

PCB Calculator

April 27, 2021

Contents

1 Introduction

2	Cal	culators	1
	2.1	Regulators	1
	2.2	Track-Width	2
	2.3	Electrical-Spacing	3
	2.4	TransLine	3
	2.5	RF-Attenuators	5
	2.6	Color-Code	6
	2.7	Board-Classes	6
		2.7.1 Performance Classes	6
		2.7.2 PCB Types	7

1

Reference manual

Copyright

This document is Copyright © 2019 by it's contributors as listed below. You may distribute it and/or modify it under the terms of either the GNU General Public License (http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), version 3.0 or later.

Contributors

Heitor de Bittencourt. Mathias Neumann

Feedback

Please direct any bug reports, suggestions or new versions to here:

- About KiCad document: https://gitlab.com/kicad/services/kicad-doc/issues
- About KiCad software: https://gitlab.com/kicad/code/kicad/issues
- About KiCad software i18n: https://gitlab.com/kicad/code/kicad-i18n/issues

Publication date and software version

March 052020

1 Introduction

The KiCad PCB Calculator is a set of utilities to help you find the values of components or other parameters of a layout. The Calculator has the following tools:

- Regulators
- Track Width
- Electrical Spacing
- Trans Line
- RF Attenuators
- Color Code
- Board Classes

2 Calculators

2.1 Regulators

This calculator helps with the task of finding the values of the resistors needed for linear and low-dropout voltage regulators.

Regulators Track Width Electrical Spacing TransLine RF Attenuators		olor Code	Board Classes	
	۲	R1:	10	kΩ
	0	R2:	10	kΩ
	0	Vout:	12	v
		Vref:	3	v
		ladj:		μA
		Type:	Standard Type	
Vref			Calculate	
	Reg	gulator:		- 1
				•
	Reg	gulators	data file: Brow:	se
	-			
	-	lit Regula	Add Regulator Remove Regulator	
	Me	ssage		
-Formula: Vout = Vref * (R1 + R2) / R2				

For the *Standard Type*, the output voltage Vout as a function of the reference voltage Vref and resistors R1 and R2 is given by:

$$Vout = Vref \cdot \left(rac{R1+R2}{R1}
ight)$$

For the 3 terminal type, there is a correction factor due to the quiescent current Iadj flowing from the adjust pin:

$$Vout = Vref \cdot \left(rac{R1+R2}{R1}
ight) + Iadj \cdot R2$$

This current is typically below 100 uA and can be neglected with caution.

To use this calculator, enter the parameters of the regulator *Type*, *Vref* and, if needed, *Iadj*, select the field you want to calculate (one of the resistors or the output voltage) and enter the other two values.

2.2 Track-Width

The Track Width tool calculates the trace width for printed circuit board conductors for a given current and temperature rise. It uses formulas from IPC-2221 (formerly IPC-D-275).

Regulators Track Width Electrical Spacing TransLine RF Attenuators Color Code Board Classes										
Parameters: External layer traces:										
Current:	0.744609		A		Trace width:	0.2	mm 🔽			
Temperature rise:	10.0		deg	c	Trace thickness:	0.035	mm 🔽			
Conductor length:	20		mm		Cross-section area: Resistance:	0.007	mm x mm			
Resistivity:	1.72e-8		Ohm	-meter		0.0491429	Ω			
	1				Voltage drop:	0.0365922	Volt			
lf you specify the suit.	e maximum current, the	to	Power loss:	0.0272469	Watt					
calculated. The v calculated. The controlling v The calculations temperature rise The formula, fror where: I = maximum cu dT = temperature W,H = width and	$\mathbf{I} = \mathbf{K} * \mathbf{dT}^{0.4}$	Internal layer traces: Trace width: Trace thickness: Cross-section area: Resistance: Voltage drop: Power loss:	0.035 0.0182101 0.0188906 0.0140661	mm mm mm x mm Ω Volt Watt						

2.3 Electrical-Spacing

This table helps finding the minimum clearance between conductors.

Each line of the table has a minimum recommended distance between conductors for a given voltage (DC or AC peaks) range. If you need the values for voltages higher than 500V, enter the value in the box in the left corner and press *Update Values*.

			N	ote: Valu	ies are n	ninimal va	lues (from	IPC 2221)			
mm Note: Values are minimal values (from IPC 2221)											
age > 500V:		B1	B2	B3	B4	A5	A6	A7			
	0–15V	0.05	0.1	0.1	0.05	0.13	0.13	0.13			
ate Values	16-30V	0.05	0.1	0.1	0.05	0.13	0.25	0.13			
	31–50V	0.1	0.6	0.6	0.13	0.13	0.4	0.13			
	51-100V	0.1	0.6	1.5	0.13	0.13	0.5	0.13			
	101-150V	0.2	0.6	3.2	0.4	0.4	0.8	0.4			
	151-170V	0.2	1.25	3.2	0.4	0.4	0.8	0.4			
	171-250V	0.2	1.25	6.4	0.4	0.4	0.8	0.4			
	251-300V	0.2	1.25	12.5	0.4	0.4	0.8	0.8			
	301-500V	0.25	2.5	12.5	0.8	0.8	1.5	0.8			
	> 500V	0.25	2.5	12.5	0.8	0.8	1.5	0.8			
	 B1 - Internal Conductors B2 - External Conductors, uncoated, sea level to 3050 m B3 - External Conductors, uncoated, over 3050 m B4 - External Conductors, with permanent polymer coating (any elevation) A5 - External Conductors, with conformal coating over assembly (any elevation) A6 - External Component lead/termination, uncoated A7 - External Component lead termination, with conformal coating (any elevation) 										

2.4 TransLine

Transmission line theory is a cornerstone in the teaching of RF and microwave engineering.

In the calculator you can choose different sorts of Line Types and their special parameters. The models implemented are frequency-dependent, so they disagree with simpler models at high *enough* frequencies.

This calculator is heavily based on Transcalc.

The transmission line types and the reference of their mathematical models are listed below:

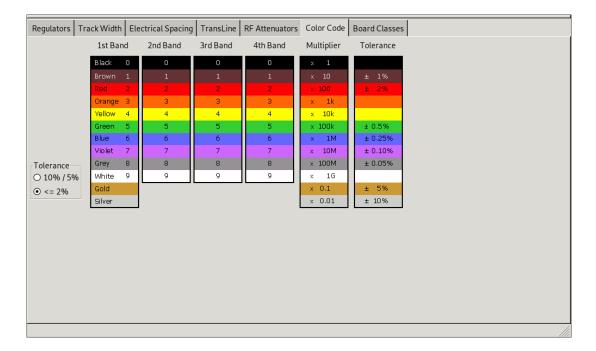
- Microstrip line:
 - H. A. Atwater, "Simplified Design Equations for Microstrip Line Parameters", Microwave Journal, pp. 109-115, November 1989.
- Coplanar wave guide.
- Coplanar wave guide with ground plane.
- Rectangular waveguide:
 - S. Ramo, J. R. Whinnery and T. van Duzer, "Fields and Waves in Communication Electronics", Wiley-India, 2008, ISBN: 9788126515257.
- Coaxial line.
- Coupled microstrip line:
 - H. A. Atwater, "Simplified Design Equations for Microstrip Line Parameters", Microwave Journal, pp. 109-115, November 1989.
 - M. Kirschning and R. H. Jansen, "Accurate Wide-Range Design Equations for the Frequency-Dependent Characteristic of Parallel Coupled Microstrip Lines," in IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 1, pp. 83-90, Jan. 1984. doi: 10.1109/TMTT.1984.1132616.
 - Rolf Jansen, "High-Speed Computation of Single and Coupled Microstrip Parameters Including Dispersion, High-Order Modes, Loss and Finite Strip Thickness", IEEE Trans. MTT, vol. 26, no. 2, pp. 75-82, Feb. 1978.
 - S. March, "Microstrip Packaging: Watch the Last Step", Microwaves, vol. 20, no. 13, pp. 83.94, Dec. 1981.
- Stripline.
- Twisted pair.

Regulators Track Width Electrical Spacin	g TransLine	RF Attenuators Color Co	de Board	Classes		
Transmission Line Type:	Substrate P	arameters		Physic	al Parameters:	
 Microstrip Line 	Er:	4.6		W: 0	0.2	mm 💌
O Coplanar wave guide	TanD:	0.02		L: 5	50	mm 🔻
O Coplanar wave guide with ground plane	Rho:	1.72e-08		i i		
O Rectangular Waveguide	H:	0.2	mm 🔻			
O Coaxial Line		1e+20	mm 🔽		Analyze Synthesize	
O Coupled Microstrip Line	_			Floatri	cal Parameters:	
O Stripline		0.035	mm 🔻			- 1
O Twisted Pair	Rough:	0	mm 🔻	Z0:	50	Ω 🔻
	mu Rel S:	1				
	mu Rel C:	1		Ang_l:	0	Radian 🔻
w	Component	Parameters:		Results		
					ErEff:	
	Frequency:	1	GHz 🔻		ctor Losses: :tric Losses:	
					Skin Depth:	
Т Н						

2.5 **RF-Attenuators**

With the RF Attenuator utility you can calculate the values of the resistors needed for different types of attenuators:

- PI
- Tee
- Bridged Tee
- Resistive Splitter


To use this tool, first select the type of attenuator you need, then enter the desired attenuation (in dB) and input/output impedances (in Ohms).

Regulators Track Width Electrical Sp	pacing TransLine RF Atte	nuators	Color Code Board Classes				
Attenuators:	Parameters:		Formula				
⊙ PI	Attenuation 6	dB	7 desired in put impredence in O				
O Tee	Zin 50	Ω	Z_{in} desired input impedance in Ω				
O Bridged Tee		-	7 desired autout impredence in O				
O Resistive Splitter	Zout 50	Ω	Z_{out} desired output impedance in Ω				
	Calculate 😽		a attenuation in dB				
	Values		$10^{3/10}$ (the less)				
	R1 Ω		$L = 10^{a/10}$ (the loss)				
	R2 Ω		A = (L + 1)/(L - 1)				
Z _{in} R1 R3 Z _{out}							
	R3 Ω						
÷ ÷	Messages:		Pi attenuator				
			$R2 = (L - 1)/2 * \sqrt{((Z_{in} * Z_{out})/L)}$				
			$R1 = 1/(A/Z_{in} - 1/R2)$				
			$R3 = 1/(A/Z_{out} - 1/R2)$				

2.6 Color-Code

This calculator helps translating the color bars from the resistor to its value. To use it, first select the *tolerance* of the resistor: 10%, 5% or equal or smaller than 2%. For example:

- Yellow Violet Red Gold: 4 7 x100 $\pm 5\% = 4700$ Ohm, 5% tolerance
- 1kOhm, 1% tolerance: Brown Black Black Brown Brown

2.7 Board-Classes

2.7.1 Performance Classes

In IPC-6011 have been three performance classes established

- Class 1 General Electronic Products Includes consumer products, some computer and computer peripherals suitable for applications where cosmetic imperfections are not important and the major requirement is function of the completed printed board.
- Class 2 Dedicated Service Electronic Products Includes communications equipment, sophisticated business machines, instruments where high performance and extended life is required and for which uninterrupted service is desired but not critical. Certain cosmetic imperfections are allowed.
- Class 3 High Reliability Electronic Products Includes the equipment and products where continued performance or performance on demand is critical. Equipment downtime cannot be tolerated and must function when required suchas in life support items or flight control systems. Printed boards in this class are suitable for applications where high levels of assurance are required and service is essential.

2.7.2 PCB Types

In IPC-6012B there are also 6 Types of PCB defined:

- Printed Boards without plated through holes (1)
 - 1 Single-Sided Board
- And Boards with plated through holes (2-6)
 - 2 Double-Sided Board
 - 3 Multilayer board without blind or buried vias
 - $-\,$ 4 Multilayer board with blind and/or buried vias
 - 5 Multilayer metal core board without blind or buried vias
 - 6 Multilayer metal core board with blind and/or buried vias