
see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Early praise for Programming WebAssembly with Rust

Concise and well-paced, this book quickly dives into the details of WebAssembly,
letting readers get their hands dirty building interesting Wasm applications. It’s
loaded with great examples and touches on many different aspects of programming
while paving the trail for WebAssembly development.

➤ Sean Boyle
Senior Software Engineer, Cerner

Programming WebAssembly with Rust is a great resource for learning a low-level
language (WebAssembly) and showing how its power can be harnessed with Rust.
It is perfect for people who like to understand how things work.

➤ Jason Pike
Software Development Coach, Sigao Studios

Starting with a detailed look at WebAssembly internals and the WAST language
before moving on to solving fun gaming problems with Rust and Wasm, Program-
ming WebAssembly with Rust ensures readers gain a foundational knowledge of
WebAssembly and have fun doing so.

➤ Balaji Sivaraman
Senior Technology Consultant, ThoughtWorks

see more please visit: https://homeofpdf.com

I read Programming WebAssembly with Rust hardly knowing anything about either.
I came away planning to make some time to build a WebAssembly module and
publish to an npm registry—and with a clear idea of how to do so. An enjoyable
read which suggests some mind-bending possibilities for the future of the web.

➤ Stephen Wolff
Director, Max Gate Digital Ltd.

see more please visit: https://homeofpdf.com

Programming WebAssembly with Rust
Unified Development for Web, Mobile, and Embedded Applications

Kevin Hoffman

The Pragmatic Bookshelf
Raleigh, North Carolina

see more please visit: https://homeofpdf.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Andrea Stewart
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-636-5
Book version: P1.0—March 2019

see more please visit: https://homeofpdf.com

../../../../../../https@pragprog.com/default.htm
support@pragprog.com
rights@pragprog.com

For my grandfather—Walter K. MacAdam—
inventor, tinkerer, and IEEE president. He

quietly supported my exposure to computers
and programming throughout my childhood,

often in ways I didn’t know until after his death.
I always wanted to grow up to be like him, and

I only wish he could’ve seen this book.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Contents

Acknowledgments xi
Introduction xiii

Part I — Building a Foundation

1. WebAssembly Fundamentals 3
Introducing WebAssembly 3
Understanding WebAssembly Architecture 8
Building a WebAssembly Application 12
Wrapping Up 17

2. Building WebAssembly Checkers 19
Playing Checkers, the Board Game 19
Coping with Data Structure Constraints 20
Implementing Game Rules 34
Moving Players 35
Testing Wasm Checkers 38
Wrapping Up 41

Part II — Interacting with JavaScript

3. Wading into WebAssembly with Rust 45
Introducing Rust 45
Installing Rust 47
Building Hello WebAssembly in Rust 47
Creating Rusty Checkers 50
Coding the Rusty Checkers WebAssembly Interface 60
Playing Rusty Checkers in JavaScript 64
Wrapping Up 65

see more please visit: https://homeofpdf.com

4. Integrating WebAssembly with JavaScript 67
Creating a Better “Hello, World” 67
Building the Rogue WebAssembly Game 73
Experimenting Further 87
Wrapping Up 88

5. Advanced JavaScript Integration with Yew 89
Getting Started with Yew 89
Building a Live Chat Application 99
Wrapping Up 112

Part III — Working with Non-Web Hosts

6. Hosting Modules Outside the Browser 115
How to Be a Good Host 115
Interpreting WebAssembly Modules with Rust 117
Building a Console Host Checkers Player 120
Wrapping Up 129

7. Exploring the Internet of WebAssembly Things 131
Overview of the Generic Indicator Module 132
Creating Indicator Modules 135
Building Rust Applications for ARM Devices 140
Hosting Indicator Modules on a Raspberry Pi 141
Hardware Shopping List 150
Endless Possibilities 152
Wrapping Up 154

8. Building WARoS—The WebAssembly Robot System . . . 155
An Homage to Crobots 156
Designing the WARoS API 157
Building the WARoS Match Engine 162
Creating WebAssembly Robots 186
Robots in the Cloud 191
Wrapping Up 191
Conclusion 192

A1. WebAssembly and Serverless 193
Serverless 101 193
Intersection of WebAssembly and Serverless 194
WebAssembly in the Cloud 194

Contents • viii

see more please visit: https://homeofpdf.com

Serverless WebAssembly in the Wild 195
Integration with OpenFaaS 197

A2. Securing WebAssembly Modules 199
General Security Concerns 199
Browser-Based Attack Vectors 199
Signing and Encrypting WebAssembly Modules 200

Index 205

Contents • ix

see more please visit: https://homeofpdf.com

Acknowledgments
This book would not have been possible without the infinite patience and
support of my wife, who has far more faith in me than I do.

I would also like to thank all of the technical reviewers for keeping me honest
and accurate: Vijay Raghavan Aravamudhan, Jacob Chae, Nick Fitzgerald,
Peter Perlepes, Jason Pike, Sean Boyle, Martjin Reuvers, Balaji Sivaraman,
and Stephen Wolff.

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Introduction
I’m old enough to have lived through quite a few seismic changes in the way
developers build software and the kinds of products we can build. I was just
starting my career when DPMI gave us native access to 32-bit integers, allowed
unfettered access to a heap greater than 640k, and enabled the creation of
ground-breaking games like DOOM. I remember the potential behind Java’s
promise of write once, run anywhere. I was there when small, local communi-
ties built around dial-up bulletin board systems (BBSes) faded as the world
became a single, digital community riding the wave of the Internet’s surge
toward ubiquity. I experienced the shift in solution design from client/server
to fat server to fat client and back again, today landing on cloud native
applications, microservices, and independent functions where everything
including our infrastructure is a service.

I remember the web’s growth from a billion archipelagos of text (often blinking!)
and Under Construction signs where the coolest places were the ones with
the most intricate full-page background images, to the vast, sprawling engine
of commerce, communication, lifestyle, and social connection that it is today.
The web has gone from a place where only an elite few dabbled in that strange
new world to a place where millions of people spend their days coding some
of the most powerful and complex applications of the modern era.

I firmly believe that we stand on the precipice of another seismic change—
WebAssembly. This new technology holds within it the potential to radically
change how developers build applications for the web. Moreover, as you’ll see
throughout this book, WebAssembly is more than just a new pebble thrown
into the ocean of web technologies. It’s a tsunami that can change not only
how consumers interact with and how developers build applications but also
fundamentally alter the kinds of applications we can create. It may even
transform our core definition of the word application.

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Today’s Web Technology
Today’s web is a veritable playground for developers. You have the luxury of
easy access to broadband speeds (with exceptions). Browsers are faster and
more powerful than they’ve ever been, and the workstations people use to
run those browsers have oodles of RAM, storage, and multiple cores—even
the mobile devices.

Today’s JavaScript is nothing like the primordial 1995 JavaScript that drew
so much ire from the developer community. It dominates the web development
landscape so much that its own ubiquity has become something of a joke or
a meme. Competition between browser vendors (they didn’t call it the
browser wars for nothing) has spurred years of refining the way their products
execute JavaScript, which will be a key discussion point when you get into
the details of browser-hosted WebAssembly.

Modern browsers have virtual machines responsible for JavaScript execution.
Internally they optimize and produce a form of bytecode from processed
JavaScript. This, coupled with more memory and processing power, means
that JavaScript is actually fast. Not just a little bit fast, but it’s so fast you
can play full, grade-A video games in the browser. Applications can perform
complex calculations, run machine learning models, process vast amounts
of data, and otherwise treat the browser like an operating system.

Frameworks like React, Angular, Backbone, VueJS, and countless others have
made a dramatic impact on how web applications are built. Modern web
applications can render incredibly dense user interfaces like what you see on
Facebook or YouTube, all while receiving real-time events published from
servers in the cloud to provide a level of interaction that’s now such a ubiqui-
tous feature that web sites that don’t provide this new level of real-time
interaction are often publicly shamed and doomed to fail.

Nothing in the rest of this book that extols the virtues of WebAssembly should
take away from the fact that the modern, programmable web is a giant virtual
toy store, ripe for the plundering by eager developers. For any avid learner of
technology, it’s a great time to be alive (and probably learn some JavaScript).

The Tech of Tomorrow
WebAssembly is currently a 1.0 product, having just reached its first MVP

(Minimum Viable Product). As with most 1.0 products, it’s bound to experience

Introduction • xiv

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

some growing pains and points of friction, and we’ll go over those in depth
as they come up in this book. As you look at the current state of WebAssembly
and its limitations, you might get discouraged and feel the urge to give up
and wait for things to get more mature. But I think the time is right to start
learning and developing with this incredible new technology, and there are
already many WebAssembly 1.0 products deployed and running in the wild
and more appearing every day. In the span between two edits of this chapter,
someone released a virtual machine built in WebAssembly that runs Windows
95 in a browser.

The good news is that the experience will only improve over time. The tooling
will get better, the interface between the browser and WebAssembly modules
will get better, support for non-browser hosts will get better, and the number
of tested and proven use cases will grow. In short, as time goes on, every
aspect of the development of WebAssembly modules will improve.

I am convinced that WebAssembly is at the tip of the next wave of truly
paradigm-shifting changes in the programmable Internet. I did indeed mean
to say Internet and not just web. The distinction might seem subtle, but I’m
also thoroughly convinced that the browser as a host for WebAssembly mod-
ules is just the tip of the iceberg. WebAssembly is going to join the long line
of game-changing innovations in the history of the Internet and fundamentally
alter our concept of applications.

Who This Book Is For
This book is for anyone who wants to build web applications. Whether you
have had just a little bit of JavaScript exposure or whether you are a sea-
soned professional with dozens of React and Redux applications under your
belt, WebAssembly has the potential to change the way that you build apps
and the power of those applications in a way that few technologies before
ever have.

Whether you consider yourself a front-end, back-end, embedded, or any
other kind of developer—this book is for you. Compiling other languages to
WebAssembly means you get to use familiar development life cycles and
toolchains and build and test strongly-typed, powerful code.

Finally, if you think that there is more to this WebAssembly thing than just
the web applications, then you will enjoy this book as well as we build
WebAssembly interpreters in Rust and run them on Raspberry Pis to control

report erratum • discuss

Who This Book Is For • xv

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

hardware via GPIO. WebAssembly holds a lot of promise for many different
types of developers, including the promise of unifying back- and front-end
coding experiences.

Why Rust?
Rust is a systems language that compiles to native binaries on any number
of operating systems and hardware architectures. It is fast, its binaries take
up very little space and have a small memory footprint, and is designed from
the ground up to avoid accidental mutation, null referencing, and data races.
In fact, the compiler will check your code and prevent you from making those
mistakes.

But I chose Rust for this book for reasons beyond just the language syntax
and its powerful compiler. What excited me about Rust was how quickly it
embraced WebAssembly. While other languages right now can compile code
to WebAssembly, the sheer number of libraries and tools available within the
Rust community for WebAssembly is staggering. It is the enthusiasm, support,
and rapid pace of advancement in the Rust WebAssembly community that
influenced my decision to use Rust for this book.

What You’ll Learn
This book is divided up into three main parts:

Building a Foundation
As you build a foundation, you’ll learn the fundamentals and the core
architecture of WebAssembly, including what it can and cannot do and
how you can develop basic applications. By the time you reach the end
of this section, you’ll be able to create a Checkers engine written entirely
in raw WebAssembly.

Interacting with JavaScript
Building on your solid WebAssembly foundation, you’ll move on to using
Rust to create your WebAssembly modules. You’ll start with the basics
of creating a Rust version of your Checkers engine, and then you’ll move
on to using code generation, advanced tooling, and macros to build pow-
erful web applications that interact with JavaScript. By the end of this
section, you’ll be able to write a multiuser, real-time chat application in
Rust that compiles to WebAssembly.

Working with Non-Web Hosts
Once you’ve had your first taste of the power of WebAssembly, it’s time
to take it to the next level and start working with non-web hosts.

Introduction • xvi

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

WebAssembly is about far more than just building things for the web,
and you’ll see this firsthand as you create modules that control LED
patterns for lights attached to a Raspberry Pi and, as your final project,
you create a fully multiplayer arena battle game that lets developers pit
their WebAssembly code against each other in a battle to the death.

Now it’s time to get coding!

report erratum • discuss

What You’ll Learn • xvii

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Part I

Building a Foundation

Let’s get started by exploring WebAssembly funda-
mentals and learn how to write raw WebAssembly
code.

see more please visit: https://homeofpdf.com

CHAPTER 1

WebAssembly Fundamentals
With WebAssembly, there is a symbiotic relationship between the compiled
WebAssembly binary (called a module) and the host responsible for interpreting
it. This relationship is at the heart of everything that you can do with this
new technology, and understanding where the boundaries are between module
and host is key to being able to build effective WebAssembly applications.

WebAssembly can be viewed at two different levels—the raw, foundational
level and at the higher level of other programming languages using
WebAssembly as a target. Before you can understand and appreciate what
languages like Rust are doing when they produce WebAssembly modules,
you’ll need to know what WebAssembly can do, what it can’t, and how to use
language-independent tools.

This chapter gets you started at the foundation level, giving you an overview
of what WebAssembly is, how it works, and how other features can be built
upon this foundation. By the end of this chapter, you’ll be able to create and
build your own WebAssembly modules using cross-platform language tools
and your favorite code editor. While what you learn in these first few chapters
may not be things you do on a daily basis, the context they provide will be
invaluable as you build real applications with WebAssembly.

Introducing WebAssembly
If the modern programmable web is merely a toy store, then WebAssembly is
a toy warehouse filled with toys as far as the eye can see. Developers who
spend most of their time working on the front end often long for some of the
features, testability, and constraints prevalent in the world of servers and
services. Likewise, folks who spend most of their time toiling behind the
counter, away from the customer but carefully assembling all the parts of
their order, often long for the fluid, expressive, blank canvas world the front

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

end represents. People who work in both worlds are keenly aware of the
paradigm differences between the two and why the grass isn’t always greener
on the other side.

What if “sides” or “front” or “back” didn’t matter anymore? What if there was
a new way of doing things, where you could write loosely coupled business
logic that flows between servers, services, clients, and browsers without any
shenanigans? What if you could have the best parts of the front- and back-
end worlds and still choose the most appropriate language for your problems?

By the time you reach the end of this book, you’ll have learned enough about
WebAssembly development that these propositions won’t sound like they
came from a snake-oil salesman. They’ll ring true and hopefully inspire you
to start building amazing new WebAssembly applications.

What Is WebAssembly?
The WebAssembly home page1 says that it is a binary instruction format for
a stack-based virtual machine. Wasm (a contraction, not an acronym, for
WebAssembly) is designed to be portable (capable of running on different
OSes, architectures, and environments without modification), and used as a
compilation target for higher-level languages like C++, Rust, Go, and many
others. The website also claims that Wasm enables deployment on the web
for client and server applications alike.

Let’s pick this definition apart a bit, because it’s rather dense.

First, and most importantly, WebAssembly is a portable binary instruction
format. This is very similar to the original intent behind Java’s bytecode and,
if you’re familiar with the .NET Framework, you may recognize this concept
as implemented in ILASM, the low-level instruction set supporting the Common
Language Runtime. You’ll see this in depth in the next chapter, but for now
it should suffice to know that the operations encoded in a WebAssembly
module are not tightly coupled to any one hardware architecture or operating
system, and these operations are just codes that a parser knows how to
interpret.

Next, there’s the phrase stack-based virtual machine. We’ll go over this in
detail soon, but the short explanation is that this stack machine simultane-
ously contributes to WebAssembly’s tremendous speed, power, and several
of its limitations.

1. webassembly.org

Chapter 1. WebAssembly Fundamentals • 4

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@webassembly.org/default.htm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Finally, there’s a spot in the definition on which I fundamentally disagree.
The phrase “deployment on the web” might limit your thinking and your
imagination. This is a portable format that can run anywhere you can build
a host, which you’ll also be learning about later. Limiting WebAssembly’s
scope to the web (despite its name) does it a disservice.

What WebAssembly Is Not
The first question I get asked once I get on my WebAssembly soapbox is, “Isn’t
Wasm just another transpile target for JS?” Transpiling is translating from
one high-level source language to another high-level source language. This
is in contrast to the usual compiling, which takes a high-level source language
and translates it into a low-level machine code. For example, converting
TypeScript or React JSX into browser-executable JavaScript is done through
transpiling. WebAssembly is not a JavaScript transpile target (though you
can actually compile TypeScript into a Wasm module if you’re into that sort
of thing).

WebAssembly is also not meant to replace JavaScript. This is somewhat of a
controversial opinion, as a large group of WebAssembly devotees online are
convinced that it represents the death knell of JavaScript. While it might
signal the beginning of a new era in which you write significantly less manual
JavaScript, you still need JS to host WebAssembly 1.0 in the browser.

It’s also not intended as a mere replacement for (or successor to) Flash, Sil-
verlight, Adobe AIR, or Java Applets. As you’ll discover, WebAssembly isn’t
run as a process outside the browser. How seamlessly it integrates with the
user experience is entirely up to the developer and the tools they use.

Another important thing to remember is that WebAssembly, on its own, isn’t
a programming language. While there is both a binary and a text format,
writing it by hand for anything beyond a few samples would take far too long
and be too difficult to test and troubleshoot. Knowing how to write it by hand,
however, will help you make the right decisions as you learn to build
WebAssembly applications with Rust.

WebAssembly doesn’t stand on its own. Like a game cartridge without a
console or a BluRay disc without a player, it’s incomplete in isolation. Much
like a symbiote that needs to feed off of its host to survive, WebAssembly can’t
interact with anything outside the bounds of its own sandbox unless the host
allows it. All I/O and other interactions are done entirely at the behest of the
host such as a browser or a console application. While this might sound like

report erratum • discuss

Introducing WebAssembly • 5

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

an unfair limitation, you’ll see a number of times throughout this book why
this is actually a good thing.

Try It Out
The best way to start learning something is to jump right in. Imagine one of
those ball pits kids get to play in but, sadly, us adults are usually forbidden.
As learners, our first exposure to new material is like jumping into this pit,
surrounded by a dizzying array of colors and buried up to our necks in con-
fusion. As we struggle to make our way to the far end of the ball pit, we
gradually get our footing, the colors become more familiar, the shape and
landscape of the ball pit gets smaller, and we’re able to reason about it. After
a while, we crawl out of the pit, having learned enough that we’re eager to
jump back in and discover more.

For WebAssembly, you’re going to jump into the ball pit by using an online
tool called WebAssembly Studio. In December 2017, Mozilla started working
on this project as a way to provide a low-friction introduction to WebAssembly.
It’s a combination of some of their other WebAssembly tools like WasmFiddle.2

This tool is entirely online and lets you create new projects in C, Rust, or
AssemblyScript, a tool for compiling TypeScript to WebAssembly. It has gone
through bursts of community activity and contribution since its creation.

Open up your browser (any up-to-date version of Firefox, Edge, Chrome, or
Safari should work) and point it at webassembly.studio. You’ll come to a screen
that presents the following options for creating a new project:

• Empty C Project
• Empty Rust Project
• Empty AssemblyScript Project
• Hello World in C
• Hello World Rust Project

Choose “Empty Rust Project” and then click the Create button. This will create
a new project within WebAssembly Studio, including a README.md file, a src
directory, and the file you want to explore: main.rs. You’ll see the following code:

#[no_mangle]
pub extern "C" fn add_one(x: i32) -> i32 {

x + 1
}

2. wasdk.github.io/WasmFiddle/

Chapter 1. WebAssembly Fundamentals • 6

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@webassembly.studio/default.htm
../../../../../../https@wasdk.github.io/WasmFiddle/default.htm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

The WebAssembly Studio site, with its almost entirely black color scheme,
doesn’t make for print-friendly screenshots so none have been included here.

If you’re familiar with Rust, then this should be self-explanatory. If you’re
new to Rust, don’t worry—you’ll spend quite a bit of time working through
Rust’s syntax throughout the book. This code listing defines a function that
adds 1 to a 32-bit signed integer, returning that value in a signed 32-bit
integer. Believe it or not, this code can produce a WebAssembly module.

Using Rust’s no_mangle macro tells the compiler not to change the signature
of the function during compilation. As you’ll see in upcoming chapters, there
are some aspects of executing WebAssembly that require some naming con-
ventions.

Click the Build and Run button and you’ll see the blue bar on the bottom of
the editor flash. Then, the white square canvas in the bottom right-hand
corner will display the number 42.

Congratulations, you’ve just written, compiled, and executed your first
WebAssembly module. Where did the number 42 come from? Take a look at
the main.js file by clicking on it in your browser:

fetch('../out/main.wasm').then(response =>
response.arrayBuffer()

).then(bytes => WebAssembly.instantiate(bytes)).then(results => {
instance = results.instance;
document.getElementById("container").innerText = instance.exports.add_one(41);➤

}).catch(console.error);

Don’t worry if some of this JavaScript looks unfamiliar to you—it’ll be second
nature by the time we’re done. The indicated line of code invokes the add_one
function in the WebAssembly module and places the result value inside the
container DOM element. And now you’ve built a WebAssembly module that
adds 1 to any number. It might not be all that impressive, but you’ve taken
that first leap into WebAssembly.

The pattern of writing Rust code, compiling to WebAssembly, and then running
the module in a browser is one that you’ll repeat many times throughout this
book. For now, though, let’s take a step back from this code and take a look
at what makes WebAssembly tick so you can have a better idea of what’s
happening in the preceding example.

report erratum • discuss

Introducing WebAssembly • 7

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Understanding WebAssembly Architecture
In this section, you’ll get a good look inside the engine that makes
WebAssembly work. Its unique architecture makes it incredibly powerful,
portable, and efficient—though this power comes with some limitations.

Stack Machines
The type of computer that you’re using right now is likely a Register Machine.
Laptops, desktops, mobile devices, virtual machines, even microcontrollers
and embedded devices are register machines. A register machine is a machine
(physical or virtual) where the processor instructions explicitly refer to certain
registers, or data storage locations, on the processor. Accessing these registers
is fast and efficient because the data is available directly within the CPU.

For example, if you want to add two numbers together, you’d use the ADD
instruction and you’d pass it the names of two registers as parameters, as
shown in this bit of x86 assembly:

ADD al, ah

In the preceding code, the values contained in ah and al will be added together,
with the result stored in al.

WebAssembly is a stack machine. In a stack machine, most of the instructions
assume that the operands are sitting on the stack, rather than stored in
specified registers. The WebAssembly stack is a LIFO (Last In, First Out) stack.
If you’re unfamiliar with the concept of a stack: it is as its name implies—
values are piled (stacked) on top of each other, and unlike arrays where you
can access any data regardless of location in the pile, stacks only allow you
to pop data off or push data onto the top.

To add two numbers in a stack machine, you push those numbers onto the
top of the stack. Then you push the ADD instruction onto the stack. The two
operands and the instruction are then popped off the top and the result of
the addition is pushed on in their place.

There are a number of advantages to a stack machine that made it an
appealing choice for WebAssembly: their small binary size, efficient instruction
coding, and ease of portability just to name a few.

There are some fairly well-known stack machines, including the Java Virtual
Machine (JVM) and the bytecode executor for the .NET Common Language
Runtime. In the case of those virtual machines, developers are spared the

Chapter 1. WebAssembly Fundamentals • 8

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

effort of writing assembly or thinking in prefix or Polish3 (where the operator
comes first) notation because of the intermediate steps and code generation
happening behind the scenes.

Data Types
Admit it—you’ve been spoiled. Modern programming languages with hashes,
lists, arrays, sets, extra-large numbers, and tuples have spoiled you. These
languages also probably let you create your own types through structs or
classes. Some of them even let you overload operators, and some of those
overloads can even work on custom types. The world is your oyster and you
have few limits. That is not the world of WebAssembly. As their name should
imply, assembly languages are designed to be made up of primitives that can
be used as building blocks by higher level languages.

WebAssembly 1.0 has exactly four data types:

DescriptionType

32-Bit Integeri32
64-Bit Integeri64
32-Bit Floating-Point Numberf32
64-Bit Floating-Point Numberf64

One aspect of this relatively limited set of data types is that WebAssembly
doesn’t assign any intrinsic signed-ness to numbers as they’re stored. The
assumption of whether a number is signed or unsigned is only performed at
the time of an operation. For example, while there’s only one i32 data type,
there are signed and unsigned versions of that type’s arithmetic operators,
e.g. i32.add and i32.add_u.

When you’re using a high-level language that compiles to WebAssembly on
your behalf, you shouldn’t have to worry about this subtlety. But when you’re
writing raw Wasm in the text format by hand, it could trip you up in unex-
pected ways.

Control Flow
WebAssembly’s handling of control flow is a little different than other, less
portable assembly languages. WebAssembly goes to great lengths to ensure
that its control flow can’t invalidate type safety, and can’t be hijacked by
attackers even with a “heap corruption”4-style attack in linear memory. For

3. en.wikipedia.org/wiki/Polish_notation
4. https://pdfs.semanticscholar.org/14f1/4b032235c345dfb3b3ecc8a879bbe4072407.pdf

report erratum • discuss

Understanding WebAssembly Architecture • 9

see more please visit: https://homeofpdf.com

../../../../../../https@en.wikipedia.org/wiki/Polish_notation
../../../../../../https@pdfs.semanticscholar.org/14f1/4b032235c345dfb3b3ecc8a879bbe4072407.pdf
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

example, many assembly languages allow easily exploited blind jump instruc-
tions, whereas you’ll discover that WebAssembly does not. This additional
layer of safety pairs well with the safety-first philosophy of Rust.

Wasm control flow is accomplished the same way everything else is within a
stack machine—by pushing things onto, and popping things off of, the stack.
For example, with an if instruction, if whatever is at the top of the stack
evaluates as true (non-zero), then the if branch will be executed.

Take a look at an example of the if statement in action:

(if (i32.eq (call $getHealth) (i32.const 0))
(then (call $doDeath))
(else (call $stillAlive))

)

In this code, if our hypothetical player’s health has reached 0, then we’ll call
the doDeath function, otherwise we’ll call the stillAlive function. All those seem-
ingly extra parentheses will make sense later in the chapter.

WebAssembly has the following control flow instructions available:

DescriptionInstruction

Marks the beginning of an if branching instruction.if
Marks the else block of an if instructionelse
A labeled block used to create loopsloop
A sequence of instructions, often used within expressionsblock
Branch to the given label in a containing instruction or blockbr
Identical to a branch, but with a prerequisite conditionbr_if
Branches, but instead of to a label it jumps to a function index
in a table

br_table

Returns a value from the instruction (1.0 only supports one
return value)

return

Marks the end of a block, loop, if, or a functionend
No self-respecting assembly language is without an operation
that does nothing

nop

Linear Memory
As you work with linear memory, you’ll truly begin to appreciate the extent
to which modern high-level languages have spoiled you. With most languages,
you can quickly and easily create a new instance of something on the heap
with an operator like new.

Chapter 1. WebAssembly Fundamentals • 10

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Internally, the compiler knows the size of this thing (or has some trick to
compensate for not knowing). When you pass an instance of something to a
function, the compiler knows whether you’re passing a pointer or a value and
how to arrange that value on your stack or heap in order to make the data
available to a function.

WebAssembly doesn’t have a heap in the traditional sense. There’s no concept
of a new operator. In fact, you don’t allocate memory at the object level because
there are no objects. There’s also no garbage collection (at least not in the
1.0 MVP).

Instead, WebAssembly has linear memory. This is a contiguous block of bytes
that can be declared internally within the module, exported out of a module,
or imported from the host. Think of it as though the code you’re writing is
restricted to using a single variable that is a byte array. Your WebAssembly
module can grow the linear memory block in increments called pages of 64KB
if it needs more space. Sadly, determining if you need more space is entirely
up to you and your code—there’s no runtime to do this for you.

This image with variables and byte offsets illustrates just one way to store
data in a block of linear memory (how you choose to use and fill linear mem-
ory is entirely up to you and your code):

var1 [0...39] var2 [40...79] var3 [80...119] unused

In addition to the efficiency of direct memory access, there’s another reason
why it’s ideal for WebAssembly: security. While the host can read and write
any linear memory given to a Wasm module at any time, the Wasm module
can never access any of the host’s memory.

Direct DOM Access Is an Illusion

If you’ve seen WebAssembly demos that look like they’re directly accessing the
browser DOM from inside the module—that’s an illusion. The host and module are
sharing a block of linear memory, and the host is choosing to execute bespoke Java-
Script to translate the contents of that shared memory area into updates to the DOM,
just like you saw at the beginning of this chapter. This may change in future versions
of WebAssembly, but for now, this remains little more than smoke and mirrors.

As you’ll see in the coming chapters, linear memory is crucial to being able
to create powerful applications with WebAssembly. Before using high-level
languages like Rust, you should learn how to manipulate linear memory

report erratum • discuss

Understanding WebAssembly Architecture • 11

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

manually so you can appreciate the extent of the work done on your behalf
by tools and code generation and understand the impact of your designs.

Building a WebAssembly Application
At the beginning of this chapter, you built and ran a simple Rust-based
WebAssembly application using WebAssembly studio. In this section, you’ll
install some tools on your machine that will allow you to compile and interpret
WebAssembly modules.

Installing the WebAssembly Binary Toolkit
The WebAssembly Binary Toolkit (pronounced “wabbit”) is a general-purpose
set of command-line tools you’ll use for building, examining, and troubleshoot-
ing WebAssembly modules. Whether you’re on Windows, Mac, or Linux, the
first thing you’re going to need to install is CMake.5

Installing CMake varies widely across operating systems, so you’ll need to check
the instructions specific to your platform. Come back and continue with the
wabt installation once you’ve verified that CMake is up and running locally.

Next, follow the instructions on the wabt6 GitHub repository README to
complete the installation. You should be able to get the binaries from a release,
but if you want to build the toolkit yourself, go ahead and simply run make
install and then, after a fairly lengthy compilation process, you’ll see a bunch
of executables in the bin directory beneath wherever you checked out the
repository, including some or all of the following:

• wasm2c
• wasm2wat
• wasm-interp
• wasm-objdump
• wasm-opcodecnt
• wasm-validate
• wast2json
• wat2wasm
• wat-desugar

The exact list of files may have changed since this book was published, but
you’ll at the very least need wat2wasm and wasm-objdump for the next section
where you will be writing real WebAssembly code. Make sure that you can

5. cmake.org
6. github.com/WebAssembly/wabt

Chapter 1. WebAssembly Fundamentals • 12

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@cmake.org/default.htm
../../../../../../https@github.com/WebAssembly/wabt
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

execute both of these commands in a terminal or a shell and get the help text
before continuing on.

On my machine, make install installed all of the compiled binaries in /usr/local/bin:

-- Install configuration: "Debug"
-- Installing: /usr/local/bin/wat2wasm
-- Installing: /usr/local/bin/wast2json
-- Installing: /usr/local/bin/wasm2wat
-- Installing: /usr/local/bin/wasm2c
-- Installing: /usr/local/bin/wasm-opcodecnt
-- Installing: /usr/local/bin/wasm-objdump
-- Installing: /usr/local/bin/wasm-interp
-- Installing: /usr/local/bin/spectest-interp
-- Installing: /usr/local/bin/wat-desugar
-- Installing: /usr/local/bin/wasm-validate
-- Installing: /usr/local/bin/wabt-unittests

Coding in the WebAssembly Text Format
Before I launch into an arguably dense and detailed section of fairly low-level
coding, I want to answer the question of why. Why should you spend the
effort learning how to write raw wast when you’ve got modern compilers that
can do it for you?

I don’t like magic. I don’t like black boxes that do things I don’t understand.
I am put off when I have to use a third-party system when I don’t understand
its internal workings, or at least the motivations behind the decisions made
in the building of the thing.

You could go forward and build powerful WebAssembly applications and live
your life without knowing how it all works inside. However, I contend that
this chapter and its contents provide the foundation on which a solid
WebAssembly development practice should be built. You could, in theory,
skip this chapter. But, as Morpheus told Neo in The Matrix, “You take the red
pill—you stay in Wonderland and I show you how deep the rabbit-hole goes.”

When we get into the chapters on building alternative, non-browser hosts for
WebAssembly modules, you will absolutely benefit from the knowledge and
experience gained in this chapter.

The physical process of writing code in the WebAssembly Text Format (.wat
files) is pretty easy—just open up your favorite text editor (VSCode, Atom,
and others all have syntax highlighters for WebAssembly) and start typing.

As you now know, WebAssembly doesn’t have a string data type. This makes
the canonical “Hello, World” sample a little difficult. In fact, the code required

report erratum • discuss

Building a WebAssembly Application • 13

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

to actually produce that output in a browser is pretty complicated. If you try
to go this route as your first exposure to writing wat, you’re likely to get dis-
couraged.

For a simpler example that takes advantage of WebAssembly’s simple data
types, let’s try creating a module with a single function that adds two numbers
together and returns the result. Open up your text editor and create the
add1.wat file with the following contents:

fundamentals/add1.wat
(module

(func $add (param $lhs i32) (param $rhs i32) (result i32)
get_local $lhs
get_local $rhs
i32.add)

(export "add" (func $add))
)

The first expression at the top of every module is the module declaration. Note
that there’s no module name, package name, or namespace. There are a
number of other things that can go below this declaration, but in this case,
you’re just creating a single function, marked by the func keyword. Each
parameter to a function is indicated with an S-expression7 (a parenthesized
syntax for representing data or code as nested trees, first created for Lisp) in
the following form:

(param $parametername datatype)

In this case, there are two 32-bit integer parameters: $lhs and $rhs and the
result will be a 32-bit integer.

The call to get_local retrieves a function-scoped value and places it on the Wasm
execution stack. In this function, you’re calling get_local twice, putting the two
parameters on the stack, and then calling i32.add. This adds the two values
on the stack, pops them off, and puts the sum in their place. The value left
on the stack at the end of the function is the default return value.

The order these instructions appear in the code can seem awkward. This is
pure postfix (operator-last) notation and makes for some difficult reading.
You don’t necessarily have to do it this way. There’s an alternative, pure
S-expression prefix notation where you put the operation first and operands
second, as you see in this code:

7. en.wikipedia.org/wiki/S-expression

Chapter 1. WebAssembly Fundamentals • 14

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/fundamentals/add1.wat
../../../../../../https@en.wikipedia.org/wiki/S-expression
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

fundamentals/add2.wat
(module

(func $add (param $lhs i32) (param $rhs i32) (result i32)
(i32.add

(get_local $lhs)
(get_local $rhs)

)
)
(export "add" (func $add))

)

In the second form, there are more parentheses, but the code is easier to
read, especially as you get into more complicated patterns like those in the
next chapter. I’ll be using the second form from now on.

To invoke this function in WebAssembly, you use the call keyword, as shown
in this code that adds 9 and 5:

(call $add (i32.const 5) (i32.const 9))

Using the Binary Toolkit
Now that you’ve got some source code, it’s time to compile it and do some
exploration with the “wabbit” tools. Go to the directory where you created
add1.wat and run the following commands (wat2wasm should be in your path):

$ wat2wasm add1.wat -o add.wasm
$ wat2wasm add2.wat -o add_sexpr.wasm

If everything goes according to plan, you’ll receive the “no news is good news”
response—nothing. Next, use wasm-objdump to get a look at what actually made
it into your compiled add.wasm file. The -x option adds extra detail to the output:

$ wasm-objdump add.wasm -x

add.wasm: file format wasm 0x1

Section Details:

Type:
- type[0] (i32, i32) -> i32

Function:
- func[0] sig=0 <add>

Export:
- func[0] <add> -> "add"

There’s some pretty good information here. You can tell that there’s a function
type declared that accepts two integers and returns an integer. There’s a
function at index 0 called add. Finally, there’s an export called add.

report erratum • discuss

Building a WebAssembly Application • 15

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/fundamentals/add2.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

It is important to keep in mind that you can create functions in a WebAssembly
module and not export them. In fact, functions are all private to the module
and remain unexported until you explicitly write an export statement. If you
run the same object dump command on add_sexpr.wasm, you’ll see the exact
same type and exports.

There’s one last thing worth exploring—take a look at what the code looks
like after a round trip when you convert the binary add_sexpr.wasm file to its
corresponding text format:

$ wasm2wat add_sexpr.wasm -o roundtrip.wat

fundamentals/roundtrip.wat
(module

(type (;0;) (func (param i32 i32) (result i32)))
(func (;0;) (type 0) (param i32 i32) (result i32)

get_local 0
get_local 1
i32.add)

(export "add" (func 0)))

Here you can see that there’s a type created, a function of that data type, and
then the instructions have reverted to the inverted stack notation rather than
the instruction-first version. Finally, you can see that the export now just
refers to the function at index 0 rather than a name. The separation of the
symbol name and the function index is part of what ensures this kind of
round-trip compilation is possible.

The reason this round trip is important is to show what WebAssembly might
look like when produced by other languages, and, just in case you had any
doubts, to prove that your code is truly portable and can be opened, disas-
sembled, and re-generated at will. This also means anyone with access to
these tools can see everything inside your WebAssembly module—a point to
take note of when it comes to design and security in the future.

WebAssembly Source Maps

If a web browser has access to both the binary format and the original source code,
then you can expose a source map through the developer tools. Even at this early
stage in the technology’s life, you can already set breakpoints within WebAssembly
modules written in Rust running in Firefox. When the respective line of code comes
up, the browser renders the original (non-wat) code via the source map and not the
minified code that you saw in the round-trip file.

Chapter 1. WebAssembly Fundamentals • 16

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/fundamentals/roundtrip.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Wrapping Up
In this chapter, you got your first real exposure to writing WebAssembly code.
You got the “wabbit” toolkit installed and you used it to compile, examine,
and disassemble WebAssembly modules. You’ve received a preliminary
exposure to the syntax and specifications for WebAssembly and you should
be able to experiment with creating your own very basic modules.

In the next chapter, you’ll build on what you’ve learned so far to create a
fully functioning game with just the basic WebAssembly tools.

report erratum • discuss

Wrapping Up • 17

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

CHAPTER 2

...the imagination is unleashed by constraints. You break out
of the box by stepping into shackles.

 ➤ Jonah Lehrer

Building WebAssembly Checkers
Sample applications small enough to fit into a quick blog post are very good
at giving you a quick, painless introduction to some new piece of syntax. They
show you how to print to the console, they show you how many parentheses
you might normally need for a given line of code, and you get to see working
code so long as you don’t mind lacking the context of the surrounding appli-
cation not shown in the post.

Even when full applications are created, the nature of the easily consumed
medium means that these illustrative applications often look nothing like real-
world applications, and they bear little to no resemblance to anything you
might deploy to production.

In this chapter, you won’t be creating a contrived “Hello, World” WebAssembly
module. Instead, you’ll be creating a module that can be used to run a game
of checkers (also called draughts depending on which part of the world you
are from).

You’ll build this module by creating a series of small functions that, once
complete, will work together to provide the fundamentals of a working
checkers game. There’s always a trade-off between the complexity of a real
application and the need to keep an example simple enough to be used as a
learning tool, so we cut a few corners on evaluating some game rules and
edge cases, but the code will be playable when you’re done.

Playing Checkers, the Board Game
If you’ve played checkers, then you can probably skip this section. If you need
a refresher, then this will still be a quick read.

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Checkers is a fairly simple game played on an 8×8 game board. The board’s
squares are typically alternating colors (one of the most common in the US
is a black and red board).

Each player then positions 12 pieces on the board in fixed squares spaced
evenly one square apart from each other. One player controls the black pieces
and another controls the white (or red) pieces. The player controlling the black
pieces makes the first move.

The simplest move is where a piece is allowed to slide diagonally on the board
if there is no other player occupying that spot. If there is, you might be able
to jump and capture that player’s piece. Players take turns moving or jumping
(which can include multiple jumps per turn if pieces are positioned right)
until one player reaches the opponent’s home row. This row is called the kings
row or crownhead. Once in the opponent’s kings row, the player’s piece is
crowned and gains the ability to move either backward or forward.

The game is over when one player has captured all of their opponent’s pieces,
or left their opponent with no more legal moves. When neither side can force
a win, the game ends in a draw.

Coping with Data Structure Constraints
If you were to build this game using a high-level programming language like
Java, Rust, Python, or even C++, then you would likely have a very different
approach to setting up the data structures needed for the game than what
you’ll use in WebAssembly.

From the rules described in the previous section, you’re going to need to hold
the state of an 8×8 game board. The positions on this game board can be
empty, or they can hold black or white pieces. In this section, you’ll learn
how to manage this kind of state in WebAssembly using nothing but the
limited data structures available to the language.

If you’re playing along with the home game, then you’ll be creating functions
throughout the chapter as you’re exposed to more fundamental WebAssembly
language primitives and concepts. To get started, let’s create a directory for
our project. I called mine wasmcheckers but you can choose anything. One
advantage of writing code at this low level is we’re just going to end up with
a single text file—no project files, no Makefiles, just text.

Create a checkers.wat file in your project directory and define an empty module:

Chapter 2. Building WebAssembly Checkers • 20

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

(module
(memory $mem 1)

)

The 1 in the memory declaration indicates that the memory named $mem must
have at least one 64KB page of memory allocated to it. Memory can grow at
the request of either the Wasm module or the host.

You can compile this with wat2wasm and then examine the contents with
wasm-objdump before moving on to the details of state management. You should
see some output that looks like the following:

$ wasm-objdump checkers.wasm -x

checkers.wasm: file format wasm 0x1

Section Details:

Memory:
- memory[0] pages: initial=1

As you continue through this chapter, if you get curious about things you
can always compile and then use the tools to examine what ended up in the
compiled module.

Managing Game Board State
The first thing to tackle when it comes to managing the state of a game board
is, obviously, the board itself. As mentioned, a checkerboard is an 8×8 grid.
This probably triggers the part of your programmer brain that wants to declare
a two-dimensional array. In Rust, that might look something like this:

let mut checkerboard: [[GamePiece; 8]; 8];

This is how most developers tend to visualize this problem, differences in
syntax aside. But here’s the rub: WebAssembly doesn’t have arrays—single-
dimension or otherwise. It also doesn’t have complex types, so you can’t create
a struct or a tuple or even a hash map called GamePiece.

One thing that WebAssembly does have is linear memory. As we discussed
in the preceding chapter, WebAssembly can have named, contiguous blocks
of memory that it can write to, read from, import, or export. So if you’re going
to use a linear memory block, how do you represent a two-dimensional array
in that space?

The solution is to linearize the two-dimensional array. Many of your favorite
programming languages most likely already do this linearization for efficiency

report erratum • discuss

Coping with Data Structure Constraints • 21

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

without you noticing. The trick to linearization is figuring out the math behind
converting an (x,y) coordinate pair into a memory offset.

In this figure, you can see some blocks that represent values in individual
positions in memory. Above some of these are the corresponding (x,y) coordi-
nate on the game board and below you see the unit offset of that piece of
memory. For example, the coordinate (0,0) on the board is at unit offset 0.
The coordinate (7,0) on the game board is at unit offset 7, coordinate (7,1) is
at unit offset 15, and so on:

0 2 0 2 0 2 0 2
(0,0) (7,0)

0 7

2 0 2 0 2 0 2 0
(0,1) (7,1)

8 15

0 2 0 2 0 2 0 2
(0,2) (7,2)

16 23

You may have detected a pattern, and the equation for that pattern is offset =
(x + y*8), where 8 is the number of squares in a row. This would be fine if you
were just linearizing a two-dimensional array into a one-dimensional space
indexed as an array, but WebAssembly’s memory isn’t indexed like an array.
It’s indexed by byte.

This means that if you’re going to store a 32-bit integer (4 bytes) in each spot
on the game board, you need to adjust the equation to offset = (x + y*8) * 4 where
4 is the number of bytes per unit offset.

Thinking about data storage this way activated a part of my brain I had long
since thought dead and covered in cobwebs. It takes a little getting used to,
and it may feel like a harsh constraint compared to what you’re used to, but

Chapter 2. Building WebAssembly Checkers • 22

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

if you stick with this until the end of the chapter, you’ll see how operating
within these constraints pays off.

The foundation of the entire checkers game will be a function that determines
the byte offset for a given X and Y coordinate, as this will be something your
code is going to need to do every time it updates the board (this is inside the
module declaration, after the memory declaration):

wasmcheckers/checkers.wat
(func $indexForPosition (param $x i32) (param $y i32) (result i32)

(i32.add
(i32.mul
(i32.const 8)
(get_local $y)

)
(get_local $x)

)
)
;; Offset = (x + y * 8) * 4
(func $offsetForPosition (param $x i32) (param $y i32) (result i32)

(i32.mul
(call $indexForPosition (get_local $x) (get_local $y))
(i32.const 4)

)
)

The math being performed here boils down to the following:

offsetForPosition(1, 2)
= (1 + 2 * 8) * 4
= 68

The nesting of the multiplication and addition operators is a little tough to
read, but it’s still manageable. Armed with the ability to determine where to
put your game state, the next step is to figure out how to represent that state.

Fun with Bit Flags
In each of the locations in linear memory, you have access to 32 bits (or 4
bytes). You don’t have the luxury of a complex structure or any language
primitives for storing lists, fields, or tuples. You’ve just got raw bits, so how
are you going to represent game state?

This dusts off another technique from the patterns vault called bit flags. Bit
flags is a technique for assigning meaning to individual bits within a number.
When more than one consecutive bit are combined to store some other
meaning, that’s typically called bit masking. Most of what we’re going to do
is bit flags, though we’ll touch on masking briefly.

report erratum • discuss

Coping with Data Structure Constraints • 23

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

0 0 1 0 1 1 0 1
Is Player?

Illuminated

Tutorial
Completed

Healer
Discovered

Elven King
Slain

Access to
Fire Magic

Unlocked
Cave of

Nightmares

Game
Master

You can see the 8-bit number 00101101, but rather than simply meaning the
numerical constant 45, this is actually a set of boolean values. As the previous
image indicates, the value 45 carries all of the following meaning within the
context of a fictional video game:

• This game object is a player
• Game object is not illuminated
• Tutorial is completed
• Healer has been discovered
• The Elven king has not been slain
• The player has access to fire magic
• The player has not yet unlocked the cave of nightmares
• The player is not a game master

When you describe certain data structures this way, you end up passing
around simple, raw numeric values to represent players and game objects
rather than high-level constructs like structs or enums.

Given strategies like bit flags or masking, it’s kind of surprising just how
much information you can pack into a single number. Underneath all of your
higher level languages, many structs are getting densely packed into numbers
just like this. Tooling and compilers doing all this work on your behalf is a
recurring theme, and you’re looking at the individual gears within your
familiar machine now.

You can use bitwise logical operators on numbers to query and manipulate
these bit values. For example, a bitwise AND operation compares each bit of
one number with the corresponding bit of a second number, and if both bits
in the same relative position are 1, then the bit in the resulting number will

Chapter 2. Building WebAssembly Checkers • 24

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

be 1. Otherwise, the output bit will be 0. A bitwise OR produces a 1 when
either of the two compared bits are 1, and a bitwise XOR performs an exclusive
or on the compared bits.

The following quick reference table will come in super handy when working
with bit masked or “packed” values:

Bitmask ActionWebAssemblyLogical Operation

Query the value of a biti32.andAND

Sets a bit to true (1)i32.orOR

Toggles the value of a biti32.xorXOR

So far, you’ve written a function that lets you convert a Cartesian checkerboard
coordinate into a memory address, and you’ve seen how you can pack lots of
data into simple integers for storage and retrieval. Now you can assign
meaning to the bits of an integer on a checkerboard:

Game MeaningDecimal ValueBinary Value

Unoccupied Square0[unused 24 bits]...00000000
Black Piece1[unused 24 bits]...00000001
White Piece2[unused 24 bits]...00000010
Crowned Piece4[unused 24 bits]...00000100

Using these bit flags, you know that a crowned black piece will have a value
of 5 (crowned + black), a crowned white piece will have a value of 6 (crowned
+ white), and all empty spaces on the board will be represented by 0s. If you
have a keen eye, you may have noticed that this bit-packed data structure
technically allows for a piece to be both white and black at the same time (a
value of 3). Keeping the piece colors mutually exclusive will have to be
something you enforce with code, though you could also use different bit flag
meanings to avoid this situation if you wanted.

Bitwise versus Regular Math

You might have noticed that to activate multiple boolean flags within a bit masked
value, you can simply add the two flags together, as in the case of Black (1) and
Crowned (4) equals 5. This is a bad idea because this operation isn’t idempotent. If
you add the Crown flag to a number twice, you’ve basically corrupted your state.
When you activate a flag with i32.or, that’s idempotent, and you can do it over and
over again without corrupting the rest of the number.

report erratum • discuss

Coping with Data Structure Constraints • 25

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Once you decide what each bit means, you can write some functions to query,
set, and remove these values from a piece. And in this case, a “piece” is liter-
ally nothing more than a 4-byte integer value:

wasmcheckers/checkers.wat
;; Determine if a piece has been crowned
(func $isCrowned (param $piece i32) (result i32)

(i32.eq
(i32.and (get_local $piece) (get_global $CROWN))
(get_global $CROWN)

)
)

;; Determine if a piece is white
(func $isWhite (param $piece i32) (result i32)

(i32.eq
(i32.and (get_local $piece) (get_global $WHITE))
(get_global $WHITE)

)
)

;; Determine if a piece is black
(func $isBlack (param $piece i32) (result i32)

(i32.eq
(i32.and (get_local $piece) (get_global $BLACK))
(get_global $BLACK)

)
)

;; Adds a crown to a given piece (no mutation)
(func $withCrown (param $piece i32) (result i32)

(i32.or (get_local $piece) (get_global $CROWN))
)

;; Removes a crown from a given piece (no mutation)
(func $withoutCrown (param $piece i32) (result i32)
(i32.and (get_local $piece) (i32.const 3))

)

This code relies on immutable global values like $CROWN, $BLACK, and $WHITE
that act like constants would in other languages. These are defined at the top
of the module like so:

(global $WHITE i32 (i32.const 2))
(global $BLACK i32 (i32.const 1))
(global $CROWN i32 (i32.const 4))

The withoutCrown function is a bit tricky. We can’t use XOR with the crown bit
(4) to force it to be zero. That will instead toggle it, setting the bit for a piece
that isn’t already crowned. The intent of this function is to compare two pieces

Chapter 2. Building WebAssembly Checkers • 26

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

regardless of their crown status. The safe way to do this is to use AND with
a mask that only returns the black and white bits and ignores all else.

For me, as someone who doesn’t think in binary and bitwise operations all
day, this was difficult to visualize. Take a look at the following truth table
that illustrates how this works:

ResultMaskOperationMeaningValue

0001 (B)0011&Crowned Black0101
0001 (B)0011&Uncrowned Black0001
0010 (W)0011&Crowned White0110

$withCrown works on the same bitmasking principal, just with a different
operator. This code invokes i32.or on the bits in the $piece variable and the bits
in the 32-bit constant 4. Referring to our handy bitmasking reference chart,
we know that the OR bitwise operation is used to set a bit. So, the bit in the
third spot from the right (22) will be set to 1 and the new value is returned.

It’s important to remember here that you’re not (yet) affecting stored state,
you’re just playing with the bits inside numbers. At this point you’ve created
some functions that perform bit masking operations on simple integers to
give them contextual meaning within the checkers game.

Before we move on to writing more code, it would be nice to be able to test
and experiment with the functions we’re writing. Since you’re using raw wast
syntax, there’s no easy unit testing framework or code generation available.
The easiest thing to do is just export all the functions we’re working on so we
can invoke them from JavaScript until we’re satisfied they work as intended.
First, put $offsetForPosition, $indexForPosition, and all of the bitmasking functions
into a test module called func_test.wat:

wasmcheckers/func_test.wat
(module

(memory $mem 1)
(global $WHITE i32 (i32.const 2))
(global $BLACK i32 (i32.const 1))
(global $CROWN i32 (i32.const 4))

(func $indexForPosition (param $x i32) (param $y i32) (result i32)
(i32.add

(i32.mul
(i32.const 8)
(get_local $y)

)
(get_local $x)

)
)

report erratum • discuss

Coping with Data Structure Constraints • 27

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/func_test.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

;; Offset = (x + y * 8) * 4
(func $offsetForPosition (param $x i32) (param $y i32) (result i32)

(i32.mul
(call $indexForPosition (get_local $x) (get_local $y))
(i32.const 4)

)
)

;; Determine if a piece has been crowned
(func $isCrowned (param $piece i32) (result i32)

(i32.eq
(i32.and (get_local $piece) (get_global $CROWN))
(get_global $CROWN)

)
)

;; Determine if a piece is white
(func $isWhite (param $piece i32) (result i32)

(i32.eq
(i32.and (get_local $piece) (get_global $WHITE))
(get_global $WHITE)

)
)

;; Determine if a piece is black
(func $isBlack (param $piece i32) (result i32)

(i32.eq
(i32.and (get_local $piece) (get_global $BLACK))
(get_global $BLACK)

)
)

;; Adds a crown to a given piece (no mutation)
(func $withCrown (param $piece i32) (result i32)

(i32.or (get_local $piece) (get_global $CROWN))
)

;; Removes a crown from a given piece (no mutation)
(func $withoutCrown (param $piece i32) (result i32)
(i32.and (get_local $piece) (i32.const 3))

)

(export "offsetForPosition" (func $offsetForPosition))
(export "isCrowned" (func $isCrowned))
(export "isWhite" (func $isWhite))
(export "isBlack" (func $isBlack))
(export "withCrown" (func $withCrown))
(export "withoutCrown" (func $withoutCrown))

)

Compile that into func_test.wasm with wat2wasm, then create a JavaScript wrapper
that will load the WebAssembly module and execute the exported functions
so we can make sure they’re working as we expect:

Chapter 2. Building WebAssembly Checkers • 28

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

wasmcheckers/func_test.js
fetch('./func_test.wasm').then(response =>

response.arrayBuffer()
).then(bytes => WebAssembly.instantiate(bytes)).then(results => {

console.log("Loaded wasm module");
instance = results.instance;
console.log("instance", instance);

var white = 2;
var black = 1;
var crowned_white = 6;
var crowned_black = 5;

console.log("Calling offset");
var offset = instance.exports.offsetForPosition(3,4);
console.log("Offset for 3,4 is ",offset);

console.debug("White is white?", instance.exports.isWhite(white));
console.debug("Black is black?", instance.exports.isBlack(black));
console.debug("Black is white?", instance.exports.isWhite(black));
console.debug("Uncrowned white",

instance.exports.isWhite(instance.exports.withoutCrown(crowned_white)));
console.debug("Uncrowned black",

instance.exports.isBlack(instance.exports.withoutCrown(crowned_black)));
console.debug("Crowned is crowned",

instance.exports.isCrowned(crowned_black));
console.debug("Crowned is crowned (b)",

instance.exports.isCrowned(crowned_white));
});

Finally, we can create a little index.html file that starts the func_test.js script:

wasmcheckers/func_test.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<style>

body {
background-color: rgb(255, 255, 255);

}
</style>

</head>

<body>

<script src="./func_test.js"></script>

</body>

</html>

Because of cross-site scripting rules in the browser, it might not let you open
a file from the file system without having an HTTP server (my Firefox on

report erratum • discuss

Coping with Data Structure Constraints • 29

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/func_test.js
../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/func_test.html
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Ubuntu won’t, but apparently Firefox on Arch Linux does), so spin up your
favorite one or you can just use Python to launch this lightweight one in the
same directory as your HTML file:

$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

Now open your browser to localhost:8000/func_test.html. Open up the JavaScript
debug console and you should see something like the following output, veri-
fying that we’re getting the values we expect:

Loaded wasm module
instance WebAssembly.Instance { exports: {…} }
Calling offset
Offset for 3,4 is 140
White is white 1
Black is black 1
Black is not white 0
Uncrowned white 1
Uncrowned black 1
Crowned is crowned 1
Crowned is crowned (b) 1

While reassuring (our code works), this is also a boring and dry set of console
output. As we progress further in the book, you’ll be able to produce real, user-
facing web visualizations of state, game boards, and other module internals.

As you progress through this chapter, you can just copy and paste whatever
function you like into this harness, make sure it’s exported, and test it with
JavaScript. In the next section, you’ll build on what you’ve coded in checkers.wat
so far to start reading and writing game state to manage the checkerboard.

Manipulating the Board
The next couple of functions you’re going to write involve storing and
retrieving values from the game board grid in linear memory and performing
some validation checks on parameters and data before allowing state mutation:

wasmcheckers/checkers.wat
;; Sets a piece on the board.
(func $setPiece (param $x i32) (param $y i32) (param $piece i32)

(i32.store
(call $offsetForPosition
(get_local $x)
(get_local $y)

)
(get_local $piece)

)
)

Chapter 2. Building WebAssembly Checkers • 30

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

;; Gets a piece from the board. Out of range causes a trap
(func $getPiece (param $x i32) (param $y i32) (result i32)

(if (result i32)
(block (result i32)
(i32.and

(call $inRange
(i32.const 0)
(i32.const 7)
(get_local $x)

)
(call $inRange

(i32.const 0)
(i32.const 7)
(get_local $y)

)
)

)
(then

(i32.load
(call $offsetForPosition

(get_local $x)
(get_local $y))

)
)
(else

(unreachable)
)

)
)

;; Detect if values are within range (inclusive high and low)
(func $inRange (param $low i32) (param $high i32)

(param $value i32) (result i32)
(i32.and

(i32.ge_s (get_local $value) (get_local $low))
(i32.le_s (get_local $value) (get_local $high))

)
)

The $setPiece function has some new syntax, and this is the first place where
your code uses the return value from one function as a parameter to another
function. $setPiece calls i32.store, which stores a 32-bit integer in a memory
address. The memory address will be the value returned by calling $offsetFor-
Position, and the value stored will be the parameter $piece. For example, to set
a white piece at grid position (5,5), you could call (i32.store 200 2).

$getPiece illustrates the first use of an if block with a function call as a predicate.
You need to specify the type of the value that’ll be returned from a predicate if
it executes a function. The block keyword simply wraps one or more statements

report erratum • discuss

Coping with Data Structure Constraints • 31

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

and indicates the return type of that block, kind of like an anonymous func-
tion. The general structure for an if/then/else block that also executes code in
the predicate clause looks like this:

(if (result i32) (block (result i32) ...)
(then ...)
(else ...)

)

Finally, the $inRange function is used to prevent querying beyond the edge of
the game board. Most high-level programming languages have built-in features
that will prevent situations like this or will throw an out-of-bounds runtime
exception. Without those luxuries, in WebAssembly you’ve got to manually
ensure you never access memory beyond the bounds of a given data structure.

It’s worth pointing out, however, that even an index out-of-bounds error in
WebAssembly can never reach beyond the limits of its linear memory. This
keeps the chance of heap corruption pretty low.

Bounds Checking Blunders

Throughout computing history, failing to properly check bounds at the assembly
level has resulted in some catastrophic bugs, malicious viruses, and some amazing
video game exploits. One of my favorites is this one from the original Famicom version
of The Legend of Zelda,a which shows how reading beyond implied bounds can convert
raw data into executable instructions to teleport straight to the end of the game.

a. youtu.be/fj9u00PMkYU

Keeping Track of the Current Turn
The game board itself isn’t the only bit of state that needs to be maintained
in a checkers game. You’ll need to keep track of who has the next move. For
obvious reasons, the checkers engine needs to prevent a player from taking
two turns in a row or moving pieces that don’t belong to them.

You’ve already defined two different values to indicate piece color: 1 for black
and 2 for white. In a regular programming language you might simply create
a global variable called currentTurn and set that to an enum like White or Black.
With WebAssembly, we can create global variables that are either private to
the module or can be shared with the host. Let’s take a look at the global dec-
laration near the top of the module:

(memory $mem 1)
(global $currentTurn (mut i32) (i32.const 0))

Chapter 2. Building WebAssembly Checkers • 32

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@youtu.be/fj9u00PMkYU
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

When we declare global variables in wast (raw text WebAssembly syntax),
we can specify their mutability (immutable globals can be treated like con-
stants in other languages), and we need to specify an initial value. The
$currentTurn global will be set to 1 when it is black’s turn and 2 when it is
white’s turn. The following code is responsible for querying and updating
the current turn state:

wasmcheckers/checkers.wat
;; Gets the current turn owner (white or black)
(func $getTurnOwner (result i32)

(get_global $currentTurn)
)

;; At the end of a turn, switch turn owner to the other player
(func $toggleTurnOwner

(if (i32.eq (call $getTurnOwner) (i32.const 1))
(then (call $setTurnOwner (i32.const 2)))
(else (call $setTurnOwner (i32.const 1)))

)
)

;; Sets the turn owner
(func $setTurnOwner (param $piece i32)

(set_global $currentTurn (get_local $piece))
)

;; Determine if it's a player's turn
(func $isPlayersTurn (param $player i32) (result i32)

(i32.gt_s
(i32.and (get_local $player) (call $getTurnOwner))
(i32.const 0)

)
)

To check whether it is a current player’s turn, we might be tempted to check
if the value of $player is the same as the value returned by $isPlayersTurn. The
problem is that $player can be holding a value indicating a crowned piece,
which would mess up our equality check.

To compensate for this, when the $isPlayersTurn function checks if the player
value passed is the current player, it will perform an AND (remember, this
queries only the bits in the mask) of the value and the player, and if that is
greater than zero, that player is the color currently stored in the $currentTurn
global. This is kind of like comparing player.color with currenturn.color in other,
higher-level programming languages. Here, think of the concept of “color” as
a bitmask.

report erratum • discuss

Coping with Data Structure Constraints • 33

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Implementing Game Rules
From a rules standpoint, checkers is not all that complex of a game. All 12
of your pieces start out with the same movement capabilities, and the only
special pieces ever on the board are those that have been crowned.

The goal of this chapter isn’t to produce a game of checkers that might be
ready to plug into a WebGL site so you can ship it tomorrow. You’re building
a foundation for such a thing, but the nitty-gritty details of checkers edge-
case rules are beyond the scope of this chapter.

This checkers game implements some basic rules like crowning a piece and
moving. It doesn’t implement jumps, multi-jumps, or detect a winner. If you
would like to do that as a reader exercise, I would love to see your game on
GitHub!

The first function in the following code listing, $shouldCrown, determines if a
piece should be crowned. A piece is eligible for upgrade if it resides in its
opponent’s kings row. The $crownPiece function uses a few functions you’ve
already written to add a crown to a piece and then store it in the gameboard:

wasmcheckers/checkers.wat
;; Should this piece get crowned?
;; We crown black pieces in row 0, white pieces in row 7
(func $shouldCrown (param $pieceY i32) (param $piece i32) (result i32)

(i32.or
(i32.and
(i32.eq

(get_local $pieceY)
(i32.const 0)

)
(call $isBlack (get_local $piece))

)

(i32.and
(i32.eq

(get_local $pieceY)
(i32.const 7)

)
(call $isWhite (get_local $piece))

)
)

)

;; Converts a piece into a crowned piece and invokes
;; a host notifier
(func $crownPiece (param $x i32) (param $y i32)

(local $piece i32)
(set_local $piece (call $getPiece (get_local $x)(get_local $y)))

Chapter 2. Building WebAssembly Checkers • 34

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

(call $setPiece (get_local $x) (get_local $y)
(call $withCrown (get_local $piece)))

(call $notify_piececrowned (get_local $x)(get_local $y))
)

(func $distance (param $x i32)(param $y i32)(result i32)
(i32.sub (get_local $x) (get_local $y))

)

The local keyword declares a temporary variable that will only be visible within
its enclosing scope. In the case of this code listing, all the locals are scoped
to their containing function. The set_local instruction sets the value of a local
variable. Sadly, you can’t declare and set a local in the same line of code.
High-level languages that allow this sort of thing are just generating the sep-
arate declaration and assignment operations on your behalf.

Another thing worth pointing out in the preceding code listing is the call to
$notify_piececrowned. This function will be imported by this checkers module and
implemented by the host. Whenever a piece is crowned, the module calls this
to let the host react to the change. This could include modifying the sprite
on display for the newly crowned piece, playing a victorious sound, or both.

The $distance function is just a simple subtraction. In the next section on
movement, you’ll see how that value is used to determine if that distance is
valid.

Nearly all of the (naive) fundamentals of checkers are done at this point: the
only thing left is to code player movement.

Moving Players
Before a player can move, you need to ensure that it is a valid move. In the
case of this naive implementation of checkers, a valid move is:

• The “move distance” from current to target (single axis) is valid
• The target space is unoccupied
• The piece being moved belongs to the current player

Let’s take a look at the code to determine if a move is valid:

wasmcheckers/checkers.wat
;; Determine if the move is valid
(func $isValidMove (param $fromX i32) (param $fromY i32)

(param $toX i32) (param $toY i32) (result i32)
(local $player i32)
(local $target i32)

(set_local $player (call $getPiece (get_local $fromX) (get_local $fromY)))
(set_local $target (call $getPiece (get_local $toX) (get_local $toY)))

report erratum • discuss

Moving Players • 35

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

(if (result i32)
(block (result i32)
(i32.and

(call $validJumpDistance (get_local $fromY) (get_local $toY))
(i32.and

(call $isPlayersTurn (get_local $player))
;; target must be unoccupied
(i32.eq (get_local $target) (i32.const 0))

)
)

)
(then
(i32.const 1)

)
(else
(i32.const 0)

)
)

)

;; Ensures travel is 1 or 2 squares
(func $validJumpDistance (param $from i32) (param $to i32) (result i32)

(local $d i32)
(set_local $d
(if (result i32)

(i32.gt_s (get_local $to) (get_local $from))
(then
(call $distance (get_local $to) (get_local $from))

)
(else
(call $distance (get_local $from) (get_local $to))

))
)
(i32.le_u

(get_local $d)
(i32.const 2)

)
)

The code for $validJumpDistance might look a little strange. Since WebAssembly’s
integers don’t support the abs() function, we’re basically deciding on the order
in which we supply arguments to the $distance function based on whether or
not it will result in a negative number. Also remember that we’re not building
a rules-compliant version of checkers—this is just enough code to exercise
some basic rules in service of learning WebAssembly.

In the following code listing, the $move function will eventually be exported (typ-
ically done at the end of the module code) function so the host can call it. Since

Chapter 2. Building WebAssembly Checkers • 36

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

this makes it a public API method, it has to guard against bad data and invalid
moves. $move returns 1 for a successful move and 0 for a failed one:

wasmcheckers/checkers.wat
;; Exported move function to be called by the game host
(func $move (param $fromX i32) (param $fromY i32)

(param $toX i32) (param $toY i32) (result i32)
(if (result i32)

(block (result i32)
(call $isValidMove (get_local $fromX) (get_local $fromY)

(get_local $toX) (get_local $toY))
)
(then
(call $do_move (get_local $fromX) (get_local $fromY)

(get_local $toX) (get_local $toY))
)
(else
(i32.const 0)

)
)

)

Notice that the $move function defers some functionality to the $do_move func-
tion. This separates the conditional guard checking code from the actual state
changes in $do_move. After a move toggles the current turn owner, the state
change sets the piece at the destination location, and wipes out the piece at
the original location:

wasmcheckers/checkers.wat
;; Internal move function, performs actual move post-validation of target.
;; Currently not handled:
;; - removing opponent piece during a jump
;; - detecting win condition
(func $do_move (param $fromX i32) (param $fromY i32)

(param $toX i32) (param $toY i32) (result i32)
(local $curpiece i32)
(set_local $curpiece (call $getPiece (get_local $fromX)(get_local $fromY)))

(call $toggleTurnOwner)
(call $setPiece (get_local $toX) (get_local $toY) (get_local $curpiece))
(call $setPiece (get_local $fromX) (get_local $fromY) (i32.const 0))
(if (call $shouldCrown (get_local $toY) (get_local $curpiece))

(then (call $crownPiece (get_local $toX) (get_local $toY))))
(call $notify_piecemoved (get_local $fromX) (get_local $fromY)

(get_local $toX) (get_local $toY))
(i32.const 1)

)

report erratum • discuss

Moving Players • 37

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

As a convenience, the $do_move function invokes a function called $notify_piece-
moved that lets the host know when a piece has finished moving. This function
will be declared as an import at the beginning of the module. This function is
called so the host can react to player movement rather than repeatedly polling
for changes to the game board state.

Finally, with all the basic functions in place, it’s time to connect this module
to a host and test it.

Testing Wasm Checkers
Before you can start testing or playing checkers, you need just one more
function. You’ve written functions to maintain the game board state, to move
player pieces, and even to notify the host when important events occur. What’s
missing is the initial set up—placing all of the players’ pieces on the board.

$initBoard is a simple, brute-force function that just calls $setPiece over and over
to place the white and black pieces, finally setting the current turn to black:

;; Manually place each piece on the board to initialize the game
(func $initBoard

;; Place the white pieces at the top of the board
(call $setPiece (i32.const 1) (i32.const 0) (i32.const 2))
(call $setPiece (i32.const 3) (i32.const 0) (i32.const 2))
(call $setPiece (i32.const 5) (i32.const 0) (i32.const 2))
(call $setPiece (i32.const 7) (i32.const 0) (i32.const 2))

«many, many more calls to $setPiece»
(call $setTurnOwner (i32.const 1)) ;; Black goes first

)

The next step is to include all the imports at the top of the checkers.wat module:

wasmcheckers/checkers.wat
(import "events" "piecemoved"

(func $notify_piecemoved (param $fromX i32) (param $fromY i32)
(param $toX i32) (param $toY i32)))

(import "events" "piececrowned"
(func $notify_piececrowned (param $pieceX i32) (param $pieceY i32)))

And declare the exports at the bottom of the module:

wasmcheckers/checkers.wat
(export "getPiece" (func $getPiece))
(export "isCrowned" (func $isCrowned))
(export "initBoard" (func $initBoard))
(export "getTurnOwner" (func $getTurnOwner))
(export "move" (func $move))
(export "memory" (memory $mem))

Chapter 2. Building WebAssembly Checkers • 38

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/checkers.wat
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

It is important to notice that not all of the functions are exported. The host
is limited to invoking only the public (exported) API. For example, you do
not export $setPiece, which could possibly let the host code cheat or allow a
bug to corrupt the game board. This is a standard defensive programming
practice.

With the checkers.wat file complete, you should be able to build it using wat2wasm:

$ /path/to/wabt/bin/wat2wasm checkers.wat -o checkers.wasm

Next, create an index.js file to load the module and run through some sample
moves:

wasmcheckers/index.js
fetch('./checkers.wasm').then(response =>

response.arrayBuffer()
).then(bytes => WebAssembly.instantiate(bytes, {

events: {
piecemoved: (fX, fY, tX, tY) => {
console.log("A piece moved from (" + fX + "," + fY +

") to (" + tX + "," + tY + ")");
},
piececrowned: (x, y) => {
console.log("A piece was crowned at (" + x + "," + y + ")");

}
},

}

)).then(results => {
instance = results.instance;

instance.exports.initBoard();
console.log("At start, turn owner is " +

instance.exports.getTurnOwner());

instance.exports.move(0, 5, 0, 4); // B
instance.exports.move(1, 0, 1, 1); // W
instance.exports.move(0, 4, 0, 3); // B
instance.exports.move(1, 1, 1, 0); // W
instance.exports.move(0, 3, 0, 2); // B
instance.exports.move(1, 0, 1, 1); // W
instance.exports.move(0, 2, 0, 0); // B - this will get a crown
instance.exports.move(1, 1, 1, 0); // W
// B - move the crowned piece out
let res = instance.exports.move(0, 0, 0, 2);

document.getElementById("container").innerText = res;
console.log("At end, turn owner is " + instance.exports.getTurnOwner());

}).catch(console.error);

report erratum • discuss

Testing Wasm Checkers • 39

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/index.js
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

The moves in this test are just exercising the naive game rules. A real game
wouldn’t allow movement like this, but this at least helps us verify that the
code we did write works as intended. Now you can create an index.html file that
will run this script:

wasmcheckers/index.html
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8">
<style>

body {
background-color: rgb(255, 255, 255);

}
</style>

</head>

<body>

<script src="./index.js"></script>

</body>

</html>

As you did earlier in the chapter, you can host this file behind a simple Python
web server:

$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

You should now be able to point your browser at localhost:8000, open the
developer tools, and see the following in your JavaScript console:

At start, turn owner is 1
A piece moved from (0,5) to (0,4)
A piece moved from (1,0) to (1,1)
A piece moved from (0,4) to (0,3)
A piece moved from (1,1) to (1,0)
A piece moved from (0,3) to (0,2)
A piece moved from (1,0) to (1,1)
A piece was crowned at (0,0)
A piece moved from (0,2) to (0,0)
A piece moved from (1,1) to (1,0)
A piece moved from (0,0) to (0,2)

The module works, so we’ve got that going for us. Take a step back and bask
in the glow of knowing that you’ve written WebAssembly to handle in-memory
game board state, turn management, game rule validation, and even notify
the host when important events occur. Before you rush off to make millions

Chapter 2. Building WebAssembly Checkers • 40

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmcheckers/index.html
localhost:8000
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

on your new checkers game, there’s one more thing you really need to see—
take a look at the file size of your compiled wasm module:

$ ls -l
total 48
-rw-r--r-- 1 kevin kevin 853 Oct 28 13:08 checkers.wasm
-rw-r--r-- 1 kevin kevin 9952 Oct 28 11:04 checkers.wat
-rw-r--r-- 1 kevin kevin 243 Oct 28 10:38 func_test.html
-rw-r--r-- 1 kevin kevin 1063 Oct 28 11:13 func_test.js
-rw-r--r-- 1 kevin kevin 184 Oct 28 10:57 func_test.wasm
-rw-r--r-- 1 kevin kevin 1405 Oct 28 10:57 func_test.wat
-rw-r--r-- 1 kevin kevin 238 Jul 7 15:16 index.html
-rw-r--r-- 1 kevin kevin 1072 Jul 15 10:57 index.js

Your eyes are not deceiving you—the compiled size of the checkers module
is a mere 853 bytes! It might vary a bit depending on your OS and file system,
but it will still be tiny. You also know, because you wrote all your own state
management code, that the checkers module will never use more than a single
64KB page of memory. In fact, your module only uses a grand total of 256
bytes of linear memory. Just think about how many simultaneous, in-memory
copies of a live checkers game a server could hold.

You’ll see in subsequent chapters that as you add tooling and code generation,
this will dramatically affect the size of your wasm modules. Some of the tools
you’ve seen so far can also be used to trim out some of the excess fat from
these modules, but you’ll never be able to create modules this small unless
you’re hand-coding your wat.

Wrapping Up
There was more to this chapter than just learning how to write WebAssembly
“the hard way.” Even now, in the early days of the WebAssembly ecosystem,
multiple layers of tooling and code generation are available that can easily
hide the inner workings from you.

Because you’ve written more than just a simple module that adds two numbers
together, you know what’s going on at the bottom levels of abstraction. More
importantly, you can appreciate what tools and code generators will do for
you. This gives you a deeper understanding of the consequences of the Rust
code you’ll write and the design decisions you’ll make when building
WebAssembly solutions. Further, when you get to the chapter on hosting
WebAssembly with Rust, you will already have an in-depth knowledge of the
components of a WebAssembly module and so the parsing, loading, and exe-
cuting tasks will all make more sense.

report erratum • discuss

Wrapping Up • 41

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

In the next chapter, you’ll start to write at higher levels of abstraction, using
Rust to target WebAssembly. As you explore that chapter, keep in mind what
you’ve learned so far, as keeping a mental map between high-level code and
its raw WebAssembly equivalent will help you squeeze every ounce of power,
performance, and elegance from WebAssembly.

Chapter 2. Building WebAssembly Checkers • 42

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Part II

Interacting with JavaScript

In this part, we’ll expand on our foundation by
learning how to build WebAssembly modules with
Rust and integrate them with JavaScript and the
browser.

see more please visit: https://homeofpdf.com

CHAPTER 3

Wading into WebAssembly with Rust
The first part of this book introduced you to the world of WebAssembly. You
learned about its internals and its architecture, what stack machines are,
and where WebAssembly fits within the larger world of web applications. You
even built a mostly functioning checkers module entirely in wast, the text
representation of WebAssembly instructions.

In this part of the book, you will focus not only on increasing your ability
to interweave WebAssembly and JavaScript functionality, but you will also
go through an introduction to Rust and you will see how you can use it to
add strong types, memory safety, and elegant, expressive code to your
WebAssembly modules.

In this chapter, you’ll get an introduction to Rust and get your workstation
tooling set up to target WebAssembly from Rust. By the end of this chapter,
you’ll build a new version of the checkers module entirely in Rust. The Rust
language has a longer learning curve than other languages like Go. As such,
you might want to start skimming through the official Rust book1 to get
familiar with some of the syntax coming up in the book. It’s not required, but
consulting multiple reference sources is never a bad idea.

Introducing Rust
If you’re already well versed in Rust, then feel free to skip to the next section.
If you’re new to it or you’d like a refresher on the core concepts of the language,
then you may find this section beneficial.

Rust started in 2006 as Graydon Hoare’s personal project while he was
working for Mozilla. Mozilla sponsored it in 2009 and announced it in 2010.
In the history of each programming language, its genesis moment is when a

1. doc.rust-lang.org/book/

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@doc.rust-lang.org/book/default.htm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

compiler written in that language is able to compile that language—a compiler
inception,2 if you will. For Rust, this came in 2011 and the first stable 1.0
release came in 2015.

Rust has been gaining in popularity exponentially ever since. In addition to
powering Mozilla’s new browser layout engine and showing up in a number
of high-visibility systems and networking open source projects, it won the
“Most Loved Programming Language” award in 2016, 2017, and 2018,3 sur-
passing Kotlin, Python, TypeScript, and even Go. This is Rust’s elevator pitch
from the official website:

Rust is a systems programming language that runs blazingly fast, prevents seg-
faults, and guarantees thread safety.

Some of the main characteristics of the Rust language that make it appealing
for building applications with WebAssembly include:

Safety
Rust doesn’t have the concept of null. Instead, any data that can be missing
is represented as an Option type. This gets rid of an entire class of errors
that plagues other systems languages like C and C++ and even many
higher-level languages. In addition to lack of nulls, Rust will prevent your
code from compiling if it could potentially create a data race, free already
deallocated resources, or access something that has gone out of scope.

Expressivity
Despite being labeled as a “systems language,” Rust has a remarkably
expressive syntax and includes many features that people typically laud
when talking about functional programming: pattern matching, destruc-
turing, streams, iterators, and much more. Combined with the concepts
of traits and generics, Rust (most of the time) manages to facilitate highly
readable and maintainable code.

Performance
Rust binaries are standalone, native binaries. They consume relatively
little disk space, have a fairly small memory footprint, and the code gen-
erally performs extremely well. Despite all of the additional safety con-
straints in the language, Rust doesn’t need a garbage collector, which
can often produce raw, C-like performance.

2. en.wikipedia.org/wiki/Bootstrapping_(compilers)
3. insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted

Chapter 3. Wading into WebAssembly with Rust • 46

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@en.wikipedia.org/wiki/Bootstrapping_/(compilers/default.htm)
../../../../../../https@insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Installing Rust
It’s time to start writing some Rust. The first thing you’ll need to do is follow
the installation instructions from the official Rust4 website. On that site, you’ll
find a curl script you can run that will install rustup, the main entry point into
the Rust toolchain.

Once you’ve completed the installation appropriate for your system, you
should be able to interrogate the version of the Rust compiler:

$ rustc --version
rustc 1.30.1 (1433507eb 2018-11-07)

Rust is on a six-week release cycle for the stable toolchain, so your version
will very likely be newer than the one in this book. You need to be able to
successfully run rustc and rustup before continuing to the next section.

Building Hello WebAssembly in Rust
Rust’s tools intrinsically support the notion of multiple targets. You can
compile for different targets without having to run the compilation on that
target machine. For example, you can target an ARM architecture (e.g.,
Raspberry Pi) from a regular workstation.

WebAssembly manifests as a target in Rust’s toolchain. In addition to the
regular six-week releases, Rust also has a nightly build that enables newer
language features that haven’t yet stabilized. As of Rust version 1.30, most
of the WebAssembly tools and libraries you’ll encounter in this book should
build just fine on the stable toolchain.

Installing the WebAssembly Target
If you issue the command, rustup toolchain list, you’ll see a toolchain that looks
something like stable-x86_64-unknown-linux-gnu (default) (this will vary by operating
system). Next, you can add the WebAssembly target by typing rustup target add
wasm32-unknown-unknown. This may also take some time and will get everything
set up for that target. If you’re curious about all of the targets Rust supports,
you can type rustup target list. This list also shows which targets are installed
and which one is the default.

4. www.rust-lang.org/en-US/install.html

report erratum • discuss

Installing Rust • 47

see more please visit: https://homeofpdf.com

../../../../../../https@www.rust-lang.org/en-US/install.html
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Creating a WebAssembly Project
You can use Cargo, Rust’s project build tool, to create new empty projects.
To create one for your first WebAssembly project, type the following:

$ cargo new --lib rustwasmhello
Created library `rustwasmhello` project

This creates a Cargo.toml file in the rustwasmhello directory. Edit this file so that
it looks like this:

rustwasmhello/Cargo.toml
[package]
name = "rustwasmhello"
version = "0.1.0"
authors = ["Your Name <your.email@address.com>"]

[lib]
crate-type = ["cdylib"]

[dependencies]

The only lines in this file that differ from what you get by default from cargo
is the indicator that this project will expose a C-style dynamic library, which
is then used by other linkers to produce a WebAssembly module:

[lib]
crate-type = ["cdylib"]

Now edit the lib.rs file that cargo created and set its contents to the following:

rustwasmhello/src/lib.rs
#[no_mangle]
pub extern "C" fn add_one(x: i32) -> i32 {

x + 1
}

This code should look familiar. It’s the same code that you saw in the first
chapter when you created a WebAssembly Studio project online. This project
should now be ready to compile into a WebAssembly module. The first step
is to tell cargo to build it (make sure you’re in the rustwasmhello directory):

$ cargo build --target wasm32-unknown-unknown
Compiling rustwasmhello v0.1.0

(file:///home/kevin/Code/Rust/wasmbook_text/khrust/Book/code/rustwasmhello)
Finished dev [unoptimized + debuginfo] target(s) in 0.24s

This produced a rustwasmhello.wasm file under the target/wasm32-unknown-unknown/debug
folder. To see that your release build will produce a Wasm file very similar to
something that you’d get building it by hand, first compile in release mode:

Chapter 3. Wading into WebAssembly with Rust • 48

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustwasmhello/Cargo.toml
../../../../../../media.pragprog.com/titles/khrust/code/rustwasmhello/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

$ cargo build --release --target=wasm32-unknown-unknown
Compiling rustwasmhello v0.1.0

(/home/kevin/Code/Rust/wasmbook/khrust/Book/code/rustwasmhello)
Finished release [optimized] target(s) in 0.12s

Now you can verify that the output contains an exported function called add_one
by using the wasm-objdump tool:

$ wasm-objdump -x target/wasm32-unknown-unknown/release/rustwasmhello.wasm

rustwasmhello.wasm: file format wasm 0x1

Section Details:

Type:
- type[0] () -> nil
- type[1] (i32) -> i32

Function:
- func[0] sig=0 <__wasm_call_ctors>
- func[1] sig=1 <add_one>

Table:
- table[0] type=anyfunc initial=1 max=1

Memory:
- memory[0] pages: initial=16

Global:
- global[0] i32 mutable=1 - init i32=1048576
- global[1] i32 mutable=0 - init i32=1048576
- global[2] i32 mutable=0 - init i32=1048576

Export:
- memory[0] -> "memory"
- table[0] -> "__indirect_function_table"
- global[1] -> "__heap_base"
- global[2] -> "__data_end"
- func[1] <add_one> -> "add_one"

Custom:
- name: ".debug_info"

Custom:
- name: ".debug_macinfo"

Custom:
- name: ".debug_pubtypes"

Custom:
- name: ".debug_ranges"

Custom:
- name: ".debug_abbrev"

Custom:
- name: ".debug_line"

Custom:
- name: ".debug_str"

Custom:
- name: ".debug_pubnames"

report erratum • discuss

Building Hello WebAssembly in Rust • 49

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Custom:
- name: "name"
- func[0] <__wasm_call_ctors>
- func[1] <add_one>

You can see that this module comes with a single function table, a default
16-page (16 * 64KB) block of linear memory, some globals, and the add_one()
function that we wrote.

Congratulations, you’ve compiled your first Rust WebAssembly module. Now
it’s time to learn some cool Rust features while you build out a new checkers
module.

Creating Rusty Checkers
This section has a very specific goal: build a new checkers module entirely
in Rust WebAssembly that conforms as closely as possible to the interface of
the hand-written one from the previous chapter.

Diving into Rust is no small feat, so to keep things from getting too overwhelm-
ing, you’re going to be building something you’ve already built. Hopefully, the
powerful and expressive syntax of Rust will make the game easier to reason
about, and you might even be able to add features and rules that weren’t in
the last game.

This new version of checkers will expose the same kinds of functions to the
host (JavaScript), but you’ll also be writing some code that determines the
list of valid moves, something that was just too excruciatingly painful in raw
wast code to write in the previous chapter. The Rust version will also have the
same concept of turns so that it can be played from a console or virtually any
other kind of client.

To get started, find an empty directory and type the following:

$ cargo new --lib rustycheckers
Created library `rustycheckers` project

Edit the Cargo.toml file in the project’s root directory as you did for the last
sample to tell the build system that this is a dynamic library. Once you’ve
got that set up, you should be ready to start coding. If you’re using a version
of Rust version 1.31.0 or newer, then your default Cargo.toml will come with a
line in the package section: edition = "2018". This indicates the use of the “2018
edition”5 which allows for some newer (and often simpler) syntax, as well as
many new features.

5. rust-lang-nursery.github.io/edition-guide/rust-2018/index.html

Chapter 3. Wading into WebAssembly with Rust • 50

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@rust-lang-nursery.github.io/edition-guide/rust-2018/index.html
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Make sure you remove this line from your Cargo.toml. For now, I want to focus
on the core parts of Rust required to interact with WebAssembly, and will
defer the use of the 2018 edition until the end of the book after you’ve had
time to get used to the “regular” Rust syntax. Unless otherwise stated, all
Rust samples in this book are designed to run on 1.31.0 or newer, but use
the “2015 edition” syntax.

Setting Up the Board
Open up the rustycheckers/src/lib.rs file and empty it. At the bottom of the file, add
the following line:

mod board;

Now add a file called rustycheckers/src/board.rs. Rust’s module system is hierarchi-
cal. Wherever you add mod [module_name]; in your code, think of that module
as being injected at exactly that spot in the hierarchy. This allows you to nest
modules, and it fosters some really good isolation and encapsulation practices,
but it can be hard to get used to for people who come from languages with
implicit or directory-first module hierarchies.

Each Rust library has a single root module, the name of which is specified
in the Cargo.toml file (the name setting under the [package] section). By convention,
the code for the root module is found in the lib.rs file, so by including mod board;
in the top of lib.rs, we’re declaring a submodule named board that exists
directly under the root. Elements in the board submodule can be referenced
from anywhere using the rustycheckers::board prefix.

The Rust 2018 edition6 (not used until the end of this book) has more flexible
rules around referring to modules.

To start writing the code to manage the game board, the first thing you’ll want
to do is write some code to manage a GamePiece. In the previous chapter, game
pieces were just 32-bit integers that could be bitmasked for information. Now
that you’ve got a little more power to play with, you can create an enum for
piece color and a struct (Rust doesn’t officially have classes, though its structs
can often behave like classes) to represent a single piece:

rustycheckers/src/board.rs
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum PieceColor {

White,
Black,

}

6. rust-lang-nursery.github.io/edition-guide/rust-2018/module-system/index.html

report erratum • discuss

Creating Rusty Checkers • 51

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/board.rs
../../../../../../https@rust-lang-nursery.github.io/edition-guide/rust-2018/module-system/index.html
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

#[derive(Debug, Clone, Copy, PartialEq)]
pub struct GamePiece {

pub color: PieceColor,
pub crowned: bool,

}

impl GamePiece {
pub fn new(color: PieceColor) -> GamePiece {

GamePiece {
color,
crowned: false,

}
}

pub fn crowned(p: GamePiece) -> GamePiece {
GamePiece {

color: p.color,
crowned: true,

}
}

}

Don’t worry about the derive macros for now. They just auto-generate some
boilerplate code to deal with common things most data structures in Rust
need, like the ability to be compared, copied, cloned, and printed out for debug
purposes.

This game piece has two functions: new() and crowned(). The first creates a new
game piece of a given color, while the second creates a new piece of a given
color with a crown on top. The latter function will come in handy when you
want to crown a piece on the board.

Next, you can create the concept of a Coordinate. In raw WebAssembly, you
didn’t have anything to represent this other than just numbers. Creating a
struct for a grid coordinate here should help simplify the code, reduce the
number of parameters that get passed around, and generally make things
more readable. Also, as you’ll see, it’s a great place to stick some preliminary
logic to support game rules:

rustycheckers/src/board.rs
#[derive(Debug, Clone, PartialEq, Copy)]
pub struct Coordinate(pub usize, pub usize);

impl Coordinate {

pub fn on_board(self) -> bool {
let Coordinate(x, y) = self;❶
x <= 7 && y <= 7

}

Chapter 3. Wading into WebAssembly with Rust • 52

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/board.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

❷
pub fn jump_targets_from(&self) -> impl Iterator<Item = Coordinate> {

let mut jumps = Vec::new();
let Coordinate(x, y) = *self;
if y >= 2 {

jumps.push(Coordinate(x + 2, y - 2));
}
jumps.push(Coordinate(x + 2, y + 2));

if x >= 2 && y >= 2 {
jumps.push(Coordinate(x - 2, y - 2));

}
if x >= 2 {

jumps.push(Coordinate(x - 2, y + 2));
}
jumps.into_iter()

}

❸
pub fn move_targets_from(&self) -> impl Iterator<Item = Coordinate> {

let mut moves = Vec::new();
let Coordinate(x, y) = *self;
if x >= 1 {

moves.push(Coordinate(x - 1, y + 1));
}
moves.push(Coordinate(x + 1, y + 1));
if y >= 1 {

moves.push(Coordinate(x + 1, y - 1));
}
if x >= 1 && y >= 1 {

moves.push(Coordinate(x - 1, y - 1));
}
moves.into_iter()

}
}

❶ An example of destructuring to pull the x and y values out of a Coordinate
structure.

❷ Produce an iterator of Coordinates of all possible jumps from the given
coordinate.

❸ Produce an iterator of Coordinates of all possible moves from the given
coordinate.

The jump_targets_from() function returns a list of potential jump targets from the
given coordinate. The move_targets_from() function returns a list of potential
move (adjacent space) targets given the current coordinate location. These
functions will be used to calculate a list of valid moves for each turn. Note

report erratum • discuss

Creating Rusty Checkers • 53

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

that in the raw WebAssembly version of checkers, we just did a quick, naive
check to verify that a move was valid. We can up the complexity a little here.

The code pub struct Coordinate(pub usize, pub usize) defines what’s called a tuple struct.
Rather than this struct having named fields, it instead represents a strongly-
typed tuple with public fields. You can access those fields with tuple accessors
.0 and .1, but most of the code in this chapter uses destructuring and pattern
matching to get at the x and y values in a more human-friendly fashion. In
this case, each of the two anonymous fields in this tuple struct are of type
usize, which is the data type Rust uses for vector indexes, allowing code to be
more safe and portable across 32-bit and 64-bit architectures. Rust’s standard
library is replete with usages of this data type.

The list of potential target squares for a checker piece to move is pretty small.
The preceding code creates iterators that expose these potential squares to
callers. As you’ll see shortly, iterators can be chained with functions like map(),
zip(), and filter() to make for some fairly expressive syntax to define game rules.

Finish out the board.rs module by creating a struct that represents a game
move. Here you can see one place where it was simpler to access the tuple
values as fields rather than using a pattern match:

rustycheckers/src/board.rs
#[derive(Debug, Clone, PartialEq, Copy)]
pub struct Move {

pub from: Coordinate,
pub to: Coordinate,

}

impl Move {
pub fn new(from: (usize, usize), to: (usize, usize)) -> Move {

Move {
from: Coordinate(from.0, from.1),
to: Coordinate(to.0, to.1),

}
}

}

One more thing before getting into the details of writing the game rules: refer-
ences. In the coordinate code, &self is a reference to the struct. In Rust, any-
thing prefixed with & is a reference. Any assignment that isn’t a reference is
a move. Unless you explicitly treat something as a reference, ownership will
be transferred during an assignment, meaning the value in the “old” variable
will no longer be there (and you’ll get a compile error if you try to access it).
This “move by default” pattern takes a bit of getting used to when learning
Rust, and if the difference between move and reference is a little murky, you

Chapter 3. Wading into WebAssembly with Rust • 54

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/board.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

might want to take a minute and do a little background research on Rust’s
concept of ownership.7

Writing the Engine Rules
Now for the fun part... open up rustycheckers/src/lib.rs and add the following line
of code to the bottom:

mod game;

Create an empty file called rustycheckers/src/game.rs. This will give you a nice clean
space to work on the game rules, and it illustrates a pretty common pattern
in idiomatic Rust: modularization. I am partial to small, purposeful files that
are easy to read and understand, and I feel like I spend more time thinking
about modular structure in Rust than I have in other languages I’ve used
(which is a good thing).

The first thing you’ll want is a struct to anchor all of the game engine function-
ality to the same place, and to give you a spot to maintain game state. If you
hadn’t noticed, thus far you haven’t done anything remotely related to
WebAssembly, and that’s deliberate. You’ll want to keep the WebAssembly
border clear of debris and make sure that you are free to build a game on
this side of the Wasm/Rust border with very little crossover or coupling.

Patterns like this where we actively avoid tightly coupling two separate con-
cerns allow our code to be easier to read, easier to maintain, and easier to
add more features and use for unintended consumers in the future without
modification. This kind of tactic is often referred to as a facade or an Anti-
Corruption Layer:

rustycheckers/src/game.rs
use super::board::{Coordinate, GamePiece, Move, PieceColor};

pub struct GameEngine {
board: [[Option<GamePiece>; 8]; 8],
current_turn: PieceColor,
move_count: u32,

}

pub struct MoveResult {
pub mv: Move,
pub crowned: bool,

}

In the previous chapter, you managed game state by manipulating bytes with
direct memory access. Here, not only do you have a traditional two-dimensional

7. doc.rust-lang.org/book/ch04-00-understanding-ownership.html

report erratum • discuss

Creating Rusty Checkers • 55

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/game.rs
../../../../../../https@doc.rust-lang.org/book/ch04-00-understanding-ownership.html
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

array, but the type of the piece is Option<GamePiece>. It will make your code
eminently more readable when an empty square is represented by the match-
friendly keyword None rather than just a 0.

Remembering that the functionality for a struct resides in an impl block, start
writing the code to initialize the game engine and its state inside the impl
GameEngine block:

rustycheckers/src/game.rs
impl GameEngine {

pub fn new() -> GameEngine {
let mut engine = GameEngine {

board: [[None; 8]; 8],
current_turn: PieceColor::Black,
move_count: 0,

};
engine.initialize_pieces();
engine

}

pub fn initialize_pieces(&mut self) {
[1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7]

.iter()

.zip([0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2].iter())

.map(|(a, b)| (*a as usize, *b as usize))

.for_each(|(x, y)| {
self.board[x][y] = Some(GamePiece::new(PieceColor::White));

});

[0, 2, 4, 6, 1, 3, 5, 7, 0, 2, 4, 6]
.iter()
.zip([5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7].iter())
.map(|(a, b)| (*a as usize, *b as usize))
.for_each(|(x, y)| {

self.board[x][y] = Some(GamePiece::new(PieceColor::Black));
});

}

The &mut self parameter to initialize_pieces() indicates that it can only be used by
a mutable reference to a game engine. Further, it’s a sign to any developer
that this function mutates state. In the engine’s constructor, we create a
mutable instance of the GameEngine struct, and then call initialize_pieces() to set
the board up for play.

This function might seem confusing if you’re not used to Rust syntax. In the
previous chapter, you initialized the board by manually placing every single
piece with a different line of code. In the real world, we have tools like iterators
and filters that can help us with these tasks.

Chapter 3. Wading into WebAssembly with Rust • 56

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/game.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

The iter() function converts an array of known x- or y-coordinate positions into
an iterator, which can then be zipped (a function that merges two iterators
into an iterator of tuples) with another iterator via the zip() function. Next, the
map() function converts the coordinates from i32 to usize (the data type for array
indexes in Rust—remember Rust doesn’t have implicit conversions). For each
one of the newly zipped (x,y) coordinates, you can set the appropriate black
or white piece using Rust’s anonymous function notation.

The next bit of code takes a top-down approach and contains the logic to
move pieces on the board. If you enter this by hand right now, it won’t compile
because you’re missing a bunch of helper functions. But I think it’s easier to
understand what’s happening by looking at this logic first:

rustycheckers/src/game.rs
pub fn move_piece(&mut self, mv: &Move) -> Result<MoveResult, ()> {

let legal_moves = self.legal_moves();

if !legal_moves.contains(mv) {
return Err(());

}

let Coordinate(fx, fy) = mv.from;
let Coordinate(tx, ty) = mv.to;
let piece = self.board[fx][fy].unwrap();
let midpiece_coordinate = self.midpiece_coordinate(fx, fy, tx, ty);
if let Some(Coordinate(x, y)) = midpiece_coordinate {

self.board[x][y] = None; // remove the jumped piece
}

// Move piece from source to dest
self.board[tx][ty] = Some(piece);
self.board[fx][fy] = None;

let crowned = if self.should_crown(piece, mv.to) {
self.crown_piece(mv.to);
true

} else {
false

};
self.advance_turn();

Ok(MoveResult {
mv: mv.clone(),
crowned: crowned,

})
}

The first thing move_piece() does is compute the list of legal moves based on
whose turn it is and the state of the game board. If the intended move isn’t

report erratum • discuss

Creating Rusty Checkers • 57

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/game.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

in the list of legal moves (this is why you need the derive macros to generate
equality tests for the structs), then the function quits early.

There’s a line of code in this function that uses the unwrap() function. Ordinar-
ily we shy away from this, but since we know that accessing that one piece
will work because of validation, we can get away with it. In a production
application and adhering to defensive coding practices, we would probably
validate this instead of calling unwrap().

Next, the engine checks to see if there’s a game piece to jump on the way from
the source to the destination coordinate. If there is, the jumped piece is
removed from the board. The engine then performs the piece move by setting
the old location to None. Finally, the function finishes by checking if it should
crown the piece after it moved. Can you imagine how hard it would be to read
or write the jump logic code in raw wast?

The move_piece() function returns a Result. Similar to an Option, a Result can have
two values: either Ok(...) or Err(...). Using a pattern match on a result is a clean
way to handle and propagate errors back up the call stack. Pattern matching
against optional values or result types is something that you might be familiar
with if you’ve developed with functional programming languages or used
functional programming styles.

Computing Legal Moves
Computing the list of legal moves is the most complicated thing this Rust
code does. In the following code, legal_moves() loops through every space on the
board and then computes a list of valid moves from that position. This way,
this function returns a list of every valid move that the current player can
make (rusty checkers doesn’t support multi-jumps to try to keep the codebase
legible and book-friendly).

rustycheckers/src/game.rs
fn legal_moves(&self) -> Vec<Move> {

let mut moves: Vec<Move> = Vec::new();
for col in 0..8 {

for row in 0..8 {
if let Some(piece) = self.board[col][row] {

if piece.color == self.current_turn {
let loc = Coordinate(col, row);
let mut vmoves = self.valid_moves_from(loc);
moves.append(&mut vmoves);

}
}

}
}

Chapter 3. Wading into WebAssembly with Rust • 58

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/game.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

moves
}

fn valid_moves_from(&self, loc: Coordinate) -> Vec<Move> {
let Coordinate(x, y) = loc;
if let Some(p) = self.board[x][y] {

let mut jumps = loc
.jump_targets_from()
.filter(|t| self.valid_jump(&p, &loc, &t))
.map(|ref t| Move {

from: loc.clone(),
to: t.clone(),

}).collect::<Vec<Move>>();
let mut moves = loc

.move_targets_from()

.filter(|t| self.valid_move(&p, &loc, &t))

.map(|ref t| Move {
from: loc.clone(),
to: t.clone(),

}).collect::<Vec<Move>>();
jumps.append(&mut moves);
jumps

} else {
Vec::new()

}
}

There’s an interesting pattern used in the valid_moves_from() function that uses
the iterator functions created earlier and chains those results through filter(),
map(), and collect():

let mut moves = loc
.move_targets_from()
.filter(|t| self.valid_move(&p, &loc, &t))
.map(|ref t| Move {

from: loc.clone(),
to: t.clone(),

}).collect::<Vec<Move>>();

This takes all of the potential move targets and filters them based on whether
that target is a valid move for a given game piece, at a given location, for a
given target. Then, for each of the valid moves, we convert the coordinate
target (indicated by the ref t in the lambda, showing that we’re taking the
lambda’s sole parameter by reference) into a Move struct. Finally, the resulting
iterator is converted into a vector via collect() and the “turbofish”8 syntax
collect::<Vec<Move>>().

8. doc.rust-lang.org/book/2018-edition/appendix-02-operators.html?highlight=turbo#non-operator-symbols

report erratum • discuss

Creating Rusty Checkers • 59

see more please visit: https://homeofpdf.com

../../../../../../https@doc.rust-lang.org/book/2018-edition/appendix-02-operators.html@highlight=turbo#non-operator-symbols
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

The valid_moves_from() function produces a list of Move instances that are valid
from the given coordinate. In formal checkers, if a player has both a valid
jump and a valid move, they must perform the jump. This method is struc-
tured to place valid jumps first so that you can add that kind of strict rule
checking if you want. You could also add a new property to the Move struct
to tag a move as a jump, which might help in adding multi-jump capabilities
to the game.

You still haven’t added anything to the code that deals with WebAssembly.
In the interest of saving a few trees (or bytes), the full listings for all of the
various helper functions like valid_move() aren’t in the book. If you want the
full source for board.rs and game.rs, you can grab it from the book’s full example
code. You’ll also see several unit tests in the full version of the code that
shows how you can test this code without crossing the WebAssembly
boundary.

Coding the Rusty Checkers WebAssembly Interface
So far you’ve been coding in pure Rust without any indication that the game
will eventually be available as a WebAssembly module. This is actually a good
practice to adopt, and I’m a very big fan of keeping the boundary-crossing
code at the edges, leaving the domain-specific code (in our case, checkers) in
its own separate module to test in isolation.

You’ll need to do two things to make this code work with a JavaScript host.
First, you’ll need to export functions that can be called by the host. Second,
you’ll need to import functions that you want to be called by the WebAssembly
code on the host. This follows the same pattern as the previous chapter, but
with stricter boundaries.

First, add the following two dependencies to your Cargo.toml file:

[dependencies]
mut_static = "5.0.0"
lazy_static = "1.0.2"

Rust is ruthless about its control over shared mutability, and here arises a
conflict in philosophies. The previous raw WebAssembly module had global,
module-wide state. How can you accomplish the same thing in Rust without
violating all of its rules about sharing and mutability?

You’re going to use something called a lazy static to create a globally available
instance of the GameEngine struct. This instance will then be used by all of the
functions you’re exporting out of the WebAssembly module. The following
code creates a lazy static game engine. Put it at the top of lib.rs:

Chapter 3. Wading into WebAssembly with Rust • 60

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

rustycheckers/src/lib.rs
#[macro_use]
extern crate lazy_static;

use board::{Coordinate, GamePiece, Move, PieceColor};
use game::GameEngine;
use mut_static::MutStatic;

lazy_static! {
pub static ref GAME_ENGINE: MutStatic<GameEngine> =

{ MutStatic::from(GameEngine::new()) };
}

In nearly every single case when writing Rust code, I would vehemently and
aggressively push against the use of global mutable state. It goes against
everything that Rust stands for, is bad for the environment, and makes
puppies cry. However, in our edge case, like providing a mutable state store
for a WebAssembly module, it is pretty much the only way to make the
module work.

If you recall from the previous chapter, you exported a couple of functions
out of your wat file to allow the host to query the state of the game: get_piece()
and get_current_turn(). You’ll rewrite those now:

rustycheckers/src/lib.rs
#[no_mangle]
pub extern "C" fn get_piece(x: i32, y: i32) -> i32 {

let engine = GAME_ENGINE.read().unwrap();

let piece = engine.get_piece(Coordinate(x as usize, y as usize));
match piece {

Ok(Some(p)) => p.into(),
Ok(None) => -1,
Err(_) => -1,

}
}

#[no_mangle]
pub extern "C" fn get_current_turn() -> i32 {

let engine = GAME_ENGINE.read().unwrap();

GamePiece::new(engine.current_turn()).into()
}

To maintain the safety of the globally mutable game engine, you have to
acquire a read or write lock with the read() or write() functions.

Since there’s a chance that acquiring one of these locks can fail, those func-
tions return Results. You have to handle results one way or another, and here
calling unwrap() either grabs the value within Ok(...) or crashes the program
upon failure. A tip learned from painful experience: in production-grade

report erratum • discuss

Coding the Rusty Checkers WebAssembly Interface • 61

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/lib.rs
../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

applications, seek out and destroy all unwrap()s with very few exceptions. Being
unable to acquire a read or write lock on your game’s sole source of state is,
however, something that is exceptional and should produce a trap for the host.

The raw version of the checkers module you wrote returned the current piece
and the current turn owners both as i32 values. As mentioned at the beginning
of the chapter, you’ll adhere to this contract wherever possible. If you look at
both of these functions, you may notice that they both make use of a function
called into().

The into() function shows one of my favorite aspects of Rust in action. Anything
that implements the generic trait called Into<T> for a given type can be convert-
ed into that type. While Rust doesn’t have implicit conversions, its explicit
conversions are quite powerful. To convert a game piece into a 32-bit integer,
you just need to implement Into<i32>:

rustycheckers/src/lib.rs
const PIECEFLAG_BLACK: u8 = 1;
const PIECEFLAG_WHITE: u8 = 2;
const PIECEFLAG_CROWN: u8 = 4;

impl Into<i32> for GamePiece {
fn into(self) -> i32 {

let mut val: u8 = 0;
if self.color == PieceColor::Black {

val += PIECEFLAG_BLACK;
} else if self.color == PieceColor::White {

val += PIECEFLAG_WHITE;
}

if self.crowned {
val += PIECEFLAG_CROWN;

}

val as i32
}

}

The fact that the self variable here is not a reference means that the GamePiece
will be consumed when converted into an integer. In other words, if you try
to access a game piece after you convert it into an integer, you’ll get a compi-
lation error with a message like “move after use,” and an arrow pointing to
the spot where you used it and where it moved. Rust’s compiler errors are
some of the most verbose and helpful I’ve ever seen.

There are some cool Rust libraries that help you do bit flags, but aren’t really
needed for this sample. Next, add a function to let players move:

Chapter 3. Wading into WebAssembly with Rust • 62

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

rustycheckers/src/lib.rs
#[no_mangle]
pub extern "C" fn move_piece(fx: i32, fy: i32, tx: i32, ty: i32) -> i32 {

let mut engine = GAME_ENGINE.write().unwrap();
let mv = Move::new((fx as usize, fy as usize), (tx as usize, ty as usize));
let res = engine.move_piece(&mv);
match res {

Ok(mr) => {
unsafe {

notify_piecemoved(fx, fy, tx, ty);
}
if mr.crowned {

unsafe {
notify_piececrowned(tx, ty);

}
}
1

}
Err(_) => 0,

}
}

The move_piece() function (it can’t be called move() because that’s a reserved
word in Rust) just forwards the call to the game engine and examines the
result. It does, however, call the two notification functions that need to be
imported from the host: notify_piecemoved() and notify_piececrowned(). These functions
are both wrapped inside an unsafe block because Rust can’t guarantee that
the code on the other side of the host-module barrier meets Rust’s standards
for safety. Any extern function must be wrapped in an unsafe block to invoke
it. It’s a best practice to keep unsafe blocks as small as possible, wrapping only
the thing you need to invoke.

Unsafe here shouldn’t instill a sense of fear in you. This kind of unsafe is just
an indicator the code you’re invoking is unknown to the Rust compiler, so it can’t
give you the safety guarantees that you get from regular compiled Rust code.

Importing functions from a host is done by including their signatures in an
extern block:

rustycheckers/src/lib.rs
extern "C" {

fn notify_piecemoved(fromX: i32, fromY: i32,
toX: i32, toY: i32);

fn notify_piececrowned(x: i32, y: i32);
}

report erratum • discuss

Coding the Rusty Checkers WebAssembly Interface • 63

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/lib.rs
../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Finally, you can compile this code for the WebAssembly target and create the
stripped binary file suitable for use with JavaScript. The following commands
will build your WebAssembly module and place the trimmed-down, release
version in a demo directory (you’ll need to create this directory yourself):

$ cargo build --release --target wasm32-unknown-unknown
Finished release [optimized] target(s) in 0.01s
$ cp target/wasm32-unknown-unknown/release/rustycheckers.wasm demo/

At this point, you’ve made a stack (definitely not a heap) of progress. You’ve
got a Rust library that compiles to WebAssembly, imports notification func-
tions, and exports functions that will let a host play a game of checkers while
maintaining internal state. Next, you’ll see how that works by testing out the
game in a JavaScript host.

Playing Rusty Checkers in JavaScript
With just a few minor changes, your new Rust-built checkers WebAssembly
module should work the same way as it did before. To get started, copy the
index.html from the previous chapter into the demo directory.

Next, create the demo/index.js file and edit its contents to match the following:

rustycheckers/demo/index.js
fetch('./rustycheckers.wasm').then(response =>

response.arrayBuffer()
).then(bytes => WebAssembly.instantiate(bytes, {

env: {➤

notify_piecemoved: (fX, fY, tX, tY) => {
console.log("A piece moved from (" + fX + "," + fY +

") to (" + tX + "," + tY + ")");
},
notify_piececrowned: (x, y) => {
console.log("A piece was crowned at (" + x + "," + y + ")");

}
},

}

)).then(results => {
instance = results.instance;

console.log("At start, current turn is " +
instance.exports.get_current_turn());

let piece = instance.exports.get_piece(0, 7);
console.log("Piece at 0,7 is " + piece);

let res = instance.exports.move_piece(0, 5, 1, 4); // B
console.log("First move result: " + res);
console.log("Turn after move: " + instance.exports.get_current_turn());

Chapter 3. Wading into WebAssembly with Rust • 64

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/rustycheckers/demo/index.js
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

let bad = instance.exports.move_piece(1, 4, 2, 3); // illegal move
console.log("Illegal move result: " + bad);
console.log("Turn after illegal move: " +

instance.exports.get_current_turn());

}).catch(console.error);

The first real difference between this JavaScript and the code from the previous
chapter is that the object name wrapping the functions to be imported by the
checkers module is env. In the previous chapter, you had control over the
namespace name of the imports and called it events.

Rust code built for the wasm32-unknown-unknown target will default to putting
function imports in the env namespace. It’s not that big of an inconvenience,
but being aware of subtleties like this can save you headaches in the future.

The rest of the code should look nearly identical, except that now when you
attempt to make a truly illegal move, the new and improved code will catch
it and return 0. Just for fun, see if you can set up a series of moves that
allows a single jump so you can verify that a jump really does remove a piece
from the board.

Wrapping Up
This chapter was fairly dense and covered a lot of material. You installed
Rust, set up the wasm32-unknown-unknown target, and built a functioning checkers
module with Rust. Now that you’ve experienced first-hand building the
checkers module from scratch using nothing but wast syntax, you can compare
and contrast that with building the same functionality with the additional
benefits of Rust’s strong type system, safety, and expressiveness.

So far, you’ve been spending nearly all of your time inside the WebAssembly
module and little to no time working with the browser host. In the coming
chapters, that’s going to change as you unlock more features with tooling
and code generation designed to bridge the gap between WebAssembly modules
and their hosts. You’ll start building real web applications with seamless user
experiences.

report erratum • discuss

Wrapping Up • 65

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

CHAPTER 4

Integrating WebAssembly with JavaScript
So far, everything you’ve done in this book has been isolated almost entirely
within the realm of WebAssembly. You’ve written a checkers engine in raw
wast, then you wrote an upgraded one in Rust and compiled it to the wasm32-
unknown-unknown target. Even though both of these projects had places where
JavaScript could attach its tentacles, you can’t really refer to either of those
samples as tightly integrated.

In this chapter, you’ll take a look at the Rust WebAssembly ecosystem, including
the tooling and libraries available to help bridge the gap between WebAssembly
and JavaScript. You’ll start off by creating a new “Hello, World” template that
illustrates a new way of communicating between JavaScript and Rust.

Next, you’ll explore tools like wasm-bindgen that allow Rust to see JavaScript
classes (and JavaScript to use Rust structures), expose and invoke callbacks
in either language, send strings as function parameters, and return complex
values, all while maintaining Rust’s strict sharing rules.

By the end of the chapter, you’ll not only know the mechanics of how to
interoperate with JavaScript, but you’ll have seen patterns and examples of
when and where you should divide your logic up between JavaScript and
Rust WebAssembly modules by building an interactive, browser-based game.

Creating a Better “Hello, World”
Most of the information in the book thus far can be applied universally to all
kinds of WebAssembly applications written in all kinds of languages. That
path diverges in this chapter. From here on out, everything in the book will
be specific to Rust.

More importantly, everything you do after this point will rely on tools or
libraries created by the Rust community. As interest in WebAssembly with

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Rust grows, we can only expect this community to grow, and the power and
usefulness of its tools and libraries to grow along with it. Even as young as
WebAssembly is, you already have quite a few Rust tools at your disposal.

While you have a degree of choice when it comes to JavaScript bindings, the
one that you’ll be using in this chapter is wasm-bindgen1. This is a combination
of a set of crates (Rust’s name for shared libraries, though there’s more nuance
to them than that) that support bindings between JavaScript and Rust.

At its core, wasm-bindgen injects a bunch of metadata into your compiled
WebAssembly module. Then, a separate command-line tool reads that meta-
data, strips it out, and uses that information to generate an appropriate
JavaScript “wrapper bridge” containing the kinds of functions, classes, and
other primitives that the developer wants bound to Rust.

Installing the New Tools
wasm-bindgen uses procedural macros and a few other features that at one point
were only available in the nightly build of Rust. Thankfully, during the course
of writing this book, Rust’s support for those features is now stable.

Now that you’re going to be writing a bit more JavaScript, you’ll be using
features that often call for the use of npm. Refer to the instructions2 for your
operating system to install Node and the Node Package Manager (npm).

Finally, you’ll need to install the wasm-bindgen command-line tool. To do that,
you’ll use cargo, Rust’s build tool:

$ cargo install wasm-bindgen-cli

If through previous experiments you’ve already installed wasm-bindgen and you
want to force the installation of the latest version, add --force to the end of the
cargo install command. This might take quite a while as there are a large number
of dependencies and each one gets compiled after the source is downloaded.

Creating a New Rust WebAssembly Project
In this section you’ll be creating a new WebAssembly module that makes use
of wasm-bindgen bindings and its CLI, as well as webpack, npm, and a few
other tools. As a self-identified “back end” developer, I get a little nervous
when people mention all of these JavaScript build tools. Don’t worry, though,
we only need a few, and most of that is just to get a basic web server running.
Also as a non-authority on JavaScript, JavaScript developers may find far

1. rustwasm.github.io/wasm-bindgen
2. www.npmjs.com/get-npm

Chapter 4. Integrating WebAssembly with JavaScript • 68

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@rustwasm.github.io/wasm-bindgen
../../../../../../https@www.npmjs.com/get-npm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

more optimal ways of accomplishing some of the tasks in this chapter than
the way I’ve outlined.

You’ll go through the process of setting up this “Hello, World” piece by piece,
and when you’re done, you’ll have a nice template that you can use as scaf-
folding to build future projects (which will come in handy in the second half
of this chapter).

To start, create a new Rust project called bindgenhello (this is in the jsint_bindgen-
hello directory in the book’s code samples) in a clean root directory:

$ cargo new bindgenhello --lib

This should look familiar. As with all the other Rust WebAssembly projects, you
need to change its library type to cdylib in Cargo.toml. Also, add a reference to wasm-
bindgen (and make sure you delete the “2018 edition” line if you have it):

jsint_bindgenhello/Cargo.toml
[package]
name = "bindgenhello"
version = "0.1.0"
authors = ["Your Name <your@address.com>"]

[lib]
crate-type = ["cdylib"]

[dependencies]
wasm-bindgen = "0.2"

The last time you went through this exercise, you created a simple function
that performed addition. This time, you’ll clean out the lib.rs file and replace
it with the following:

jsint_bindgenhello/src/lib.rs
extern crate wasm_bindgen;
use wasm_bindgen::prelude::*;

// Import 'window.alert'
#[wasm_bindgen]
extern "C" {

fn alert(s: &str);
}

// Export a 'hello' function
#[wasm_bindgen]
pub fn hello(name: &str) {

alert(&format!("Hello, {}!", name));
}

Decorating Rust code with #[wasm_bindgen] triggers the invocation of a compile-
time Rust macro. Each time the compiler encounters this macro, it generates

report erratum • discuss

Creating a Better “Hello, World” • 69

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_bindgenhello/Cargo.toml
../../../../../../media.pragprog.com/titles/khrust/code/jsint_bindgenhello/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

some code on your behalf. Some of it will be code that winds up in your .wasm
module, but some of it will be metadata used to help generate the correspond-
ing JavaScript output produced by the wasm-bindgen command-line tool.

In this lib.rs file, there are two bindings. The first binds the alert() function to
the alert() JavaScript function. With this binding in place, any Rust code that
invokes the alert() function will be converted into a bunch of code that invokes
the JavaScript alert() function from inside a WebAssembly module. Attaching
the right window context and making all of the JavaScript pieces work properly
is all done for us by wasm-bindgen.

The second binding exposes the hello() function. You’ve seen how this kind of
function can be exposed before. However, in this case, it takes a reference to
a string as a parameter. We know that string parameters aren’t possible in
pure WebAssembly, so the generated wrapper code produces the necessary
plumbing (in both wast instructions and JavaScript boilerplate) to allow
complex data to flow seamlessly between boundaries.

Behind the scenes, memory allocation and disposal functions are created
that operate on the module’s linear memory (remember the good old days
when you had to do that by hand?). Then, each time wasm-bindgen encounters
the need for string allocation, the generated JavaScript invokes those func-
tions. In short, all of the hard work you’ve been doing in the past couple of
chapters is now done automatically on your behalf. These wrappers are con-
venient, of course, but I still firmly believe that you are better off for having
learned how things were done “the hard way.”

Go ahead and build this to make sure that you get a valid WebAssembly module:

$ cargo build --target wasm32-unknown-unknown

There’s one final piece to this compilation that you need to complete when
you’re using wasm-bindgen—invoke the CLI to produce a new WebAssembly
module and a JavaScript wrapper file:

$ wasm-bindgen target/wasm32-unknown-unknown/debug/bindgenhello.wasm \
--out-dir .

This drops a new file, bindgenhello_bg.wasm, in the project directory. It also gen-
erates the wrapper JavaScript file, bindgenhello.js, and a TypeScript definition
(bindgenhello.d.ts) in that directory. Since these are all generated, you might want
to exclude them from your version control system, though checking generated
code into VCS is actually a pretty nuanced subject, so your mileage may vary.
I’ve included a build.sh script in the code samples that produces the .wasm file
and then calls wasm-bindgen.

Chapter 4. Integrating WebAssembly with JavaScript • 70

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Cargo Update

Occasionally, when you go to build a project that built successfully the week before
(or when this book’s samples were generated, for instance), you may see weird errors
in libraries that you didn’t write. This happens sometimes with conflicts between
locally cached builds and libraries pulled from the internet. Most of the time you
should be able to resolve this by running cargo update and then attempting the build
again. You may also be prompted to update if the versions of wasm-bindgen used in the
CLI and in your .wasm module don’t match.

The following function is auto-generated, but it’s worth looking at the wrapper
function for hello():

export function hello(arg0) {
const ptr0 = passStringToWasm(arg0);
const len0 = WASM_VECTOR_LEN;
try {

return wasm.hello(ptr0, len0);
} finally {

wasm.__wbindgen_free(ptr0, len0 * 1);
}

}

The memory offset and length of the allocated string are returned from a
function called passStringToWasm(). This function invokes the generated allocation
function inside the WebAssembly module, placing the encoded string in the
module’s linear memory and then doing the relevant pointer arithmetic.
Having written your own wast code, you should be able to appreciate how great
it is to have this code generated on your behalf.

After the hello() function is done, the code will free the previously allocated
memory via the __wbindgen_free() function that wasm-bindgen stuffed into the
WebAssembly module for us. With the WebAssembly side of this “Hello, World”
done, it’s time to move on to the JavaScript side of the house.

Integrating with JavaScript and npm
In order to run this sample in a browser like you did before, you’ll need a web
server and some way of serving up your script content that invokes the wasm
module. In addition, for this sample, you’re going to set up a webpack config-
uration. Follow the appropriate instructions to ensure you’re using the latest
version of webpack. If you’re a JavaScript pro (unlike myself), then feel free
to use whatever tooling feels most comfortable to you.

report erratum • discuss

Creating a Better “Hello, World” • 71

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

There are some handy shortcuts you can use with webpack to do things like
automatically generate the index.html. To keep things simple and easier to
understand, I’m deliberately not optimizing certain things in this book. You
could also choose not to use webpack at all.

The real work happens in the index.js file. This is where it really pays to use
additional tools. You can see that it looks like simple, clean, idiomatic Java-
Script, even though it’s going through a bridge to integrate with a
WebAssembly module. It’s truly the best of both worlds—the Rust code tar-
geting WebAssembly looks like idiomatic Rust, and the JavaScript looks like
standard, unmodified JavaScript:

jsint_bindgenhello/index.js
const wasm = import('./bindgenhello');

wasm
.then(h => h.hello("world!"))
.catch(console.error);

Next, set up a web pack configuration so that you can use it to manage your
JavaScript bundles. Note that the entry point is index.js. Previous versions of
this book required some shoe-horning and other shenanigans to get this
working, but the WebAssembly ecosystem is always improving, and things
are getting simpler every day:

jsint_bindgenhello/webpack.config.js
const path = require('path');
const HtmlWebpackPlugin = require('html-webpack-plugin');
const webpack = require('webpack');

module.exports = {
entry: './index.js',
output: {

path: path.resolve(__dirname, 'dist'),
filename: 'index.js',

},
plugins: [

new HtmlWebpackPlugin(),
// Have this example work in Edge which doesn't ship `TextEncoder` or
// `TextDecoder` at this time.
new webpack.ProvidePlugin({

TextDecoder: ['text-encoding', 'TextDecoder'],
TextEncoder: ['text-encoding', 'TextEncoder']

})
],
mode: 'development'

};

Chapter 4. Integrating WebAssembly with JavaScript • 72

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_bindgenhello/index.js
../../../../../../media.pragprog.com/titles/khrust/code/jsint_bindgenhello/webpack.config.js
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Finally, create a package.json file. In addition to setting up your webpack
development web server, you could also use this as a place to automate your
build process by calling the build.sh shell script or something similar:

jsint_bindgenhello/package.json
{

"scripts": {
"build": "webpack",
"serve": "webpack-dev-server"

},
"devDependencies": {

"text-encoding": "^0.7.0",
"html-webpack-plugin": "^3.2.0",
"webpack": "^4.11.1",
"webpack-cli": "^3.1.1",
"webpack-dev-server": "^3.1.0"

}
}

Now you should be able to execute a build script to produce the WebAssembly
module and the generated JavaScript files, then npm run serve to start the
webpack server. Pointing your WebAssembly-enabled browser at your local
host on port 8080 should then pop up a JavaScript alert dialog box. Try this
out on your own and bask in the glow of autogenerated JavaScript interop
goodness.

With this “Hello, World” project template in hand, it’s time to move on to
building something a little more powerful with the help of wasm-bindgen.

Building the Rogue WebAssembly Game
Back in the days before the Internet filled up with pictures of kittens, animated
memes, and ubiquitous social networking, university students had to walk
three miles uphill in the snow to computer labs so they could play games on
monochrome monitors tethered to Unix servers.

One of these games was an incredible creation called Rogue.3 Remember when
I suggested that constraints are often good for innovation? Rogue is a fantastic
example of that. Fed up with text games that you could only play once, Rogue’s
creators managed to let players hack and slash their way through procedu-
rally generated dungeons in a simple 80 column by 24 row terminal.

For this code sample, you’ll be taking a JavaScript library for creating Rogue-
like games and building a game with it. The point of this exercise isn’t to build
a game (though that is a fun side effect), but rather to illustrate some possible

3. www.gamasutra.com/view/feature/4013/the_history_of_rogue_have__you_.php?print=1

report erratum • discuss

Building the Rogue WebAssembly Game • 73

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_bindgenhello/package.json
../../../../../../https@www.gamasutra.com/view/feature/4013/the_history_of_rogue_have__you_.php@print=1
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

ways for WebAssembly to interact with your JavaScript code and third-party
JavaScript libraries. We want to examine strategies for spreading code and
logic across the boundary between Rust (WebAssembly) and JavaScript.

It’s important to prepare for our decision about where to draw those bound-
aries and how to spread the code to be wrong. We will make an attempt, see
how it plays, see what the code looks like, and then decide how to refactor it
from there. Perfect software isn’t created, it comes from iteration and the
deliberate choice of an imperfect starting point.

In the Rogue WebAssembly game, your objective is to find and open all of
the treasure chests. Inside one of these chests is a WebAssembly module.
You will have to find this module before the dreaded Rust Borrow Checker
captures you!

Getting Started with Rot.js
Before getting started, you might want to take a few minutes to familiarize
yourself with the Rot.js4 library. You don’t need to become an expert. Just
take a look at some of the basic documentation. In short, Rot.js injects a vir-
tual 80x24 (you can resize it) terminal window into an HTML canvas. With
that in place, you can use methods like draw() to place characters on the map,
and hook up a turn-based actor system. This library has far more functional-
ity than you’ll use for this simple example (but plenty of goodies to play with
if you want to add on later).

You can get started by making a new copy of the better “Hello, World” from
the previous section. I called my new directory roguewasm, but you can call
yours whatever you like. Make sure you’ve got a build script that builds the
wasm module and invokes the wasm-bindgen CLI. You can do this with a shell
script or with changes to package.json. You won’t need to add a reference to
Rot.js for npm. Instead, add that reference to the index.html file, where it will be
clear that this is a traditional, client-side JavaScript dependency. There are
other ways to rely on these kinds of dependencies, but this isn’t a JavaScript
book so I will steer clear of them.

The game screen consists of the canvas area managed by Rot.js, a header for
the game title, and a sidebar that will serve as an area to display the player’s
statistics. Here’s a very simple index.html file that uses CSS flex grid to create
those regions (it may be difficult to tell, but I am not a designer):

4. ondras.github.io/rot.js/manual/#intro

Chapter 4. Integrating WebAssembly with JavaScript • 74

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../ondras.github.io/rot.js/manual/#intro
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

jsint_roguewasm/index.html
<html>

<head>
<meta content="text/html;charset=utf-8" http-equiv="Content-Type" />
<title>Rogue WebAssembly</title>
<script src="https://cdn.jsdelivr.net/npm/rot-js@2/dist/rot.js"></script>
<style>

.row {
display: flex;

}

.row_cell {
flex: 1

}
</style>

</head>

<body>
<div class="row">

<div class="row_cell" style="text-align:center;">
<h1>Rogue WebAssembly</h1>

</div>
</div>
<div class="row">

<div class="row_cell" id="rogueCanvas">

</div>
<div class="row_cell" id="statsContainer" style="padding:15px;">

<div class="row_cell" style="text-align:center;">
<h2>Stats</h2>

</div>
<p>

HitPoints:

0 /
0

</p>
<p>

Moves:

0

</p>
</div>

</div>

<script src='./bootstrap.js'></script>
</body>

</html>

report erratum • discuss

Building the Rogue WebAssembly Game • 75

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_roguewasm/index.html
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

The next decision you need to make is the hardest: what code will be in your
JavaScript (e.g., index.js) and what code will be in the WebAssembly module?
The right answer isn’t always to put everything inside WebAssembly or Rust
just because that’s what’s new and shiny. There are a couple of things that
Rot.js does quite well, like implementing pathfinding and random dungeon
generation, that you’re not going to want to reinvent in WebAssembly.

Instead, you’ll want to invoke that functionality from wherever it’s most
appropriate. Using wasm-bindgen, you can allow JavaScript classes to manifest
in Rust and you can let Rust structs with functions appear as classes in
JavaScript. To get started, let’s work on the game engine’s core logic and see
how much of it can be implemented in Rust.

Before moving on to creating the game engine, you might want to have a look
at the Rot.js tutorial.5 This tutorial walks you through creating the all-JavaScript
game on which Rogue WebAssembly is based. Skimming through this might
help provide some context as to what you are building in the next section.

Creating the Game Engine
The game engine is subservient to the JavaScript in index.js. If you took a look
at the Rot.js documentation, you may have noticed that the random dungeon
generation works by taking a callback parameter. While there are a number
of dungeon types available, the one we’ll be using in this game is a digger.

Each time Rot.js digs a piece out of raw map material, it invokes the callback.
This callback contains the x- and y-coordinates of the spot, and a value integer.
The meaning of this field varies between dungeon types. In the case of Rogue
WebAssembly, we only care about the 0-values (open space).

First you’re going to want to set up some code blocks to hold your imports
and exports. Because I’m either clairvoyant or I’ve written this sample multiple
times, I know that you’re going to need access to the alert() and console.log()
JavaScript functions, as well as eventually a stats_updated() function for notifying
the UI when a player’s stats change:

jsint_roguewasm/src/lib.rs
#[macro_use]
extern crate serde_derive;

extern crate wasm_bindgen;
use std::collections::HashMap;
use wasm_bindgen::prelude::*;

5. www.roguebasin.com/index.php?title=Rot.js_tutorial

Chapter 4. Integrating WebAssembly with JavaScript • 76

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_roguewasm/src/lib.rs
../../../../../../www.roguebasin.com/index.php@title=Rot.js_tutorial
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

#[wasm_bindgen]
extern "C" {

fn alert(s: &str);

#[wasm_bindgen(js_namespace = console)]
fn log(s: &str);

#[wasm_bindgen(module = "./index")]
fn stats_updated(stats: JsValue);

pub type Display;

#[wasm_bindgen(method, structural, js_namespace = ROT)]
fn draw(this: &Display, x: i32, y: i32, ch: &str);

#[wasm_bindgen(method, structural, js_name = draw, js_namespace = ROT)]
fn draw_color(this: &Display, x: i32, y: i32, ch: &str, color: &str);

}

With the log() function, notice that you can import functions from specific
JavaScript namespaces (e.g., console). You can tell wasm-bindgen which JavaScript
module contains the function you’re going to import, as we do with the
stats_updated() function.

Next is where some of this tooling starts to really shine. Rot.js contains a class
called Display in the ROT namespace. By declaring the Display type inside the
extern block, wasm-bindgen makes that type available to your code and
generates everything necessary to communicate with it. Notice that we didn’t
put a namespace qualifier on the Display type, only the functions. wasm-bindgen
builds types from the functions, which do have a namespace qualifier.

You will want access to two overloads of the draw() method: one that just
renders a character in the default colors and the other that renders a char-
acter with an explicit color code. There’s a lot going on here, so make sure
you spend a few minutes taking in all of the code generation happening on
your behalf.

By using the structural and method keywords in the wasm_bindgen macro, we are
telling the macro and JavaScript boilerplate to take the method accessed on
the Display type and call the decorated function in the WebAssembly module.

If in JavaScript you had wanted to call ROT.Display.draw(4,5,"@"), you can invoke
the Rust function display.draw(4,5,"@") where display is a Rust variable that behaves
like a struct with methods. As you’ll see, your JavaScript code can pass in a
reference to an initialized ROT.Display and your Rust code can use whatever
methods on it you declare in your extern block.

To create an instance of a Rot.js display and pass it to an instance of our
game engine, we’re first going to need the Engine class. This is a struct we

report erratum • discuss

Building the Rogue WebAssembly Game • 77

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

define in Rust (you’ll see it shortly), and, thanks to the wasm-bindgen macro,
we can import it as though it was just another JavaScript class:

import { Engine, PlayerCore } from './jsint_roguewasm';

Here, roguewasm is a JavaScript file produced when we run the wasm-bindgen CLI
tool. PlayerCore is another struct-exported-as-class that you’ll see shortly. The
JavaScript code to create an instance of a Rot.js display and pass it to an
instance of the game engine looks like this:

jsint_roguewasm/index.js
// this.display = new ROT.Display();
this.display = new ROT.Display({ width: 125, height: 40 })
document.getElementById("rogueCanvas").appendChild(this.display.getContainer());

this.engine = new Engine(this.display);

With some of that connective tissue set up, it’s time to create the game engine.
The foundation of the game is map generation and map rendering, and Rot.js
uses the dig() callback to allow your game engine to produce the game map.
Here’s the Rust code for the engine that handles the dig callback, updates
its state, and renders an entire map:

#[wasm_bindgen]
pub struct Engine {

display: Display,
points: HashMap<GridPoint, String>,
prize_location: Option<GridPoint>,

}

#[wasm_bindgen]
impl Engine {

#[wasm_bindgen(constructor)]
pub fn new(display: Display) -> Engine {

Engine {
display,
points: HashMap::new(),
prize_location: None,

}
}

pub fn on_dig(&mut self, x: i32, y: i32, val: i32) {
if val == 0 {

let pt = GridPoint { x, y };
self.points.insert(pt, ".".to_owned());

}
}

pub fn draw_map(&self) {

Chapter 4. Integrating WebAssembly with JavaScript • 78

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_roguewasm/index.js
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

for (k, v) in &self.points {
self.display.draw(k.x, k.y, &v);

}
}

}

The Engine struct owns a reference to the following: a ROT Display instance, a
hash that maps grid coordinates to renderable characters, and the location
of the hidden WebAssembly module. The constructor illustrates an important
point: Rust structs cannot be initialized with missing fields. To deal with
something that could be missing like the prize location (you’ll write that code
in a bit), we make use of Rust’s Option type.

on_dig() adds the supplied grid coordinates to the points field. The draw_map() function
may look a little strange to you if you’re not used to Rust. In Rust, by default,
for loops take ownership of the items over which they iterate. This means if you
just casually loop over a collection, you can’t just dish out references to those
items to other functions (because you no longer own them). If you don’t want
to own (many in the community may also call this consuming) the collection,
you can iterate over references to the items as indicated by the & sign.

Lastly, the draw_map() function invokes the draw() function on the Display instance.
Rust knows that this opaque thing provided by the host (in our case, provided
by JavaScript) has a three-parameter draw() function on it because we specified
that in our extern block.

With some map-related engine functions available on the Engine struct, you can
write some code in a JavaScript Game class that invokes the Rot.js map digger:

jsint_roguewasm/index.js
generateMap: function () {

var digger = new ROT.Map.Digger();
var freeCells = [];

var digCallback = function (x, y, value) {
if (!value) {

var key = x + "," + y;
freeCells.push(key);

}
this.engine.on_dig(x, y, value);❶

}
digger.create(digCallback.bind(this));

this.generateBoxes(freeCells);
this.engine.draw_map();❷

this.player = this._createBeing(Player, freeCells);❸
this.enemy = this._createBeing(Checko, freeCells);

},

report erratum • discuss

Building the Rogue WebAssembly Game • 79

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_roguewasm/index.js
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

❶ Invoke the on_dig() function on the Rust Engine struct.

❷ Invoke the draw_map() function on the Rust Engine struct.

❸ Here this refers to the Game class instance and we call a utility function to
create an instance of either a player or an enemy to put on the map.

The aging JavaScript syntax to add functions to the Game class is to avoid
using translators and to keep the code samples as simple and portable as
possible. Feel free to convert this to your favorite syntax and use Babel or its
ilk to transpile the code.

Now that the map rendering and storage of grid points is taken care of, it’s
time to move on to adding players, enemies, and the cherished hidden
treasure: the WebAssembly module.

Adding Players, Enemies, and Treasure
As you’ve seen, one strategy for separating the implementation between Rust
and JavaScript is to assign responsibilities by expertise or to avoid limitations.
For example, it makes a lot of sense for the top-level JavaScript to initiate
the game and any dependencies and then call into the WebAssembly module
for whatever remains.

In this section, you’re going to add support for the player, an enemy, and
obtaining the treasure that might be hidden within the boxes (* on the map
canvas). Here you’ll see another strategy for separating the two worlds:
encapsulation.

Using encapsulation allows you to create a class called Player in JavaScript,
and then have a private member inside that class that’s an instance of the
Rust-based player core. With this strategy, it becomes easy to have JavaScript
handle things like keyboard input and configure the callbacks for use with
Rot.js, all while deferring logic and other processing to the internal
WebAssembly module.

This also lets you have a Player and Enemy class both share the functionality
of the Rust-exported PlayerCore class. The JavaScript player class will handle
subscribing to the key down browser event, exposing the Rot.js scheduler
callback function act(), and exposing property queries and self-rendering
functions. Let’s take a look at the player abstraction in JavaScript:

jsint_roguewasm/index.js
var Player = function (x, y) {

this._core = new PlayerCore(x, y, "@", "#ff0", Game.display);
this._core.draw();

}

Chapter 4. Integrating WebAssembly with JavaScript • 80

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_roguewasm/index.js
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Player.prototype.act = function () {
Game.rotengine.lock();
window.addEventListener("keydown", this);

}

Player.prototype.handleEvent = function (e) {
var keyMap = {};
keyMap[38] = 0;
keyMap[33] = 1;
keyMap[39] = 2;
keyMap[34] = 3;
keyMap[40] = 4;
keyMap[35] = 5;
keyMap[37] = 6;
keyMap[36] = 7;

var code = e.keyCode;

if (code == 13 || code == 32) {
Game.engine.open_box(this._core, this._core.x(), this._core.y());
return;

}

/* one of numpad directions? */
if (!(code in keyMap)) { return; }

/* is there a free space? */
var dir = ROT.DIRS[8][keyMap[code]];
var newX = this._core.x() + dir[0];
var newY = this._core.y() + dir[1];

if (!Game.engine.free_cell(newX, newY)) { return; };

Game.engine.move_player(this._core, newX, newY);
window.removeEventListener("keydown", this);
Game.rotengine.unlock();

}

Player.prototype.getX = function () { return this._core.x(); }

Player.prototype.getY = function () { return this._core.y(); }

The first interesting piece of JavaScript is this:

this._core = new PlayerCore(x, y, "@", "#ff0", Game.display);
this._core.draw();

This creates an instance of the PlayerCore class, which is actually a Rust struct
you’ll write shortly that, through the power of wasm_bindgen, looks to JavaScript
like an ordinary class. This constructor also takes an instance of a ROT.Display
object, which gives the player core access to the map canvas.

report erratum • discuss

Building the Rogue WebAssembly Game • 81

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

If the key pressed by the player is a directional key, then Rot.js provides a
convenience array (ROT.DIRS[8]) to help in computing the x- and y-coordinates
of the direction indicated by a key press. In the following code, you can see
the elements of the resulting direction array being added to the location state
being managed by the player core:

var dir = ROT.DIRS[8][keyMap[code]];
var newX = this._core.x() + dir[0];
var newY = this._core.y() + dir[1];

This is a perfect example of some code better left in JavaScript. Rot.js already
has facilities for direction calculation and, as you’ll see, pathfinding, so there’s
no need to reinvent those in Rust.

If the key pressed isn’t a movement key, but it’s instead either the carriage
return (code 13) or the space bar (code 32), then the player will try to open a
box. This code defers to the WebAssembly module by invoking the Rust
open_box() function on the Engine struct.

With the player’s basic behavior defined, it’s time to create the enemy. In this
game, the player’s arch-nemesis is the cruel, evil, heartless borrow checker,
a villain responsible for ensuring your code can never be compiled unless it
is memory safe! Let’s call him Checko.

jsint_roguewasm/index.js
// Checko the Borrow Checker! Run away!
var Checko = function (x, y) {

this._core = new PlayerCore(x, y, "B", "red", Game.display);
this._core.draw();

Checko.prototype.act = function () {
var x = Game.player.getX();
var y = Game.player.getY();

var passableCallback = function (x, y) {
return Game.engine.free_cell(x, y);

}
var astar = new ROT.Path.AStar(x, y, passableCallback, { topology: 4 });

var path = [];
var pathCallback = function (x, y) {

path.push([x, y]);
}
astar.compute(this._core.x(), this._core.y(), pathCallback);

path.shift();
if (path.length <= 1) {

Game.rotengine.lock();
alert("Game over - you were captured by the Borrow Checker!!");

} else {

Chapter 4. Integrating WebAssembly with JavaScript • 82

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_roguewasm/index.js
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

x = path[0][0];
y = path[0][1];
Game.engine.move_player(this._core, x, y);

}
}

}

Where the player’s act() callback (invoked by the Rot.js scheduler) handles
keyboard input and subsequent movement, Checko the Borrow Checker’s act()
callback uses Rot.js’s A-star pathfinding to compute a path to the player. It
then finds the first step in that path and moves in that direction. If the path
indicates that the player is about to be caught by Checko, the game is over.
(Game.rotengine.lock() stops all schedulers.)

Again, you can see where the PlayerCore struct is maintaining Checko’s current
position. These coordinates are passed as initialization parameters to the
A-star pathfinding algorithm. This calculation requires a callback, where
the boolean indicator of whether a coordinate is traversable is deferred to
the free_cell() function on the Engine struct (dots and asterisks are traverseable):

pub fn free_cell(&self, x: i32, y: i32) -> bool {
let g = GridPoint { x, y };
match self.points.get(&g) {

Some(v) => v == "." || v == "*",
None => false,

}
}

Earlier in this section, you saw some code at the top of the lib.rs file that looked
like this:

#[macro_use]
extern crate serde_derive;

This is a reference to the serde crate (serde refers to serialization/de-serial-
ization). Serde is one of the most commonly used Rust crates in the entire
ecosystem and contains functionality for manually performing raw serialization
as well as macros for automatically deriving serialization and de-serialization
implementations for your structs and enums.

As a reminder, the stats_updated() function provided by the browser host to be
invoked by our game engine is declared as follows:

#[wasm_bindgen(module = "./index")]
fn stats_updated(stats: JsValue);

When the game engine invokes the stats_updated() callback, it’s sending a raw
JSON value rather than attempting to marshal a struct that exists on both

report erratum • discuss

Building the Rogue WebAssembly Game • 83

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

sides of the barrier. This makes the stats notification faster and consume less
resources because you don’t need the generated boilerplate to make the Stats
struct appear as a JavaScript class.

For this kind of serialization code to compile, you’ll need to customize your
Cargo.toml slightly so that the wasm-bindgen reference includes serialization
support:

jsint_roguewasm/Cargo.toml
[package]
name = "roguewasm"
version = "0.1.0"
authors = ["Your Name <your@address.com>"]

[lib]
crate-type = ["cdylib"]

[dependencies]
serde = "^1.0.59"
serde_derive = "^1.0.59"

[dependencies.wasm-bindgen]
version = "^0.2"
features = ["serde-serialize"]

Now let’s write the code for the player core and show some of the other
important structs like Stats and GridPoint:

jsint_roguewasm/src/lib.rs
#[derive(Serialize)]
pub struct Stats {

pub hitpoints: i32,
pub max_hitpoints: i32,
pub moves: i32,

}

#[derive(PartialEq, Eq, PartialOrd, Clone, Debug, Hash)]
struct GridPoint {

pub x: i32,
pub y: i32,

}

#[wasm_bindgen]
pub struct PlayerCore {

loc: GridPoint,➤

moves: i32,
display: Display,
hp: i32,
max_hp: i32,
icon: String,
color: String,

}

Chapter 4. Integrating WebAssembly with JavaScript • 84

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/jsint_roguewasm/Cargo.toml
../../../../../../media.pragprog.com/titles/khrust/code/jsint_roguewasm/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

#[wasm_bindgen]
impl PlayerCore {

#[wasm_bindgen(constructor)]
pub fn new(x: i32, y: i32, icon: &str,

color: &str, display: Display) -> PlayerCore {
PlayerCore {

loc: GridPoint { x, y },
display,
moves: 0,
max_hp: 100,
hp: 100,
icon: icon.to_owned(),
color: color.to_owned(),

}
}

pub fn x(&self) -> i32 {
self.loc.x

}

pub fn y(&self) -> i32 {
self.loc.y

}

pub fn draw(&self) {
&self

.display

.draw_color(self.loc.x, self.loc.y, &self.icon, &self.color);
}

pub fn move_to(&mut self, x: i32, y: i32) {
self.loc = GridPoint { x, y };
self.draw();

self.moves += 1;
self.emit_stats();

}

pub fn emit_stats(&self) {
let stats = Stats {

hitpoints: self.hp,
max_hitpoints: self.max_hp,
moves: self.moves,

};
stats_updated(JsValue::from_serde(&stats).unwrap());➤

}

pub fn take_damage(&mut self, hits: i32) -> i32 {
self.hp = self.hp - hits;
self.emit_stats();
self.hp

}
}

report erratum • discuss

Building the Rogue WebAssembly Game • 85

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

The first arrow shows that every instance of a PlayerCore maintains the current
location, icon, and icon color of the player (or enemy) that it supports. The
second highlight shows internal state being converted into a struct that will
be serialized as a raw JSON value and sent to the JavaScript host.

I’m not just showing my preference for encapsulation over inheritance with
this implementation, but also illustrating a good pattern for hiding the seams
between JS and WebAssembly. To make sure you’ve got a fully working version
of the game to play with, download it from this book’s resources. In the project
directory, type:

$ npm install
...
$ npm run serve

> @ serve /home/kevin/Code/Rust/wasmbook/khrust/Book/code/jsint_roguewasm
> webpack-dev-server

ℹ ｢wds｣: Project is running at http://localhost:8080/
ℹ ｢wds｣: webpack output is served from /
ℹ ｢wdm｣: Hash: 54b422da54fec6fc085e
Version: webpack 4.16.3

...

With your WebAssembly module compiled and processed by wasm-bindgen, you
can now open localhost:8080 and you should be able to play Rogue WebAssembly
and see a page that looks similar to this:

Congratulations—you’ve just created a micro version of one of the most
classic and influential games of all time using WebAssembly and Rust! Before
continuing to the next section of this chapter, you should, as usual, take a
moment to bask in the glory of your own success and play the game. Keep

Chapter 4. Integrating WebAssembly with JavaScript • 86

report erratum • discuss
see more please visit: https://homeofpdf.com

localhost:8080
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

an eye out for things that work, things that feel awkward, and what you like
and don’t like about it.

Experimenting Further
Rogue WebAssembly is far from perfect. There are plenty of areas for
improvement: we can clean up the code, refactor methods, and make different
choices with regard to the allocation of responsibilities between WebAssembly
and JavaScript.

Before moving on to the next chapter, it might be worth your time to make
some changes to the game. Experiment with moving more logic and state into
the Rust code to try to keep the outer index.js as small as possible. What other
features do you think would make the game more interesting? Try giving
players the ability to fight each other by adding support for it in the PlayerCore
Rust struct. Given the Rot.js scheduler system, can you add more NPCs (Non-
Player Characters) to the game?

Your end result might not be a best-selling AAA-grade game, but playing
around with this framework, experimenting with new things, and, most impor-
tantly, breaking it and trying to fix it, will give you invaluable muscle memory
when it comes to writing Rust code and troubleshooting WebAssembly
applications.

Using the js_sys Crate
At the top of the lib.rs file you wrote for the game, there are some externs declared
that map to existing JavaScript functions, namely alert() and console.log(). It
would get very tedious very quickly if you wanted your Rust code to have
access to more native JavaScript functions and you had to manually write
each one of those extern bindings.

Thankfully you don’t have to write those bindings yourself. The work has
already been done for you in the js_sys6 crate. This crate, which is part of
wasm-bindgen, contains all of the mappings you need to global JavaScript
functions. Instead of manually defining the binding for alert() like you did in
this chapter, you can simply call js_sys::alert(). Not only has all this work been
done for you, but it saves you the trouble of figuring out exactly how to map
the data types and parameters.

6. rustwasm.github.io/wasm-bindgen/api/js_sys/

report erratum • discuss

Experimenting Further • 87

see more please visit: https://homeofpdf.com

../../../../../../https@rustwasm.github.io/wasm-bindgen/api/js_sys/default.htm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

In the process of improving your copy of Rogue WebAssembly, go through
and see if there are spots where you might be able to clean up the Rust or
JavaScript code by making js_sys calls.

But wait, there’s more! For the low price of nothing, you also get access to the
web_sys crate! This crate has all of the JavaScript Web API bindings7 in it. Your
rust code can make web_sys calls and, at runtime, the JavaScript host will
make web API calls on your behalf. Hopefully, at this point, you’re starting
to think that you have supervillain-like powers at your fingertips and you’re
feeling inspired to build your next world domination strategy in WebAssembly
and Rust.

Wrapping Up
In this chapter, you took the giant leap from manual and cumbersome commu-
nication between JavaScript and Rust-based WebAssembly modules to using
the wasm_bindgen crate. With this library’s macros and command-line tooling, you
have seamless, bi-directional invocations across the WebAssembly/JavaScript
boundary.

To see this power in action, you built the Rogue WebAssembly game to help
guide and inform your decisions about when code belongs in JavaScript versus
when it belongs in Rust. Continuing this path toward more advanced tooling
and libraries, in the next chapter, you’ll get to build a fully functional, net-
worked, multi-user application almost entirely in Rust.

7. developer.mozilla.org/en-US/docs/Web/API

Chapter 4. Integrating WebAssembly with JavaScript • 88

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@developer.mozilla.org/en-US/docs/Web/API
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

CHAPTER 5

Advanced JavaScript Integration with Yew
Your journey started out with some fundamental background on what
WebAssembly is and how it works. You progressed from there to build a
checkers engine with nothing but your mind, a text editor, and the wast syntax.

Next, you broadened your horizons and learned how to explicitly and tightly
control JavaScript interaction across the boundaries between WebAssembly
and the browser’s scripting host.

In this chapter, you will continue your journey away from the low-level
WebAssembly syntax and learn how the combination of Rust, Rust macros,
build tooling, and WebAssembly give you the power to create a complete,
interactive, network-connected application written entirely in Rust and exe-
cuted in the browser, maximizing code safety and performance.

Getting Started with Yew
As much as I dislike the traditional “Hello, World” program as a means to
illustrate real-world lessons, I do think they have value in giving you an initial
exposure to something brand new.

The Yew crate is unlike anything you’ve seen thus far in the book, and so
we’re going to start off with a simple example of how to build a Yew application
before getting into the real work of building the live multi-user chat.

The samples in this chapter are written with Yew version 0.4.0. If you’re
reading this book and the crates.io1 version of Yew is up to 0.5.0 or later,
you’ll need to decide which version you want to use. Thanks to Cargo’s
excellent version pinning, the book sample written against 0.4.0 will always
work as it appears in the dead tree version of this book. However, Yew 0.5.0

1. crates.io/crates/yew

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@crates.io/crates/yew
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

looks like it might contain some syntax improvements as well as multi-
threaded worker support. If you end up deciding to use Yew for a real appli-
cation, you might want to invest some time in learning the new syntax (which
is likely to include breaking changes from 0.4.0).

What Is Yew?
Inspired by the Elm language and the React JavaScript framework, Yew is a
modern web application framework designed to compile to WebAssembly
(wasm32-unknown-unknown), asmjs, or emscripten. We’ll only be using the pure
Rust WebAssembly target in this book.

Yew is a framework based on components, contexts, and message passing,
creating a powerful environment for building responsive front-end applications
that still operate nicely within the confines of Rust’s requirements and safety
constraints. It supports a virtual DOM, reusable fragments and components,
and has many of the features we look for in modern JavaScript web UI
frameworks.

Yew has two main Rust traits, which are very similar to interfaces in other lan-
guages. These traits are Component and Renderable. The component is responsible
for providing the business logic and managing state for a discrete portion of the
user interface. Anything that implements the Renderable trait is, as the name
implies, responsible for producing the HTML necessary to render that entity in
place within a virtual DOM. If you’ve had any exposure to React, then you’ll
recognize the power and performance benefits you get from a virtual DOM.

Yew’s power comes from the use of a custom plugin build tool (which you’ll
install shortly), some library code, and a large number of macros in the Yew
crate and others upon which it depends. It generates an enormous amount
of wiring code that allows you to think in terms of pure Rust, components,
and renderables, and not worry too much about how that Rust is going to
work inside a browser as a WebAssembly module.

The Yew Component trait has create(), update(), change(), and destroy() functions.
When you build a component you implement these functions to manage state
and logic. The Yew Renderable trait simply contains the view() function, which
returns HTML that should be rendered to the client.

Why Yew?
The purpose of this chapter is to show you how to build a web application
using (nearly) nothing but Rust code compiled to WebAssembly. When we
traditionally go to build web applications, we have to write things in JavaScript

Chapter 5. Advanced JavaScript Integration with Yew • 90

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

and HTML and CSS and we typically need to know a ton of frameworks on
top of that (e.g., Vue, React, Angular), we need to know front-end build tools
and back-end build tools, and we need to figure out where to split our code
—what goes in the back end and what goes in the front end?

Frameworks like Yew let us build everything in Rust, give us the benefit of
strong typing and safe code that we get from Rust, allow us to use a single,
unified toolchain for our web application, and dramatically simplify the
development process. Not every React application should be immediately re-
written as a “Rust-pure WebAssembly Yew” app, but hopefully by the end of
the chapter, you’ll have an idea of where these kinds of frameworks can come
in handy. Yew is not the only web framework available for Rust and
WebAssembly, but it’s a mature and accessible one, so it makes for a decent
book example.

As an added bonus, working with the Yew framework will expose you to some
more foundational aspects of Rust, including traits, generics, referencing
modules, mutable reference passing, and more.

Building Your First Yew Application
Building an application with Yew means composing a hierarchy of UI elements
composed of components and renderables. The sample you’ll build is a simple
counter. You’ll render a number and, whenever a user clicks a nearby button,
the number will increase.

That might seem overly simplistic, but remember this is being done from
inside Rust, built into a WebAssembly module, and then executed as Java-
Script. It’s worth it to take the effort to build this small sample to see how
components and renderables work in Yew before moving onto a bigger problem
domain. State will be maintained entirely within your Rust code, and you
won’t have to worry about which part of it is a back-end component and which
is front-end.

The first thing you’ll need to do is install Yew’s required build plugin, cargo-
web. To do that, issue the following command at a terminal prompt:

$ cargo install cargo-web

Depending on how much Rust development you’ve been doing on your
machine, this can take quite a while for all of the components to be download-
ed and compiled.

Don’t confuse the cargo command with the rustup command; rustup is responsible
for managing your installed toolchains and targets while cargo is responsible

report erratum • discuss

Getting Started with Yew • 91

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

for building and creating your projects. For the rest of this chapter, you’ll be
building and running your applications with the cargo web command instead
of the usual cargo.

To get started, create a new project (deleting the edition = "2018" line) with cargo
new (I called mine yewcounter). Unlike previous Rust projects, you don’t have to
declare that the application is a dynamic library, as cargo web will take care of
those details. Create a Cargo.toml that looks like this one:

yewcounter/Cargo.toml
[package]
name = "yewcounter"
version = "0.1.0"
authors = ["Kevin Hoffman <email@address.com"]

[dependencies]
stdweb = "0.4.2"
yew = "0.4.0"

The next thing we’ll do is create a src/main.rs, which is typically reserved for
standalone application binaries and not library modules.2 cargo web takes care
of the project metadata and compilation configuration for us, but I like being
able to think of this as an application and not just an isolated module so the
use of main.rs feels right.

In this new file, you’ll see a Context structure. It implements a trait called AsMut.
Anything that implements this trait indicates that it can expose a mutable
reference to the type given in the generic type parameter. In this case, the
context can provide a mutable reference to a service called ConsoleService, a
service that provides access to JavaScript’s console variable:

yewcounter/src/main.rs
extern crate yew;
extern crate yewcounter; // refers to lib.rs

use yew::prelude::*;
use yew::services::console::ConsoleService;
use yewcounter::Model;

pub struct Context {
console: ConsoleService,

}

impl AsMut<ConsoleService> for Context {
fn as_mut(&mut self) -> &mut ConsoleService {

&mut self.console
}

}

2. doc.rust-lang.org/book/ch07-00-packages-crates-and-modules.html

Chapter 5. Advanced JavaScript Integration with Yew • 92

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/yewcounter/Cargo.toml
../../../../../../media.pragprog.com/titles/khrust/code/yewcounter/src/main.rs
../../../../../../https@doc.rust-lang.org/book/ch07-00-packages-crates-and-modules.html
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

fn main() {
yew::initialize();
let context = Context {

console: ConsoleService::new(),
};
let app: App<_, Model> = App::new(context);
app.mount_to_body();
yew::run_loop();

}

From a polymorphism perspective, the goal of what’s happening with this
struct and trait is the ability to pass a concrete struct type known only to the
main module and have the components and renderables be able to use the
services contained within that context. In other words, the UI code relies on
the ability to obtain a mutable reference to a console service, but they aren’t
tightly coupled to how that service is made available. In other languages,
you’d accomplish something like this with dependency injection or structural
typing.

In addition to components and renderables, Yew also has the concept of ser-
vices. Services, within the realm of Yew applications, are designed to expose
“headless” (no UI) functionality to UI components. In this sample, the service
we’re using exposes the ability to log to JavaScript’s console as a service. In
the next sample in the chapter, you’ll create a service that exposes a multi-
user chat engine.

The code in the main() function is pretty standard for all Yew applications—
initialize the Yew runtime, create the context that’s appropriate for your
application, then create an application for your model that takes your context
as a parameter, and finally kick off the execution loop. Next, you’ll define your
model, which is the data read and manipulated by your component.

We’ll put the model, component, and renderable in lib.rs in the same src
directory as main.rs. For a more complex application, we might choose a more
robust module hierarchy (you’ll see some of those later in the book). In the
case of a simple counter, you can express the model as just a single field on
a struct:

pub struct Model {
value: i64,

}

In keeping with the React3-like architecture, we need to figure out which
messages (Redux developers might call them actions) we want to pass through

3. reactjs.org/

report erratum • discuss

Getting Started with Yew • 93

see more please visit: https://homeofpdf.com

../../../../../../https@reactjs.org/default.htm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

the component to produce changes within the model, which in turn changes
how the component renders. The Yew crate’s stock counter sample comes
with the following messages, defined by a Rust enum:

pub enum Msg {
Increment,
Decrement,
Bulk(Vec<Msg>),

}

You might have noticed that one of the variants (Bulk) can actually contain a
vector (array) of itself. As you’ll see, this lets us bundle up multiple messages
together and send them through the component as a single batch. Before
getting into the full code listing for the implementation, there’s some new
Rust syntax to cover that you’ll see:

impl<C> Component<C> for Model
where

C: AsMut<ConsoleService> {
...

}

This syntax combines Rust’s generics system with its trait system. This is
really one of the first areas beyond borrows, moves, and references where
Rust’s syntax may start to confuse people who have backgrounds in other
languages. This syntax indicates that, for any instance of the Model struct,
this scope contains a bound Component trait implementation when the type
parameter to that component (C) implements the AsMut<ConsoleService> trait.

Putting much of the syntax details aside, this code boils down to this statement
—Model can be treated as a Component so long as we can extract a mutable ref-
erence to a ConsoleService from the component. If you look back at the src/main.rs
code, you’ll see that we don’t actually instantiate our Model directly. Instead,
we pass it as a type parameter to Yew’s App struct.

There’s a similar, slightly more complex syntax that’s used to define the Ren-
derable responsible for emitting the HTML for the component:

impl<C> Renderable<C, Model> for Model
where

C: AsMut<ConsoleService> + 'static {
...

}

Essentially this code says that the Model struct can render anything that is of
type Model with a context type parameter that allows us to extract a mutable
reference to a ConsoleService.

Chapter 5. Advanced JavaScript Integration with Yew • 94

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

I personally find this type of Rust syntax “bumpy,” and it doesn’t read natu-
rally for me. The only way I learned it was simply to get used to it. Others,
possibly those with more exposure to traditional C++, find this syntax more
natural and low-friction. The other potentially confusing bit of syntax is the
'static bit—a lifetime specifier.

The Rust compiler prevents us from accessing values that may no longer
exist. To do this, it needs to know how long (relatively) those values should
exist. Most of the time, Rust can infer a memory lifetime and save us the
bother of explicitly defining one, and it does an even better job of eliding these
details in the 2018 edition syntax. But why do we need a lifetime specifier
here? I’m glad you asked!

In this one line of fairly dense syntax, you can assume that the code inside
the implementation block will, at some point, obtain a mutable reference to
something of type ConsoleService. The Rust compiler must now police this lifetime
to ensure that it lasts long enough for us to invoke the log() method on a
console instance without the console instance being null due to going out of
scope or being deallocated. Here, the static lifetime specifier is used. Without
boring you with 20 pages of detail, this doesn’t necessarily mean the value
lasts forever. It just means that it has an unlimited potential lifetime as far
as the Rust compiler is concerned. Since we know this is JavaScript’s console
variable, we can assume that its lifetime will never end so long as the
WebAssembly module is loaded.

If you were to remove the static lifetime specifier and then try to compile the
code in the upcoming listing, you’d get one of Rust’s famously expressive and
helpful error messages:

error: Could not compile `yewcounter`.

To learn more, run the command again with --verbose.
error[E0310]: the parameter type `C` may not live long enough

--> src/lib.rs:54:9
|

49 | impl<C> Renderable<C, Model> for Model
| - help: consider adding an explicit lifetime bound `C: 'static`...

...
54 | / html! {
55 | | <div>
56 | | <nav class="menu",>
57 | | <button onclick=|_| Msg::Increment,>{ "Increment" }</button>
... |
63 | | </div>
64 | | }

| |_________^
|

report erratum • discuss

Getting Started with Yew • 95

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

note: ...so that the type `C` will meet its required lifetime bounds
--> src/lib.rs:54:9
|

54 | / html! {
55 | | <div>
56 | | <nav class="menu",>
57 | | <button onclick=|_| Msg::Increment,>{ "Increment" }</button>
... |
63 | | </div>
64 | | }

| |_________^

The error message even suggests that we should consider adding a static lifetime
bound so that the C type will meet its requirements. I really do love the Rust
compiler error messages—an enormous amount of community effort has gone
into making them readable and provide useful hints.

Here is the completed src/lib.rs code that implements a component and a ren-
derable for the simple counter model:

yewcounter/src/lib.rs
extern crate stdweb;
#[macro_use]
extern crate yew;

use stdweb::web::Date;
use yew::prelude::*;
use yew::services::console::ConsoleService;

pub struct Model {
value: i64,

}

pub enum Msg {
Increment,
Decrement,
Bulk(Vec<Msg>),

}

impl<C> Component<C> for Model
where

C: AsMut<ConsoleService>,
{

type Message = Msg;
type Properties = ();

fn create(_: Self::Properties, _: &mut Env<C, Self>) -> Self {
Model { value: 0 }

}

Chapter 5. Advanced JavaScript Integration with Yew • 96

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/yewcounter/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

fn update(&mut self, msg: Self::Message,
env: &mut Env<C, Self>) -> ShouldRender {

match msg {
Msg::Increment => {

self.value = self.value + 1;
env.as_mut().log("plus one");

}
Msg::Decrement => {

self.value = self.value - 1;
env.as_mut().log("minus one");

}
Msg::Bulk(list) => for msg in list {

self.update(msg, env);
env.as_mut().log("Bulk action");

},
}
true

}
}

impl<C> Renderable<C, Model> for Model
where

C: AsMut<ConsoleService> + 'static,
{

fn view(&self) -> Html<C, Self> {
html! {

<div>
<nav class="menu",>

<button onclick=|_| Msg::Increment,>{ "Increment" }</button>
<button onclick=|_| Msg::Decrement,>{ "Decrement" }</button>
<button onclick=|_| Msg::Bulk(vec![Msg::Increment,

Msg::Increment]),>
{ "Increment Twice" }

</button>
</nav>
<p>{ self.value }</p>
<p>{ Date::new().to_string() }</p>

</div>
}

}
}

The html! procedural macro (you can spot procedural macros by their exclama-
tory nature!) takes the elements contained within it and produces real HTML,
which the Yew virtual DOM will render as soon as it deems appropriate. The
html! macro is defined by the stdweb4 crate, along with the js! macro that will emit
in-situ JavaScript wherever encountered in your Rust code.

4. crates.io/crates/stdweb

report erratum • discuss

Getting Started with Yew • 97

see more please visit: https://homeofpdf.com

../../../../../../https@crates.io/crates/stdweb
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Pay close attention to what’s inside the html! macro, though. It might look like
regular HTML, but it’s really just tokens waiting to be parsed by Rust. As
such, you’ll notice that the macro requires a comma after every attribute=value
segment, even if it precedes the closing markup character. It takes a little
getting used to, and readers with experience using React’s JSX have seen
this kind of mild frustration before. If you’re using a text editor with real Rust
support, though, it should be able to detect syntax errors in your macro and
try to warn you (though the error message may often seem obscure).

With these two files written, it’s time to compile and run this application. If
you’re wondering where the index.js JavaScript file is or the index.html file is—
we don’t need them. At least, not for this sample because Yew builds some
reasonable defaults for us via cargo web:

$ cargo web build --target=wasm32-unknown-unknown
Compiling yewcounter v0.1.0

(file:///home/kevin/Code/Rust/wasmbook/khrust/Book/code/yewcounter)
Finished release [optimized] target(s) in 0.19s

Compiling yewcounter v0.1.0
(file:///home/kevin/Code/Rust/wasmbook/khrust/Book/code/yewcounter)

Finished release [optimized] target(s) in 3.57s
Processing "yewcounter.wasm"...
Finished processing of "yewcounter.wasm"!

$ cargo web start --target=wasm32-unknown-unknown
Finished release [optimized] target(s) in 0.04s
Processing "yewcounter.wasm"...
Finished processing of "yewcounter.wasm"!

If you need to serve any extra files, put them in the 'static' directory
in the root of your crate. They'll be served alongside your application.
You can also put a 'static' directory in your 'src' directory.

Your application is being served at '/yewcounter.js'. It will be automatically
rebuilt if you make any changes in your code.

You can access the web server at `http://[::1]:8000`.

Let’s open the indicated website and see what we get:

Chapter 5. Advanced JavaScript Integration with Yew • 98

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Playing with this application feels just like it would if you had written it
entirely in JavaScript—clicking the buttons provides immediate feedback.
You can also see the invocations of the console service by checking the
JavaScript console. And you can see that the invocations are happening inside
yewcounter.js, a file generated completely on your behalf by the Yew build tool:

Finished loading Rust wasm module 'yewcounter'
plus one
minus one
plus one
Bulk action

Now that you’ve seen the basics behind building a service, a component, and
a renderable in Yew, let’s build on that knowledge by creating a multi-user
chat application sitting on top of a third-party JavaScript chat engine.

Building a Live Chat Application
Building on some basic exposure to the Yew programming model, it’s time
to create something a bit more complex and powerful than an app that
increments a counter. You’ve got the basic building blocks already: compo-
nents, renderables, and services—the trick lies in figuring out where and how
to stack those blocks.

For this next sample, we’re going to stack the building blocks to make a real-
time chat application. This app will have an area that displays chat messages,
an area that shows the currently online users, and an area that lets you enter
your alias and connect.

Luckily we won’t have to do all the multi-user, real-time chat work ourselves.
There are companies and products that can help here, including Pubnub,
Ably, XMPP platforms, Rapid.io, Emitter.io, and the list goes on ad infinitum.

Due to its ease of use and the fact that one does not have to supply a credit
card number to begin experimenting, I’ve decided to use Pubnub’s ChatEngine
product to provide the underlying infrastructure for this WebAssembly app.
If you have concerns about signing up for this service, feel free to read along
without doing so or simply supply minimal information and delete your
account when you’re done with the samples.

Creating a Pubnub Account and Keys
If you don’t already have your free Pubnub account, head on over to their
home page5 and create one. You’ll need to provide some basic information,

5. www.pubnub.com

report erratum • discuss

Building a Live Chat Application • 99

see more please visit: https://homeofpdf.com

../../../../../../https@www.pubnub.com/default.htm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

but it’s a five-minute process that goes even faster if you want to authenticate
using a Google ID (again, for the security-conscious, you can skip using your
Google ID and create new credentials instead)

After signing up and getting to your main dashboard, you’ll see tiles for each
of your applications. You’ll be creating an application for this sample, but
don’t create a new one with the “Create New app” button. Instead, if you see
a banner advertising the ChatEngine product at the top, click that link. If
you don’t see it, then you can manually go to the ChatEngine tutorial page.6

Once at the tutorial/quick-start, you should see a button called Setup, like
the one in the screenshot from Pubnub’s website:

When you click the setup button, Pubnub will create an application for you,
but it will also create a function in your application that hosts your chat engine
server. This function being up and running is the essential key to being able
to use the ChatEngine functionality. If you navigate to the functions button
and then click on your ChatEngine function, you should see a screen like the
one shown in the figure on page 101.

If the function isn’t running, start it now. If the navigation doesn’t match
what I’ve described in the book, then Pubnub may have changed their design
and you might need to search around in their new interface to find out how
to get set up. Before heading to the next section, you’ll need to know the

6. www.pubnub.com/tutorials/chatengine/

Chapter 5. Advanced JavaScript Integration with Yew • 100

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@www.pubnub.com/tutorials/chatengine/default.htm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

publish and subscribe keys for your app and be sure that your ChatEngine
function is running.

The goal of this chapter isn’t to write a Pubnub app, it’s to illustrate how you
can wrap third-party JavaScript libraries inside your own Rust WebAssembly
modules and utilize auto-generated bridge code to communicate between
your Rust/Yew code and another JavaScript library that you don’t own.

Building a Yew Service for Pubnub
Yew services are blocks of functionality that can be exposed to renderables
and components. They’re designed specifically to act as gateways (or facades
or Anti-Corruption Layers depending on which terminology is your favorite)
between your code and other dependencies.

In this case, the dependency is a JavaScript library from Pubnub. Because
we’re using Yew and building on top of other code generation tools that make
interacting with JavaScript easy, it should be fairly straightforward to wrap
some of the functions in the ChatEngine module as a Yew service. Of course,
“fairly straightforward” is usually how all innocent endeavors appear until
they explode in a fiery ball. There are a couple of quirks to watch out for here.

The largest quirk here is one that caused me endless hours of frustration
involving a conflict between my own code, asynchronous JavaScript, and my
own JS inexperience. I had two options: either force synchronous operations
and wait for manual initialization to finish, or declare a global variable (myChat)
to hold the handle to the chat conversation once the futures completed.

I chose the latter, which required me to add a couple of JavaScript variables
to the top of the index.html shown here. Those with better JavaScript chops
than I might want to refactor these global variables out as an exercise to get
more familiar with Yew+JavaScript interaction subtleties. Try capturing the
third-party library variables inside a Yew service, if you can:

report erratum • discuss

Building a Live Chat Application • 101

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

yew_wasmchat/static/index.html
<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Yew • Online Chat</title>
<link rel="stylesheet" href="styles.css">
<script

src="https://cdn.jsdelivr.net/npm/chat-engine@0.9.18/
dist/chat-engine.min.js"

type="text/javascript">
</script>
<link

rel="stylesheet"
type="text/css"
href="https://maxcdn.bootstrapcdn.com/font-awesome/

4.4.0/css/font-awesome.min.css">
</link>

</head>

<body>
<script id="bootstrap">

var myChat;
var me;

</script>
<script src="js/app.js"></script>

</body>

</html>

To get started with this project, you can copy the counter project from earlier.
I put mine in a directory called yew_wasmchat. The first changes you’ll need to
make will be to Cargo.toml to add a few new dependencies:

yew_wasmchat/Cargo.toml
[package]
name = "wasmchat"
version = "0.1.0"
authors = ["Kevin Hoffman <your@address.com>"]

[dependencies]
web_logger = "0.1"
log = "0.4"
strum = "0.9"
strum_macros = "0.9"
serde = "1"
serde_json = "1"
serde_derive = "1"
stdweb = "0.4.8"
yew = "0.4.0"

Chapter 5. Advanced JavaScript Integration with Yew • 102

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/yew_wasmchat/static/index.html
../../../../../../media.pragprog.com/titles/khrust/code/yew_wasmchat/Cargo.toml
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Web Logger is a handy little crate. Once initialized, web_logger will allow all of your
Rust-native log macros (info!, debug!, etc.) to generate very nice log messages in
the JavaScript console. You wrote a small wrapper around console.log earlier in
the book—this is just a fancier version of that same concept bundled as a crate.
The serde dependencies all deal with serialization and de-serialization.

There will be three files in this project: src/lib.rs, src/main.rs, and src/services.rs. The
initialization takes place in main.rs, lib.rs contains the UI, and services.rs contains
our Pubnub wrapper.

Let’s take a look at the service implementation and then step through some
of the parts that might look a little crazy:

yew_wasmchat/src/services.rs
use super::Message;
use stdweb::Value;
use yew::prelude::*;

pub struct PubnubService {
lib: Option<Value>,
chat: Option<Value>,

}

impl PubnubService {
pub fn new(publish_key: &str, subscribe_key: &str) -> Self {

info!("Creating new instance of pubnub chatengine service");
let chat_engine = js! {❶

let ce = ChatEngineCore.create({
publishKey: @{publish_key},
subscribeKey: @{subscribe_key}

});
console.log("Chat engine core created");
return ce;

};
PubnubService {❷

lib: Some(chat_engine),
chat: None,

}
}

pub fn send_message(&mut self, msg: &str) -> () {
js! {

let m = @{msg};
myChat.emit("message", {

text: m
});

}
}

report erratum • discuss

Building a Live Chat Application • 103

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/yew_wasmchat/src/services.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

pub fn connect(
&mut self,
topic: &str,
nickname: &str,
onmessage: Callback<Message>,
onoffline: Callback<String>,
ononline: Callback<String>,

) -> () {
let lib = self.lib.as_ref().expect("No pubnub library!");

let chat_callback = move |text: String, source: String| {❸
let msg = Message {

text: text,
from: source,

};
onmessage.emit(msg);

};

let useroffline_callback = move |username: String| {
onoffline.emit(username);

};

let useronline_callback = move |username: String| {
ononline.emit(username);

};

let chat = js! {❹
var pn = @{lib};
var chat_callback = @{chat_callback};
var online_cb = @{useronline_callback};
var offline_cb = @{useroffline_callback};

pn.on("$.ready", function(data) {
console.log("PubNub Chat Engine Ready");
// set global variable
me = data.me;
// create a new ChatEngine Chat (global var)
myChat = new pn.Chat(@{topic});

myChat.on("$.connected", () => {
console.log("The chat is connected!");

myChat.on("message", (message) => {
chat_callback(message.data.text,

message.sender.state.nickName);
console.log("message: " + message.data.text +

" from " + message.sender.state.nickName);
});
myChat.on("$.online.*", (data) => {

console.log("User is Online: ", data.user);
online_cb(data.user.state.nickName);

});

Chapter 5. Advanced JavaScript Integration with Yew • 104

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

myChat.on("$.offline.*", (data) => {
console.log("User is Offline: ", data.user);
offline_cb(data.user.state.nickName);

});
});

});
pn.connect(String(new Date().getTime()), {

nickName: @{nickname}
});

console.log("pubnub connecting");
return myChat;

};
self.chat = Some(chat);

}
}

❶ Inject JavaScript to instantiate Pubnub’s ChatEnginecore.

❷ Return a new PubnubService with a captured reference to the chat engine
JavaScript object.

❸ Define a set of callback functions that will be invoked by various Chat
Engine handlers.

❹ Inject the JavaScript necessary to attach the Rust/wasm callbacks to
chat engine JavaScript handlers.

Let’s take a closer look at this bit of code from the PubnubService::new() function:

let chat_engine = js! {
let ce = ChatEngineCore.create({

publishKey: @{publish_key},
subscribeKey: @{subscribe_key}

});
console.log("Chat engine core created");
return ce;

};

There’s a lot happening that you don’t see, so let’s walk through everything
that’s happening in detail:

• Everything inside the js! block is wrapped in a private scope and converted
into a JavaScript function that shows up in the generated JavaScript file.

• The publish_key and subscribe_key parameters are made available as function
parameters in this JavaScript snippet.

report erratum • discuss

Building a Live Chat Application • 105

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

• An extern block is created for this anonymous JavaScript function to allow
it to be invoked from WebAssembly.

• The “pass as a string” pattern is used to allow these values to be passed
to the JavaScript function by way of shared linear memory.

• At runtime, this anonymous function is invoked. The return value is
stored as an object reference in linear memory.

• That object reference is handed to Rust as a return value and stored in
chat_engine.

This is what is involved with just a few lines of js! macro, and that is even
with a few of the gory details being glossed over here to try to keep things
easy to follow. Hopefully, after having spent a few chapters doing things the
hard way, you are better able to follow the amount of work macros like this
save you.

Now you’ve seen what it looks like when you want to execute some JavaScript
that captures data via closure around Rust lexically scoped values and then
stores the return value of that JavaScript block as a native Rust variable. I
think it’s worth it to take a moment, pause, and thank the code generation
gremlins for their assistance here, recognizing how much power is now at
your fingertips.

Creating the Yew Chat UI
The user interface for the chat application is fairly simple. There’s an area for
messages that come from the chat engine (via the PubnubService), an area that
shows the list of connected users, an area that lets us provide an alias and
connect, and lastly, a textbox that lets us type text that will be transmitted
to all other users when we hit Enter.

To reproduce this layout, you can find both the index.html and styles.css files in
the static directory in the code sample download for the book.

As you now know, a Yew UI is composed of components, renderables, and
messages that are used to trigger updates. This app will have the following
messages:

• SendChat - indicates a text message should be sent out through the chat
engine

• AddMessage - indicates that we should add a text message to a component’s
internal state

• Connect - performs a chat engine connection via the service

Chapter 5. Advanced JavaScript Integration with Yew • 106

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

• EnterName - occurs as the user types in the "name" textbox

• UserOnline - indication of a change in presence status from the chat engine
service

• UserOffline - indication of a change in presence status from the chat engine
service

• UpdatePendingText - occurs as the user types in the text input box for the
outbound chat message

We’re going to create a component to manage state and we’re going to create
a renderable to manage the HTML output and virtual DOM manipulation. In
the following component code, the create() function is called to initialize state,
while its update() function is called every time a message bubbles up through
the queue. Most of the time, messages make their way to the update() function
by virtue of event handlers in renderables.

Note that the Msg type is used for Yew component internal messaging and the
Message type represents the data for a chat message. We use env.send_back() to
dispatch a Msg:

yew_wasmchat/src/lib.rs
#![recursion_limit = "512"]

extern crate strum;
#[macro_use]
extern crate serde_derive;
#[macro_use]
extern crate yew;
#[macro_use]
extern crate log;

#[macro_use]
extern crate stdweb;

use services::PubnubService;
use std::collections::HashSet;
use yew::prelude::*;

#[derive(Serialize, Deserialize, Debug)]
pub struct Message {

pub text: String,
pub from: String,

}

pub struct Model {
alias: String,
pending_text: String,
messages: Vec<Message>,
users: HashSet<String>,

}

report erratum • discuss

Building a Live Chat Application • 107

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/yew_wasmchat/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

#[derive(Debug)]
pub enum Msg {

SendChat,
AddMessage(Message),
Connect,
EnterName(String),
UserOffline(String),
UserOnline(String),
UpdatePendingText(String),
NoOp,

}

impl<C> Component<C> for Model
where

C: AsMut<PubnubService> + 'static,
{

type Message = Msg;
type Properties = ();

fn create(_: Self::Properties, _: &mut Env<C, Self>) -> Self {
Model {

messages: Vec::new(),
alias: "".into(),
users: HashSet::new(),
pending_text: "".into(),

}
}

fn update(&mut self, msg: Self::Message,
env: &mut Env<C, Self>) -> ShouldRender {

match msg {
Msg::AddMessage(msg) => {

self.messages.push(msg);
}
Msg::UserOnline(nick) => {

info!("Adding user {:?}", nick);
self.users.insert(nick);

}
Msg::UserOffline(nick) => {

info!("Removing user {:?}", nick);
self.users.remove(&nick);

}
Msg::SendChat => {

info!("Called send chat!");
env.as_mut().send_message(&self.pending_text);
self.pending_text = "".into();

}
Msg::Connect => {

let on_message = env.send_back(|msg| Msg::AddMessage(msg));
let onoffline = env.send_back(|user| Msg::UserOffline(user));
let ononline = env.send_back(|user| Msg::UserOnline(user));

Chapter 5. Advanced JavaScript Integration with Yew • 108

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

env.as_mut().connect(
"chatengine-demo-chat",
&self.alias,
on_message,
onoffline,
ononline,

);
}
Msg::EnterName(n) => {

self.alias = n;
}
Msg::UpdatePendingText(s) => {

self.pending_text = s;
}
Msg::NoOp => {}

}
true

}
}

Now that we have a component complete with message dispatching and state
management, let’s create the renderable view for this component:

yew_wasmchat/src/lib.rs
impl<C> Renderable<C, Model> for Model
where

C: AsMut<PubnubService> + 'static,
{

fn view(&self) -> Html<C, Self> {
html! {
<div class="wrapper",>

<div class="chat-text",>
<h1>{ "Messages" }</h1>

<ul class="message-list",>

{ for self.messages.iter().enumerate().map(view_message) }

</div>
<div class="users",>
<h1>{ "Users" }</h1>

<ul class="user-list",>

{ for self.users.iter().enumerate().map(view_user) }

</div>
<div class="connect",>
<input placeholder="Your Name",

value=&self.alias,
oninput=|e| Msg::EnterName(e.value),>

</input>
<button onclick=|_| Msg::Connect,>{ "Connect" }</button>

</div>

report erratum • discuss

Building a Live Chat Application • 109

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/yew_wasmchat/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

<div class="text-entry",>
<input placeholder="Message Text",

class="pending-text",
value=&self.pending_text,
oninput=|e| Msg::UpdatePendingText(e.value),
onkeypress=|e| {
if e.key() == "Enter" { Msg::SendChat } else { Msg::NoOp }

},>
</input>

</div>
</div>
}

}
}

Keep an eye on the code inside the html! macro. As you experiment with this
and try to add more controls, you will undoubtedly produce a syntax error
and the error message might not be immediately obvious because it’s a parse
failure rather than a language syntax error.

Inside the view() function, there are some utility functions that let us abstract
out and potentially reuse views: view_message() and view_user(). They each take
a tuple as a parameter and return HTML snippets:

yew_wasmchat/src/lib.rs
fn view_message<C>((_idx, message): (usize, &Message)) -> Html<C, Model>
where

C: AsMut<PubnubService> + 'static,
{

html! {

<label>
{"["}{&message.from}{"]"}
{&message.text}

</label>

}
}

fn view_user<C>((_idx, user): (usize, &String)) -> Html<C, Model>
where

C: AsMut<PubnubService> + 'static,
{

html! {

<label>{ user }</label>

}
}

pub mod services;

Chapter 5. Advanced JavaScript Integration with Yew • 110

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/yew_wasmchat/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Finally, now that you’ve got a chat engine service sitting on top of a valid,
active Pubnub account, you can create a src/main.rs to initialize the application
and components:

yew_wasmchat/src/main.rs
extern crate wasmchat;
extern crate web_logger;
extern crate yew;

use wasmchat::{services::PubnubService, Model};
use yew::prelude::*;

pub struct Context {
pubnub: PubnubService,

}

impl AsMut<PubnubService> for Context {
fn as_mut(&mut self) -> &mut PubnubService {

&mut self.pubnub
}

}

fn main() {
web_logger::init();
yew::initialize();

let context = Context {
pubnub: PubnubService::new("(your publish key)",

"(your subscribe key)"),
};

let app: App<_, Model> = App::new(context);
app.mount_to_body();
yew::run_loop();

}

Make sure that you replace the publish and subscribe keys with the ones
you got from your own application. Run the following commands from the
project root (the same directory as Cargo.toml):

$ cargo web build --target=wasm32-unknown-unknown
Processing "wasmchat.wasm"...
Finished processing of "wasmchat.wasm"!

$ cargo web start --target=wasm32-unknown-unknown
Processing "wasmchat.wasm"...
Finished processing of "wasmchat.wasm"!

If you need to serve any extra files, put them in the 'static' directory
in the root of your crate. They'll be served alongside your application.
You can also put a 'static' directory in your 'src' directory.

Your application is being served at '/wasmchat.js'. It will automatically
rebuild if you make any changes in your code.

You can access the web server at `http://[::1]:8000`.

report erratum • discuss

Building a Live Chat Application • 111

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/yew_wasmchat/src/main.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

You should be able to open this application in two separate tabs, provide two
aliases, and hit the Connect button. You can then have an intense and
thought-provoking discussion with yourself as shown in this screenshot:

Wrapping Up
It’s been a long journey since the early days when you were building checkers
games with raw wast. You’ve seen the underpinnings of WebAssembly and its
architecture, you’ve learned how to write low-level code, how to interact with
JavaScript via manual extern blocks, and in this chapter you took advantage
of libraries and code generation to build a nearly 100% Rust WebAssembly
application that even uses a third-party chat engine.

Your Jedi training in JavaScript integration is complete. You must now move
on and learn new, more powerful techniques. In the coming chapters, you
will experiment with hosting WebAssembly modules in Rust applications
rather than the browser. You’ll extrapolate from what you’ve learned about
JavaScript integration to build WebAssembly modules that run on Raspberry
Pis or that can even battle each other in online multiplayer combat.

Chapter 5. Advanced JavaScript Integration with Yew • 112

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Part III

Working with Non-Web Hosts

Let’s take our WebAssembly skills to the next level
and explore some exciting use cases for hosting
WebAssembly modules in Rust applications.

see more please visit: https://homeofpdf.com

CHAPTER 6

Hosting Modules Outside the Browser
Now that you’ve learned the ins and outs of creating WebAssembly modules
with the wast syntax and with Rust, and you’ve learned how a web browser
provides the necessary functionality to host WebAssembly modules, it’s time
to take that knowledge to the next level: Rust hosting.

At the very beginning of the book, I asked you to trust me when I told you
WebAssembly was about more than just the web—it was about creating portable
modules that could be slotted into all kinds of hosts, not just browsers.

In this chapter, I’ll make good on that promise and show you how to write
Rust code that performs the same job as a web browser in order to host
WebAssembly modules. You’ll see how to load, interpret, and execute those
modules as well as how to provide callable host functions and to take
advantage of functions and memory exported from a WebAssembly module.
By the end of the chapter, you’ll be able to build a console application that
can load checkers modules and interactively play them, all without even a
hint of the Internet or a web browser.

How to Be a Good Host
So far, you’ve seen what the browser does for WebAssembly modules, and
you probably have a good instinct for what tasks the browser is performing.
But I haven’t yet been explicit about the things a host needs to do in order
to play nice in the WebAssembly ecosystem.

WebAssembly specifies a mutual contract between the module and the host
responsible for it. This contract details the things that the host must provide
to the module, the things the module must provide to the host, as well as
other assertions that are required to “make the magic happen.” As you’ll see,
the terms of this contract are what allow WebAssembly to be so portable, and

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

to work in or out of a web browser—a characteristic that sets this technology
apart from so many of its predecessors.

To be a good host, you need to ensure that you do all of the following:

Load and Validate the wasm Binary
The binary wasm file format is a well-documented specification. Any appli-
cation acting as a host is responsible for loading the bytes from that file
and validating that all of the preconditions for the raw format of the file
are correct. This doesn’t validate behavior, only that the file itself is valid.
This may seem obvious, but it has a number of important implications,
including the inability for a WebAssembly module to bootstrap its own
execution and thus become an attack vector.

Expose Exports
Every WebAssembly module has to have at least one function export.
Otherwise, the host can do nothing with it. Each host is responsible for
going through the list of exported functions, linear memory, and so on,
and choosing how to deal with that. For functions, the host is responsible
for providing the bridge “glue” that allows a function invocation from the
host to execute the appropriate function in the WebAssembly module.

Satisfy Imports
In addition to exporting things for the host to use, WebAssembly modules
can also import things that must be satisfied by the host, like functions
and linear memory. There is some flexibility in the how and when, but
every host needs to be able to validate that the demands made by the
module imports can be met, and if not, providing an appropriate error to
the host-based code.

Interpret (execute) the Module
Once asked to invoke a WebAssembly function, the host is responsible
for traversing through the list of instructions (the numeric/opcode versions
of the instructions you saw when you wrote wast by hand earlier in the
book), maintaining state, and handling errors. If a module has a start()
function, the host needs to at least offer the option to execute that so the
module can initialize itself.

Module Isolation
The host is responsible for properly isolating modules. They shouldn’t be
able to talk to each other or view or modify any data without going through
the proper channels. There is nothing preventing a host from allowing
exported memory from one module to be imported by another module.
Whether or not to allow this sort of behavior is entirely up to the host. A

Chapter 6. Hosting Modules Outside the Browser • 116

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

module failure should never be able to crash another module, nor should
it be possible to execute un-exported (private) functions or see private data.

Now that we know the rules for being a good host, let’s go build one in Rust.

Interpreting WebAssembly Modules with Rust
If we really enjoyed punishing ourselves with loads of tedious work, we could
start with the binary interface and write a parser for it. We could then write
code that maintains the stack state, executes the various WebAssembly core
instructions, and manages linear memory and all the other things needed for
the low-level interface.

Thankfully we don’t have to do that. The creators of the wasmi1 crate have done
us a huge favor in that regard. Originally designed as a way to help Parity
Tech create an ethereum client for contracts implemented in WebAssembly,
Parity pulled the core pieces out of their code and made separate crates for
interpreting and manipulating WebAssembly modules.

You’ll get your first exposure to this crate by accomplishing the simplest task
—executing a WebAssembly function in a module that has no import needs
and exports nothing but a single function. To get started, create a new binary
Rust project with the following command:

$ cargo new --bin wasmi_add

This creates a new Rust project that is a standalone binary (we’ve been creating
dynamic libraries for WebAssembly modules so far) that can be executed from
the command line. The first step is to add a dependency on the wasmi crate
to the project:

wasmi_add/Cargo.toml
[package]
name = "wasmi_add"
version = "0.1.0"
authors = ["Your Address <you@address.com>"]

[dependencies]
wasmi = "0.4.0"

Replace your default main.rs with the following code. We’ll be adding to it piece
by piece as this code is probably new, even to many veteran Rust program-
mers. In the first section, our main() function returns a Result type. This lets us
use the ? operation that will either give us the good value inside the result or
return an error from the function immediately.

1. github.com/paritytech/wasmi

report erratum • discuss

Interpreting WebAssembly Modules with Rust • 117

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmi_add/Cargo.toml
../../../../../../https@github.com/paritytech/wasmi
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

The first thing you’ll do is load the WebAssembly module from the fundamen-
tals chapter (add.wasm) into a vector of bytes (the u8 type) and create a Module
from that buffer:

wasmi_add/src/main.rs
extern crate wasmi;

use std::error::Error;
use std::fs::File;
use std::io::Read;
use wasmi::{ImportsBuilder, ModuleInstance, NopExternals, RuntimeValue};

fn main() -> Result<(), Box<Error>> {
let mut buffer = Vec::new();
{

let mut f = File::open("../fundamentals/add.wasm")?;
f.read_to_end(&mut buffer)?;

}
let module = wasmi::Module::from_buffer(buffer)?;

Next, we’ll create an instance of the module. You can think of this as a “run-
ning copy” of the module, which has its own state, memory, etc. As a host,
the module instance is what you’ll interact with most of the time:

wasmi_add/src/main.rs
let instance = ModuleInstance::new(&module, &ImportsBuilder::default())

.expect("Failed to instantiate WASM module")

.assert_no_start();

This code creates a new module with a default set of imports, meaning we’re
not satisfying any imports demanded by the module yet. The assert_no_start()
function gives us an executable module instance that will panic if the module
has a start() function. If we knew our module needed initialization, we’d call
the run_start() function instead. The use of expect() is just another way of forcing
a panic if we get a failing result.

Now that we’ve got a module instance, we can invoke a function. As a
refresher, here’s what our add() function looked like:

(module
(func $add (param $lhs i32) (param $rhs i32) (result i32)

(i32.add
(get_local $lhs)
(get_local $rhs)

)
)
(export "add" (func $add))

)

Chapter 6. Hosting Modules Outside the Browser • 118

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmi_add/src/main.rs
../../../../../../media.pragprog.com/titles/khrust/code/wasmi_add/src/main.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

This code takes two i32 parameters and returns an i32 value. We execute that
using the wasmi crate like so:

wasmi_add/src/main.rs
let mut args = Vec::<RuntimeValue>::new();
args.push(RuntimeValue::from(42));
args.push(RuntimeValue::from(1));

let result: Option<RuntimeValue> =
instance.invoke_export("add", &args, &mut NopExternals)?;

Here you call invoke_export() with the name of the exported function. This name
must match and is case-sensitive. The RuntimeValue is used as a way of convert-
ing from Rust-native data types into values that can be passed onto the
WebAssembly stack as function parameters. It’s an enum, and as such, it’s
incredibly easy to use pattern matching to extract results from, as shown in
the rest of the code from main.rs:

wasmi_add/src/main.rs
match result {

Some(RuntimeValue::I32(v)) => {
println!("The answer to your addition was {}", v);

}
Some(_) => {

println!("Got a value of an unexpected data type");
}
None => {

println!("Failed to get a result from wasm invocation");
}

}
Ok(())

}

There are a couple of places in this code that are more verbose than they
needed to be, but it helps to see how everything works in long form before
taking some shortcuts. When you run this code, you should see that it per-
forms the addition just the way you’d expect:

$ cargo run
Compiling wasmi_add v0.1.0

(file:///home/kevin/Code/Rust/wasmbook/khrust/Book/code/wasmi_add)
Finished dev [unoptimized + debuginfo] target(s) in 1.48s
Running `target/debug/wasmi_add`

The answer to your addition was 43

And just like that, you’ve created a Rust console application that hosts a
WebAssembly module. Hopefully the real power of WebAssembly is starting
to hit you. Because next, we’re going to build a Rust console application that
can run the checkers game we wrote earlier in the book.

report erratum • discuss

Interpreting WebAssembly Modules with Rust • 119

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmi_add/src/main.rs
../../../../../../media.pragprog.com/titles/khrust/code/wasmi_add/src/main.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Building a Console Host Checkers Player
As exciting as it may have been to be able to invoke the add() function in one
of our earlier WebAssembly modules, eventually writing all of that low-level
code is going to feel tedious. As a result, a pattern starts to emerge when we
create Rust hosts for WebAssembly modules. This pattern involves:

Creating an Imports Resolver
In wasmi terms, this is an implementation of the ModuleImportResolver trait.
Its job is to provide a signature and numeric invocation index for each
function imported by the module.

Creating a Runtime for Externals
Each time the host invokes a module function, it has to pass something
that implements the Externals trait. This is typically referred to as the run-
time, and it’s what allows the module to invoke imported functions.

Creating an API Wrapper for Exported Functions
Manual invocations of WebAssembly module functions is tedious and just
feels very clumsy and stiff compared to idiomatic Rust. So, when we are
hosting a WebAssembly module, we can create a wrapper API around it
for the same reason that wasm-bindgen does when it builds a JavaScript
wrapper file.

We’ll be walking through each of these steps individually as we build the
checkers host. But first, create a new Rust binary project called wasmi_checkers
and add the wasmi dependency to it.

Resolving Imports
Import resolution is done callback style. As the wasmi system goes through
the module to create a running instance, it sifts through the list of imports
in a module. For each one of those imports, it will call the resolve_func() on the
import resolver that we’ve specified during the module instantiation.

This function is responsible for turning the name of the import (remember,
case-sensitive) into an instance of something that can then be used for
function invocation. This is the wasmi type FuncRef, which is built by supplying
a function index and some metadata about the function signature. If the sig-
nature we provide as a host doesn’t match the signature defined in the module,
we can return an error and stop execution.

Our checkers module had two imports that needed to be provided by the host:
piecemoved and piececrowned. These imports were in the events scope or

Chapter 6. Hosting Modules Outside the Browser • 120

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

namespace. To refresh your memory, here’s the declaration of those imports
from the original code:

(import "events" "piecemoved"
(func $notify_piecemoved (param $fromX i32) (param $fromY i32)

(param $toX i32) (param $toY i32)))
(import "events" "piececrowned"

(func $notify_piececrowned (param $pieceX i32) (param $pieceY i32)))

To build a resolver that handles these, create a new file called imports.rs in the
same directory as your main.rs. Add the following code:

wasmi_checkers/src/imports.rs
use wasmi::{

Error as InterpreterError, FuncInstance,
FuncRef, ModuleImportResolver, Signature, ValueType,

};

pub const PIECEMOVED_INDEX: usize = 0;
pub const PIECECROWNED_INDEX: usize = 1;

pub struct RuntimeModuleImportResolver;

impl RuntimeModuleImportResolver {
pub fn new() -> RuntimeModuleImportResolver {

RuntimeModuleImportResolver {}
}

}

impl<'a> ModuleImportResolver for RuntimeModuleImportResolver {
fn resolve_func(

&self,
field_name: &str,
_signature: &Signature,

) -> Result<FuncRef, InterpreterError> {
let func_ref = match field_name {

"piecemoved" => FuncInstance::alloc_host(❶
Signature::new(

&[
ValueType::I32,
ValueType::I32,
ValueType::I32,
ValueType::I32,

][..],
None,

),
PIECEMOVED_INDEX,

),
"piececrowned" => FuncInstance::alloc_host(❷

Signature::new(&[ValueType::I32, ValueType::I32][..], None),
PIECECROWNED_INDEX,

),
_ => {

report erratum • discuss

Building a Console Host Checkers Player • 121

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmi_checkers/src/imports.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

return Err(InterpreterError::Function(format!(❸
"host module doesn't export function with name {}",
field_name

)))
}

};
Ok(func_ref)

}
}

❶ Provide a FuncRef for the piecemoved() function.

❷ Provide a FuncRef for the piececrowned() function.

❸ Return an error if the module is trying to import a function we don’t know
about.

Where the import resolver is all about assigning numeric indexes and meta-
data to imported functions, the runtime performs the actual execution, as
you’ll see next.

Satisfying Externals with a Runtime
The complement to the resolve_func() function is the invoke_index() function, called
on an implementation of the Externals trait. This central function operates like
a dispatcher, and it’s our job to pull out the arguments, analyze the function
index, and decide what to invoke and how to invoke it.

It’s a pretty good choice to have the target of your dispatch function be on
the same anchor struct. That way, in case your runtime host needs to maintain
its own state, it can make that state available to the functions being called
by the module. This also helps ensure that data correlated to each module
is isolated from other modules you might be running in memory. Add the
runtime.rs file to your src directory and place the following code in it:

wasmi_checkers/src/runtime.rs
use super::imports::{PIECECROWNED_INDEX, PIECEMOVED_INDEX};

use wasmi::{Externals, RuntimeArgs, RuntimeValue, Trap};

pub struct Runtime {}❶

impl Runtime {
pub fn new() -> Runtime {

Runtime {}
}

fn handle_piece_moved(❷
&self,
from: (i32, i32),
to: (i32, i32),

Chapter 6. Hosting Modules Outside the Browser • 122

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmi_checkers/src/runtime.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

) -> Result<Option<RuntimeValue>, Trap> {
println!(

"A piece was moved from ({},{}) to ({},{})",
from.0, from.1, to.0, to.1

);
Ok(None)

}

fn handle_piece_crowned(❸
&self,
loc: (i32, i32)) -> Result<Option<RuntimeValue>, Trap> {
println!("A piece was crowned at ({},{})", loc.0, loc.1);
Ok(None)

}
}

impl Externals for Runtime {
fn invoke_index(❹

&mut self,
index: usize,
args: RuntimeArgs,

) -> Result<Option<RuntimeValue>, Trap> {
match index {

PIECECROWNED_INDEX => {
let piece_x: i32 = args.nth(0);
let piece_y: i32 = args.nth(1);
self.handle_piece_crowned((piece_x, piece_y))

}
PIECEMOVED_INDEX => {

let from_x: i32 = args.nth(0);
let from_y: i32 = args.nth(1);
let to_x: i32 = args.nth(2);
let to_y: i32 = args.nth(3);
self.handle_piece_moved((from_x, from_y), (to_x, to_y))

}
_ => panic!("unknown function index"),

}
}

}

❶ Great place to put module-specific state

❷ Dispatcher calls this function when appropriate

❸ Dispatcher calls this function when appropriate

❹ Central dispatcher, converts function index to call result

We now have a checkers runtime and a checkers import resolver. The two of
these things can be encapsulated within a single checkers API that hides all
of the wasmi implementation details and can even hide the presence of
WebAssembly entirely. We’ll build such an API next.

report erratum • discuss

Building a Console Host Checkers Player • 123

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Module State

Perhaps you’re wondering why we would want to maintain our own state for a module
when, as we know, the module is capable of maintaining its own state via linear
memory. Host state bound to a particular module comes in handy when we want to
maintain data that we don’t want the module to manipulate directly.

For example, we could maintain the health or hit points of the entity controlled by a
WebAssembly module, and we don’t want the module to cheat by having direct access
to that state. We could also maintain a win/loss count for a checkers module, etc.

Creating the Checkers Game API
There’s one last thing to do before we can use Rust to host our checkers
WebAssembly module—build an API layer. We don’t want to expose to the
consumer of the checkers game all of the low-level details of how to interface
with WebAssembly modules. If we wanted, we could even try to hide the
existence of the wasm file itself. But in this case, we want syntax like Checkers-
Game::new("/path/to/file.wasm").

To do this, create a checkersgame.rs file in the src directory of your project. Add
this initial bit of code to the file to create a function that encapsulates the
logic to read the file from disk and create a module instance from it:

wasmi_checkers/src/checkersgame.rs
use std::error::Error;
use std::fs::File;
use std::io::prelude::*;
use wasmi::{

ExternVal, ImportsBuilder, MemoryRef, Module,
ModuleImportResolver, ModuleInstance, ModuleRef, RuntimeValue,

};

use super::imports::RuntimeModuleImportResolver;
use super::runtime::Runtime;

pub struct CheckersGame {
runtime: Runtime,
module_instance: ModuleRef,

}

#[derive(Debug)]
pub enum PieceColor {

White,
Black,

}

type Result<T> = ::std::result::Result<T, Box<Error>>;
type Coordinate = (i32, i32);

Chapter 6. Hosting Modules Outside the Browser • 124

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmi_checkers/src/checkersgame.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

fn load_instance(import_resolver: &impl ModuleImportResolver,
module_file: &str) -> Result<ModuleRef>

{
let mut buffer = Vec::new();
let mut f = File::open(module_file)?;
f.read_to_end(&mut buffer)?;
let module = Module::from_buffer(buffer)?;
let mut builder = ImportsBuilder::new();
builder.push_resolver("events", import_resolver);

Ok(ModuleInstance::new(&module, &builder)
.expect("Failed to instantiate WASM module")
.assert_no_start())

}

There’s a little bit of Rust generics in here, but it’s not too intimidating. The
load_instance() function merely takes as its import_resolver parameter anything that
can implement the ModuleImportResolver trait. We’ve already implemented that,
so we’re in good shape here. Add a few more functions to the file:

wasmi_checkers/src/checkersgame.rs
impl CheckersGame {

pub fn new(module_file: &str) -> CheckersGame {
let resolver = RuntimeModuleImportResolver::new();

let instance = load_instance(&resolver, module_file).unwrap();
let runtime = Runtime::new();

CheckersGame {
module_instance: instance,
runtime,

}
}

pub fn init(&mut self) -> Result<()> {❶
self.module_instance

.invoke_export("initBoard", &[], &mut self.runtime)?;
Ok(())

}

pub fn move_piece(&mut self,❷
from: &Coordinate,
to: &Coordinate) -> Result<bool> {

let res = self.module_instance.invoke_export(
"move",
&[

RuntimeValue::from(from.0),
RuntimeValue::from(from.1),
RuntimeValue::from(to.0),
RuntimeValue::from(to.1),

],
&mut self.runtime,

)?;

report erratum • discuss

Building a Console Host Checkers Player • 125

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmi_checkers/src/checkersgame.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

match res {
Some(RuntimeValue::I32(v)) => Ok(v != 0),
_ => {

println!("Did not get an appropriate response from move.");
Ok(false)

}
}

}

pub fn get_turn_owner(&mut self) -> Result<PieceColor> {❸
let res = self

.module_instance

.invoke_export("getTurnOwner", &[], &mut self.runtime)?;
match res {

Some(RuntimeValue::I32(v)) => {
if v == 1 {

Ok(PieceColor::Black)
} else {

Ok(PieceColor::White)
}

}
_ => Err(From::from("Bad invocation")),

}
}

❶ A wrapper for the initBoard() module function.

❷ Converts co-ordinate tuples into simple i32s and calls move.

❸ Converts a numeric turn owner from the module to a more API-friendly
enum (PieceColor).

This is great, and so far, we’ve just been providing idiomatic wrappers around
the WebAssembly module functions. But I think we can do more. For one
thing, we have access to the module’s raw linear memory. Since we know how
that module stores the board state, we can grab the raw bytes and convert it
into a way to display the game board.

Since we’re writing all the host code in Rust, we have access to some pretty
cool functions, like the ability to do easy-to-read math and read and write
from the module’s memory. Take a look at the code we can write to render
the board contents as a string:

wasmi_checkers/src/checkersgame.rs
pub fn get_board_contents(&mut self) -> Result<String> {

let export = self.module_instance.export_by_name("memory");
let header = r#"

0 1 2 3 4 5 6 7
.---.---.---.---.---.---.---.---."#;

let footer = " `---^---^---^---^---^---^---^---^";

Chapter 6. Hosting Modules Outside the Browser • 126

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmi_checkers/src/checkersgame.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

let middle_string = match export {
Some(ExternVal::Memory(mr)) => gen_board(&mr),
_ => " -- no board data found -- ".to_string(),

};

Ok(format!("{}\n{}{}\n", header, middle_string, footer))
}

}

fn gen_board(memory: &MemoryRef) -> String {
let mut vals = Vec::<String>::new();

for y in 0..8 {
vals.push(format!("{} ", y));
for x in 0..8 {

let offset = calc_offset(x, y);
let bytevec: Vec<u8> = memory.get(offset, 4).unwrap();
let value = to_u32(&bytevec[..]);

vals.push(format!("|{}", value_label(value)));
}
vals.push("|\n".into());

}

vals.join("")
}

fn value_label(v: u32) -> String {
match v {

0 => " ",
1 => " B ",
2 => " W ",
5 => " B*",
6 => " W*",
_ => "???",

}.into()
}

fn to_u32(bytes: &[u8]) -> u32 {
bytes.iter().rev().fold(0, |acc, &b| acc * 2 + b as u32)

}

fn calc_offset(x: usize, y: usize) -> u32 {
((x + y * 8) * 4) as u32

}

The calc_offset() function should look pretty familiar, as we implemented it
earlier in the book in the checkers module in wast. Really, the only somewhat
complicated piece here is pulling out strips of 4 bytes into a vector and then
converting that into a 32-bit unsigned int via the to_u32() function. This version
of the function that uses an accumulator and a fold is a little easier to read
than some of the “shift left” techniques for coming up with the same result.

report erratum • discuss

Building a Console Host Checkers Player • 127

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Now all we need to do is write our main() function and we should be able to
play checkers with a Rust host.

Playing Checkers
Replace whatever your main.rs has with the following code:

wasmi_checkers/src/main.rs
extern crate wasmi;

mod checkersgame;
mod imports;
mod runtime;

use checkersgame::CheckersGame;
use std::error::Error;

fn main() -> Result<(), Box<Error>> {
let mut game = CheckersGame::new("../checkers/checkers.wasm");
game.init()?;

let board_display = game.get_board_contents()?;
println!("game board at start:\n{}\n", board_display);

println!(
"At game start, current turn is : {:?}",
game.get_turn_owner()?

);
game.move_piece(&(0, 5), &(0, 4))?;
println!(

"After first move, current turn is : {:?}",
game.get_turn_owner()?

);

let board_display = game.get_board_contents()?;
println!("game board after 1 move:\n{}\n", board_display);

Ok(())
}

The ../checkers/checkers.wasm file here refers to the non-Rust, raw wast version of
checkers we built earlier in the book. If you don’t want to compile your own,
you can grab a copy from the book’s resource files.

Let’s run it and see what happens:

$ cargo run
Compiling wasmi_checkers v0.1.0
(file:///home/kevin/Code/Rust/wasmbook/khrust/Book/code/wasmi_checkers)
Finished dev [unoptimized + debuginfo] target(s) in 0.94s
Running `target/debug/wasmi_checkers`

Chapter 6. Hosting Modules Outside the Browser • 128

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/wasmi_checkers/src/main.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

game board at start:

0 1 2 3 4 5 6 7
.---.---.---.---.---.---.---.---.

0 | | W | | W | | W | | W |
1 | W | | W | | W | | W | |
2 | | W | | W | | W | | W |
3 | | | | | | | | |
4 | | | | | | | | |
5 | B | | B | | B | | B | |
6 | | B | | B | | B | | B |
7 | B | | B | | B | | B | |

`---^---^---^---^---^---^---^---^

At game start, current turn is : Black
A piece was moved from (0,5) to (0,4)
After first move, current turn is : White
game board after 1 move:

0 1 2 3 4 5 6 7
.---.---.---.---.---.---.---.---.

0 | | W | | W | | W | | W |
1 | W | | W | | W | | W | |
2 | | W | | W | | W | | W |
3 | | | | | | | | |
4 | B | | | | | | | |
5 | | | B | | B | | B | |
6 | | B | | B | | B | | B |
7 | B | | B | | B | | B | |

`---^---^---^---^---^---^---^---^

Not only were we able to flawlessly execute all of the WebAssembly code in
the module from a Rust host, but we improved the functionality by wrapping
it with our own API and even added an ASCII visualization for the game board.

This same module can now be used interchangeably to play checkers in a
web browser, on a console application, or on some kind of server back end,
all without making a single change to the compiled wasm file. This is where
WebAssembly really shines.

Wrapping Up
You’ve now taken your WebAssembly skills to the next level. You should now
have a deep understanding of how WebAssembly modules interact with their
hosts, and what services the hosts provide for those modules. You’ve seen
how web browsers act as hosts and the services they provide, and you’ve now
built a Rust application that can host a WebAssembly module.

report erratum • discuss

Wrapping Up • 129

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Now that you have been able to build this Rust WebAssembly host, it’s time
to amp up the fun level a little bit. In the next chapter, you will see how
WebAssembly’s portable binary modules can be used to dramatically improve
the development experience with the Internet of Things.

Chapter 6. Hosting Modules Outside the Browser • 130

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

CHAPTER 7

Exploring the Internet
of WebAssembly Things

The Internet of Things (IoT) is now as ubiquitous as the Internet itself. Some
people see this as a tremendous opportunity for growth and innovation while
others are terrified of an impending future dominated by millions of woefully
underprotected, overconnected devices.

Today we have smart watches, refrigerators, toasters, doorbells, clothing, and
thousands of other things that attach the real world to the digital world of
the Internet. Infrastucture companies want to sell us platforms to support
our IoT applications, security companies want to help us secure our smart
devices, and the maker community is constantly expanding and building
open source, connected hardware. IoT represents a nearly infinite number of
ways to spend and earn money, so it’s no wonder it has inspired so much
innovation.

As you’ve come to learn on your journey through this book, WebAssembly is
about far more than just speeding up web applications. Its portable, compact
format makes it ideal for systems under heavy disk, memory, and processing
constraints. It’s ideal for isolating business logic from presentation and, as
you’ll see in this chapter, from external, physical devices.

In this chapter, you’ll take advantage of WebAssembly’s portability and the
Raspberry Pi’s easy access to hardware systems to build a pluggable host
that separates the logic of determining what to display on a hardware indicator
from the how of displaying it. The LED and computer parts for this chapter’s
hardware are inexpensive, but even if you don’t have a Raspberry Pi, you’ll
see how you can write and test code for hardware in isolation all from the
comfort of your own workstation.

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

This chapter will operate on, and prove, the following two assumptions:

1. If a WebAssembly module can be hosted in a web browser or a console
application, you can host it on a Raspberry Pi

2. If two WebAssembly modules adhere to the same contract, they can be
interchanged like modular plugins

Before we start coding, let’s take a tour of a use case illustrating the problem
we want to solve.

Overview of the Generic Indicator Module
Let’s assume that we’ve been tasked with designing and building part of an
IoT project. This project is to build an autonomous wheeled robot that
maneuvers its way through an obstacle course as they do in many robotics
competitions.

Since we’re working as part of a team and there are hundreds of individual
pieces on this robot, we’ve been tasked with handling the Generic Indicator
Module System. Since all hardware projects need acronyms, we’ll call this one
GIMS. Bonus points for a four-letter acronym, as that puts us just that tiny
bit closer to feeling like NASA.

The robot will process multiple streams of sensor inputs from many different
devices. GIMS’s job is to allow the sensory input to be fed into a WebAssembly
module that can then determine how the current state of some aspect of the
robot should be visualized. We might have access to gauges, multi-colored
LEDs, headlights that could turn on when it’s dark—any number of amazing
devices.

In some cases, the sensory input might already have been massaged a little
bit by the more accurate timing of microcontrollers, while our GIMS will be
running on a Raspberry Pi at the very heart of a robot. In this chapter, to
keep from writing an entire new book on robotics and WebAssembly, we’ll
focus solely on the generic indicator system.

The robotics team leadership has built these types of competition robots
before, and they know the pain and true price of the integration cost when
they have to go back into their code and fuss with tiny details every time they
change a piece of hardware. If you haven’t played with microcontrollers,
“maker kits,” or Raspberry Pis, you might assume that LEDs are just LEDs
—you control one the same way you control another. The truth is far more
annoying.

Chapter 7. Exploring the Internet of WebAssembly Things • 132

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

The reality is that you can go from the simplest LED (apply current, it lights
up, magic!) to chains of multicolor LEDs that operate with simple timing
sequences to systems that use very specific communications protocols like
I2C.1 Changing your peripherals mid-build can be a “stop the world” event,
but we can engineer our way around that with a little help from WebAssembly.

With the GIMS design, we’ll be putting the indicator logic—which translates
a series of sensor inputs into a series of hardware manipulation commands
—into WebAssembly. This way, the indicator logic remains isolated and
loosely coupled from the physical indicator(s). If someone changes an LED
from a simple light-and-resistor to a brick of 200 “LED pixels,” they should
be able to make a small change to an interface layer and leave our indicator
relatively unbothered.

In short, we’re taking the software engineering principles of loose coupling
and separation of concerns and, with the power of WebAssembly, bringing
them to the world of consumer-grade electronics. The first thing we’re going
to need to do in order to make that happen is design the contract between
the host and the WebAssembly modules.

Designing the Module Contract
As you saw in the chapter on basic JavaScript integration, the contract
between a WebAssembly module and its host is a very basic, low-level contract
built from numeric primitives. That contract defines how linear memory is
accessed, how parameter values can be passed to functions, how we can
invoke functions exported from a module, and within the module, invoke
functions imported from the host.

Above these low-level bindings, what we need is an API. We need an API that
lets the host invoke functions whenever there are new sensor readings avail-
able. This API also needs to let the WebAssembly module control the indicator
lights. We could even let WebAssembly modules control more hardware like
motors and actuators, but that’s outside the scope of our GIMS project (though
it certainly could be a lot of fun to explore).

First let’s think about sensor inputs. I’m sure in real-world circumstances,
our sensors would have all different kinds of outputs, and some might have
more than one value. But knowing that we’re doing this for the Raspberry Pi,
and that other microcontrollers closer to the data might be able to massage
it for us, it’s safe to assume that we’ll be able to get a decimal value from each

1. i2c.info learn.sparkfun.com/tutorials/i2c

report erratum • discuss

Overview of the Generic Indicator Module • 133

see more please visit: https://homeofpdf.com

../../../../../../https@i2c.info/default.htm
../../../../../../https@learn.sparkfun.com/tutorials/i2c
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

sensor whenever a value changes. So our host is going to want to call a
function like the one below to inform our wasm module of a new data point:

fn sensor_update(sensor_id: i32, sensor_value: f64) -> f64;

Let’s say the motor speed is sensor 1, the ambient light detector is sensor 2,
the collision detector is sensor 3, the battery of our main laser cannon is 20,
etc. We’ll have to maintain the Rust-equivalent of a header file so that we can
ensure all our modules are operating on the same list of sensors. If the team
disagrees on sensor IDs, we’re basically back at square 1 and haven’t fixed
any problems.

Another function we want the host to be able to call is apply(). If we need to
animate or update our display over time, we could probably attempt some
kind of intricate threading scheme to run each module, but it’s far easier to
use the “game loop” model and just invoke something like apply() n times per
second. We might be able to do fancier things when threading becomes a part
of a future version of the WebAssembly specification, but this is good enough
for our needs today.

To let the modules know about the passage of time, we can, however, invoke
the same function at fixed intervals and pass a frame value that increases
for each call. We can either agree on a frame rate for updates or write our
code so it doesn’t really matter:

fn apply(frame: i64);

For example, an animated indicator might have apply called 20 times per
second.

That’s it for the input to our modules. Now we need to give the WebAssembly
modules a way to control hardware without tightly coupling them to it. For
this, we’ll abstract over the notion of setting the color of an individual LED
with a function that takes an LED index and 3 RGB values between 0 and
255, like so:

fn set_led(led_index: i32, r: i32, g: i32, b: i32);

If you think back to the fundamentals chapter, recall that while we’re allowed
to use plenty of data types privately within the module code, we can’t import
and export higher-level data types like structs. Let’s recap and take a look at
the three functions in the GIMS API contract (import and export are from the
point of view of the WebAssembly module) as shown in the table on page 135.

Now that we’ve got a preliminary contract defined between our hardware host
and the wasm modules, we can create a couple of different indicators.

Chapter 7. Exploring the Internet of WebAssembly Things • 134

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

ReturnsParamsDirectionName

Noneexportapply() • frame

Valueexportsensor_update() • sensor_id
• sensor_value

Noneimportset_led() • led_index
• red
• green
• blue

Creating Indicator Modules
Creating an indicator module is really just a matter of creating a regular Rust-
based WebAssembly module that adheres to the contract we’ve defined. You’ve
seen how to create wasm modules using Rust a number of times throughout
this book, so it should be easy to get started.

To start, create a root directory that will hold a battery indicator, an animated
indicator, and the host application. I chose to call my directory gims, but you
can choose whatever you like. As a convenience, to allow you to run builds
and tests on all subdirectories at once, you can create a new Cargo.toml in the
gims directory with the following contents:

iot_gims/Cargo.toml
[workspace]

members = [
"animatedindicator",
"batteryindicator",
"pihost"

]

Use cargo new --lib to create the batteryindicator and animatedindicator projects, and
cargo new --bin to create the pihost project.

Creating the Battery Indicator
The first indicator module we’re going to build is a battery indicator. Its
operation is fairly simple: one of the sensor inputs represents the amount of
battery remaining as a percentage. In response to that percentage, we’re going
to control the color of a group of eight LEDs.

These LED indicators are each capable of lighting up with colors comprised
of RGB components ranging from 0 through 255. The actual hardware used

report erratum • discuss

Creating Indicator Modules • 135

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/iot_gims/Cargo.toml
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

will be a Blinkt! module from Pimoroni, and I’ll include all the details later in
case you want to go shopping for your own kits.

Its core logic will be to convert a number from 0-100 into an eight-element
array with each element containing an RGB color value—think of it like an
LED-based progress bar. For this indicator, we’ll divide the percentages among
the LEDs and only light them up if the value is >= the base value for that
LED. Figuring out the base value for each LED is simple—divide the eight
LEDs by 100 and we get 12.5% per LED.

Update your lib.rs with the following code:

iot_gims/batteryindicator/src/lib.rs
#[derive(PartialEq, Debug, Clone)]
struct LedColor(i32, i32, i32);❶

const SENSOR_BATTERY: i32 = 20;

const OFF:LedColor = LedColor(0, 0, 0);
const YELLOW: LedColor = LedColor(255, 255, 0);
const GREEN: LedColor = LedColor(0, 255, 0);
const RED: LedColor = LedColor(255, 0, 0);
const PCT_PER_PIXEL: f64 = 12.5_f64;

extern "C" {
fn set_led(led_index: i32, r: i32, g: i32, b: i32);❷

}

#[no_mangle]
pub extern "C" fn sensor_update(sensor_id: i32, sensor_value: f64) -> f64 {❸

if sensor_id == SENSOR_BATTERY {
set_leds(get_led_values(sensor_value));

}
sensor_value

}

#[no_mangle]
pub extern "C" fn apply(_frame: u32) {

// NO OP, not an animated indicator
}

fn get_led_values(battery_remaining: f64) -> [LedColor; 8] {❹
let mut arr: [LedColor; 8] = [OFF,OFF,OFF,OFF,OFF,OFF,OFF,OFF,];
let lit = (battery_remaining / PCT_PER_PIXEL).ceil();

// 0 - 20 : Red
// 21 - <50 : Yellow
// 51 - 100 : Green

let color = if 0.0 <= battery_remaining &&
battery_remaining <= 20.0 {
RED

Chapter 7. Exploring the Internet of WebAssembly Things • 136

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/iot_gims/batteryindicator/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

} else if battery_remaining > 20.0 && battery_remaining < 50.0 {
YELLOW

} else {
GREEN

};

for idx in 0..lit as usize {
arr[idx] = color.clone();

}

arr
}

fn set_leds(values: [LedColor; 8]) {❺
for x in 0..8 {

let LedColor(r, g, b) = values[x];
unsafe {

set_led(x as i32, r,g,b);
}

}
}

❶ Create a tuple-struct to hold the three-color codes

❷ Import the set_led() function from our host

❸ Expose the sensor_update() and apply() functions to the host

❹ Core logic to convert a percentage into a set of eight color codes

❺ Invoke the unsafe import in a loop to set all the LED colors on the host

With this code in place, we’re going to want to test our module before we plug
it into real hardware.

Testing the Battery Indicator
Testing hardware and embedded systems is typically one of the hardest aspects
of that kind of development. Pure hardware developers might want to just
pull out an oscilloscope and take a look at how the current flows through
your system, but this doesn’t help us test our business logic (though it could
help integration test the host).

Fortunately for us, we don’t need to physically test the LEDs right now. We
can assume that the host works and write unit tests for our business logic
that determines which LEDs to light up and what colors to display.

This is where the pluggable modularity of WebAssembly modules starts to
truly shine in the embedded and IoT space—finally giving us software devel-
opers a way to write unit tests for hardware-bound code without having to
rig up elaborate Rube Goldberg machinery to our developer workstations.

report erratum • discuss

Creating Indicator Modules • 137

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

This test code (at the bottom of lib.rs) just invokes the get_led_values() function
for some known percentages and ensures that we get the right color array in
response:

iot_gims/batteryindicator/src/lib.rs
#[cfg(test)]
mod tests {

use {OFF, YELLOW, RED, GREEN, get_led_values};

#[test]
fn test_0_pct() {

assert_eq!(get_led_values(0.0),
[OFF,OFF,OFF,OFF,OFF,OFF,OFF,OFF,]);

}

#[test]
fn test_15_pct() {

assert_eq!(get_led_values(15.0),
[RED, RED, OFF, OFF, OFF, OFF, OFF, OFF]);

}

#[test]
fn test_49_pct() {

assert_eq!(get_led_values(49.0),
[YELLOW, YELLOW, YELLOW, YELLOW, OFF, OFF, OFF, OFF]);

}

#[test]
fn test_75_pct() {

assert_eq!(get_led_values(75.0),
[GREEN,GREEN,GREEN,GREEN,GREEN,GREEN,OFF,OFF,]);

}

#[test]
fn test_100_pct() {

assert_eq!(get_led_values(100.0),
[GREEN,GREEN,GREEN,GREEN,GREEN,GREEN,GREEN,GREEN,]);

}
}

You should be able to run cargo test from the root gims directory, and your tests
should be invoked, showing output that looks like the following:

running 5 tests
test tests::test_0_pct ... ok
test tests::test_100_pct ... ok
test tests::test_49_pct ... ok
test tests::test_15_pct ... ok
test tests::test_75_pct ... ok

test result: ok. 5 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out

That’s it for the battery indicator, now let’s move on to an animated indicator.

Chapter 7. Exploring the Internet of WebAssembly Things • 138

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/iot_gims/batteryindicator/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Creating the Pulsing Indicator
We have plenty of options available for building an animated indicator. Given
that our API is going to be calling apply at a fixed frame rate, it makes sense for
us to use a key frame2 animation. Key frame animations are where you define
(or interpolate) the values for an animation at given key points or frames.

Depending on your age, you might remember the pulsing light built into the
front of the K.I.T.T. Pontiac from the old TV series Knight Rider. If not, then
perhaps the pulsing animated visor in the heads of Cylons from Battlestar
Galactica is more familiar. Using key frames, this is an incredibly easy anima-
tion to create.

Such a “pulser” could represent waiting for a command, an analysis in
progress, a pending request to a remote system, or perhaps just to intimidate
other robot operators in the competition.

The first thing we want to do is define the key frames. If we think of our eight-
light LED strip as an array, then the key frames are actually just the index
of the currently lit LED. With each successive frame, the “lit index” will move
from left to right, take an additional pause on the far right, and then move
back to the left again—reproducing the iconic “pulse” animation from Knight
Rider and/or Battlestar Galactica.

You might be shocked by just how little code there is to write:

iot_gims/animatedindicator/src/lib.rs
const KEYFRAMES: [i32; 16] = [0,1,2,3,4,5,6,7, 7,6,5,4,3,2,1,0];❶

extern "C" {❷
fn set_led(led_index: i32, r: i32, g: i32, b: i32);

}

#[no_mangle]
pub extern "C" fn sensor_update(_sensor_id: i32, _sensor_value: f64) -> f64 {

// NO-OP, don't really care about sensor values
0.0

}

#[no_mangle]
pub extern "C" fn apply(frame: i32) {

let idx = frame % 16;

for x in 0..8 {❸
unsafe {

set_led(x, 0, 0, 0);
}

}

2. en.wikipedia.org/wiki/Key_frame

report erratum • discuss

Creating Indicator Modules • 139

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/iot_gims/animatedindicator/src/lib.rs
../../../../../../https@en.wikipedia.org/wiki/Key_frame
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

unsafe {
set_led(KEYFRAMES[idx as usize], 255, 0, 0);❹

}
}

❶ Define the “lit index” for each of the 16 frames

❷ The exact same imports and exports as the previous module

❸ Ensure that all eight LEDs are dark before we light up the key frame

❹ Call set_led() to turn on the light for the key frame

Since we’re guaranteed by the host contract that the frame value will monoton-
ically increase, we just need to grab the modulo 16 of the frame counter to
figure out which frame index is lit. We’ll also have to assume that the host
will reset the frame counter before doing an overflow. Further, the host can
change the speed of the pulser by modifying the frequency of apply() calls
without us having to modify the WebAssembly module at all.

With our two indicator modules in hand, let’s move on to building the Rasp-
berry Pi host.

Building Rust Applications for ARM Devices
Compiling for different target architectures, operating systems, and binary
file formats is often an enormous pain in the neck depending on which lan-
guage and tools you’re using. In the past, I’ve had to set up multiple virtual
machines all running concurrently just so I could build the same application
for multiple operating systems.

Cargo is an incredibly powerful tool and it comes equipped with the ability
to compile for different targets. The rustup command lets you add and remove
targets and list all of the available targets. Cross-compilation in Rust is usu-
ally quite simple.

Before you can compile for a target other than the default for your operating
system, you’ll need to install the native compiler for that environment. There’s
a GitHub repository that’s kept up to date with instructions on how to config-
ure your workstation—Linux, Windows, or macOS—for cross-compilation.3

The first thing you’ll need to do after ensuring your workstation has the native
compilation tool chain is to add the appropriate target via rustup. The target
for Raspberry Pi 2+ devices is armv7-unknown-linux-gnueabihf. The Raspberry Pi 1
is an ARM v6 device, while all newer ones are ARM v7. The second element

3. github.com/japaric/rust-cross

Chapter 7. Exploring the Internet of WebAssembly Things • 140

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@github.com/japaric/rust-cross
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

in the target triple is the vendor (unknown in our case since it doesn’t matter).
The third is the operating system and the fourth is the ABI (Application
Binary Interface). Add the ARM v7 target with the following command:

$ rustup target add armv7-unknown-linux-gnueabihf
info: downloading component 'rust-std' for 'armv7-unknown-linux-gnueabihf'
50.5 MiB / 50.5 MiB (100 %) 6.5 MiB/s ETA: 0 s

info: installing component 'rust-std' for 'armv7-unknown-linux-gnueabihf'

Next, configure Cargo for cross-compilation using the instructions on the
GitHub repository. For Ubuntu Linux, it will look like this:

$ mkdir -p ~/.cargo
$ cat >>~/.cargo/config <<EOF
> [target.armv7-unknown-linux-gnueabihf]
> linker = "arm-linux-gnueabihf-gcc"
> EOF

Next, create a new Rust binary application using the same commands you’ve
been using throughout the book. To compile this application so it will run on
a Raspberry Pi, use the following command (which looks very similar to how
we specify the WebAssembly target for wasm compilation):

$ cargo build --target armv7-unknown-linux-gnueabihf
Compiling crosscompiledemo v0.1.0

(file:///home/kevin/Code/Rust/wasmbook/khrust/Book/code/crosscompiledemo)
Finished dev [unoptimized + debuginfo] target(s) in 0.58s

Finally, to verify that this new binary is actually an ARM v7 Linux binary and
not a binary for the development workstation that ran the build, you can
execute the following command:

$ file target/armv7-unknown-linux-gnueabihf/debug/crosscompiledemo
target/armv7-unknown-linux-gnueabihf/debug/crosscompiledemo:
ELF 32-bit LSB shared object, ARM, EABI5 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-linux-armhf.so.3,
for GNU/Linux 3.2.0, BuildID[sha1]=fb1690370f7516f436c440d5083447d8fe06077a,
with debug_info, not stripped

If you’ve got a Raspberry Pi (2 or newer) handy, you can take the single cross-
compiledemo binary and scp that to the device and execute it. You should see
the standard “Hello, World” text. Now that your workstation is set up to do
cross-compilation for ARM v7, it’s time to build the indicator module host.

Hosting Indicator Modules on a Raspberry Pi
To build an application that resides on a Raspberry Pi (but that we can test
on our workstations) that hosts our indicator modules, we’ll need to employ

report erratum • discuss

Hosting Indicator Modules on a Raspberry Pi • 141

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

a few techniques that we haven’t covered in this book yet. The requirements
for our Generic Indicator Module System are as follows:

• Load a WebAssembly module at launch and immediately run, controlling
LEDs

• Enforce a fixed frame rate for animated modules

• Trap the SIGINT and SIGTERM signals, gracefully turning off active LEDs
before shutdown

• Hot Reloading—if a new module is copied into a monitored location, pause,
then load the new module and continue

The application is designed to start and continue running forever, constantly
getting new sensor inputs (though we’re only faking one sensor) and feeding
that data to the indicator module. To make all of this work, you’ll get into
some new Rust patterns like using multi-threaded code, channels, and con-
ditional compilation.

Creating a Raspberry Pi Application
In the previous section, you created an empty application called pihost. At the
moment there’s nothing special that you need to do to make this application
suitable for a Raspberry Pi. We do need to pick some dependencies—crates
that will help us monitor the file system, read and execute WebAssembly
modules, respond to OS signals, and operate the Blinkt hardware module.
This is a Cargo.toml that pulls in those dependencies:

iot_gims/pihost/Cargo.toml
[package]
name = "pihost"
version = "0.1.0"
authors = ["your Email <your@email.com>"]

[dependencies]
notify = "4.0.0"
wasmi = "0.4.1"
ctrlc = { version = "3.0", features = ["termination"] }

[target.'cfg(any(target_arch = "arm", target_arch = "armv7"))'.dependencies]➤

blinkt = "0.4.0"➤

This is the first time you’ve seen conditional compilation in action. The high-
lighted lines will only include the blinkt dependency when you’re compiling for
the ARM architecture.

Chapter 7. Exploring the Internet of WebAssembly Things • 142

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/iot_gims/pihost/Cargo.toml
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Watching for New Modules
There are a number of mission-critical tasks in the application and, as you’ll
see, coordinating them can be really tricky. Thankfully Rust makes it pretty
easy. The first task is monitoring the file system and then letting the main
module runner know that it needs to reload a module. The following two
functions make that possible:

iot_gims/pihost/src/main.rs
#[cfg(any(target_arch = "armv7", target_arch = "arm"))]
extern crate blinkt;

extern crate ctrlc;
extern crate notify;
extern crate wasmi;

use notify::{DebouncedEvent, RecommendedWatcher, RecursiveMode, Watcher};
use std::path::Path;
use std::sync::mpsc::{channel, RecvTimeoutError, Sender};
use std::thread;
use std::time::Duration;
use wasm::Runtime;
use wasmi::RuntimeValue;

const MODULE_FILE: &'static str = "/home/kevin/indicators/indicator.wasm";
const MODULE_DIR: &'static str = "/home/kevin/indicators";

enum RunnerCommand {
Reload,
Stop,

}

fn watch(tx_wasm: Sender<RunnerCommand>) -> notify::Result<()> {
let (tx, rx) = channel();❶

let mut watcher: RecommendedWatcher =
Watcher::new(tx, Duration::from_secs(1))?;

watcher.watch(MODULE_DIR, RecursiveMode::NonRecursive)?;

loop {
match rx.recv() {❷

Ok(event) => handle_event(event, &tx_wasm),
Err(e) => println!("watch error: {:?}", e),

}
}

}

fn handle_event(event: DebouncedEvent, tx_wasm: &Sender<RunnerCommand>) {
match event {

DebouncedEvent::NoticeWrite(path) => {
let path = Path::new(&path);
let filename = path.file_name().unwrap();
if filename == "indicator.wasm" {

tx_wasm.send(RunnerCommand::Reload).unwrap();❸

report erratum • discuss

Hosting Indicator Modules on a Raspberry Pi • 143

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/iot_gims/pihost/src/main.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

} else {
println!("write (unexpected file): {:?}", path);

}
}
_ => {}

}
}

❶ Creates a multi-producer, single-consumer communication channel

❷ Block the receive channel until a message arrives

❸ Send a message on the channel, indicating that we should reload the
WebAssembly module

In Rust, multi-producer-single-consumer (mpsc) channels are used as a safe
way to communicate between threads. In the case of the watch() function, the
main thread sits in a loop, awaiting file system notifications from the monitored
directory. When we see the NoticeWrite event, it’s time to tell another thread to
reload the module from disk.

Creating the Module Runner Thread
In the last section, you saw code that sends a message on a channel to tell
another thread to reload a WebAssembly module. In this section, you’ll create
that main thread. This thread has a number of jobs. It obviously needs to
listen for the RunnerCommand::Reload message, but it also needs to handle the
RunnerCommand::Stop message (which it will get from us monitoring OS signals).
It also needs to invoke methods on the module itself, setting the fake sensor
input value and calling apply() to take care of animations.

This is where it would be so much easier to throw up our hands and walk
away. Juggling file system monitoring, two different threads, signal trapping,
and ensuring a consistent frame rate in the WebAssembly module sounds as
complicated as dealing with the three-body problem.4

Luckily, there’s a solution that doesn’t require creating yet another coordina-
tion thread. Instead, we can use the timeout feature of channel receives. If we
wait for the inverse of the frame rate in milliseconds for a message to arrive,
and no messages comes, then we can invoke the apply() function on the
WebAssembly module. For example, if we want to enforce 20fps, then we
would set our receive timeout delay to 50 milliseconds. For a frame rate of
10fps, we’d set the delay to 100 milliseconds, which actually produces a
pretty good effect on the Blinkt hardware.

4. en.wikipedia.org/wiki/Three-body_problem

Chapter 7. Exploring the Internet of WebAssembly Things • 144

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@en.wikipedia.org/wiki/Three-body_problem
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Let’s take a look at the code for the main() function (anything from the wasm
module is code that we’ll write shortly):

iot_gims/pihost/src/main.rs
fn main() {

let (tx_wasm, rx_wasm) = channel();
let _indicator_runner = thread::spawn(move || {

let mut runtime = Runtime::new();
let mut module = wasm::get_module_instance(MODULE_FILE);
println!("Starting wasm runner thread...");
loop {

match rx_wasm.recv_timeout(Duration::from_millis(100)) {❶
Ok(RunnerCommand::Reload) => {

println!("Received a reload signal, sleeping for 2s");
thread::sleep(Duration::from_secs(2));
module = wasm::get_module_instance(MODULE_FILE);

}
Ok(RunnerCommand::Stop) => {

runtime.shutdown();
break;

}
Err(RecvTimeoutError::Timeout) => {

runtime.reduce_battery();
runtime.advance_frame();
module

.invoke_export(
"sensor_update",
&[

RuntimeValue::from(wasm::SENSOR_BATTERY),
RuntimeValue::F64(
runtime.remaining_battery.into()),

][..],
&mut runtime,

).unwrap();

module
.invoke_export(

"apply",
&[RuntimeValue::from(runtime.frame)][..],
&mut runtime,

).unwrap();
}
Err(_) => break,

}
}

});

let tx_wasm_sig = tx_wasm.clone();❷

ctrlc::set_handler(move || {❸
tx_wasm_sig.send(RunnerCommand::Stop).unwrap();

}).expect("Error setting Ctrl-C handler");

report erratum • discuss

Hosting Indicator Modules on a Raspberry Pi • 145

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/iot_gims/pihost/src/main.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

if let Err(e) = watch(tx_wasm) {❹
println!("error: {:?}", e)

}
}

mod wasm;

❶ Enforce the frame rate with a 100ms timeout value on receive

❷ Send channels can be cloned, hence their presence in the multi-producer
module

❸ Use the ctrlc crate to trap SIGTERM and SIGINT, sending a Stop command
in response

❹ The watch() function blocks the main thread with an infinite loop

Creating the WebAssembly Module Runtime
Let’s create the wasm.rs module that was referenced by the previous set of code:

iot_gims/pihost/src/wasm.rs
use std::fmt;
use std::fs::File;
use wasmi::{

Error as InterpreterError, Externals, FuncInstance, FuncRef,
HostError, ImportsBuilder, Module, ModuleImportResolver, ModuleInstance,
ModuleRef, RuntimeArgs, RuntimeValue, Signature, Trap, ValueType,

};

#[cfg(any(target_arch = "armv7", target_arch = "arm"))]❶
use blinkt::Blinkt;

fn load_module(path: &str) -> Module {
use std::io::prelude::*;
let mut file = File::open(path).unwrap();
let mut wasm_buf = Vec::new();
file.read_to_end(&mut wasm_buf).unwrap();
Module::from_buffer(&wasm_buf).unwrap()

}

pub fn get_module_instance(path: &str) -> ModuleRef {
let module = load_module(path);
let mut imports = ImportsBuilder::new();
imports.push_resolver("env", &RuntimeModuleImportResolver);

ModuleInstance::new(&module, &imports)
.expect("Failed to instantiate module")
.assert_no_start()

}

pub const SENSOR_BATTERY: i32 = 20;

Chapter 7. Exploring the Internet of WebAssembly Things • 146

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/iot_gims/pihost/src/wasm.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

#[derive(Debug)]
pub enum Error {

Interpreter(InterpreterError),
}

impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {

write!(f, "{:?}", self)
}

}

impl From<InterpreterError> for Error {
fn from(e: InterpreterError) -> Self {

Error::Interpreter(e)
}

}

impl HostError for Error {}

pub struct Runtime {
#[cfg(any(target_arch = "armv7", target_arch = "arm"))]
blinkt: Blinkt,❷
pub frame: i32,
pub remaining_battery: f64,

}

impl Runtime {
#[cfg(any(target_arch = "armv7", target_arch = "arm"))]
pub fn new() -> Runtime {

println!("Instiantiating WASM runtime (ARM)");
Runtime {

blinkt: Blinkt::new().unwrap(),
frame: 0,
remaining_battery: 100.0,

}
}

#[cfg(not(any(target_arch = "armv7", target_arch = "arm")))]
pub fn new() -> Runtime {

println!("Instantiating WASM runtime (non-ARM)");
Runtime {

frame: 0,
remaining_battery: 100.0,

}
}

}

impl Externals for Runtime {
fn invoke_index(

&mut self,
index: usize,
args: RuntimeArgs,

) -> Result<Option<RuntimeValue>, Trap> {

report erratum • discuss

Hosting Indicator Modules on a Raspberry Pi • 147

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

match index {❸
0 => {

let idx: i32 = args.nth(0);
let red: i32 = args.nth(1);
let green: i32 = args.nth(2);
let blue: i32 = args.nth(3);
self.set_led(idx, red, green, blue);
Ok(None)

}
_ => panic!("Unknown function index!"),

}
}

}

impl Runtime {
#[cfg(not(any(target_arch = "armv7", target_arch = "arm")))]
fn set_led(&self, idx: i32, red: i32, green: i32, blue: i32) {

println!("[LED {}]: {}, {}, {}", idx, red, green, blue);
}

#[cfg(any(target_arch = "armv7", target_arch = "arm"))]
fn set_led(&mut self, idx: i32, red: i32, green: i32, blue: i32) {

self.blinkt
.set_pixel(idx as usize, red as u8, green as u8, blue as u8);

self.blinkt.show().unwrap();
}

#[cfg(not(any(target_arch = "armv7", target_arch = "arm")))]
pub fn shutdown(&mut self) {

println!("WASM runtime shut down.");
self.halt();

}

#[cfg(any(target_arch = "armv7", target_arch = "arm"))]
pub fn shutdown(&mut self) {

println!("WASM runtime shut down.");
self.blinkt.clear();
self.blinkt.cleanup().unwrap();
self.halt();

}

fn halt(&self) {
::std::process::exit(0);

}

pub fn reduce_battery(&mut self) {
self.remaining_battery -= 1.0;
if self.remaining_battery < 0.0 {

self.remaining_battery = 100.0;
}

}

pub fn advance_frame(&mut self) {
self.frame += 1;

Chapter 7. Exploring the Internet of WebAssembly Things • 148

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

if self.frame > 1_000_000_000 {
self.frame = 0;

}
}

}

struct RuntimeModuleImportResolver;

impl<'a> ModuleImportResolver for RuntimeModuleImportResolver {
fn resolve_func(

&self,
field_name: &str,
_signature: &Signature,

) -> Result<FuncRef, InterpreterError> {
println!("Resolving {}", field_name);
let func_ref = match field_name {

"set_led" => FuncInstance::alloc_host(❹
Signature::new(

&[
ValueType::I32,
ValueType::I32,
ValueType::I32,
ValueType::I32,

][..],
None,

),
0,

),
_ => {

return Err(InterpreterError::Function(format!(
"host module doesn't export function with name {}",
field_name

)))
}

};
Ok(func_ref)

}
}

❶ Conditionally add Blinkt to the module’s scope

❷ Conditionally add a blinkt field to the Runtime struct

❸ The apply() function will have an index of 0.

❹ The set_led() function is the only one exported by the host/imported by the
module

Most of this should look pretty familiar to you as a lot of it is just the boiler-
plate required to load the WebAssembly module, resolve its imports, and allow
function calls.

report erratum • discuss

Hosting Indicator Modules on a Raspberry Pi • 149

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

You may have noticed one interesting thing: because of the conditional
compilation, there are actually multiple functions with the same name. If we
are building for ARM, then the Runtime struct gets an extra field called blinkt
and the set_led() function uses that field to control real hardware, whereas
the “regular” version of that struct and function just emit debug text to the
console.

Running the Application
To run the application on your workstation, just build the binary and execute
it or type cargo run. This will launch the application and it will load the module
at /home/kevin/indicators/indicator.wasm (feel free to change that location to suit your
needs).

Running on a Mac, Windows, or Linux, you’ll see some console output spam
as the module tells the host what LEDs to light up 10 times per second (the
following is output from the animated pulse indicator):

Instantiating Wasm runtime (non-ARM)
Resolving set_led
Starting wasm runner thread...
[LED 0]: 0, 0, 0
[LED 1]: 0, 0, 0
[LED 2]: 0, 0, 0
[LED 3]: 0, 0, 0
[LED 4]: 0, 0, 0
[LED 5]: 0, 0, 0
[LED 6]: 0, 0, 0
[LED 7]: 0, 0, 0
[LED 1]: 255, 0, 0
[LED 0]: 0, 0, 0
[LED 1]: 0, 0, 0
[LED 2]: 0, 0, 0
[LED 3]: 0, 0, 0
[LED 4]: 0, 0, 0
[LED 5]: 0, 0, 0
[LED 6]: 0, 0, 0
^CWasm runtime shut down.

Here I’ve tested the signal handling capabilities and the application shut down
nicely in response to a Control-C. Next, we can try this out on real hardware.

Hardware Shopping List
Before you can run this code on a Raspberry Pi host, you’re obviously going
to need a Raspberry Pi. For my own testing I used a Raspberry Pi 3 and I
communicated with it via ssh over WiFi. You should be able to use a Raspberry

Chapter 7. Exploring the Internet of WebAssembly Things • 150

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Pi 2 as well. These devices are pretty inexpensive to obtain in the US, though
price and availability does tend to fluctuate globally. If you can’t buy one, see
if you can find a local makers group. They tend to have plenty of spares for
testing and experimentation.

Next, you’ll need a Pimoroni Blinkt.5 These are amazing little devices and, at
the time I write this, only cost $6. They come with pins and fit snugly right
onto the GPIO ports of your Raspberry Pi.

For my own version, I bought a Mini Black Hat Hack3r,6 which allows you to
attach a ribbon cable to your Pi’s GPIO ports and extend them outside its
case. It’s like a GPIO “extension cord.” You’ll see the one I used in the
demonstration video. I like the flexibility of this as it lets me keep some of my
custom Raspberry Pi cases, but you certainly don’t need one to run the
application.

That’s it—that’s all you need to run this demo, assuming your Pi has network
access and a power supply. Don’t power it from a computer’s USB, power it
from the wall. I’ve seen the drain from similar LEDs cause the power to
“flicker” on the Pi causing it to reboot.

Running the Application on a Raspberry Pi
Now that you’ve got your hardware all set and your Blinkt is plugged into
your Raspberry Pi, it’s time to play with some lights. First, scp the pihost binary
to somewhere on the Pi. I just used the pi user’s home directory. Your Rasp-
berry Pi OS and configuration may vary depending on whether you installed
Raspbian7 or another distribution. Check your distribution’s documentation
if you have trouble logging into the default user and creating directories.

Next, scp the batteryindicator.wasm and animatedindicator.wasm files onto the Pi. I also
put these in the pi user’s home directory, but you can put them anywhere.

You’ll need to create and set the permissions on the indicator modules
directory. The chapter code has this set for /home/kevin/indicators, but you can
change that to whatever you like and recompile. You might need to sudo the
commands to create those directories.

Finally, make sure the application can read from the indicator directory and
that you won’t have any problems writing to it:

$ chmod -R a+rw /home/kevin/indicators

5. shop.pimoroni.com/products/blinkt
6. www.adafruit.com/product/3182
7. www.raspberrypi.org/downloads/raspbian/

report erratum • discuss

Hardware Shopping List • 151

see more please visit: https://homeofpdf.com

../../../../../../https@shop.pimoroni.com/products/blinkt
../../../../../../https@www.adafruit.com/product/3182
../../../../../../https@www.raspberrypi.org/downloads/raspbian/default.htm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

This grants global read/write access to that directory. In a production system,
you’d probably want to be more careful about your permissions, but it’s fine
for testing.

Copy one of the indicator wasm files to the indicator directory and make sure
to call it indicator.wasm. While ssh’d into the Raspberry Pi, start the pihost exe-
cutable. You should see the Blinkt immediately light up (it’s super bright) and
start going through the pattern of whatever indicator you chose. The battery
indicator will slowly make its way to “off” and then start over, while the ani-
mated indicator will show a single red LED pulsing back and forth.

Now for the really fun part—with the application still running, copy a different
indicator onto the indicator.wasm file. You’ll see the lights pause for a few seconds,
then it’ll switch to the new indicator pattern and continue on its merry way,
as you’ll see in this YouTube video.8

Endless Possibilities
I’ve asked you a couple times in this book to pause and reflect on your
accomplishments and what you’ve been able to do with WebAssembly. Now
let’s reflect on those reflections, but with the added perspective of knowing
that we can build portable, immutable binaries that can snap into applications
running attached to hardware, running on our laptops, running on servers,
or running in browsers.

Thinking about this fires just about every neuron in my brain. Just think,
you could create autopilot software for drones in WebAssembly and swap out
different “brains” without ever needing to do anything to the drone itself. You
could test this software in 3D rendered desktop environments or in browsers,
all without ever having to modify the WebAssembly module. These drone
hosts could go from a search-and-rescue mission to playing Quidditch9 with
nothing more than an an over-the-air software update.

Factories, manufacturing facilities, power plants, and building management
systems, all of which are normally tightly coupled to their hardware, could
all benefit from this. Many of these places operate with hundreds of PLCs
(Programmable Logic Controller) that interface with, monitor, and control all
kinds of machines as shown in the figure on page 153.

What if instead of using languages like ladder diagrams or function blocks
to program PLCs, we could just drop WebAssembly modules into them that

8. www.youtube.com/watch?v=bZAyOD_vSVg
9. en.wikipedia.org/wiki/Quidditch

Chapter 7. Exploring the Internet of WebAssembly Things • 152

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@www.youtube.com/watch@v=bZAyOD_vSVg
../../../../../../https@en.wikipedia.org/wiki/Quidditch
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

adhered to a well-known specification? Then we could use whatever language
we wanted to produce testable, verifiable, portable logic controllers that could
control anything a PLC can control today.

WebAssembly files are just binary files. That means that we can encrypt them
and we can digitally sign them. There are a ton of things that you could do
to add a layer of security to using WebAssembly modules that might one day
be able to prevent things like PLC viruses.10

With all of this talk of hardware, I have not forgotten the idea of using
WebAssembly to build in-browser applications—far from it. You could spend
all of your WebAssembly time doing nothing but building browser applications
and never run out of things to do or build. But there’s a bigger picture here.
WebAssembly is bigger than the web, it’s bigger than just IoT, and it’s bigger
than most people give it credit for. Hopefully this little section of the book has
inspired you, and you’re cooking up the next amazing thing right now—all
based on WebAssembly.

10. en.wikipedia.org/wiki/Stuxnet

report erratum • discuss

Endless Possibilities • 153

see more please visit: https://homeofpdf.com

../../../../../../https@en.wikipedia.org/wiki/Stuxnet
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Wrapping Up
In this chapter, we illustrated a number of really powerful techniques and
we got into some more detail with the Rust programming language. You saw
how to set up your workstation to cross-compile Rust applications for multiple
platforms, including the Raspberry Pi. You read about how to conditionally
compile different pieces of your codebase depending on your target architec-
ture, and you saw how to coordinate multiple parallel activities in Rust with
threads and channels.

You also got to see Rust playing host to WebAssembly modules and providing
a bridge to controllable hardware like LED blocks to give WebAssembly
incredible abilities. We built an application that can hot-swap LED controller
modules without even needing a restart.

As you’ll see in the next chapter, we can take our knowledge of hosting
WebAssembly outside the browser straight to the cloud, and leverage new
technologies like FaaS (Functions as a Service) and serverless to deploy
WebAssembly modules in our back end as well as in the browser.

Chapter 7. Exploring the Internet of WebAssembly Things • 154

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

CHAPTER 8

Building WARoS—
The WebAssembly Robot System

We started this book by going over the fundamentals of what WebAssembly
is, how it works, and what its raw text format looks like. In later chapters,
you learned how to build WebAssembly modules that can interact with
browser hosts and use advanced UI libraries to build full-featured “pure
WebAssembly” web applications.

Then we ventured into the realm of non-browser hosts, and you learned how
to write Rust code that can load, validate, and interpret a WebAssembly
module. We put this into action by writing a console-based checkers host
and even a Raspberry Pi host that allowed a WebAssembly module to
manipulate LEDs.

In this chapter, you’re going to take everything you’ve learned and apply it to
building a Rust host that can load multiple WebAssembly “robots” into a vir-
tual arena, pit them against each other, and run all of the game logic. You’ll
not only learn how to build this code, but I’ll also illustrate multiple extension
points where you can add a ton of cool, cloud-based features to this game.

This chapter will be the heaviest in terms of exposure to advanced Rust topics,
like shared, mutable state across threads and some pretty intricate use of
borrows and moves. While building the game in this chapter, you’ll learn a
lot about Rust, and the game will provide a fun tool you can use to continue
learning and exploring Rust and WebAssembly.

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

An Homage to Crobots
Back in December of 1985, Tom Poindexter released a game called Crobots.1

This game combined a custom C compiler and a stack-based virtual machine
that compiled robot files written in a C-like subset and evaluated combat
between multiple robots. This program compiled multiple robots, and then it
could either display live results or just give you a summary of the match when
it was over. Crobots was ahead of its time and, despite the relative lack of
raw computing power of the era, it was, for all intents and purposes, real-time
(limited by hardware clock speeds and a couple of other factors).

It wasn’t just a game, however. Crobots’ simplified C syntax and narrowly
focused goal (kill your opponents without dying) made it an amazing tool to
introduce programming languages and computer science concepts to eager
learners. When I was 11 years old, I asked my grandfather if he could teach
me C, as I’d just finished learning BASIC. He handed me the Crobots floppy
disk and a printed copy of the documentation (complete with dot matrix
feeder holes!) and left me to my own devices.

I taught myself C and a number of vital programming concepts by learning
to build robots to compete against others. I was instantly entranced by the
concepts of virtual worlds, computer programming, and game design theory.
The rest, as they say, is history. I quite literally owe much of what I’ve been
able to accomplish in my career to my childhood exposure to Tom Poindexter’s
creation, and of course, to my grandfather for giving it to me.

The Rules of Crobots
The documentation for the original Crobots game is now available online.2

You don’t need to read the original in order to implement the WebAssembly
game, but I thoroughly enjoyed reading it for the pure nostalgia value.

Each robot in the game is essentially a tank. It can move in any direction by
engaging its drive motor pointing in a direction indicated by a heading angle
between 0 and 360 degrees. It also has an independently mounted cannon
that can fire in any direction indicated by the same type of heading. Each
robot’s compass is calibrated with East pointing to the right, as shown in the
figure on page 157.

All of the robots occupy a 1,000m by 1,000m battlefield. The perimeter wall
is dangerous and inflicts damage to robots upon collision. Robots colliding

1. en.wikipedia.org/wiki/Crobots
2. crobots.deepthought.it/html/manual.html#5.

Chapter 8. Building WARoS—The WebAssembly Robot System • 156

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@en.wikipedia.org/wiki/Crobots
../../../../../../crobots.deepthought.it/html/manual.html#5.
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

with each other also take damage. If you want your robot to survive and kill
all of your opponents, your robot is going to need input.

The most important input is the scanner. All robot scanners have a range of
700m and can scan within an arc your robot specifies, with a maximum
spread of 10 degrees. Damage in the game is doled out according to the fol-
lowing table:

DescriptionDamage

Robot vs. robot or robot vs. wall collision. Also stops the drive motor,
setting the speed to 0.

2%

Missile explodes within a 40m radius of robot3%

Missile explodes within a 20m radius5%

Missile explodes within a 10m radius10%

Other inputs include status information, such as the robot’s current location.
There are some subtleties missing from the robot API, and so you’ll need to keep
track of some information yourself like your current destination, your last
heading, and so on. One final rule is that while every robot has an unlimited
supply of missiles, only two missiles can ever be in the air at a given time.

Now that we’ve got the basic rules defined, let’s try and build an API that
gives robots the tools they need for real-time combat.

Designing the WARoS API
The original Crobots API was defined by what Poindexter called the Intrinsic
Function Library.3 Each of these functions were made available to the original
robots to allow them to interact with (and hopefully dominate) their virtual
environment. If you’re thinking that this sounds a lot like a list of imports
required by a WebAssembly module, you’re right. As soon as I remembered
the Crobots intrinsic functions, I knew I had to try and port it to WebAssembly.

3. crobots.deepthought.it/html/manual.html#8

report erratum • discuss

Designing the WARoS API • 157

see more please visit: https://homeofpdf.com

../../../../../../crobots.deepthought.it/html/manual.html#8
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Let’s take a look at the original list of intrinsic functions:

DescriptionFunction

Invokes the robot’s scanner, pointing it at a specified degree
and resolution. Returns 0 if there are no robots in range.

scan(deg, res)

Otherwise returns a positive integer indicating the distance
to the closest target in that direction.

Fires the cannon at a specified degree and range. Range is
limited to 700m. Returns 0 if no missile was fired, 1 if a
missile was fired.

cannon(deg, range)

Engages the drive motor in the specified direction at the
indicated percentage of power.

drive(deg, speed)

Returns the percentage of damage currently taken by the
robot.

damage()

Returns the current speed of the robot as a percent. Check
this value as it can differ from the parameter given to drive
because of acceleration, deceleration, and collisions

speed()

Returns the current x- or y-coordinate.loc_x() loc_y()

Returns a random number between 0 and limit, with a max
of 32,767

rand(limit)

Returns the square root of a number, coerced positive if
necessary

sqrt(number)

Trig functions. In the original Crobots game, in-memory
trig tables and a large scale were used to avoid floating-

sin(deg) cos(deg)
tan(deg) atan(deg)

point calculations and roundoff problems. We shouldn’t
need to use any of those tricks with our API.

Converting the Crobots Intrinsic Functions into a Rust API
When I first went back and looked at the Crobots documentation, I was struck
by the elegance of the intrinsic function library. If you take a close look, you’ll
see that all of the functions already adhere to the basic rules that we know
apply to WebAssembly modules—nothing takes or returns any parameter
that isn’t a 32-bit integer, and there are no complex types or tuples used.

WebAssembly has floating-point numbers, but this list of functions has been
working quite well for decades, so let’s stick with it and see how well it works
out for a modern game. The first step is converting these functions into a list
of extern functions.

Chapter 8. Building WARoS—The WebAssembly Robot System • 158

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

To start off, let’s create a workspace in a root directory (I called mine waros)
and then create a new Rust library project beneath that called warsdk. This
will be a library used to wrap extern functions and provide a few other utilities
to WebAssembly robot modules.

Ignore the lib.rs for now and create a new file called ffi.rs. FFI stands for Foreign
Function Interface, and the extern declarations are part of Rust’s FFI:

waros/warsdk/src/ffi.rs
extern "C" {

pub fn scan(angle: i32, resolution: i32) -> i32;
pub fn cannon(angle: i32, range: i32) -> i32;
pub fn drive(angle: i32, speed: i32) -> i32;
pub fn damage() -> i32;
pub fn speed() -> i32;
pub fn loc_x() -> i32;
pub fn loc_y() -> i32;
pub fn rand(limit: i32) -> i32;
pub fn wsqrt(number: i32) -> i32;
pub fn wsin(degree: i32) -> i32;
pub fn wcos(degree: i32) -> i32;
pub fn wtan(degree: i32) -> i32;
pub fn watan(degree: i32) -> i32;
pub fn plot_course(tx: i32, ty: i32) -> i32;

}

Most of this looks identical to Poindexter’s original intrinsic function list, with
a few minor changes. First, I had to add a prefix to a few of the math functions
because, after a recent Rust update, functions like sin and cos were made part
of a globally visible set of names and wouldn’t link to WebAssembly anymore.

Second, I added a function called plot_course(). This just determines the heading
from the robot’s current location to a target location. Nearly every Robot that
chooses a destination coordinate will need this function, so I made it part of
the API for convenience.

Keeping It Simple

While building this sample, I tried computing the heading inside one of the robot’s
code. Interestingly, this compiled Wasm module demanded that the host support a
function called Math_atan2(). I’d used atan2() in an early version of the code, and instead
of preventing my compilation, the compiler decided it should make the host provide
that function. As you start adding complexity to your robot modules, you might see
something like this happen again.

report erratum • discuss

Designing the WARoS API • 159

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/warsdk/src/ffi.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

This looks like a pretty simple API, and it should be easy for developers working
in Rust, Go, raw WebAssembly, or any other language to build robots compatible
with the host. People building robots in lower-level languages will be thankful
for the availability of the trig functions and it also helps us ensure that robots
from different languages behave consistently within the same host.

I placed these extern functions in their own FFI module so that the name exposed
to the SDK consumers (the robot developers) could have the same names and
still wrap the external calls in unsafe. Modify the lib.rs file of the warsdk project
to look like this:

waros/warsdk/src/lib.rs
pub fn scan(angle: i32, resolution: i32) -> i32 {

unsafe { ffi::scan(angle, resolution) }
}

pub fn cannon(angle: i32, range: i32) -> i32 {
unsafe { ffi::cannon(angle, range) }

}

pub fn drive(angle: i32, speed: i32) -> i32 {
unsafe { ffi::drive(angle, speed) }

}

pub fn damage() -> i32 {
unsafe { ffi::damage() }

}

pub fn speed() -> i32 {
unsafe { ffi::speed() }

}

pub fn loc_x() -> i32 {
unsafe { ffi::loc_x() }

}

pub fn loc_y() -> i32 {
unsafe { ffi::loc_y() }

}

pub fn rand(limit: i32) -> i32 {
unsafe { ffi::rand(limit) }

}

pub fn wsqrt(number: i32) -> i32 {
unsafe { ffi::wsqrt(number) }

}

pub fn wsin(degree: i32) -> i32 {
unsafe { ffi::wsin(degree) }

}
pub fn wcos(degree: i32) -> i32 {

unsafe { ffi::wcos(degree) }
}

Chapter 8. Building WARoS—The WebAssembly Robot System • 160

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/warsdk/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

pub fn wtan(degree: i32) -> i32 {
unsafe { ffi::wtan(degree) }

}

pub fn watan(degree: i32) -> i32 {
unsafe { ffi::watan(degree) }

}

pub fn plot_course(tx: i32, ty: i32) -> i32 {
unsafe { ffi::plot_course(tx, ty) }

}

// Utility sample for moving to destination and stopping
// Note - does NOT recover from collision en route
pub fn go(target_x: i32, target_y: i32) {

let course = plot_course(target_x, target_y);
drive(course, 20);
// at speed 20, it should take 2 ticks from awareness
// of the target to stop on it
while (target_x - loc_x()).abs() > 40 &&

(target_y - loc_y()).abs() > 40 &&
speed() > 0 {

// wait till we get to the target
}

drive(course, 0); // turn off engine
while speed() > 0 {

// steady on until we stop
}

}

pub const ANGLE_EAST: i32 = 0;
pub const ANGLE_NORTH: i32 = 90;
pub const ANGLE_WEST: i32 = 180;
pub const ANGLE_SOUTH: i32 = 270;

pub const MAX_X: u32 = 1000;
pub const MAX_Y: u32 = 1000;

pub const DAMAGE_COLLISION: u32 = 2;
pub const DAMAGE_DIRECTHIT: u32 = 10;
pub const DAMAGE_NEARHIT: u32 = 5;
pub const DAMAGE_FAR_HIT: u32 = 3;

pub const BLAST_RADIUS: i32 = 40;

pub const PROJECTILE_MAX_RANGE: u32 = 200;

mod ffi;

Most of this is just simple unsafe wrappers around the extern functions.
However, I’ve added a handy little utility function called go() that was useful
enough to include in the SDK rather than individual robots. There are also
a couple of constants available to help robot developers write logic. Be warned,

report erratum • discuss

Designing the WARoS API • 161

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

though—these aren’t the constants built into the game engine itself, so there’s
a risk of getting them out of sync. This might be an issue if you were publish-
ing this SDK outside of book samples. Each time you want to build a robot
in WebAssembly and Rust, you’ll just declare a dependency on this SDK.

Finally, the Cargo.toml can stay the way it came out of the initial creation. Add
a line to your workspace’s root Cargo.toml so it looks like this:

[workspace]
members = [

"warsdk",
]

Now everything we’re going to build in this chapter (and there will be a lot)
will build to the root-level target directory and you can run test suites at the
top level for all of your projects.

Building the WARoS Match Engine
The WARoS match engine will be responsible for the following:

• Provide a host runtime for each WebAssembly module
• Provide a game loop for moving the match forward
• Manage game state
• Complete a match after a given number of cycles

Building a game engine is no small feat. The goal of what we’re building in this
chapter isn’t to produce the best game engine. It’s to illustrate how we can host
multiple WebAssembly modules simultaneously within a virtual environment
and allow their logic to safely interact and manipulate shared state. In the fol-
lowing sections, you’ll see how to accomplish all of this with Rust.

Threading, Time Slicing, and the Game Loop
Building games and game engines is loads of fun for certain types of people,
like myself, who have often been referred to as masochists due to the depth
and complexity of some of the problems that need to be solved in this domain.
One of the problems we encounter when building game engines, the game
loop, also shows up in a surprising number of other types of software,
including big enterprise apps.

In Poindexter’s original implementation, he created his own virtual CPU. This
meant that for each robot loaded into memory, he could control the allocation
of time. Specifically, he could dole out processing cycles to each robot in turn.
This allowed the robot code to be written in a way that felt real-time. The robots
all operate within while loops that control their behavior throughout the match.

Chapter 8. Building WARoS—The WebAssembly Robot System • 162

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

With WebAssembly, we don’t have that luxury. We aren’t in control of the
time-slicing mechanism inside the module, and the WebAssembly standard
doesn’t even have any formal definition for internal threading or atomic
locking (at the time this book was written). I really wanted to maintain the
“robot loop” feel of the original robot code, and so this presented a huge
problem—how do I let each WebAssembly module run its own tight, infinite
loop without blocking everything, gumming up the works, or worse, running
afoul of Rust’s ever-vigilant borrow checker?

As I looked for solutions, I discovered that this type of problem of time sharing
among multiple threads shows up in a lot of places. If you spend most of your
time working in high-level web or data access frameworks, you’re probably
insulated from the solutions to this concurrency problem, but they’re there
if you want to look.

My initial solution was to spin up a single Rust thread for each WebAssembly
module, in which the module would be allowed to run its infinite loop (triggered
by the bot_init() exported function). Then, I’d run a traditional game loop4 that ran
its own tight loop. Each iteration of my game loop would deal with the state
changes and interactions coming from each robot, synchronizing and managing
it all. The following diagram shows what this architecture looks like:

On the surface, it looks like this will do the job, but the devil is in the details,
as they say. All we need is some kind of mutex that lets us block out other
threads long enough for us to make our changes. Seems simple enough, right?
Not quite. My first implementation of this literally ground to a halt. Even after

4. en.wikipedia.org/wiki/Game_programming#Game_structure

report erratum • discuss

Building the WARoS Match Engine • 163

see more please visit: https://homeofpdf.com

../../../../../../https@en.wikipedia.org/wiki/Game_programming#Game_structure
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Rust’s compiler blessed my code, my core game engine just continued to die in
spectacular fashion, over and over again. In the next section, I’ll explain why.

Entities, Components, and Systems
If you’re not familiar with the concept of a game loop, it’s fairly simple. This
is a loop that’s always running from the beginning of the match until the end.
During each iteration of the loop, it takes care of maintenance of state and
other actions.

The game loop in most games will do things like collision detection, inflicting
damage, casting spells, depleting fuel from spaceships—all the housekeeping
to keep all the individual parts of the game up to date. When I started working
on this, I created a single struct called Robot that I figured could hold all that
state that I need managed by the game loop. It looked something like this:

#[derive(Debug)]
pub struct Robot {

pub player_name: String,
pub damage: u32,
pub status: DamageStatus,
pub x: i32,
pub y: i32,
pub heading: i32,
pub origin_x: i32,
pub origin_y: i32,
pub distance_on_heading: i32,
pub speed: i32,
pub desired_speed: i32,
pub desired_heading: i32,
pub accel: i32,
pub last_scan_heading: i32,
pub cannons: Vec<Cannon>

}

I took most of those fields from the original robot struct in Crobots.5 If my game
loop was the only thing that needed to manipulate that list of robots and their
data, that would probably be fine. But the robots all need query access for
their own data, and they have functions as part of the API that write values
like desired heading and speed, and they perform actions like firing cannons.

This is where things went horribly wrong. Each iteration of my game loop
would acquire a write lock on this list of robots because you can’t acquire a
write lock on just one element of a vector. It would then do all of the normal
things and move on. Each thread from a running WebAssembly module would

5. github.com/tpoindex/crobots/blob/master/src/crobots.h#L30

Chapter 8. Building WARoS—The WebAssembly Robot System • 164

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@github.com/tpoindex/crobots/blob/master/src/crobots.h#L30
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

then use a read lock on the entire vector and occasionally try and grab a write
lock to modify a robot’s data.

In this situation, the first thread that managed to get a write lock would ring
the death bell for the rest of the app. If that thread was the game loop, it
would only let go of it for such a short period of time (basically between the
end and start of the loop block) and the loop would appear stalled, or the
robots would stall. In some variants of this plan, everything stopped, and I
felt like I had bitten off more than I could chew. Threading is hard. Shared
mutable state is super hard, especially in Rust where you can’t cheat. You
can just “hope” you never have a data race.

The solution was to separate out the read concerns from the write concerns,
and to narrow the focus of the write concerns down to as small a piece of
state as possible. This is where the concept of Entity—Component—System
(ECS)6 comes in.

First and foremost, this pattern emphasizes composition over inheritance.
Since we don’t have classes with inheritance in Rust, this works out nicely.
The real goal of ECS architecture is to separate concerns into small tiny
pieces. Think of it as applying the microservices approach to a single piece
of shared state. In my use of the ECS pattern in the game engine, I diverge
from the core definition a little bit to keep the focus on the book and not on
game design, but my heart is in the right place.

Entity
Entities are just arbitrary things. In most ECS implementations, an entity
is just some form of unique identifier and that’s all. In our case, the
entity will be the WebAssembly module name, which doubles as the
player name.

Component
A component is raw state for some aspect of an entity. A component labels
an entity as “having a particular aspect.” In our case, entities will have
motion, damage, projectile, and scanner components.

System
Systems perform logic and take action globally against components under
their purview. In our engine, there’s a system responsible for each compo-
nent. In traditional ECS implementations, systems are often running in
their own background threads, but I’m invoking mine sequentially to keep
things as simple as I can while still building a functional game engine.

6. en.wikipedia.org/wiki/Entity%E2%80%93component%E2%80%93system

report erratum • discuss

Building the WARoS Match Engine • 165

see more please visit: https://homeofpdf.com

../../../../../../https@en.wikipedia.org/wiki/Entity_25E2_2580_2593component_25E2_2580_2593system
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

With the concerns cut apart into components, and systems being the only
things allowed to write to a component, we now have an architecture that
can handle large amounts of concurrency without ever creating a situation
where anyone is waiting on locks. Read locks are “free,” and we can have as
many of them active at a time as we want, but write locks are the ones that
“stop the world,” so to speak.

Now, in each iteration of the game loop, for example, the motion system can
write to each of the motion components, advancing that component based
on its speed, heading, acceleration, etc. The motion system doesn’t care
whether that component belongs to a player, a chair, or a doorknob. This
narrow focus and division of responsibility is an elegant solution to concur-
rency that extends far beyond creating game engines with ECS, which is why
I wanted to illustrate it in this chapter.

One potentially confusing aspect of a setup like this is that the robot API
doesn’t really do much. It makes requests by setting some desired state and
then releasing the write lock, allowing the next pass of the relevant system
to do the real work. As you’ll see when you dig into the code, when a player
launches a missile, the runtime just sets a missile status to ReadyToLaunch, and
then the ProjectileSystem performs the actual launching of the missile the next
time through the game loop.

Creating the Runtime Host
The first thing we need to do in order to pit WebAssembly robots against each
other is load the modules and expose a Runtime for them. In previous chapters
you saw how this works with the wasmi crate. Those implementations were
pretty simple with only a function or two. Since we’ve got an entire API to
support, we’ll need to do a little bit of encapsulation and abstraction to keep
the runtime clean.

Create a new library project beneath your workspace root called botengine
(remember to also add this to your workspace Cargo.toml). Edit botengine’s Car-
go.toml to look like the following:

waros/botengine/Cargo.toml
[package]
name = "botengine"
version = "0.1.0"
authors = ["Your Email <your@mail.com>"]
edition = "2018"

Chapter 8. Building WARoS—The WebAssembly Robot System • 166

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/botengine/Cargo.toml
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

[dependencies]
wasmi = "0.4.2"
rand = "0.6.1"
nalgebra = "0.16.11"
approx = "0.3.0"

Before we get into the runtime host, let’s take a look at botengine/src/lib.rs. This
is the root of the engine library, and it’s where we’re going to put the Combatant
struct. The combatant is a wrapper around the loading, parsing, and inter-
preting of the WebAssembly module, as well as a start():

waros/botengine/src/lib.rs
use std::fmt;
use std::sync::Arc;
use std::thread;
use std::thread::JoinHandle;
use wasmi::{HostError, ImportsBuilder, Module, ModuleInstance, ModuleRef};

pub use crate::game::{GameState, Gameloop};
pub use crate::runtime::{Runtime, BOTINIT_NAME};

pub struct Combatant {}

impl Combatant {
pub fn buffer_from_file(path: &str) -> Result<Vec<u8>> {

use std::fs::File;
use std::io::prelude::*;

let mut file = File::open(path)?;
let mut wasm_buf = Vec::new();
let _bytes_read = file.read_to_end(&mut wasm_buf)?;
Ok(wasm_buf)

}
pub fn start(

name: &str,
buffer: Vec<u8>,
game_state: Arc<crate::game::GameState>,❶

) -> JoinHandle<()> {❷
let n = name.to_string();

thread::spawn(move || {
let module = Module::from_buffer(&buffer).unwrap();
let mut runtime = runtime::Runtime::init(game_state, n.clone());❸
let moduleref =

Self::get_module_instance_from_module(&module).unwrap();
let res =❹

moduleref.invoke_export(BOTINIT_NAME, &[][..], &mut runtime);
println!("bot init loop exited for player {} - {:?}", n, res);

})
}
fn get_module_instance_from_module(module: &Module) -> Result<ModuleRef> {

let mut imports = ImportsBuilder::new();
imports.push_resolver("env", &runtime::RuntimeModuleImportResolver);

report erratum • discuss

Building the WARoS Match Engine • 167

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/botengine/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Ok(ModuleInstance::new(module, &imports)
.expect("Failed to instantiate module")
.assert_no_start())

}
}

❶ The Arc (Atomically Reference Counted) is what lets us share pointers to
the GameState struct.

❷ This function returns a JoinHandle but since the WebAssembly module is
running an infinite loop, calling join() is likely to never return.

❸ Creates a new Runtime to host the WebAssembly module and passes it a
reference to the game state.

❹ Invokes the bot_init() function in the WebAssembly module, starting the
robot’s infinite loop.

There are a couple of subtle things happening in this code. First, the Runtime
is being instantiated inside the combatant’s thread. This means the runtime
doesn’t need to cross thread boundaries, which makes the Rust compiler
happy. There’s also a clone happening of the player’s name converting the
&str into a String, letting us get away without having to use a lifetime specifier.

The rest of the lib.rs file contains implementations of various error handling
traits, as is considered best practice when you’re building a library you expect
to expose to the rest of the world as a crate:

waros/botengine/src/lib.rs
/// A botengine error
#[derive(Debug)]
pub struct Error {

kind: Kind,
}

/// Implements the wasmi HostError trait
impl HostError for Error {}

/// Implement standard error trait for the botengine error
impl std::error::Error for Error {

fn description(&self) -> &str {
"A botengine error ocurred"

}

fn cause(&self) -> Option<&std::error::Error> {
None

}
}

Chapter 8. Building WARoS—The WebAssembly Robot System • 168

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/botengine/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

/// Ensure that the botengine error can be string formatted
impl fmt::Display for Error {

fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.kind {

Kind::InterpreterError(ref we) => fmt::Display::fmt(we, f),
Kind::MiscFailure(ref s) => fmt::Display::fmt(s, f),
Kind::IoError(ref s) => fmt::Display::fmt(s, f),
Kind::ExportResolve(ref s) => fmt::Display::fmt(s, f),

}
}

}

/// Creates a botengine error from an I/O Error
impl From<std::io::Error> for Error {

fn from(source: std::io::Error) -> Error {
Error {

kind: Kind::IoError(source),
}

}
}

impl From<wasmi::Error> for Error {
fn from(source: wasmi::Error) -> Error {

Error {
kind: Kind::InterpreterError(source),

}
}

}

/// Indicates the kind of error that occurred.
#[derive(Debug)]
pub enum Kind {

InterpreterError(wasmi::Error),
IoError(std::io::Error),
ExportResolve(String),
MiscFailure(String),

}

/// A Result where failure is a botengine error
pub type Result<T> = std::result::Result<T, Error>;

mod events;
mod game;
mod runtime;

Next we need to implement the Runtime struct. We will put this in the
botengine/src/runtime.rs file. This won’t compile yet because the functions in the
runtime all defer to code that’s part of game state, components, or systems
—all of which we’ll discuss shortly. There’s a lot of code here, and while I do

report erratum • discuss

Building the WARoS Match Engine • 169

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

enjoy typing, I wouldn’t recommend trying to type this all in by hand. Save
some time and just grab the whole source for this sample:

waros/botengine/src/runtime.rs
use crate::game::{readlock, scanner::ScannerSystem, writelock};
use crate::{Error, Kind};
use nalgebra::Point2;
use std::sync::Arc;
use wasmi::{

Error as InterpreterError, Externals, FuncInstance, FuncRef,
ModuleImportResolver, RuntimeArgs, RuntimeValue, Signature, Trap, ValueType,

};

/// Anchor struct for implementing the ModuleImportResolver trait
pub struct RuntimeModuleImportResolver;

/// Expose the list of host-provided functions, indexes, and signatures
/// to the WASM module(s) managed by this runtime
impl<'a> ModuleImportResolver for RuntimeModuleImportResolver {

fn resolve_func(
&self,
field_name: &str,
_signature: &Signature,

) -> Result<FuncRef, InterpreterError> {
println!("Resolving {}", field_name);
let func_ref = gen_funcref(field_name);
match func_ref {

Some(fr) => Ok(fr),
None => Err(InterpreterError::Function(field_name.to_string())),

}
}

}

const SCAN_NAME: &'static str = "scan";
const SCAN_INDEX: usize = 0;
const CANNON_NAME: &'static str = "cannon";
const CANNON_INDEX: usize = 1;
const DRIVE_NAME: &'static str = "drive";
const DRIVE_INDEX: usize = 2;
const DAMAGE_NAME: &'static str = "damage";
const DAMAGE_INDEX: usize = 3;
const SPEED_NAME: &'static str = "speed";
const SPEED_INDEX: usize = 4;
const LOCX_NAME: &'static str = "loc_x";
const LOCX_INDEX: usize = 5;
const LOCY_NAME: &'static str = "loc_y";
const LOCY_INDEX: usize = 6;
const RAND_NAME: &'static str = "rand";
const RAND_INDEX: usize = 7;
const SQRT_NAME: &'static str = "wsqrt";
const SQRT_INDEX: usize = 8;

Chapter 8. Building WARoS—The WebAssembly Robot System • 170

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/botengine/src/runtime.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

const SIN_NAME: &'static str = "wsin";
const SIN_INDEX: usize = 9;
const COS_NAME: &'static str = "wcos";
const COS_INDEX: usize = 10;
const TAN_NAME: &'static str = "wtan";
const TAN_INDEX: usize = 11;
const ATAN_NAME: &'static str = "watan";
const ATAN_INDEX: usize = 12;
const PLOT_COURSE_NAME: &'static str = "plot_course";
const PLOT_COURSE_INDEX: usize = 13;
pub const BOTINIT_NAME: &'static str = "botinit";

// Creates a FuncRef based on the name of the function
fn gen_funcref(name: &str) -> Option<FuncRef> {

match name {
SCAN_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[ValueType::I32, ValueType::I32][..],
Some(ValueType::I32)),

SCAN_INDEX,
)),
CANNON_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[ValueType::I32, ValueType::I32][..],
Some(ValueType::I32)),

CANNON_INDEX,
)),
DRIVE_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[ValueType::I32, ValueType::I32][..],
Some(ValueType::I32)),

DRIVE_INDEX,
)),
DAMAGE_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[][..], Some(ValueType::I32)),
DAMAGE_INDEX,

)),
SPEED_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[][..], Some(ValueType::I32)),
SPEED_INDEX,

)),
LOCX_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[][..], Some(ValueType::I32)),
LOCX_INDEX,

)),
LOCY_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[][..], Some(ValueType::I32)),
LOCY_INDEX,

)),
RAND_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[ValueType::I32][..], Some(ValueType::I32)),
RAND_INDEX,

)),

report erratum • discuss

Building the WARoS Match Engine • 171

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

SQRT_NAME => Some(FuncInstance::alloc_host(
Signature::new(&[ValueType::I32][..], Some(ValueType::I32)),
SQRT_INDEX,

)),
SIN_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[ValueType::I32][..], Some(ValueType::I32)),
SIN_INDEX,

)),
COS_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[ValueType::I32][..], Some(ValueType::I32)),
COS_INDEX,

)),
TAN_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[ValueType::I32][..], Some(ValueType::I32)),
TAN_INDEX,

)),
ATAN_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[ValueType::I32][..], Some(ValueType::I32)),
ATAN_INDEX,

)),
PLOT_COURSE_NAME => Some(FuncInstance::alloc_host(

Signature::new(&[ValueType::I32, ValueType::I32][..],
Some(ValueType::I32)),

PLOT_COURSE_INDEX,
)),
_ => None,

}
}

pub struct Runtime {
pub game_state: Arc<super::game::GameState>,
pub module_name: String,
dead: bool,

}

impl Externals for Runtime {
fn invoke_index(

&mut self,
index: usize,
args: RuntimeArgs,

) -> Result<Option<RuntimeValue>, Trap> {
match index {

SCAN_INDEX => self.scan(args.nth(0), args.nth(1)),
CANNON_INDEX => self.cannon(args.nth(0), args.nth(1)),
DRIVE_INDEX => self.drive(args.nth(0), args.nth(1)),
DAMAGE_INDEX => self.damage(),
SPEED_INDEX => self.speed(),
LOCX_INDEX => self.loc_x(),
LOCY_INDEX => self.loc_y(),
RAND_INDEX => self.rand(args.nth(0)),
SQRT_INDEX => self.sqrt(args.nth(0)),

Chapter 8. Building WARoS—The WebAssembly Robot System • 172

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

SIN_INDEX => self.sin(args.nth(0)),
COS_INDEX => self.cos(args.nth(0)),
TAN_INDEX => self.tan(args.nth(0)),
ATAN_INDEX => self.atan(args.nth(0)),
PLOT_COURSE_INDEX => self.plot_course(args.nth(0), args.nth(1)),
_ => Err(Trap::from(Error {

kind: Kind::MiscFailure("Invalid export index".to_string()),
})),

}
}

}

type WasmRuntimeResult = Result<Option<RuntimeValue>, Trap>;

impl Runtime {
pub fn init(game_state: Arc<super::game::GameState>,

module_name: String) -> Runtime {
game_state.combatant_entered(&module_name);
Runtime {

game_state,
module_name,
dead: false,

}
}

fn is_dead(&mut self) -> bool {
if !self.dead {

let dcs = self.game_state.damage_components.read().unwrap();
let dc = dcs.get(&self.module_name);
match dc {

Some(d) => {
if let crate::game::damage::DamageStatus::Dead = d.status {

self.dead = true
}

}
None => {}

}
}

self.dead
}

fn scan(&mut self, angle: i32, resolution: i32) -> WasmRuntimeResult {
if self.is_dead() {

return Ok(Some(RuntimeValue::from(-1)));
}
let angle = ScannerSystem::to_real_heading(angle);
let resolution = (resolution as f32)

.max(0.0)

.min(super::game::scanner::RES_LIMIT);

let degree = angle as f32;

report erratum • discuss

Building the WARoS Match Engine • 173

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

writelock(&self.game_state.scanner_components)
.entry(self.module_name.to_string())
.and_modify(|sc| sc.angle = degree as i32);

let scan_result: i32 =
ScannerSystem::scan(&self.game_state, &self.module_name,

degree, resolution);
Ok(Some(RuntimeValue::from(ScannerSystem::to_user_heading(

scan_result as f32,
))))

}

fn cannon(&mut self, angle: i32, range: i32) -> WasmRuntimeResult {
if self.is_dead() {

return Ok(Some(RuntimeValue::from(0)));
}
let angle = ScannerSystem::to_real_heading(angle);
let mut launch_result = 0;
let mc = &self.game_state.motion_components.read()

.unwrap()[&self.module_name];

writelock(&self.game_state.projectile_components)
.entry(self.module_name.to_string())
.and_modify(|pc| launch_result =

pc.launch(&mc.position, angle, range as u32));

Ok(Some(RuntimeValue::from(launch_result)))
}

fn drive(&mut self, angle: i32, speed: i32) -> WasmRuntimeResult {
if self.is_dead() {

return Ok(Some(RuntimeValue::from(0)));
}
let angle = ScannerSystem::to_real_heading(angle);
let speed = speed.min(super::game::motion::MAX_ENGINE);

writelock(&self.game_state.motion_components)
.entry(self.module_name.to_string())
.and_modify(|mc| {

mc.origin = mc.position.clone();
mc.distance_along_heading = 0;
mc.heading = angle;
mc.desired_speed = speed;

});

Ok(Some(RuntimeValue::from(1_i32)))
}

fn damage(&mut self) -> WasmRuntimeResult {
if self.is_dead() {

return Ok(Some(RuntimeValue::from(100)));
}

Chapter 8. Building WARoS—The WebAssembly Robot System • 174

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Ok(
match readlock(&self.game_state.damage_components)

.get(&self.module_name) {
Some(dc) => Some(RuntimeValue::from(dc.damage)),
None => None,

},
)

}

fn plot_course(&mut self, tx: i32, ty: i32) -> WasmRuntimeResult {
if self.is_dead() {

return Ok(Some(RuntimeValue::from(-1)));
}
Ok(

match readlock(&self.game_state.motion_components)
.get(&self.module_name) {

Some(mc) => {
let h = ScannerSystem::heading_to_target(

&mc.position,
&Point2::new(tx as f32, ty as f32),

);
Some(RuntimeValue::from(ScannerSystem::to_user_heading(h)))

}
None => None,

},
)

}

fn speed(&mut self) -> WasmRuntimeResult {
if self.is_dead() {

return Ok(Some(RuntimeValue::from(0)));
}
Ok(

match readlock(&self.game_state.motion_components)
.get(&self.module_name) {

Some(mc) => Some(RuntimeValue::from(mc.speed)),
None => None,

},
)

}

fn loc_x(&mut self) -> WasmRuntimeResult {
Ok(

match readlock(&self.game_state.motion_components)
.get(&self.module_name) {

Some(mc) => Some(RuntimeValue::from(mc.position.x as i32)),
None => None,

},
)

}

report erratum • discuss

Building the WARoS Match Engine • 175

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

fn loc_y(&mut self) -> WasmRuntimeResult {
Ok(

match readlock(&self.game_state.motion_components)
.get(&self.module_name) {

Some(mc) => Some(RuntimeValue::from(mc.position.y as i32)),
None => None,

},
)

}

fn rand(&mut self, limit: i32) -> WasmRuntimeResult {
use rand::Rng;
let mut rng = rand::thread_rng();
let n: i32 = rng.gen_range(0, limit);

Ok(Some(RuntimeValue::from(n)))
}

fn sqrt(&mut self, number: i32) -> WasmRuntimeResult {
let val = (number as f32).sqrt();
Ok(Some(RuntimeValue::from(val as i32)))

}

fn sin(&mut self, degree: i32) -> WasmRuntimeResult {
Ok(Some(RuntimeValue::from(ScannerSystem::to_user_heading(

(degree as f32).to_radians().sin(),
))))

}

fn cos(&mut self, degree: i32) -> WasmRuntimeResult {
Ok(Some(RuntimeValue::from(ScannerSystem::to_user_heading(

(degree as f32).to_radians().cos(),
))))

}

fn tan(&mut self, degree: i32) -> WasmRuntimeResult {
Ok(Some(RuntimeValue::from(ScannerSystem::to_user_heading(

(degree as f32).to_radians().tan(),
))))

}

fn atan(&mut self, degree: i32) -> WasmRuntimeResult {
Ok(Some(RuntimeValue::from(ScannerSystem::to_user_heading(

(degree as f32).to_radians().atan(),
))))

}
}

In this file, the gen_funcref() function is one of the most important. This function
takes as input the name of a function (one of the imports the WebAssembly
modules expect the host to provide) and returns a function reference in the
form of an Option<FuncRef>.

Chapter 8. Building WARoS—The WebAssembly Robot System • 176

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

With the mapping between import name and import signature created, next we
need to be able to call functions at the request of the modules. As you’ve seen
before, we do this through the Externals trait. The invoke_index() function takes the
index of a function (returned from our gen_funcref() function) and invokes it.

Finally, you get to the real meat of the Runtime—implementing the functions
imported by WebAssembly modules. There’s a lot of code here, but it all pretty
much follows two basic patterns—reading from or writing to components.
Occasionally we’ll defer a call to a system to do a complex query, but that’s an
exception. Remember that the systems are the things tasked with processing,
so these functions should do their work and get out of the way of the systems
as quickly as possible. Let’s take a look at the code to make a change to a
component, like the code from drive():

writelock(&self.game_state.motion_components)
.entry(self.module_name.to_string())
.and_modify(|mc| {

mc.origin = mc.position.clone();
mc.distance_along_heading = 0;
mc.heading = angle;
mc.desired_speed = speed;

});

The writelock() function (defined in the botengine/src/game/mod.rs file) creates a write
lock on the self.game_state.motion_components HashMap. Then, the entry()7 function is
used to grab a reference to a single entry within the hash map. The Entry API
is easily one of my favorites within all of Rust, and you owe it to yourself to
learn it and exploit all of its power.

Anything inside the closure passed to and_modify() has safe, mutable access to
the value within that entry. In this case, it’s a single motion component and
we modify it to set a new heading, reset its distance along that heading to 0,
and set the desired speed.

The code to read a value from a component looks similar:

match readlock(&self.game_state.damage_components).get(&self.module_name) {
Some(dc) => Some(RuntimeValue::from(dc.damage)),
None => None,

}

Here the readlock() function (also a utility defined elsewhere) grabs a read lock
on the damage_components HashMap. Instead of calling entry(), we use get() here and

7. doc.rust-lang.org/std/collections/hash_map/enum.Entry.html

report erratum • discuss

Building the WARoS Match Engine • 177

see more please visit: https://homeofpdf.com

../../../../../../https@doc.rust-lang.org/std/collections/hash_map/enum.Entry.html
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

match on the result. As long as no other thread is writing to damage_components
at that moment, acquiring a read lock is free.

Implementing the Game Loop
The game loop is the core gear that makes everything else in the game work.
Without it, nothing happens. The job of this loop is to tell each of the active
systems to apply its logic. The loop also keeps track of the number of loops
or “cycles” that have occurred. When we discuss replay, you’ll see why this
is important.

In more formal ECS frameworks, each system might be operating in its own
loop, so you have a bunch of miniature game loops rather than a single all-
encompassing one. I opted for the single loop here to keep the sample easier
to read and to help with playback:

waros/botengine/src/game/mod.rs
use self::damage::*;
use self::motion::*;
use self::projectiles::*;
use self::scanner::*;
use crate::events::GameEvent;
use std::collections::HashMap;
use std::sync::{mpsc::Sender, Arc, RwLock};
use std::sync::{RwLockReadGuard, RwLockWriteGuard};

pub struct Gameloop {
game_state: Arc<GameState>,
systems: Vec<Box<System>>,
cycle: u32,
max_cycles: u32,
num_combatants: usize,

}

#[derive(Debug)]
pub enum LoopTerminationReason {

CycleCountExceeded,
}

pub trait System {
fn apply(self: &Self, cycle: u32, game_state: &Arc<GameState>);

}

impl Gameloop {
pub fn new(

game_state: Arc<GameState>,
max_cycles: u32,
num_combatants: usize,
logger: Option<Sender<GameEvent>>,

) -> Gameloop {
Gameloop {

Chapter 8. Building WARoS—The WebAssembly Robot System • 178

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/botengine/src/game/mod.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

game_state,
systems: vec![

Box::new(ScannerSystem::new(logger.clone())),
Box::new(MotionSystem::new(logger.clone())),
Box::new(ProjectileSystem::new(logger.clone())),
Box::new(DamageSystem::new(logger.clone())),

],
cycle: 0,
max_cycles,
num_combatants,

}
}

pub fn start(&mut self) -> LoopTerminationReason {
loop {

self.systems
.iter()
.for_each(|s| s.apply(self.cycle, &self.game_state));

self.cycle = self.cycle + 1;

if self.cycle >= self.max_cycles {
return LoopTerminationReason::CycleCountExceeded;

}
}

}
}

The GameLoop struct’s new() function takes an Arc of the GameState, number of
combatants, and a Sender as initial arguments. The Arc is used to allow code
to pass multiple safe references to the same source object.

The core loop is very simple—iterate through each system and invoke its apply()
function. You’ll see a few of those in the next section. Let’s take a look at how
the game state is defined:

waros/botengine/src/game/mod.rs
pub type ReadWriteLocked<T> = Arc<RwLock<T>>;
pub type ComponentHash<T> = ReadWriteLocked<HashMap<String, T>>;

#[derive(Debug)]
pub struct GameState {

pub players: ReadWriteLocked<Vec<String>>,
pub motion_components: ComponentHash<MotionComponent>,
pub damage_components: ComponentHash<DamageComponent>,
pub scanner_components: ComponentHash<ScannerComponent>,
pub projectile_components: ComponentHash<ProjectileComponent>,

}

impl GameState {
pub fn new() -> GameState {

GameState {
players: Arc::new(RwLock::new(Vec::new())),

report erratum • discuss

Building the WARoS Match Engine • 179

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/botengine/src/game/mod.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

motion_components: Arc::new(RwLock::new(HashMap::new())),
damage_components: Arc::new(RwLock::new(HashMap::new())),
scanner_components: Arc::new(RwLock::new(HashMap::new())),
projectile_components: Arc::new(RwLock::new(HashMap::new())),

}
}

pub fn combatant_entered(&self, module_name: &str) {
self.players.write().unwrap().push(module_name.to_string());
self.motion_components

.write()

.unwrap()

.entry(module_name.to_string())

.or_insert(MotionComponent::new());
self.damage_components

.write()

.unwrap()

.entry(module_name.to_string())

.or_insert(DamageComponent::new());
self.scanner_components

.write()

.unwrap()

.entry(module_name.to_string())

.or_insert(ScannerComponent::new());
self.projectile_components

.write()

.unwrap()

.entry(module_name.to_string())

.or_insert(ProjectileComponent::new());
}

}

pub fn readlock<'a, T>(
component: &'a ComponentHash<T>

) -> RwLockReadGuard<'a, HashMap<String, T>> {
component.read().unwrap()

}

pub fn writelock<'a, T>(
component: &'a ComponentHash<T>,

) -> RwLockWriteGuard<'a, HashMap<String, T>> {
component.write().unwrap()

}

const MAX_X: f32 = 1000.0;
const MAX_Y: f32 = 1000.0;

pub mod damage;
pub mod motion;
mod projectiles;
pub mod scanner;

Chapter 8. Building WARoS—The WebAssembly Robot System • 180

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

First I use a couple of type aliases to keep the “bracket noise” down when nesting
generic type parameters in the upcoming function signatures and structs. Each
system has a corresponding ComponentHash, which is a HashMap wrapped by a RwLock
and an Arc. In other words, the game state holds an atomically reference counted
read-write lock on a hash map for each component.

In the combatant_entered() function, each of the HashMaps is updated to contain
a new default entry for the new player. Remember when I said the Entry API
was incredibly powerful? Here it is again:

self.motion_components
.write()
.unwrap()
.entry(module_name.to_string())
.or_insert(MotionComponent::new());

We can skip the usual ugliness with if statements or pattern matches to check
for the existence of an item and just use the or_insert() function to insert a new
entry if one doesn’t already exist.

Next, we have what might be considered the most complex Rust syntax that
I’ve used in the book so far:

pub fn writelock<'a, T>(component: &'a ComponentHash<T>) ->
RwLockWriteGuard<'a, HashMap<String, T>> {
component.write().unwrap()

}

All I’ve done is create a shortcut (I could also have used a macro) for calling
.write().unwrap(). Every single access to every component for every system required
the use of the RwLock methods, and I got tired of typing them all of the time.

This function signature includes a lifetime specifier ('a) and a generic type
parameter (T). Without getting into too many gory details, this code indicates that
the returned RwLockWriteGuard must last as long as the component passed in as a
parameter. We use generics here so we can get a RwLockWriteGuard on any of the
component HashMaps, even though each map contains values of different types.

Building the Components and Systems
As we went over earlier, a component is a small, discrete piece of state. A
system is some set of logic that operates on that state. The separation of
components and systems makes code easier to test, and the smaller surface
area over which write locks need to be acquired help reduce the risk of “wait
blocks” in the game loop.

report erratum • discuss

Building the WARoS Match Engine • 181

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

I won’t show the code for each system in the interest of saving a few trees
(and bytes). You can download all of the engine code and check out each
system on your own. With a few exceptions, most of the system implementa-
tions try and mimic the behavior and spirit of Poindexter’s original Crobots
code. Let’s take a look at the core of the damage system:

waros/botengine/src/game/damage.rs
use super::*;
use crate::events::log_event;
use crate::game::{readlock, writelock};

pub struct DamageSystem {
logger: Option<Sender<GameEvent>>,

}

impl System for DamageSystem {
fn apply(&self, cycle: u32, game_state: &Arc<GameState>) {

game_state.players.read().unwrap().iter().for_each(|p| {
writelock(&game_state.damage_components)

.entry(p.to_string())

.and_modify(|dc| self.advance(p, game_state, dc, cycle));
});

}
}

The apply() function will mutate a damage component for each player in the
game by calling the damage system’s advance() function on that mutable refer-
ence, acquired from a write lock. Since the damage system is ideally the only
part of the game that mutates damage components, we don’t have to worry
about blocking other threads to perform these quick mutations.

There is a “breadcrumb” pattern used by multiple systems in the game. Each
system sets some value at the end of its apply() loop, leaving it behind to be
used by other systems that process next. For example, the collision system
leaves values in the collision components indicating detected collisions during
that game loop cycle.

The damage system just reads any active collisions and applies damage
accordingly. It’s responsible for ensuring that detected collisions only last as
long as they should. For example, explosion damage from projectiles actually
last a few cycles (also called “ticks”), which means the damage system may
apply damage multiple times per explosion.

Let’s take a look at the rest of the code for the damage system to see how it
applies collision damage, projectile damage, and then checks to see if players
are dead:

Chapter 8. Building WARoS—The WebAssembly Robot System • 182

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/botengine/src/game/damage.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

waros/botengine/src/game/damage.rs
impl DamageSystem {

pub fn new(logger: Option<Sender<GameEvent>>) -> DamageSystem {
DamageSystem { logger }

}

pub fn advance(
&self,
player: &str,
game_state: &Arc<GameState>,
dc: &mut DamageComponent,
cycle: u32,

) {
self.apply_collision_damage(player, game_state, dc, cycle);
self.apply_projectile_damage(player, game_state, dc, cycle);
self.check_death(player, dc, cycle);

}
fn check_death(&self, player: &str, dc: &mut DamageComponent, cycle: u32) {

if dc.damage >= DAMAGE_MAX && !dc.dead() {
dc.damage = DAMAGE_MAX;
dc.status = DamageStatus::Dead;
log_event(

&self.logger,
GameEvent::Death {

cycle,
victim: player.to_string(),

},
);

}
}
fn apply_collision_damage(

&self,
player: &str,
game_state: &Arc<GameState>,
dc: &mut DamageComponent,
cycle: u32,

) {
let mcs = readlock(&game_state.motion_components);
let mc_opt = mcs.get(player);
match mc_opt {
Some(mc) => match mc.collision {

Some(CollisionType::Player(ref p)) => {
dc.add_damage(DAMAGE_COLLISION);
self.log_damage(
cycle,
DAMAGE_COLLISION,
DamageKind::Collision(
CollisionType::Player(p.to_string())),

player,
);

}

report erratum • discuss

Building the WARoS Match Engine • 183

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/botengine/src/game/damage.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Some(CollisionType::Wall(ref p)) => {
dc.add_damage(DAMAGE_COLLISION);
self.log_damage(
cycle,
DAMAGE_COLLISION,
DamageKind::Collision(CollisionType::Wall(p.clone())),
player,

);
}
None => {}

},
None => {}

}
}
fn apply_projectile_damage(

&self,
player: &str,
game_state: &Arc<GameState>,
dc: &mut DamageComponent,
cycle: u32,

) {
let pcs = game_state.projectile_components.read().unwrap();
let pc_opt = pcs.get(player);
match pc_opt {
Some(pc) => {

for x in 0..1 {
if pc.projectiles[x].active_hits.contains_key(player) {
let dmg: u32 = pc.projectiles[x].active_hits[player];
println!("Doing explosion damage {} to player {}", dmg, player);
dc.add_damage(dmg);
self.log_damage(cycle, dmg, DamageKind::Projectile, player);

}
}

}
None => {}

}
}
fn log_damage(&self, cycle: u32, amount: u32, kind: DamageKind,

victim: &str) {
log_event(
&self.logger,
GameEvent::Damage {

cycle,
amount,
kind,
victim: victim.to_string(),

},
);

}
}

Chapter 8. Building WARoS—The WebAssembly Robot System • 184

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

#[derive(Debug)]
pub enum DamageStatus {

Alive,
Dead,

}

#[derive(Debug)]
pub struct DamageComponent {

pub damage: u32,
pub status: DamageStatus,

}

#[derive(Debug)]
pub enum DamageKind {

Collision(CollisionType),
Projectile,

}

impl DamageComponent {
pub fn new() -> DamageComponent {

DamageComponent {
damage: 0,
status: DamageStatus::Alive,

}
}

pub fn dead(&self) -> bool {
match self.status {
DamageStatus::Dead => true,
_ => false,

}
}

fn add_damage(&mut self, amount: u32) {
self.damage += amount; // death will be checked end of this tick

}
}

const DAMAGE_COLLISION: u32 = 2;
pub const DAMAGE_MAX: u32 = 100;

The logger you’ve seen in the game loop and the damage system helps support
playback, which we’ll discuss next.

Supporting Match Playback
The game engine’s loop runs as fast as it possibly can. This is fine for when
we just want to determine who will win the match. But what if we want to
watch the match live, or watch a replay of the match? To facilitate this, I’m
using a Sender8 to send important game events bound to the cycle/frame

8. doc.rust-lang.org/std/sync/mpsc/struct.Sender.html

report erratum • discuss

Building the WARoS Match Engine • 185

see more please visit: https://homeofpdf.com

../../../../../../https@doc.rust-lang.org/std/sync/mpsc/struct.Sender.html
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

during which those events occurred. Anything listening on the other end of
that channel can store the events in a database, display them on the console,
or render them on a website. To show them at a more human-friendly speed,
just apply a frame rate delay between events such that each cycle represents
some fixed fraction of a second.

Creating WebAssembly Robots
Now for the fun part: creating WebAssembly robots! We’ve built an engine
that can load WebAssembly modules into memory, expose a runtime host for
them, and safely allow them to interact with a virtual environment and
manipulate shared state. Now it’s time to exercise that engine by building
some robots.

First, let’s create a fairly dumb target. I wanted a “read hungry” robot to
ensure that no matter how frequently a robot queried its own state, it couldn’t
cause a threading dead lock in the system. Create a new library Rust module
called dumbotrs and add it to the workspace. Its Cargo.toml should look like the
following:

waros/dumbotrs/Cargo.toml
[package]
name = "dumbotrs"
version = "0.1.0"
authors = ["Your Name <your@mail.com>"]

[lib]
crate-type = ["cdylib"]

[dependencies]
warsdk = { path = "../warsdk" }

This robot only depends on the SDK we created earlier that exposes the host
functions. Let’s take a look at lib.rs:

waros/dumbotrs/src/lib.rs
extern crate warsdk;
use warsdk::*;

#[no_mangle]
pub extern "C" fn botinit() -> i32 {

drive(90, 10);

loop {
damage();
speed();

}
}

Chapter 8. Building WARoS—The WebAssembly Robot System • 186

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/dumbotrs/Cargo.toml
../../../../../../media.pragprog.com/titles/khrust/code/waros/dumbotrs/src/lib.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

This robot, regardless of its starting position, drives north at a speed of 10%.
It then goes into an infinite loop where it continually queries its own state.
This robot should eventually collide with the northern wall and stop, where
it will keep eagerly consuming its state.

Since we will probably never need to compile this robot for anything other
than the wasm32-unknown-unknown target, we can tell Cargo to default to that by
creating a .cargo/config file inside the project directory:

waros/dumbotrs/.cargo/config
[build]
target = "wasm32-unknown-unknown"

Creating the Rook
The Rook, inspired by Poindexter’s original implementation,9 is a robot that
seeks the middle of the game board. Once there, it will move laterally east
and west, scanning for potential targets at the four compass points. Once it
finds one, it stops and fires at it until there are no more targets in range.

This is a subtle yet fairly powerful strategy. If an opposing robot is anywhere
but the extreme top or bottom of the game board, it will eventually be
detected by the rook’s scanners and fired upon. The only escape is to keep
moving or to kill the rook.

Create a new library Rust project called rook, add it to the workspace, and set
its default compilation target to wasm32-unknown-unknown. Update its Cargo.toml to
include a relative path dependency on the warsdk code. Let’s take a look at
what the rook looks like written in Rust:

waros/rook/src/lib.rs
/* Inspired by https://github.com/tpoindex/crobots/blob/master/src/rook.r
*
* Will move to the center of the field and then patrol from East to West,
* scanning all four compass points for targets. If it is hit while scanning
* it will change direction
*
* Note: this rook ignores incoming fire while on its way to the center of the
* battlefield.
*/

extern crate warsdk;
use warsdk::*;

struct State {
course: i32,

}

9. github.com/tpoindex/crobots/blob/master/src/rook.r

report erratum • discuss

Creating WebAssembly Robots • 187

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/dumbotrs/.cargo/config
../../../../../../media.pragprog.com/titles/khrust/code/waros/rook/src/lib.rs
../../../../../../https@github.com/tpoindex/crobots/blob/master/src/rook.r
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

#[no_mangle]
pub extern "C" fn botinit() -> i32 {

go(500, 500);

let mut state = State { course: 0 };

loop {
look(ANGLE_EAST, &mut state);
look(ANGLE_NORTH, &mut state);
look(ANGLE_WEST, &mut state);
look(ANGLE_SOUTH, &mut state);

if loc_x() > BOUND_X_MAX {
reverse(&mut state);

}

if loc_x() < BOUND_X_MIN {
reverse(&mut state);

}

if speed() == 0 {
// bumped into something
reverse(&mut state);

}
}

}

fn look(angle: i32, state: &mut State) {
let mut range = scan(angle, 2);

// Fire at targets in range until we have no targets in range
while range > 0 && range < PROJECTILE_MAX_RANGE as i32 {

if speed() > 0 {
drive(state.course, 0);

}

if range > BLAST_RADIUS {
// don't want to blow ourselves up!
cannon(angle, range);

}
range = scan(angle, 2);

}
}

fn reverse(state: &mut State) {
if state.course == ANGLE_EAST {

state.course = ANGLE_WEST;
} else {

state.course = ANGLE_EAST;
}

}

const BOUND_X_MIN: i32 = 80;
const BOUND_X_MAX: i32 = 920;

Chapter 8. Building WARoS—The WebAssembly Robot System • 188

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

In this robot’s implementation, you can see we now have our own internal,
mutable state. This is a really powerful capability, because it means that the
robots can make complex decisions based on observations from previous
iterations through their loops. In the case of the rook, it maintains the direc-
tion it’s facing so it can reverse it when it reaches a boundary near the eastern
or western edges of the game board.

Cry Havoc, and Let Slip the Robots of War!
You’ve got a game engine, and you’ve got a couple of robots (as well as a
couple included in the code not listed in the chapter). It’s time to pit them
against each other and see what happens. To do this, we’ll create another
project in the workspace called consolerunner, a CLI application that loads wasm
modules and invokes the engine:

waros/consolerunner/src/main.rs
extern crate botengine;
use botengine::{Combatant, Gameloop};
use std::sync::mpsc::channel;
use std::sync::Arc;
use std::thread;
use std::time;

fn main() {
let gs = Arc::new(botengine::GameState::new());

let b1 = botengine::Combatant::buffer_from_file(
"./bots/dumbotrs.wasm");

let bot1 = b1.unwrap();

let b2 = botengine::Combatant::buffer_from_file(
"./bots/rook.wasm");

let bot2 = b2.unwrap();

let rb = botengine::Combatant::buffer_from_file(
"./bots/rabbit.wasm");

let rabbit = rb.unwrap();

let my_gs = gs.clone();
let debug_gs = gs.clone();

let (sender, receiver) = channel();
thread::spawn(move || loop {

match receiver.recv() {
Ok(ge) => println!("{:?}", ge),
Err(_) => {}

}
});

let mut gl = Gameloop::new(my_gs, 100_000, 3, Some(sender));

let _handle = Combatant::start("bot-1", bot1, gs.clone());

report erratum • discuss

Creating WebAssembly Robots • 189

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/waros/consolerunner/src/main.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

let _handle2 = Combatant::start("rook", bot2, gs.clone());
let _handle3 = Combatant::start("rabbit", rabbit, gs.clone());
let game_result = gl.start();

thread::sleep(time::Duration::from_secs(1));

println!(
"Game loop terminated: {:?}\nState: {:?}",
game_result, debug_gs

);
}

This code loads three robots from the bots directory (the files were just copied
from target output of other modules), creates the GameState, and shares clones
of the Arc of that state with instances of the Combatant struct.

When all is ready to go, we invoke start() on the game loop and wait for the
match to resolve after 100,000 frames or cycles. You’ll also see that I’ve cre-
ated a channel and set up a thread where I await events in an infinite loop.
This prints them to the console, but you can imagine a whole host of other
things we could do with the list of game events.

Run the application either by compiling and running the binary or simply with
cargo run. You’ll see a ton of spam that comes from the rook as it launches missiles
at the rabbit as the rabbit bounces randomly across the game field. Since the
rabbit never spends more than a single frame sitting in a spot, it usually manages
to escape every match almost completely unharmed, save for a few unfortunate
collisions with walls. Poor dumbotrs heads north, hits a wall, incurs two points of
damage, and then spends the rest of the match idle.

Congratulations! You now have a fully functioning game engine inspired by
the original Crobots that pits multiple WebAssembly modules against each
other. This can be used to teach people how to write Rust WebAssembly modules
as well as for a lot of fun and senseless virtual battlefield violence, and to illus-
trate how to allocate dedicated threads to WebAssembly host runtimes.

Room for Improvement
There’s plenty more that you could do with this game engine. Most of it,
however, has little to do with WebAssembly itself. You could add a new system
and component pair that allocates points to players every time they do damage
to another player. You could then create yet another system and component
pair that can declare victory and terminate a match early when only a single
robot is left standing.

I hope you will see places where you can have fun improving this code to
continue learning Rust and WebAssembly.

Chapter 8. Building WARoS—The WebAssembly Robot System • 190

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Robots in the Cloud
The WARoS engine is deliberately designed as a module that you can use
from any kind of code. If this were published as a public crate on crates.io,
you could declare a dependency on it in any application you’re writing and
immediately gain the ability to run multi-player WebAssembly combat
matches on demand.

If you wanted to expose this as a cloud offering, you’re only a few steps away.
You could build a website that allows developers to upload their own robot
modules, and then the website could hold randomly chosen matches between
stored robots. If you wanted to get really fancy, you could create a logger (just
a Receiver half of a channel) that, instead of displaying events to the console,
emits them to a message broker like NATS, RabbitMQ, or Kafka. You could
then have a web page listening on web sockets for events, rendering matches
in real time for live spectators.

The possibilities are endless—leader boards, competitions, prizes, achieve-
ments, even different kinds of battlefields with obstacles and barriers other
than simple walls at the edge. I would love to spend months coding all of that,
but this book is about WebAssembly, so I (and my editor) had to draw the
line somewhere.

If you’re as into distributed systems as I am, one could even imagine a cluster
in which a match execution service had been deployed, awaiting signals from
a message broker to begin a match. As a match begins, it emits events back
to the broker, which could be listened to by a scribe service (recording
matches for posterity), a projector service (updating live state of each robot
and match), and to a real-time spectator service responsible for delivering
updates on matches straight to browser clients.

Wrapping Up
This chapter was arguably the most “rusty” of the chapters. There were a
number of core lessons at the heart of this chapter and are the reason for the
relatively large amount of code. If you only scratch the surface of Rust, you’ll
never fully take advantage of its true power.

In this chapter, first and foremost, you saw an example of how to hide tremen-
dous complexity behind a simple API—the host functions available to the robots
in your virtual arena. Next, you saw how to manage complex, shared access to
both mutable and immutable data. Finally, you explored some of Rust’s intrinsic

report erratum • discuss

Robots in the Cloud • 191

see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

support for threads. There are frameworks out there with simpler APIs, but
knowing the standard library implementation is invaluable.

The code for this chapter also provides a foundation for further exploration.
If you want, you can add things like obstacles in the arena, you can allow
players to choose from a variety of weapons instead of giving them all the
same gear, you can play with the motion system or convert the whole thing
from robots to space ships or dragons.

Conclusion
Throughout this book, you’ve been on a journey. You’ve started at the very
basics and foundations of WebAssembly, learning what it is, what it isn’t,
and what you can do with it even at the lowest levels writing wat code directly.

From there you learned about how WebAssembly and JavaScript can interact,
from the foundational levels of low-level interop to the use of high-level code
generation tools that do everything from wrap the JavaScript APIs to expose
full-featured, React-like web application development frameworks.

You then took the next step in that journey, learning how to host WebAssembly
modules within Rust itself for everything from running a checkers game in the
console to controlling LEDs on a Raspberry Pi. And now, you’ve put every ounce
of that journey to work for you in order to create a reusable game engine capable
of allocating dedicated threads to WebAssembly modules as their internal code
navigates the hazards of a virtual battlefield that can be hosted in a console, on
the web, in the cloud, or anywhere else.

Hopefully the next step in this journey will involve you continuing to explore,
experiment with, and learn from, the combination of the Rust programming
language and the emerging and game-changing WebAssembly standard.
Nothing would make me happier than hearing about all of the great projects
started after being inspired by this book. You should take what you’ve learned
in this book and explore, fail, learn, and find the next amazing thing to build,
no matter how big or small.

Chapter 8. Building WARoS—The WebAssembly Robot System • 192

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

APPENDIX 1

WebAssembly and Serverless
If you’ve been keeping up with your home game of “buzzword bingo,” then
you’ve undoubtedly heard of the latest and greatest thing that claims to solve
all of our problems—serverless. Since serverless is a topic that already has
multiple books on its own, I didn’t want to derail the main journey of the book
with a lengthy digression on it.

However, I think it’s important to provide some discussion and perspective
around what serverless is, with the hype stripped away, and how WebAssembly
development might fit into that rapidly expanding area of innovation.

Serverless 101
Serverless may be more popular on the Internet for those exclaiming,
“serverless still has servers!” than for the actual concept. Stripped from the
hype, my own view of serverless is that as we continue to build smaller and
smaller components, designed to elastically scale and conform to all of the
standards for cloud native development, we reach a point where we start to
see a pattern emerging.

In this pattern, we start off a microservice with a stack of boilerplate. This
boilerplate is responsible for standing up a server, exposing an endpoint—be
it REST or RPC or pub/sub or whatever—securing and routing requests to
the business logic, responding to callers with some standardized serialized
payload. This boilerplate can also include logging, application monitoring,
tracing, security, fault tolerance, ad nauseum.

What we often see is that as our services get smaller, so too do the core bits
of business logic. At some point we notice that we’ve got more boilerplate than
“real code.” When you have hundreds of services in many different clusters

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

and they’re all running duplicated in multiple availability zones, this boilerplate
starts to look like a lot of unecessary overhead.

The way I view serverless is that it takes the core function out of the service
and then defers all of the other requirements previously managed by dupli-
cated boilerplate to the platform, which is in most cases a cloud provider or
some abstraction within a cluster like OpenFaaS (I will talk about that
shortly). Serverless is also reactive—a serverless function, stripped of its
surrounding onion of boilerplate, awaits an event, performs a task, and gets
out of the way.

If you’re still a little fuzzy on the subject, I highly recommend searching for
blog posts, use cases, and case studies on when and where serverless is an
ideal solution, rather than the technology behind individual serverless
implementations like AWS Lambda or Google Cloud Functions.

Intersection of WebAssembly and Serverless
Now that we’re all on the same page with the idea that serverless is just event-
driven functions with their ceremonial robes of non-functional requirements
delegated to a platform abstraction, let’s talk about what any of that has to
do with WebAssembly.

After reading this book, hopefully your perspective on what WebAssembly is
and how it can be harnessed has changed. A WebAssembly module is a
portable encapsulation of some set of functionality. Where it begins to intersect
with serverless is that on their own, WebAssembly modules are helpless. It
cannot make HTTP requests from inside a module without an explicit contract
with the host allowing it to do so, it can’t listen on endpoints unless the host
lets it do it. By and large, WebAssembly modules are more limited than regular
serverless functions—and that’s a good thing.

As you’ve seen in this book, if you write your WebAssembly code in a way that
conforms to a well-known host interface (like the one provided by a compliant
web browser), then your code is truly portable. It can run anywhere that
contract is satisfied, whether that’s a Raspberry Pi, a Rust console application,
a web browser, or a serverless platform like the ones I’ll discuss next.

WebAssembly in the Cloud
Every big cloud provider today has some form of support for serverless com-
puting, or “cloud functions.” They each have their own name for it, and each
one of the providers tries to add value in their own unique way to convince
customers that their function hosting is better than everyone else’s. Amazon

Appendix 1. WebAssembly and Serverless • 194

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

AWS has Lambda,1 Google Cloud Platform has Google Cloud Functions,2

Microsoft has Azure Functions,3 and Alibaba Cloud has Function Compute.4

To the best of my knowledge, none of these serverless platforms has any kind
of native support for WebAssembly—yet. I am hopeful that by the end of 2019,
at least one of the major providers will allow for some kind of native integration
of WebAssembly modules into cloud functions. Just the binary portability
alone makes this an appealing offering. Some providers may be waiting for
the host interface to get a little more robust (e.g., to allow native string passing
so there wouldn’t have to be explicit allocation calls in the host contract).

Today, Amazon Lambda supports a Rust runtime for functions. This means
you could take the Rust WebAssembly host code examples from this book
and write a host that consumes JSON events, converts them into something
suitable for the hosted module, and invokes a function. Is this really worth
the overhead, though? Do we actually gain any benefit from creating another
nested layer within a cloud function?

In some cases it might be useful. Given the limited abilities of a WebAssembly
module, they become notably easier to test. For example, a JavaScript function
that makes external HTTP requests would require complicated mocks, injec-
tion, or standing up a fake server to test properly. But if the WebAssembly
module just invoked a make_http_request() function, then a test harness for that
module could easily fake it. Whether this additional degree of indirection is
worth it depends on you, your development team, and of course the problem
you’re trying to solve. This scenario does gain a bit more traction when you plan
on running the same logic both inside and outside of the serverless platform.

As the WebAssembly specification grows and the community of developers
creating Wasm-based solutions also grows, I expect a lot of people to notice
the potential of combining WebAssembly’s performance, security, and porta-
bility with the flexibility and cost-effectiveness of cloud functions.

Serverless WebAssembly in the Wild
There are a number of projects available now where people are experimenting
with serverless WebAssembly in one form or another. For example, Geoffrey
Couprie has written serverless-wasm,5 a framework that starts up an HTTP

1. aws.amazon.com/lambda
2. cloud.google.com/functions
3. azure.microsoft.com/en-us/services/functions
4. www.alibabacloud.com/product/function-compute
5. github.com/Geal/serverless-wasm

report erratum • discuss

Serverless WebAssembly in the Wild • 195

see more please visit: https://homeofpdf.com

../../../../../../https@aws.amazon.com/lambda
../../../../../../https@cloud.google.com/functions
../../../../../../https@azure.microsoft.com/en-us/services/functions
../../../../../../https@www.alibabacloud.com/product/function-compute
../../../../../../https@github.com/Geal/serverless-wasm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

server and, through a toml configuration file, can route HTTP requests to dif-
ferent wasm modules. The host contract for this framework looks like this (at
the time this book was finished):

mod sys {
extern {
pub fn log(ptr: *const u8, size: u64);
pub fn response_set_status_line(status: u32, ptr: *const u8, size: u64);
pub fn response_set_header(name_ptr: *const u8, name_size: u64,

value_ptr: *const u8, value_size: u64);
pub fn response_set_body(ptr: *const u8, size: u64);
pub fn tcp_connect(ptr: *const u8, size: u64) -> i32;
pub fn tcp_read(fd: i32, ptr: *mut u8, size: u64) -> i64;
pub fn tcp_write(fd: i32, ptr: *const u8, size: u64) -> i64;
pub fn db_get(key_ptr: *const u8, key_size: u64,

value_ptr: *const u8, value_size: u64) -> i64;
}

}

This framework allows WebAssembly modules to read and write over raw TCP
connections as well as make connections to a database back-end. As I men-
tioned earlier, this contract can be satisfied by anything, including a mock
host which makes testing these modules fairly easy. It’s up to you whether
you decide to let your modules make external connections.

Colin Eberhardt takes a different approach in his blog post,6 where the
WebAssembly function written in Rust is hosted in AWS’s NodeJS Lambda
runtime. This is certainly a far simpler way to host a WebAssembly module
than trying to manipulate all of the lower-level Rust APIs you’ve seen in this
book to host a module. Using NodeJS as the host runtime means the Rust
WebAssembly module developer can take advantage of wasm-bindgen, making
it even easier to write modules.

Yet another option available for serverless WebAssembly is the use of Cloud-
flare Workers. They just recently announced support for WebAssembly
workers7 and you can use the wasm-pack tool to bundle up your WebAssembly
code and deploy it to Cloudflare, as illustrated in their blog post8 covering the
subject. This support is still JavaScript-based, so it resembles using a NodeJS
runtime in AWS to invoke a WebAssembly module, but this is definitely an
indication that the future of serverless WebAssembly is a bright one.

6. blog.scottlogic.com/2018/10/18/serverless-rust.html
7. https://blog.cloudflare.com/webassembly-on-cloudflare-workers
8. blog.cloudflare.com/cloudflare-workers-as-a-serverless-rust-platform/

Appendix 1. WebAssembly and Serverless • 196

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@blog.scottlogic.com/2018/10/18/serverless-rust.html
../../../../../../https@blog.cloudflare.com/webassembly-on-cloudflare-workers
../../../../../../https@blog.cloudflare.com/cloudflare-workers-as-a-serverless-rust-platform/default.htm
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Integration with OpenFaaS
OpenFaaS9 (Open Functions as a Service) takes a different approach to cloud
functions. Where the major cloud providers implement all of the underlying
infrastructure for you, OpenFaaS expects you to have that infrastructure
available (which could still be AWS, GCP, Azure, etc).

There could be full books written about OpenFaaS as well, so I will try and
keep my explanation brief. Unlike the other cloud providers which have dif-
ferent runtimes for each language, OpenFaaS has a single runtime for all
functions—docker and the deployed OpenFaas components.

In OpenFaaS, your function is a compiled binary inside a docker image. This
docker image also contains a watchdog process that acts as a proxy between
the OpenFaaS gateway and your function. It routes incoming requests for
function invocations to your process. The classic gateway communication
mode is about as simple as it gets: the request payload is conveyed to your
process via stdin and your response is delivered via stdout. There’s also a newer
watchdog type10 that’s faster and uses HTTP.

So while your function process is just a simple binary, OpenFaaS takes care
of waking it up and invoking it on demand and deals with the complexities
of trying to keep it “warm,” and so on. You could also use a WebAssembly
module here. All you’d need is a host process (e.g. a Rust application) that
conformed to any of the OpenFaaS watchdog requirements and you could
quickly turn your WebAssembly module into a function that could be launched
on-demand in a Kubernetes cluster hosted wherever you like.

In this scenario, you could also reap the benefits of knowing the WebAssembly
module could never do anything to harm your cluster or OpenFaaS, because
the host is in complete control of what the module can and cannot do. You
can even verify that the module was deployed by the right people or services
—the subject of this book’s second appendix.

9. www.openfaas.com
10. docs.openfaas.com/architecture/watchdog

report erratum • discuss

Integration with OpenFaaS • 197

see more please visit: https://homeofpdf.com

../../../../../../https@www.openfaas.com/default.htm
../../../../../../https@docs.openfaas.com/architecture/watchdog
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

APPENDIX 2

Securing WebAssembly Modules
I devoted the vast majority of the book to illustrating how WebAssembly
modules can be created, hosted, consumed, and integrated. What I didn’t
talk about was, once you’ve got a WebAssembly module, what are the security
concerns and how do you mitigate them?

This appendix will briefly mention a few things that you should keep in mind
when considering the security implications of using WebAssembly. It is by
no means an exhaustive reference or guide.

General Security Concerns
The most basic security concern with WebAssembly modules you saw in the
“round-trip” compilation sample early on in the book. Anything that you
compile into a wasm file can be disassembled and converted back into wast text
format, or even other languages capable of targeting WebAssembly.

This means that you should never believe that anything in your module will
remain private. Nor should you ever put anything into the WebAssembly
module that could be considered a trade secret. In other words, if you wouldn’t
want it exposed to the public, don’t put it in a WebAssembly module. This is
essentially the same advice given to people writing client-side JavaScript.
We’ve got obfuscation and minimization tools, but if someone wants to reverse
engineer your logic, they’ll do it.

Browser-Based Attack Vectors
Internally, WebAssembly has a number of features1 that keep it fairly secure.
It has sandboxed memory and a number of common ways of attacking code

1. webassembly.org/docs/security

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@webassembly.org/docs/security
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

like forcing invalid jumps or corrupting memory don’t happen inside a
WebAssembly sandbox.

That said, there is still a JavaScript communication happening between your
module and the client side in the browser. This means that handoff between
the module and JavaScript can be hijacked the same way any other client-
side code running in the browser can. These days most web applications are
built defensively, but it can be easy to let our guard down and think that just
because we’re using a binary file instead of script that we’re safe.

Any call that originates from inside your WebAssembly module can also
originate from inside a debugger or from inside anything pretending to execute
code on your behalf. For this reason, your back-end services supporting your
WebAssembly module should be just as secure as they would be supporting
regular Angular or React applications. One fairly easy to execute task is to
download the WebAssembly module, disassemble it, alter the code, recompile
it, and then re-inject it into the browser via proxy. If there’s anything you
wouldn’t want executed in this scenario, you’ll want to require credentials or
some other form of checking for legitimate requests.

I am not a security expert, so I typically adopt a pattern I refer to as “Paranoia-
Driven Development” (PDD). I make the assumption that every asset that can
be downloaded from my site can be captured, altered, and used in a malicious
or unexpected fashion. There are tools that can be used to ensure that scripts
haven’t been modified in transit, but even those can be defeated by people
with enough determination and tools.

Signing and Encrypting WebAssembly Modules
In the previous section I talked about taking a paranoia approach to defense
against external client tampering with WebAssembly modules. The conse-
quences for module tampering can be far, far worse if you’re distributing and
using modules within your data center, cloud, or enterprise.

Let’s say you’ve adopted WebAssembly and you’re running some form of FaaS
(Functions as a Service) infrastructure. Everything is great and you’re loving
the ease and portability you get, and you love the nearly crash-proof nature
of running an interpreter on WebAssembly modules.

What if someone were to manage to slip a bad WebAssembly module into the
environment. If your host protocol allows those modules to do things that
could corrupt data, download data, or make outbound network calls, you
could have all sorts of malicious actors controlling your system. What we
need is some way to ensure the digital provenance of WebAssembly modules

Appendix 2. Securing WebAssembly Modules • 200

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

—to ensure that they haven’t been tampered with and that they were created
by only authorized personnel or processes.

We can use cryptographic signatures to handle this problem. A simple hash
of an array of bytes will allow us to tell if a file has been tampered with. We
see this pattern used all the time on public downloads when the official sites
also publish a checksum so you can verify that the file is legitimate.

A cryptographic signature takes that concept one step further. It produces a
value that will not only change if the source file bytes change, but it is
entirely dependent on some asymmetric, private key. In other words, you
have to be in possession of a very carefully guarded secret in order to produce
a valid signature.

Before your host code—whether it’s a browser or a Rust console application
or an OpenFaaS container—executes any code in a WebAssembly module, it
should verify the signature that accompanies the file. If the verification fails,
then the party who signed that file was not in posession of the right key and
you should not only reject the file, but probably create some form of alert to
trigger an investigation.

There are quite a few techniques to sign an array of bytes, but I am particu-
larly partial to using Ed255192 keys. They’re fast, simple, easy to use, and
generally less vulnerable to certain types of attacks that have caused havoc
in the past. There are more mathematical reasons to like this signature
algorithm that I won’t go into here because they make my head hurt.

With the EdDSA signature algorithm, you use a single private key called the
seed key to sign an arbitrary binary payload. You can then use public keys
generated from the seed to verify that signature. The availability of many
public keys for a single binary key often creates some very powerful and ele-
gant security solutions.

In this small Rust example (also included with the book code downloads), I
illustrate using the signatory and signatory-dalek crates to sign and verify the contents
of a WebAssembly file passed as the first argument on the command line:

signer/src/main.rs
use std::env;
use std::fs::File;
use std::io::prelude::*;

use signatory::{ed25519, Encode};
use signatory_dalek::{Ed25519Signer, Ed25519Verifier};

2. tools.ietf.org/html/rfc8032

report erratum • discuss

Signing and Encrypting WebAssembly Modules • 201

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/signer/src/main.rs
../../../../../../https@tools.ietf.org/html/rfc8032
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

fn main() -> Result<(), std::io::Error> {
let args: Vec<String> = env::args().collect();
let path = &args[1];

let mut file = File::open(path)?;
let mut wasm_buf = Vec::new();
let _bytes_read = file.read_to_end(&mut wasm_buf)?;
let buf: &[u8] = &wasm_buf;

let seed = ed25519::Seed::generate();
let base64 = signatory::encoding::Base64 {};
println!(

"Generated a seed/private key: {}",
seed.encode_to_string(&base64).unwrap()

);
let signer = Ed25519Signer::from(&seed);

let sig = ed25519::sign(&signer, buf).unwrap();
println!(

"Signature for {} created: {}",
path,
sig.encode_to_string(&base64).unwrap()

);

let pk = ed25519::public_key(&signer).unwrap();
let verifier = Ed25519Verifier::from(&pk);

let verified = ed25519::verify(&verifier, buf, &sig).is_ok();
println!("Signature verified: {}", verified);

Ok(())
}

Here’s a sample run of the application:

$ target/debug/signer ../checkers/checkers.wasm
Generated a seed/private key: AOdRsk3TwSMO4chzRv4+EvXoGPuP25eMughoBRIGoKw=
Signature for ../checkers/checkers.wasm created:
wzphNwHoiPJvgooU8j36H0t8M4DjJ5Q0jyAbRPmIAmqZw+mBYG2dfCLgvCLd1b66
qGncRQk0UfhcAbaO7oqvBw==
Signature verified: true

The hard part with signing files isn’t really the encryption code—others have
already done the hard work for us by writing re-usable libraries. The difficulty
with signatures is ensuring that the signature always accompany the file
being signed.

There are a number of ways to do this. You could put the signature at the
beginning of the binary file and then parse that out as you read it, treating
the remainder of the binary file as the regular WebAssembly module. This
has an added advantage of ensuring that the signature will never be apart

Appendix 2. Securing WebAssembly Modules • 202

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

from a file. This works because we know that ed25519 signatures are always
64 bytes, so we can simply read a fixed number of bytes from the beginning
of the file.

I’ve coded up a sample (not refactored for cleanliness) that illustrates how to
read a WebAssembly file, generate a signature from it, embed that signature
in an output file, and then verify that the signature from a file matches the
WebAssembly bytes—all of the tasks you would need to know how to do in
order to secure the provenance of your modules. I’m only using base 64
encoding so I can print the signature out to the console:

signer2/src/main.rs
use std::env;
use std::fs::File;
use std::io::prelude::*;
use std::io::BufReader;

use signatory::{ed25519, Encode};
use signatory_dalek::{Ed25519Signer, Ed25519Verifier};

fn main() -> std::io::Result<()> {
let args: Vec<String> = env::args().collect();

let input = &args[1];
let output = &args[2];

let infile = load_file(input)?;
let inbytes: &[u8] = &infile;
let base64 = signatory::encoding::Base64 {};

// This seed is a private key - store this in a safe place,
// Obviously, you'll want to persist this somewhere instead of
// just using it once in memory...
let seed = ed25519::Seed::generate();
let signer = Ed25519Signer::from(&seed);
let sig = ed25519::sign(&signer, inbytes).unwrap();
let sig_encoded = sig.encode_to_string(&base64).unwrap();

let pk = ed25519::public_key(&signer).unwrap();
let verifier = Ed25519Verifier::from(&pk);

{
let mut out_file = File::create(output)?;
out_file.write(sig.as_bytes())?;
out_file.write_all(inbytes)?;

}

println!(
"Embedded signature into {} - output {}\n\t-->{}",
input, output, sig_encoded

);

report erratum • discuss

Signing and Encrypting WebAssembly Modules • 203

see more please visit: https://homeofpdf.com

../../../../../../media.pragprog.com/titles/khrust/code/signer2/src/main.rs
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

let mut sigbuf = [0; 64];
let mut wasmbuf = vec![];
{

let in_file = File::open(output)?;
let mut br = BufReader::new(in_file);
br.read_exact(&mut sigbuf)?;
br.read_to_end(&mut wasmbuf)?;

}

let wasmbytes: &[u8] = &wasmbuf;
let insig = ed25519::Signature::new(sigbuf);

let verify_res = ed25519::verify(&verifier, wasmbytes, &insig).is_ok();
println!("Verification result on new bytes - {}", verify_res);

Ok(())
}

fn load_file(path: &str) -> std::io::Result<Vec<u8>> {
let mut file = File::open(path)?;
let mut buf = Vec::new();
let _bytes_read = file.read_to_end(&mut buf)?;

Ok(buf)
}

You could also use this same embedding technique to add additional metadata
to your WebAssembly file that might come from your build process or devel-
opers. Or, you could wrap the WebAssembly module bytes in a protocol buffer3

binary file with fields for both raw bytes and a signature, which would save
you the trouble of manually reading and writing custom binary file formats
as you could just re-use the protocol buffer libraries available.

3. developers.google.com/protocol-buffers

Appendix 2. Securing WebAssembly Modules • 204

report erratum • discuss
see more please visit: https://homeofpdf.com

../../../../../../https@developers.google.com/protocol-buffers
../../../../../../pragprog.com/titles/khrust/errata/add
../../../../../../forums.pragprog.com/forums/khrust

Index

SYMBOLS
! (exclamation point) for proce-

dural macros, 97

#[wasm_bindgen] macro, 69

() (parentheses), for parame-
ters, 14–15

, (comma) in html! macro, 98

? (question mark), hosting
modules outside of
browsers, 117

A
A-star pathfinding, 83

ABI (Application Binary Inter-
face), 140

abs(), 36

act(), 80, 83

adding integer examples
with hand-coded wast, 14–

17
hosting modules outside

of browsers, 117–119
with Rust, 47–50
stack vs. register ma-

chines, 8
with WebAssembly Stu-

dio, 6

alert()
binding JavaScript to

Rust, 70
Rogue game, 76

aliases
chat example, 99, 106
type, 181

Alibaba Cloud Function
Compute, 195

Amazon AWS Lambda, 195–
196

AND, 24, 26, 33

and_modify(), 177

animated indicator, GISM ex-
ample, 135, 139, 142, 144

anonymous functions, 57

Anti-Corruption Layers, 55,
101, see also services

API
GISM example, 133
hosted checkers example,

120, 124–128
WARoS, 157–162

Application Binary Interface
(ABI), 140

ARC (Atomically Reference
Counted), 168, 179

architecture, WebAssembly,
understanding, 8–12

ARM devices, see also Rasp-
berry Pi

compiler for, 140
conditional compilation,

142, 150
setup for GISM example,

140–141

arrays, linearization, 21–23

AsMut trait, 92, 94

AssemblyScript, 6

assert_no_start(), 118

atomic locking, 163

Atomically Reference Counted
(ARC), 168, 179

Azure Functions, 195

B
battery indicator, GISM exam-

ple, 135–139

bindings
GISM example, 133
Hello, World example,

67–73
with js_sys crate, 87
Rogue game, 77, 87
with web_sys crate, 88
writing manually, 87

bit flags, 23–30, 62

bit masking, 23, 25–26, 33

bitwise operators, 24–27

Blinkt
about, 151
GISM example, battery

indicator setup, 135–
139

GISM example, hosting,
142–150

timeouts, 144

block, 10, 31

blocks
control flow instructions,

10
hand-coded checkers ex-

ample, 31

board, checker
hand-coded, managing

state, 21–33
hand-coded, moving

players, 35–38
hosted example, 126–129
Rusty version, 51–55

bounds, checking, 32

br, 10

see more please visit: https://homeofpdf.com

br_if, 10

br_table, 10

branches, control flow instruc-
tions, 10

breadcrumb pattern, 182

breakpoints, 16

buffers, protocol, 204

build
adding integer example,

48
checkers with Rust, 64
compiling applications for

Raspberry Pi, 141
Hello, World example, 73

Bulk, 94

bytes
calculating offset for

checkers example, 22
calculating offset for

hosted checkers exam-
ple, 127

converting, 127
indexing of linear memo-

ry by, 22

C
calc_offset(), 127

callback parameters, 76

cargo
adding/removing targets,

140
ARM setup for GISM ex-

ample, 140–141
creating projects, 48, 69
cross-compilation config-

uration, 140–141
Rust version, 50
serialization support,

adding, 84
testing with, 138
updating, 71

cargo-web
counter example, 91–99
installing, 91

change(), 90

channels
cloning, 146
mpsc, 144
timeouts, 144
WARoS, 190

chat example, 99–112
building Yew service,

101–106
code files, 106
setup, 99–101
user interface, 106–112

ChatEngine
building Yew service,

101–106
live chat example, 99–112
setup, 99–101
user interface for chat

example, 106–112

checkers
code for, 60
data constraints, 20–33
hand-coded, 19–42
hand-coded, bit flags, 23–

30
hand-coded, game board

state, 21–33, 35–38
hand-coded, imports, 38
hand-coded, players, 32–

33, 35–38
hand-coded, setup, 20–

21, 38
hand-coded, size, 41
hand-coded, testing, 27–

30, 38–41
hosted version, 120–129
hosted version, API, 120,

124–128
hosted version, playing,

128
hosted version, setup,

120–123
rules, general, 19
rules, implementing in

Rust version, 52, 55–60
rules, implementing in

hand-coded example,
34

Rust, 50–65
Rust, interface for, 60–64
Rust, playing, 64
Rust, setup, 51–55

classes, exporting structs as,
78

cloning, channels, 146

cloud
OpenFaaS, 197
Rust support, 195
WARoS in, 191
WebAssembly support,

194–197

Cloudflare, 196

CMake, 12

code, for this book, 60, 106,
151

collect(), 59

comma (,) in html! macro, 98

Common Language Runtime,
4, 8

compiler
ARM devices, 140
conditional compilation,

142, 150
configuring for cross-

compilation, 140–141
lifetime specifier, 95,

168, 181
release mode, 48
safety with Rust, 46
suggestions for function

support, 159
visibility and round-trip

compilation, 16

Component trait
about, 90
chat example, 106–112
counter example, 92–99

components
in Entity, Component,

System (ECS), 165
reading values from, 177
WARoS, 165, 181–186

conditional compilation, 142,
150

conflicts, cargo, 71

console hosts, see hosts

console variable, 92

ConsoleService, 92

Context struct, 92

control flow, 9

coordinates
converting to memory

offset, 21–23
creating, 52

Coordinates struct, 52

counter example, 91–99

coupling
avoiding, 55
loose, 133

Couprie, Geoffrey, 195

crates, defined, 68

create(), 90, 107

Crobots, see also WARoS
about, 156
fields from, 164
intrinsic functions, 157
resources on, 156
rules, 156

cross-site scripting rules, 29

crosscompiledemo, 141

crowning
checkers rules, 20, 34

Index • 206

see more please visit: https://homeofpdf.com

checkers, hosted version,
120

checkers, with Rust, 52

cryptographic signatures,
201–204

ctrlc crate, 146

D
damage system, WARoS, 182–

186

data types
about, 9
aliasing, 181
converting with into(), 62
managing constraints in

checkers example, 20–
33

namespace qualifiers, 77

derive macro, 52, 57

deserialization
chat example, 103
Rogue game, 83–87
with serde crate, 83

destroy(), 90

destructuring, checkers with
Rust, 53

Display class, Rot.js, 77, 80

$distance, 35

docker images, 197

DOM, direct access, 11

draughts, see checkers

draw(), Rogue game, 77, 79

drones, 152

E
Eberhardt, Colin, 196

ECS (Entity, Component,
System), see WARoS

ECS (Entity, Component,
System)

multiple game loops, 178
separation with, 165,

177, 181

EdDSA signatures, 201–204

Elm, 90

else, 10, 31

encapsulation
hosted checkers example,

124–128
Rogue game, 80, 86

encrypting modules, 200–204

end, 10

enemies, Rogue game, 74,
80, 82

Engine struct, Rogue game, 77–
80, 83

entities
in Entity, Component,

System (ECS), 165
WARoS, 165

Entity, Component, System
(ECS), see also WARoS

multiple game loops, 178
separation with, 165,

177, 181

entry(), 177

Entry API, 177, 181

enums, converting to, 126

env, 65

equality tests, 57

errors
bounds, 32
conversion, 62
html! macro, 98, 110
lib.rs file, 168
lifetime specifier, 95
references, 54
resolving imports when

hosting modules, 120,
122

Rust messages, 62, 96
syntax, 98, 110

events scope, 120

exclamation point (!) for proce-
dural macros, 97

expect(), 118

exports
exporting functions explic-

itly, 16
exporting structs as a

class, 78
hand-coded checkers ex-

ample, 38
host responsibilities, 116
hosting modules outside

of browsers, 116, 119
security, 39

extern
converting intrinsic func-

tions for WARoS, 158–
162

importing functions, 63
wrapping in unsafe block,

63

Externals trait
hosting modules, check-

ers example, 120, 122–
123

WARoS, 177

F
f32 type, 9

f64 type, 9

facades, 55, 101, see also ser-
vices

FFI (Foreign Function Inter-
face), 159

ffi.rs file, 159

filter(), 59

floating-point numbers
data types, 9
WebAssembly support,

158

--force option, 68

Foreign Function Interface
(FFI), 159

frame index, 140

frame rates
pulsing indicator in GISM

example, 134, 139,
142, 144

timeouts, 144
WARoS playback, 185

frame values, 134, 140

frameworks, see also Entity,
Component, System (ECS);
Yew

about, xiv
advantages, 91
serverless-wasm, 196

free_cell(), 83

func, 14

FuncRef, 120–122

Function Compute, 195

function index, 120, 122–123

functions
adding to hosted mod-

ules, 118
anonymous, 57
chaining iterators, 54, 59
compiler support sugges-

tions, 159
exporting explicitly, 16
hosted modules, 120–123
importing, 63
index, 120, 122–123, 177
intrinsic functions for

WARoS, 157
mapping in js_sys crate, 87
names, 7, 119, 150
namespace qualifiers, 77
as predicates, 31
referencing with gen_fun-
cref(), 176

Index • 207

see more please visit: https://homeofpdf.com

G
game loops

about, 164
multiple, 178
WARoS, 162–166, 178–

181

games, see checkers; Crobots;
Rogue WebAssembly game;
WARoS

garbage collection, 11, 46

gen_funcref(), 176

generic indicator module sys-
tem, see GISM example

generics
combining with traits, 94
converting types with in-
to(), 62

hosted checkers example,
125

nesting, 181
WARoS, 181

genesis moment, 45

get(), 177

GISM example, 131–152
ARM setup, 140–141
hardware for, 150
hosting, 141–150
module contract, 133–

134
module creation, 135–

140
overview, 132
powering, 151
running, 150
running on Raspberry Pi,

151
shutting down, 150
video, 152

global variables
chat example with Yew,

101
declaring in wast, 32
specifying mutability, 33

go(), 161

Google Cloud Functions, 195

grid points, Rogue game, 78–
80, 84

H
heading angle, WARoS, 156

heap corruption, 9

Hello WebAssembly example,
see adding integer exam-
ples

Hello, World example, 67–73

Hoare, Graydon, 45

hosts
checkers game, hosted

version, 120–129
GISM example, contract

for, 133–134
GISM example, hosting

modules on, 141–150
hosting modules, 115–

130
hosting modules, simple

example, 117–119
importing functions from,

63
limited to public exports

only, 39
module state, 122, 124
pattern, 120
relationship to modules,

3, 5, 115–117
responsibilities and re-

quirements, 115–117
suggestions for function

support, 159
WARoS, 162, 166–178

hot reloading, GISM example,
142–143

HTML
chat example, 107–112
html! macro, 97, 110

html! macro, 97, 110

HTTP
OpenFaaS, 197
serverless, 196
testing hand-coded

checkers example, 29

I
I2C, 133

i32 type, 9

i64 type, 9

idempotent, 25

if, 10, 31

ILASM, 4

importing
checkers, hand-coded, 38
checkers, with Rust, 63
functions, 63
host responsibilities, 116
hosted modules, 116,

120–122
names and, 65, 120
resolving imports, 120–

122
structs, 77

$inRange, 32

index.js file
counter example with

Yew, 98
Hello, World example, 72
integrating WebAssembly,

72

indexes
frame, 140
function, 120, 122–123,

177
vector, 54

indicator system, see GISM
example

installation
cargo-web for Yew, 91
Node, 68
Rust, 47
wasm-bindgen command-

line tool, 68
WebAssembly Binary

Toolkit (wabt), 12
WebAssembly target, 47

integer data types, 9

Internet of Things, 131–154
about, 131
GISM example, 131–152
GISM example, ARM set-

up, 140–141
GISM example, hardware

for, 150
GISM example, hosting,

141–150
GISM example, module

contract, 133–134
GISM example, module

creation, 135–140
GISM example, overview,

132
GISM example, running,

150
GISM example, running

on Raspberry Pi, 151
GISM example, video,

152
ideas for, 152–153
security, 153
testing, 137–139
WebAssembly advan-

tages, 5, 131, 137, 153

into(), 62

Intrinsic Function Library,
157

intrinsic functions for
WARoS, 157

invoke_export(), 119

invoke_index(), 122–123, 177

iter(), 57

Index • 208

see more please visit: https://homeofpdf.com

iterators
chaining, 54, 59
checkers with Rust, 54,

57, 59
converting into vectors,

59
zipping, 57

J
Java Virtual Machine (JVM),

8

JavaScript
checkers, hand-coded,

27–30, 39–41
checkers, with Rust, 60–

65
counter example with

Yew, 91–99
development of, xiv
effect of WebAssembly on,

5
functions mapping in
js_sys crate, 87

Hello, World example,
67–73

integrating with, 67–88
integrating with Yew, 89–

112
live chat example, 99–112
performance, xiv
Rogue game, 73–88
security, 200

JoinHandle, 168

js! macro, 97, 105

js_sys crate, 87

jump, exploitation of, 10

jumps
checkers rules, 20, 34
checkers with Rust, 53,

58–60, 65

JVM (Java Virtual Machine),
8

K
key down events, Rogue

game, 80–83

key frame animation, 139

kings, see crowning

L
labels, control flow instruc-

tions, 10

Lambda, 195–196

Last In, First Out (LIFO), 8

lazy statics, 60

lazy_static, 60

LEDs
about, 132
calculating base value,

136
GISM example, 131–152
GISM example, ARM set-

up, 140–141
GISM example, hardware

for, 150
GISM example, hosting,

141–150
GISM example, module

contract, 133–134
GISM example, module

creation, 135–140
GISM example, overview,

132
GISM example, running,

150
GISM example, running

on Raspberry Pi, 151
GISM example, video,

152

The Legend of Zelda, 32

lib.rs file
error handling, 168
root module, 51

libraries, see crates

lifetime specifier, 95, 168,
181

LIFO (Last In, First Out), 8

linear memory
about, 10–12, 21
index by byte, 22
memory offset, 21–23,

71, 127
security, 9, 11
size of hand-coded

checkers example, 41
storing and retrieving

values, 30–32

linearization, 21–23

live chat, see chat example

load_instance(), 125

local keyword, 35

local variables, 35

locking
with Entity, Component,

System (ECS), 166,
177, 181

WARoS, 164, 166, 177,
181

WebAssembly support,
163

log(), Rogue game, 76

logger, 185, 191

logging
chat example, 103
macros, 103
Rogue game, 76
WARoS, 185, 191
with web_logger crate, 103

loop, 10

loops
control flow instructions,

10
game loop, WARoS, 162–

166, 178–181
ownership, 79

M
machines

register, 8
stack-based, 4, 8

macros
procedural, 68, 97
serialization, 83
syntax errors, 110
triggering runtime, 69
wasm-bindgen, 68, 77
Yew, 90

map(), 57, 59

mapping
chaining iterators, 59
checkers with Rust, 57,

59
functions with js_sys crate,

87
Rogue game, 78–80
source maps, 16

mathematics
Rust support, 126
trig functions for WARoS,

158–159

memory
about, 10–12, 21
address, 31
allocation in hand-coded

checkers example, 21
Hello, World example,

70–71
index by byte, 22
memory offset, 21–23,

71, 127
restricting manually, 32
security, 9, 11
size of hand-coded

checkers example, 41
storing and retrieving

values, 30–32

memory offsets
converting coordinates to,

21–23

Index • 209

see more please visit: https://homeofpdf.com

Hello, World example, 71
hosted checkers example,

127

Message type, 107

messages
channels, 144
chat example, 106–109
counter example with

Yew, 93
errors, 62, 96

metadata, 68, 204

method keyword, 77

Microsoft Azure Functions,
195

Mini Black Hat Hack3r, 151

models
about, 93
counter example with

Yew, 93–99

modularization, 55

module declaration, 14

ModuleImportResolver, 120–129

modules
about, 55
contract for GISM exam-

ple, 133–134
creating for GISM exam-

ple, 135–140
creating instance of, 118
creating module runner

thread, 144–150
declaring, 14, 20
declaring exports, 38
hierarchy, 51, 93
hosting, 115–130
hosting, GISM example,

141–150
hosting, checkers game,

120–129
hosting, simple example,

117–119
isolating, 116
monitoring, 143–146
nesting, 51
relationship to hosts, 3,

5, 115–117
reloading, 142–143
root, 51
security, 199–204
separation with, 51, 60,

116
signing and encrypting,

200–204
state, 122, 124
submodules, declaring,

51

move by default pattern, 54

moves
checkers, hosted version,

120
checkers, with Rust, 57–

60
validating in hand-coded

checkers, 35

Mozilla, 6, 45

mpsc (multi-producer, single-
consumer) channels, 144

Msg type, 107

multi-producer, single-con-
sumer (mpsc) channels,
144

&mut self, 56

mut_static, 60

mutability
global mutable state, 61
mutable references, 56,

92
specifying for global vari-

ables, 33

N
names

exported functions, 119
functions and conditional

compilation, 150
functions and no_mangle

macro, 7
imports, 65, 120

namespace qualifiers, 77

NET Common Language
Runtime, 4, 8

new
cargo, 48, 69
Pubnub, 105
WARoS game loop, 179

no_mangle macro, 7

Node
cloud hosting WebAssem-

bly, 196
Hello, World example, 71
installing, 68
resources on, 68

nop, 10

notation
Polish, 9
postfix, 14
prefix, 9, 14

notifications
checkers, hand-coded, 38
checkers, with Rust, 63

GISM example, 143–146
Rogue game, 76

npm
Hello, World example, 71
installing, 68
resources on, 68

nulls, lack of in Rust, 46

O
offsets

hosted checkers example,
127

memory, 21–23, 71, 127
unit, 22

Open Functions as a Service
(OpenFaaS), 197

open_box(), 82

OpenFaaS (Open Functions
as a Service), 197

operators, bitwise, 24–27

Option type, 46, 79

OR, 24

or_insert(), 181

order of instructions in wast,
14

ownership
loops, 79
references and, 54
vs. references, 79
Rust, 54

P
package.json, Hello, World exam-

ple, 73

pages, 11

parameters
syntax, 14
using return value from

a function as, 31

Paranoia-Driven Development
(PDD), 200

parentheses (()), for parame-
ters, 14–15

Parity Tech, 117

passStringToWasm(), 71

pathfinding, 82–83

pattern matching
hosting modules outside

of browsers, 119
Result types, 58

patterns
breadcrumb, 182
hosting, 120

Index • 210

see more please visit: https://homeofpdf.com

pattern matching, 58,
119

working with WebAssem-
bly and Rust, 7

PDD (Paranoia-Driven Devel-
opment), 200

performance
JavaScript, xiv
Rust, 46

permissions, read/write ac-
cess, 151

pihost, creating, 135

Pimoroni, see Blinkt

players
hand-coded checkers ex-

ample, 32–33, 35–38
Rogue game, 80–87

PLCs (Programmable Logic
Controllers), 152

Poindexter, Tom, 156

Polish notation, 9

postfix notation, 14

prefix notation, 9, 14

privacy, 199

procedural macros, 68, 97

Programmable Logic Con-
trollers (PLCs), 152

property queries, 80

protocol buffers, 204

public key, EdDSA signa-
tures, 201

publish key, Pubnub, 100,
105, 111

Pubnub
account creation, 99
building Yew service,

101–106
live chat example, 99–112
setup, 99–101
user interface for chat

example, 106–112

pulsing indicator, GISM exam-
ple, 135, 139, 142, 144

Q
question mark (?), hosting

modules outside of
browsers, 117

Quidditch, 152

R
rabbit robot, WARoS, 190

Raspberry Pi
about, 131

applications, creating,
142–150

compiling applications
for, 141

GISM example, 131–152
GISM example, ARM set-

up, 140–141
GISM example, hardware

for, 150
GISM example, hosting,

141–150
GISM example, module

contract, 133–134
GISM example, module

creation, 135–140
GISM example, overview,

132
GISM example, running,

150
GISM example, running

on, 151
GISM example, video,

152
Raspbian distribution,

151
version, 140, 150

Raspbian, 151

React, 90

read(), 61

reading
permissions in GISM ex-

ample, 151
read locks in WARoS,

164, 166, 177, 181
read locks in checkers

with Rust, 61
read locks with Entity,

Component, System
(ECS), 166, 177, 181

readlock(), 177

references
converting coordinate

targets into structs, 59
with gen_funcref(), 176
mutable, 56, 92
vs. ownership, 79
to services, 92
to structs, 54
using in bindings, 70

register machines, 8

--release option, 48, 64

reloading, modules in GISM
example, 142–143

Renderable trait
about, 90

chat example, 106, 109–
112

counter example, 92–99

resolve_func(), 120–122

resources for this book
Crobots, 156
Node, 68
Rot.js, 74, 76
Rust, 45, 47, 54
WebAssembly, 4

Result type, 58

return, 10

robots, see GISM example;
WARoS

Rogue WebAssembly game,
73–88

about, 73
adding players, enemies,

and treasure, 80–87
engine, 76–80
ideas for, 87
setup, 74–76
statistics, 83–87

rook robot, WARoS, 187–189

root module, 51

Rot.js
resources on, 74, 76
Rogue game engine, 76–

80
Rogue game setup, 74–76
Rogue game, adding

players, enemies, trea-
sure, 80–87

run_start(), 118

Runtime
GISM example, 146–150
hosted checkers example,

120, 122–123
WARoS, 162, 166–178

RuntimeValue, 119

Rust, see also checkers,
Rogue WebAssembly game;
WARoS

about, xvi, 45
adding integer example,

47–50
advantages, xvi, 46
anonymous functions, 57
basics, 45–65
cloud support, 195
creating projects, 6, 48,

69
Hello, World example,

67–73
hosting modules outside

of browsers, 115–130

Index • 211

see more please visit: https://homeofpdf.com

installing, 47
integrating with Java-

Script, 67–88
integrating with Java-

Script with Yew, 89–
112

lifetime specifier, 95
math support, 126
modularization in, 55
performance, 46
resources on, 45, 47, 54
syntax, 46, 50, 94, 98,

110
versions, 46–47, 50

rustup, 47, 140

S
S-expressions, 14

scanners, WARoS, 157

scope
events, 120
function-scoped values,

14
temporary variables, 35

security
browser-based attacks,

199
control flow, 9
cross-site scripting rules,

29
exports, 39
general, 199
Internet of Things, 153
JavaScript, 200
linear memory, 9, 11
modules, 199–204
privacy, 199
signing and encrypting

modules, 200–204
visibility and round-trip

compilation, 16

seed keys, EdDSA signatures,
201

self, 62

&self for references, 54

Sender, 185

separation, see also encapsu-
lation

with Entity, Component,
System (ECS), 165,
177, 181

GISM example, 133
guard checking code from

state changes, 37
importance of, 74
Internet of Things, 131
module isolation, 116

with modules, 51, 60,
116

Rogue game, 74, 76, 80,
82, 86

serde crate, 83, 103

serialization
chat example, 103
Rogue game, 83–87
with serde crate, 83, 103

serverless support, 193–197

serverless-wasm, 196

services
about, 93
building for chat exam-

ple, 101–106
counter example with

Yew, 92–99
mutable references, 92
references to, 92

set_local, 35

SIGINT, GISM example, 142,
146

signatory crate, 201

signatory-dalek crate, 201

signed numbers, 9

signing modules, 200–204

SIGTERM, GISM example,
142, 146

source maps, 16

src directory
chat example, 103, 111
counter example of Yew,

92, 96
creating Rust projects, 6
hosted checkers example,

122, 124
Rusty checkers, 51, 55
WARoS, 167

stable toolchain, 47

stack machines, 4, 8

start(), 118

state
chat example, 107–109
checkers, hand-coded,

21–33
checkers, hosted exam-

ple, 122
checkers, with Rust, 55–

60
game board in hand-cod-

ed checkers example,
35–38

global mutable, 61
hosting modules, 122,

124

lazy statics, 60
mutable references, 56,

92
separating changes from

guard checking code,
37

WARoS, 162–166, 168,
179–181, 189–190

Yew Component traits, 90

static lifetime specifier, 95

statics, lazy, 60

statistics, Rogue game, 83–87

stats_updated(), 83

status_updated(), 76

stdin, 197

stdout, 197

stdweb crate, 97

strings
lack of type in WebAssem-

bly, 13
passing, 71, 106
rendering hosted checker

board as, 126

structs
about, 51
checkers setup, 51
converting coordinate

targets into, 59
equality tests, 57
exporting as a class, 78
importing, 77
lazy statics, 60
missing fields and initial-

izing, 79
passing with context, 93
references to, 54
tuple, 54

structural keyword, 77

submodules, declaring, 51

subscribe key, Pubnub, 100,
105, 111

systems
building, 181–186
in Entity, Component,

System (ECS), 165, 177
WARoS, 165, 177, 181–

186

T
tables, control flow instruc-

tions, 10

targets
adding/removing, 140
ARM setup for GISM ex-

ample, 140–141

Index • 212

see more please visit: https://homeofpdf.com

checkers, hosted version,
122

checkers, with Rust, 53
compiling for multiple, 47
converting coordinate

targets into structs, 59
installing WebAssembly,

47
listing, 47

temporary variables, 35

test, 138

testing
battery indicator in GISM

example, 137–139
checkers game, hand-

coded, 27–30, 38–41
cloud functions, 195
equality of structs, 57

threads
creating module runner

thread, 144–150
GISM example, 143–146
mpsc channels, 144
WARoS, 162–166
WebAssembly support,

163

three-body problem, 144

timeouts, channels, 144

to_u32(), 127

toggling bitwise operators, 26

toolchains, listing, 47

traits
about, 90
chat example, 106–112
combining with generics,

94
counter example, 92–99

transpiling, 5

treasure, Rogue game, 74,
78, 80, 82

trigonometry functions for
WARoS, 158–159

tuples
converting, 126
tuple structs, 54

turbofish syntax, 59

types, see data types

U
unit offsets, 22

unsafe block, 63

unsigned numbers, 9

unwrap(), 58, 61

update() (Yew), 90, 107

update (cargo), 71

user interface, chat example,
106–112

usize, 54

V
validations

checkers, hand-coded,
30, 35

checkers, with Rust, 53
distance, 35
host responsibilities, 116

values
control flow instructions,

10
reading from compo-

nents, 177
setting local variables, 35
specifying initial values

for global variables, 33
storing and retrieving in

hand-coded checkers
example, 30–32

using return value from
a function as parame-
ter, 31

variables
global, 32, 101
local, 35
temporary, 35

vectors
converting iterators to, 59
indexes, 54

version control, 70

versions
forcing, 68
Raspberry Pi, 140, 150
Rust, 46–47, 50
wasm-bindgen, 68
Yew, 89

video, GISM example, 152

view(), 90, 110

view_message(), 110

view_user(), 110

virtual machines
register, 8
stack-based, 4, 8

W
wabt (WebAssembly Binary

Toolkit)
installing, 12
using, 15–17

WARoS, 155–192
API, 157–162

building components and
systems, 181–186

building match engine,
162–186

channels, 190
cloud ideas, 191
creating robots, 186–189
damage system, 182–186
damage table, 157
game loop, 162–166,

178–181
playback, 185
playing, 189–190
rules, 156
runtime host, 162, 166–

178
separation with Entity,

Component, System
(ECS), 165, 177, 181

state, 162–166, 168,
179–181, 189–190

wasm, see WebAssembly

wasm-bindgen
#[wasm_bindgen] macro, 69
about, 68
adding serialization sup-

port, 84
Hello, World example,

67–73
installing command-line

tool, 68
Rogue game, 77, 87
version, 68

wasm-objdump
adding integers example

with wast, 15
hand-coded checkers ex-

ample, 21
installing, 12

WasmFiddle, 6

wasmi crate
adding integers example,

117–119
checkers example, 120–

129

wast (WebAssembly Text For-
mat)

adding integer example,
14–17

advantages of coding
with, 13

checkers game, 19–42
global variables, declar-

ing, 32
testing, 27–30, 38–41

Index • 213

see more please visit: https://homeofpdf.com

wat2wasm
adding integers example,

15
hand-coded checkers ex-

ample, 21
installing, 12

watchdog processes, 197

Web API bindings, 88

web_logger crate, 103

web_sys crate, 88

WebAssembly, see also check-
ers, hosts; modules; Rogue
WebAssembly game; Rust;
WARoS; wast (WebAssem-
bly text format)

about, xiii, 4–6
advantages, xv, 41
advantages of coding in

raw wast, 13
architecture, understand-

ing, 8–12
basics, 3–17
control flow, 9
creating projects, 48, 69

defined, 4
development of, xiv
installing WebAssembly

Binary Toolkit (wabt), 12
installing target, 47
products, xv
resources on, 4
uses, xv

WebAssembly Binary Toolkit
(wabt)

installing, 12
using, 15–17

WebAssembly Studio, 6

webpack configuration, Hello,
World example, 71

workers, Cloudflare, 196

write(), 61

writelock(), 177

writing
permissions in GISM ex-

ample, 151
read locks in checkers

with Rust, 61

write locks in WARoS,
164, 166, 177, 181

write locks with Entity,
Component, System
(ECS), 166, 177, 181

X
-x output option, 15

XOR, 25

Y
Yew, 89–112

about, 89–91
advantages, 91
counter example, 91–99
installing cargo-web for

Yew, 91
live chat example, 99–112
user interface for chat

example, 106–112
version, 89

Z
zip(), 57

zipping iterators, 57

Index • 214

see more please visit: https://homeofpdf.com

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2019 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!
Use coupon code
BUYANOTHER2019

see more please visit: https://homeofpdf.com

../../../../../../https@pragprog.com/default.htm

Practical Security
Most security professionals don’t have the words “se-
curity” or “hacker” in their job title. Instead, as a devel-
oper or admin you often have to fit in security alongside
your official responsibilities — building and maintain-
ing computer systems. Implement the basics of good
security now, and you’ll have a solid foundation if you
bring in a dedicated security staff later. Identify the
weaknesses in your system, and defend against the
attacks most likely to compromise your organization,
without needing to become a trained security profes-
sional.

Roman Zabicki
(132 pages) ISBN: 9781680506341. $26.95
https://pragprog.com/book/rzsecur

Small, Sharp Software Tools
The command-line interface is making a comeback.
That’s because developers know that all the best fea-
tures of your operating system are hidden behind a
user interface designed to help average people use the
computer. But you’re not the average user, and the
CLI is the most efficient way to get work done fast.
Turn tedious chores into quick tasks: read and write
files, manage complex directory hierarchies, perform
network diagnostics, download files, work with APIs,
and combine individual programs to create your own
workflows. Put down that mouse, open the CLI, and
take control of your software development environment.

Brian P. Hogan
(200 pages) ISBN: 9781680502961. $38.95
https://pragprog.com/book/bhcldev

see more please visit: https://homeofpdf.com

../../../../../../https@pragprog.com/book/rzsecur
../../../../../../https@pragprog.com/book/bhcldev

Genetic Algorithms and Machine Learning for Programmers
Self-driving cars, natural language recognition, and
online recommendation engines are all possible thanks
to Machine Learning. Now you can create your own
genetic algorithms, nature-inspired swarms, Monte
Carlo simulations, cellular automata, and clusters.
Learn how to test your ML code and dive into even
more advanced topics. If you are a beginner-to-inter-
mediate programmer keen to understand machine
learning, this book is for you.

Frances Buontempo
(234 pages) ISBN: 9781680506204. $45.95
https://pragprog.com/book/fbmach

The Ray Tracer Challenge
Brace yourself for a fun challenge: build a photorealis-
tic 3D renderer from scratch! It’s easier than you think.
In just a couple of weeks, build a ray tracer that ren-
ders beautiful scenes with shadows, reflections, bril-
liant refraction effects, and subjects composed of vari-
ous graphics primitives: spheres, cubes, cylinders,
triangles, and more. With each chapter, implement
another piece of the puzzle and move the renderer that
much further forward. Do all of this in whichever lan-
guage and environment you prefer, and do it entirely
test-first, so you know it’s correct. Recharge yourself
with this project’s immense potential for personal ex-
ploration, experimentation, and discovery.

Jamis Buck
(290 pages) ISBN: 9781680502718. $45.95
https://pragprog.com/book/jbtracer

see more please visit: https://homeofpdf.com

../../../../../../https@pragprog.com/book/fbmach
../../../../../../https@pragprog.com/book/jbtracer

Programming Phoenix 1.4
Don’t accept the compromise between fast and beauti-
ful: you can have it all. Phoenix creator Chris McCord,
Elixir creator José Valim, and award-winning author
Bruce Tate walk you through building an application
that’s fast and reliable. At every step, you’ll learn from
the Phoenix creators not just what to do, but why.
Packed with insider insights and completely updated
for Phoenix 1.4, this definitive guide will be your con-
stant companion in your journey from Phoenix novice
to expert, as you build the next generation of web ap-
plications.

Chris McCord, Bruce Tate and José Valim
(325 pages) ISBN: 9781680502268. $45.95
https://pragprog.com/book/phoenix14

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-
ment as an unbeatable platform for building modern
web applications. For decades OTP has helped develop-
ers create incredibly robust, scalable applications with
unparalleled uptime. Make the most of them as you
build a stateful web app with Elixir, OTP, and Phoenix.
Model domain entities without an ORM or a database.
Manage server state and keep your code clean with
OTP Behaviours. Layer on a Phoenix web interface
without coupling it to the business logic. Open doors
to powerful new techniques that will get you thinking
about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435. $45.95
https://pragprog.com/book/lhelph

see more please visit: https://homeofpdf.com

../../../../../../https@pragprog.com/book/phoenix14
../../../../../../https@pragprog.com/book/lhelph

Programming Elm
Elm brings the safety and stability of functional pro-
graming to front-end development, making it one of
the most popular new languages. Elm’s functional na-
ture and static typing means that run-time errors are
nearly impossible, and it compiles to JavaScript for
easy web deployment. This book helps you take advan-
tage of this new language in your web site development.
Learn how the Elm Architecture will help you create
fast applications. Discover how to integrate Elm with
JavaScript so you can update legacy applications. See
how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(250 pages) ISBN: 9781680502855. $40.95
https://pragprog.com/book/jfelm

React for Real
When traditional web development techniques don’t
cut it, try React. Use React to create highly interactive
web pages faster and with fewer errors. With a little
JavaScript experience under your belt, you’ll be up
and running in no time creating dynamic web applica-
tions. Craft isolated components that make your apps
easier to develop and maintain, with plenty of guidance
on best practices. Set up automated tests, and make
pages render fast for your users. See how to use your
React skills to integrate with other front-end technolo-
gies when needed.

Ludovico Fischer
(118 pages) ISBN: 9781680502633. $26.95
https://pragprog.com/book/lfreact

see more please visit: https://homeofpdf.com

../../../../../../https@pragprog.com/book/jfelm
../../../../../../https@pragprog.com/book/lfreact

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/khrust
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/khrust

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

see more please visit: https://homeofpdf.com

../../../../../../https@pragprog.com/book/khrust
../../../../../../https@pragprog.com/default.htm
../../../../../../https@pragprog.com/news
../../../../../../https@pragprog.com/book/khrust
../../../../../../https@pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
../../../../../../write-for-us.pragprog.com/default.htm

	Cover
	Table of Contents
	Acknowledgments
	Introduction
	Today's Web Technology
	The Tech of Tomorrow
	Who This Book Is For
	Why Rust?
	What You'll Learn

	Part I—Building a Foundation
	1. WebAssembly Fundamentals
	Introducing WebAssembly
	Understanding WebAssembly Architecture
	Building a WebAssembly Application
	Wrapping Up

	2. Building WebAssembly Checkers
	Playing Checkers, the Board Game
	Coping with Data Structure Constraints
	Implementing Game Rules
	Moving Players
	Testing Wasm Checkers
	Wrapping Up

	Part II—Interacting with JavaScript
	3. Wading into WebAssembly with Rust
	Introducing Rust
	Installing Rust
	Building Hello WebAssembly in Rust
	Creating Rusty Checkers
	Coding the Rusty Checkers WebAssembly Interface
	Playing Rusty Checkers in JavaScript
	Wrapping Up

	4. Integrating WebAssembly with JavaScript
	Creating a Better “Hello, World”
	Building the Rogue WebAssembly Game
	Experimenting Further
	Wrapping Up

	5. Advanced JavaScript Integration with Yew
	Getting Started with Yew
	Building a Live Chat Application
	Wrapping Up

	Part III—Working with Non-Web Hosts
	6. Hosting Modules Outside the Browser
	How to Be a Good Host
	Interpreting WebAssembly Modules with Rust
	Building a Console Host Checkers Player
	Wrapping Up

	7. Exploring the Internet of WebAssembly Things
	Overview of the Generic Indicator Module
	Creating Indicator Modules
	Building Rust Applications for ARM Devices
	Hosting Indicator Modules on a Raspberry Pi
	Hardware Shopping List
	Endless Possibilities
	Wrapping Up

	8. Building WARoS---The WebAssembly Robot System
	An Homage to Crobots
	Designing the WARoS API
	Building the WARoS Match Engine
	Creating WebAssembly Robots
	Robots in the Cloud
	Wrapping Up
	Conclusion

	A1. WebAssembly and Serverless
	Serverless 101
	Intersection of WebAssembly and Serverless
	WebAssembly in the Cloud
	Serverless WebAssembly in the Wild
	Integration with OpenFaaS

	A2. Securing WebAssembly Modules
	General Security Concerns
	Browser-Based Attack Vectors
	Signing and Encrypting WebAssembly Modules

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

