单片机系统中多任务并发机制的实现

黄德梅 (广东岭南职业技术学院信息工程系 广东广州 510663)

摘 要:根据PC 机的多用户多任务操作系统原理,分析了单片机的应用系统功能,提出了一种崭新的基于多任务机制的单片机系 统程序结构,讨论了具体实现方法,并给出应用实例。实验证明,这种结构在设计单片机控制中定时要求复杂、需要动态改变执行结 构的程序时,特别适用。

关键字: 多任务机制 中图分类号: TP36

单片机系统 中断机制

文献标识码: A

文章编号:1672-3791(2006)10(c)-0061-02

传统的单片机监控程序都是基于单任务 机制的,程序只能按单一的线索执行,缺乏 灵活性, 在复杂的系统中难以胜任, 为了扩 大单片机的应用领域,需要对这种单任务机 制加以改进。

多任务机制是基于 CPU 的分时技术来实 现的,在这种机制下, CPU 的运行时间被 划分成很多小的时间片, 按照某种调度算法 各时间片被分配给不同优先级的任务, 从而 实现微观上轮流运行, 宏观上并发执行的多 任务效果。时间片的划分借助于中断机制来 实现, 而通用的单片机中都允许使用中断, 因此在单片机系统中实现多任务机制是切实 可行的, 但单片机的运行能力决定了调度算 法必须简单明了。

1 任务机制系统结构

单片机完成的系统功能通常可以分解为 若干功能相对独立的子任务, 引进多任务管 理机制后就形成如图1的程序结构示意图。

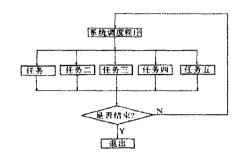


图 1 程序结构示意图

在这种结构下,各子任务地位平等,功 能独立, 扩充维护都比较方便, 各子任务由 调度程序调度执行并返回,因此可以在程序 执行过程中动态改变执行顺序。优先级别表 现在其执行频率上, 优先级越高的子任务在 单位时间执行的次数越多, 执行频率越高, 各个子任务在自己的时间片内运行,通过设 计合理的时间片和优先级, 可以满足各种复

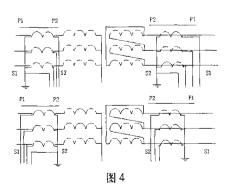
杂的定时要求。

2 多任务机制的实现方法

2.1 时间片的划分

由系统时钟将 CPU 的运行时间划分成若 干时间片, 系统调度程序将它分给各个子任 务。MCS-51 系统用其内带的定时器来完成 这一工作, 定时频率应设计为各子任务要求 执行频率的整数倍。

2.2 任务调度表的构造


构造一个任务调度表来详细说明各个子 任务的情况,该表的表项数等于需要调度的 子任务数,每个表项占4个字节,用于描述各 子任务的入口地址(2 字节)和访问计数器(2 字 节)。任务调度表反映了各子任务的执行顺序 和优先级别。另外,还需要一个1字节的系统 任务指针, 指向系统当前正在执行的任务。

2.3 调度程序

多任务机制的具体实现由调度程序来完

表 1

变 压器	开关组 SGF1/1…8						#** 本 €		
II 类接线	1	2	3	4	5	6	7	8	極査和∑
Yy0	0	0	0	0	0	0	0	0	0
Yd7	0	0	0	1	0	0	0	0	12 8
Yd1 YNd5	0	0	1 0	0	0	0	0 1	0	20
YNd11	0	0	0	0	0	1	0	1	64 160
Yd5	0	0	0	0	1	0	0	0	4 16
Dd6 Dd0	0	0	0	0	0	0	0	0	12
	II 类接线 Yyo Yy6 Yd7 Yd1 YNd5 YNd11 Yd11 Yd5 Dd6	II 类接线 1 YyO 0 Yy6 0 Yd7 0 Yd1 0 YNd5 0 YNd11 0 Yd11 0 Yd5 0 Dd6 0	II 类接线 1 2 YyO 0 0 Yy6 0 0 Yd7 0 0 Yd1 0 0 YNd5 0 0 YNd11 0 0 Yd1 0 0 Yd1 0 0 Dd6 0 0	II 类接线 1 2 3 Yy0 0 0 0 Yy6 0 0 1 Yd7 0 0 0 Yd1 0 0 1 YNd5 0 0 0 YMd11 0 0 0 Yd11 0 0 1 Yd5 0 0 0 Dd6 0 0 0	II类接线 1 2 3 4 YyO 0 0 0 0 0 Yy6 0 0 1 1 Yd7 0 0 1 0 Yd1 0 0 1 0 YNd5 0 0 0 0 0 YNd11 0 0 0 0 0 Yd11 0 0 1 0 Yd11 0 0 0 0 0 Yd11 0 0 1 0 Yd5 0 0 0 0 0 Dd6 0 0 1 1	II 类接线 1 2 3 4 5 Yy0 0 0 0 0 0 Yy6 0 0 1 1 0 Yd7 0 0 0 1 0 1 Yd1 0 0 1 0 1 1 YNd5 0 0 0 0 0 0 YM11 0 0 1 0 0 Yd1 0 0 0 0 0 Yd5 0 0 0 0 1 1 Dd6 0 0 1 1 0	II类接线 1 2 3 4 5 6 Yy0 0 0 0 0 0 0 Yy6 0 0 1 1 0 0 Yd7 0 0 0 1 0 0 Yd1 0 0 1 0 1 0 YNd5 0 0 0 0 0 0 YM11 0 0 0 0 0 1 Yd11 0 0 1 0 0 0 Yd5 0 0 0 0 1 0 Dd6 0 0 1 1 0 0	II类接线 1 2 3 4 5 6 7 Yyo 0 0 0 0 0 0 0 Yyo 0 0 1 1 0 0 0 Yd ⁷ 0 0 0 1 0 0 0 Yd1 0 0 1 0 1 0 0 YNd5 0 0 0 0 0 0 1 0 Yd11 0 0 1 0 0 0 0 0 0 Yd5 0 0 0 0 1 0 0 0 Dd6 0 0 1 1 0 0 0	II 类接线 1 2 3 4 5 6 7 8 YyO 0 0 0 0 0 0 0 0 0 0 Yy6 0 0 1 1 0 0 0 0 Yd7 0 0 1 0 1 0 0 0 0 Yd1 0 0 1 0 1 0 1 0 0 0 YNd5 0 0 0 0 0 1 0 1 0 1 0 YNd1 0 0 0 0 0 0 1 0 1 0 1 YNd11 0 0 0 0 0 0 1 0 1 0 1 YNd11 0 0 0 0 0 0 0 1 0 1 Yd11 0 0 0 0 0 0 0 0 0 0 0 0 Yd11 0 0 1 0 0 0 0 0 0 0 0 Yd31 0 0 1 0 0 0 0 0 0 0 0 Yd41 0 0 1 0 0 0 0 0 0 0 0 0 Yd5 0 0 0 1 1 0 0 0 0 0 Dd6 0 0 1 1 0 0 0 0 0

选取一种接线方式进行设定。比如二期总变电 流差动保护接线类型为I类接线,再对照继电器 常用电力变压器矢量组匹配表对继电器进行设

> 下表为常用电力变压器矢量组匹配表1。 电力变压器

从上面表可查得二期总变差动继电器内 部矢量组设定,其核查和64。

可见, 只要对其进行设定, 就可以对一、 二次电流的相位进行补偿,而不必要对电流互 感器的接线有特殊的要求,只要电流互感器的 极性正确, 其接地满足上述两种接线类型。

同时, 电流互感器的变比也好选取, 一

次侧电流互感器的变比为一次侧线路额定电流 除以5或1,二次侧电流互感器的变比为二次 侧线路额定电流除以5或1。而与传统型的接 线方式不一样,由于一次侧电流互感器采用 的是三角形接法,其二次的输出电流为线电 流,因此它的变比必须再乘以 ~ 3;因此这 不仅对电流互感器的制造增加了难度, 而且 也增大了由于变比带来的不平衡电流。所以 采用智能差动保护装置,可以降低由电流互 感器变比带来的不平衡电流; 同时此差动保 护装置具有很强的二次谐波和五次谐波抑制闭 锁能力,大大提高了差动保护的可靠性。

3 总结

通过对上述两种差动保护接线的对比, 可以看出,第二种接线方式明显优于第一种 接线方式,但同时对我们继电保护人员来 说,提出了更高的要求,随着计算机技术的 不断发展和电气智能模块的不断研制与开 发, 电力系统的继电保护必将产生一次变 革,继电保护人员必须时刻掌握新知识、新 技术、迎接新的挑战。

参考文献

[1] 电力装置的继电保护和自动装置设计规范. 中华人民共和国能源部.

> 'n, 61

成, 调度程序在每个时间片的开始取得控 制,根据系统任务指针查阅任务调度表,并 将被访问任务的访问计数器减1,判断其是 否为零,不为零则直接返回,为零则立即执 行此任务。任务执行完毕将访问计数器置为 初值,供下次使用。当任务指针到达调度表 末尾后,调度程序将重新指向调度表的开 头,以开始下一调度周期。

2.4 注意事项

多任务的调度实质是把各任务模块作为 定时器的中断服务程序来实现的,因此执行 完毕后都会返回到主程序,而各子任务分配 的时间片比实际所需可能会有多余, 所以可 以把那些对执行频率无要求的子任务放入主 程序,从而充分利用各时间片内的多余时 问,提高程序运行效率。

若系统中存在其他中断,应将其设为高 优先级别,否则只能在各时间片的多余时间 片内执行,可能会影响中断效果。

分解系统功能时, 各任务模块应尽量知 小,以在给其分配的时间片内能得到充分执 行为准, 尤其是各模块中的延时要求, 应转 化为对模块执行频率的要求。若某一任务模 块确实无法在分配的时间片内执行完毕,可 在进入该任务模块后将系统时钟停止,相当 于给此模块附加了运行时间, 模块执行完毕 之后再打开时钟,确保多任务的正常调度。

若某些模块之间需要相互通讯,应采用 公共单元并保持同步。

3 应用实例

利用单片机8031设计一个闭环控制系 统,要求此系统对现场环境温度进行采样并 进行调控,以保持恒温,同时,要求配有 LED 显示器和键盘接受用户命令。

根据上述方案,可设计各任务模块如 下:

一个输入模块用于温度采样,其执行频 率为 l 次 / s ,记为 l N 模块。

一个输出模块用于控制温度,其执行频 率为1次/s,记为OUT模块。

采用动态扫描方案,为了保持显示稳 定,要求每位显示之间有 2 m s 的延时。若 显示模块执行一次将所有位都显示一遍,显 示模块运行时间将变得冗长, 不适宜在中断 服务程序中执行。我们可以采用每次只显示 一位的方法,减少运行时间。位显之间的延 时转化为模块的执行频率, 即要求显示模块 的执行频率为1次/2ms,显示模块记为DIS 模块。

键盘去抖延时定为 20ms, 因此键盘管理 模块执行频率为1次/20ms,键盘管理模块记 为KEY 模块。

系统中其他没有严格时间限制的模块可 放入主程序执行,不参与多任务调度。

根据以上分析可知,系统共有4个模块 参与多任务调度,所以任务调度表设计为 4 个表项。模块的最高执行频率为1次/2ms, 因此时间片的长度设计为 2ms,统计出各任 务的基本情况及任务调度表1。

任务调度程序可编写如下:

mov dpl, #tasktab, dptr 赋值为 任务表的首地址

dph, #tasktab+1; 任务表在 mov 内部 ram 中

mov a, pointer; pointer 为系统任 务指针

add #tasktab inca

inca

@r0 mov а.

clrc subb

访问记数器 a, #01h;

减 1

mov temp, a

inc ro

mov a, @ro

subb a, #00h

访问记数器不为零则返回 inzexit: cjne temp, #00h, exit

mov a, pointer; 为零则转入 相应的任务入口

@a+dptr imp

exit @r0, 修改访 mov a:

间记数器的值

mov

add

dec r0

@r0, temp

mov 悠改系统任 pointei;

务指针

a, # 04h

cjne #10,coun

mov # 00h; 系统任务指

针初值为零

pointer, coun: mov

reti; 中断返回

任务程序如下:

task 1:

表1 任务情况及调度表

-	模块名	执行频率	模块访问计数器	入口地址	
1,000,71	37(11.4%.4=	10 进制计数值	16 进制计数值		
-	N	1 次/s	500	01F4H	01 F4H
	OUT	1 次/s	500	01 F4H	01F4H
	DIS	1 次/2ms	1	H1000	0001H
	KEY	1 次/20ms	10	000AH	000AH

a, pointer mov a, # tasktab add inca r0, a mov @r0, mov # xxh; 访问计 数器初值 inc r0 mov @r0, # xxh mov a, pointer, 修改系统任 务指针 # 04h add # 01h, next cjne # 00h mov a. pointer, a mov next. 中断返回 reti.

如果在程序运行过程中动态改变各子任 务的执行顺序和优先级别,只需修改务调度 表即可。

4 结语

本文在单片机系统中引入了现代操作系 统所具有的多任务机制,提出了一种新型的 程序结构。实验表明:这种结构模块清晰, 调度灵活,程序扩充比较方便,适用于需要 动态改变执行顺序的程序设计。但应注意到 程序结构的不同,编程方法也会有所不同。 综上所述, 在单片机系统中实现多任务机制 借助于时钟中断,由定时器产生系统时间 片,系统调度程序将时间片分给各任务模 块, 合理的任务模块设计可充分发挥多任务 机制的优越性。

参考文献

- [1] 何立民.单片机高级教程.第1版.北京航 空航天大学出版社.2001.
- [2] 李朝青等.单片机原理及接口技术. 北京 航空航天大学出版社.2000.