Setting up the storage container using the Docker image 94

Setting up a Swift cluster using a Dockerfile 96
Creating a proxy container using a Dockerfile 96
Creating a storage container using a Dockerfile 97

Summary 98
Chapter 8: Choosing the Right Hardware 99

The hardware list 99
The hardware selection criteria 101

Choosing the storage server configuration 101
Determining the region and zone configuration 103
Choosing the account and container server configuration 104
Selecting the proxy server configuration 104
Choosing the network hardware 105
Choosing the ratios of various server types 106
Heterogeneous hardware 107
Choosing additional networking equipment 107
Selecting a cloud gateway 107

Additional selection criteria 108

see more please visit: https://homeofpdf.com

Table of Contents

[v]

The vendor selection strategy 109
Branded hardware 109
Commodity hardware 109

Summary 110
Chapter 9: Tuning Your Swift Installation 111

Performance benchmarking 111
Hardware tuning 117
Software tuning 117

Ring considerations 117
Data path software tuning 118
Post-processing software tuning 119

Additional tuning parameters 120
Summary 121

Chapter 10: Additional Resources 123
Use cases 123

Archival 124
Backup 124
Content repository 124
Collaboration 125
Data lakes 125

Operating systems used for OpenStack implementations 125
Virtualization used for OpenStack implementations 127
Provisioning and distribution tools 128
Monitoring and graphing tools 130
Additional information 130
Summary 131

Appendix: Swift CLI Commands 133
Commands 133

list 133
Examples 134

stat 134
Examples 135

post 135
Examples 136

upload 137
Examples 138

download 139
Examples 139

delete 140
Examples 140

Index 143

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

[vii]

Preface
CIOs around the world are asking their teams to take advantage of cloud technologies
as a way to cut costs and improve usability. OpenStack is a piece of fast-growing open
source cloud software with a number of projects, and OpenStack Swift is one such
project that allows users to build cloud storage. With Swift, users can not only build
storage using inexpensive commodity hardware, but also use the public cloud storage
built using the same technology. Starting with the fundamentals of cloud storage and
OpenStack Swift, this book will provide you with the skills required to build and
operate your own cloud storage or use a third-party cloud. This book is an invaluable
tool if you want to get a head start in the world of cloud storage using OpenStack Swift.
You will be equipped to build an on-premise private cloud, manage it, and tune it.

What this book covers
Chapter 1, Cloud Storage – Why Can't I Be Like Google?, introduces the need for cloud
storage, the underlying technology of object storage, and an extremely popular open
source object storage project called OpenStack Swift.

Chapter 2, OpenStack Swift Architecture, discusses the internals of the Swift architecture
in detail, and shows you how elegantly Swift converts commodity hardware into
reliable and scalable cloud storage.

Chapter 3, Installing OpenStack Swift, walks you through all the necessary steps required
to perform a multinode Swift installation, and show you how to set it up along with
the Keystone setup for authentication.

Chapter 4, Using Swift, describes the various ways in which you can access Swift object
storage. This chapter also provides examples for the various access methods.

see more please visit: https://homeofpdf.com

Preface

[viii]

Chapter 5, Additional Swift Interfaces, describes the interfaces available for using
Swift object storage as data stores (block storage), as well as the Swift interface
within Sahara.

Chapter 6, Monitoring and Managing Swift, provides details on the various options
that are available for monitoring and managing a Swift cluster. Some of the topics
covered in this chapter are StatsD metrics, handling drive failures, node failures,
and migrations.

Chapter 7, Docker Intercepts Swift, describes dockerization of Swift services and
how to deploy a dockerized Swift image.

Chapter 8, Choosing the Right Hardware, provides you with the information
necessary to make the right decision in selecting the required hardware for
your cloud storage cluster.

Chapter 9, Tuning Your Swift Installation, walks you through a performance
benchmarking tool and the basic mechanisms available for tuning a Swift cluster.
Users utilizing Swift will need to tune their installation to optimize performance,
durability, and availability, based on their unique workload.

Chapter 10, Additional Resources, explores several use cases of Swift and provides
pointers on operating systems, virtualization, and distribution tools used across
various Swift installations.

Appendix, Swift CLI Commands, provides details on various commands that can be
run from a Swift CLI session.

What you need for this book
The various software components required to follow the instructions in the chapters
are as follows:

• Ubuntu operating system 12.04, which can be downloaded from the
following sites:

 ° http://www.ubuntu.com/download/server

 ° http://releases.ubuntu.com/12.04/

• OpenStack Swift Juno release
• The python-swiftclient Swift CLI
• cURL

see more please visit: https://homeofpdf.com

Preface

[ix]

• Swift tools such as Swift-Recon, Swift-Informant, and Swift-Dispersion
• A StatsD server from https://github.com/etsy/statsd/

Who this book is for
This book is targeted at IT and storage administrators who want to enter the
world of cloud storage using OpenStack Swift. It also targets anyone who wishes
to understand how to use OpenStack Swift, and developers looking to port their
applications to OpenStack Swift.

This book also provides invaluable information for IT management professionals
trying to understand the differences between traditional and cloud storage.

Basic knowledge of Linux and server technology will be beneficial if you want to
get the most out of the book.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The name of the container should be provided after the stat command to get the
container information."

A block of code is set as follows:

import org.jclouds.ContextBuilder;
import org.jclouds.blobstore.BlobStore;
import org.jclouds.blobstore.BlobStoreContext;
import org.jclouds.openstack.swift.CommonSwiftAsyncClient;
import org.jclouds.openstack.swift.CommonSwiftClient;

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

France.txt segment 0
France.txt segment 1
France.txt segment 2
France.txt

see more please visit: https://homeofpdf.com

Preface

[x]

Any command-line input or output is written as follows:

swift post -r tenant1:user1 cities

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

see more please visit: https://homeofpdf.com

Preface

[xi]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

[1]

Cloud Storage – Why Can't I
Be Like Google?

If you could build your IT systems and operations from scratch today, would you
recreate what you have? That's the question Geir Ramleth, CIO of the construction
giant Bechtel, asked himself in 2005. The answer was obviously not, and Bechtel
ended up using the best practices from four Internet forerunners of that time—
YouTube, Google, Amazon, and Salesforce—to create their next set of data centers.

This is exactly the same question CIOs and IT administrators around the world are
asking themselves! In this book, you will learn about a revolutionary new storage
system called cloud storage that uses the best practices (though not the exact
technologies) of these web giants. This will cut the total cost of ownership (TCO) of
storage by more than 10 times compared to traditional enterprise block or file storage.

This book will show you how you can implement cloud storage using a leading open
source storage software stack called OpenStack Swift. Let's first explore some key
elements that constitute cloud storage:

• Dramatic reduction in TCO
• Unlimited scalability
• Elasticity achieved by virtualization
• On-demand; that is, pay for what you use
• Universal, that is, access from anywhere
• Multitenancy, which means sharing storage hardware with other

departments or companies
• Data durability and availability, even with partial failures of the

storage system

see more please visit: https://homeofpdf.com

Cloud Storage – Why Can't I Be Like Google?

[2]

What constitutes cloud storage?
Let's review each of these elements of cloud storage in more detail.

Reduced TCO
Reduced TCO is the crux of cloud storage. Unless this new storage cuts storage
cost by more than 10 times, it is not worth switching from block or file storage and
dealing with something new and different. By total cost of ownership, we mean the
total of capital expenditure (CAPEX) which involves equipment and operational
expenditure (OPEX) in the form of IT storage administrators, electricity, power,
cooling, and so on. This TCO reduction must be achieved without sacrificing
durability (keeping data intact) or availability.

Unlimited scalability
Whether the cloud storage offering is public (that is, offered by a service provider)
or private (that is, offered by central IT), it must have unlimited scalability. As we
will see, cloud storage is built on distributed systems, which means that it scales
very well. Traditional storage systems typically have an upper limit, making them
unsuitable for cloud storage.

Elastic
Storage virtualization decouples and abstracts the storage pool from its physical
implementation. This means that you can get an elastic (grow and shrink as required)
and unified storage pool, when in reality, the underlying hardware is neither.
IT professionals who have spent endless hours forecasting data growth and then
waiting for their equipment will appreciate the magnitude of this benefit.

On-demand
Consumers do not reserve blocks of electricity and pay for it upfront, yet we
routinely pay for storage upfront, whether we use it or not. Cloud storage uses
a pay-as-you-go model, where you pay only for the data stored and the data
accessed. For a private cloud, there is a minimal cluster to start with, beyond
which it is on-demand. This can result in huge cost savings for the storage user.

see more please visit: https://homeofpdf.com

Chapter 1

[3]

Universal access
Existing enterprise storage has limitations in terms of access. Block storage is very
limiting; a server has to be on the same storage area network, and storage volumes
cannot be shared. Network-attached-storage (NAS) must be mounted to access it.
This creates limitations on the number of clients and requires LAN access.

Cloud storage is extremely flexible—there is no limit on the number of users or
from where you can access it. This is possible since cloud storage systems usually
use a REST API over HTTP (GET, PUT, POST, and DELETE) instead of the traditional
SCSI or CIFS/NFS protocols.

Multitenancy
Cloud storage is typically multi-tenant. The tenants may be different organizations in
a public cloud or different departments in a private cloud. The benefit is centralized
management and higher storage utilization, which reduces costs. Security, often
an issue with multi-tenant systems, is addressed comprehensively in cloud storage
through strong authentication, access controls, and various encryption options.

Data durability and availability
Cloud storage is able to run on commodity hardware, yet it is highly durable
and available. This is even more impressive in that durability and availability is
maintained in the face of a partial system failure. As with many modern distributed
systems, the burden of data durability and availability is on the software layer
rather than the underlying hardware layer.

Limitations of cloud storage
While cloud storage has numerous benefits, there are some limitations in the areas of
performance and new APIs.

Performance
Storage systems have struggled to balance reliability, cost, and performance. Generally,
you can get two out of these three aspects. Cloud storage optimizes reliability and cost,
but not performance. In fact, as we will see later, reliability in cloud storage is better
than the traditional RAID when you reach a large scale. By the way RAID works,
you are at a very high risk of getting an unrecoverable failure during a RAID rebuild
when operating at-scale. Cloud storage uses different techniques such as replication or
erasure coding to provide high reliability.

see more please visit: https://homeofpdf.com

Cloud Storage – Why Can't I Be Like Google?

[4]

This means that cloud storage is well suited for applications such as web servers
and application servers, but not for databases or high-performance computing. It is
also suitable for tier 2/3 storage, for example, backup, archival (photos, documents,
videos, logs, and so on), and creating an additional copy for disaster recovery.

New APIs
Cloud storage affects applications in two ways: its interface with storage and its
behavior. Firstly, applications need to port to a new and different storage interface
utilizing HTTP instead of SCSI or CIFS/ NFS. Secondly, applications need to handle
an eventually consistent storage system. The second part requires explanation.

Cloud storage is built using distributed systems that are governed by a theorem
called the CAP theorem, which states that out of the following three points, it is
impossible to guarantee more than two:

• Consistency: For cloud storage, this means that a request to any region or
node returns the same data

• Availability: For cloud storage, this signifies that a request is successfully
acknowledged with a response other than no response or an error

• Tolerance to partial failures: For cloud storage, this implies that the
architecture is able to withstand failures in connectivity or parts of the system

Most cloud storage systems guarantee availability and tolerance to partial failures at
the expense of consistency, making the system eventually consistent. This means that
an operation such as an update may not be reflected to all nodes at the same time.
Traditional applications expect strict consistency and may need to be modified.

If an application has not ported to cloud storage, is that a dead end? Fortunately
not. There is a class of devices called cloud gateway that provides file or block
interfaces to an application (for example, CIFS, NFS, iSCSI, or FTP/SFTP) and
performs protocol conversion on the cloud. These gateways provide other functions
as well, such as caching, WAN optimization, optional compression, encryption, and
deduplication. They also eliminate the need for an application to handle the eventual
consistency problem.

see more please visit: https://homeofpdf.com

Chapter 1

[5]

Object storage
How do you build a cloud storage system? The most suitable underlying technology
is object storage.

Object storage is different from block or file storage as it allows a user to store data
in the form of objects (essentially files) in a flat namespace using REST HTTP APIs.
Object storage completely virtualizes the physical implementation from the logical
presentation. It is similar to check-in luggage versus carry-on luggage, where once
you put your check-in luggage in the system, you really don't know where it is. You
simply get it back at your destination. With carry-on luggage, you have to know
exactly where you have kept it at all times.

Object storage is built using scale-out distributed systems. Each node, most often,
actually runs on a local filesystem. As we will see, object storage architectures allow
for the use of commodity hardware, as opposed to specialized, expensive hardware
used by traditional storage systems. The most critical tasks of an object storage
system are as follows:

• Data placement
• Automating management tasks, including durability and availability

Typically, a user sends their HTTP GET, PUT, POST, HEAD, or DELETE request to any
one node out from a set of nodes, and the request is translated to physical nodes by
the object storage software. The software also takes care of the durability model by
doing any one of the following: creating multiple copies of the object, chunking it,
creating erasure codes, or a combination of these.

The durability model is not RAID because, as discussed earlier, RAID simply
does not scale beyond hundreds of terabytes. The second critical task deals with
management, such as periodic health checks, self-healing, and data migration.
Management is also made easy by using a single flat namespace, which means
that a storage administrator can manage the entire cluster as a single entity.

see more please visit: https://homeofpdf.com

Cloud Storage – Why Can't I Be Like Google?

[6]

Let's evaluate through the following table how object storage meets the
aforementioned cloud storage benefits:

Criteria Ability to meet
Low TCO Storage nodes have no special requirements such as high

availability, management, or special hardware such as RAID.
This means that commodity hardware can be used to cut capital
expenses (CAPEX).
A single flat namespace with automated management features
allows you to cut operational expenses (OPEX).
A full analysis of how this cuts the TCO by 10 times or more is
beyond the scope of this book.

Unlimited
scalability

A distributed architecture allows capacity and performance
to scale.

Elasticity A fully virtualized approach allows data to grow and shrink
as necessary.

On-demand A fully virtualized approach with centralized management allows
storage to be offered as an on-demand self-service resource.

Universal
access

REST HTTP APIs provide access from wherever the user is, with
no restriction on the number of users.

The importance of being open
Although the need for software to be open is not a technical requirement, it is
increasingly becoming a business requirement. Open means three things:

• Open source: While there are numerous benefits of open source software,
the key advantages are the users' ability to influence the direction of the
project, the velocity of innovation, reduced license fees, and the ability
to switch vendors.

• Open APIs: To avoid vendor lock-in, the APIs must be open.
Often, proprietary APIs are enticing upfront but lock users in.

• Agnostic to underlying hardware choices: To reduce hardware costs and
maintain users' preferences, the software needs to be hardware agnostic.

see more please visit: https://homeofpdf.com

Chapter 1

[7]

OpenStack Swift
OpenStack Swift is a leading open source object storage project that meets the
mentioned object storage and open technology requirements, and is the topic of this
book. Let us first look at what the OpenStack project is about, and then specifically
what OpenStack Swift (also referred to as just Swift) is.

OpenStack, a project launched by NASA and Rackspace in 2010, is currently the
fastest growing open source project, and its mission is to produce a cloud computing
platform useful for both public and private implementations. Its two core principles
are simplicity and scalability. OpenStack has numerous subprojects under its
umbrella, ranging from computing and storage to networking, among others. The
object storage project is called Swift and is a highly available, durable, distributed,
masterless, and eventually consistent software stack.

The Swift project, in particular, came out of Rackspace's cloud files platform.
The project was unique because it utilized a DevOps methodology, where the
engineers and ops professionals worked together to create and operate it. This
resulted in a very powerful storage system that is simple, yet easy to manage.
Rackspace made Swift open source in 2010, and the leading contributors include
SwiftStack, Rackspace, Red Hat, HP, Intel, IBM, and others.

In addition to sharing the mentioned generic object storage characteristics,
OpenStack Swift has some unique additional functionality, as follows:

• Open source: Comes with no license fees, as mentioned previously.
• Open standards: Using HTTP REST APIs with SSL for optional encryption.

The combination of open source and open standards eliminates any potential
vendor lock-in.

• Account container object structure: OpenStack Swift incorporates rich
naming and organization capacity, unlike a number of object storage systems
that offer a primitive interface, where the user gets a key upon submitting
an object. In these other systems, the burden of mapping names to keys and
organizing them in a reasonable manner is left to the user. Swift, on the other
hand, handles the organization of data along with multitenancy.

• Global cluster capability: This allows replication and distribution of
data around the world. This functionality helps with disaster recovery,
distribution of hot data, and so on.

see more please visit: https://homeofpdf.com

Cloud Storage – Why Can't I Be Like Google?

[8]

• Storage policies: This feature allows sets of data (stored in separate containers)
to be optionally stored on different types of underlying storage using different
durability models. For example, a valuable set of digital assets can be stored on
high-quality hardware using triple replication, while less important assets can
be stored on lower quality hardware with a lower level of replication. Hot data
could be stored on SSDs.

• Partial object retrieval: For example, you want just a portion of a movie
object or a TAR file.

• Middleware architecture: This allow users to add functionality. A great
example of this is integrating with an authentication system.

• Large object support: Objects of any size can be stored.
• Additional functionality: This includes object versioning, causing objects

to expire, rate limiting, temporary URL support, CNAME lookup, domain
remap, account-to-account data copy, quota support, and static web mode.
This list is constantly growing as a consequence of Swift being an open
source project.

Summary
In this chapter, we saw why cloud storage is a new way of building storage systems
that cuts the total cost of ownership significantly. It uses a technology called object
storage. A high-quality and open source object storage software stack to consider
is OpenStack Swift. OpenStack Swift uses a dramatically different architecture
from traditional enterprise storage systems by using a distributed architecture
on commodity servers. The next chapter explains this architecture in detail.

see more please visit: https://homeofpdf.com

[9]

OpenStack Swift Architecture
OpenStack Swift is the magic that converts a set of unconnected commodity storage
servers into a scalable, durable, and easy-to-manage storage system. We will look
at Swift's architecture (based on the Juno release) in detail by understanding the
logical organization of objects and how Swift organizes this data by virtualizing the
underlying physical hardware. This chapter then covers data path software servers
and contains a walkthrough of the four basic operations (create, read, update, and
delete) and post-processing software. The chapter concludes with inline middleware
options and additional key features.

Logical organization of objects
First, let's look at the logical organization of objects and then how Swift completely
abstracts and maps objects on the physical hardware.

A tenant is assigned an account. A tenant can be any entity—a person, department,
company, and so on. The account holds containers. Each container holds objects,
as shown in the following figure. You can think of objects essentially as files.

Logical organization of objects in Swift

see more please visit: https://homeofpdf.com

OpenStack Swift Architecture

[10]

A tenant can associate additional users to an account. Users can keep adding
containers and objects within a container without having to worry about any
physical hardware boundaries, unlike traditional file or block storage. Containers
within an account obviously require a unique name, but two containers in separate
accounts can have the same name. Containers are flat, and objects are not stored
hierarchically, unlike files stored in a filesystem, where directories can be nested.
This simplifies the design and removes a number of performance issues with
hierarchical filesystems. However, Swift does provide a mechanism to simulate
pseudo-directories by inserting a forward slash (/) delimiter in the object name.

Swift implementation and architecture
The two key issues that any storage system has to solve are as follows:

• Where to put and fetch data
• How to keep the data durable and available

We will explore these two core issues through the upcoming discussion on
architecture and implementation.

Key architectural principles
Some key architectural principles behind Swift are as follows:

• Masterless design: A master in a system creates both a failure point and
a performance bottleneck. Masterless design removes this and also allows
multiple members of the cluster to respond to API requests.

• Loose coupling: There is no need for tight communication in the cluster.
This is also essential for preventing performance and failure bottlenecks.

• Load spreading: Unless the load is spread out, performance, capacity,
account, container, and object scalability cannot be achieved.

• Self-healing: The system must automatically adjust for hardware failures.
As per the CAP theorem discussed in Chapter 1, Cloud Storage – Why Can't
I Be Like Google?, Swift is designed to tolerate partial system failures.

• Multi-tenancy layer: A number of object storage systems simply return a
hash key for a submitted object and provide a completely flat namespace.
The task of creating accounts and containers and mapping keys to object
names is left to the user. Swift simplifies life for the user and provides a
well-designed data organization layer.

see more please visit: https://homeofpdf.com

Chapter 2

[11]

• Available and eventually consistent: As discussed in Chapter 1, Cloud Storage
– Why Can't I Be Like Google?, Swift needs to maximize the availability of data
for the user and ensure that data is consistent across all nodes in the shortest
possible time.

• Heterogeneous: The various storage nodes that make up Swift do not need to
be identical. In fact, as we will see, it is possible to set policies to place objects
of on specific hardware.

Physical data organization
Swift completely abstracts logical organization of data from the physical organization.
At a physical level, Swift classifies the location of data into a hierarchy, as shown in the
following figure:

Physical data location hierarchy

The hierarchy is as follows:

• Region: At the highest level, Swift stores data in regions that are geographically
separated and thus suffer from a high-latency link. A user may use only one
region if, for example, the cluster utilizes only one data center.

• Zone: Within regions, there are zones. Zones are a set of storage nodes that
share different availability characteristics. Availability may be a function of
different physical buildings, power sources, or network connections. This
means that a zone could be a single storage server, a rack, or a complete data
center depending on your requirements. Zones need to be connected to each
other via low-latency links. Rackspace recommends having at least five zones
per region.

see more please visit: https://homeofpdf.com

OpenStack Swift Architecture

[12]

• Storage servers: A zone consists of a set of storage servers ranging from
one to several racks.

• Disk (or devices): Disk drives are part of a storage server. These can
be inside the server or connected via a just a bunch of disks (JBOD).
The devices can be spinning disks or SSDs.

Swift stores a number of replicas (the default is 3) of an object on different disks.
Due to the use an as-unique-as-possible algorithm, these replicas are as "far" away
as possible in terms of being in different regions, zones, storage servers, and disks.
This algorithm first tries to put data in different regions, then zones, then servers,
and finally disks. The algorithm is responsible for the durability aspect of Swift. It
also improves data availability since all three nodes would have to be unavailable
for data to be unavailable.

Swift uses a semi-static table to determine where to place objects and their replicas.
It is semi-static because the look-up table, called a ring, in Swift is created by
an external process called the ring builder. The ring can be modified, but not
dynamically and never by Swift. It is not distributed, so every node that deals with
data placement has a complete copy of the ring. The ring has entries in it called
partitions (this term is not to be confused with the more commonly referred-to disk
partitions). Essentially, an object is mapped on a partition, and the partition provides
the devices where the replicas of an object should be stored. The ring also provides a
list of handoff devices should any of the initial ones fail. There are rings for accounts
and containers as well, used for the same purpose. There is only one account and
container ring for an entire cluster, but there can be more than one object ring to
support a very important capability, which described next.

Swift allows objects in different containers to reside on different sets of hardware
while still being in the same cluster. This is very useful, since administrators can
create policies for data placement based on characteristics such as these:

• Durability: Dual replication, triple replication, and so on
• Hardware type: Spinning disks, SSD, and so on
• Geography: Spread across multiple regions, locked to a specific geography,

and so on

Administrators can name these policies as something meaningful for users.
Users can then decide which policy to use for a particular container. For example,
medical images may be put in a container with a triple replication policy using
geo-replication on nodes of high disk density.

see more please visit: https://homeofpdf.com

Chapter 2

[13]

Logs may be put in a container with dual replication in a single geography that
utilize nodes with SSDs. Policies are enabled by the ability of Swift to support
multiple object rings. Each ring corresponds to a policy and includes a specific
set of devices that the ring should redirect object requests to.

The actual storage of the object is done on a filesystem that resides on the disk,
for example, Extent file system (XFS). Account and container information is
kept in SQL databases for concurrent access. The account database contains a
list of all its containers, and the container database contains a list of all its objects.
These databases are stored in single files, and the files are replicated just like any
other object.

Data path software servers
The data path consists of the following four software servers. These are technically
services but the Swift documentation calls them servers. To be consistent, we will
call them servers too:

• Proxy server
• Account server
• Container server
• Object server

Unless you need performance, the account, container, and object servers are often
put into one physical server and are called a Storage server (or node), as shown in
the following figure:

Data path software servers; a storage server includes account, container, and object servers

see more please visit: https://homeofpdf.com

OpenStack Swift Architecture

[14]

A description of each server type is as follows:

• Proxy server: The proxy server is responsible for accepting HTTP requests
from a user. It will look for the location of the storage server (or servers)
where the request needs to be routed by utilizing the appropriate ring.
The proxy server accounts for failures by looking up handoff nodes and
performs read/write affinity (by sending writes or reads to the same region;
refer to the A day in the life of a create operation and A day in the life of a read
operation sections). When objects are streamed to or from an object server,
they are streamed directly through the proxy server as well. Moreover,
proxy servers are also responsible for the read/write quorum and often
host inline middleware (discussed later in this chapter).

• Account server: The account server tracks the names of containers in a
particular account. Data is stored in SQL databases; database files are further
stored in the filesystem. This server also tracks statistics, but does not have
any location information about containers. The proxy server determines the
location information based on the container ring. Normally, this server is
hosted on the same physical server with container and object servers. However,
in large installations, this may need to be on a separate physical server.

• Container server: This server is very similar to the account server, except that
it deals with object names in a particular container.

• Object server: Object servers simply store objects. Each disk has a filesystem
on it, and objects are stored in these filesystems.

Let us stitch the physical organization of the data with the various software
components and explore the four basic operations: create, read, update, and
delete (known as CRUD). For simplicity, we will focus on the object server,
but it may be further extrapolated to both account and container servers too.

A day in the life of a create operation
A create request is sent via an HTTP PUT API call to a proxy server. It does not
matter which proxy server gets the request because Swift is a distributed system and
all proxy servers are created equal. The proxy server interacts with the ring associated
with the policy of the container to get a list of disks and associated object servers
to write data to. As we covered earlier, these disks will be as unique as possible. If
certain disks have failed or are unavailable, the ring provides handoff devices. Once
the majority of disks acknowledge the write (for example, two in the case of triple
replication), the operation is returned as successful. Assuming that the remaining
writes complete successfully, we are fine. If not, the replication process, shown in
the following figure, ensures that the remaining copies are ultimately created:

see more please visit: https://homeofpdf.com

Chapter 2

[15]

A day in the life of a create operation

The create operation works slightly differently in a multi-region cluster. All copies
of the object are written to the local region. This is called write affinity. The object is
then asynchronously moved to another region (or regions). A dedicated replication
network may be used for this operation.

A day in the life of a read operation
A read request is sent via an HTTP GET API call to a proxy server. Again, any proxy
server can receive this request. Similar to what happens in the create operation, the
proxy server interacts with the appropriate ring to get a list of disks and associated
object servers. The read request is issued to object servers in the same region as the
proxy server. This is called read affinity. For a multi-region implementation, eventual
consistency presents a problem, since different regions might have different versions
of an object. To get around this issue, a read operation for an object with the latest
timestamp may be requested. In this case, proxy servers first request the timestamp
from all the object servers and read from the server with the newest copy. Similar to
the write case, in case of failure, handoff devices may be requested.

see more please visit: https://homeofpdf.com

OpenStack Swift Architecture

[16]

A day in the life of an update operation
An update request is handled in the same manner as a create request. Objects are
stored with their timestamp to make sure that when read, the latest version of the
object is returned. Swift also supports a versioning feature on a per container basis.
When this is turned on, older versions of the object are also made available in a
special container called versions_container.

A day in the life of a delete operation
A delete request sent via an HTTP DELETE API call is treated like an update, but
instead of a new version, a "tombstone" version with 0 bytes is placed. A delete
operation is very difficult in a distributed system, since the system will essentially
fight deletion by recreating deleted copies to ensure that an object has the right
number of replicas. The Swift solution is indeed very elegant and eliminates the
possibility of deleted objects suddenly showing up again.

Post-processing software components
There are three key post-processing software components that run in the background,
as opposed to being part of the data path.

Replication
Replication is a very important aspect of Swift. It ensures that the system is
consistent; that is, all servers and disks assigned by the ring to hold copies of an
object or database indeed have the latest version. This process protects against
failures, hardware migration, and ring rebalancing (where the ring is changed and
data has to be moved around). This is accomplished by comparing local data with
the remote copy. If the remote copy needs to be updated, the replication process
"pushes" a copy. The comparison process is efficient and is carried out by simply
comparing hash lists rather than each byte of an object (or account or container
database). Replication uses rsync, a Linux-based remote file synchronization
utility, to copy data. Replication alternatives such as ssync and Swift primitives
for replication are also available.

see more please visit: https://homeofpdf.com

Chapter 2

[17]

Updaters
In certain situations, account or container servers may be busy due to heavy load or
being unavailable. In this case, the update is queued onto the storage server's local
storage. There are two updaters that process these queued items. The object updater
will update objects in the container database, while the container updater will update
containers in the account database. This situation could lead to an interesting eventual
consistency behavior, where the object is available but the container listing does not
have it at that time. These windows of inconsistency are generally very small.

Auditors
Auditors walk through every object, container, and account to check their data
integrity. This is done by computing an MD5 hash and comparing it to the hash
stored under the Etag metadata key of the object (see the Metadata section later).
The Etag metadata key is created when the object is first written. If the item is
found corrupted, it is moved to a quarantine directory, and in time, the replication
process will create a clean copy. This is how the system is self-healing. The MD5
hash is also available for the user so that they can perform operations such as
comparing the hash in their local database against the one stored in Swift.

Other processes
The other background processes are as follows:

• Account reaper: This process is responsible for deleting an entire account
once it is marked for deletion in the database.

• Object expirer: Swift allows users to set retention policies by providing
"delete at" or "delete after" information for objects. This process ensures
that expired objects are deleted.

• Drive audit: This is another useful background process that looks out for
bad drives and unmounts them. It can be more efficient than letting the
auditor deal with this type of failure.

• Container-to-container synchronization: Using the container-to-container
synchronization process, all contents of a container can be mirrored to
another container. These containers can be in different clusters, and the
operation uses a secret sync key. Before multi-region support, this feature
was the only way to get multiple copies of your data in two or more regions.
In addition to being an alternative way to perform replication, this feature
is useful for hybrid (private-public combination) or community clouds
(multiple private clouds).

see more please visit: https://homeofpdf.com

OpenStack Swift Architecture

[18]

• Container reconciler: The combination of policies and eventual consistency
presents the risk of objects being written to the wrong policy for an interim
period. This process corrects any such writes.

Inline middleware options
In addition to the aforementioned core data path components, other items may also
be placed in the data path to extend Swift's functionality. This is done by taking
advantage of Swift's architecture, which allows middleware to be inserted. The
following is a non-exhaustive list of various middleware modules. Most of them
apply only to the proxy server, while some modules such as logging and recon do
apply to other servers as well.

Authentication
Authentication is one of the most important inline functions. All of Swift's middleware
is separate and is used to extend Swift. Thus, authentication systems are separate
projects and one out of several may be chosen. Keystone authentication is the official
OpenStack identity service and may be used in conjunction with Swift, though there
is nothing to prevent a user from creating their own authentication system or using
others such as Swauth or TempAuth.

Authentication works as follows:

1. A user presents credentials to the auth system. This is done by executing an
HTTP REST API call.

2. The auth system provides the user with an AUTH token.
3. The AUTH token is not unique for every request and expires after a

certain duration (in the case of TempAuth, the default time-to-live
duration is 86,400 seconds).
Every request made to Swift has to be accompanied by the AUTH token.

4. Swift validates the token with the auth system and caches the result.
The result is flushed upon expiration.

5. The auth system generally has the concept of administrator accounts
(tenant) and non-admin (user) accounts. Administrator requests are
obviously passed through.

6. Non-admin requests are checked against container-level access control lists
(ACL). These lists allow the administrator to set read-and-write ACLs for
each non-admin user.

see more please visit: https://homeofpdf.com

Chapter 2

[19]

7. Therefore, for non-admin users, the ACL is checked before the proxy server
proceeds with the request. The following figure illustrates the steps involved
when Swift interacts with the auth system:

Other modules
A number of other Swift and third-party middleware modules are available; the
following are a few examples:

• Logging: Logging is a very important module. A user may insert their
custom log handler as well.

• Health check: This module provides a simple way to monitor the proxy
server to check whether it is alive. Simply access the /healthcheck path
and the module will respond with OK or whatever the fail case is.

• Domain remap: This middleware allows you to remap the account and
container name from the path to the host domain name. This allows you
to simplify domain names.

• CNAME lookup: Using this software, you can create friendly domain
names that remap directly to your account or container. CNAME lookup
and domain remap may be used in conjunction.

• Rate limiting: Rate limiting is used to limit the rate of requests that result
in database writes to account and container servers.

• Container and account quotas: An administrator can set container or
account quotas in terms of bytes using these two middleware modules.

• Bulk delete: This middleware allows bulk operations such as deletion of
multiple objects or containers.

see more please visit: https://homeofpdf.com

OpenStack Swift Architecture

[20]

• Bulk archive autoextraction: For bulk expansion of compressed and
uncompressed tarball (TAR, tar.gz, and tar.bz2) files to be performed
with a single command, use this software.

• TempURL: The TempURL middleware allows you to create a URL that
provides temporary access to an object. This access is not authenticated but
expires after a certain duration of time. Furthermore, the access is only to a
single object, and no other objects can be accessed via the URL.

• Swift origin server: This is a module that allows the use of Swift as an origin
server to a content delivery network (CDN).

• Static web: This software converts Swift into a static web server. You can
also provide CSS style sheets to establish full control over the look and feel
of your pages. Obviously, requests can be from a nonauthenticated source.

• Form post: By using the form post middleware, you get the ability to upload
objects to Swift using standard HTML form posts. The middleware converts
different POST requests to different PUT requests, and the requests do not go
through authentication to allow collaboration across users and non-users of
the cluster.

• Recon: Recon is a piece of software useful for management. It provides
monitoring and returns various metrics about the cluster.

• Profiler: This middleware accumulates CPU timing statistics for all incoming
requests. It can be very useful for understanding performance issues and for
tuning purposes.

Additional features
Swift has additional features that were not covered in the previous sections.
The following sections detail some of the additional features.

Large object support
Swift places a limit on the size of a single uploaded object (the default is 5 GB), yet
allows storage and downloading of virtually unlimited-size objects. The technique
used is segmentation. An object is broken into equal-size segments (except the last
one) and uploaded. These uploads are efficient since no one segment is unreasonably
large, and data transfers can be done in parallel. Once the uploads are completed, a
manifest file, which shows how the segments form a single large object, is uploaded.
The download is a single operation where Swift concatenates the various segments
to recreate the large object.

see more please visit: https://homeofpdf.com

Chapter 2

[21]

Metadata
Swift allows custom metadata to be attached to accounts, containers, or objects that are
set and retrieved in the form of custom headers. The metadata is simply a key/value
pair (key means name). Metadata may be provided at the time of creating an object
(using PUT) or updated later (using POST). It may be retrieved independently of the
object using the HEAD method. Examples of metadata range from ETag, mentioned in
the Auditors section, to custom tags such as the patient name, doctor name, x-ray date
for a medical image, and so on.

Multirange support
The HTTP specification allows multirange GET operations, and Swift supports this by
retrieving multiple ranges of an object rather than the entire object.

CORS
Cross-origin resource sharing (CORS) is a specification that allows JavaScript
running in a browser to make a request to domains other than where it came from.
Swift supports this, and this feature makes it possible for you to host your web pages
with JavaScript on one domain and request objects from a Swift cluster on another
domain. Swift also supports a broader cross-domain policy file where other client-side
technologies such as Flash, Java, and Silverlight can interact with Swift that is in a
different domain.

Server-side copies
Swift allows you to copy objects across containers or accounts entirely using
server-side copy operations. Since the entire copy operation is performed on the
server side, the client is offloaded.

Cluster health
A tool called swift-dispersion-report may be used to measure the overall cluster
health. It does so by ensuring that the various replicas of an object and container
are in their proper places.

see more please visit: https://homeofpdf.com

OpenStack Swift Architecture

[22]

Summary
In summary, Swift takes a set of commodity servers and creates a durable and
scalable storage system that is simple to manage. In this chapter, we reviewed
the Swift architecture and major functionalities. The next chapter will show you
how you can install Swift on your own environment using multiple servers.

see more please visit: https://homeofpdf.com

[23]

Installing OpenStack Swift
The previous chapter should have given you a good understanding of OpenStack
Swift's architecture. This chapter is meant for IT administrators who want to install
OpenStack Swift. The version discussed here is the Juno release of OpenStack.
Installation of Swift has several steps and requires careful planning before
beginning the process.

A simple installation consists of installing all Swift components on a single node, and
a complex installation consists of installing Swift on several proxy server nodes and
storage server nodes. The number of storage nodes can be in the order of thousands
across multiple zones and regions. Depending on your installation, you need to
decide on the number of proxy server nodes and storage server nodes that you will
configure. This chapter demonstrates a manual installation process; advanced users
may want to use utilities such as Puppet or Chef to simplify the process.

This chapter walks you through an OpenStack Swift cluster installation that contains
one proxy server and five storage servers. As explained in Chapter 2, OpenStack Swift
Architecture, storage servers include account, container, and object servers.

Hardware planning
This section describes the various hardware components involved in the setup
(see Chapter 8, Choosing the Right Hardware, for a complete discussion on this topic).
Since Swift deals with object storage, disks are going to be a major part of hardware
planning. The size and number of disks required should be calculated based on
your requirements.

Networking is also an important component, where factors such as a public or private
network and a separate network for communication between storage servers need to
be planned. Network throughput of at least 1 GB per second is suggested, while 10 GB
per second is recommended.

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[24]

The servers we set up as proxy and storage servers are dual quad-core servers with
12 GB of RAM.

In our setup, we have a total of 15 x 2 TB disks for Swift storage; this gives us a total
size of 30 TB. However, with in-built replication (with a default replica count of 3),
Swift maintains three copies of the same data. Therefore, the effective capacity for
storing files and objects is approximately 10 TB, taking filesystem overhead into
consideration. This is further reduced due to less than 100 percent utilization.
The following figure depicts the nodes of our Swift cluster configuration:

HTTP RESTful Access

Storage Network
172.168.10.xx

192.168.2.244 (external IP)
172.168.10.51Proxy

Server

OpenStack Swift Object Storage Setup

Replication Network
172.168.9.xx

172.168.10.52

172.168.9.52

172.168.10.53

172.168.9.53

172.168.10.54

172.168.9.54

172.168.10.55

172.168.9.55

172.168.10.56

172.168.9.56

Storage
Server 1

Storage
Server 2

Storage
Server 3

Storage
Server 4

Storage
Server 5

The storage servers have container, object, and account services running in them.

Server setup and network configuration
All the servers are installed with the Ubuntu server operating system (64-bit LTS
version 14.04). You'll need to configure three networks, which are as follows:

• Public network: The proxy server connects to this network. This network
provides public access to the API endpoints within the proxy server.

see more please visit: https://homeofpdf.com

Chapter 3

[25]

• Storage network: This is a private network and it is not accessible to the
outside world. All the storage servers and the proxy server will connect
to this network. Communication between the proxy server and the storage
servers and communication between the storage servers take place within
this network. In our configuration, the IP addresses assigned in this network
are 172.168.10.0 and 172.168.10.99.

• Replication network: This is also a private network that is not accessible to
the outside world. It is dedicated to replication traffic, and only storage servers
connect to it. All replication-related communication between storage servers
takes place within this network. In our configuration, the IP addresses assigned
in this network are 172.168.9.0 and 172.168.9.99. This network is optional,
and if it is set up, the traffic on it needs to be monitored closely.

Pre-installation steps
In order for various servers to communicate easily, edit the /etc/hosts file
and add the host names of each server in it. This has to be done on all the nodes.
The following screenshot shows an example of the contents of the /etc/hosts file
of the proxy server node:

Install the Network Time Protocol (NTP) service on the proxy server node and
storage server nodes. This helps all the nodes to synchronize their services effectively
without any clock delays.

The pre-installation steps to be performed are as follows:

1. Run the following command to install the NTP service:
apt-get install ntp

Configure the proxy server node to be the reference server for the storage
server nodes to set their time from the proxy server node.

2. Make sure that the following line is present in /etc/ntp.conf for NTP
configuration in the proxy server node:
server ntp.ubuntu.com

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[26]

3. For NTP configuration in the storage server nodes, add the following line
to /etc/ntp.conf. Comment out the remaining lines with server addresses
such as 0.ubuntu.pool.ntp.org, 1.ubuntu.pool.ntp.org, 2.ubuntu.
pool.ntp.org, and 3.ubuntu.pool.ntp.org:
server 0.ubuntu.pool.ntp.org
server 1.ubuntu.pool.ntp.org
server 2.ubuntu.pool.ntp.org
server 3.ubuntu.pool.ntp.org
server s-swift-proxy

4. Restart the NTP service on each server with the following command:
service ntp restart

Downloading and installing Swift
The Ubuntu Cloud Archive is a special repository that provides users with the ability
to install new releases of OpenStack.

The steps required to download and install Swift are as follows:

1. Enable the capability to install new releases of OpenStack, and install
the latest version of Swift on each node using the following commands.
The second command shown here creates a file named cloudarchive-
juno.list in /etc/apt/sources.list.d, whose content is "deb
http://ubuntu-cloud.archieve.canonical.com/ubuntu":

2. Now, update the OS using the following command:
apt-get update && apt-get dist-upgrade

3. On all the Swift nodes, we will install the prerequisite software and services
using this command:
apt-get install swift rsync memcached python-netifaces
python-xattr python-memcache

4. Next, we create a Swift folder under /etc and give users the permission to
access this folder, using the following commands:
mkdir –p /etc/swift/

chown –R swift:swift /etc/swift

see more please visit: https://homeofpdf.com

Chapter 3

[27]

5. Download the /etc/swift/swift.conf file from GitHub using
this command:
curl –o /etc/swift/swift.conf \
https://raw.githubusercontent.com/openstack/swift/stable/juno/
etc/swift.conf-sample

6. Modify the /etc/swift/swift.conf file and add a variable called swift_
hash_path_suffix in the swift-hash section. We then create a unique hash
string using # python –c "from uuid import uuid4; print uuid4()"
or # openssl rand –hex 10, and assign it to this variable, as shown in the
following configuration option:

7. We then add another variable called swift_hash_path_prefix to the
swift-hash section, and assign to it another hash string created using the
method described in the preceding step. These strings will be used in the
hashing process to determine the mappings in the ring. The swift.conf
file should be identical on all the nodes in the cluster.

Setting up storage server nodes
This section explains additional steps to set up the storage server nodes, which will
contain the object, container, and account services.

Installing services
The first step required to set up the storage server node is installing services.
Let's look at the steps involved:

1. On each storage server node, install the packages for swift-account
services, swift-container services, swift-object services, and xfsprogs
(XFS Filesystem) using this command:
apt-get install swift-account swift-container swift-object
xfsprogs

2. Download the account-server.conf, container-server.conf, and
object-server.conf samples from GitHub, using the following commands:
curl –o /etc/swift/account-server.conf \

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[28]

https://raw.githubusercontent.com/openstack/swift/stable/juno/
etc/account-server.conf-sample

curl –o /etc/swift/container-server.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/
etc/container-server.conf-sample

curl –o /etc/swift/object-server.conf \

https://raw.githubusercontent.com/openstack/swift/stable/juno/
etc/object-server.conf-sample

3. Edit the /etc/swift/account-server.conf file with the following section:

4. Edit the /etc/swift/container-server.conf file with this section:

see more please visit: https://homeofpdf.com

Chapter 3

[29]

5. Edit the /etc/swift/object-server.conf file with the following section:

Formatting and mounting hard disks
On each storage server node, we need to identify the hard disks that will be used to
store the data. We will then format the hard disks and mount them on a directory,
which Swift will then use to store data. We will not create any RAID levels or
subpartitions on these hard disks because they are not necessary for Swift. They will
be used as entire disks. The operating system will be installed on separate disks,
which will be RAID configured.

First, identify the hard disks that are going to be used for storage and format them.
In our storage server, we have identified sdb, sdc, and sdd to be used for storage.

We will perform the following operations on sdb. These four steps should be
repeated for sdc and sdd as well:

1. Carry out the partitioning for sdb and create the filesystem using
this command:
fdisk /dev/sdb
mkfs.xfs /dev/sdb1

2. Then let's create a directory in /srv/node/sdb1 that will be used to mount
the filesystem. Give the permission to the swift user to access this directory.
These operations can be performed using the following commands:
mkdir –p /srv/node/sdb1
chown –R swift:swift /srv/node/sdb1

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[30]

3. We set up an entry in fstab for the sdb1 partition in the sdb hard disk,
as follows. This will automatically mount sdb1 on /srv/node/sdb1 upon
every boot. Add the following command line to the /etc/fstab file:
/dev/sdb1 /srv/node/sdb1 xfs
noatime,nodiratime,nobarrier,logbufs=8 0 2

4. Mount sdb1 on /srv/node/sdb1 using the following command:
mount /srv/node/sdb1

RSYNC and RSYNCD
In order for Swift to perform the replication of data, we need to configure rsync by
configuring rsyncd.conf. This is done by performing the following steps:

1. Create the rsyncd.conf file in the /etc folder with the following content:
vi /etc/rsyncd.conf

We are setting up synchronization within the network by including the
following lines in the configuration file:

172.168.9.52 is the IP address that is on the replication network for this
storage server. Use the appropriate replication network IP addresses for
the corresponding storage servers.

see more please visit: https://homeofpdf.com

Chapter 3

[31]

2. We then have to edit the /etc/default/rsync file and set RSYNC_ENABLE to
true using the following configuration option:
RSYNC_ENABLE=true

3. Next, we restart the rsync service using this command:
service rsync restart

4. Then we create the swift, recon, and cache directories using the following
commands, and then set its permissions:
mkdir -p /var/cache/swift
mkdir -p /var/swift/recon

5. Setting permissions is done using these commands:
chown -R swift:swift /var/cache/swift
chown -R swift:swift /var/swift/recon

Repeat these steps on every storage server.

Setting up the proxy server node
This section explains the steps required to set up the proxy server node, which are
as follows:

1. Install the following services only on the proxy server node:
apt-get install python-swiftclient python-keystoneclient
python-keystonemiddleware swift-proxy

2. Swift doesn't support HTTPS. OpenSSL has already been installed as part
of the operating system installation to support HTTPS. We are going to use
the OpenStack Keystone service for authentication. In order to set up the
proxy-server.conf file for this, we download the configuration file from
the following link and edit it:
https://raw.githubusercontent.com/openstack/swift/stable/juno/
etc/proxy-server.conf-sample
vi /etc/swift/proxy-server.conf

3. The proxy-server.conf file should be edited to get the correct auth_host,
admin_token, admin_tenant_name, admin_user, and admin_password
values (refer to the following section about Keystone setup to see how to set
up the correct credentials):
admin_token = 01d8b673-9ebb-41d2-968a-d2a85daa1324
admin_tenant_name = admin
admin_user = admin
admin_password = changeme

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[32]

4. Next, we create a keystone-signing directory and give permissions to the
swift user using the following commands:
mkdir -p /home/swift/keystone-signing
mkdir -R swift:swift /home/swift/keystone-signing

The Keystone service
We will be using OpenStack's identity service (Keystone) for authentication. The
Keystone service exposes an endpoint that a user will connect to using username
and password credentials, and the tenant (project) as the scope of the request. After
validation by the Keystone identity service, a token that will be cached and used in
further API calls to various other OpenStack API endpoints is returned to the user.
Within Keystone, a user is defined to have account credentials and is associated
with one or more tenants. Also, a user can be given a role such as admin, which
entitles that user to more privileges than an ordinary user.

Let's consider the case where a user is connecting to a Swift endpoint to read an
object. When a user initiates an API call along with a token to the Swift endpoint,
this token is passed by the Swift endpoint back to Keystone for validation. Once
validated by Keystone, it returns a success code to the Swift endpoint. The Swift
service will then continue processing the API to read the object.

We will now show you the steps necessary to install and configure the Keystone
service in the following sections.

Installing MariaDB
We will use MariaDB for the Keystone database. The installation steps are as follows:

1. Install the MariaDB database and client software on the proxy server node
using the following command:
apt-get install mariadb-server python-mysqldb

The Python MySQL library is compatible with MariaDB.

2. Edit /etc/mysql/my.cnf in the proxy node, assigning the proxy server host
name to Bind-address, as shown in this command:
Bind-address = swift-proxy

see more please visit: https://homeofpdf.com

Chapter 3

[33]

3. Restart the MySQL service on the proxy node using the following command:
service mysql restart

4. Delete anonymous users using the mysql_secure_installation command,
as follows:
mysql_secure_installation

5. Respond with yes to delete the anonymous user prompt.

Installing Keystone
Keystone may be installed on dedicated servers for large installations, but for this
example we'll install the Keystone service on the proxy node. The following steps
describe how to install and set up the Keystone service:

1. Install the Keystone service using the following command:
apt-get install keystone python-keystoneclient

2. We have to generate a random token to access the Keystone service, as
shown in the following commands:
python -c "from uuid import uuid4; print uuid4()"
openssl rand -hex 10

3. We then edit the /etc/keystone/keystone.conf file to perform the
following changes:

 ° Replace admin_token with the random token that gets generated,
as shown in this configuration option:
admin_token = 01d8b673-9ebb-41d2-968a-d2a85daa1324

 ° Replace SQLite with a MariaDB database connection using the
following configuration option under the database group:
connection = mysql://keystone:vedams123@swift-proxy/keystone

4. Make sure that the SQLite file has been deleted after configuring MariaDB.
Otherwise, you'll need to manually delete the file. Run the following command
to list the content of the /var/lib/keystone directory, and delete the
keystone.sqlite file if present:
ls –la /var/lib/keystone/

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[34]

5. We then create the Keystone database user and grant permissions using the
commands shown in this screenshot:

6. Next, we check the Keystone database synchronization and restart the
Keystone service using the following commands:
keystone-manage db_sync
service keystone restart

7. Export the following environment variables:
export OS_SERVICE_TOKEN=01d8b673-9ebb-41d2-968a-d2a85daa1324
export OS_SERVICE_ENDPOINT=http://swift-proxy:35357/v2.0

8. The service token and service endpoint are used to *bootstrap* keystone
when no users exist, and we use the service token to create the initial user/
tenant/roles roles and endpoints/services services. Once these have been
created, the typical flow is to use the username and password combination for
authentication. Once authenticated, access to Swift services and endpoints is
permitted. We then create a tenant for an administrator user, an administrator
user called admin, and a role for administrative tasks. Next, we add an admin
role to the admin user. This is shown in the following screenshot:

see more please visit: https://homeofpdf.com

Chapter 3

[35]

The following screenshot shows the output of executing the
preceding commands:

9. Next, we will create another user called swift-user and add it to the
tenant called swift-tenant. The user is given the member access role.
The following screenshot shows the process of creation:

10. The Keystone service keeps track of the various OpenStack services that we
have installed and where they are in the network. In order to keep track of
the services, IDs are created for them using the keystone service-create
command, as shown in this screenshot:

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[36]

The following screenshot shows the output of executing the preceding
service-create commands:

11. We then need to specify the Keystone service endpoints and Swift service
endpoints to Keystone using the endpoint-create command. In the
following commands, swift-proxy is the hostname of the proxy server:

The following screenshot shows the output of executing the endpoint-
create commands:

see more please visit: https://homeofpdf.com

Chapter 3

[37]

12. We will now unset the environment variables that we exported earlier, since
we won't need them again. We will be calling the REST APIs and providing
the username and password to them along with the endpoint. Unset the
environment variables using the following commands:
unset OS_SERVICE_TOKEN
unset OS_SERVICE_ENDPOINT

13. Then we will request an authentication token using the admin user and
password. This verifies that the Keystone service is configured and running
correctly on the configured endpoint.
We also verify that authentication is working correctly by requesting the
token on a particular tenant, as shown in the following command:

keystone –os-username=admin –os-password=changeme –os-
tenant-name=admin –os-auth-url=http://swift-proxy:35357/v2.0
token-get

14. Finally, test the Keystone service by running the following commands to list
the users, tenants, roles, and endpoints:

The ring setup
As discussed in Chapter 2, OpenStack Swift Architecture, the ring (also called the ring
builder, or simply the builder file) contains information required to map the user
API request information on the physical location of the account, container, or object.
We will have a builder file for accounts, which will contain mapping information
for the account. Similarly, we will have a builder file for containers and objects.

Builder files are created using the commands shown in the following screenshot:

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[38]

The 18 parameter indicates that there can be 2 raised to 18 partitions created to store
the data. To determine the number of partitions, estimate the maximum number of
disks, multiply that number by 100, and then round it off to the nearest power of
2. Picking a number smaller than needed is not catastrophic, it will just result in an
unbalanced cluster from a storage capacity point of view. Picking a number larger
than needed will impact performance. The 3 parameter indicates that three replicas
of data will be stored, and the 1 parameter is set in such a way that we don't move
a partition more than once in an hour.

In Swift storage, hard disks are the smallest unit in a ring. They are part of nodes,
which are grouped into zones, and rings can be set up according to zones. Zones
(and regions) are used to group multiple hosts or nodes into failure domains. Each
hard disk in a storage server belongs to a particular zone. This helps Swift replicate
the data to different zones in an as-unique-as-possible manner. If there is a failure
in a particular zone, data can be fetched from the data copies in other zones. In a
multi-region setup, if there is a failure in a particular region, then data can be fetched
from other regions.

The following command syntax is used to add storage server hard disk devices
to ring builder files. Note that the region and zone the hard disk belongs to are
provided as an input parameter. The weight parameter (100) indicates how much
data is going to be placed on this disk compared to other disks.

Run the following commands to add the hard disks allocated for storage to the ring.
In order to add mapping for the sdb1 device, we run the commands shown in the
following screenshot:

The final step in completing the ring builder process involves creating the ring files
that will be used by the Swift processes. This is done using the rebalance command,
as shown here:

swift-ring-builder account.builder rebalance
swift-ring-builder container.builder rebalance
swift-ring-builder object.builder rebalance

Upon running the preceding commands, the following files will be created:
account.ring.gz, container.ring.gz, and object.ring.gz. Copy these
files to the /etc/swift directories of all the nodes in the cluster.

see more please visit: https://homeofpdf.com

Chapter 3

[39]

We should also restart the rsyslog and memcached services on the storage servers
using the following commands:

service rsyslog restart
service memcached restart

Multiregion support
In a multiregion installation, we place a pool of storage nodes in one region and the
remaining in other regions. We can either have a single endpoint for all the regions
or a separate endpoint for each region. During the ring builder setup, the region is
specified as a parameter. Clients can access any endpoint and perform operations
(create, delete, and so on), and they will be replicated across other regions. The
proxy server configuration files will contain read_affinity and write_affinity
in a particular region.

Our test configuration had two proxy servers and five storage nodes. Two regions
were created by creating two endpoints. A list of the endpoints gives the following
output, where Region1 and Region2 are the two regions:

keystone endpoint-list

In the preceding output, Region1 and Region2 are the two regions.

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[40]

Finalizing the installation
Let's finalize the installation by ensuring proper ownership and restarting services.
This is done by running the following commands:

• Ensure proper ownership of the configuration directory on all nodes:
chown –R swift:swift /etc/swift

• Restart the services on the proxy node:
service memcached restart
service swift-proxy restart

• Start all the services on the storage nodes:
swift-init all start

Storage policies
Storage policies allow the user to create multiple object rings and use them for
different purposes based on the level of importance of the data. Some factors that
will be considered while implementing storage policies are the number of replicas,
performance required from the ring, disk affinity for the ring, and so on.

We are going to explain the concept of storage policies using an example of bank
documents. Some documents are critical for the operation of a bank, and others are
not so critical. We can use a storage policy with a higher number of replicas to store
the critical documents, database, and so on.

We can use SSD disks in the object ring to store documents that need to be retrieved
without any delay (performance-oriented policy). This ring can have two replicas
if needed.

The capabilities of storage policies make the Swift cluster more adaptable to
customer requirements.

see more please visit: https://homeofpdf.com

Chapter 3

[41]

Implementing storage policies
Storage policies were introduced in the Juno release of OpenStack Swift.
There is a default policy called policy-0. It is set up by default, as shown in
the following screenshot:

Now we will implement two new policies called bank (for critical documents), which
will contain three replicas, and regular (for storing regular, noncritical documents),
which will contain two replicas. For this, perform the following steps:

1. Edit the swift.conf file and change the name policy-0 to bank. Create a
new storage policy called policy-1 and name it regular. The swift.conf
file should look like what is shown in the following screenshot:

We should replace the swift.conf file with the preceding content in all
the proxy nodes.

2. The next step is to create the object-ring file specific to the new policy
(with two replicas). This is done using the following command:
swift-ring-builder object-1.builder create 10 2 1

This contains object-1.builder, which contains the policy for creating
two replicas instead of three replicas.

3. Now let's create the ring files to implement the new policy. This is done
by running the following swift-ring-builder commands:
swift-ring-builder object-1.builder add r1z1-
172.168.10.52:6000/sdb1
swift-ring-builder object-1.builder add r1z1-
172.168.10.53:6000/sdb1

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[42]

4. Next, we will rebalance to create object-1.ring.gz. We should then copy
this file to all proxy nodes and storage nodes:
swift-ring-builder object-1.builder rebalance

Do not delete the existing object.ring.gz ring file.

5. We then need to create a file called container-reconciler.conf in the
proxy node in the /etc/swift folder. The contents of the file are shown
in this screenshot:

see more please visit: https://homeofpdf.com

Chapter 3

[43]

6. Next, we run the following command to fix the user option:
$ sed –i "s/# user.*/user=$USER/g" /etc/swift/container-
reconciler.conf

Applying storage policies
We will now show you some examples of creating containers and uploading objects
using storage policies. In order to verify that objects are being created using the
desired policies, we enable list_endpoints in the proxy-server.conf file by
modifying the pipeline section, as follows:

 [pipeline:main]

pipeline = healthcheck list-endpoints cache authtoken proxy-server

We now have to restart all the proxy and storage node services.

In order to create a container with a desired policy, we use this command:

swift post <container name> -H "X-Storage-Policy: <policy name>"

The following is an example of creating a container with the regular policy:

swift post mycontainer –H "X-Storage-Policy: regular"

In order to add objects to the container, we use the following command:

swift upload <<container name>> <<filename>> -H "X-Storage-Policy:
<<policy name>>"

Here is an example of uploading an object to the previously created container:

swift upload mycontainer myfile.txt –H "X-Storage-Policy: regular"

We use the stat command to verify that the container and objects have been created
with the regular policy. The output of the stat command is as follows:

see more please visit: https://homeofpdf.com

Installing OpenStack Swift

[44]

To use the default policy while creating containers and uploading objects, we don't
need to specify the Storage-Policy metadata in the command.

The following is an example of creating a container and uploading an object using
the bank default policy.

swift post mycontainer_1
swift post mycontainer_1 myfile.txt

We use the stat command to verify that the container and objects have been created
with the bank policy. The output of the stat command is shown here:

This section should have given you a good overview of storage policies that will help
you create your own storage policies in your environments.

Summary
In this chapter, you learned how to install and set up the OpenStack Swift service
to provide object storage, and install and set up the Keystone service to provide
authentication for users to access the Swift object storage. You also got an overview
on storage policies.

The next chapter provides details on various tools, commands, and APIs that are
available for accessing and using the Swift object storage.

see more please visit: https://homeofpdf.com

[45]

Using Swift
This chapter explains the various mechanisms that are available for accessing Swift.
Using these mechanisms, we will be able to authenticate accounts, list containers,
create containers, upload objects, delete objects, and so on.

Tools and libraries such as the Swift client CLI, cURL client, HTTP REST API, JAVA
libraries, Ruby OpenStack libraries, and Python libraries use Swift APIs internally
to provide access to the Swift cluster. In particular, we will be using the Swift client
CLI, cURL, and HTTP REST API to access Swift and perform various operations
on containers and objects. Also, we will be using the Vedams internal Swift cluster
cloud storage setup to demonstrate the use of Swift.

Installing clients
This section talks about installing cURL and Swift's client CLI command-line tools.
In this section, we describe how to install these tools on a 64-bit Ubuntu 14.04 LTS
server Linux operating system. Refer to the other Linux distribution command sets
to install the clients on those operating systems.

The following commands are used to install cURL and the Swift client CLI:

• cURL: This is a command-line tool that can be used to transfer data using
various protocols. The following command is used to install cURL:
apt-get install curl

• Swift client CLI: This is a tool used to access and perform operations on a
Swift cluster. It is installed using the following command:
apt-get install python-swiftclient

• Specialized REST API client: To access Swift services via the REST API,
we can use third-party tools, such as Fiddler web debugger, that support
REST's architecture.

see more please visit: https://homeofpdf.com

Using Swift

[46]

Creating a token using Keystone
authentication
The first step in order to access containers or objects is to authenticate the user by
sending a request to the authentication service, and thus get a valid token that can
then be used in subsequent commands to perform various operations.

We are using Keystone authentication in our configuration and the examples shown
in this chapter. There is another method of authentication called Swauth that can
be used. It works in a slightly different way, but we won't deal with the details of
Swauth here. While using cURL, the following command is used to get the valid
Keystone authentication token:

curl -X POST -i https://auth.vedams.com/v2.0/tokens -H 'Content-
type: application/json' -d
'{"auth":{"passwordCredentials":{"username":"user","password":"passwo
rd"},"tenantName":"tenant1"}}'

In the preceding command, https://auth.vedams.com/v2.0 is the Vedams
Keystone authentication endpoint. Along with this, the username, password,
and tenant name are also provided.

The token that is generated is shown as follows (it has been truncated for better
readability):

token = 0a06c208c7a9479b9e21994fe3492802

This token is then used as a parameter in the commands that access Swift, for
example, in the following command:

curl -X HEAD -i
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025 -
H 'X-Auth-Token: token' -H 'Content-type: application/json'

More details on the commands are provided in the upcoming sections.

see more please visit: https://homeofpdf.com

Chapter 4

[47]

Displaying metadata information for an
account, container, or object
This section describes how we can obtain information about the account, container,
or object.

Using the Swift client CLI
The Swift client CLI's stat command is used to get information about the account,
container, or object. The name of the container should be provided after the stat
command to get the container information. The name of the container and object
should be provided after the stat command to get the object information.

Execute the following request to display the account status:

swift --os-auth-token=token --os-storage-url=
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
stat

In the preceding commands, token is the generated token, as described in the
previous section, and AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025 is the account
name. We can use environment variables to initialize the token and storage-url,
and then we will not need to specify the os-auth-token and os-storage-url
parameters in the preceding command. More details are provided in the Environment
variables section of this chapter.

The response shows some information about the account, which is as follows:

Account: AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
Containers: 5
Objects: 6
Bytes: 46957619
Objects in policy "regular": 2
Bytes in policy "regular": 46953998
Objects in policy "bank": 4
Bytes in policy "bank": 3621
Content-Type: text/plain; charset=utf-8
X-Timestamp: 1419319875.96594
X-Trans-Id: tx85af67b7302547f38d411-0054b8a301
Accept-Ranges: bytes

see more please visit: https://homeofpdf.com

Using Swift

[48]

Using cURL
The following command shows us how to obtain the same account information
using cURL. It shows that the account contains two containers and six objects.
The AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025 value is obtained from the
output of the previous step.

Execute the following request:

-H 'X-Auth-Token: token' -H 'Content-type: application/json'
curl -X HEAD -i
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
-H 'X-Auth-Token: token' -H 'Content-type: application/json'

The response to the preceding command is as follows:

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/plain; charset=utf-8
X-Account-Object-Count: 6
X-Account-Storage-Policy-Regular-Object-Count: 2
X-Account-Storage-Policy-Bank-Object-Count: 4
X-Timestamp: 1419319875.96594
X-Account-Storage-Policy-Bank-Container-Count: 4
X-Account-Storage-Policy-Regular-Bytes-Used: 46953998
X-Account-Bytes-Used: 46957619
X-Account-Container-Count: 5
X-Account-Storage-Policy-Bank-Bytes-Used: 3621
Accept-Ranges: bytes
X-Account-Storage-Policy-Regular-Container-Count: 1
X-Trans-Id: txc018fe80597f4d1d8095a-0054b8a1c5
Date: Fri, 16 Jan 2015 05:29:41 GMT

Using the specialized REST API client
Fiddler web debugger, which supports REST, was used to send the request and
receive the HTTP response. Execute the following request:

Method : HEAD

URL :
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
Header : X-Auth-Token: token
Data : No data

see more please visit: https://homeofpdf.com

Chapter 4

[49]

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/plain; charset=utf-8
X-Account-Object-Count: 6
X-Account-Storage-Policy-Regular-Object-Count: 2
X-Account-Storage-Policy-Bank-Object-Count: 4
X-Timestamp: 1419319875.96594
X-Account-Storage-Policy-Bank-Container-Count: 4
X-Account-Storage-Policy-Regular-Bytes-Used: 46953998
X-Account-Bytes-Used: 46957619
X-Account-Container-Count: 5
X-Account-Storage-Policy-Bank-Bytes-Used: 3621
Accept-Ranges: bytes
X-Account-Storage-Policy-Regular-Container-Count: 1
X-Trans-Id: tx81b400450db24987af92e-0054b8f39d
Date: Fri, 16 Jan 2015 11:18:53 GMT

As you can see, this is a different mechanism of issuing the command, but is very
similar to accessing the Swift cluster using cURL.

Listing containers
This section describes how to obtain information about the containers present in
an account.

Using the Swift client CLI
Execute the following request:

swift --os-auth-token=token --os-storage-url=
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
list

The response is as follows:

cities
countries

see more please visit: https://homeofpdf.com

Using Swift

[50]

Using cURL
The following command shows you how to obtain the same container information
using cURL. It shows that the account comprises of two containers and six objects.

Execute this request:

curl -X GET –i
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025 -H
'X-Auth_token: token'

The response to the request is as follows:

HTTP/1.1 200 OK
X-Account-Container-Count: 2
X-Account-Object-Count: 6

cities
countries

Here, we see that the output has a header and a body, whereas in the previous
example, we only had a header and no body in the output.

Listing objects in a container
This section describes how to list objects that are present in a container.

Using the Swift client CLI
The following command shows you how to list objects using the Swift client CLI
(in this example, we are listing the objects in the cities container):

Execute the following request:

swift --os-auth-token=token --os-storage-url=

http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
list cities

Here is the response to the request:

London.txt
Mumbai.txt
NewYork.txt

see more please visit: https://homeofpdf.com

Chapter 4

[51]

Using cURL
The following command shows you how to list objects using cURL. In this example,
we list the objects in the cities container. Execute this request:

curl -X GET -i
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025/ci
ties
-H 'X-Auth-Token: token '

The response is as follows:

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 34
X-Container-Object-Count: 3

London.txt
Mumbai.txt
NewYork.txt

Using the REST API
In this example, we will list the objects in the countries container. Execute this
request:

Method : GET
URL :
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025/co
untries
Header : X-Auth-Token: token
Data : No content

The response to the request is as follows:

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 38
X-Container-Object-Count: 3

France.txt
India.txt
UnitedStates.txt

see more please visit: https://homeofpdf.com

Using Swift

[52]

Updating the metadata for a container
This section describes how to add or update metadata for a container. Examples
showing how to update X-Container-Meta-Countries are covered in the
following sections.

Using the Swift client CLI
In this example, we are adding metadata for the countries that we have visited.
Execute the following request:

-H "X-Container-Meta-Countries: visited"
swift --os-auth-token=token --os-storage-url=
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
post countries
-H "X-Container-Meta-Countries: visited"

Using the REST API
Here we are adding metadata using the REST API.

Execute this request:

Method : POST

URL :
http://storage.vedams.com/v1/AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
/countries

Header : X-Auth-Token: token
 X-Container-Meta-Countries: visited
Data : No content

Environment variables
The following environment variables can be used to simplify the Swift CLI commands:

• OS_USERNAME: This contains the username used to access the account
• OS_PASSWORD: This contains the password associated with the username
• OS_TENANT_NAME: This contains the name of the tenant
• OS_AUTH_URL: This contains the authentication URL

see more please visit: https://homeofpdf.com

Chapter 4

[53]

Once these environment variables are exported, we no longer have to pass these
values as input parameters when running the Swift CLI tools. The following is an
example of setting up an environment variable (OS_USERNAME):

export OS_USERNAME=admin

The pseudo-hierarchical directories
In OpenStack Swift, object storage can simulate a hierarchical directory structure in
containers by including a / (forward slash) character in the object's name.

Let's upload a file (AMERICA/USA/Newyork.txt) to the Continent container using
the following command:

swift upload Continent AMERICA/USA/Newyork.txt

Now let's list the Continent container, which has a few pseudo-hierarchical folders,
using the following commands:

swift list Continent
AMERICA/USA/Newyork.txt
ASIA/ASIA.txt
ASIA/China/China.txt
ASIA/INDIA/India.txt
Australia/Australia.txt
continent.txt

We can use / as the delimiter parameter to limit the displayed results. We can also
use the prefix parameter along with the delimiter parameter to view the objects in
the pseudo-directory along with the pseudo-directories within it. The following are
a couple of examples showing the use of these parameters:

swift list Continent --delimiter /
AMERICA/
ASIA/
Australia/
continent.txt

swift list Continent --delimiter / --prefix ASIA/
ASIA/ASIA.txt
ASIA/China/
ASIA/INDIA/

swift list Continent --delimiter / --prefix ASIA/INDIA/
ASIA/INDIA/India.txt

see more please visit: https://homeofpdf.com

Using Swift

[54]

Container ACLs
As we saw in the previous sections, in order to access containers and objects, a valid
auth token has to be sent in the X-Auth-Token header with each request. Otherwise,
an authorization failure code will be returned. In certain cases, access needs to be
provided to other clients and applications for certain containers. Access can be
provided by setting a metadata element for the container, called X-Container-Read.
The following paragraphs cover the setting of this Access Control List (ACL) for the
cities container.

First, let's list the container status that shows the lack of ACL. Run the following
command with admin privileges (the admin user will have the permissions to run
this command):

swift stat cities

The values of Read ACL and Write ACL in the following response indicate the lack
of ACL:

Account: AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
Container: cities
Objects: 3
Read ACL:
Write ACL:
Sync To:

When the tenant1:user1 user, who does not have access to this container, tries to
access it, a forbidden error message is returned.

Execute this request:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U tenant1:user1 -K t1
list cities

A forbidden error message is returned as the response. The error is as follows:

Container GET failed: 403 Forbidden
Access was denied to this resource

In the preceding example, the username is provided using the –U option, and the key
required to access the account is provided using the –K option.

Now, let's set the X-Container-Read metadata element and enable the READ access
for tenant1:user1. This operation can only be done by the admin user, using the
following command:

swift post -r tenant1:user1 cities

see more please visit: https://homeofpdf.com

Chapter 4

[55]

To check the ACL permissions, we execute this command:

swift stat cities

The response to the preceding command is as follows:

Account: AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
Container: cities
Objects: 3
Read ACL: tenant1:user1
Write ACL:
Sync To:

Now, when the tenant1:user1 user tries to access this container, access is granted
and the command is successfully executed.

Execute the following request:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U tenant1:user1 -K t1
list cities

Here is the response to the request:

London.txt
Mumbai.txt
NewYork.txt

Since the X-Container-Write ACL is not set for the tenant1:user1 user for the
cities container, this user cannot write to the cities container. In order to allow
write access, let's set the X-Container-Write ACL, as follows:

swift post -w tenant1:user1 cities

To check the ACL permissions, we execute the following command:

swift stat cities

The response to the preceding command is this:

Account: AUTH_8e43ee201cbc4b70bd8bb2f8ae10f025
Container: cities
Objects: 3
Read ACL: tenant1:user1
Write ACL: tenant1:user1
Sync To:

Now the tenant1:user1 user will be able to write objects to the cities container.

see more please visit: https://homeofpdf.com

Using Swift

[56]

If we want to give access to a large number of users, ACLs such as .r:* and
.rlistings can be used. The .r:* prefix allows any user to retrieve objects
from the container, and .rlistings turns on listing for the container.

Transferring large objects
As discussed in Chapter 2, OpenStack Swift Architecture, Swift limits a single object
upload to 5 GB. Larger objects can be split into 5 GB or smaller segments by specifying
the segment size option in the Swift CLI tool command-line argument, and uploaded
to a special container (created within the container where the object is being uploaded).

Once the upload has been completed, a manifest object that contains information
about the segments has to be created. The manifest file is of zero size, with headers
such as X-Object-Manifest identifying the special container in which the segments
are stored and the name with which all the segments will start. For example, if we
have to upload France.txt (which is of size 8 GB) to the countries container, then
the France.txt object has to be split into two chunks (5 GB and 3 GB). The chunk
objects' names will start with France.txt (France.txt/../00000000 and France.
txt/../00000001).

If the Swift CLI is being used, a special container called countries_segments will
be created and the chunks will be uploaded to this container. A manifest object
called France.txt will be created in the countries container. The manifest file
will have zero size and will contain the following header (it is not mandatory to
have the segments placed in a special container; they might as well exist in the
same container):

X-Object-Manifest: countries_segments/France.txt

When a download request is made for the large object, Swift will automatically
concatenate all the segments and download the entire object.

The Swift client CLI has the –S flag. It is used to specify the segment size in bytes,
which can be used to split a large object into segments and upload. The following
command is used to upload a file with a segment size of 5368709120 bytes (5.3 GB):

swift upload countries –segment-size 5368709120 France.txt

The response to the preceding command is this:

France.txt segment 0
France.txt segment 1

see more please visit: https://homeofpdf.com

Chapter 4

[57]

France.txt segment 2
France.txt

The following command can be used to list the containers present:

swift list

The response is as follows:

Countries
Countries_segments
cities

This command lists the objects in the countries_segments container:

swift list countries_segments

The response to the preceding command is this:

France.txt/1385989364.105938/5368709120/00000000
France.txt/1385989364.105938/5368709120/00000001

Amazon S3 API compatibility
Users familiar with the Amazon S3 API and accessing S3 buckets and objects can
access Swift using S3-compatible APIs with the help of Swift3 middleware.

Here, we will show you the steps required for a method that uses S3 APIs to
access Swift's object store. These steps explain how to install the necessary tools
and packages, create credentials, and update the configuration files.

The following steps are to be performed on the proxy server node that is running
the Ubuntu 14.04 Linux distribution:

1. First, the user requires EC2 credentials (access key and secret key).
The keystone user-list and keystone tenant-list commands can be
used to obtain the user ID and tenant ID of the user. The following command
can be used to create these keys (these need to be run from the proxy server):
keystone ec2-credentials-create --user-id
916673a90b8749e18f0ee3ec5bf17ab9 --tenant-id
6530edfe037242d1ac8bb07b7fd76046

The response is as follows:

+-----------+----------------------------------+
| Property | Value |
+-----------+----------------------------------+

see more please visit: https://homeofpdf.com

Using Swift

[58]

access	1178d235dbd84d48b417170ec9aed72c
secret	c4ea0a8fbf7d4a469f6d0fb5cdb47d5b
tenant_id	6530edfe037242d1ac8bb07b7fd76046
user_id	916673a90b8749e18f0ee3ec5bf17ab9

2. Install the Swift3 package by running the following commands
(these commands require Git to be installed on your system):
sudo git clone https://github.com/fujita/swift3.git
cd swift3
python setup.py install

3. Install the libdigest-hmac-perl package (used for integrity checking
between two entities that share a secret key) by running this command:
apt-get install libdigest-hmac-perl

4. Edit the proxy-server.conf file and make the following changes if you
want to use the keystone authentication:

 ° Change the pipeline line in the proxy-server.conf file to this:
[pipeline:main]
pipeline = catch_errors cache swift3 s3token authtoken
keystone proxy-server

 ° Add a Swift3 WSGI filter to the proxy-server.conf file using the
following command:
[filter:swift3]
use = egg:swift3#swift3

 ° Add the s3token filter as shown in these commands:
[filter:s3token]
paste.filter_factory = keystone.middleware.s3_token:filter_
factory
auth_port = 35357
auth_host = 127.0.0.1
auth_protocol = http

 ° Restart the proxy service:
Service swift-proxy restart

5. The following steps should be performed on the client that will access Swift
object storage:

 ° Since we will use s3curl to execute the S3 commands, download
s3-curl.zip from http://s3.amazonaws.com/doc/s3-example-
code/s3-curl.zip.

see more please visit: https://homeofpdf.com

Chapter 4

[59]

 ° Install the wget utility prior to running the following command:
wget http://s3.amazonaws.com/doc/s3-example-code/s3-curl.zip

 ° Unzip s3-curl.zip and provide executable access to the
s3curl.pl file.

 ° Create a .s3curl file. Change the ID and key of the personal account
with the EC2 credentials (access and secret keys) that were given to
the user. We are using the vi editor to create the file, as shown in the
following code:

#vi ~/.s3curl
%awsSecretAccessKeys = (
personal account
 personal => {
 id => '1178d235dbd84d48b417170ec9aed72c',
 key => 'c4ea0a8fbf7d4a469f6d0fb5cdb47d5b',
 },
);

Accessing Swift using S3 commands
In this section, we will give examples of the S3 commands used to perform
various operations.

• List buckets: This command lists all the buckets for the particular user.
Buckets in S3 are similar to containers in Swift:
./s3curl.pl --id=personal -- https://auth.vedams.com –v

The response is as follows:

<?xml version="1.0" encoding="UTF-
8"?><ListAllMyBucketsResult xmlns="http://doc.s3.amazonaws.
com/2006-03-01"><Buckets>
 <Bucket><Name>cities</Name><CreationDate>2009-02-
03T16:45:09.000Z</CreationDate></Bucket>
 <Bucket><Name>countries</Name><CreationDate>2009-02-
03T16:45:09.000Z</CreationDate></Bucket>
 </Buckets></ListAllMyBucketsResult>

• List objects in a bucket: This command lists all the objects present in the
specified bucket. Let's list all the objects in the cities bucket using the
following command:
./s3curl.pl --id=personal -- https://auth.vedams.com/cities
-v

see more please visit: https://homeofpdf.com

Using Swift

[60]

•	 Create a bucket:	The	following	command	creates	a	bucket	called	continents:
./s3curl.pl --id=personal --createBucket -- -v
https://auth.vedams.com/continents

•	 Delete a bucket:	The	following	command	deletes	the	bucket	called	
continents:
./s3curl.pl --id=personal --delete -- -v
https://auth.vedams.com/continents

Accessing Swift using client libraries
There	are	several	libraries	available	in	Java,	Python,	Ruby,	PHP,	and	other	
programming	languages	for	accessing	the	Swift	cluster.	Applications	can	be	
simplified	using	these	libraries.	Let's	explore	a	few	libraries.

Java
The	Apache	jclouds	library	(http://jclouds.apache.org/guides/rackspace/),	
particularly	the	org.jclouds.openstack.swift.CommonSwiftClient	API,	can	be	
used	to	write	applications	in	Java	to	connect	to	Swift	and	perform	various	operations	
on	accounts,	containers,	and	objects.

A	sample	code	is	shown	as	follows:

import org.jclouds.ContextBuilder;
import org.jclouds.blobstore.BlobStore;
import org.jclouds.blobstore.BlobStoreContext;
import org.jclouds.openstack.swift.CommonSwiftAsyncClient;
import org.jclouds.openstack.swift.CommonSwiftClient;

BlobStoreContext context = ContextBuilder.newBuilder(provider)

.endpoint("http://auth.vedams.com/")
 .credentials(user, password)
 .modules(modules)
 .buildView(BlobStoreContext.class);

storage = context.getBlobStore();
swift = context.unwrap();
containers = swift.getApi().listContainers();
objects = swift.getApi().listObjects(myContainer);

see more please visit: https://homeofpdf.com

Chapter 4

[61]

Python
The python-swiftclient library provides Python language bindings for OpenStack
Swift. After authentication, the following sample code is used to list containers:

#!/usr/bin/env python
http_connection = http_connection(url)
cont = get_container(url, token, container, marker, limit, prefix,
delimiter, end_marker, path, http_conn)

More information about this library has been provided at
https://github.com/openstack/python-swiftclient/.

Ruby
The ruby-openstack library (https://github.com/ruby-openstack/ruby-
openstack) provides ruby bindings for the OpenStack cloud. The following
sample code shows us how to list containers and objects:

Lts2 = OpenStack::Connection.create(:username => USER, :api_key =>
API_KEY, :authtenant => TENANT, :auth_url => API_URL,
:service_type => "object-store")

Lts2.containers
=>["cities" , "countries"]

Cont = Lts2.container("cities")
Cont.objects
=>[" London.txt"," Mumbai.txt"," NewYork.txt"]

Summary
In this chapter, you learned how to use various Swift clients to interact with Swift
clusters and get information on accounts, containers, and objects. You were introduced
to ACLs, large object transfers, and also various Swift client libraries that can be used
to write applications in your desired language, such as Java, Ruby, and Python.

The next chapter will talk about managing Swift, and the factors to be considered
while replacing or expanding disks, nodes, and zones. It will also provide information
on various tools that can be used to gather information about object storage behavior.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

[63]

Additional Swift Interfaces
With object storage gaining popularity, its uses are also becoming varied. In several
environments where higher-cost block storage devices were used, object storage
is being considered as an alternative storage that provides low-cost deployment.
However, this requires the use of certain intermediate interfaces or middleware
to bind the upper level application or use case with the lower level object storage.
In this chapter, we will talk about two such applications where object storage can
be used for storage, and where previously block storage was being used.

One such application is the use of Swift object storage for virtual machine storage
with the help of Open vStorage. Another application is the use of Swift in Sahara,
which provides a Hadoop cluster for big data computations.

Using Swift for virtual machine storage
Typically, direct attach or SAN attach storage is used for data stores that provide
block storage for virtual machines. Swift object storage has gained popularity due
to its scale-out architecture, reliability, API interface, storage spaces, erasure coding,
low cost, and several other benefits. However, it has a couple of problems, that is,
high latency and unacceptable performance if it has to be used as a replacement for
traditional block storage. Open vStorage is a technology that provides the perfect
interface to solve this latency problem and make it possible for Swift object storage
to be used as the underlying storage for virtual machines.

see more please visit: https://homeofpdf.com

Additional Swift Interfaces

[64]

Open vStorage sits as a middleware between the hypervisor layer and the object
storage, and provides high reliability and performance. Some of the main components
are the VFS router, volume driver, file driver, and storage router.

Open vStorage for Virtual Machines

S3 Compatible Object Storage /
Swift Object Storage

ESXi / KVM
VM VM VM

SAN
Open

vStorage
SSD

ESXi / KVM
VM VM VM

SAN
Open

vStorage
SSD

The VFS router intercepts volume data from the virtual machine and sends it to the
volume driver, which aggregates the data into chunks within the storage container.
The storage router then distributes the storage container data to the object storage
backend. A volume created for a virtual machine will be stored as a separate bucket
in the S3-compatible object store.

When a write operation is performed by the VM, it gets added to a Storage Container
Object (SCO). Typically an SCO consists of 4 MB of data, and the storage router
pushes the SCOs to the object storage system when it becomes full. The SCO can be
treated as a local cache, and it helps solve the eventual consistency problem present
with Swift object storage.

Open vStorage is compatible with major hypervisors such as ESX and KVM.
It also supports file-based storage using the file driver. These files can be stored
on independent object storage backends. Also, based on the kind of file, storage
policies can be set up to provide better reliability via additional replications or
better performance via storage on SSDs.

Therefore, Open vStorage is an ideal interface for storing virtual machine data on
compatible object storage backends.

see more please visit: https://homeofpdf.com

Chapter 5

[65]

Swift in Sahara
Sahara is a project within OpenStack intended for data processing. This is achieved
by creating a Hadoop cluster using the various components available in OpenStack.
Sahara was formerly known as Savanna project. The following diagram shows the
architecture of Sahara:

Keystone

Auth

Sahara

EDP
Swift

Hadoop VM Hadoop VM

Hadoop VM Hadoop VM

Sahara uses various OpenStack components in order to enable the Hadoop cluster.
The Horizon Dashboard service can be used to perform activities such as creation of a
cluster, registration of images for the cluster, creation of jobs, and so on. The Keystone
service is used to perform authentication for various components. The Glance service
is used to register images in Sahara, and Swift is used for object storage.

Sahara uses plugins to create a Hadoop cluster. These plugins include Vanilla (to
deploy Apache Hadoop), Hortonworks Data Platform (to deploy the Hortonworks
data platform), Spark (to deploy the Cloudera HDFS), MapR (to deploy the MapR
plugin with the MapR filesystem), and Cloudera (to deploy Cloudera Hadoop).

see more please visit: https://homeofpdf.com

Additional Swift Interfaces

[66]

Hadoop Cluster with Sahara
The setup of a Hadoop cluster with Sahara can be done in different ways. As the
deployment of a Hadoop cluster needs more than one OpenStack component, it can
be simplified using automated deployments such as FUEL, developed by Mirantis.
After successfully deploying and setting up the Sahara cluster, the configurations
for Sahara can be seen in the /etc/sahara/sahara.conf file.

Using the Horizon dashboard, we can provide the data sources to be used with
the Hadoop clusters. Swift object storage can be used as the data source, and it
is specified using the <container>/<object path> format. The swift:// will
automatically get prepended while specifying this path.

Using Swift with Sahara
The main integration of Swift with Sahara happens at the filesystem level.
The component responsible for this is the Hadoop Swift filesystem. It is a JAR file
located in the /usr/lib/share/hadoop/lib folder. This was initially released as
a patch called Hadoop 8545, which has now been integrated with Hadoop.

Sahara maintains the Hadoop cluster configuration in a file called core-site.xml,
which contains the following information:

<property>
 <name>${name} + ${config}</name>
 <value>${value}</value>
 <description>${not mandatory description}</description>
</property>

When we use the Swift filesystem implementation, we specify fs.swift.impl for
${name} + ${config} by editing the core-site.xml file, as follows:

<property>
 <name>fs.swift.impl</name>
 <value>org.apache.Hadoop.fs.Swift.snative.SwiftNativeFileSystem
 </value>
</property>

There are some more configuration parameters such as .auth.url for the
authorization URL, .connect.timeout for the connection timeout (the default
is 60,000), .blocksize for representing the block size (the default is 32 MB), and
so on. There are some configuration parameters specific to a particular provider.
See the provider documentation to configure such parameters.

see more please visit: https://homeofpdf.com

Chapter 5

[67]

The configuration for Swift has to be provided in the map reducer programs of
Hadoop for Keystone authentication, as shown in this code:

conf.set("Swift.auth.url", "http://auth.vedams.com/v2.0/tokens");
conf.set("Swift.tenant", "myuser");
conf.set("Swift.username", "admin");
conf.set("Swift.password", "password");
conf.setInt("Swift.http.port", 8080);
conf.setInt("Swift.https.port", 443);

Running a job in Sahara
Swiftfs (short for Swift filesystem for Hadoop) is a Hadoop filesystem
implementation for Swift. It enables MapReduce (for batch processing), Pig (the
scripting component of Hadoop), and Hive (the SQL query component of Hadoop)
to directly perform file operations such as read and write on Swift containers.

The typical syntax for exporting a file to a Hadoop cluster with Swift is as follows:

swift://<<container.service_name>>/<<file_name>>

A typical intra-cluster copying of an object in Hadoop with Swift is shown in the
following lines. Here, the myobject object within the mycontainer container is
being copied to the myobject1 object within the mycontainer1 container:

$ hadoop distcp -D fs.swift.service.sahara.username=admin \
-D fs.swift.service.sahara.password=password \
swift://mycontainer.sahara/myobject
 swift://mycontainer1.sahara/myobject1

Typical Hadoop commands and other shell commands can be found at these links:

• http://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/
hadoop-common/FileSystemShell.html

• http://hadoop.apache.org/docs/stable1/distcp.html

Authenticating with Swift proxy
Implementing security for a Sahara cluster is a complicated task. Keystone has to store
user credentials in order to authenticate users, which is a problem for large-scale batch
processing (a large number of users may be running jobs). In order to overcome this,
Sahara uses proxy users, which are users created during the start of a job and lasting
until the job ends. This avoids storage of user credentials. This is achieved by creating a
domain in Keystone that can hold the proxy users. This particular domain contains the
details required for creating new user accounts.

see more please visit: https://homeofpdf.com

Additional Swift Interfaces

[68]

In order to enable this usage, we need to change the following parameters in the
sahara.conf file in /etc/sahara, as follows:

[DEFAULT]
use_domain_for_proxy_users=True
proxy_user_domain_name=myproxy
proxy_user_role_names=Swift

The preceding configuration parameters specify the domain name as myproxy and
the role as Swift. The proxy users then use these roles to get authenticated from
Swift. The details given in the preceding code are communicated by proxy users
while accessing objects from Swift.

Summary
In this chapter, you learned how Open vStorage is used to interface with OpenStack
Swift object storage to provide storage for virtual machines. We described how the
Sahara component of OpenStack interfaces uses Swift for the Hadoop clusters.

The next chapter talks about managing Swift and things to consider while replacing
or expanding disks, nodes, and zones. It also provides information on various tools
that can be used to gather information on object storage behavior.

see more please visit: https://homeofpdf.com

[69]

Monitoring and
Managing Swift

After a Swift cluster has been installed and deployed, it needs to be managed to
serve customer expectations and service-level agreements. Since there are several
components in a Swift cluster, it is a little different and more difficult to manage
compared to traditional storage. There are several tools and mechanisms an
administrator can use to effectively manage a Swift cluster. This chapter deals
with these aspects in more detail.

Routine management
The Swift cluster consists of several proxy server nodes and a storage server node,
and these nodes run many processes and services to keep the cluster up and running
and to provide overall availability. Any kind of general server management tools or
applications, such as Nagios, can be run to track the state of the general services, CPU
utilization, memory utilization, disk subsystem performance, and so on. Looking at
the system logs is a great way to detect impending failures. Along with this, there are
some tools used to monitor Swift services in particular. Some of them are Swift Recon,
Swift StatsD, Swift Dispersion, and Swift Informant.

Nagios is a monitoring framework that comprises several plugins that can be used
to monitor network services (such as HTTP and SSH), processor load, performance,
and CPU and disk utilization. It also provides remote monitoring capabilities by
running scripts, remotely connected to the monitored system, using SSH or SSL.
Users can write their own plugins, depending on their requirements, to extend these
monitoring capabilities. These plugins can be written in several languages such as
Perl, Ruby, C++, and Python. Nagios also provides a notification mechanism, where
an administrator can be alerted when problems occur on the system.

see more please visit: https://homeofpdf.com

Monitoring and Managing Swift

[70]

The following figure shows you how to integrate a monitoring solution based
on Nagios:

User Interface

Browser SMS/Pager Graph

Nagios Plugins

Nagios Core

OpenStack Swift Cluster

More information on Nagios can be found at www.nagios.org. Next, let's look into
the details of Swift monitoring tools.

Swift cluster monitoring
In this section, we will describe various tools that are available for monitoring Swift
clusters. We will also show you screenshots from the Vedams Swift monitoring
application, which integrates data from various Swift monitoring tools.

Swift Recon
Swift Recon is a piece of middleware that is configured on the object server node and
sits in the data path. It gets installed as part of the python-swiftclient installation.
A local cache directory needs to be specified during setup, and it is used to store logs.
It also comes with the swift-recon command-line tool, which can be used to access
and display the various metrics that are being tracked. You can use swift-recon –h
to get help on how to use the swift-recon tool.

see more please visit: https://homeofpdf.com

Chapter 6

[71]

Some general server metrics that are tracked are as follows:

• Load averages
• The /proc/meminfo data
• Mounted filesystems
• Unmounted drives
• Socket statistics

Along with these, some of the following Swift stats are also tracked:

• MD5 checksums of the account, container, and object ring
• Replication information
• Number of quarantined accounts, containers, and objects

Vedams Swift health monitoring application is a GUI tool used to display
consolidated information from several Swift tools. The following screenshot shows
Swift Recon data within the Vedams Swift monitoring application:

see more please visit: https://homeofpdf.com

Monitoring and Managing Swift

[72]

Swift Informant
Swift Informant is a piece of middleware that gives an insight into client requests
to the proxy server. This software sits in the proxy server's data path, and provides
the following metrics to the StatsD server (which is a server that receives the StatsD
metrics from the Swift cluster):

• HTTP response code (200, 201, 401, and so on) for requests to the account,
container, or object.

• Duration of the request as well as the time taken for the start_response
metric to appear. By default, this is measured in milliseconds.

• Bytes transferred in the request (in bytes).

Swift Informant can be downloaded from https://github.com/pandemicsyn/
swift-informant.

The following screenshot displays Swift Informant's data within the Vedams Swift
monitoring application:

see more please visit: https://homeofpdf.com

Chapter 6

[73]

Swift dispersion tool
Swift dispersion tool is a post-processing tool and is used to determine the overall
health of a Swift cluster. The swift-dispersion-populate tool (which comes
with python-swiftclient) is used to distribute random objects and containers
throughout the Swift cluster in such a way that the random objects and containers
fall under distinct partitions. Next, the swift-dispersion-report tool is run to
determine the health of these objects and containers. In the case of objects, Swift
creates three replicas for redundancy. If all the replicas of an object are good, then
the health of the object is said to be good, and the swift-dispersion-report tool
helps figure out this health of all objects and containers within the cluster.

The following screenshot displays the Swift dispersion data within the Vedams Swift
monitoring application:

StatsD
Swift services have been instrumented to send statistics (counters, logs, and so on)
directly to a StatsD server that is configured.

A simple StatsD daemon used to receive the metrics can be found at https://github.
com/etsy/statsd/. The StatsD metrics are provided in real time and can help identify
problems as they occur.

see more please visit: https://homeofpdf.com

Monitoring and Managing Swift

[74]

Configuration files (proxy-server.conf, account-server.conf, container-
server.conf, and object-server.conf) containing the following parameters
(default values given in parentheses) should be set in the Swift configuration
files to enable StatsD logging:

• log_statsd_host (IP address)
• log_statsd_port (8125)

• log_statsd_default_sample_rate (1.0)

• log_statsd_sample_rate_factor (1.0)

• log_statsd_metric_prefix

The statsd_sample_rate_factor parameter can be adjusted to set the logging
frequency. The log_statsd_metric_prefix prefix is configured on a node
to prepend this prefix to every metric sent to the StatsD server from that node.
If the log_statsd_host entry is not set, then this functionality will be disabled.

Swift metrics
Swift has the ability to log metrics such as counters, timings, and so on built into
it. Some of the metrics sent to the StatsD server from various Swift services are
as follows.

The metrics have been classified based on the Create, Read,
Update, and Delete (CRUD) operations.

Create/PUT Read/GET Update/POST Delete

account-server.
PUT.errors.timing

account-server.
GET.errors.timing

account-server.
POST.errors.timing

account-server.
DELETE.errors.
timing

account-server.
PUT.timing

account-server.
GET.timing

account-server.
POST.timing

account-server.
DELETE.timing

container-server.
PUT.errors.timing

container-server.
GET.errors.timing

container-server.
POST.errors.timing

container-server.
DELETE.errors.
timing

container-server.
PUT.timing

container-server.
GET.timing

container-server.
POST.timing

container-server.
DELETE.timing

object-server.
async_pendings

object-server.
GET.errors.timing

object-server.
POST.errors.timing

object-server.
async_pendings

object-server.
PUT.errors.timing

object-server.
GET.timing

object-server.
POST.timing

object-server.
DELETE.errors.
timing

see more please visit: https://homeofpdf.com

Chapter 6

[75]

Create/PUT Read/GET Update/POST Delete

object-server.
PUT.timeouts

proxy-server.
<type>.client_
timeouts

proxy-
server.<type>.
<verb>.<status>.
timing

object-server.
DELETE.timing

object-server.
PUT.timing

proxy-
server.<type>.
<verb>.<status>.
timing

proxy-
server.<type>.
<verb>.<status>.
xfer

proxy-
server.<type>.
<verb>.<status>.
timing

object-server.
PUT.<device>.
timing

proxy-
server.<type>.
<verb>.<status>.
xfer

proxy-
server.<type>.
<verb>.<status>.
xfer

proxy-server.
<type>.client_
timeouts

proxy-server.
<type>.client_
disconnects

proxy-
server.<type>.
<verb>.<status>.
timing

proxy-
server.<type>.
<verb>.<status>.
xfer

Tulsi – a Swift health monitoring tool
Tulsi is an open source tool used to monitor the health of a Swift cluster. It was
developed by Vedams software solutions (www.vedams.com), and the code is
provided on GitHub. The main intention of Tulsi is to check the status of drives
and services of each node within the Swift cluster. This tool provides a graphical
layout of the Swift cluster, along with the status of each node represented using
appropriate colors. It also performs and applies an anomaly detection algorithm
on top of the StatsD metrics to determine the health of the cluster.

The functions of Tulsi are as follows:

• Monitors the status of drives in the cluster
• Monitors the status of Swift services on each node in the cluster
• Monitors the logs of the StatsD metrics in the system
• Applies an anomaly detection algorithm on the StatsD metrics

see more please visit: https://homeofpdf.com

Monitoring and Managing Swift

[76]

Architecture of Tulsi
Tulsi is implemented using standard client-server architecture. It contains the Tulsi
server package, which needs to be installed on every node within the Swift cluster,
and the Tulsi client package, which needs to be installed on the client machine that
will be used to monitor the Swift cluster. The server package sends UDP packets
containing the status of the Swift cluster encoded in JSON (short for Java Script
Object Notation) format. The following diagram depicts the Swift cluster with
Tulsi deployed in it:

Swift Cluster

Tulsi Server

Storage Node 1

Swift

Tulsi Server

Storage Node 2

Swift

Tulsi Server

Storage Node 3

Swift

Tulsi Server

Storage Node 4

Swift

Proxy Node

Tulsi Server

Swift

Proxy Node

Tulsi Server

Deploying Tulsi
Deploying Tulsi is a pretty straightforward process. It is intended for Ubuntu
deployment right now. The implementation on other platforms can be checked
out in the README file of the package. There are two modules you will need to
install in this deployment: Tulsi server and Tulsi client.

Download the Tulsi package by following these steps:

1. The Tulsi package can be downloaded from GitHub by running the
following command:
git clone https://github.com/vedgithub/tulsi

see more please visit: https://homeofpdf.com

Chapter 6

[77]

2. Install the Tulsi server on all the Swift nodes by running these commands
from the tulsi folder of the downloaded package:
cd tulsi/TulsiServer/
sh tulsi.sh

3. Edit the tulsi.conf file in the /etc/tulsi folder and update the host and
port parameters as shown here:
[tulsi]
Host = Tulsi_Client_IP_Address
Port = 5005

Try leaving the port as 5005. If you want to change the
port, make sure that you assign the same port for both
the client and server packages.

4. Next, install the Tulsi client on a system where you will be monitoring the
cluster from. The installation procedure for different platforms can be found
in the README.md file in the package. Install the client using the instructions
provided in the README.md file.

Running Tulsi
After the installation procedure completes, start the services on all the storage and
proxy nodes using this command:

service tulsi start

On the monitoring system, open the Tulsi client user interface by typing the
following command in a web browser:

http://localhost:8080/Tulsi

Alternatively, you can use this command:

http://<ip_of_tulsi_client_system> :8080/Tulsi

see more please visit: https://homeofpdf.com

Monitoring and Managing Swift

[78]

The web browser shows the status of the Swift cluster, as follows:

The default page displays the status of the proxy nodes as well as the storage nodes.
A green node indicates a healthy status, amber indicates a service down status, and
red indicates a problem with the disks on the storage nodes. Here is a screenshot
showing a problem with one of the services on a storage node:

see more please visit: https://homeofpdf.com

Chapter 6

[79]

The following is a screenshot showing a problem with the disk on one of the
storage nodes:

The web page has a Logs tab that can be used to show the StatsD metric logs
received by the Tulsi client. These logs have been categorized as information,
warning, error, and critical, and are represented by the prefixes I, W, E, and C
in the logs. Here is a screenshot of the logs:

see more please visit: https://homeofpdf.com

Monitoring and Managing Swift

[80]

Anomaly detection in Tulsi
Anomaly detection is a machine learning algorithm that is applied to StatsD logs
to determine anomalies in the metrics. Here is a diagram that depicts the incoming
values of a StatsD metric received by a Tulsi client:

We use standard deviation and normalization techniques to determine the
anomalies. The following diagram depicts the values after applying the anomaly
detection algorithm:

TIME

S
TA

TS
D

 M
ET

R
IC

see more please visit: https://homeofpdf.com

Chapter 6

[81]

More detailed information about the Tulsi server and client can be obtained by
reading the sources available on GitHub.

Logging using rsyslog
It is very useful to get logs from various Swift services, and this can be achieved by
configuring proxy-server.conf and rsyslog:

1. In order to receive logs from the proxy server, we modify the /etc/swift/
proxy-server.conf configuration file by adding the following lines:
log_name = name
log_facility = LOG_LOCALx
log_level = LEVEL

Let's describe these entries. The name parameter can be any name that
you want to see in the logs. The letter x in LOG_LOCALx can be any number
between 0 and 7. LEVEL can be any one of emergency, alert, critical, error,
warning, notification, informational, or debug.

2. Next, we modify /etc/rsyslog.conf to add the following line of code in
the GLOBAL_DIRECTIVES section:
$PrivDropToGroup adm

3. Also, we create a config file called /etc/rsyslog.d/swift.conf and add
the following line of code to it:
local2.* /var/log/swift/proxy.log

The preceding line tells syslog that any log written to the LOG_LOCAL2 facility should
go into the /var/log/swift/proxy.log file. We then give permissions for access to
the /var/log/swift folder and restart the proxy service and syslog service.

Restart the proxy and rsyslog services using the following commands:

service rsyslog restart
swift-init rest restart

Failure management
In this section, we will deal with detecting failures, and actions to be done to rectify
failures. There can be drive, server, zone, or even region failures. As described in
Chapter 2, OpenStack Swift Architecture, during the CAP theorem discussion, Swift
is designed for availability and tolerance to partial failure (where entire parts of a
cluster can fail).

see more please visit: https://homeofpdf.com

Monitoring and Managing Swift

[82]

Detecting drive failures
Kernel logs are a good place to look for drive failures. The disk subsystem will
log warnings or errors that can help an administrator determine whether drives
are going bad or have already failed. We can also set up a script on storage nodes
(explained in the following steps) to capture drive failure information using the
drive audit process described in Chapter 2, OpenStack Swift Architecture.

1. On each storage node, create a swift-drive-audit script in the /etc/swift
folder with the following content:
[drive-audit]
log_facility = LOG_LOCAL0
log_level = DEBUG
device_dir = /srv/node
minutes = 60
error_limit = 2
log_file_pattern = /var/log/kern*
regex_pattern_X = berrorb.*b(sd[a-z]{1,2}d?)b and b(sd[a-
z]{1,2}d?)b.*berrorb

2. Add the following line of code to /etc/rsyslog.d/swift.conf:
local0.* /var/log/swift/drive-audit

3. We then restart the rsyslog service using this command:
service rsyslog restart

4. Next, we restart the Swift services using the following command:
swift-init rest restart

The drive failure information will now be stored in the /var/log/swift/
drive-audit log file.

Handling drive failure
When a drive failure occurs, we can replace the drive quickly, replace it at a later
time, or not replace it at all. In any case, we have to first unmount the drive. If we do
not plan to replace the drive immediately, then it is better to remove it from the ring.
If we decide to replace the drive, then we take out the failed drive. We replace it with
a good drive, format it, and mount it. We will then let the replication algorithm take
care of filling this drive with data to maintain consistent replicas and data integrity.

see more please visit: https://homeofpdf.com

Chapter 6

[83]

Handling node failure
When a storage server in a Swift cluster is experiencing problems, we have to
determine whether the problem can be fixed in a short interval, such as a few
hours, or it might take an extended period of time. If the downtime interval is
small, we can let Swift services work around the failure while we debug and fix
the issue with the node.

Since Swift maintains multiple replicas of data (the default is three), there won't be
any problem of data availability, but the time taken for data access might increase.
As soon as the problem is found and fixed and the node is brought back up, Swift
replication services will take care of figuring out the missing information, update
the nodes, and get them in sync.

If the node repair time is extended, then it is better to remove the node and all the
associated devices from the ring. Once the node is brought back online, the devices
can be formatted, remounted, and added back to the ring.

The following commands are useful for removing devices and nodes from the ring:

• To remove a device from the ring, use this code:
swift-ring-builder <builder-file> remove
<ip_address>/<device_name>

An example of use of the preceding code is swift-ring-builder account.
builder remove 172.168.10.52/sdb1.

• Remove a server from the ring like this:
swift-ring-builder <builder-file> remove <ip_address>

An example of use of this code is swift-ring-builder account.builder
remove 172.168.10.52.

Next, the ring needs to be rebalanced (Chapter 3, Installing OpenStack Swift mentions
how to rebalance the ring).

Proxy server failure
If there is only one proxy server in the cluster and it goes down, then there is a
chance that no objects can be accessed (uploaded or downloaded) by the client,
so this needs immediate attention. This is why it is always a good idea to keep
a redundant proxy server to increase data availability in the Swift cluster. After
identifying and fixing the failure in the proxy server, the Swift services are
restarted and object store access is restored.

see more please visit: https://homeofpdf.com

Monitoring and Managing Swift

[84]

Zone and region failure
When an entire zone fails, it is still possible that the Swift services are not interrupted
because of the high-availability configuration containing multiple storage nodes and
multiple zones.

The storage servers and drives belonging to the failed node must be brought back to
the service if the failure can be debugged quickly. Otherwise, the storage servers and
drives belonging to the zone need to be removed from the ring, and the ring needs
to be rebalanced. Once the zone is brought back to the service, the drives and storage
servers can be added back to the ring, and the ring can be rebalanced.

In general, zone failure should be dealt with as a critical issue. In some cases, the
top-of-the-rack storage or network switch can witness failures, thus disconnecting
storage arrays and servers from the Swift cluster and leading to zone failures. In
these cases, the switch failures have to be diagnosed and rectified quickly.

In a multi-region setup, if there is a region failure, then all requests can be routed
to the surviving regions. The servers and drives belonging to the region need to
be brought back to service quickly to balance the load, which is currently being
handled by the surviving regions. In other words, this failure should be dealt with
as a blocker issue.

There can be latencies observed in uploads and downloads due to the requests being
routed to different regions. Region failures can also occur due to failures occurring
in core routers or firewalls. These failures should also be quickly diagnosed and
rectified to bring the region back to the service.

Capacity planning
As more clients start accessing the Swift cluster, there will be an increase in the
demand for additional storage. With Swift, this is easy to accomplish: you can
simply add more storage nodes and associated proxy servers. This section deals
with the planning and addition of new storage drives as well as storage servers.

Adding new drives
Though a straightforward process, adding new drives requires careful planning
since it involves rebalancing of the ring. Once we decide to add new drives, we will
add these drives to a particular storage server in a zone by formatting and mounting
them. Next, we run the swift-ring-builder add command to add the drives to
the ring.

see more please visit: https://homeofpdf.com

Chapter 6

[85]

Finally, we run the swift-ring-builder rebalance command to rebalance the
ring. The generated .gz ring files need to be distributed to all storage server nodes.
The commands used to perform these operations have been explained in Chapter 3,
Installing OpenStack Swift, in the Formatting and mounting hard disks section and the
Ring setup section.

More often than not, we will also end up replacing old drives with larger and better
drives. In this scenario, instead of executing an abrupt move, it is better to slowly
start migrating data from the old drive to the other drives by reducing the weight
of the drive in the ring and repeating this step a few times. Once data has been
moved from this drive, it can be safely removed. After removing the old drive,
simply insert the new drive and follow the previously mentioned steps to add
this drive to the ring.

Adding new storage and proxy servers
Adding new storage and proxy servers is also a straightforward process where new
servers need to be provisioned according to the instructions provided in Chapter 3,
Installing OpenStack Swift. Storage servers need to be placed in the right zones, and
drives belonging to these servers need to be added to the ring.

After rebalancing and distributing the .gz ring files to the rest of the storage servers,
the new storage servers are now part of the cluster. Similarly, after setting up a new
proxy server, the configuration files and load balancing settings need to be updated.
This proxy server is now part of the cluster and can start accepting requests from users.

Migrations
This section deals with hardware and software updates. The migrations can be to
either existing servers or new servers within a zone or a region. As new hardware
and software (operating system, packages, or Swift software) become available,
the existing servers and software need to be updated to take advantage of faster
processor speeds and the latest software updates. It is a good idea to upgrade one
server at a time and one zone at a time, since Swift services can deal with an entire
zone going away.

The following steps are required for upgrading a storage server node:

1. Execute the following command to stop all the Swift operations running in
the background:
swift-init rest stop

see more please visit: https://homeofpdf.com

Monitoring and Managing Swift

[86]

2. Shut down all Swift services using the following command:
swift-init {account|container|object} shutdown

3. Upgrade the necessary operating system and system software packages, and
install or upgrade the required Swift package. In general, Swift has a 6-month
update cycle.

4. Next, create or make the required changes to the Swift config files.
5. After rebooting the server, make sure that the required services are running.

If not, restart all the required services by executing the following commands:
swift-init {account|container|object} start
swift-init rest start

If there are changes with respect to the drives on the storage server, we have to make
sure we update and rebalance the ring.

Once we have completed the upgrades, we check the log files for proper operation of
the server. If the server is operating without any issues, we then proceed to upgrade
the next storage server.

Next, we will discuss how to upgrade proxy servers. We can make use of the load
balancer to isolate the proxy server that we plan to upgrade so that client requests
are not sent to this proxy server.

We have to perform the following steps to upgrade the proxy server:

1. Shut down the proxy services using the following command:
swift-init proxy shutdown

2. Upgrade the necessary operating system and system software packages,
and install or upgrade the required Swift package.

3. Next, create or make the required changes to the Swift proxy
configuration files.

4. After rebooting the server, restart all the required services by running the
following command:
swift-init proxy start

We then have to make sure that we add the upgraded proxy server back into the
load balancer pool so that this proxy server can start receiving client requests.

After the upgrade, we have to make sure that the proxy server is operating correctly
by monitoring the log files.

see more please visit: https://homeofpdf.com

Chapter 6

[87]

Summary
In this chapter, you learned how to manage a Swift cluster, the various tools
available for monitoring and managing the Swift cluster, the various metrics
used to determine the health of the cluster, and an open source tool called Tulsi.
You also learned what actions need to be taken if a component fails in the cluster
and how a cluster can be extended by adding new disks and nodes.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

[89]

Docker Intercepts Swift
This chapter explains how to set up a Swift cluster on top of Docker. Let's briefly
delve into Docker to make this chapter easier to understand. Docker is all about
making it easier to create, deploy, and run applications using containers. Containers
allow a developer to package an application with all the parts it needs, such as
libraries and other dependencies, and ship it as one package.

Docker is a bit like a virtual machine. However, unlike a virtual machine, where
a complete virtual operating system gets installed, Docker allows applications to
use the same Linux kernel as the system they're running on, and only requires
applications to be shipped with things not already running on the host computer.
Refer to the following diagram:

A Docker container versus a virtual machine

see more please visit: https://homeofpdf.com

Docker Intercepts Swift

[90]

Virtual machines have a full operating system with their own memory management
installed with the associated overhead of virtual device drivers. In a virtual machine,
valuable resources are emulated for the guest OS and hypervisor, which makes it
possible to run many instances of one or more operating systems in parallel on a
single machine (or host). Every guest operating system runs as an individual entity
from the host system.

On the other hand, Docker containers are executed with the Docker engine rather
than the hypervisor. Containers are therefore smaller than virtual machines
and enable faster startup with better performance, less isolation, and greater
compatibility due to sharing of the host's kernel.

Swift with Docker
Swift with Docker is a way of creating an OpenStack Swift cluster as a Docker
container after taking care of all the dependencies. A Docker image of this container
can then be created and uploaded to the Docker repository. After that, the image can
be pulled down to any other system and used to create a new container.

Any addition of nodes will just be a creation of additional containers using the
Docker image. Refer to the following diagram:

Storage Container 1 Storage Container 2 Storage Container 3 Storage Container 4

Proxy Container

Dockerised Swift

see more please visit: https://homeofpdf.com

Chapter 7

[91]

Installation of Docker
This section talks about the installation of Docker and the environment for Docker.
For the Docker software, we need a 64-bit host operating system. In this section,
we will describe how to install Docker on an Ubuntu 14.04 Linux operating system.
Refer to the other Linux distribution command sets to install the clients in those
operating systems.

Log in to your Ubuntu installation as a user with the sudo privileges.

Update the package index of the host using the following command:

apt-get update

Verify that you have wget installed using this command:

which wget

If wget isn't installed, install it using the following command:

apt-get install wget

Get the latest Docker package using this command:

wget –qO- https://get.docker.com/ | sh

Verify that Docker is installed correctly by running the following command:

docker run hello-world

The preceding command downloads a test image and runs it in a container.

Basic commands for the Docker user
This section talks about the basic command line for using Docker. In order to
handle Docker containers, we need some commands for creating images, running
containers, and so on.

In the Docker hub, there are already a number of images uploaded and available. If
we need to use an image, we have to pull it to our localhost. The following command
can be used to download images from Docker:

docker pull <image_name>

see more please visit: https://homeofpdf.com

Docker Intercepts Swift

[92]

For example, suppose you want to download the Ubuntu 14.04 official container,
using the following command:

docker pull ubuntu:14.04

We need to make sure that we specify the version name. Otherwise, whatever
Ubuntu versions are available inside the Docker hub will be downloaded. If you
want to download the latest version of any container, then specify latest instead
of the version, for example, ubuntu:latest.

This command is used to list images on your local machine:

docker images

Create a container that uses the existing images by using the following command:

docker run –i –t <image_name> /bin/bash

We can run multiple containers on a single host. In this case, all the containers will
use resources from the host machine. The following are some basic commands that
can be used to manage containers:

• Show all created containers on the host machine:
docker ps -a

• Show the running container on the host machine:
docker ps

• Attach the running container to your prompt for making changes inside the
container.

docker attach <container_name>

The following commands are used to start, stop, and restart the container.

docker start <container_id>

docker stop <container_id>

docker restart <container_id>

After installing the required packages within a container and making any required
modifications, the following command can be used to create an image of this
modified container, which can then be uploaded to a public or private account on the
Docker hub:

docker commit <container_id> "image_name"

see more please visit: https://homeofpdf.com

Chapter 7

[93]

For uploading images to the Docker hub, we need a Docker hub account. Use the
Docker login command and provide the username, password, and e-mail ID of your
Docker hub account.

Run the following command to log in. After running this command, the Docker hub
will ask for the e-mail, password, and username of your Docker repository.

docker login

After login, push the image to the Docker hub using the following command:

docker push <image_name>

If you want to reuse this image from another host machine, then pull the image to
your host machine and create the container using the downloaded image.

Setting up a Swift proxy container using the
Docker image
The Swift proxy node is the controller node of the Swift cluster. For the configuration
of the proxy node, we have to install the related packages of the proxy node, but here
we will show you how to reuse an already configured proxy node Docker image.
This image is provided by Vedams.

To download this image, run this command:

docker pull vedams/swift-proxy

After downloading the image, we have to create the container for the proxy node.
Docker has some limitations when using static IP addresses for the Docker container.
We can perform a mapping to the host IP address to enable communication between
proxy and storage containers.

Host networking mode is needed for this container to work, so the --net=host
parameter must be used when starting up an instance of this container.

docker run –i –t --net=host --name="proxy" vedams/swift-proxy
/bin/bash

Now that we have created the proxy container, we have to do some basic
configuration to run the proxy container.

see more please visit: https://homeofpdf.com

Docker Intercepts Swift

[94]

First, create the ring files as per your Swift cluster and copy them to the proxy
container and storage container. If any changes (for example, bind_ip, auth_ip, any
statsd configurations, and so on) are required to the /etc/swift/proxy-server.
conf file, make the necessary changes.

Ensure proper ownership of the /etc/swift folder by running this command:

chown -R swift:swift /etc/swift

Run this command to start all the services of the proxy node:

service mysql restart

service supervisor restart

Docker container runs a single process when it is launched,
but in Swift cluster we need more than one process. For that,
we are using supervisor. Using supervisor allows us to
better control, manage, and restart the processes that we want
to run. The configurations of all services are located in /etc/
supervisor/conf.d/supervisord.conf.

Since the Keystone endpoint in the container image was created using some default
values, you need to delete this endpoint and create your endpoint, as described in
Chapter 3, Installing OpenStack Swift, under the Installing Keystone section.

Update the /home/keystonerc file to provide the username, password, tenant,
endpoint, and so on. Provide the Swift environment variables using this command:

source keystonerc

Setting up the storage container using the
Docker image
Download the swift-storage image using the following command:

docker pull vedams/swift-storage

In order for Docker to use entire filesystems from its host OS, those filesystems need
to be mounted on the host OS, and they need to be passed to the container using the
-v parameters. Therefore, create drives, create the filesystem on those drives, and
mount it.

see more please visit: https://homeofpdf.com

Chapter 7

[95]

The following command is used to install the XFS filesystem:

apt-get install xfsprogs

Perform the partitioning for sdb and create the filesystem on this partition. We also
have to add a line in fstab for this partition. The commands used to perform these
steps are shown in the following screenshot:

Let's now create a container for the storage node; we are using the -v parameter to
map the host drive on the container:

Now the storage container is created with a single storage drive. We can map more
than one storage drive on the storage container.

Before using the storage container, we need to perform some basic configurations:

• Replace the ring files as per your Swift cluster in the /etc/swift directory
• Replace bind_ip in the following files with your storage container host IP:

vi /etc/swift/account-server.conf

vi /etc/swift/container-server.conf

vi /etc/swift/object-server.conf

• Replace the IP address of the /etc/rsyncd.conf file with the storage host
IP address

• Ensure proper ownership of all folders related to the storage container:
chown -R swift:swift /srv/node

chown -R swift:swift /etc/swift

• Run the following command to start all services related to the storage
container:

service supervisor restart

see more please visit: https://homeofpdf.com

Docker Intercepts Swift

[96]

Setting up a Swift cluster using a
Dockerfile
A Dockerfile is a text document that contains all the commands you normally
execute manually in order to build a Docker image. By calling Docker build from
your terminal, you can have Docker build your image step by step, executing the
instructions successively.

Download the Swift proxy and storage Dockerfile and related files. Vedams has
provided a Git repository for all Dockerfiles and files related to Swift. Download the
repository using this command:

git clone https://github.com/vedams-docker/swift-with-docker.git

Creating a proxy container using a Dockerfile
First of all, we need an image to create the proxy container. Here, we will use a
Dockerfile to create the image.

Create a folder on the host machine and copy and paste the proxy folder into it.
Navigate to the folder and you will find the Dockerfile and files folder.

Inside the files folder, there are ring files and configuration files related to the
Swift proxy. Replace the ring files as per your Swift cluster configuration, and make
other necessary changes in all configuration files as per your requirements. Change
bind_ip in the proxy-server.conf file:

1. After completing the changes inside the files folder, come back to the proxy
directory and run this command:
docker build -t="swift-proxy" .

2. After the image-building process completes, run the following command to
get the proxy container:
docker run -i -t --net=host --name="proxy" swift-proxy
/bin/bash

3. Ensure proper ownership for the /etc/swift folder:
chown -R swift:swift /etc/swift

see more please visit: https://homeofpdf.com

Chapter 7

[97]

4. Run this command to start all the services of the proxy node:

service mysql restart

service supervisor restart

Create a database for the Keystone and user, tenant and their role (follow The
Keystone service section in Chapter 3, Installing OpenStack Swift).

Creating a storage container using a
Dockerfile
Create an image using the Dockerfile in storage:

1. Copy the storage folder to the host, replace the ring files, and configure all
the configuration files.

2. Next, run this command:
docker build -t="swift-storage" .

3. After creating an image of the storage node, create the container for storage.
Run the following command to create the storage container:
docker run -i -t --net=host --name="storage" -v
/srv/node/sdb1:/srv/node/sdb1:rw swift-storage /bin/bash

4. Ensure proper ownership of all folders related to the storage container:
chown -R swift:swift /srv/node

chown -R swift:swift /etc/swift

5. Run the following command to start all services related to the storage
container:

service supervisor restart

The setup for running your Swift cluster in a Dockerized environment is
now complete.

see more please visit: https://homeofpdf.com

Docker Intercepts Swift

[98]

Summary
In this chapter, you learned about Docker and how to set up and run your
OpenStack Swift cluster in a Dockerized environment.

The next chapter talks about choosing the right hardware for your OpenStack
Swift cluster, and the things you need to consider when doing so.

see more please visit: https://homeofpdf.com

Chapter 8

[99]

Choosing the Right Hardware
Users who utilize OpenStack Swift in their private cloud will be faced with the task
of hardware selection. This chapter walks through all of the hardware you need to
select, the criteria to be used, and finally a vendor selection strategy. If you are using
a public cloud, the only hardware you might select is the cloud gateway, and you
can skip the remaining part of the chapter.

The hardware list
The list of the minimum hardware required to install Swift is as follows:

Item Description

Storage
servers

These are physical servers that run the object server software, and
generally also run the account and container server software. Storage
servers require disks or solid-state drives (SSDs) to store objects.

Proxy server
(or servers)

These are physical servers that run the proxy server software. At least
one is required.

Network
switch (or
switches)

Chapter 3, Installing OpenStack Swift, describes the various networks
required. At least one switch is required.

see more please visit: https://homeofpdf.com

Choosing the Right Hardware

[100]

The following is a list of optional hardware that may need to be purchased:

Item Description

Account
servers

For large installations where container listings and updates
overwhelm the storage servers, separate account servers may be
needed.

Container
servers

For large installations where object listings and updates overwhelm
the storage servers, separate container servers may be needed.

Auth servers For large installations where user authentication overwhelms the
proxy servers, separate auth servers may be needed.

JBODs
For installations where disk density is important, a storage server may
be connected to a JBOD (short for just a bunch of disks) using a SAS
connection to increase disk density.

Load balancer
/ SSL
acceleration

This is useful for providing a single IP address for the entire cluster
(there are software mechanisms for accomplishing this as well, but
these are not covered in this book).
The SSL functionality in the load balancer offloads the software SSL in
the proxy server.

Firewall
and security
appliances

For public, community, and some private networks, firewall and
security appliances such as intrusion detection/prevention may be
required, depending on your company's security policies.

On-premise
cloud
gateway

To adapt applications that have not ported to the REST HTTP APIs
yet, you will need a protocol translation device that converts a familiar
file and blocks protocols to REST APIs. This device is called a cloud
gateway, and it is the only piece of hardware that you may need, even
in the case of a public cloud.

To complicate things even further, each server has numerous design elements
to configure:

• CPU performance: The CPU's performance is specified in terms of the
number of processors and number of cores-per-processors. This has the
most direct impact on the server's performance.

• Memory: The next important consideration is the amount of DRAM memory,
which is specified in GB.

• Flash memory: Flash memory is another critical performance consideration,
and it is typically in the TB range.

see more please visit: https://homeofpdf.com

Chapter 8

[101]

• Disk/JBOD: For storage servers, you need to specify the number of disks
and types of disks (interface, speed, rating, and so on). Alternatively, you
may choose SSDs. For the remaining part of the chapter, the term "disk"
includes SSDs. These disks can be in the server, connected via a JBOD, or a
combination of the two.

• Network I/O: A server needs network I/O connectivity via a LAN-on-
motherboard (LOM) or an add-on network interface card (NIC). This is
typically 1 GB per second or 10 GB per second in terms of speed.

• Hardware management: Servers vary widely in hardware management
features, starting with rudimentary monitoring only through the operating
system and OS-independent IPMI all the way to sophisticated remote KVM
and remote storage.

The hardware selection criteria
The permutations of hardware choices and the elements within each server are
numerous. Further, the ratio of proxy to account to container to storage servers is
yet another complication. Before we go through the systematic selection criteria, we
need to determine the following characteristics about our environment:

• Point of optimization for your environment: You will need to decide
whether you want to optimize for performance or cost. Of course, with
storage policies, you can mix both use cases in the same cluster, but for now
it is useful to separate the two use cases.

• Scale: The scale also has a huge impact on hardware selection. For simplicity,
let's say small is in the range of hundreds of TB, medium is in the PB range,
and large is in the range of tens of PB and beyond. You will need to determine
what range you want to design the cluster for.

The process of choosing hardware is as follows, in stepwise order.

Choosing the storage server configuration
Let's see how various levels of installations affect the selection of the storage server.

• For small and medium installations, the storage server can include the object,
account, and container server software.

• For large installations, we recommend a separate account and/or container
servers. This limits the use of the storage server as just an object server.

see more please visit: https://homeofpdf.com

Choosing the Right Hardware

[102]

• For performance-optimized clusters, the aggregate disk performance must
match the total performance of the other server components (CPU, memory,
flash, and I/O).

• For cost-optimized clusters, the disk performance can exceed the
performance of other components (in other words, saving money to throttle
performance).

In fact, consider attaching JBODs to significantly increase disk density.

A higher disk density also results in slight reliability degradation, since a node
failure takes longer to self-heal, and two additional failures (if you have three copies)
have a slightly higher probability of occurring during this longer duration. Of
course, the probability of two failures occurring in one self-heal window is very low
in both cases. The following diagram denotes a storage server with disks (of course,
an optional JBOD may also be connected to it):

A storage server and an optional JBOD

The OpenStack configuration guide at http://docs.openstack.org/juno/
install-guide/install/apt/content/object-storage-system-requirements.
html recommends the following server specifications:

• Processor: Dual quad-core.
• Memory: 8 to 12 GB.
• Network I/O: 1 x 1 Gbps NIC. Cost permitting, our recommendation is to go

beyond the official recommendation and use 10 Gbps.
• Disks/JBOD: Additionally, we need to consider this for direct attached

storage. The number of hard drives or SSDs depends on the density-versus-
performance trade-off desired. As of 2013, Rackspace used 96 x 3 TB SATA
drives per storage server.

For direct attached storage, RAID should not be turned on due to performance
degradation. Moreover, RAID may be counterproductive for other reasons too: for
example, Swift flushes data to the disk to confirm a write, but a RAID controller may
intercept it and not commit the write to the disk immediately.

see more please visit: https://homeofpdf.com

Chapter 8

[103]

Next, a key consideration is the type of disk: enterprise or desktop. Within
enterprise disks, there are 15,000, 10,000, or 7,200 rotations-per-minute (RPM)
drives and a variety of capacity configurations. Although it is prohibitively
expensive to populate all storage servers exclusively with SSDs, a small
percentage of drives may include SSDs for very high performance, and
storage policies can be used to carve up the cluster.

For small and medium installations, your enterprise drives may be most
appropriate, as they are more reliable than desktop drives. Most small and
medium installations are typically not set up to deal with the higher failure
rate of desktop drives. The performance and capacity that you choose for an
enterprise drive obviously depends on your specific requirements.

Large installations that are also very cost sensitive may warrant consideration of
desktop drives. The density of desktop drives (up to 6 TB at the time of writing
this book) also contributes favorably to large installations. In addition to reliability,
desktop drives are not specified to be able to run 24x7. This means that your IT staff
have to be sophisticated enough to deal with a large number of failures and/or spin
down drives to conform to the specification.

Determining the region and zone
configuration
Next, we need to decide on regions and zones. The number of regions stems from
the desire to protect data from a disaster or to be closer to the sources consuming
data. For example, if the goal is to protect against disasters in the United States, two
regions in different Federal Emergency Management Agency (FEMA) regions ought
to be sufficient.

Once the number of regions has been determined, we need to choose the number
of zones for each region. While this is not a must, we recommend at least as many
zones as there are replicas to ensure that the data is available even in the case of a
zone being unavailable. We recommend no fewer than three zones, and Rackspace
uses five (http://docs.openstack.org/juno/install-guide/install/apt/
content/example-object-storage-installation-architecture.html).

Small clusters may be fine with four zones. Refer to Chapter 2, OpenStack Swift
Architecture, for a refresher on the definition of regions and zones.

see more please visit: https://homeofpdf.com

Choosing the Right Hardware

[104]

Choosing the account and container server
configuration
As previously mentioned, except for large configurations, separate account and
container servers are generally not required, and they can be combined with
object servers (see the Choosing the storage server configuration section). For separate
account and/or container servers, the SQL database performance should be
adequate to meet your database listing and update needs by selecting the right
amount of memory and flash.

An optional account and a container server

The OpenStack configuration guide recommends the following specifications (you
may be able to reduce the requirements based on your cluster's size and performance
requirements):

• Processor: Dual quad-core.
• Memory: 8 to 12 GB.
• Network I/O: 1 x 1 Gbps NIC. Cost permitting, our recommendation is to go

beyond the official recommendation and use 10 Gbps.
• SSD/Flash: Not specified. This depends on the user's performance

requirements.

Selecting the proxy server configuration
In general, the proxy server needs to keep up with the number of API requests.
As discussed in Chapter 2, OpenStack Swift Architecture, additional middleware
modules may also be running on the proxy server. Therefore, the proxy server needs
performance that can keep up with this workload. Using a few powerful proxy
servers as opposed to a large number of wimpy servers was proven to be more cost
effective by Zmanda (http://www.zmanda.com/blogs/?p=774).

A proxy server

see more please visit: https://homeofpdf.com

Chapter 8

[105]

The OpenStack configuration guide seems to concur, and recommends the following
specifications:

• Processor: Dual quad-core.
• Network I/O: A 1 x 1 Gbps NIC. Our recommendation is to use at least two

NICs, one for internal storage cluster connectivity and one for client (API)
facing traffic. Cost permitting, our recommendation is to go beyond the
official recommendation and use at least 10 Gbps for internal storage cluster
connectivity. Also see the related SSL discussion in the Choosing additional
networking equipment section that affects network I/O.

If your proxy server is running a lot of middleware modules, consider moving some
of them to dedicated servers. The most common middleware to be separated is the
auth software.

Choosing the network hardware
There are three networks mentioned earlier—client (API) facing, internal storage
cluster, and replication. See Chapter 3, Installing OpenStack Swift, for a view of the
architecture of these three networks. This might be a combination of 1 GB per
second, 10 GB per second, or hybrid 1/10 GB per second Ethernet switches. The
following are some performance-related sizing techniques:

• Client-facing network: The throughput requirement of the overall cluster
dictates the network I/O for this network. For example, if your cluster has 10
proxy servers and is sized to satisfy 10,000 I/O requests per second of 1 MB
size each, then clearly each proxy server needs 10 GB per second network
I/O capability.

• Internal storage cluster: The network requirements depend on the overall
cluster throughput and size of the cluster. The size of the cluster matters
since it will generate a large amount of post-processing software component
traffic (see Chapter 2, OpenStack Swift Architecture). As mentioned before, we
recommend the use of a 10 GB per second network, cost permitting.

• Replication network: This depends on the overall write throughput and the
size of the cluster. For example, for 1,000 write requests per second of 1 KB
each, a 10 MB per second network might perform adequately.

see more please visit: https://homeofpdf.com

Choosing the Right Hardware

[106]

An additional consideration is the availability model. Network switches take down
entire zones or regions, so unless you can service the failed switches rapidly, you
might want to consider dual-redundant configurations. The following figure denotes
a network switch:

A network switch

Choosing the ratios of various server types
After selecting the individual server configurations, the ratios of different server
types have to be chosen. Since most configurations will have only two types, that is,
proxy and storage, we will discuss the ratios of only these two. According to work
done by Zmanda, the proxy server should neither be underutilized nor overutilized.
If the throughput of one storage server is 1 GB per second and that of the proxy
server is 10 GB per second for example, then the ratio is 10:1. (This simple calculation
applies to large objects dominated by throughput. For smaller objects, the calculation
needs to focus on the number of requests.)

Instead of buying hardware piecemeal, this ratio exercise allows a user to define
a "unit" of purchase. The unit may be a full rack of hardware, multiple racks, or a
few rack units. A unit of hardware is orthogonal to Swift zones, and typically you
would want each unit to add capacity to every zone in a symmetrical fashion. Each
unit can have a set of proxy servers, storage servers, network switches, and so on
defined in detail. Scaling the Swift cluster as data grows becomes a lot simpler using
this technique of purchase. As mentioned earlier, you need to start with at least two
proxies to provide for adequate availability.

For example, assume you want to grow your cluster in roughly 1 PB raw storage
increments, with dense configurations. You might consider a unit of hardware with
one proxy server, two 10 Gbps switches, one management switch, and five storage
servers with 60 drives of 4 TB each (that is, 240 TB x 5 = 1.2 PB). Given the previous
comment regarding the need for at least two proxy servers, the initial installation
would have to be 2.4 PB. With triple replication, the 1.2 PB raw storage translates
into 400 TB usable storage. This example is not perfect because it may not fit cleanly
within the rack boundaries, but it is meant to illustrate the point.

see more please visit: https://homeofpdf.com

Chapter 8

[107]

Heterogeneous hardware
As described in Chapter 2, OpenStack Swift Architecture, storage policies allow users
to mix heterogeneous hardware into one single cluster. Data is segregated based
on these storage policies. While heterogeneous hardware provides more flexibility,
it also contributes to complexity. The previous six steps may be used to calculate
various hardware types.

Choosing additional networking equipment
The final step is to choose the load balancer, SSL acceleration hardware, and
security appliances. A load balancer is required if there is more than one proxy
node. Furthermore, you need to ensure that the load balancer is not a
performance bottleneck.

SSL hardware acceleration is required if most of the traffic is over secure HTTP
(HTTPS) and the software SSL operation is found to overwhelm the proxy servers. In
fact, even if you use software SSL, you might find an SSL terminator such as Pound
to be better than using the Python-based SSL terminator in the proxy server.

Finally, security appliances such as IPS and IDS are required if the cloud is on the
public Internet. These requirements vary according to company policies. Similar
to the load balancer, these additional pieces of hardware must have enough
performance to keep up with the aggregate proxy server's performance. The
following diagram denotes additional networking equipment needed for your
Swift cluster:

Selecting a cloud gateway
This piece of equipment is different from the rest. It is not required to build an
OpenStack Swift cluster. Instead, it is needed on the premises (in the case of a
public cloud) or near the application (in the case of a private cloud) if your
application has not been ported yet to HTTP REST APIs. In this situation, the
application expects a traditional block or file storage, which is the interface
exposed by these cloud gateways.

see more please visit: https://homeofpdf.com

Choosing the Right Hardware

[108]

The gateway performs protocol translation and interfaces with the cloud on the other
side. In addition to protocol translation, cloud gateways often add numerous other
features such as WAN optimization, compression, deduplication, and encryption.
Since gateways are not part of the OpenStack cluster, the selection criteria are outside
the scope of this book.

While most of this section has dealt with performance, there are other considerations
as well, which are covered in the next section.

Additional selection criteria
In addition to the previous criteria, the following also need to be considered before
finalizing your hardware selection:

• Durability: Durability is a measure of reliability and is defined as 100
percent minus the probability of losing a 1 KB object in 1 year. Therefore,
99.999999999 percent durability (simply stated as 11 x 9 in this case) implies
that every year, you statistically lose one object if you have 100 billion 1 KB
objects. Alternatively, given 10,000 objects, you expect a loss of one object
every 10,000,000 years.

Calculating the durability of a Swift cluster is beyond the scope of
this book, but the selected hardware needs to meet your durability
requirements. For users requiring a high level of durability, low-
density enterprise-class disk drives, servers with dual fans and
power supplies, and so on are some considerations.

• Availability: Availability is defined as the percentage of time during which
requests are successfully processed by the cluster. Availability mostly impacts
frontend network architecture in terms of having a single network (that is, a
single point of failure) versus dual-redundant networks. As mentioned earlier,
networks in a given zone can be designed as single points of failure as long as
your IT staff have the ability to troubleshoot them quickly.

• Serviceability: The serviceability of various pieces of hardware depends
heavily on your strategy. If you choose fail-in-place (typically for large
installations), serviceability is not a big concern. If you choose a repair/
servicing strategy (typically for small and medium installations), serviceability
is a concern. Each device should lend itself to repair or servicing. A smaller
scale installation may also force the choice of more expensive hardware in
terms of dual-redundant fans, power supplies, and so on. The reason is that,
if there is a failure, there simply won't be many back-off devices available for
the Swift ring to choose from.

see more please visit: https://homeofpdf.com

Chapter 8

[109]

• Manageability: As previously discussed, servers come in all different flavors
when it comes to hardware management and associated software. You
should choose servers with management features that match your overall
IT strategy.

The vendor selection strategy
If you really want to be like a web giant, you should buy hardware from ODMs and
other commodity hardware manufacturers (either directly or through a systems
integrator). However, in reality, the decision is not that simple. The questions you
need to ask yourself are as follows:

Question "Yes" for all
questions

"No" for
even one
question

Can you specify the configuration of each server, taking
performance, durability, availability, serviceability, and
manageability into account (versus needing vendor sales
engineers to help)?

You are
ready for
commodity
hardware!

You should
stick to
branded
hardware

Can you self-support? That is, if you get a call at 2:00
a.m., are you prepared to root-cause what happened as
opposed to calling the vendor?
Are you prepared to accept less sophisticated warranty,
lead times, end-of-life policies, and other terms?
Can you live with minimal vendor-provided hardware
management capabilities and software?

Branded hardware
If you choose branded hardware, the process is fairly simple and involves issuing
RFQs to your favorite server manufacturers, such as HP, Dell, IBM, and FTS,
to networking manufacturers such as Cisco, Juniper, and Arista, and to JBOD
manufacturers such as Seagate, DotHill, and Violin. You can then make the selection
based on all the responses.

Commodity hardware
If you go this route, there are numerous manufacturers to consider—Taiwanese
ODMs and other storage hardware specialists such as Xyratex and Sanmina. Perhaps
the most interesting option to look at is an open source hardware movement called
the Open Compute Platform (OCP).

see more please visit: https://homeofpdf.com

Choosing the Right Hardware

[110]

According to their website at http://www.opencompute.org, OCP's mission is to
design and enable the delivery of the most efficient server, storage, and data center
hardware designs for scalable computing. All of OCP's work is open source. A
number of manufacturers sell OCP-compliant hardware, and this compliance makes
it somewhat simpler for users to choose consistent hardware across manufacturers.

The OCP Intel motherboard hardware version 2.0, for example, supports two CPUs,
four channels of DDR3 memory per CPU, a mini-SAS port for potential JBOD
expansion, 1 GB per second network I/O, and a number of hardware management
features. It can also accept a PCIe mezzanine NIC card for a 10 GB per second
network I/O. This server can be suitable for both the proxy and storage server (with
different items populated).

The OCP OpenVault JBOD, which is another example, is a 2U chassis that can hold
up to 30 drives. This makes it a suitable companion for dense storage servers.

Summary
In this chapter, we looked at the complex process of selecting hardware for an
OpenStack Swift installation and the various trade-offs that can be made. In the next
chapter, we will look at how to benchmark and tune our Swift cluster.

see more please visit: https://homeofpdf.com

Chapter 9

[111]

Tuning Your Swift Installation
OpenStack Swift's tremendous flexibility means that it has a very large number of
tuning options. Therefore, users using Swift as a private cloud will need to tune their
installation to optimize performance, durability, and availability for their unique
workload. This chapter walks you through a performance benchmarking tool and
the basic mechanisms available for tuning your Swift cluster.

Performance benchmarking
There are several tools that can be used to benchmark the performance of your
Swift cluster against a specific workload. COSBench, ssbench, and swift-bench
are the most popular tools available. This chapter discusses COSBench, given its
completeness and the availability of graphical user interfaces with it.

see more please visit: https://homeofpdf.com

Tuning Your Swift Installation

[112]

COSBench is an open source distributed performance benchmarking tool for
object storage systems. It has been developed and maintained by Intel. COSBench
supports a variety of object storage systems, including OpenStack Swift. The physical
configuration of COSBench is shown in the following diagram:

Web Console

COSBench
Controller

COSBench DriverCOSBench Driver

Swift Cluster to
be Benchmarked

...

Storage
Server

Storage
Server

Zone

.

.

.

Storage
Server

Storage
Server

Zone

.

.

.

Storage
Server

Storage
Server

Zone

.

.

.

...Proxy Server Proxy Server

The key components of COSBench are as follows:

• Driver (also referred to as the COSBench driver or load generator):
 ° Responsible for workload generation, issuing operations to target

cloud object storage, and collecting performance statistics
 ° In our test environment, the drivers were accessed via

http://10.27.128.14:18088/driver/index.html and
http://10.27.128.15:18088/driver/index.html

• Controller (also referred to as the COSBench controller):

 ° Responsible for coordinating drivers to collectively execute a
workload, collecting and aggregating runtime status and benchmark
results from driver instances, and accepting workload submissions

 ° In our environment, the controller was accessed via
http://10.27.128.14:19088/controller/index.html

see more please visit: https://homeofpdf.com

Chapter 9

[113]

A critical thing to keep in mind as we start with COSBench is to ensure that
the driver and controller machines do not inadvertently become performance
bottlenecks. These nodes need to have adequate resources.

Next, the benchmark parameters are tied closely to your use case, and they need to
be set accordingly. Chapter 10, Additional Resources, explores use cases in more detail,
but a couple of benchmark-related examples are described here:

• Audio file sharing and collaboration: This is a use case where data is
accessed often after being initially written. This is where you may want to set
the ratio of read requests to write requests as relatively high, for example, 80
percent. The access rate for containers and objects may be relatively small (in
tens of requests per second) with rather large objects (say, a size of hundreds
of MB or larger per object).

• Document archiving: This is a somewhat cold data use case, where you
may want to set a relatively low read-request-to-write-request ratio, for
example, 5 percent. The access rate for containers and objects may be high (in
hundreds of requests per second) with medium-size objects (say, a size of 5
MB per object).

Keep these use cases in mind as we proceed.

In our test setup, COSBench was installed on an Ubuntu 12.04.1 LTS operating
system. The system also had JRE 1.6, unzip, cvstool, and cURL 7.22.0 installed
prior to installing COSBench version 0.3.3.0 (https://github.com/intel-cloud/
cosbench/releases/tag/0.3.3.0).

TCP ports 19088 on the controller and 18088 on the driver machines need to be free
and accessible nonlocally. The installation is very simple; use the following easy
steps:

cd ~

unzip 2.1.0.GA.zip

ln -s 2.1.0.GA/ cos

cd cos

chmod +x *.sh

see more please visit: https://homeofpdf.com

Tuning Your Swift Installation

[114]

More details on the installation and validation that the software has been installed
correctly can be obtained from the COSBench user guide located at https://
github.com/intel-cloud/cosbench. With the installation of COSBench, the user
gets access to a number of scripts. Some of these scripts are as follows:

• start-all.sh and stop-all.sh: Used to start and stop both the controller
and the driver on the current node

• start-controller.sh and stop-controller.sh: Used to start and stop
only the controller on the current node

• start-driver.sh and stop-driver.sh: Used to start and stop only the
driver on the current node

• cosbench-start.sh and cosbench-stop.sh: These are internal scripts
called by the preceding scripts

• cli.sh: Used to manipulate workload through the command line

The controller can be configured using the conf/controller.conf file (in the cos
directory), and the driver can be configured using the conf/driver.conf file.

Drivers can be started on all driver nodes using the start-driver.sh script, while
the controller can be started on the controller node using the start-controller.sh
script.

Next, we need to create workloads. A workload can be considered one complete
benchmark test. A workload consists of workstages. Each workstage consists of
work items. Finally, work items consist of operations. A workload can have more
than one workstage that is executed sequentially. A workstage can have more than
one work item that is executed in parallel, as shown in the following diagram:

Workload

Workstage

Workstage

Workstage

Workitem

Workitem

Workitem

Operation

Operation

Operation

.

.

.

Workload composition

There is one normal type (main) and four special types (init, prepare, cleanup, and
dispose) of work. The main type is where we will spend the rest of this discussion;
the key parameters for this phase are as follows:

see more please visit: https://homeofpdf.com

Chapter 9

[115]

• The workers type is used to specify the number of workers used to conduct
work in parallel, and thus control the load generated

• The runtime parameter (plus rampup and rampdown), totalOps, and
totalBytes are used to control other parameters of the load generated,
including how to start and end the work

The main phase has the read, write, and delete operations. You will typically want
to specify the number of containers and objects to be written and the object sizes.
Numbers and sizes are specified as expressions, and a variety of options, such as
constant, uniform, and sequential, are available.

The workload is specified as an XML file. We will now create a workload that is
fashioned after the document archiving use case discussed earlier. It uses a workload
ratio of 95 percent writes and 5 percent reads. The drivers will spawn 128 workers
for a duration of one hour. The object size is static at 5 MB, and 100 containers will be
created. The workload is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<workload name="VEDAMS-UAT-V1-128W-5MB-Baseline"
description="VEDAMS UAT workload configuration">
<auth type="swauth" config=" ;password=xxxx;url= >username=8016-
2588:vedams-user@evault.com https://auth.vedams.com/v1.0"/
<storage type="swift" config=""/>
 <workflow>
 <workstage name="init" closuredelay="0">
 <work name="init" type="init" workers="16" interval="20"
 division="container" runtime="0" rampup="0" rampdown="0"
 totalOps="1" totalBytes="0" config="containers=r(1,32)">
 <operation type="init" ratio="100" division="container"
 config="objects=r(0,0);sizes=c(0)B;containers=r(1,32)"
 id="none"/>
 </work>
 </workstage>
 <workstage name="prepare" closuredelay="0">
 <work name="prepare" type="prepare" workers="16"
 interval="20"
 division="object" runtime="0" rampup="0" rampdown="0"
 totalOps="1" totalBytes="0"
 config="containers=r(1,32);objects=r(1,50);
 sizes=u(5,5)MB">
 <operation type="prepare" ratio="100" division="object"
 config="createContainer=false;containers=r(1,32);
 objects=r(1,50);sizes=u(5,5)MB" id="none"/>
 </work>
 </workstage>

see more please visit: https://homeofpdf.com

Tuning Your Swift Installation

[116]

 <workstage name="normal" closuredelay="0">
 <work name="normal" type="normal" workers="128"
 interval="20"
 division="none" runtime="300" rampup="100" rampdown="0"
 totalOps="0" totalBytes="0">
 <operation type="read" ratio="5" division="none"
 config="containers=u(1,32);objects=u(1,50);" id="none"/>
 <operation type="write" ratio="95" division="none"
 config="containers=u(1,32);objects=u(51,100);
 sizes=u(5,5)MB"
 id="none"/>
 </work>
 </workstage>
 <workstage name="cleanup" closuredelay="0">
 <work name="cleanup" type="cleanup" workers="16"
 interval="20"
 division="object" runtime="0" rampup="0" rampdown="0"
 totalOps="1" totalBytes="0"
 config="containers=r(1,32);objects=r(1,100);">
<operation type="cleanup" ratio="100" division="object"
 config="deleteContainer=false;containers=r(1,32);
 objects=r(1,100);" id="none"/>
 </work>
 </workstage>
 <workstage name="dispose" closuredelay="0">
 <work name="dispose" type="dispose" workers="16"
 interval="20"
 division="container" runtime="0" rampup="0" rampdown="0"
 totalOps="1" totalBytes="0" config="containers=r(1,32);">
 <operation type="dispose" ratio="100"
 division="container"
 config="objects=r(0,0);sizes=c(0)B;containers=r(1,32);"
 id="none"/>
 </work>
 </workstage>
 </workflow>
</workload>

The result of this workload is a series of reported metrics: throughput as measured
by operations per second, response time measured by the average duration between
operation start and end, bandwidth as measured by MB per second, success ratio
(percentage successful), and other metrics. A sample COSBench report is shown in
the following screenshot:

see more please visit: https://homeofpdf.com

Chapter 9

[117]

A sample of the performance result

If the Swift cluster under test stands up to your workload, you are done. You may
want to perform some basic tuning, but this is optional. However, if the Swift cluster
is unable to cope with your workload, you need to perform tuning.

The first step is to identify bottlenecks. See Chapter 6, Monitoring and Managing
Swift, for tools used to find performance bottlenecks. Nagios or Swift Recon may
be particularly well suited to this. Of course, simple tools such as top may be used
as well. Once you isolate the bottleneck from a particular server (or servers) and the
underlying components such as CPU performance, memory, I/O, disk bandwidth,
and response times, you can move to the next step, which is tuning.

Hardware tuning
Chapter 8, Choosing the Right Hardware, discusses the hardware considerations in great
detail. It is sufficient to say that choosing the right hardware can have a huge impact
on your performance, durability, availability, and cost.

Software tuning
In Chapter 2, OpenStack Swift Architecture, we talked about Swift using two types of
software modules—data path (referred to as WSGI servers in Swift documentation)
and post-processing (referred to as background daemons). In addition, there is the
ring. All three merit different considerations in terms of software tuning. Also, we
will briefly look at some additional tuning considerations.

Ring considerations
The number of partitions in a ring affects performance, and it needs to be chosen
carefully because it cannot be changed easily. Swift documentation recommends
a minimum of 100 partitions per drive to ensure even distribution across servers.

see more please visit: https://homeofpdf.com

Tuning Your Swift Installation

[118]

Taking the maximum anticipated number of drives multiplied by 100 and then
rounded off to the nearest power of 2 provides the minimum number of total
partitions. Using a number higher than needed will mean extremely uniform
distribution, but at the cost of performance, since more partitions put a higher
burden on replicators and other post-processing jobs. Therefore, users should not
overestimate the ultimate size of the cluster.

For example, let's assume that we expect our cluster to have a maximum of 1,000
nodes, each with 60 disks. This gives us 60 x 1,000 x 100 = 6,000,000 partitions.
Rounded off to the nearest power of two, we get 2^23 = 8,388,608. The value that will
be used to create the ring will therefore be 23. We did not discuss disk size in this
computation, but note that a cluster with smaller/faster disks (for example, a 2 TB
SAS drive) will perform better than a cluster with larger/slower disks (for example,
a 6 TB SATA drive) with the same number of partitions.

Data path software tuning
The key data path software modules are proxy, account, container, and object
servers. There are literally dozens of tuning parameters, but the four most important
parameters in terms of performance impact are as follows:

Parameter Proxy server Storage server

workers (auto by
default)

Each worker can handle max_clients number of
simultaneous requests. Ideally, more workers means more
requests can be handled without being blocked. However, there
is an upper limit dictated by the CPU. Start by setting workers
as 2 multiplied by the number of cores. If the storage server
includes account, container, and object servers, you may have
to perform some experiments.

max_clients (1024 by
default)

Since we want the
most effective use of
network capacity, we
want a large number of
simultaneous requests.
You probably won't
need to change the
default setting.

In data published by Red Hat,
filesystem calls were found to block
an entire worker. This means that a
very large setting for max_clients
is not useful. Experiment with this
parameter, and don't be afraid to
reduce this number all the way
down to match threads_per_
disk or even to 1.

see more please visit: https://homeofpdf.com

Chapter 9

[119]

Parameter Proxy server Storage server

object_chunk_size
(64 KB by default)

Given that this data
is flowing over an
internal Swift network,
a larger setting may be
more efficient. Red Hat
found 2 MB to be more
efficient than the default
size when using a 10 GB
per second network.

N/A

threads_per_disk (0
by default)

N/A This parameter defines the size of
the per-disk thread pool. A default
value of 0 means a per-disk thread
pool will not be used. In general, the
Swift documentation recommends
keeping this small to avoid large
queue depths, which result in high
read latencies. Try starting with
four threads per disk.

Post-processing software tuning
The impact of tuning post-processing software is very different from data path
software. The focus is not so much on servicing API requests but rather on reliability,
performance, and consistency.

Increasing the rate of operations for replicators and auditors makes the system more
durable, since this reduces the time required to find and fix faults, but at the expense
of increased server load. Also, increasing the auditor rate reduces consistency
windows by putting a higher server load. The following are the parameters to
consider:

• Concurrency: Swift documentation (http://docs.openstack.org/
developer/swift/deployment_guide.html) recommends setting
the concurrency of most post-processing jobs at 1, except for replicators,
where they recommend 2. If you need a higher level of durability, consider
increasing this number. Again, durability is measured by 1–P (object loss in
a year), where the object size is typically 1 KB.

• Interval: Unless you want to reduce the load on servers, increase reliability,
or reduce consistency windows, you will probably want to stick to the
default value.

see more please visit: https://homeofpdf.com

Tuning Your Swift Installation

[120]

Considering post-processing softwares, the object auditor is the most expensive
background job. The following parameters are also worth tuning:

• bytes_per_second: This defines the maximum number of bytes audited
per second (0 means unlimited). The default is set to 10,000,000 bytes. As
per other parameters, this should be increased for higher durability but
reduced for busy clusters where you do not want the auditor to kill your
I/O performance.

• files_per_second: This defines the maximum number of files audited per
second (0 means unlimited). The default is set to 20 files, which means that
Swift assumes that your files are 500 KB on an average. If you change
bytes_per_second or if your average file size is different, it may be worth
tuning this parameter.

• disk_chunk_size: This defines the size of chunks read during auditing. It
is set to 65,536 by default. Increasing this number will reduce the total CPU
load at the expense of larger reads.

Additional tuning parameters
A number of additional tuning parameters are available for the user. The important
parameters are listed here:

• Memcached: A number of Swift services rely on memcached for caching
lookups, since Swift does not cache any object data. While memcached can be
run on any server, it should be turned on for all proxy servers. If memcached
is turned on, ensure that adequate RAM and CPU resources are available.

• System time: Given that Swift is a distributed system, the timestamp of an
object is used for a number of reasons. Therefore, it is important to ensure
that time is consistent between servers. Services such as NTP must be used
for this purpose.

• Filesystem: Swift is filesystem agnostic; however, XFS is the one tested by
the Swift community. It is important to keep a high inode size, 1024 for
example, to ensure that the default and some additional metadata can be
stored efficiently. Other parameters should be set as described in Chapter 3,
Installing OpenStack Swift.

see more please visit: https://homeofpdf.com

Chapter 9

[121]

• Operating system: General operating system tuning is beyond the scope
of this book. However, the Swift documentation suggests disabling TIME_
WAIT and syn cookies and doubling the amount of conntrack allowed in
sysctl.conf. Since the OS is usually installed on a disk that is not part of the
storage drives, you may want to consider a small SSD to get short boot times.

• Network stack: Network stack tuning is also beyond the scope of this book.
However, there may be some obvious tuning, for example, enabling jumbo
frames for the internal storage cluster network. Jumbo frames may also be
enabled on the client-facing or replication network if this traffic is over the
LAN (in the case of private clouds).

• Logging: Unless custom log handlers are used, Swift logs directly to syslog.
Swift generates a large amount of log data, and so managing logs correctly is
extremely important. Setting logs appropriately can impact both performance
and your ability to diagnose problems. You may want to consider high
performance variants such as rsyslog (http://www.rsyslog.com/) or
syslog-ng (http://www.balabit.com/network-security/syslog-ng/
opensource-logging-system).

Summary
In this chapter, we reviewed how to benchmark a Swift cluster and tune it for a
specific use case for private cloud users. The next, and final, chapter covers use cases
that are appropriate for OpenStack Swift and additional resources.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

[123]

Additional Resources
Having acquired the know-how on building, managing, and tuning OpenStack
clusters by reading the preceding chapters, you are now ready to join the global elite
group of OpenStack Swift experts and take your career to the next level. Let's now
explore a few use cases of OpenStack Swift and get pointers to useful resources.

Use cases
There are five major use cases for OpenStack Swift:

• Archival
• Backup
• Content repository
• Collaboration
• Data lakes

The first three use cases cut capital and operational costs, while the last two use cases
improve the business outcome.

see more please visit: https://homeofpdf.com

Additional Resources

[124]

Archival
The default answer for archival has been tapes. However, the availability of data on
tapes is poor, from minutes to days. For data that needs to be made available to users
instantly, Swift is a great archival solution. With the right hardware choice, the cost
of a Swift cluster can be substantially lower than block or file storage, and yet the
data can be made available at any given time.

Swift also provides greater durability through background data integrity checks.
Over time, more and more archival tools are interfacing directly with REST APIs
such as Swift. These tools can scan data on primary storage and, based on policies,
move them to Swift. Sophisticated archival tools can leave stubs as well so that users
get a seamless experience.

Backup
Large backup users find that a full backup is difficult to complete in a meaningful
window of time with tapes. Users find themselves adding more libraries with more
drives just to get performance, which becomes expensive. Furthermore, it is not
possible to dedupe data on tapes. Finally, it is not possible to ensure durability of
data on tapes. For these reasons, backup users are increasingly looking at object
storage such as in Swift, where costs, performance, durability, and dedupe can all be
optimized to the users' needs.

Content repository
Object storage as a content repository was an early use case of Amazon S3, where
S3 was used to serve web and streaming content. Swift can serve this very purpose
for on-premise cloud storage. Any file type can be stored on Swift, and web
applications can serve content from Swift given the easy-to-use REST APIs. With
middleware such as the Swift origin server and the static web server described in
Chapter 2, OpenStack Swift Architecture, this operation becomes even easier. Swift
is less expensive than traditional file or block storage. It is also more scalable and
compatible with web applications.

see more please visit: https://homeofpdf.com

Chapter 10

[125]

Collaboration
Network-attached storage (NAS) has traditionally been used to share data.
However, NAS is difficult to use with a large number of users, especially if they are
spread out geographically. If there are users outside the organization, it becomes
even more difficult to use NAS to share data. All of these problems are solved with
Swift. Swift scales elegantly to handle a large number of users. Supporting users
around the world is not a problem, even if they are outside the organization. The
collaboration use case helps bring products to the market faster, as opposed to the
first three where cost savings are the main benefit.

Data lakes
Data lakes are another emerging use case, where a large amount of data can be
stored in Swift for analytics purposes and a Hadoop cluster can run jobs against this
data. Imagine a hospital storing medical images in a data lake. Now the hospital can
run analytics against this data, for example, correlating all images of a certain type.

Operating systems used for OpenStack
implementations
OpenStack supports a variety of operating systems, and we have compiled
a table listing the operating systems used in some OpenStack implementations.

see more please visit: https://homeofpdf.com

Additional Resources

[126]

The following table provides information on organizations using these operating
systems in their implementations:

Operating
system

Implementation/
organization

Links

Ubuntu NeCTAR, MercadoLibre,
Intel, Opscode. Liveperson,
NTT, NEC, Time Warner
Cable, and Telekom
Deutschelands

• https://www.openstack.org/
user-stories/nectar/

• https://www.openstack.org/
user-stories/mercadolibre/

• https://www.openstack.org/
summit/openstack-summit-hong-
kong-2013/session-videos/
presentation/openstack-
deployment-with-chef-workshop

• https://www.openstack.org/
summit/openstack-summit-hong-
kong-2013/session-videos/
presentation/is-open-source-
good-enough-a-deep-study-of-
swift-and-ceph-performance

• https://www.openstack.org/
summit/openstack-summit-hong-
kong-2013/session-videos/
presentation/liveperson-
openstack-case-study-from-0-
to-100-in-1-year

• https://www.openstack.org/
summit/openstack-summit-
atlanta-2014/session-videos/
presentation/canonical-keynote

Red Hat CERN • https://www.openstack.org/
user-stories/cern/

CentOS Workday • https://www.openstack.org/
summit/openstack-summit-hong-
kong-2013/session-videos/
presentation/workday-on-
openstack

HP Cloud
OS

HP • https://www.openstack.org/
summit/openstack-summit-hong-
kong-2013/session-videos/
presentation/is-open-source-
good-enough-a-deep-study-of-
swift-and-ceph-performance

see more please visit: https://homeofpdf.com

Chapter 10

[127]

Virtualization used for OpenStack
implementations
OpenStack services can be installed on virtual machines created using ESX, KVM,
Hyper-V, and so on. The following table lists the virtualization technology used in a
few implementations:

Virtualization Implementation/
organization

Links

KVM eNovance,
Workday, CERN,
Canonical ,
Metacloud Inc.
(Cisco), Nuage
Network,
Numergy, and
eBay

• https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/ceph-the-
de-facto-storage-backend-for-openstack

• https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/workday-on-
openstack

• https://www.openstack.org/user-stories/
cern/

• https://www.openstack.org/summit/
openstack-summit-atlanta-2014/session-
videos/presentation/canonical-keynote.

• https://www.openstack.org/summit/
openstack-paris-summit-2014/session-
videos/presentation/under-the-hood-
with-nova-libvirt-and-kvm-part-two

• https://www.openstack.org/summit/
openstack-paris-summit-2014/session-
videos/presentation/sponsor-demo-
theater-nuage-networks-deployable-
neutron-networking

• https://www.openstack.org/summit/
openstack-paris-summit-2014/session-
videos/presentation/hybrid-your-cloud-
with-numergy-and-nuage

• https://www.openstack.org/summit/
openstack-paris-summit-2014/session-
videos/presentation/seamless-migration-
from-nova-network-to-neutron-in-ebay-
production

see more please visit: https://homeofpdf.com

Additional Resources

[128]

Virtualization Implementation/
organization

Links

VMware,
VMware NSX

VMWare,
Canonical, SUSE,
and Red Hat

• https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/hands-on-
with-openstack-vsphere

• https://www.openstack.org/summit/
openstack-summit-atlanta-2014/session-
videos/presentation/vmware-openstack-
accelerating-openstack-in-the-
enterprise

Provisioning and distribution tools
The most common provisioning and deployment tools used to deploy OpenStack
are Puppet, Chef, Ansible, Saltstack, and Juju. This table lists the tools and some
OpenStack installations that they are used in:

Provisioning/
deployment

Implementation/
organization

Links

Puppet CERN, NeCTAR,
Kickstart,
Cisco Webex,
Liveperson,
Expedia, Intel,
and Comcast

• https://www.openstack.org/user-
stories/cern/

• https://www.openstack.org/user-
stories/nectar/

• https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/kickstack-
rapid-openstack-deployment-with-puppet

• https://www.openstack.org/user-
stories/cisco-webex/

• http://www.openstack.org/user-stories/
liveperson/

• https://www.openstack.org/summit/
openstack-paris-summit-2014/session-
videos/presentation/openstack-in-a-
hybrid-world

• https://www.openstack.org/summit/
openstack-paris-summit-2014/session-
videos/presentation/what-should-we-
take-into-consideration-to-build-a-
production-openstack-cloud

• https://www.openstack.org/summit/
openstack-paris-summit-2014/session-
videos/presentation/ci-cd-in-practice-
real-world-deployment-and-management

see more please visit: https://homeofpdf.com

Chapter 10

[129]

Provisioning/
deployment

Implementation/
organization

Links

Chef Workday,
Opscode,
MercadoLibre,
and Red Hat

• https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/workday-
on-openstack

• https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/openstack-
deployment-with-chef-workshop

• https://www.openstack.org/user-
stories/mercadolibre/

• https://www.openstack.org/summit/
openstack-summit-atlanta-2014/session-
videos/presentation/demo-theater-
inktank-ceph-update-erasure-coding-
and-tiering

Juju VMWare, AMD,
Microsoft,
Juniper, NEC,
HPCC systems,
HP, NTT,
MongoDB, Joyent,
Cisco, TeleStax,
Ericsson, and IBM

• https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/vmware-
and-openstack-bridging-the-divide-
using-ubuntu-and-juju

• https://www.openstack.org/summit/
openstack-summit-atlanta-2014/session-
videos/presentation/canonical-keynote

Compass Huawei • https://www.openstack.org/summit/
openstack-summit-hong-kong-2013/
session-videos/presentation/
compass-yet-another-openstack-
deployment-system

see more please visit: https://homeofpdf.com

Additional Resources

[130]

Monitoring and graphing tools
The following table lists tools that can be used in addition to OpenStack Swift to
enable monitoring (some of them are mentioned in earlier chapters too):

Monitoring
tool

Download link Organization
implementations

Groundwork http://sourceforge.net/projects/
gwmos/

NeCTAR: http://www.
openstack.org/user-
stories/nectar/

Ganglia:
graphing tool

http://sourceforge.net/apps/trac/
ganglia/wiki/ganglia_quick_start

CERN: https://
www.youtube.com/
watch?v=jRkTVh27XBQ

Graphite https://github.com/etsy/statsd/
blob/master/docs/graphite.md

Rackspace: https://www.
openstack.org/summit/
openstack-summit-
hong-kong-2013/
session-videos/
presentation/an-
intimate-look-at-
running-openstack-
swift-at-scale

Zabbix http://www.patlathem.com/zabbix-
beginners-guide-installing-
and-configuring-the-monitoring-
server/

Nagios http://www.nagios.org/download Red Hat, Mirantis, and Dell
crowbar

Additional information
These links provide additional information on OpenStack Swift:

• http://swift.openstack.org

• https://github.com/openstack/swift

The following blog provides more up-to-date information on the topics discussed in
this chapter. It also provides more updated user stories, OpenStack implementations
by customers, deployment tools, monitoring and graphing tools, and more
information related to OpenStack implementations:

• http://www.vedams.com/blog/

see more please visit: https://homeofpdf.com

Chapter 10

[131]

Additional support, including mailing lists, is available at the following links,
and users have the ability to review previously answered questions or post new
questions to the community via a launch pad:

• http://www.openstack.org/community/

• http://www.openstack.org/blog/

• http://webchat.freenode.net/

• https://swiftstack.com/blog/

• https://launchpad.net/swift

• https://www.mail-archive.com/openstack@lists.openstack.org/

Summary
As we can see from our discussion in this chapter, OpenStack Swift is relevant to
every user segment, from the individual consumer to the large service provider,
for a large variety of use cases.

At this point, we hope you have a good idea of what cloud storage is and how
OpenStack can be used to create cloud storage. We also hope you are confident in
terms of how to install, manage, and use OpenStack Swift, including some finer
points such as hardware selection and performance tuning. It is now time to get
involved with the OpenStack Swift community as a user, contributor, or evangelist.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

[133]

Swift CLI Commands
This appendix provides details on the set of commands that can be run from a Swift
CLI session. These commands can be used to perform CRUD operations.

Commands
The commands that can be run from the Swift CLI are list, stat, post, upload,
download, and delete. Each command has a detailed help menu, which can be
displayed by running the swift <command> –h command, for example,
swift list -h.

list
The list command is used to list the containers for an account or the objects
for a container. The following code shows the usage of the list command along
with arguments:

swift list <container>

 -A Auth_URL

 –U User –K Key

 --os-username=<auth-user-name>

 --os-password=<auth-password>

 --os-tenant-id=<auth-tenant-id>

 --os-tenant-name=<auth-tenant-name>

 --os-auth-url=<auth-url>

 --os-auth-token=<auth-token>

 --os-storage-url=<storage-url>

see more please visit: https://homeofpdf.com

Swift CLI Commands

[134]

 --os-region-name=<region-name>

 --os-service-type=<service-type>

 --os-endpoint-type=<endpoint-type>

 --prefix=PREFIX

 --os-cacert=<ca-certificate>

 --insecure --no-ssl-compression

 --long --totals

 --delimiter=DELIMITER

Examples
You can list containers with size information using these commands:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
list --lh

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
list –-long

You can list the objects within a container using the following command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
list con1

You can list containers with size information and a prefix of con1 using this
command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
list --lh --prefix con1

stat
The stat command is used to display information about an account, a container,
or an object. The following code shows the usage of the stat command along with
arguments:

swift stat <container> <object>

 -A Auth_URL –U User –K Key

 --os-username=<auth-user-name>

 --os-password=<auth-password>

 --os-tenant-id=<auth-tenant-id>

see more please visit: https://homeofpdf.com

Appendix

[135]

 --os-tenant-name=<auth-tenant-name>

 --os-auth-url=<auth-url>

 --os-auth-token=<auth-token>

 --os-storage-url=<storage-url>

 --os-region-name=<region-name>

 --os-service-type=<service-type>

 --os-endpoint-type=<endpoint-type>

 --os-cacert=<ca-certificate> --insecure --no-ssl-compression --lh

Examples
You can display the metadata of the account using this command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
stat

You can display the metadata of the container2 container using the following
command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
stat container2

You can display the metadata of the key.txt object in the container3 container
using this command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
stat container3 key.txt

Finally, you can display the metadata of the account in the regionOne region in
long format with totals, using the following command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
stat --lh --os-region-name=regionOne

post
The post command is used to update metadata information about the account,
container, or object. The following code shows the usage of the post command
along with arguments:

swift post <container> <object>

 --read-acl <acl>

 --write-acl <acl>

see more please visit: https://homeofpdf.com

Swift CLI Commands

[136]

 --meta <name:value>

 --header <header>

 -A Auth_URL –U User –K Key

 --os-username=<auth-user-name>

 --os-password=<auth-password>

 --os-tenant-id=<auth-tenant-id>

 --os-tenant-name=<auth-tenant-name>

 --os-auth-url=<auth-url>

 --os-auth-token=<auth-token>

 --os-storage-url=<storage-url>

 --os-region-name=<region-name>

 --os-service-type=<service-type>

 --os-endpoint-type=<endpoint-type>

 --os-cacert=<ca-certificate>

 --insecure --no-ssl-compression

 --read-acl=READ_ACL

 --write-acl=WRITE_ACL

 --sync-to=SYNC_TO

 --sync-key=SYNC_KEY

 --meta=META

Examples
You can update the read-acl option for the container1 container using this
command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
post container1 --read-acl=account1

You can add the Size:Large and Color:Blue metadata to the container2 container
using the following command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
post container2 -m Size:Large -m Color:Blue

You can update the content-type header as text/plain for the container3
container using this command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
post container3 -H "content-type:text/plain"

see more please visit: https://homeofpdf.com

Appendix

[137]

You can update the read-acl metadata of the container1 container by accessing
the Swift cluster through the regionOne region, using the following command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
post container4 --read-acl=account1 --os-region-name=regionOne

Finally, you can update the storage policy to regular for container5 using
this command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
post container5 –H "X-Storage-Policy: regular"

upload
The upload command is used to upload the specified files and directories to the
given container. The following code shows the usage of the upload command along
with arguments:

swift upload <container> <file_or_directory>

 --changed --segment-size <size>

 --segment-container <container>

 --leave-segments --header <header>

 -A Auth_URL –U User –K Key

 --os-username=<auth-user-name>

 --os-password=<auth-password>

 --os-tenant-id=<auth-tenant-id>

 --os-tenant-name=<auth-tenant-name>

 --os-auth-url=<auth-url>

 --os-auth-token=<auth-token>

 --os-storage-url=<storage-url>

 --os-region-name=<region-name>

 --os-service-type=<service-type>

 --os-endpoint-type=<endpoint-type>

 --os-cacert=<ca-certificate>

 --insecure --no-ssl-compression –changed

 --skip-identical --segment-size=SEGMENT_SIZE

 --segment-container=SEGMENT_CONTAINER

 --object-threads=OBJECT_THREADS

 --segment-threads=SEGMENT_THREADS

 --header=HEADER --use-slo --object-name=OBJECT_NAME

see more please visit: https://homeofpdf.com

Swift CLI Commands

[138]

Examples
You can upload the key.txt object to the container1 container using the following
command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
upload container1 key.txt

You can upload multiple objects (key1.txt, key2.txt, and key3.txt) to the
container1 container using this command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
upload container1 key1.txt key2.txt key3.txt

Upload the key.txt object to the container2 container, using a segment size
(segment-size) of 100 bytes. Swift has an object size limit of 5 GB by default. Larger
files can be uploaded using the segment-size option. The object will be stored as
multiple segments in the Swift object store.

In this example, each segment created will be of 100 bytes, and there will be several
such segments uploaded, based on the size of the object. The --changed option
is used to upload the file only if that file has changed from the time it was last
uploaded, like this:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
upload container2 key.txt --changed --segment-size=100

Upload the key.txt object to the container3 container using a segment size
(segment-size) of 100 bytes, by using the following command. The command also
explicitly specifies the seg_container3 segment folder, where the segments will be
uploaded:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
upload container3 key.txt --segment-size=100 --segment-
container=seg_container3

Upload the key.txt object to the container2 container using a segment size
(segment-size) of 100 bytes. The use-slo option is specified to create a static
large object instead of the default dynamic large object, as shown in the following
command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
upload container4 key.txt --segment-size=100 --use-slo --os-region-
name=regionOne

Upload the myfile.txt object to container5:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
upload container5 myfile.txt

see more please visit: https://homeofpdf.com

Appendix

[139]

download
The download command is used to download objects from containers. The following
code shows the usage of the download command along with arguments:

swift download <container> <object>

 --all --prefix <prefix> --output <out_file>

 -A Auth_URL –U User –K Key

 --os-username=<auth-user-name>

 --os-password=<auth-password>

 --os-tenant-id=<auth-tenant-id>

 --os-tenant-name=<auth-tenant-name>

 --os-auth-url=<auth-url>

 --os-auth-token=<auth-token>

 --os-storage-url=<storage-url>

 --os-region-name=<region-name>

 --os-service-type=<service-type>

 --os-endpoint-type=<endpoint-type>

 --os-cacert=<ca-certificate>

 --insecure --no-ssl-compression

 --marker=MARKER

 --object-threads=OBJECT_THREADS

 --container-threads=CONTAINER_THREADS --no-download

 --header=HEADER --skip-identical

Examples
Download all objects from all the containers using this command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
download --all

Download all objects with the key prefix from the container1 container using the
following command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
download container1 --prefix key

Download the key.txt object from the container1 container using this command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
download container1 key.txt

see more please visit: https://homeofpdf.com

Swift CLI Commands

[140]

Download all objects from all the containers by utilizing two threads for object
downloads, using the following command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
download --all --object-threads 2

delete
The delete command is used to delete a container or objects within a container.
The following code shows the usage of the delete command along with arguments:

swift delete <container> <object> --all –-leave_segments

 -A Auth_URL –U User –K Key

 --os-username=<auth-user-name>

 --os-password=<auth-password>

 --os-tenant-id=<auth-tenant-id>

 --os-tenant-name=<auth-tenant-name>

 --os-auth-url=<auth-url>

 --os-auth-token=<auth-token>

 --os-storage-url=<storage-url>

 --os-region-name=<region-name>

 --os-service-type=<service-type>

 --os-endpoint-type=<endpoint-type>

 --os-cacert=<ca-certificate> --insecure --no-ssl-compression

 --object-threads=OBJECT_THREADS

 --container-threads=CONTAINER_THREADS

Examples
Delete the key.txt object from the container1 container using this command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
delete container1 key.txt

Delete all objects from the container2 container, including the container, and leave
the segments as they are:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
delete container2 --leave-segments

see more please visit: https://homeofpdf.com

Appendix

[141]

Delete all objects and all containers using the following command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
delete --all

Delete all objects and all containers by utilizing two threads for deleting objects,
using this command:

swift -V 2.0 -A https://auth.vedams.com/v2.0 -U admin:user1 -K t1
delete --all --object-threads=2

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

[143]

Index
A
access control lists (ACL) 18
Amazon S3 API

compatibility 57, 58
S3 commands, using 59

Apache jclouds library
URL 60

architectural principles, OpenStack Swift
available and eventually consistent 11
heterogeneous 11
load spreading 10
loose coupling 10
masterless design 10
multi-tenancy layer 10
self-healing 10

B
background daemons 117
basic commands, for Docker user

about 92
storage container, setting up with

Docker image 94, 95
Swift proxy container, setting up with

Docker image 93, 94

C
capacity planning

about 84
drives, adding 84
storage and proxy servers, adding 85

CAP theorem
about 4

availability 4
consistency 4
tolerance to partial failures 4

client installation
cURL command 45
specialized REST API client 45
Swift client CLI 45

client libraries
Java 60
Python 61
Ruby 61
used, for accessing OpenStack Swift 60

cloud storage
about 1
elements 2
limitations 3

cloud storage, limitations
about 3
new APIs 4
performance 3, 4

containers
about 9
cURL, using 50
metadata, updating 52
objects, listing 50
Swift client CLI, using 49
using 49

COSBench tool
about 111
controller 112
driver 112
URL 113, 114

cross-origin resource sharing (CORS) 21
cURL command 45

see more please visit: https://homeofpdf.com

[144]

D
data path software servers

account server 14
container server 14
create operation 14, 15
delete operation 16
object server 14
proxy server 14
read operation 15
storage server 13
update operation 16

data path software tuning
max_clients parameter 118
object_chunk_size parameter 119
threads_per_disk parameter 119
workers parameter 118

delete command
about 140
examples 140, 141

Docker
about 89, 90
basic user commands 91
installation 91
OpenStack, using with 90
user, basic commands 91, 92

Dockerfile
used, for creating proxy container 96, 97
used, for creating storage container 97
used, for setting up Swift cluster 96

Docker image
used, for setting up storage container 94, 95
used, for setting up Swift proxy

container 93, 94
download command

about 139
examples 139, 140

E
elements, cloud storage

availability 3
data durability 3
elastic 2
multitenancy 3
on-demand 2

reduced total cost of ownership (TCO) 2
universal access 3
unlimited scalability 2

environment variables
about 52
container ACLs 54-56
OS_AUTH_URL 52
OS_PASSWORD 52
OS_TENANT_NAME 52
OS_USERNAME 52
pseudo-hierarchical directories 53

Extent file system (XFS) 13

F
failure management

about 81
drive failure, handling 82
drive failures, detecting 82
node failure, handling 83
region failure 84
zone failure 84

features, OpenStack Swift
cluster health 21
cross-origin resource sharing (CORS) 21
large object support 20
metadata 21
multirange support 21
server-side copies 21

H
Hadoop 8545 66
Hadoop cluster

setting up, with Sahara 66
hardware prerequisites

account servers 100
auth servers 100
container servers 100
firewall and security appliance 100
JBODs 100
load balancer / SSL acceleration 100
network switch (or switches) 99
on-premise cloud gateway 100
proxy server (or servers) 99
storage servers 99

see more please visit: https://homeofpdf.com

[145]

hardware, OpenStack Swift installation
planning 23, 24

HEAD method 21

I
inline middleware options

about 18
authentication 18
modules 19

J
Java Script Object Notation (JSON) 76
just a bunch of disks (JBOD) 12, 100

K
Keystone authentication

used, for creating token 46
Keystone service

about 32
installing 33-37
MariaDB, installing 32

L
LAN-on-motherboard (LOM) 101
large objects

transferring 56, 57
list command

about 133
examples 134

logical organization, objects
about 9
objects 9
pseudo-directories 10
tenant 9
users 10

M
metadata, containers

REST API, using 52
Swift client CLI, using 52
updating 52

metadata information, for account
displaying 47
displaying, with cURL 48
displaying, with specialized REST API

client 48, 49
displaying, with Swift client CLI 47

metadata information, for container
displaying 47
displaying, with cURL 48
displaying, with specialized REST API

client 49
displaying, with Swift client CLI 47

metadata information, for object
displaying 47
displaying, with cURL 48
displaying, with specialized REST API

client 48, 49
displaying, with Swift client CLI 47

migrations 85, 86
monitoring tools, OpenStack Swift

Ganglia 130
Graphite 130
Groundwork 130
Nagios 130
Zabbix 130

N
Nagios

URL 70
network-attached storage (NAS) 125
network configuration, OpenStack Swift

installation
about 24
Keystone service 32
multiregion support 39
proxy server node, setting up 31
public network 24
replication network 25
ring setup 37
storage network 25
storage server nodes, setting up 27

network interface card (NIC) 101
Network Time Protocol (NTP) 25
node failure

handling 83
proxy server failure 83

see more please visit: https://homeofpdf.com

[146]

O
objects, containers

about 9
cURL, using 51
listing 50
REST API, using 51
Swift client CLI, using 50

object storage
about 5
tasks 5
using 5, 6

Open Compute Platform (OCP)
about 109
URL 110

OpenStack Swift
about 7-9
accessing, with client libraries 60
accessing, with S3 commands 59, 60
architectural principles 10
architecture 10
capacity planning 84
configuration guide specifications 102
data path software servers 13, 14
downloading 26
failure management 81
features 20
functionality 7
hardware list 99
implementations, URL 130
implementing, operating systems

used 125, 126
inline middleware options 18
in Sahara 65
installing 23-27
issues 10
key architectural principles 10
migrations 85
physical data organization 11, 12
post-processing software components 16
provisioning and deployment

tools 128, 129
reference links 130
routine management 69
Tulsi 75
using, for virtual machine storage 63, 64

using, with Docker 90
using, with Sahara 66, 67

OpenStack Swift, functionalities
about 8
account container object structure 7
global cluster capability 7
large object support 8
Middleware architecture 8
open source 7
open standards 7
partial object retrieval 8
storage policies 8

OpenStack Swift implementations
operating systems, using 126, 127
virtualizations, using 127, 128

OpenStack Swift installation
about 23
finalizing 40
hardware planning 23
network configuration 24
pre-installation, steps 25
server setup 24
storage policies 40

operating systems, OpenStack Swift
implementations

CentOS 127
Debian 127
HP Cloud OS 126
Red Hat 126
Ubuntu 126

operations 114

P
partitions 12
performance benchmarking

about 111-116
audio file sharing and collaboration 113
COSBench tool 111
document archiving 113
examples 113
ssbench tool 111
swift-bench tool 111

performance-related sizing techniques
client-facing network 105
internal storage cluster 105
replication network 105

see more please visit: https://homeofpdf.com

[147]

physical data organization hierarchy,
OpenStack Swift

disk (devices) 12
region 11
storage servers 12
zone 11

plugins, Sahara
Cloudera 65
Hortonworks Data Platform 65
MapR 65
Spark 65
Vanilla 65

post command
about 135
examples 136

post-processing software components
account reaper process 17
auditors 17
container reconciler 18
container-to-container synchronization 17
drive audit process 17
object expirer process 17
replication 16
updaters 17

post-processing software tuning
bytes_per_second parameter 120
concurrency parameter 119
disk_chunk_size parameter 120
files_per_second parameter 120
interval 119

provisioning and deployment tools,
OpenStack Swift

Chef 129
Huawei 130
Juju 130
Puppet 128

proxy container
creating, with Dockerfile 96, 97

python-swiftclient library
URL 61

R
read affinity 15
ring 12
ring builder 12

routine management
about 69, 70
Swift cluster monitoring 70

rsyslog
URL 121
used, for logging 81

ruby-openstack library
URL 61

S
Sahara

architecture 65
Hadoop Cluster, setting up 66
job, running 67
Openstack Swift, using 66, 67

selection criteria, hardware
about 101-108
account and container server configuration,

selecting 104
additional networking equipment,

selecting 107
availability 108
cloud gateway, selecting 107
durability 108
heterogeneous hardware 107
manageability 109
network hardware, selecting 105
proxy server configuration,

selecting 104, 105
region and zone configuration,

determining 103
scale 101
server type ratios, selecting 106
serviceability 108
storage server configuration,

selecting 101-103
server design element configuration

CPU performance 100
Disk/JBOD 101
flash memory 100
hardware management 101
memory 100
network I/O 101

software tuning
about 117
data path software tuning 118, 119

see more please visit: https://homeofpdf.com

[148]

filesystem parameter 120
logging parameter 121
Memcached parameter 120
network stack parameter 121
operating system parameter 121
post-processing software tuning 119, 120
ring considerations 117, 118
system time parameter 120

stat command
about 134
examples 135

StatsD
about 73, 74
URL 73

storage container
creating, with Dockerfile 97
setting up, with Docker image 94, 95

Storage Container Object (SCO) 64
storage policies

about 40
applying 43, 44
implementing 41-43

storage server nodes
hard disks, formatting 29
hard disks, mounting 29
RSYNC 30, 31
RSYNCD 30, 31
services, installing 27
setting up 27
upgrading 85, 86

Swauth 46
Swift CLI commands

about 133
delete 140
download 139
list 133
post 135
stat 134
upload 137

Swift client CLI tool 45
Swift clusters

monitoring 70-74
setting up, with Dockerfile 96
StatsD 73, 74
Swift dispersion tool 73
Swift Informant 72

Swift metrics 74
Swift Recon 70, 71

swift-dispersion-report tool 21
Swift dispersion tool 73
Swiftfs 67
Swift Informant

about 72
URL 72

Swift proxy
container, setting up with Docker image 93
used, for authentication 67, 68

Swift Recon 70, 71
syslog-ng

URL 121

T
tapes 124
tenant 9
third-party middleware modules

bulk archive autoextraction 20
bulk delete 19
CNAME lookup 19
container and account quotas 19
domain remap 19
form post 20
health check 19
logging 19
profiler 20
rate limiting 19
Recon 20
static web 20
Swift origin server 20
TempURL 20

token
creating, with Keystone authentication 46

Tulsi
about 75, 76
anomaly detection 80
architecture 76
client module 76
deploying 76, 77
functions 75
package, downloading 76, 77
running 77-79
server module 76

see more please visit: https://homeofpdf.com

[149]

U
updaters 17
upload command

about 137
examples 138

use cases
about 123
archival 124
backup 124
collaboration 125
content repository 124
data lakes 125
OpenStack Swift 123

V
vendor selection strategy

about 109
branded hardware 109
commodity hardware 109, 110

virtual machine storage
OpenStack Swift, using 63, 64

W
wimpy servers 104
work items 114
workload 114
workstages 114
write affinity 15
WSGI servers 117

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Thank you for buying
OpenStack Object Storage

 (Swift) Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

see more please visit: https://homeofpdf.com

Learning OpenStack
Networking (Neutron)
ISBN: 978-1-78398-330-8 Paperback: 300 pages

Architect and build a network infrastructure for your
cloud using OpenStack Neutron networking

1. Build a virtual switching infrastructure for
virtual machines using the Open vSwitch or
Linux Bridge plugins.

2. Create networks and software routers that
connect virtual machines to the Internet using
built-in Linux networking features.

3. Scale your application using Neutron's load-
balancing-as-a-service feature using the
haproxy plugin.

OpenStack Cloud
Computing Cookbook
Second Edition
ISBN: 978-1-78216-758-7 Paperback: 396 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, Horizon,
Neutron, and Cinder

1. Learn how to build your Private Cloud
utilizing DevOps and Continuous Integration
tools and techniques.

2. Updated for OpenStack Grizzly.

3. Learn how to install, configure, and manage
all of the OpenStack core projects including
new topics like block storage and software
defined networking.

Please check www.PacktPub.com for information on our titles

see more please visit: https://homeofpdf.com

Implementing Cloud Storage with
OpenStack Swift
ISBN: 978-1-78216-805-8 Paperback: 140 pages

Design, implement, and successfully manage
your own cloud storage cluster using the popular
OpenStack Swift software

1. Learn about the fundamentals of cloud storage
using OpenStack Swift.

2. Explore how to install and manage OpenStack
Swift along with various hardware and
tuning options.

3. Perform data transfer and management using
REST APIs.

Citrix® XenDesktop® 7 Cookbook
ISBN: 978-1-78217-746-3 Paperback: 410 pages

Over 35 recipes to help you implement a fully
featured XenDesktop® 7 architecture with a rich
and powerful VDI experience

1. Implement the XenDesktop 7 architecture
and its satellite components.

2. Learn how to publish desktops and
applications to the end-user devices,
optimizing their performance and
increasing the general security.

3. Designed in a manner which will allow
you to progress gradually from one chapter to
another or to implement a single component
only referring to the specific topic.

Please check www.PacktPub.com for information on our titles

see more please visit: https://homeofpdf.com

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Cloud Storage – Why Can't I Be Like Google?
	What constitutes cloud storage?
	Reduced TCO
	Unlimited scalability
	Elastic
	On-demand
	Universal access
	Multitenancy
	Data durability and availability

	Limitations of cloud storage
	Performance
	New APIs

	Object storage
	The importance of being open
	OpenStack Swift
	Summary

	Chapter 2: OpenStack Swift Architecture
	Logical organization of objects
	Swift implementation and architecture
	Key architectural principles
	Physical data organization
	Data path software servers
	A day in the life of a create operation
	A day in the life of a read operation
	A day in the life of an update operation
	A day in the life of a delete operation

	Post-processing software components
	Replication
	Updaters
	Auditors
	Other processes

	Inline middleware options
	Authentication
	Other modules

	Additional features
	Large object support
	Metadata
	Multirange support
	CORS
	Server-side copies
	Cluster health

	Summary

	Chapter 3: Installing OpenStack Swift
	Hardware planning
	Server setup and network configuration
	Pre-installation steps
	Downloading and installing Swift
	Setting up storage server nodes
	Installing services
	Formatting and mounting hard disks
	RSYNC and RSYNCD

	Setting up the proxy server node
	The Keystone service
	Installing MariaDB
	Installing Keystone

	The ring setup
	Multiregion support

	Finalizing installation
	Storage policies
	Implementing storage policies
	Applying storage policies

	Summary

	Chapter 4: Using Swift
	Installing clients
	Creating a token using Keystone authentication
	Displaying metadata information for an account, container, or object
	Using the Swift client CLI
	Using cURL
	Using the specialized REST API client

	Listing containers
	Using the Swift client CLI
	Using cURL

	Listing objects in a container
	Using the Swift client CLI
	Using cURL
	Using the REST API

	Updating the metadata for a container
	Using the Swift client CLI
	Using the REST API

	Environment variables
	The pseudo-hierarchical directories
	Container ACLs
	Transferring large objects
	Amazon S3 API compatibility
	Accessing Swift using S3 commands

	Accessing Swift using client libraries
	Java
	Python
	Ruby

	Summary

	Chapter 5: Additional Swift Interfaces
	Using Swift for virtual machine storage
	Swift in Sahara
	Hadoop Cluster with Sahara
	Using Swift with Sahara
	Running a Job in Sahara
	Authenticating with Swift proxy

	Summary

	Chapter 6: Monitoring and
Managing Swift
	Routine management
	Swift cluster monitoring
	Swift Recon
	Swift Informant
	Swift dispersion tool
	StatsD
	Swift metrics

	Tulsi – a Swift health monitoring tool
	Architecture of Tulsi
	Deploying Tulsi
	Running Tulsi
	Anomaly detection in Tulsi

	Logging using rsyslog
	Failure management
	Detecting drive failures
	Handling drive failure
	Handling node failure
	Proxy server failure

	Zone and region failure

	Capacity planning
	Adding new drives
	Adding new storage and proxy servers

	Migrations
	Summary

	Chapter 7: Docker Intercepts Swift
	Swift with Docker
	Installation of Docker
	Basic commands for the Docker user
	Setting up a Swift proxy container using Docker image
	Setting up the storage container using the Docker image

	Setting up a Swift cluster using a Dockerfile
	Creating a proxy container using a Dockerfile
	Creating a storage container using a Dockerfile

	Summary

	Chapter 8: Choosing the Right Hardware
	The hardware list
	The hardware selection criteria
	Choosing the storage server configuration
	Determining the region and zone configuration
	Choosing the account and container server configuration
	Selecting the proxy server configuration
	Choosing the network hardware
	Choosing the ratios of various server types
	Heterogeneous hardware
	Choosing additional networking equipment
	Selecting a cloud gateway

	Additional selection criteria
	The vendor selection strategy
	Branded hardware
	Commodity hardware

	Summary

	Chapter 9: Tuning Your Swift Installation
	Performance benchmarking
	Hardware tuning
	Software tuning
	The ring considerations
	Data path software tuning
	Post-processing software tuning

	Additional tuning parameters
	Summary

	Chapter 10: Additional Resources
	Use cases
	Archival
	Backup
	Content repository
	Collaboration
	Data lakes

	Operating systems used for OpenStack implementations
	Virtualization used for OpenStack implementations
	Provisioning and distribution tools
	Monitoring and graphing tools
	Additional information
	Summary

	Appendix: Swift CLI Commands
	Commands
	list
	Examples

	stat
	Examples

	post
	Examples

	upload
	Examples

	download
	Examples

	delete
	Examples

	Index

