
www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Learning NumPy Array

Supercharge your scientific Python computations by 
understanding how to use the NumPy library effectively

Ivan Idris

BIRMINGHAM - MUMBAI

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Learning NumPy Array

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2014

Production Reference: 1060614

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-390-2

www.packtpub.com

Cover Image by Duraid Fatouhi (duraidfatouhi@yahoo.com)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Credits

Author
Ivan Idris

Reviewers
Jonathan Bright

Jaidev Deshpande

Mark Livingstone

Miklós Prisznyák

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Mohammad Rizvi

Content Development Editor
Akshay Nair

Technical Editors
Shubhangi H. Dhamgaye

Shweta S. Pant

Copy Editor
Sarang Chari

Project Coordinator
Lima Danti

Proofreaders
Maria Gould

Kevin McGowen

Indexer
Hemangini Bari

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


About the Author

Ivan Idris has an MSc in Experimental Physics. His graduation thesis had a strong 
emphasis on applied computer science. After graduating, he worked for several 
companies as a Java developer, data warehouse developer, and QA analyst. His main 
professional interests are Business Intelligence, Big Data, and Cloud Computing. He 
enjoys writing clean, testable code and interesting technical articles. He is the author 
of NumPy 1.5 Beginner's Guide and NumPy Cookbook, Packt Publishing. You can find 
more information and a blog with a few NumPy examples at ivanidris.net.

I would like to take this opportunity to thank the reviewers and 
the team at Packt Publishing for making this book possible. Also, 
I would like to thank my teachers, professors, and colleagues who 
taught me about science and programming. Last, but not least,  
I would like to acknowledge my parents, family, and friends  
for their support.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


About the Reviewers

Jonathan Bright has a BS in Electrical Engineering from Rensselaer Polytechnic 
Institute, and specializes in audio electronics and digital signal processing. He's 
been programming in Python since import antigravity (the XKCD comic mentioning 
Python) and contributes to the NumPy and SciPy projects.

Jaidev Deshpande is a software developer at Enthought, Inc., working on 
software for data analysis and visualization. He's been a research assistant at  
the University of Pune and Tata Institute of Fundamental Research, working  
on signal processing and machine learning. He has worked on Numpy Cookbook,  
Ivan Idris, Packt Publishing.

Mark Livingstone started his career working for many years for three international 
computer companies (which no longer exist) in engineering/support/programming/
training roles but got tired of being made redundant. He then graduated from Griffith 
University, Gold Coast, Australia, with a bachelor's degree in Information Technology 
in 2011. In 2013, he graduated with an honors in B.InfoTech and is currently pursuing 
his PhD. All his research software is written in Python on a Mac.

Mark enjoys mentoring students with special needs. He is a past chairperson of the 
IEEE Griffith University Gold Coast Student Branch, volunteers as a qualified Justice 
of the Peace at the local district courthouse and has been a Credit Union Director. He 
has also completed 104 blood donations.

In his spare time, he co-develops the Salstat2 statistics package available at  
https://sourceforge.net/projects/s2statistical/, which is multiplatform 
and uses wxPython, NumPy, SciPy, Scikit, Matplotlib, and a number of other  
Python modules.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

https://sourceforge.net/projects/s2statistical/
http://www.it-ebooks.info/


Miklós Prisznyák is a senior software engineer with a scientific background.  
He graduated as a physicist from the Eötvös Lóránd University, the largest and 
oldest university in Hungary. He did his MSc thesis on Monte Carlo simulations of 
non-Abelian lattice quantum field theories in 1992. Having worked for three years in 
the Central Research Institute for Physics of Hungary, he joined MultiRáció Kft. in 
Budapest, a company founded by physicists, which specializes in mathematical data 
analysis and forecasting economic data.

His main project was the Small Area Unemployment Statistics System, which has 
been in official use at the Hungarian Public Employment Service since then. He 
learned about the Python programming language there in 2000. He set up his own 
consulting company in 2002 and then worked on various projects for insurance, 
pharmacy, and e-commerce companies, using Python whenever he could. He also 
worked in a European Union research institute in Italy, testing and enhancing a 
distributed, Python-based Zope/Plone web application.

He moved to Great Britain in 2007 and first worked with a Scottish start-up,  
using Twisted Python. Then he worked in the aerospace industry in England 
using, among other things, the PyQt windowing toolkit, the Enthought application 
framework, and the NumPy and SciPy libraries. He returned to Hungary in 2012 
and rejoined MultiRáció, where he's been working on a Python extension module for 
OpenOffice/EuroOffice, using NumPy and SciPy again, which allows users to solve 
nonlinear and stochastic optimization and statistical problems.

Miklós likes to travel, read, and he is interested in science, linguistics, history, 
politics, the board game of Go, and quite a few other topics. Besides these, he always 
enjoys a good cup of coffee. However, spending time with his brilliant 11-year-old 
son, Zsombor, is the most important thing for him.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related 
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF 
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com 
and as a print book customer, you are entitled to a discount on the eBook copy. Get in 
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign 
up for a range of free newsletters and receive exclusive discounts and offers on Packt 
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online  
digital book library. Here, you can access, read and search across Packt's entire 
library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access 
PacktLib today and view nine entirely free books. Simply use your login credentials 
for immediate access.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/


www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


I would like to dedicate this book to the memory of my late uncle, Sahid.  
He will be missed.

        – Ivan Idris

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Table of Contents
Preface 1
Chapter 1: Getting Started with NumPy 7

Python 7
Installing NumPy, Matplotlib, SciPy, and IPython on Windows 8
Installing NumPy, Matplotlib, SciPy, and IPython on Linux 10
Installing NumPy, Matplotlib, and SciPy on Mac OS X 11
Building from source 14
NumPy arrays 14

Adding arrays 15
Online resources and help 18
Summary 18

Chapter 2: NumPy Basics 19
The NumPy array object 19

The advantages of using NumPy arrays 20
Creating a multidimensional array 21
Selecting array elements 21
NumPy numerical types 22

Data type objects 24
Character codes 24
dtype constructors 25
dtype attributes 26

Creating a record data type 26
One-dimensional slicing and indexing 27
Manipulating array shapes 28

Stacking arrays 29
Splitting arrays 33
Array attributes 35
Converting arrays 38

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Table of Contents

[ ii ]

Creating views and copies 39
Fancy indexing 40
Indexing with a list of locations 42
Indexing arrays with Booleans 43
Stride tricks for Sudoku 45
Broadcasting arrays 47
Summary 49

Chapter 3: Basic Data Analysis with NumPy 51
Introducing the dataset 51
Determining the daily temperature range 53
Looking for evidence of global warming 55
Comparing solar radiation versus temperature 57
Analyzing wind direction 61
Analyzing wind speed 62
Analyzing precipitation and sunshine duration 63
Analyzing monthly precipitation in De Bilt 66
Analyzing atmospheric pressure in De Bilt 67
Analyzing atmospheric humidity in De Bilt 69
Summary 71

Chapter 4: Simple Predictive Analytics with NumPy 73
Examining autocorrelation of average temperature with pandas 73
Describing data with pandas DataFrames 76
Correlating weather and stocks with pandas 78
Predicting temperature 79

Autoregressive model with lag 1 79
Autoregressive model with lag 2 80

Analyzing intra-year daily average temperatures 81
Introducing the day-of-the-year temperature model 83
Modeling temperature with the SciPy leastsq function 84
Day-of-year temperature take two 85
Moving-average temperature model with lag 1 87
The Autoregressive Moving Average temperature model 88
The time-dependent temperature mean adjusted  
autoregressive model 89
Outliers analysis of average De Bilt temperature 92
Using more robust statistics 94
Summary 95

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Table of Contents

[ iii ]

Chapter 5: Signal Processing Techniques 97
Introducing the Sunspot data 97

Sifting continued 99
Moving averages 101
Smoothing functions 103
Forecasting with an ARMA model 105
Filtering a signal 107

Designing the filter 108
Demonstrating cointegration 109
Summary 112

Chapter 6: Profiling, Debugging, and Testing 113
Assert functions 114

The assert_almost_equal function 114
Approximately equal arrays 115
The assert_array_almost_equal function 116

Profiling a program with IPython 117
Debugging with IPython 119
Performing Unit tests 122
Nose tests decorators 125
Summary 128

Chapter 7: The Scientific Python Ecosystem 129
Numerical integration 129
Interpolation 130
Using Cython with NumPy 132
Clustering stocks with scikit-learn 134
Detecting corners 137
Comparing NumPy to Blaze 139
Summary 140

Index 141

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Preface
Congratulations on purchasing Learning NumPy Array! This was a smart investment,  
which is guaranteed to save you a lot of time Googling and searching through (online) 
documentation. You will learn all the essential things needed to become a confident 
NumPy user. NumPy started originally as part of SciPy and then was singled out as 
a fundamental library, which other open source Python APIs build on. As such, it is a 
crucial part of the common Python stack used for numerical and data analysis.

NumPy code is much cleaner than "straight" Python code that tries to accomplish 
the same task. There are fewer loops required, because operations work directly on 
arrays and matrices. The many conveniences and mathematical functions make life 
easier as well. The underlying algorithms have stood the test of time and have been 
designed with high performance in mind.

NumPy's arrays are stored more efficiently than in an equivalent data structure 
in base Python, such as in a list of lists. Array IO is significantly faster too. The 
performance improvement scales with the number of elements of an array. For  
large arrays, it really pays off to use NumPy. Files as large as several terabytes  
can be memory-mapped to arrays leading to optimal reading and writing of data. 
The drawback of NumPy arrays is that they are more specialized than plain lists. 
Outside of the context of numerical computations, NumPy arrays are less useful.

Large portions of NumPy are written in C. That makes NumPy faster than pure 
Python code. Finally, since NumPy is open source, you get all of the related 
advantages. The price is the lowest possible—free as in beer. You don't have to  
worry about licenses every time somebody joins your team or you need an upgrade 
of the software. The source code is available to everyone. This of course is beneficial 
to the code quality.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Preface

[ 2 ]

What this book covers
Chapter 1, Getting Started with NumPy, will guide you through the steps needed  
to install NumPy on your system and helps you create a basic NumPy application. 
We also successfully run a vector addition program.

Chapter 2, NumPy Basics, introduces you to NumPy arrays and fundamentals. In this 
chapter, we also learn that NumPy arrays can be sliced and indexed in an efficient 
manner. Here, we will understand the manipulation of shapes of various arrays.

Chapter 3, Basic Data Analysis with NumPy, tells us about learning data analysis with 
weather data analysis as an example. We will also explore the data from a KNMI 
weather station.

Chapter 4, Simple Predictive Analytics with NumPy, helps us attempt to predict 
the weather with simple models, such as Autoregressive Model with Lag 1 and 
Autoregressive Model with Lag 2.

Chapter 5, Signal Processing Techniques, gives us examples of signal processing and 
time series analysis. We look at smoothing with window functions and moving 
averages. We also touch upon the sifting process used by scientists to derive sunspot 
cycles. And we also get a demonstration of cointegration.

Chapter 6, Profiling, Debugging, and Testing, is about profiling, debugging, and testing, 
which are essential phases in the development cycle. We also cover unit testing, 
assert functions, and floating-point precision in depth.

Chapter 7, The Scientific Python Ecosystem, gives an overview of the Python ecosystem 
in which NumPy takes a central role. We also examine Cython, which is a relatively 
young programming language based on Python. We also have a look at Clustering, a 
type of machine learning algorithm.

What you need for this book
To try out the code samples in this book, you will need a recent build of NumPy. 
This means that you will need to have one of the Python versions supported by 
NumPy as well. Some code samples make use of the Matplotlib for illustration 
purposes. Matplotlib is not strictly required to follow the examples, but it is 
recommended that you install it too.

Here is a list of software used to develop and test the code examples:

• Python 2.7
• Cython-0.17-py2.7-macosx-10.8-intel.egg

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Preface

[ 3 ]

• ipython-2.0.0_dev-py2.7.egg
• matplotlib-1.4.x-py2.7-macosx-10.9-intel.egg
• numpy-1.9.0.dev_e886943-py2.7-macosx-10.9-intel.egg
• pandas-0.8.2.dev_f5a74d4_20120725-py2.7-macosx-10.8-x86_64.egg
• pip-1.4.1-py2.7.egg
• statsmodels-0.6.0-py2.7-macosx-10.9-intel.egg

Needless to say, you don't need to have exactly this software and these versions on 
your computer. Python and NumPy is the absolute minimum you will need.

Who this book is for
This book is for a scientist, engineer, programmer or an analyst looking for a high 
quality open source mathematical library. Knowledge of Python is assumed. Also, 
some affinity or at least interest in mathematics and statistics is required.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "In this example, we chose numpy-1.8.0-
win32-superpack-python2.7.exe."

A block of code is set as follows:

start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "PythonSum elapsed time in microseconds", delta.microseconds

Any command-line input or output is written as follows:

$ python vectorsum.py 4000

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Preface

[ 4 ]

New terms and important words are shown in bold. Words that you see  
on the screen, in menus or dialog boxes for example, appear in the text like  
this: "Click on the Continue button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.PacktPub.com. If you purchased this book 
elsewhere, you can visit http://www.PacktPub.com/support and register to have 
the files e-mailed directly to you.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.it-ebooks.info/


Preface

[ 5 ]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/


www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Getting Started with NumPy
Let's get started. We will install NumPy and related software on different operating 
sytems and have a look at some simple code that uses NumPy. As mentioned in the 
Preface, SciPy is closely related to NumPy, so you will see the name SciPy appearing 
throughout the chapter. At the end of this chapter, you will find pointers on how to 
find additional information online if you get stuck or are uncertain about the best 
way to solve problems.

In this chapter, we shall learn the following skills:

• Installing Python, SciPy, Matplotlib, IPython, and NumPy on Windows, 
Linux, and Macintosh

• Writing simple NumPy code
• Adding arrays
• Making use of online resources and help

Python
NumPy is based on Python, so it is required to have Python installed. On some 
operating systems, Python is already installed. You, however, need to check whether 
the Python version is compatible with the NumPy version you want to install. There 
are many implementations of Python, including commercial implementations and 
distributions. In this book, we will focus on the standard CPython implementation, 
which is guaranteed to be compatible with NumPy.

NumPy has binary installers for Windows, various Linux distributions, and Mac OS 
X. There is also a source distribution, if you prefer that. You need to have Python 
2.4.x or above installed on your system. Python 2.7.6 is currently the best Python 
version to have because most scientific Python libraries support it.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Getting Started with NumPy

[ 8 ]

Installing NumPy, Matplotlib, SciPy, and 
IPython on Windows
Installing NumPy on Windows is a necessary but, fortunately, straightforward task 
that we will cover in detail. You only need to download an installer, and a wizard 
will guide you through the installation steps. It is recommended that Matplotlib, 
SciPy, and IPython be installed. However, this is not required to enjoy this book.  
The actions we will take are as follows:

1. Download a NumPy installer for Windows from the SourceForge website at 
http://sourceforge.net/projects/numpy/files/.

2. Choose the appropriate version. In this example, we chose numpy-1.8.0-
win32-superpack-python2.7.exe.

3. Open the EXE installer by double-clicking on it.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://sourceforge.net/projects/numpy/files/
http://www.it-ebooks.info/


Chapter 1

[ 9 ]

4. Now, we can see a description of NumPy and its features, as shown in the 
previous screenshot. Click on the Next button.

5. If you have Python installed, it should automatically be detected. If it is not 
detected, maybe your path settings are wrong. At the end of this chapter, 
resources are listed in case you have problems installing NumPy.

6. In this example, Python 2.7 was found. Click on the Next button if Python 
is found, otherwise, click on the Cancel button and install Python (NumPy 
cannot be installed without Python). Click on the Next button. This is the 
point of no return. Well, kind of, but it is best to make sure that you are 
installing to the proper directory and so on and so forth. Now the real 
installation starts. This may take a while.

7. Install SciPy and Matplotlib with the Enthought distribution at  
http://www.enthought.com/products/epd.php.

The situation around installers is rapidly evolving. Other alternatives 
exist in various stage of maturity (see http://www.scipy.org/
install.html). It might be necessary to put the msvcp71.dll file 
in your C:\Windows\system32 directory. You can get it at http://
www.dll-files.com/dllindex/dll-files.shtml?msvcp71. 
A Windows IPython installer is available on the IPython website (see 
http://ipython.scipy.org/Wiki/IpythonOnWindows).

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.enthought.com/products/epd.php
http://www.scipy.org/install.html
http://www.scipy.org/install.html
http://www.dll-files.com/dllindex/dll-files.shtml?msvcp71
http://www.dll-files.com/dllindex/dll-files.shtml?msvcp71
http://ipython.scipy.org/Wiki/IpythonOnWindows
http://www.it-ebooks.info/


Getting Started with NumPy

[ 10 ]

Installing NumPy, Matplotlib, SciPy, and 
IPython on Linux
Installing NumPy and related recommended software on Linux depends on the 
distribution you have. We will discuss how you would install NumPy from the 
command line although you could probably use graphical installers; it depends on 
your distribution (distro). The commands to install Matplotlib, SciPy, and IPython 
are the same—only the package names are different. Installing Matplotlib, SciPy,  
and IPython is recommended, but optional.

Most Linux distributions have NumPy packages. We will go through the necessary 
steps for some of the popular Linux distros:

• Run the following instructions from the command line for installing NumPy 
on Red Hat:
yum install python-numpy

• To install NumPy on Mandriva, run the following command-line instruction:
urpmi python-numpy

• To install NumPy on Gentoo, run the following command-line instruction:
sudo emerge numpy

• To install NumPy on Debian or Ubuntu, we need to type the following:
sudo apt-get install python-numpy

The following table gives an overview of the Linux distributions and corresponding 
package names for NumPy, SciPy, Matplotlib, and IPython:

Linux 
distribution

NumPy SciPy Matplotlib IPython

Arch Linux python-numpy python-scipy python-
matplotlib

ipython

Debian python-numpy python-scipy python-
matplotlib

ipython

Fedora numpy python-scipy python-
matplotlib

ipython

Gentoo dev-python/numpy scipy matplotlib ipython

OpenSUSE python-numpy, 
python-numpy-
devel

python-scipy python-
matplotlib

ipython

Slackware numpy scipy matplotlib ipython

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 1

[ 11 ]

Installing NumPy, Matplotlib, and SciPy 
on Mac OS X
You can install NumPy, Matplotlib, and SciPy on the Mac with a graphical installer 
or from the command line with a port manager, such as MacPorts or Fink, depending 
on your preference.

We can get a NumPy installer from the SourceForge website at 
http://sourceforge.net/projects/numpy/files/. Similar 
files exist for Matplotlib and SciPy. Just change numpy in the previous 
URL to scipy or matplotlib. IPython didn't have a GUI installer 
at the time of writing. Download the appropriate DMG file as 
shown in the following screenshot; usually the latest one is the best. 
Another alternative is the SciPy Superpack (https://github.com/
fonnesbeck/ScipySuperpack). Whichever option you choose, it is 
important to make sure that updates which impact the system Python 
library don't negatively influence the already installed software by not 
building against the Python library provided by Apple.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://sourceforge.net/projects/numpy/files/
https://github.com/fonnesbeck/ScipySuperpack
https://github.com/fonnesbeck/ScipySuperpack
http://www.it-ebooks.info/


Getting Started with NumPy

[ 12 ]

We will install NumPy with a GUI installer using the following steps:

1. Open the DMG file as shown in the following screenshot (in this example, 
numpy-1.8.0-py2.7-python.org-macosx10.6.dmg):

2. Double-click on the icon of the opened box, that is, the one having a  
subscript that ends with .mpkg. We will be presented with the welcome 
screen of the installer.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 1

[ 13 ]

3. Click on the Continue button to go to the Read Me screen, where we  
will be presented with a short description of NumPy, as shown in the 
following screenshot:

4. Click on the Continue button to go to the License screen.
5. Read the license, click on the Continue button, and then on the Accept 

button, when prompted to accept the license. Continue through the next 
screens and click on the Finish button at the end.

Alternatively, we can install NumPy, SciPy, Matplotlib, and IPython through 
the MacPorts route or with Fink. The following installation steps install all these 
packages. We only need NumPy for the tutorials in this book, so please omit the 
packages you are not interested in.

• To install with MacPorts, type the following command:
sudo port install py-numpy py-scipy py-matplotlib py-ipython

• Fink also has packages for NumPy: scipy-core-py24, scipy-core-py25, and 
scipy-core-py26. The SciPy packages are: scipy-py24, scipy-py25, and 
scipy-py26. We can install NumPy and the other recommended packages that 
we will be using in this book for Python 2.6 with the following command:
fink install scipy-core-py26 scipy-py26 matplotlib-py26

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Getting Started with NumPy

[ 14 ]

Building from source
As a last resort or if we want to have the latest code, we can build from source. In 
practice it shouldn't be that hard although, depending on your operating system, 
you might run into problems. As operating systems and related software are rapidly 
evolving, the best you can do is search online or ask for help. In this chapter, we give 
pointers on good places to look for help.

The steps to install NumPy from source are straightforward and given here. We can 
retrieve the source code for NumPy with .git as follows:

git clone git://github.com/numpy/numpy.git numpy

Install on /usr/local with the following command:

python setup.py build

sudo python setup.py install --prefix=/usr/local

To build, we need a C compiler such as GCC and the Python header files in the 
python-dev or python-devel package.

NumPy arrays
After going through the installation of NumPy, it's time to have a look at NumPy 
arrays. NumPy arrays are more efficient than Python lists when it comes to numerical 
operations. NumPy arrays are in fact specialized objects with extensive optimizations. 
NumPy code requires less explicit loops than the equivalent Python code. This is based 
on vectorization.

If we go back to high school mathematics, then we should remember the concepts 
of scalars and vectors. The number 2 for instance is a scalar. When we add 2 and 2, 
we are performing scalar addition. We can form a vector out of a group of scalars. 
In Python programming terms, we will then have a one-dimensional array. This 
concept can of course be extended to higher dimensions. Performing an operation 
on two arrays such as addition can be reduced to a group of scalar operations. In 
straight Python, we will do that with loops going through each element in the first 
array and adding it to the corresponding element in the second array. However, this 
is more verbose than the way it is done in mathematics. In mathematics, we treat the 
addition of two vectors as a single operation. That's the way NumPy arrays do it too 
and there are certain optimizations using low-level C routines, which make these 
basic operations more efficient. We will cover NumPy arrays in more detail in the 
next chapter.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 1

[ 15 ]

Adding arrays
Imagine that we want to add two vectors called a and b. A vector is used here in  
the mathematical sense, which means a one-dimensional array. We will learn in 
Chapter 4, Simple Predictive Analytics with NumPy, about specialized NumPy arrays 
that represent matrices. The vector a holds the squares of integers 0 to n, for instance. 
If n is equal to 3, then a contains 0, 1, or 4. The vector b holds the cubes of integers 0 
to n, so if n is equal to 3, then the vector b is equal to 0, 1, or 8. How would you do 
that using plain Python? After we come up with a solution, we will compare it with 
the NumPy equivalent.

The following function solves the vector addition problem using pure Python 
without NumPy:

def pythonsum(n):
   a = range(n)
   b = range(n)
   c = []

   for i in range(len(a)):
       a[i] = i ** 2
       b[i] = i ** 3
       c.append(a[i] + b[i])

   return c

The following is a function that achieves the same with NumPy:

def numpysum(n):
  a = numpy.arange(n) ** 2
  b = numpy.arange(n) ** 3
  c = a + b
  return c

Notice that numpysum() does not need a for loop. Also, we used the arange function 
from NumPy, which creates a NumPy array for us with integers 0 to n. The arange 
function was imported; that is why it is prefixed with numpy.

Now comes the fun part. Remember that it is mentioned in the Preface that NumPy is 
faster when it comes to array operations. How much faster is Numpy, though? The 
following program will show us by measuring the elapsed time in microseconds, for 
the numpysum and pythonsum functions. It also prints the last two elements of the 
vector sum. Let's check that we get the same answers when using Python and NumPy:

#!/usr/bin/env/python

import sys

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Getting Started with NumPy

[ 16 ]

from datetime import datetime
import numpy as np

"""
 This program demonstrates vector addition the Python way.
 Run from the command line as follows
     
  python vectorsum.py n
 
 where n is an integer that specifies the size of the vectors.

 The first vector to be added contains the squares of 0 up to n.
 The second vector contains the cubes of 0 up to n.
 The program prints the last 2 elements of the sum and the elapsed 
time.
"""

def numpysum(n):
   a = np.arange(n) ** 2
   b = np.arange(n) ** 3
   c = a + b

   return c

def pythonsum(n):
   a = range(n)
   b = range(n)
   c = []

   for i in range(len(a)):
       a[i] = i ** 2
       b[i] = i ** 3
       c.append(a[i] + b[i])

   return c
   
size = int(sys.argv[1])

start = datetime.now()
c = pythonsum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 1

[ 17 ]

print "PythonSum elapsed time in microseconds", delta.microseconds

start = datetime.now()
c = numpysum(size)
delta = datetime.now() - start
print "The last 2 elements of the sum", c[-2:]
print "NumPySum elapsed time in microseconds", delta.microseconds

The output of the program for the 1000, 2000, and 3000 vector elements is as follows:

$ python vectorsum.py 1000

The last 2 elements of the sum [995007996, 998001000]

PythonSum elapsed time in microseconds 707

The last 2 elements of the sum [995007996 998001000]

NumPySum elapsed time in microseconds 171

$ python vectorsum.py 2000

The last 2 elements of the sum [7980015996, 7992002000]

PythonSum elapsed time in microseconds 1420

The last 2 elements of the sum [7980015996 7992002000]

NumPySum elapsed time in microseconds 168

$ python vectorsum.py 4000

The last 2 elements of the sum [63920031996, 63968004000]

PythonSum elapsed time in microseconds 2829

The last 2 elements of the sum [63920031996 63968004000]

NumPySum elapsed time in microseconds 274

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.PacktPub.com. If you 
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Clearly, NumPy is much faster than the equivalent normal Python code. One thing 
is certain: we get the same results whether we are using NumPy or not. However, 
the result that is printed differs in representation. Notice that the result from the 
numpysum function does not have any commas. How come? Obviously we are not 
dealing with a Python list, but with a NumPy array. It was mentioned in the Preface 
that NumPy arrays are specialized data structures for numerical data. We will learn 
more about NumPy arrays in Chapter 2, NumPy Basics.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

p://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support
http://www.it-ebooks.info/


Getting Started with NumPy

[ 18 ]

Online resources and help
The main documentation website for NumPy and SciPy is at http://docs.scipy.
org/doc/. On this web page, we can browse the NumPy reference at http://docs.
scipy.org/doc/numpy/reference/ and the user guide, as well as several tutorials.

NumPy has a wiki with lots of documentation at http://docs.scipy.org/numpy/
Front%20Page/.

The NumPy and SciPy forum can be found at http://ask.scipy.org/en.

The popular Stack Overflow software development forum has hundreds of questions 
tagged as numpy. To view them, go to http://stackoverflow.com/questions/
tagged/numpy.

If you are really stuck with a problem or you want to be kept informed of NumPy's 
development, you can subscribe to the NumPy discussion mailing list. The e-mail 
address is numpy-discussion@scipy.org. The number of e-mails per day is not too 
high, and there is almost no spam to speak of. Most importantly, developers actively 
involved with NumPy also answer questions asked on the discussion group. The 
complete list can be found at http://www.scipy.org/Mailing_Lists.

For IRC users, there is an IRC channel on irc://irc.freenode.net. The channel 
is called #scipy, but you can also ask NumPy questions since SciPy users also have 
knowledge of NumPy, as SciPy is based on NumPy. There are at least 50 members 
on the SciPy channel at all times.

Summary
In this chapter, we installed NumPy and other recommended software that we will 
be using in some tutorials. We got a vector addition program working and convinced 
ourselves that NumPy has superior performance. In addition, we explored the 
available NumPy documentation and online resources.

In the next chapter, we will take a look under the hood and explore some 
fundamental concepts, including arrays and data types.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://docs.scipy.org/doc/
http://docs.scipy.org/doc/
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/doc/numpy/reference/
http://docs.scipy.org/numpy/Front%20Page/
http://docs.scipy.org/numpy/Front%20Page/
http://ask.scipy.org/en
http://stackoverflow.com/questions/tagged/numpy
http://stackoverflow.com/questions/tagged/numpy
http://www.scipy.org/Mailing_Lists
irc://irc.freenode.net
http://www.it-ebooks.info/


NumPy Basics
After installing NumPy and getting some code to work, it's time to cover NumPy 
basics. This chapter introduces you to the fundamentals of NumPy and arrays.  
At the end of this chapter you will have a basic understanding of NumPy arrays  
and their associated functions.

The topics that we shall cover in this chapter are as follows:

• Data types
• Array types
• Type conversions
• Creating arrays
• Indexing
• Fancy indexing
• Slicing
• Manipulating shapes

The NumPy array object
NumPy has a multidimensional array object called ndarray. It consists of two parts 
as follows:

• The actual data
• Some metadata describing the data

The majority of array operations leave the raw data untouched. The only aspect that 
changes is the metadata.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 20 ]

We have already learned in the previous chapter how to create an array using the 
arange() function. Actually, we created a one-dimensional array that contained  
a set of numbers. The ndarray object can have more than one dimension.

The advantages of using NumPy arrays
A NumPy array is a general homogeneous array—the items in an array have  
to be of the same type (there is a special array type that is heterogeneous). The 
advantage is that if we know that the items in an array are of the same type, it is 
easy to determine the storage size required for the array. NumPy arrays can perform 
vectorized operations working on a whole array. Contrast this to Python lists, where 
normally you have to loop through the list and perform operations on each element 
at a time. Also, NumPy uses an optimized C API for these operations, making them 
especially fast.

NumPy arrays are indexed just like in Python, starting from 0. Data types are 
represented by special objects. These objects will be discussed comprehensively 
further in this chapter.

We will create an array using the arange() function again (see the 
arrayattributes.py file in the Chapter02 folder of this book's code bundle). In this 
chapter, you will see code snippets from IPython sessions where NumPy is already 
imported. The following code snippet shows us how to get the data type of an array:

In: a = arange(5)
In: a.dtype
Out: dtype('int64')

The data type of the array a is int64 (at least on my machine), but you may get 
int32 as the output if you are using 32-bit Python. In both cases, we are dealing with 
integers (64-bit or 32-bit). Apart from the data type of an array, it is important to know 
its shape. The example in Chapter 1, Getting Started with NumPy, demonstrated how 
to create a vector (actually, a one-dimensional NumPy array). A vector is commonly 
used in mathematics, but most of the time we need higher-dimensional objects. Let's 
determine the shape of the vector we created a little earlier in this section:

In: a
Out: array([0, 1, 2, 3, 4])
In: a.shape
Out: (5,)

As you can see, the vector has five elements with values ranging from 0 to 4.  
The shape attribute of the array is a tuple; in this case, a tuple of one element,  
which contains the length in each dimension.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 21 ]

Creating a multidimensional array
Now that we know how to create a vector, we are ready to create a multidimensional 
NumPy array. After we create the matrix, we will again want to display its shape 
(see the arrayattributes.py file in the Chapter02 folder of this book's code 
bundle), as shown in the following code snippets:

• To create a multidimensional array, see the following code:
In: m = array([arange(2), arange(2)])
In: m
Out:
array([[0, 1], 
       [0, 1]])

• To display the array shape, see the following lines of code:
In: m.shape
Out: (2, 2)

We created a 2 x 2 array with the arange() function. Without any warning, the 
array() function appeared on the stage.

The array() function creates an array from an object that you give to it. The object 
needs to be array-like, for instance, a Python list. In the preceding example, we passed 
in a list of arrays. The object is the only required argument of the array() function. 
NumPy functions tend to have a lot of optional arguments with predefined defaults.

Selecting array elements
From time to time, we will want to select a particular element of an array. We 
will take a look at how to do this, but first, let's create a 2 x 2 matrix again (see the 
elementselection.py file in the Chapter02 folder of this book's code bundle):

In: a = array([[1,2],[3,4]])
In: a
Out:
array([[1, 2], 
       [3, 4]])

The matrix was created this time by passing a list of lists to the array() function.  
We will now select each item of the matrix one at a time, as shown in the following 
code snippet. Remember, the indices are numbered starting from 0.

In: a[0,0]
Out: 1
In: a[0,1]

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 22 ]

Out: 2
In: a[1,0]
Out: 3
In: a[1,1]
Out: 4

As you can see, selecting elements of the array is pretty simple. For the array a, we 
just use the notation a[m,n], where m and n are the indices of the item in the array.

NumPy numerical types
Python has an integer type, a float type, and a complex type; however, this is not 
enough for scientific computing. In practice, we need even more data types with 
varying precision, and therefore, different memory size of the type. For this reason, 
NumPy has a lot more data types. The majority of NumPy numerical types end with 
a number. This number indicates the number of bits associated with the type. The 
following table (adapted from the NumPy user guide) gives an overview of NumPy 
numerical types:

Type Description
bool This stores boolean (True or False) as a bit
inti This is a platform integer (normally either int32 or int64)
int8 This is an integer ranging from-128 to 127
int16 This is an integer ranging from -32768 to 32767
int32 This is an integer ranging from -2 ** 31 to 2 ** 31 -1
int64 This is an integer ranging from -2 ** 63 to 2 ** 63 -1
uint8 This is an unsigned integer ranging from 0 to 255
uint16 This is an unsigned integer ranging from 0 to 65535
uint32 This is an unsigned integer ranging from 0 to 2 ** 32 - 1
uint64 This is an unsigned integer ranging from 0 to 2 ** 64 - 1
float16 This is a half precision float with sign bit, 5 bits exponent, and 10 

bits mantissa
float32 This is a single precision float with sign bit, 8 bits exponent, and 23 

bits mantissa
float64 or float This is a double precision float with sign bit, 11 bits exponent, and 

52 bits mantissa

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 23 ]

Type Description
complex64 This is a complex number represented by two 32-bit floats (real and 

imaginary components)
complex128 or 
complex

This is a complex number represented by two 64-bit floats (real and 
imaginary components)

For each data type, there exists a corresponding conversion function (see the 
numericaltypes.py file in the Chapter02 folder of this book's code bundle),  
as shown in the following code snippet:

In: float64(42)
Out: 42.0
In: int8(42.0)
Out: 42
In: bool(42)
Out: True
In: bool(0)
Out: False
In: bool(42.0)
Out: True
In: float(True)
Out: 1.0
      In: float(False)
     Out: 0.0

Many functions have a data type argument, which is often optional:

In: arange(7, dtype=uint16)
Out: array([0, 1, 2, 3, 4, 5, 6], dtype=uint16)

It is important to know that you are not allowed to convert a complex number into 
an integer type number. Trying to do that triggers a TypeError, as shown in the 
following screenshot:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 24 ]

The same goes for conversion of a complex number into a float type number. By the 
way, the j part is the imaginary coefficient of the complex number. However, you 
can convert a floating number to a complex number, for instance, complex(1.0). 
The real and imaginary parts of a complex number can be extracted with the real() 
and imag() functions respectively.

Data type objects
Data type objects are instances of the numpy.dtype class. Once again, arrays have 
a data type. To be precise, every element in a NumPy array has the same data type. 
The data type object can tell you the size of the data in bytes. The size in bytes is 
given by the itemsize attribute of the dtype class (see the dtypeattributes.py file 
in the Chapter02 folder of this book's code bundle), as shown in the following lines 
of code:

In: a.dtype.itemsize
Out: 8

Character codes
Character codes are included for backward compatibility with Numeric. Numeric 
is the predecessor of NumPy. Their use is not recommended, but the codes are 
provided here because they pop up in several places. You should instead use the 
dtype objects. The following table shows different data types and character codes 
associated with them:

Type Character code
integer i

Unsigned integer u

Single precision float f

Double precision float d

bool b

complex D

string S

unicode U

Void V

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 25 ]

Look at the following code to create an array of single precision floats (see the 
charcodes.py file in the Chapter02 folder of this book's code bundle):

In: arange(7, dtype='f')
Out: array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.], dtype=float32)
Likewise this creates an array of complex numbers
In: arange(7, dtype='D')
Out: array([ 0.+0.j,  1.+0.j,  2.+0.j,  3.+0.j,  4.+0.j,  5.+0.j,   
  6.+0.j])

dtype constructors
We have a variety of ways to create data types. Take the case of floating point data 
(see the dtypeconstructors.py file in the Chapter02 folder of this book's code 
bundle) as follows:

• We can use the general Python float as shown in the following lines of code:
In: dtype(float)
Out: dtype('float64')

• We can specify a single precision float with a character code as shown in the 
following lines of code:
In: dtype('f')
Out: dtype('float32')

• We can use a double precision float character code as shown in the following 
lines of code:
In: dtype('d')
Out: dtype('float64')

• We can give a data type constructor a two-character code. The first character 
signifies the type, and the second character is a number specifying the 
number of bytes in the data type (the numbers 2, 4, and 8 correspond to 16-, 
32-, and 64-bit floats, respectively), as shown in the following lines of code:
In: dtype('f8')
Out: dtype('float64')

A listing of all data type names can be found by calling sctypeDict.keys():

In: sctypeDict.keys()
Out: [0, … 
 'i2', 
 'int0']

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 26 ]

dtype attributes
The dtype class has a number of useful attributes. For example, we can get 
information about the character code of a data type through the attributes of dtype 
(see the dtypeattributes2.py file in the Chapter02 folder of this book's code 
bundle), as shown in the following code snippet:

In: t = dtype('Float64')
In: t.char
Out: 'd'

The type attribute corresponds to the type of object of array elements:

In: t.type
Out: <type 'numpy.float64'>

The str attribute of dtype gives a string representation of a data type. It starts with  
a character representing endianness, if appropriate, then a character code, followed 
by a number corresponding to the number of bytes that each array item requires. 
Here endianness means the way bytes are ordered within a 32- or 64-bit word. In the 
big-endian order, the most significant byte is stored first, which is indicated by '>'.  
In the little-endian order, the least significant byte is stored first, which is indicated 
by < as shown in the following lines of code:

In: t.str
Out: '<f8'

Creating a record data type
A record data type is a heterogeneous data type—think of it as representing a row in 
a spreadsheet or a database. To give an example of a record data type, we will create 
a record for a shop inventory. This record contains the name of an item represented 
by a 40-character string, the number of items in the store represented by a 32-bit 
integer, and finally, the price of the item represented by a 32-bit float. The following 
steps show how to create a record data type (see the record.py file in the Chapter02 
folder of this book's code bundle):

1. To create a record, check the following code snippet:
In: t = dtype([('name', str_, 40), ('numitems', int32), ('price', 
float32)])
In: t
Out: dtype([('name', '|S40'), ('numitems', '<i4'),  
  ('price', '<f4')])

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 27 ]

2. To view the type of the field, check the following code snippet:
In: t['name']
Out: dtype('|S40')

If you don't give the array() function a data type, it will assume that it is dealing 
with floating point numbers. To create an array now, we really have to specify 
the data type as shown in the following lines of code; otherwise, we will get a 
TypeError:

In: itemz = array([('Meaning of life DVD', 42, 3.14), ('Butter', 13, 
2.72)], dtype=t)
In: itemz[1]
Out: ('Butter', 13, 2.7200000286102295)

We created a record data type, which is a heterogeneous data type. The record 
contained a name as a character string, a number as an integer, and a price 
represented by a float value.

One-dimensional slicing and indexing
Slicing of one-dimensional NumPy arrays works just like slicing of Python lists. 
We can select a piece of an array from the index 3 to 7 that extracts the elements 3 
through 6 (see the slicing1d.py file in the Chapter02 folder of this book's code 
bundle), as shown in the following code snippet:

In: a = arange(9)
In: a[3:7]
Out: array([3, 4, 5, 6])

We can select elements from the index 0 to 7 with a step of two, as shown in the 
following lines of code:

In: a[:7:2]
Out: array([0, 2, 4, 6])

Just as in Python, we can use negative indices and reverse the array, as shown in the 
following lines of code:

In: a[::-1]
Out: array([8, 7, 6, 5, 4, 3, 2, 1, 0])

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 28 ]

Manipulating array shapes
Another recurring task is flattening of arrays. Flattening in this context means 
transforming a multidimensional array into a one-dimensional array. In this 
example, we will demonstrate a number of ways to manipulate array shapes  
starting with flattening:

• ravel(): We can accomplish flattening with the ravel() function (see the 
shapemanipulation.py file in the Chapter02 folder of this book's code 
bundle), as shown in the following code:
In: b
Out:
array([[[ 0,  1,  2,  3], 
        [ 4,  5,  6,  7], 
        [ 8,  9, 10, 11]], 
       [[12, 13, 14, 15], 
        [16, 17, 18, 19], 
        [20, 21, 22, 23]]])
In: b.ravel()
Out:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12,  
  13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])

• flatten(): The appropriately-named function, flatten(), does the same 
as ravel(), but flatten() always allocates new memory, whereas ravel() 
might return a view of an array. This means that we can directly manipulate 
the array as follows:
In: b.flatten()
Out:
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 
15, 16,       17, 18, 19, 20, 21, 22, 23])

• shape: Besides the reshape() function, we can also set the shape directly 
with a tuple, which is shown as follows:
In: b.shape = (6,4)
In: b
Out:
array([[ 0,  1,  2,  3], 
       [ 4,  5,  6,  7], 
       [ 8,  9, 10, 11], 
       [12, 13, 14, 15], 
       [16, 17, 18, 19], 
       [20, 21, 22, 23]])

As you can see, this changes the array directly. Now we have a 6 x 4 array.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 29 ]

• transpose(): In linear algebra, it is common to transpose matrices. We can 
do that too using the transpose() function, as shown in the following code:
In: b.transpose()
Out:
array([[ 0,  4,  8, 12, 16, 20], 
       [ 1,  5,  9, 13, 17, 21], 
       [ 2,  6, 10, 14, 18, 22], 
       [ 3,  7, 11, 15, 19, 23]])

• resize(): The resize() method works just like the reshape() method but 
modifies the array it operates on:
In: b.resize((2,12))
In: b
Out:
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], 
       [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])

Stacking arrays
Arrays can be stacked horizontally, depth-wise, or vertically. We can use, for that 
purpose, the vstack(), dstack(), hstack(), column_stack(), row_stack(), and 
concatenate() functions. First, let's set up some arrays (see the stacking.py file in 
the Chapter02 folder of this book's code bundle), as shown in the following code:

In: a = arange(9).reshape(3,3)
In: a
Out:
array([[0, 1, 2], 
       [3, 4, 5], 
       [6, 7, 8]])
In: b = 2 * a
In: b
Out:
array([[ 0,  2,  4], 
       [ 6,  8, 10], 
       [12, 14, 16]])

The following are the different types of stacking:

• Horizontal stacking: Starting with horizontal stacking, we will form a tuple 
of ndarray and give it to the hstack() function. This is shown as follows:
In: hstack((a, b))
Out:
array([[ 0,  1,  2,  0,  2,  4], 
       [ 3,  4,  5,  6,  8, 10], 
       [ 6,  7,  8, 12, 14, 16]])

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 30 ]

We can achieve the same with the concatenate() function, which is shown 
as follows:
In: concatenate((a, b), axis=1)
Out:
array([[ 0,  1,  2,  0,  2,  4], 
       [ 3,  4,  5,  6,  8, 10], 
       [ 6,  7,  8, 12, 14, 16]])

The following figure visualizes horizontal stacking:

• Vertical stacking: With vertical stacking, again, a tuple is formed. This time, 
it is given to the vstack() function. This can be seen as follows:
In: vstack((a, b))
Out:
array([[ 0,  1,  2], 
       [ 3,  4,  5], 
       [ 6,  7,  8], 
       [ 0,  2,  4], 
       [ 6,  8, 10], 
       [12, 14, 16]])

The concatenate() function produces the same result with the axis 
argument set to 0. This is the default value for the axis argument,  
as shown in the following code:
In: concatenate((a, b), axis=0)
Out:
array([[ 0,  1,  2], 
       [ 3,  4,  5], 
       [ 6,  7,  8], 
       [ 0,  2,  4], 
       [ 6,  8, 10], 
       [12, 14, 16]])

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 31 ]

Refer to the following diagram for vertical stacking:

• Depth stacking: Additionally, there is depth-wise stacking using dstack() 
and a tuple, of course. This means stacking of a list of arrays along the third 
axis (depth). For instance, we could stack two-dimensional arrays of image 
data on top of each other:
In: dstack((a, b))
Out:
array([[[ 0,  0], 
        [ 1,  2], 
        [ 2,  4]], 
       [[ 3,  6], 
        [ 4,  8], 
        [ 5, 10]], 
       [[ 6, 12], 
        [ 7, 14], 
        [ 8, 16]]])

• Column stacking: The column_stack() function stacks one-dimensional 
arrays column-wise. It's shown as follows:
In: oned = arange(2)
In: oned
Out: array([0, 1])
In: twice_oned = 2 * oned
In: twice_oned
Out: array([0, 2])
In: column_stack((oned, twice_oned))
Out:
array([[0, 0], 
       [1, 2]])

Two-dimensional arrays are stacked the way hstack() stacks them, as 
shown in the following code:
In: column_stack((a, b))
Out:
array([[ 0,  1,  2,  0,  2,  4], 
       [ 3,  4,  5,  6,  8, 10], 
       [ 6,  7,  8, 12, 14, 16]])

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 32 ]

In: column_stack((a, b)) == hstack((a, b))
Out:
array([[ True,  True,  True,  True,  True,  True], 
       [ True,  True,  True,  True,  True,  True], 
       [ True,  True,  True,  True,  True,  True]],  
         dtype=bool)

Yes, you guessed it right! We compared two arrays with the == operator.  
Isn't this beautiful?

• Row stacking: NumPy, of course, also has a function that does row-wise 
stacking. It is called row_stack(), and for one-dimensional arrays, it just 
stacks the arrays in rows into a two-dimensional array:
In: row_stack((oned, twice_oned))
Out:
array([[0, 1], 
       [0, 2]])

The row_stack() function results for two-dimensional arrays are equal to 
the vstack() function results, as follows:
In: row_stack((a, b))
Out:
array([[ 0,  1,  2], 
       [ 3,  4,  5], 
       [ 6,  7,  8], 
       [ 0,  2,  4], 
       [ 6,  8, 10], 
       [12, 14, 16]])
In: row_stack((a,b)) == vstack((a, b))
Out:
array([[ True,  True,  True], 
       [ True,  True,  True], 
       [ True,  True,  True], 
       [ True,  True,  True], 
       [ True,  True,  True], 
       [ True,  True,  True]], dtype=bool)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 33 ]

Splitting arrays
Arrays can be split vertically, horizontally, or depth-wise. The functions involved are 
hsplit(), vsplit(), dsplit(), and split(). We can either split arrays into arrays 
of the same shape or indicate the position after which the split should occur.

• Horizontal splitting: The ensuing code splits an array along its horizontal 
axis into three pieces of the same size and shape (see the splitting.py file 
in the Chapter02 folder of this book's code bundle):
In: a
Out:
array([[0, 1, 2], 
       [3, 4, 5], 
       [6, 7, 8]])
In: hsplit(a, 3)
Out:
[array([[0], 
       [3], 
       [6]]), 
 array([[1], 
       [4], 
       [7]]), 
 array([[2], 
       [5], 
       [8]])]

Compare it with a call of the split() function, with the extra parameter 
axis=1:
In: split(a, 3, axis=1)
Out:
[array([[0], 
       [3], 
       [6]]), 
 array([[1], 
       [4], 
       [7]]), 
 array([[2], 
       [5], 
       [8]])]

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 34 ]

• Vertical splitting: The vsplit() function splits an array along the vertical axis:
In: vsplit(a, 3)
Out: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7,  
  8]])]

The split() function, with axis=0, also splits an array along the vertical axis:
In: split(a, 3, axis=0)
Out: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7,  
  8]])]

• Depth-wise splitting: The dsplit() function, unsurprisingly, splits an array 
depth-wise. We will need an array of rank three first:
In: c = arange(27).reshape(3, 3, 3)
In: c
Out:
array([[[ 0,  1,  2], 
        [ 3,  4,  5], 
        [ 6,  7,  8]], 
       [[ 9, 10, 11], 
        [12, 13, 14], 
        [15, 16, 17]], 
       [[18, 19, 20], 
        [21, 22, 23], 
        [24, 25, 26]]])
In: dsplit(c, 3)
Out:
[array([[[ 0], 
        [ 3], 
        [ 6]], 
       [[ 9], 
        [12], 
        [15]], 
       [[18], 
        [21], 
        [24]]]), 
 array([[[ 1], 
        [ 4], 
        [ 7]], 
       [[10], 
        [13], 
        [16]], 
       [[19], 
        [22], 
        [25]]]), 

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 35 ]

 array([[[ 2], 
        [ 5], 
        [ 8]], 
       [[11], 
        [14], 
        [17]], 
       [[20], 
        [23], 
        [26]]])]

Array attributes
Besides the shape and dtype attributes, ndarray has a number of other attributes, as 
shown in the following list:

• ndim: This attribute gives the number of array dimensions (see the 
arrayattributes2.py file in the Chapter02 folder of this book's code bundle):
In: b
Out:
array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], 
       [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]])
In: b.ndim
Out: 2

• size: This attribute displays the number of elements. This is shown as follows:
In: b.size
Out: 24

• itemsize: This attribute gives the number of bytes for each element in  
an array:
In: b.itemsize
Out: 8

• nbytes: This attribute gives the total number of bytes an array requires.  
It is just a product of the itemsize and size attributes:
In: b.nbytes
Out: 192
In: b.size * b.itemsize
Out: 192

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 36 ]

• T: This attribute has the same effect as the transpose() function, which is 
shown as follows:
In: b.resize(6,4)
In: b
Out:
array([[ 0,  1,  2,  3], 
       [ 4,  5,  6,  7], 
       [ 8,  9, 10, 11], 
       [12, 13, 14, 15], 
       [16, 17, 18, 19], 
       [20, 21, 22, 23]])
In: b.T
Out:
array([[ 0,  4,  8, 12, 16, 20], 
       [ 1,  5,  9, 13, 17, 21], 
       [ 2,  6, 10, 14, 18, 22], 
       [ 3,  7, 11, 15, 19, 23]])

If the array has a rank lower than two, we will just get a view of the array:
In: b.ndim
Out: 1
In: b.T
Out: array([0, 1, 2, 3, 4])

Complex numbers in NumPy are represented by 'j'. For example, we can 
create an array with complex numbers:
In: b = array([1.j + 1, 2.j + 3])
In: b
Out: array([ 1.+1.j,  3.+2.j])

• real: This attribute gives us the real part of an array, or the array itself if it 
only contains real numbers:
In: b.real
Out: array([ 1.,  3.])

• imag: This attribute contains the imaginary part of an array:
In: b.imag
Out: array([ 1.,  2.])

If the array contains complex numbers, then the data type is automatically 
also complex:
In: b.dtype
Out: dtype('complex128')
In: b.dtype.str
Out: '<c16'

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 37 ]

• flat: This attribute returns a numpy.flatiter object. This is the only way 
to acquire a flatiter—we do not have access to a flatiter constructor. 
The flat iterator enables us to loop through an array as if it is a flat array, as 
shown in the following code:
In: b = arange(4).reshape(2,2)
In: b
Out:
array([[0, 1], 
       [2, 3]])
In: f = b.flat
In: f
Out: <numpy.flatiter object at 0x103013e00>
In: for item in f: print item
   .....:
0
1
2
3

It is possible to directly get an element with the flatiter object as follows:
In: b.flat[2]
Out: 2

It is also possible to get multiple elements as follows:
In: b.flat[[1,3]]
Out: array([1, 3])

The flat attribute is settable. Setting the value of the flat attribute leads to 
overwriting the values of the whole array as follows:
In: b.flat = 7
In: b
Out:
array([[7, 7], 
       [7, 7]])

You can even get selected elements as follows:
In: b.flat[[1,3]] = 1
In: b
Out:
array([[7, 1], 
       [7, 1]])

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 38 ]

The following figure shows different attributes of ndarray:

Converting arrays
We can convert a NumPy array to a Python list with the tolist() function  
(see the arrayconversion.py file in the Chapter02 folder of this book's code 
bundle) as follows:

• To convert an array to a list, check the following code snippet:
In: b
Out: array([ 1.+1.j,  3.+2.j])
In: b.tolist()
Out: [(1+1j), (3+2j)]

• The astype() function converts an array to an array of the specified type as 
shown in the following code:
In: b
Out: array([ 1.+1.j,  3.+2.j])
In: b.astype(int)
/usr/local/bin/ipython:1: ComplexWarning: Casting complex values 
to real discards the imaginary part
  #!/usr/bin/python
Out: array([1, 3])

We are losing the imaginary part when casting from 
complex type to int.

The astype() function also accepts the name of a type as a string, as in the  
following snippet:

In: b.astype('complex')
Out: array([ 1.+1.j,  3.+2.j])

This won't show any warning this time, because we used the proper data type.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 39 ]

Creating views and copies
In the example about the ravel() function, views were mentioned. Views should 
not be confused with the concept of database views. Views in the NumPy world are 
not read-only, and you don't have the possibility to protect the underlying data. It is 
important to know when we are dealing with a shared array view and when we have 
a copy of array data. A slice, for instance, will create a view. This means that if you 
assign a slice to a variable and then change the underlying array, the value of this 
variable will change. We will create an array from the famous Lena image, copy the 
array, create a view, and at the end, modify the view. The Lena image array comes 
from a SciPy function.

1. To create a copy of the Lena array, the following line of code is used:
acopy = lena.copy()

2. Now, to create a view of the array, use the following line of code:
aview = lena.view()

3. Set all the values of the view to 0 with a flat iterator, as follows:
aview.flat = 0

The end result is that only one of the images shows the Playboy model. The other 
ones got censored completely, as shown in the following figure.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 40 ]

Refer to the following code of this section (without comments to save space; for the 
complete code, see the copy_view.py file in the Chapter02 folder of this book's code 
bundle) showing the behavior of array views and copies:

import scipy.misc
import matplotlib.pyplot as plt

lena = scipy.misc.lena()
acopy = lena.copy()
aview = lena.view()
plt.subplot(221)
plt.imshow(lena)
plt.subplot(222)
plt.imshow(acopy)
plt.subplot(223)
plt.imshow(aview)
aview.flat = 0
plt.subplot(224)
plt.imshow(aview)
plt.show()

As you can see, by changing the view at the end of the program, we changed the 
original Lena array. This resulted in having three blue (or black if you are looking at 
a black and white image) images. The copied array was unaffected. It is important to 
remember that views are not read-only.

Fancy indexing
Fancy indexing is indexing that does not involve integers or slices, which is normal 
indexing. In this section, we will apply fancy indexing to set the diagonal values 
of the Lena image to 0. This will draw black lines along the diagonals, crossing 
it through, not because there is something wrong with the image, but just as an 
exercise. Perform the following steps for fancy indexing:

1. Set the values of the first diagonal to 0. To set the diagonal values to 0,  
we need to define two different ranges for the x and y values as follows:
lena[range(xmax), range(ymax)] = 0

2. Now, set the values of the other diagonal to 0. To set the values of the other 
diagonal, we require a different set of ranges, but the principles stay the 
same, as follows:
lena[range(xmax-1,-1,-1), range(ymax)] = 0

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 41 ]

At the end we get the following image with the diagonals crossed out:

The following code for this section is without comments. The complete code for this 
is in the fancy.py file in the Chapter02 folder of this book's code bundle.

import scipy.misc
import matplotlib.pyplot as plt

lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]
lena[range(xmax), range(ymax)] = 0
lena[range(xmax-1,-1,-1), range(ymax)] = 0
plt.imshow(lena)
plt.show()

We defined separate ranges for the x and y values. These ranges were used to index 
the Lena array. Fancy indexing is performed based on an internal NumPy iterator 
object. This can be achieved by performing the following three steps:

1. The iterator object is created.
2. The iterator object gets bound to the array.
3. Array elements are accessed via the iterator.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 42 ]

Indexing with a list of locations
Let's use the ix_() function to shuffle the Lena image. This function creates a  
mesh from multiple sequences. As arguments, we give one-dimensional sequences, 
and the function returns a tuple of NumPy arrays. For example, check the following 
code snippet:

In : ix_([0,1], [2,3])
Out:
(array([[0], 
        [1]]), array([[2, 3]]))

To index the array with a list of locations, perform the following steps:

1. Shuffle the array indices. Create a random indices array with the shuffle() 
function of the numpy.random module, as shown in the following lines of 
code. The function changes the array inplace by the way.
def shuffle_indices(size):
   arr = np.arange(size)
   np.random.shuffle(arr)

   return arr

2. Now plot the shuffled indices as follows:
plt.imshow(lena[np.ix_(xindices, yindices)])

What we get is a completely scrambled Lena, as shown in the following image:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 43 ]

The following code for this section is without comments. The complete code for this 
can be found in the ix.py file in the Chapter02 folder of this book's code bundle.

import scipy.misc
import matplotlib.pyplot
import numpy as np

lena = scipy.misc.lena()
xmax = lena.shape[0]
ymax = lena.shape[1]

def shuffle_indices(size):
   arr = np.arange(size)
   np.random.shuffle(arr)

   return arr

xindices = shuffle_indices(xmax)
np.testing.assert_equal(len(xindices), xmax)
yindices = shuffle_indices(ymax)
np.testing.assert_equal(len(yindices), ymax)
plt.imshow(lena[np.ix_(xindices, yindices)])
plt.show()

Indexing arrays with Booleans
Boolean indexing is indexing based on a Boolean array and falls in the category of 
fancy indexing. Since Boolean indexing is a form of fancy indexing, the way it works 
is basically the same. This means that indexing happens with the help of a special 
iterator object. Perform the following steps to index an array:

1. First, we create an image with dots on the diagonal. This is in some way 
similar to the Fancy indexing section. This time we select modulo four points 
on the diagonal of the image, as shown in the following code snippet:
def get_indices(size):
   arr = np.arange(size)
   return arr % 4 == 0

2. Then we just apply this selection and plot the points, as shown in the 
following code snippet:
lena1 = lena.copy() 
xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
plt.subplot(211)
plt.imshow(lena1)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 44 ]

3. Select array values between a quarter and three-quarters of the maximum 
value, and set them to 0, as shown in the following line of code:
lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] =  
  0

The plot with the two new images is shown as follows:

The following is the code for this section (see the boolean_indexing.py file in the 
Chapter02 folder of this book's code bundle):

import scipy.misc
import matplotlib.pyplot as plt
import numpy as np

lena = scipy.misc.lena()

def get_indices(size):
   arr = np.arange(size)
   return arr % 4 == 0

lena1 = lena.copy() 

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 45 ]

xindices = get_indices(lena.shape[0])
yindices = get_indices(lena.shape[1])
lena1[xindices, yindices] = 0
plt.subplot(211)
plt.imshow(lena1)
lena2 = lena.copy() 
lena2[(lena > lena.max()/4) & (lena < 3 * lena.max()/4)] = 0
plt.subplot(212)
plt.imshow(lena2)
plt.show()

Stride tricks for Sudoku
We can do even more fancy things with NumPy. The ndarray class has a field, 
strides, which is a tuple indicating the number of bytes to step in each dimension 
when going through an array. Sudoku is a popular puzzle originally from Japan; 
although it was known in a similar form before in other countries. If you don't know 
about Sudoku, it's maybe better that way because it is highly addictive. Let's apply 
some stride tricks to the problem of splitting a Sudoku puzzle to the 3 x 3 squares it 
is composed of:

1. First define the Sudoku puzzle array, as shown in the following code snippet. 
This one is filled with the contents of the actual solved Sudoku puzzle  
(part of the array is omitted for brevity).
sudoku = np.array([ 
   [2, 8, 7, 1, 6, 5, 9, 4, 3], 
   [9, 5, 4, 7, 3, 2, 1, 6, 8], 
  … 
   [7, 3, 6, 2, 8, 4, 5, 1, 9] 
   ])

2. Now calculate the strides. The itemsize field of ndarray gives us the number 
of bytes in an array. itemsize calculates the strides as follows:
strides = sudoku.itemsize * np.array([27, 3, 9, 1])

3. Now we can split the puzzle into squares with the as_strided() function of 
the np.lib.stride_tricks module, as shown in the following lines of code:
squares = np.lib.stride_tricks.as_strided(sudoku, shape=shape, 
strides=strides)
print(squares)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 46 ]

This prints separate Sudoku squares (some of the squares were omitted to save space), 
as follows:

[[[[2 8 7] 
   [9 5 4] 
   [6 1 3]] 
 … 
 [[[8 7 9] 
   [4 2 1] 
   [3 6 5]] 
  … 
 
 [[[1 9 8] 
   [5 4 2] 
   [7 3 6]] 
  … 
  [[4 2 6] 
   [3 8 7] 
   [5 1 9]]]]

The following is the complete source code for this example (see the strides.py file 
in the Chapter02 folder of this book's code bundle):

import numpy as np

sudoku = np.array([ 
   [2, 8, 7, 1, 6, 5, 9, 4, 3], 
   [9, 5, 4, 7, 3, 2, 1, 6, 8], 
   [6, 1, 3, 8, 4, 9, 7, 5, 2], 
   [8, 7, 9, 6, 5, 1, 2, 3, 4], 
   [4, 2, 1, 3, 9, 8, 6, 7, 5], 
   [3, 6, 5, 4, 2, 7, 8, 9, 1], 
   [1, 9, 8, 5, 7, 3, 4, 2, 6], 
   [5, 4, 2, 9, 1, 6, 3, 8, 7], 
   [7, 3, 6, 2, 8, 4, 5, 1, 9] 
   ])

shape = (3, 3, 3, 3)
strides = sudoku.itemsize * np.array([27, 3, 9, 1])
squares = np.lib.stride_tricks.as_strided(sudoku, shape=shape, 
strides=strides)
print(squares)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 47 ]

We applied stride tricks to decompose a Sudoku puzzle in its constituent 3 x 3 
squares. The strides tell us how many bytes we need to skip at each step when going 
through the Sudoku array.

Broadcasting arrays
In a nutshell, NumPy tries to perform an operation even though the operands do 
not have the same shape. In this section, we will multiply an array and a scalar. The 
scalar is extended to the shape of an array operand, and then the multiplication is 
performed. We will download an audio file and make a new version that is quieter:

1. First, read the WAV file. We will use standard Python code to download an 
audio file of Austin Powers saying "Smashing, baby". SciPy has a wavfile 
module that allows you to load sound data or generate WAV files. If SciPy 
is installed, then we should already have this module. The read() function 
returns a data array and sample rate. In this example, we only care about  
the data.
sample_rate, data = scipy.io.wavfile.read(WAV_FILE)

2. Plot the original WAV data with Matplotlib. Give the subplot the title, 
Original, as shown in the following lines of code:
plt.subplot(2, 1, 1)
plt.title("Original")
plt.plot(data)

3. Now create a new array. We will use NumPy to make a quieter audio 
sample. It is just a matter of creating a new array with smaller values by 
multiplying with a constant. This is where the magic of broadcasting occurs. 
At the end, we need to make sure that we have the same data type as in the 
original array because of the WAV format.
newdata = data * 0.2
newdata = newdata.astype(np.uint8)

4. Now this new array can be written into a new WAV file as follows:
scipy.io.wavfile.write("quiet.wav",
    sample_rate, newdata)

5. Plot the new data array with Matplotlib as follows:
matplotlib.pyplot.subplot(2, 1, 2)
matplotlib.pyplot.title("Quiet")
matplotlib.pyplot.plot(newdata)
matplotlib.pyplot.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Basics

[ 48 ]

The result is a plot of the original WAV file data and a new array with smaller 
values, as shown in the following figure:

The following is the complete code for this section (see the broadcasting.py file in the 
Chapter02 folder of this book's code bundle):

import scipy.io.wavfile
import matplotlib.pyplot
import urllib2
import numpy as np

response = urllib2.urlopen('http://www.thesoundarchive.com/
austinpowers/smashingbaby.wav')
print response.info()
WAV_FILE = 'smashingbaby.wav'
filehandle = open(WAV_FILE, 'w')
filehandle.write(response.read())
filehandle.close()
sample_rate, data = scipy.io.wavfile.read(WAV_FILE)
print "Data type", data.dtype, "Shape", data.shape
plt.subplot(2, 1, 1)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 2

[ 49 ]

plt.title("Original")
plt.plot(data)
newdata = data * 0.2
newdata = newdata.astype(np.uint8)
print "Data type", newdata.dtype, "Shape", newdata.shape
scipy.io.wavfile.write("quiet.wav",
    sample_rate, newdata)
plt.subplot(2, 1, 2)
plt.title("Quiet")
plt.plot(newdata)
plt.show()

Summary
We learned a lot in this chapter about the NumPy fundamentals: data types and 
arrays. Arrays have several attributes describing them. We learned that one of these 
attributes is the data type which, in NumPy, is represented by a full-fledged object.

NumPy arrays can be sliced and indexed in an efficient manner, just as in  
the case of Python lists. NumPy arrays have the added ability of working  
with multiple dimensions.

The shape of an array can be manipulated in many ways, such as stacking, resizing, 
reshaping, and splitting. A great number of convenience functions for shape 
manipulation were demonstrated in this chapter.

Having learned about the basics, it's time to move on to data analysis with commonly 
used functions in Chapter 3, Basic Data Analysis with NumPy. This includes the usage of 
basic statistical and mathematical functions.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis  
with NumPy

In this chapter, we will learn about basic data analysis through an example of 
historical weather data. We will learn about functions that make working with 
NumPy easier.

In this chapter, we shall cover the following topics:

• Functions working on arrays
• Loading arrays from files containing weather data
• Simple mathematical and statistical functions

Introducing the dataset
First, we will learn about file I/O with NumPy. Data is usually stored in files.  
You would not get far if you are not able to read from and write to files.

The Royal Netherlands Meteorological Institute (KNMI) offers daily weather data 
online (browse to http://www.knmi.nl/climatology/daily_data/download.
html). KNMI is the Dutch meteorological service headquartered in De Bilt. Let's 
download one of the KNMI files from the De Bilt weather station. The file is roughly 
10 megabytes. It has some text with explanation about the data in Dutch and English. 
Below that is the data in comma-separated values format. I separated the metadata 
and the actual data into separate files. The separation is not necessary because you 
can skip rows when loading from NumPy. I wrote a simple script with NumPy to 
determine the maximum and minimum temperature for the dataset from a CSV file 
that was created in the separation process.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.knmi.nl/climatology/daily_data/download.html
http://www.knmi.nl/climatology/daily_data/download.html
http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 52 ]

The temperatures are given in tenths of a degree Celsius. There are three columns 
containing temperatures:

• An average temperature for a 24-hour period
• The daily minimum temperature
• The daily maximum temperature

We will ignore the average temperatures for now. Also notice that there were 
missing values, so let's convert them to the Not a Number (NaN) value. NaN is a 
special value for floating point numbers in Python. In the end, we can come up with 
the following simple script (see the intro.py file in the Chapter03 folder of this 
book's code bundle):

import numpy as np
import sys

to_float = lambda x: float(x.strip() or np.nan)

# Measurements are in tenths of degrees
min_temp, max_temp = np.loadtxt(sys.argv[1], delimiter=',', 
  usecols=(12, 14), unpack=True, converters={12: to_float, 14:  
  to_float}) * .1
print "# Records", len(min_temp), len(max_temp)
print "Minimum", np.nanmin(min_temp)
print "Maximum", np.nanmax(max_temp)

This script prints the number of records and the minimum and maximum 
temperature:

# Records 40996 40996

Minimum -24.8

Maximum 36.8

We read a file with the loadtxt function. By default, loadtxt tries 
to convert all data into floats. The loadtxt function has a special 
parameter for this purpose. The parameter is called converters and is 
a dictionary that links columns with the so-called converter functions. 
We also specified comma as the delimiter for fields and columns to use. 
Please refer to http://docs.scipy.org/doc/numpy/reference/
generated/numpy.loadtxt.html for more details. KNMI quotes 
the temperature values in tenths of a degree Celsius, so a simple 
multiplication was required. The nanmin and nanmax functions do the 
same as the NumPy max and min functions, but they also ignore NaNs.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.loadtxt.html
http://www.it-ebooks.info/


Chapter 3

[ 53 ]

Determining the daily temperature range
The daily temperature range, or diurnal temperature variation as it is called in 
meteorology, is not so big a deal on Earth. In desert areas on Earth or generally 
on different planets, the variation is greater. We will have a look at the daily 
temperature range for the data we downloaded in the previous example:

1. To analyze temperature ranges, we will need to import the NumPy package 
and the NumPy masked arrays:
import numpy as np
import sys
import numpy.ma as ma
from datetime import datetime as dt

2. We will load a bit more data than that loaded in the previous section: 
dates of measurements in the YYYYMMDD format and the average daily 
temperature. Dates require special conversion. Firstly date strings are 
converted to dates and then to numbers as follows:
to_float = lambda x: float(x.strip() or np.nan)
to_date = lambda x: dt.strptime(x, "%Y%m%d").toordinal()
 
dates, avg_temp, min_temp, max_temp =  
  np.loadtxt(sys.argv[1], delimiter=',', usecols=(1, 11,  
  12, 14), unpack=True, converters={1: to_date, 12:  
  to_float, 14: to_float})

3. Let's calculate the percentage of days that minimum and maximum 
temperatures are below zero degrees Celsius (freezing point):
print "% days min < 0", 100 * len(min_temp[min_temp <  
  0])/float(len(min_temp))
print "% days max < 0", 100 * len(max_temp[max_temp <  
  0])/float(len(max_temp))

The chance of the maximum daily temperature being below zero seems to be 
three percent. That's about 10 days per year. The minimum daily temperature 
is more likely to be below zero, with a likelihood of 18 percent. This comes to 
approximately two months a year. Not consecutive months obviously.
% days min below 0 18.1944579959  

% days max below 0 2.81978729632

Unfortunately, we still have the problem of missing values. One way to deal 
with this is to use masked arrays. Masked arrays are a special type of NumPy 
array that usually contain missing, invalid, or suspect values.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 54 ]

4. Now, to solve the missing values problem, just give a masked array a  
mask created with the isnan function. We will calculate averages and 
standard deviations for temperatures and minimum and maximum  
for daily temperature ranges:
ranges = max_temp - min_temp
print "Minimum daily range", np.nanmin(ranges)
print "Maximum daily range", np.nanmax(ranges)
 
masked_ranges = ma.array(ranges, mask = np.isnan(ranges))
print "Average daily range", masked_ranges.mean()
print "Standard deviation", masked_ranges.std()
 
masked_mins = ma.array(min_temp, mask = np.isnan(min_temp))
print "Average minimum temperature", masked_mins.mean(),  
  "Standard deviation", masked_mins.std()
 
masked_maxs = ma.array(max_temp, mask = np.isnan(max_temp))
print "Average maximum temperature", masked_maxs.mean(),  
  "Standard deviation", masked_maxs.std()

Apparently, the average daily range is eight degrees, while the average 
minimum is around five degrees, and the average maximum is around 13 
degrees. The following values were printed at the time the code was written; 
naturally, if you run the program with more recent data, the outcome can 
differ a bit:
Minimum daily range 0.6 

Maximum daily range 22.2 

Average daily range 8.20358580315 

Standard deviation 3.72983839106 

Average minimum temperature 5.39096231248 

Standard deviation 5.85061308004 

Average maximum temperature 13.5945481156 

Standard deviation 7.40767291657

You can find the code for this example in the daily_temperature_range.py file in 
the Chapter03 folder of this book's code bundle.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 3

[ 55 ]

Looking for evidence of global warming
According to the global warming theory, the temperature on Earth has increased  
on average since the end of the 19th century. During the last century until now,  
the temperature supposedly has gained about 0.8 degrees. Apparently, most of  
this warming has happened in the last two or three decades. In the future, we can  
expect the temperature to rise even more, leading to droughts, heat waves, and  
other unpleasant phenomena. Obviously, some regions will be hit harder than 
others. Several solutions have been proposed, including reduction of greenhouse  
gas emissions and geo-engineering by spreading special gases in the atmosphere in 
order to reflect more sunlight.

The data we downloaded from the Dutch Meteorological Institute, KNMI, is not 
sufficient to prove whether global warming is real or not, but we can certainly 
examine it further. For instance, we can check whether the temperature in De Bilt 
(that's where the data was collected) in the first half of the dataset is lower than in 
the second half. Another thing we can do is plot yearly average temperatures. De Bilt 
by the way, as far as I know, is a small town in central Netherlands without heavy 
industry. We need to import NumPy and Matplotlib to create plots later on. Perform 
the following steps to calculate the yearly average temperature:

1. We will load the average daily temperatures and the corresponding dates. 
Actually, we will convert the dates to years immediately to be able to 
calculate yearly average temperatures:
to_year = lambda x: dt.strptime(x, "%Y%m%d").year
 
years, avg_temp = np.loadtxt(sys.argv[1], delimiter=',',  
  usecols=(1, 11), unpack=True, converters={1: to_year})
 
# Measurements are in .1 degrees Celsius
avg_temp = .1 * avg_temp
 
N = len(avg_temp)
print "First Year", years[0], "Last Year", years[-1]
assert N == len(years)
assert years[:N/2].mean() < years[N/2:].mean()

As you can see, some sanity checking occurs at the end of the snippet, which 
prints the following output:
First Year 1901.0 Last Year 2013.0

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 56 ]

2. After dividing the average daily temperature values in two halves, we can 
calculate and compare the arithmetic means of both halves. Here, we are  
using the NumPy ndarray methods to compare the standard deviation as well:
print "First half average", avg_temp[:N/2].mean(), "Std Dev",  
  avg_temp[:N/2].std()
print "Second half average", avg_temp[N/2:].mean(), "Std Dev",  
  avg_temp[N/2:].std()

This gives us the following output:
First half average 9.19078446678 Std Dev 6.42457006016 

Second half average 9.78066152795 Std Dev 6.34152195332

It seems that the average temperature is slightly higher in the second half of 
the dataset.

3. Computing yearly average temperatures is simple. For each year, find the 
array indices using the where function corresponding to that year. With the 
indices, we then calculate the mean for each year and store it:
avgs = []
year_range = range(int(years[0]), int(years[-1]) - 1)
 
for year in year_range:
   indices = np.where(years == year)
   avgs.append(avg_temp[indices].mean())
 
plt.plot(year_range, avgs, 'r-', label="Yearly Averages")
plt.plot(year_range, np.ones(len(avgs)) * np.mean(avgs))
plt.legend(prop={'size':'x-small'})
plt.show()

We get the following plot as a result. For comparison, an average of  
all average temperatures is also drawn through the middle of the plot.  
Notice how the yearly average temperatures seem to be on the rise from  
1980 onwards (refer to the global_warming.py file in the Chapter03 folder 
of this book's code bundle).

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 3

[ 57 ]

Comparing solar radiation versus 
temperature
The Sun is of course a very important factor when it comes to temperature. 
Unfortunately, the De Bilt dataset from the KNMI is missing a lot of data  
concerning the Sun's radiation. The data is given in Joule per square centimeter. 
There are also other variables in the file, which are derived from solar radiation,  
such as the sunshine duration in hours.

We are going to analyze the radiation data a bit, draw a histogram, and compare it 
with the daily average temperatures. To compare, we will calculate the correlation 
coefficient between radiation and temperature and plot yearly relative changes 
in average temperature and radiation. Originally it seemed a good idea to have a 
scatter plot, but that didn't look right with thousands of data points, so instead, it 
was decided to compress the data as it were. Later, the author realized that radiation 
was present from around 1960 onwards, so it might have been better to plot the 
correlations coefficient for each year. This is left as an exercise for the reader.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 58 ]

We need to import NumPy, the NumPy masked array module, and Matplotlib.  
The steps to compare solar radiation versus temperature are presented as follows:

1. We will load the dates and convert them to years, and then load the  
average temperature and radiation. The latter misses a lot of values,  
so we will convert the missing values to NaN and then create a masked  
array out of the radiation data:
to_float = lambda x: float(x.strip() or np.nan)
to_year = lambda x: dt.strptime(x, "%Y%m%d").year
 
years, avg_temp, Q = np.loadtxt(sys.argv[1], delimiter=',', 
usecols=(1, 11, 20), unpack=True, converters={1: to_year, 20: to_
float})
ma
# Measurements are in .1 degrees Celsius
avg_temp = .1 * avg_temp
 
Q = ma.masked_invalid(Q)

2. We will have a look at the minimum, maximum, mean, and standard 
deviation of radiation. Additionally, we will print the correlation coefficient 
of temperature and radiation with the corrcoef function. To compute the 
coefficient, we need to match the data properly by avoiding the NaN values. 
Also, we have to get one of the off-diagonal values of the correlation matrix 
that NumPy returns. The compressed method of masked arrays returns all 
the nonmasked data as a one-dimensional array:
print "# temperature values", len(avg_temp), "# radiation values", 
len(Q.compressed())
print "Radiation Min", Q.min(), "Radiation Max", Q.max()
print "Radiation Average", Q.compressed().mean(), "Std  
  Dev", Q.std()
 
match_temp =  avg_temp[np.logical_not(np.isnan(Q))]
print "Correlation Coefficient", np.corrcoef(match_temp,  
  Q.compressed())[0][1]

The script prints the following output:
# temperature values 40996 # radiation values 20361 

Radiation Min 7.0 Radiation Max 3081.0 

Radiation Average 957.156082707 Std Dev 740.68047373 

Correlation Coefficient 0.62767320286

As you can see, the correlation is not that strong.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 3

[ 59 ]

3. We already did yearly averaging. Now we add radiation to be averaged 
yearly. Another thing that we want to do is calculate the relative change of 
the variables we are interested in as percentages. The diff function gives us 
by default the first order difference between neighboring array values:
avg_temps = []
avg_qs = []
year_range = range(int(years[0]), int(years[-1]) - 1)
 
for year in year_range:
   indices = np.where(years == year)
   avg_temps.append(avg_temp[indices].mean())
   avg_qs.append(Q[indices].mean())
 
def percents(a):
   return 100 * np.diff(a)/a[:-1]

4. We will plot the radiation histogram and relative changes in yearly average 
temperature and radiation with Matplotlib. Matplotlib is an open source 
Python plotting library considered by many as part of the basic stack. For 
more information, please refer to Matplotlib for Python Developers, Packt 
Publishing. The second edition of this book was coauthored by the author of 
this book and should be published in 2014.
plt.subplot(211)
plt.title("Global Radiation Histogram")
plt.hist(Q.compressed(), 200)
 
plt.subplot(212)
plt.title("Changes in Average Yearly Temperature & Radiation")
plt.plot(year_range[1:], percents(avg_temps), label='% Change 
Temperature')
plt.plot(year_range[1:], percents(avg_qs), label='% Change 
Radiation')
plt.legend(prop={'size':'x-small'})
plt.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 60 ]

The Matplotlib subplot function creates a tableau or grid from multiple plots. 
In this example, we used 211 to indicate that there will be two plots, and that 
we want this particular plot to be placed in the first row in the first column. 
Similarly, 212 means put the plot on second row in the first column. Refer to 
the following plots and the solar_radiation.py file in the Chapter03 folder 
of this book's code bundle:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 3

[ 61 ]

Analyzing wind direction
Wind is the movement of air due to the difference in atmospheric pressure. The 
KNMI De Bilt data file has a column for the vector mean wind direction in degrees 
(360 = north, 90 = east, 180 = south, 270 = west, 0 = calm/variable). We will plot a 
histogram of that data and compute the corresponding average temperature for each 
wind direction. It seems reasonable to expect that the direction from which the wind 
originates influences temperature. In other words, some locations tend to be warmer 
or colder, so air emanating from there will be warmer or colder, respectively. The 
Netherlands, as you may know, doesn't have any mountains, so we don't have to 
take that into account. We do have to remind ourselves of the proximity of the North 
Sea. The Netherlands has a moderate maritime climate with southwestern winds. We 
can study the wind direction information with the following procedure:

1. We will load the wind direction and average temperatures into NumPy 
arrays. Wind direction has missing values, so some conversion is in order. 
We will create a masked array from the wind direction values:
to_float = lambda x: float(x.strip() or np.nan)
wind_direction, avg_temp = np.loadtxt(sys.argv[1], delimiter=',',  
  usecols=(2, 11), unpack=True, converters={2: to_float})
wind_direction = ma.masked_invalid(wind_direction)

2. We can average wind directions the way we calculated the average of years 
by going over each of the possible wind directions, finding the corresponding 
temperature values, and averaging them:
avgs = []
 
for direction in xrange(360):
   indices = np.where(direction == wind_direction)
   avgs.append(avg_temp[indices].mean())

3. Now, we will plot the wind direction histogram and average temperatures 
per wind direction as follows:
plt.subplot(211)
plt.title("Wind Direction Histogram")
plt.hist(wind_direction.compressed(), 200)
 
plt.subplot(212)
plt.title("Average Temperature vs Wind Direction")
plt.plot(np.arange(360), avgs)
plt.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 62 ]

We get the following plots as a result. Notice the peak in the histogram that 
corresponds to a southwestern wind direction. The average temperature 
seems to be bottoming around 50 degrees.

Analyzing wind speed
Wind speed is a very important value. The KNMI De Bilt data file has daily average 
wind speed data expressed in meters per second as well.

We will load the wind direction, wind speed, and average temperature into NumPy 
arrays. Wind direction and speed have missing values, so some conversion is in 
order. We will create a masked array from the wind direction and speed values:

to_float = lambda x: float(x.strip() or np.nan)
wind_direction, wind_speed, avg_temp =  
  np.loadtxt(sys.argv[1], delimiter=',', usecols=(2, 4,  
  11), unpack=True, converters={2: to_float, 4: to_float})
wind_direction = ma.masked_invalid(wind_direction)
wind_speed = ma.masked_invalid(wind_speed)
print "# Wind Speed values", len(wind_speed.compressed())
print "Min speed", wind_speed.min(), "Max speed",  
  wind_speed.max()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 3

[ 63 ]

print "Average", wind_speed.mean(), "Std. Dev",  
  wind_speed.std()
 
print "Correlation of wind speed and temperature",  
  np.corrcoef(avg_temp[~wind_speed.mask],  
  wind_speed.compressed())[0][1]

We will go through the usual statistics of wind speed—minimum, 
maximum, average, standard deviation, and correlation with 
average temperatures. Note that for the correlation computation, 
we need to match the average temperature values with the valid 
wind speed values. We do that by negating the mask of the wind 
speed array, giving us the indices of valid values.

In the output, we see a weak negative correlation between wind speed and 
temperature as follows:

# Wind Speed values 39871 

Min speed 0.0 

Max speed 16.5 

Average 4.2211381706 

Std. Dev 1.93906822268 

Correlation of wind speed and temperature -0.126166541437

Analyzing precipitation and sunshine 
duration
The KNMI De Bilt data file has a column containing precipitation duration values 
in 0.1 hours. The sunshine duration also given in 0.1 hours is derived from global 
radiation values. Notice the use of the word global and not solar. Hence, there are other 
sources of radiation taken into account here, but details are not very important right 
now. We will plot a histogram of precipitation duration values. However, we will 
omit the days when no rain fell, because there are so many dry days that it skews the 
overall picture. We will also display the monthly average precipitation and sunshine 
durations. The following steps describe the rainfall and sunlight length study:

1. We will load the dates converted into months, sunshine, and precipitation 
duration into NumPy arrays. Again, we convert missing values to NaN.  
The code is as follows:
to_float = lambda x: float(x.strip() or np.nan)
to_month = lambda x: dt.strptime(x, "%Y%m%d").month

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 64 ]

months, sun_hours, rain_hours = np.loadtxt(sys.argv[1],  
  delimiter=',', usecols=(1, 18, 21), unpack=True,  
  converters={1: to_month, 18: to_float, 21: to_float})

2. Before calculating the basic statistics for the precipitation duration, we will 
create masked arrays for the sunshine and rain duration. There is a minor 
detail to take care of. Low values of sunshine duration are written down as 
-1 for some reason. I decided to convert those values to 0. It might have been 
better to completely ignore them. The code is as follows:
# Measurements are in .1 hours 
rain_hours = .1 * ma.masked_invalid(rain_hours)
 
#Get rid of -1 values
print "# -1 values Before", len(sun_hours[sun_hours == -1])
sun_hours[sun_hours == -1] = 0
print "# -1 values After", len(sun_hours[sun_hours == -1])
sun_hours = .1 * ma.masked_invalid(sun_hours)
 
print "# Rain hours values", len(rain_hours.compressed())
print "Min Rain hours ", rain_hours.min(), "Max Rain  
  hours", rain_hours.max()
print "Average", rain_hours.mean(), "Std. Dev",  
  rain_hours.std()

This prints the following output:
# -1 values Before 832 

# -1 values After 0 # Rain hours values 30373 

Min Rain hours 0.0 

Max Rain hours 24.0 

Average 1.65149639482 

Std. Dev 2.78643269679

As expected, the rain duration can be between 0 and 24 hours (or a full day).

3. We can average the sunshine and precipitation duration values quite easily 
over months. First, we create a numerical range for months. Second, we find 
array indices corresponding to each month. Then, we use indices to select 
duration values. The code is as follows:
monthly_rain = []
monthly_sun = []
month_range = np.arange(int(months.min()), int(months.max()))
 
for month in month_range:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 3

[ 65 ]

   indices = np.where(month == months)
   monthly_rain.append(rain_hours[indices].mean())
   monthly_sun.append(sun_hours[indices].mean())

4. The number of dry days is quite high, so we will leave them out in the 
precipitation duration histogram. We will plot bar charts of the average 
monthly rain and sunshine durations. The cal module is used here to 
display abbreviated month names in the plot. The code is as follows:
plt.subplot(211)
plt.title("Precipitation Duration Histogram")
plt.hist(rain_hours[rain_hours > 0].compressed(), 200)
 
width = 0.42
ax = plt.subplot(212)
plt.title("Monthly Precipitation Duration")
plt.bar(month_range, monthly_rain, width, label='Rain  
  Hours')
plt.bar(month_range + width, monthly_sun, width,  
  color='red', label='Sun Hours')
plt.legend()
ax.set_xticklabels(cal.month_abbr[::2])
ax.set_ylabel('Hours')
plt.show()

This gives us the following exciting plots:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 66 ]

It seems that sunshine and precipitation duration are inversely correlated. So there 
must be an inverse correlation with temperatures based on the previous evidence 
in this series. We leave that as an exercise for readers to check. Obviously, the rain 
duration is limited between 0 and 24 hours, with lower values being much more 
likely. We can see clearly that in summer months the sun shines longer and it rains 
less (duration-wise). Similar conclusions can be drawn for other seasons.

Analyzing monthly precipitation in De Bilt
Let's take a look at the De Bilt precipitation data in 0.1 mm from KNMI. They are 
using the convention again of -1 representing low values. We are again going to set 
those values to 0:

1. We will load the dates converted to months, rain amounts, and rain duration 
in hours into NumPy arrays. Again, missing values needed to be converted 
to NaNs. We then create masked arrays for NumPy arrays with missing 
values. The code is as follows:
to_float = lambda x: float(x.strip() or np.nan)
to_month = lambda x: dt.strptime(x, "%Y%m%d").month
months, duration, rain = np.loadtxt(sys.argv[1], delimiter=',', 
usecols=(1, 21, 22), unpack=True, converters={1: to_month, 21: to_
float, 22: to_float})
 
# Remove -1 values
rain[rain == -1] = 0
 
# Measurements are in .1 mm 
rain = .1 * ma.masked_invalid(rain)
 
# Measurements are in .1 hours 
duration = .1 * ma.masked_invalid(duration)

2. We can calculate some simple statistics, such as minimum, maximum, mean, 
standard deviation, and correlation with precipitation duration. The last 
part is a bit tricky, because we need to match valid values. The values for a 
certain date of both precipitation and precipitation duration have to be valid. 
Luckily, this is pretty easy if we define a Boolean condition for masks of the 
arrays. The code is as follows:
print "# Rain values", len(rain.compressed())
print "Min Rain mm ", rain.min(), "Max Rain mm", rain.max()
print "Average", rain.mean(), "Std. Dev", rain.std()
 
mask = ~duration.mask & ~rain.mask

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 3

[ 67 ]

print "Correlation with duration",  
  np.corrcoef(duration[mask], rain[mask])[0][1]

The previous code snippet prints the following values:
# Rain values 39139 

Min Rain mm 0.0 

Max Rain mm 62.3 

Average 2.17747770766 

Std. Dev 4.33715191714 

Correlation with duration 0.779006349536

The correlation of the precipitation quantity with the duration of rain is not very 
strong, but still, it is the strongest correlation we have seen in this series so far.  
The author is convinced that both variables have been measured independently 
unlike sunshine duration, which is derived from global radiation.

Analyzing atmospheric pressure in De 
Bilt
Atmospheric pressure is the pressure exerted by air in the atmosphere. It is defined 
as force divided by area. The KNMI De Bilt data file has measurements in 0.1 hPa for 
average, minimum, and maximum daily pressures. We will plot a histogram of the 
average pressure and monthly minimums, maximums, and averages:

1. We will load the dates converted to months, average, minimum, and 
maximum pressure into NumPy arrays. Again, missing values needed  
to be converted to NaNs. The code is as follows:
to_float = lambda x: 0.1 * float(x.strip() or np.nan)
to_month = lambda x: dt.strptime(x, "%Y%m%d").month
months, avg_p, max_p, min_p = np.loadtxt(sys.argv[1],  
  delimiter=',', usecols=(1, 25, 26, 28), unpack=True,  
  converters={1: to_month, 25: to_float, 26: to_float, 28:  
  to_float})

2. Values are missing from the pressure value columns, so we have to create 
masked arrays out of NumPy arrays. The following code snippet prints  
some simple statistics:
max_p = ma.masked_invalid(max_p)
print "Maximum Pressure", max_p.max()
 
avg_p = ma.masked_invalid(avg_p)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 68 ]

print "Average Pressure", avg_p.mean(), "Std Dev", avg_p.std()
 
min_p = ma.masked_invalid(min_p)
print "Minimum Pressure", min_p.max()

This code snippet prints the following values:
Maximum Pressure 1050.4 

Average Pressure 1015.14058231 Std Dev 9.85889134337 

Minimum Pressure 1045.1

3. You can compute monthly averages, minimums, and maximums with the 
following code:
monthly_pressure = []
maxes = []
mins = []
month_range = np.arange(int(months.min()), int(months.max()))
 
for month in month_range:
   indices = np.where(month == months)
   monthly_pressure.append(avg_p[indices].mean())
   maxes.append(max_p[indices].max())
   mins.append(min_p[indices].min())

4. We will draw a histogram of the average daily pressures and the associated 
Gaussian curve. In addition, we will plot monthly aggregate values as 
prepared in the previous step. The code is as follows:
plt.subplot(211)
plt.title("Pressure Histogram")
a, bins, b = plt.hist(avg_p.compressed(), 200, normed=True)
stdev = avg_p.std()
avg = avg_p.mean()
plt.plot(bins, 1/(stdev * np.sqrt(2 * np.pi)) * np.exp(-  
  (bins - avg)**2/(2 * stdev**2)), 'r-')
 
ax = plt.subplot(212)
plt.title("Monthly Pressure")
plt.plot(month_range, monthly_pressure, 'bo',  
  label="Average")
plt.plot(month_range, maxes, 'r^', label="Maximum Values")
plt.plot(month_range, mins, 'g>', label="Minimum Values")
ax.set_xticklabels(cal.month_abbr[::2])
plt.legend(prop={'size':'x-small'}, loc='best')
ax.set_ylabel('hPa')
plt.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 3

[ 69 ]

The following plots are produced:

As you can see, the bell curve fits the distribution of average daily pressures almost 
perfectly. The monthly average pressure seems to be constant.

Analyzing atmospheric humidity in De Bilt
Relative atmospheric humidity is the percentage of partial water vapor pressure 
of the maximum pressure at the same temperature in the atmosphere. During the 
summer months, high humidity can lead to issues with getting rid of excess heat 
by sweating. Humidity is also related to rain, dew, and fog. The KNMI De Bilt data 
file provides data on daily relative average, minimum, and maximum humidity in 
percentages. We will draw a histogram of the daily relative average humidity and 
monthly chart:

1. We will load the dates converted to months, daily relative average humidity, 
and the minimum and maximum humidity into NumPy arrays. Again, 
missing values needed to be converted into NaNs:
to_float = lambda x: float(x.strip() or np.nan)
to_month = lambda x: dt.strptime(x, "%Y%m%d").month
months, avg_h, max_h, min_h = np.loadtxt(sys.argv[1],  
  delimiter=',', usecols=(1, 35, 36, 38), unpack=True,  
  converters={1: to_month, 35: to_float, 36: to_float, 38:  
  to_float})

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Basic Data Analysis with NumPy

[ 70 ]

2. Values are missing from the relative humidity value columns, so we have 
to create masked arrays out of NumPy arrays. The following code snippet 
prints some simple statistics:
max_h = ma.masked_invalid(max_h)
print "Maximum Humidity", max_h.max()
 
avg_h = ma.masked_invalid(avg_h)
print "Average Humidity", avg_h.mean(), "Std Dev", avg_h.std()
 
min_h = ma.masked_invalid(min_h)
print "Minimum Humidity", min_h.min()

The statistics printed are as follows:
Maximum Humidity 111.0 

Average Humidity 81.6147091109 Std Dev 10.3747295063 

Minimum Humidity 8.0

The maximum relative humidity is above 100, which is kind of odd. We will 
draw a histogram of the relative average daily humidity. In addition, we 
will plot monthly aggregate values (refer to the atmospheric_humidity.
py file in the Chapter03 folder of this book's code bundle). We will get the 
following plots as a result:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 3

[ 71 ]

Something strange is going on with the maximum values. They seem to be above 
100 percent. Maybe the author misunderstood the definition of relative humidity. 
However, the relative average humidity values seem to be between 0 and 100 percent 
as expected.

Summary
This chapter explained a great number of common NumPy functions. We explored 
the data from a KNMI weather station. The exploration is not exhaustive, so I 
encourage you to play with the data on your own. You should have realized by now 
how easy it is to do basic data analysis with NumPy and related Python libraries.

In the next chapter, we will go a step further and try to predict temperature using the 
same data.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics 
with NumPy

Following the exploration of the meteorological data in the previous chapter, we will 
now try to predict temperature. Usually, weather prediction is accomplished with 
complex models and top-of-the-line supercomputers. Most people don't have access 
to such resources, so we will cut corners and use simpler models. The list of topics 
covered in this chapter is as follows:

• Autocorrelation
• Autoregressive models
• Robust statistics

Examining autocorrelation of average 
temperature with pandas
The pandas (Python data analysis) library is just a collection of fancy  
wrappers around NumPy, Matplotlib, and other Python libraries. You can  
find more information including installation instructions on the pandas website  
at http://pandas.pydata.org/pandas-docs/stable/install.html. Most good 
APIs such as NumPy seem to follow the Unix philosophy—keep it simple and do 
one thing well. This philosophy results in many small tools and utilities that can 
be used as building blocks for something bigger. The pandas library mimics the R 
programming language in its approach.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://pandas.pydata.org/pandas-docs/stable/install.html
http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 74 ]

The pandas library has plotting subroutines, which can plot lag and autocorrelation 
plots. Autocorrelation is correlation within a dataset and can be indicative of a trend. 
For instance, if we have a lag of one day, we can see if the average temperature 
of yesterday influences the temperature today. For that to be the case, the 
autocorrelation value needs to be relatively high.

Pandas can also be used to resample data. Let's now learn how to resample the daily 
average temperature of the De Bilt data to give us annual averages.

In the following code snippets, pd refers to the imported pandas module. We will 
skip the imports and loading of data (for more details, see the pandas_plots.py  
file in the Chapter04 folder of this book's code bundle). Let us now plot lagged  
data with the help of the following steps:

1. Create a DatetimeIndex object from a list of dates:
dtidx = pd.DatetimeIndex([dt.fromordinal(int(date)) for  
  date in dates])

2. Create a pandas Series array, which is a time series array. We have to 
multiply the temperatures by 0.1 because of the way temperatures are 
written down in the file:
data = pd.Series(avg_temp * .1, index=dtidx)

3. Graph the lag plot as follows:
lag_plot(data)

The following lag plot is obtained, in which the next value y(t+1) in the time 
series is plotted against the previous value y(t):

4. Plot the autocorrelation as follows:
autocorrelation_plot(data)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 75 ]

This could result in the following chart:

As you can see, the autocorrelation goes down with greater lag. This is 
important to remember for later.

5. Resample to annual (denoted by 'A') averages, and plot the resampled data 
as follows:
resampled = data.resample('A')
resampled.plot()

The resampled plot is shown as follows with the year against the  
average temperature:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 76 ]

You would have noticed that we did the same resampling in the previous chapter 
with plain NumPy, and it was a bit more work.

Describing data with pandas DataFrames
Luckily, pandas has descriptive statistics utilities. We will read the average wind 
speed, temperature, and pressure values from the KNMI De Bilt data file into a 
pandas DataFrame. This object is similar to the R dataframe, which is like a data table 
in a spreadsheet or a database. The columns are labeled, the data can be indexed, and 
you can run computations on the data. We will then print out descriptive statistics 
and a correlation matrix as shown in the following steps:

1. Read the CSV file with the pandas read_csv function. This function works in 
a similar fashion to the NumPy load_txt function:
to_float = lambda x: .1 * float(x.strip() or np.nan)
to_date = lambda x: dt.strptime(x, "%Y%m%d")
cols = [4, 11, 25]
conv_dict = dict( (col, to_float) for col in cols) 

conv_dict[1] = to_date
cols.append(1)
 
headers = ['dates', 'avg_ws', 'avg_temp', 'avg_pres']
df = pd.read_csv(sys.argv[1], usecols=cols, names=headers,  
  index_col=[0], converters=conv_dict)

2. Print the descriptive statistics with the functions described in the  
following table:

Function Description
head This is similar to the head Unix command and selects the first 

records of the DataFrame
tail This is similar to the tail Unix command and selects the last 

records of the DataFrame
describe This computes some predefined descriptive statistics
corr This calculates the correlation matrix

The code is as follows:
print df.head()
print
 
print df.tail()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 77 ]

print
 
print df.describe()
print
 
print df.corr()

The output is as follows:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 78 ]

Correlating weather and stocks with 
pandas
We will try to correlate stock market data for the Netherlands with the DataFrame 
we produced last time from the KNMI De Bilt weather data. As a proxy for the stock 
market, we will use closing prices of the EWN ETF. This might not be the best choice, 
by the way, so if you have a better idea, please use the appropriate stock ticker. The 
steps for this exercise are provided as follows:

1. Download the EWN data from Yahoo Finance, with a special function.  
The code is as follows:
#EWN start Mar 22, 1996
start = dt(1996, 3, 22)
end = dt(2013, 5, 4)

symbol = "EWN"
quotes = finance.quotes_historical_yahoo(symbol, start,  
  end, asobject=True)

2. Create a DataFrame object with the available dates in the downloaded data:
df2 = pd.DataFrame(quotes.close, index=dt_idx,  
  columns=[symbol])

3. Join the new DataFrame object with DataFrame of the weather data. We will 
then obtain the correlation matrix:
df3 = df.join(df2)

print df3.corr()

The correlation matrix is as follows:

As you can observe, the correlation between stock price and weather parameters is 
quite weak.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 79 ]

Predicting temperature
Temperature is a thermodynamic variable, which quantifies being hot or cold. 
To predict temperature, we can apply our knowledge of thermodynamics and 
meteorology. This in general would result in the creation of complex weather models 
with a multitude of inputs. However, this is beyond the scope of this book, so we 
will try to keep our continuing example simple and manageable.

Autoregressive model with lag 1
What will the temperature be tomorrow? Probably, the same as today but a bit 
different. We can assume that temperature is a function of the temperature of the 
preceding day. This can be justified with the autocorrelation plot that we created 
earlier. To keep it simple, we will assume further that the function is a polynomial. 
We will define a cutoff point to be used for the fit. Ninety percent of the data should 
be used for that purpose. Let's model this idea with NumPy:

1. Fit the data to polynomials of different degrees with the polyfit function as 
shown in the following line of code:
poly = np.polyfit( avg_temp[: cutoff - 1], avg_temp[1 :  
  cutoff], degree)

2. Compute values based on the polynomial obtained in the previous step. 
Here, we use the remaining 10 percent of the data. The code is as follows:
fit = np.polyval(poly, avg_temp[cutoff:-1])

3. Calculate the absolute difference between the actual temperature and the 
predicted temperatures:
delta = np.abs(avg_temp[cutoff + 1:] - fit)

4. For each polynomial fit, the calculated percentage of deltas is within 1, 2, or 3 
degrees Celsius error range, as shown in the following screenshot:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 80 ]

As you can see, higher order polynomials give almost the same accuracy as the  
first-degree polynomial.

Autoregressive model with lag 2
Looking back two days, in theory, could make our model more accurate. Although, 
this is not guaranteed since the autocorrelation associated with lag 2 is not that 
strong. In NumPy, we have several ways to set up the model. Here I chose to do 
it with the lstsq function. We assume some kind of linear combination for the 
lag 1 and lag 2 components, and then apply linear regression. The method can be 
extended for a longer look-back period, but it probably is enough to stick to lag 2 for 
now. The steps for this exercise are provided as follows:

1. Set up a matrix A, and put in it the values for lags 2 and 1 up to the cutoff 
point. The code is as follows:
A = np.zeros((2, cutoff - 2), float)
 
A[0, ] = temp[:cutoff - 2]
A[1, ] = temp[1 :cutoff - 1]

2. Create a vector b with the values we want to fit to:
b = temp[2 : cutoff]

3. Solve the equation Ax = b. The code is as follows:
(x, residuals, rank, s) = np.linalg.lstsq(A.T, b)
print x

The coefficients for lags 1 and 2 are printed as follows:
[-0.08293789  1.06517683]

4. Predict values above the cutoff point:
fit = x[0] * temp[cutoff-1:-2] + x[1] * temp[cutoff:-1]

5. Calculate the absolute errors:
delta = np.abs(temp[cutoff + 1:] - fit)

6. Plot a histogram of the absolute errors:
plt.hist(delta, bins = 10, normed=True)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 81 ]

The histogram for the absolute error is given as follows (refer to the lag2.py 
file in the Chapter04 folder of this book's code bundle):

Analyzing intra-year daily average 
temperatures
We are going to have a look at the temperature variation within a year by converting 
dates to the corresponding day of the year in numbers. This number is between 1 and 
366, where 1 corresponds to January 1st and 365 (or 366) corresponds to December 
31st. Perform the following steps to analyze the intra-year daily average temperature:

1. Initialize arrays for the range 1-366 with averages initialized to zeros:
rng = np.arange(1, 366)
avgs = np.zeros(365)
avgs2 = np.zeros(365)

2. Calculate averages by the day of the year before and after a cutoff point:
for i in rng: 
   indices = np.where(days[:cutoff] == i)
   avgs[i-1] = temp[indices].mean()
   indices = np.where(days[cutoff+1:] == i)
   avgs2[i-1] = temp[indices].mean()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 82 ]

3. Fit the averages before the cutoff point to a quadratic polynomial (just a first-
order approximation):
poly = np.polyfit(rng, avgs, 2)
print poly

The following polynomial coefficients in descending power are printed:
[ -4.91329859e-04   1.92787493e-01  - 
  3.98075418e+00]

4. Plot the average after the cutoff point, and display a fit using the polynomial 
we obtained:
plt.plot(avgs2)
plt.plot(np.polyval(poly, rng))
plt.show()

As you can see in the following plot, the fit is pretty good but not perfect. In 
the middle of the year, as you can observe around summer, we have peak 
temperatures. In January and December, the temperature hits bottom.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 83 ]

Introducing the day-of-the-year 
temperature model
Continuing with the work we did in the previous example, I would like to propose 
a new model, where temperature is a function of the day of the year (between 1 and 
366). Of course, this model is not complete, but can be used as a component in a more 
advanced model, which should take into account the previous autoregressive model 
that we did with lag 2. The procedure for this model is illustrated as follows:

1. Fit the temperature data before the cutoff point to a quadratic polynomial 
just as in the previous section but without averaging:
poly = np.polyfit(days[:cutoff], temp[:cutoff], 2)
print poly

Believe it or not, we get the same polynomial coefficients we got earlier:
[ -4.91072584e-04   1.92682505e-01  -3.97182941e+00]

2. Calculate the absolute difference between the predicted and actual values:
delta = np.abs(np.polyval(poly, days[cutoff:]) -  
  temp[cutoff:])

3. Plot a histogram of the absolute error:
plt.hist(delta, bins = 10, normed = True)
plt.show()

Refer to the following plot. It seems that we got a better result with the 
autoregressive model.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 84 ]

Modeling temperature with the SciPy 
leastsq function
So, now we have two ideas: either the temperature today depends on the 
temperature yesterday and the day before yesterday, and we assume that some  
kind of linear combination is formed, or the temperature depends on a day of the 
year (between 1 and 366). We can combine these ideas, but then the question is how. 
It seems that we could have a multiplicative model or an additive model.

Let's choose the additive model since it seems simpler. This means that we assume that 
temperature is the sum of the autoregressive component and a cyclical component. 
It's easy to write this down into one equation. We will use the SciPy leastsq function 
to minimize the square of the error of this equation. The procedure for this model is 
illustrated as follows:

1. Define a function that computes the error of our model. The code is  
as follows:
def error(p, d, t, lag2, lag1):
   l2, l1, d2, d1, d0 = p
 
   return t - l2 * lag2 + l1 * lag1 + d2 * d ** 2 + d1 * d  
  + d0

2. Give an initial guess for all the parameters in our equation:
p0 = [-0.08293789,  1.06517683, -4.91072584e-04,    
  1.92682505e-01,  -3.97182941e+00]

The values here come from the previous programs, but in principle you 
could use other values as long as the solution converges sufficiently fast.

3. Apply the leastsq function as shown in the following lines of code:
params = leastsq(error, p0, args=(days[2:cutoff],  
  temp[2:cutoff], temp[:cutoff - 2], temp[1 :cutoff -  
  1]))[0]
print params

4. The final parameters of the model are printed as follows. It looks like all 
parameters except the first one have decreased in absolute size. I don't 
know if that's coincidental, but as far as I know, the order of the parameters 
shouldn't matter.
[ -1.52297691e-01  -9.89195783e-01   8.20879954e-05  - 
  3.16870659e-02    6.06397834e-01]

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 85 ]

5. We then calculate the absolute error for the model applied above the cutoff 
point and plot the histogram of the error. The code is omitted here for the 
sake of brevity.
Refer to the following plot. The accuracy of the model doesn't seem to be 
better than the simple autoregressive model with lag 2.

Day-of-year temperature take two
The quadratic polynomial approximation for the day-of-the-year temperature  
fit can be improved upon. We haven't used any of the NumPy trigonometric 
functions until now. Those should be a good fit for this problem. So, let's try a 
trigonometric function and fit again using a function from the scipy.optimize 
module (leastsq to be precise) as follows:

1. Set up a simple model function and an error function to be minimized,  
as shown in the following code snippet:
def model(p, d):
   a, b, w, c = p
   return a + b * np.cos(w * d + c)
 
def error(p, d, t):
   return t - model(p, d)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 86 ]

2. Give the initial guess and fit the data:
p0 = [.1, 1, .01, .01]
params = leastsq(error, p0, args=(days, temp))[0]
print params

We get the following parameters:
[ 9.6848106  -7.59870042 -0.01766333 -5.83349705]

Here, -2 pi over 365 is equal to the third parameter. I believe that the 
first parameter is equal to the average of all the temperatures, and 
we can come up with similar explanations for the other parameters. 
Calculate averages for each day of the year and plot averages and fitted 
values. We have done this before, so this part of the code is omitted.

We get the fit in the following chart:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 87 ]

Moving-average temperature model with 
lag 1
The moving average model of a time series represents the data as oscillations around 
the mean of the data. It is assumed that the lag components are white noise (not a 
politically incorrect term as far as I know), which forms a linear combination. We 
will again use the leastsq function to fit a model:

1. We will start off with a simple moving-average model. It has only one lag 
component and therefore only one coefficient. The code snippet is as follows:
def model(p, ma1):
   return p * ma1

2. Call the leastsq function. Here, we subtract the mean from the data:
params = leastsq(error, p0, args=(temp[1:cutoff] - mu,  
  temp[:cutoff-1] - mu))[0]
print params

The program prints the following parameter:
[ 0.94809073]

We get the following plot for the absolute error histogram, which is 
comparable to the autoregressive model results:

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 88 ]

The Autoregressive Moving Average 
temperature model
The Autoregressive Moving Average (ARMA) model mixes the Autoregressive 
(AR) and Moving Average (MA) models. We have already discussed both models. 
Informally, we can say that we have the autoregressive component with white noise 
around it. Part of this white noise can be modeled as a linear combination of lag 
components plus some constant as follows:

1. Define an autoregressive model with lag 2 using linear coefficients we 
obtained with a previous script:
def ar(a):
   ar_p = [1.06517683, -0.08293789]
 
   return ar_p[0] * a[1:-1] + ar_p[1] * a[:-2]

2. Define the moving average model with lag 1:
def model(p, ma1):
   c0, c1 = p
 
   return c0 + c1 * ma1

3. Subtract the autoregressive model values from the data, giving us the error 
terms (white noise):
err_terms = temp[cutoff+1:] - ar(temp[cutoff-1:])

Most of the code for this model should appear familiar to you as shown in 
the following code:
import sys
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime as dt
from scipy.optimize import leastsq
 
temp = .1 * np.loadtxt(sys.argv[1], delimiter=',',  
  usecols=(11,), unpack=True)
cutoff = 0.9 * len(temp)
 
def model(p, ma1):

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 89 ]

   c0, c1 = p
 

   return c0 + c1 * ma1
 

def error(p, t, ma1):
   return t - model(p, ma1)
 
p0 = [.1, .1]
 
def ar(a):
   ar_p = [1.06517683, -0.08293789]
 
   return ar_p[0] * a[1:-1] + ar_p[1] * a[:-2]
 
err_terms = temp[2:cutoff] - ar(temp[:cutoff])
params = leastsq(error, p0, args=(err_terms[1:],  
  err_terms[:-1]))[0]
print params
 
err_terms = temp[cutoff+1:] - ar(temp[cutoff-1:])
delta = np.abs(error(params, err_terms[1:], err_terms[:- 
  1]))
print "% delta less than 2", (100. * len(delta[delta <=  
  2]))/len(delta)
 
plt.hist(delta, bins = 10, normed = True)
plt.show()

The output of the script is as follows:
[ 0.16506278  0.01041355] 

% delta less than 2 69.7169350903

The time-dependent temperature mean 
adjusted autoregressive model
It's a mouthful, but it's not nearly as complicated as it sounds. Let's parse the title in 
the following points:

• As we found out, the average temperature for each day of the year seems to 
fit an annual cycle. It may have to do with the rotation of the Earth around 
the Sun.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 90 ]

• There appears to be a trend of increasing temperature. Some have called 
that global warming and blame industry and human beings in general for it. 
Without getting into a political discussion, let's assume that there is truth in 
this claim. Further, let's assume for now that this trend depends on the year. 
I know I will get into trouble for this, but let's also assume for now that the 
relation is based on a first-degree polynomial (a straight line).

• For the sake of argument, let's claim that the previous two points together 
form a time-dependent mean. We will model what is left over as a linear 
combination of autoregressive lag components.

We need to perform the following steps to set up and create the model:

1. Create arrays for the day of the year, years, and temperature.
2. Average the temperature for each day of the year.
3. Subtract the day-of-the-year average values from the values in the  

previous step.
4. Fit the remainder to a straight line and subtract the fit from the remainder.
5. Do a least squares fit to an autoregressive model with lag 2.

Predict the temperature according to this model and plot the absolute error.

The code is straightforward and given as follows:

import sys
import numpy as np
import matplotlib.pyplot as plt
from datetime import datetime as dt
from scipy.optimize import leastsq
 
to_ordinal = lambda x: dt.strptime(x, "%Y%m%d").toordinal()
ordinals, temp = np.loadtxt(sys.argv[1], delimiter=',', usecols=(1, 
11), unpack=True, converters={1: to_ordinal})
days = np.array([dt.fromordinal(int(d)).timetuple().tm_yday for d in 
ordinals])
years = np.array([dt.fromordinal(int(d)).year for d in ordinals])
temp = .1 * temp
cutoff = 0.9 * len(temp)
 
avgs = np.zeros(366)
 
for i in xrange(1, 366):
   indices = np.where(days[:cutoff] == i)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 91 ]

   avgs[i-1] = temp[indices].mean()
 
def subtract_avgs(a, doy):
   return a - avgs[doy.astype(int)-1]
 
def subtract_trend(a, poly, b):
   return a - poly[0] * b - poly[1]
 
def print_stats(a):
   print "Min", a.min(), "Max", a.max(), "Mean", a.mean(), "Std", 
a.std()
   print
 
# Step 1. DOY avgs
less_avgs = subtract_avgs(temp[:cutoff], days[:cutoff])
print "After Subtracting DOY avgs"
print_stats(less_avgs)
 
# Step 2. Linear trend
trend = np.polyfit(years[:cutoff], less_avgs, 1)
print "Trend coeff", trend
less_trend = subtract_trend(less_avgs, trend, years[:cutoff])
print "After Subtracting Linear Trend"
print_stats(less_trend)
 
def model(p, lag2, lag1):
   l1, l2 = p
 
   return l2 * lag2 + l1 * lag1
 
def error(p, t, lag2, lag1):
   return t - model(p, lag2, lag1) 
 
p0 = [1.06517683, -0.08293789]
params = leastsq(error, p0, args=(less_trend[2:], less_trend[:-2], 
less_trend[1:-1]))[0]
print "AR params", params
 
#Step 1. again
less_avgs = subtract_avgs(temp[cutoff+1:], days[cutoff+1:])
 
#Step 2. again

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 92 ]

less_trend = subtract_trend(less_avgs, trend, years[cutoff+1:])
 

delta = np.abs(error(params, less_trend[2:], less_trend[:-2], less_
trend[1:-1]))
print "% delta less than 2", (100. * len(delta[delta <= 2]))/
len(delta)
 

plt.hist(delta, bins = 10, normed = True)
plt.show()

The following output is printed:

Outliers analysis of average De Bilt 
temperature
Outliers are values in a dataset that are to be considered extreme. Outliers can be 
caused by measurement or other types of errors, or they could be caused by a natural 
phenomenon. There are several definitions for outliers. In this example, we will be 
using the definition for mild outliers. This definition depends on the position of the 
first and the third quartiles. A quarter and three quarters of the items in the dataset 
are smaller than the first and third quartile values, respectively. The difference 
between these specific quartiles is called the inter-quartile range. It's a robust 
measure for dispersion similar to standard deviation. Mild outliers are defined to be 
1.5 inter-quartile ranges away from either the first or third quartile. We can study the 
temperature outliers as follows:

1. Find the first quartile with a function from SciPy:
q1 = scoreatpercentile(temp, 25)

2. Find the third quartile:
q3 = scoreatpercentile(temp, 75)

3. Find the indices of the mild outliers:
indices = np.where(temp < (q1 - N * irq))

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 93 ]

4. Plot the differences of the indices (showing clustering) and the outliers:
plt.subplot(211)
plt.plot(np.diff(indices)[0])
plt.title('Indices Diff')
plt.subplot(212)
plt.title('Outliers Temperature')
plt.plot(outliers)
plt.show()

The following NumPy code analyzes outliers and tries to find out whether any 
clustering of outliers occurs:

import sys
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import scoreatpercentile
from datetime import datetime as dt
 
to_ordinal = lambda x: dt.strptime(x, "%Y%m%d").toordinal()
ordinals, temp = np.loadtxt(sys.argv[1], delimiter=',', usecols=(1, 
11), unpack=True, converters={1: to_ordinal})
temp = .1 * temp
q1 = scoreatpercentile(temp, 25)
print "1st Quartile", q1
q3 = scoreatpercentile(temp, 75)
print "3rd Quartile", q3
irq = q3 - q1
print "Std", temp.std(), "IRQ", irq
N = 1.5 
print len(temp[temp > (q3 + N * irq)])
indices = np.where(temp < (q1 - N * irq))
 
outliers =  temp[indices]
print "#Outliers", len(outliers)
plt.subplot(211)
plt.plot(np.diff(indices)[0])
plt.title('Indices Diff')
plt.subplot(212)
plt.title('Outliers Temperature')
plt.plot(outliers)
plt.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Simple Predictive Analytics with NumPy

[ 94 ]

It becomes clear that the outliers are on the colder side as shown in the  
following output:

The following plot shows some clustering, but no regular pattern as far as I can see:

Using more robust statistics
We can make our code from the The time-dependent temperature mean adjusted 
autoregressive model section more robust by doing the following:

• Computing the median instead of the mean
avgs[i-1] = np.median(temp[indices])

• Ignoring the outliers with a masked array
temp[:cutoff] = ma.masked_array(temp[:cutoff],  
  temp[:cutoff] < (q1 - 1.5 * irq))

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 4

[ 95 ]

We get slightly different output with the modified code, with about 70 percent of the 
values predicted having an absolute error of less than 2 degrees Celsius:

AR params [ 0.95095073 -0.17373633]

% delta less than 2 70.8567244325

Summary
In this chapter, we learned several simple techniques to predict temperature.  
Of course, they are not at the level of meteorologists who have access to 
supercomputers and can apply complex equations. But we did come pretty  
far with our simple approach.

In the next chapter, we will switch to different datasets. The next chapter will focus 
on signal processing techniques.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Signal Processing 
Techniques

We will learn about some signal-processing techniques in this chapter, and we will 
analyze time-series data with these. As example data, we will use the sunspot data 
provided by a Belgian scientific institute. We can download this data from several 
places on the Internet, and it is also provided as sample data by the statsmodels 
library. There are a number of things we can do with the data, such as:

• Trying to determine periodic cycles within the data. This can be done, but 
this is a bit advanced, so we will just get you started.

• Smoothing the data to filter out noise.
• Forecasting.

Introducing the Sunspot data
Sunspots are dark spots visible on the Sun's surface. This phenomenon has  
been studied for many centuries by astronomers. Evidence has been found for 
periodic sunspot cycles. We can download up-to-date annual sunspot data from 
http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual. This  
is provided by the Belgian Solar Influences Data Analysis Center. The data goes  
back to 1700 and contains more than 300 annual averages. In order to determine 
sunspot cycles, scientists successfully used the Hilbert-Huang transform (refer to 
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform). A major 
part of this transform is the so-called Empirical Mode Decomposition (EMD) 
method. The entire algorithm contains many iterative steps, and we will cover only 
some of them here. EMD reduces data to a group of Intrinsic Mode Functions (IMF). 
You can compare this to the way Fast Fourier Transform decomposes a signal in a 
superposition of sine and cosine terms.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.quandl.com/SIDC/SUNSPOTS_A-Sunspot-Numbers-Annual
http://en.wikipedia.org/wiki/Hilbert%E2%80%93Huang_transform
http://www.it-ebooks.info/


Signal Processing Techniques

[ 98 ]

Extracting IMFs is done via a sifting process. The sifting of a signal is related to 
separating out components of a signal one at a time. The first step of this process is 
identifying local extrema. We will perform the first step and plot the data with the 
extrema we found. Let's download the data in CSV format. In Chapter 3, Basic Data 
Analysis with NumPy, we learned how to load CSV files into NumPy arrays, so, if 
necessary, please go back to read up on that. We also need to reverse the array to 
have it in the correct chronological order (see Chapter 2, NumPy Basics, for details 
if needed). The following code snippet finds the indices of the local minima and 
maxima respectively:

mins = signal.argrelmin(data)[0]
maxs = signal.argrelmax(data)[0]

Now we need to concatenate these arrays and use the indices to select the 
corresponding values. The following code accomplishes that and also plots the data:

import numpy as np
import sys
import matplotlib.pyplot as plt
from scipy import signal

data = np.loadtxt(sys.argv[1], delimiter=',', usecols=(1,), 
unpack=True, skiprows=1) 
#reverse order
data = data[::-1]

mins = signal.argrelmin(data)[0]
maxs = signal.argrelmax(data)[0]
extrema = np.concatenate((mins, maxs))

year_range = np.arange(1700, 1700 + len(data))

plt.plot(1700 + extrema, data[extrema], 'go')
plt.plot(year_range, data)
plt.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 5

[ 99 ]

We will see the following chart:

In this plot, you can see the extrema is indicated with dots.

Sifting continued
The next steps in the sifting process require us to interpolate with a cubic  
spline of the minima and maxima. This creates an upper envelope and a lower 
envelope, which should surround the data. The mean of the envelopes is needed  
for the next iteration of the EMD process. We can interpolate minima with the 
following code snippet:

spl_min = interpolate.interp1d(mins, data[mins], kind='cubic')
min_rng = np.arange(mins.min(), mins.max())
l_env = spl_min(min_rng)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Signal Processing Techniques

[ 100 ]

Similar code can be used to interpolate the maxima. We need to be aware that the 
interpolation results are only valid within the range over which we are interpolating. 
This range is defined by the first occurrence of a minima/maxima and ends at the 
last occurrence of a minima/maxima. Unfortunately, the interpolation ranges we 
can define in this way for the maxima and minima do not match perfectly. So, for 
the purpose of plotting, we need to extract a shorter range that lies within both the 
maxima and minima interpolation ranges. Have a look at the following code:

import numpy as np
import sys
import matplotlib.pyplot as plt
from scipy import signal
from scipy import interpolate

data = np.loadtxt(sys.argv[1], delimiter=',', usecols=(1,), 
unpack=True, skiprows=1) 
#reverse order
data = data[::-1]

mins = signal.argrelmin(data)[0]
maxs = signal.argrelmax(data)[0]
extrema = np.concatenate((mins, maxs))

year_range = np.arange(1700, 1700 + len(data))
spl_min = interpolate.interp1d(mins, data[mins], kind='cubic')
min_rng = np.arange(mins.min(), mins.max())
l_env = spl_min(min_rng)

spl_max = interpolate.interp1d(maxs, data[maxs], kind='cubic')
max_rng = np.arange(maxs.min(), maxs.max())
u_env = spl_max(max_rng)

inclusive_rng = np.arange(max(min_rng[0], max_rng[0]), min(min_rng[-
1], max_rng[-1]))
mid = (spl_max(inclusive_rng) + spl_min(inclusive_rng))/2

plt.plot(year_range, data)
plt.plot(1700 + min_rng, l_env, '-x')
plt.plot(1700 + max_rng, u_env, '-x')
plt.plot(1700 + inclusive_rng, mid, '--')
plt.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 5

[ 101 ]

The code produces the following chart:

What you see is the observed data, with computed envelopes and mid line. 
Obviously, negative values don't make any sense in this context. However, for the 
algorithm we only need to care about the mid line of the upper and lower envelopes. 
In these first two sections, we basically performed the first iteration of the EMD 
process. The algorithm is a bit more involved, so we will leave it up to you whether 
or not you want to continue with this analysis on your own.

Moving averages
Moving averages are tools commonly used to analyze time-series data. A moving 
average defines a window of previously seen data that is averaged each time the 
window slides forward one period. The different types of moving average differ 
essentially in the weights used for averaging. The exponential moving average, for 
instance, has exponentially decreasing weights with time. This means that older 
values have less influence than newer values, which is sometimes desirable. 

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Signal Processing Techniques

[ 102 ]

We can express an equal-weight strategy for the simple moving average as follows in 
the NumPy code:

weights = np.exp(np.linspace(-1., 0., N))
weights /= weights.sum()

A simple moving average uses equal weights which, in code, looks as follows:

def sma(arr, n):
   weights = np.ones(n) / n

   return np.convolve(weights, arr)[n-1:-n+1]

The following code plots the simple moving average for the 11- and 22-year  
sunspot cycle:

import numpy as np
import sys
import matplotlib.pyplot as plt

data = np.loadtxt(sys.argv[1], delimiter=',', usecols=(1,),        
unpack=True, skiprows=1) 
#reverse order
data = data[::-1]

year_range = np.arange(1700, 1700 + len(data))

def sma(arr, n):
   weights = np.ones(n) / n

   return np.convolve(weights, arr)[n-1:-n+1]

sma11 = sma(data, 11)
sma22 = sma(data, 22)

plt.plot(year_range, data, label='Data')
plt.plot(year_range[10:], sma11, '-x', label='SMA 11')
plt.plot(year_range[21:], sma22, '--', label='SMA 22')
plt.legend()
plt.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 5

[ 103 ]

In the following plot, we see the original data and the simple moving averages for 
11- and 22-year periods. As you can see, moving averages are not a good fit for this 
data; this is generally the case for sinusoidal data.

Smoothing functions
Smoothing can help us get rid of noise and outliers in raw data. This, for  
instance, makes it easier to spot trends in the data. NumPy provides a  
number of smoothing functions.

These functions can calculate weights in a sliding window as we 
did in the previous example (for more background information, 
visit http://en.wikipedia.org/wiki/Window_function).

These functions, except the kaiser function, require only one parameter—the size 
of the window, which we will set to 22 for the middle cycle of the sunspot data. 
The kaiser function also needs a beta parameter. With this parameter, the kaiser 
function can mimic the other functions. 

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://en.wikipedia.org/wiki/Window_function
http://www.it-ebooks.info/


Signal Processing Techniques

[ 104 ]

The NumPy documentation recommends a starting value of 14 for the beta 
parameter, so that is what we are going to use too. The code is straightforward 
and given as follows (the data here is limited to the last 50 years only for easier 
comparison in the plots):

import numpy as np
import sys
import matplotlib.pyplot as plt

def smooth(weights, arr):
   return np.convolve(weights/weights.sum(), arr)

data = np.loadtxt(sys.argv[1], delimiter=',', usecols=(1,), 
unpack=True, skiprows=1) 
#reverse order
data = data[::-1]

#Select last 50 years
data = data[-50:]
year_range = np.arange(1963, 2013)
print len(data), len(year_range)

plt.plot(year_range, data, label="Data")
plt.plot(year_range, smooth(np.hanning(22), data)[21:], 'x', 
label='Hanning 22')
plt.plot(year_range, smooth(np.bartlett(22), data)[21:], 'o', 
label='Bartlett 22')
plt.plot(year_range, smooth(np.blackman(22), data)[21:], '--', 
label='Blackman 22')
plt.plot(year_range, smooth(np.hamming(22), data)[21:], '^', 
label='Hamming 22')
plt.plot(year_range, smooth(np.kaiser(22, 14), data)[21:], ':', 
label='Kaiser 22')
plt.legend()
plt.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 5

[ 105 ]

In the following plot, we can see that the result of the window functions doesn't 
differ much:

Forecasting with an ARMA model
In the previous chapter, Chapter 4, Simple Predictive Analytics with NumPy, we 
learned about autoregressive models. ARMA is a generalization of these models 
that adds an extra component—the moving average. ARMA models are frequently 
used to predict values of a time-series. These models combine autoregressive and 
moving-average models. Autoregressive models predict values by assuming that a 
linear combination is formed by the previously encountered values. For instance, 
we can consider a linear combination, which is formed from the previous value 
in the time-series and the value before that. This is also named an AR(2) model 
since we are using components that lag two periods. In our case, we would be 
looking at the number of sunspots one year before and two years before the 
period we are predicting. In an ARMA model, we try to model the residues that 
we cannot explain from the previous period data (also known as unexpected 
components). Here, a linear combination is assumed again. So an ARMA (ARMA 
(2, 1)) model, which we will attempt here is the sum of an AR(2) model and a linear 
combination of the first order residues (see http://en.wikipedia.org/wiki/
Autoregressive%E2%80%93moving-average_model). Luckily, we can use the 
statsmodels functions for this analysis. 

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-average_model
http://www.it-ebooks.info/


Signal Processing Techniques

[ 106 ]

We will also be using the sample sunspot data that is a part of the statsmodels 
distribution. This dataset might not be up to date depending on when you last 
installed statsmodels. In any case, you can always just use the dataset mentioned  
in the first section of this chapter. Forecasting can be done with the following steps:

1. Load the data in a DataFrame pandas. We also have to specify the available 
year ranges and get rid of the Year column using the following code:
df = sm.datasets.sunspots.load_pandas().data

df.index = pandas.Index(sm.tsa.datetools.dates_from_range('1700', 
'2008'))
del df["YEAR"]

2. Fit the data to an ARMA(2,1) model using the following code:
model = sm.tsa.ARMA(df, (2,1)).fit()

3. Do a forecast using the following code:
prediction = model.predict('1984', str(year_today), dynamic=True)

The following code is the complete code listing with plotting:

import numpy as np
from scipy import stats
import pandas

import matplotlib.pyplot as plt
import statsmodels.api as sm
import datetime

df = sm.datasets.sunspots.load_pandas().data

df.index = pandas.Index(sm.tsa.datetools.dates_from_range('1700', 
'2008'))
del df["YEAR"]

model = sm.tsa.ARMA(df, (2,1)).fit()

year_today = datetime.date.today().year

#Big Brother is watching you!
prediction = model.predict('1984', str(year_today), dynamic=True)

df.plot()
prediction.plot(style='--', label='Prediction');
plt.legend();
plt.show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 5

[ 107 ]

Refer to the following chart of prediction and actual data:

Filtering a signal
Another common signal processing technique is filtering. This is a big topic, and we 
could create all sorts of filters. We will only create a very basic filter here. Again, we 
will use the sunspot data as input.

The iirdesign function, as its name suggests, allows us to construct several types of 
analog and digital filters.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Signal Processing Techniques

[ 108 ]

Designing the filter
Design the filter with the iirdesign function of the scipy.signal module.

IIR stands for Infinite Impulse Response; for more information, 
visit http://en.wikipedia.org/wiki/Infinite_
impulse_response.

We are not going to go into all the details of the iirdesign function. Have a 
look at the documentation if necessary at http://docs.scipy.org/doc/scipy/
reference/generated/scipy.signal.iirdesign.html. In short, the following  
are the parameters we will set:

• Frequencies normalized from 0 to 1.
• Maximum loss.
• Minimum attenuation.
• Filter type.

Designing the filter can be done with the following code:

b,a = scipy.signal.iirdesign(wp=0.2, ws=0.1, gstop=60, gpass=1, 
ftype='but ter')

The configuration of this filter corresponds to a Butterworth 
bandpass filter (http://en.wikipedia.org/wiki/
Butterworth_filter).

We can apply the filter with the scipy.signal.lfilter function. It accepts  
as arguments the values from the previous step and, of course, the data array,  
to filter, as shown in the following code:

filtered = scipy.signal.lfilter(b, a, data)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://en.wikipedia.org/wiki/Infinite_impulse_response
http://en.wikipedia.org/wiki/Infinite_impulse_response
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.iirdesign.html
http://en.wikipedia.org/wiki/Butterworth_filter
http://en.wikipedia.org/wiki/Butterworth_filter
http://www.it-ebooks.info/


Chapter 5

[ 109 ]

If we plot the original data and the filtered data, we get the following plot:

Demonstrating cointegration
Cointegration is similar to correlation, but it is considered by many to be a better 
metric to define the relatedness of two time-series. The usual way to explain the 
difference between cointegration and correlation is to take the example of a drunken 
man and his dog. Correlation tells you something about the direction in which 
they are going. Cointegration relates to their distance over time, which in this case 
is constrained by the leash of the dog. We will demonstrate cointegration using 
computer-generated time-series and real data. The data can be downloaded from 
Quandl in CSV format.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Signal Processing Techniques

[ 110 ]

The Augmented Dickey Fuller (ADF) test can be used to measure the cointegration 
of time-series; proceed with the following steps to demonstrate cointegration:

1. Define the following function to calculate the ADF statistic.
def calc_adf(x, y):
    result = stat.OLS(x, y).fit()    
    return ts.adfuller(result.resid)

2. Generate a sine value and calculate the cointegration of the value with itself:
N = 501
t = np.linspace(-2 * np.pi, 2 * np.pi, N)
sine = np.sin(np.sin(t))
print "Self ADF", calc_adf(sine, sine)

This should print the following:
Self ADF (2.9830728873654705e-17, 0.95853208606005602, 0, 500, 
{'5%': -2.8673378563200003, '1%': -3.4434963794639999, '10%': 
-2.5698580359999998}, -35895.784416878145)

The first value you see is the ADF metric itself. The second number is the 
p-value. As you can observe, the p-value is quite high. Then follow the lag 
and sample size. The dictionary gives t-distribution values for this particular 
sample size.

3. Now add noise to the sine:
noise = np.random.normal(0, .01, N)
print "ADF sine with noise", calc_adf(sine, sine + noise)

Adding noise gives the following results:
ADF sine with noise (-23.84029624339999, 0.0, 0, 500, {'5%': 
-2.8673378563200003, '1%': -3.4434963794639999, '10%': 
-2.5698580359999998}, -3147.9631889288148)

We can pretty much reject cointegration on the basis of the found p-value 
here it seems.

4. Let's generate a cosine value of a larger magnitude and offset. Again let's 
add the noise to it:
cosine = 100 * np.cos(t) + 10
print "ADF sine vs cosine with noise", calc_adf(sine, cosine + 
noise)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 5

[ 111 ]

This gives the following values:
ADF sine vs cosine with noise (-4.7019725364090377, 
8.3437700445205561e-05, 18, 482, {'5%': -2.8675550551408353, 
'1%': -3.4439899743408136, '10%': -2.5699737921179042}, 
-18152.922572321968)

Again, here we see a strong rejection of cointegration.

5. Now on to real data that can be downloaded from URLs given in the 
following code snippet:
#http://www.quandl.com/BUNDESBANK/BBK01_WT5511-Gold-Price-USD
gold = np.loadtxt(sys.argv[1] + '/BBK01_WT5511.csv',  
  delimiter=',', usecols=(1,), unpack=True, skiprows=1) 

#http://www.quandl.com/YAHOO/INDEX_GSPC-S-P-500-Index
sp500 = np.loadtxt(sys.argv[1] + '/INDEX_GSPC.csv',  
  delimiter=',', usecols=(6,), unpack=True, skiprows=1)

6. Here, we have to make sure that the two time-series are aligned and in the 
proper order:
sp500 = sp500[-len(gold):]
gold = gold[::-1]
sp500 = sp500[::-1]
print "Gold v S & P 500", calc_adf(gold, sp500)

The results show some evidence of cointegration it seems:
Gold v S & P 500 (-1.8835008669539355, 0.3398621844965054, 31, 
11545, {'5%': -2.861790382593266, '1%': -3.4309165443532876, 
'10%': -2.566903273565075}, 83668.547346270294)

Please refer to the following code:

import numpy as np
import statsmodels.api as stat
import statsmodels.tsa.stattools as ts
import sys
 
 
def calc_adf(x, y):
    result = stat.OLS(x, y).fit()    
    return ts.adfuller(result.resid)

N = 501
t = np.linspace(-2 * np.pi, 2 * np.pi, N)
sine = np.sin(np.sin(t))

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Signal Processing Techniques

[ 112 ]

print "Self ADF", calc_adf(sine, sine)

noise = np.random.normal(0, .01, N)
print "ADF sine with noise", calc_adf(sine, sine + noise)

cosine = 100 * np.cos(t) + 10
print "ADF sine vs cosine with noise", calc_adf(sine, cosine + noise)

#http://www.quandl.com/BUNDESBANK/BBK01_WT5511-Gold-Price-USD
gold = np.loadtxt(sys.argv[1] + '/BBK01_WT5511.csv', delimiter=',', 
usecols=(1,), unpack=True, skiprows=1) 

#http://www.quandl.com/YAHOO/INDEX_GSPC-S-P-500-Index
sp500 = np.loadtxt(sys.argv[1] + '/INDEX_GSPC.csv', delimiter=',', 
usecols=(6,), unpack=True, skiprows=1) 
sp500 = sp500[-len(gold):]
gold = gold[::-1]
sp500 = sp500[::-1]
print "Gold v S & P 500", calc_adf(gold, sp500)

Summary
In this chapter, we learned a number of sophisticated signal processing techniques. 
Most of them were applied to a dataset of sunspot data. We looked at smoothing with 
window functions and moving averages. We also touched upon the sifting process 
used by scientists to derive sunspot cycles. Last but not least, a demonstration was 
given of cointegration.

In the next chapter, we will focus on debugging, profiling, and testing, including 
assert functions and various tools.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Profiling, Debugging,  
and Testing

Profiling, debugging, and testing are an integral part of the development process. 
You are probably familiar with the concept of unit testing. Unit tests are automated 
tests written by a programmer to test his or her code. These tests could, for example, 
test a function or part of a function in isolation. Only a small unit of code is tested 
in each test. The benefits are increased confidence in the quality of the code, 
reproducible tests and, as a side effect, more clear and correct code. Unit testing  
also facilitates collaborative editing because, usually, no one understands all the  
code in a complex project themselves, so unit tests prevent contributors from 
breaking the existing code. Python has good support for unit testing. NumPy  
adds the numpy.testing package to help NumPy code the unit testing.

This chapter's topics include:

• Asserts
• Profiling
• Debugging
• Unit testing

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Profiling, Debugging, and Testing

[ 114 ]

Assert functions
The NumPy testing package has a number of utility functions that test whether a 
precondition is true or not. The following table lists the NumPy assert functions:

Function Description
assert_almost_equal This raises an exception if two numbers are not 

equal up to a specified precision
assert_approx_equal This raises an exception if two numbers are not 

equal up to a certain significance
assert_array_almost_equal This raises an exception if two arrays are not equal 

up to a specified precision
assert_array_equal This raises an exception if two arrays are not equal
assert_array_less This raises an exception if two arrays do not have 

the same shape, and the elements of the first array 
are strictly less than the elements of the second 
array

assert_equal This raises an exception if two objects are not equal
assert_raises This fails if a specified exception is not raised by a 

callable function invoked with defined arguments
assert_warns This fails if a specified warning is not thrown
assert_string_equal This asserts that two strings are equal

The assert_almost_equal function
Due to the nature of floating point numbers and the way they are represented by 
computers, we cannot always assert equality as we can for integers. Let's use the 
assert_almost_equal function to check whether they are equal:

1. Call the function with low precision (up to seven decimal places):
print "Decimal 6", np.testing.assert_almost_equal(0.123456789, 
0.123456780, decimal=7)

Note that no exception is raised, as you can see in the following result:
Decimal 6 None

2. Call the function with high precision (up to eight decimal places):
print "Decimal 7", np.testing.assert_almost_equal(0.123456789, 
0.123456780, decimal=8)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 6

[ 115 ]

The result is:
Decimal 7

Traceback (most recent call last):

  …

  raise AssertionError(msg)

AssertionError: 

Arrays are not almost equal

 ACTUAL: 0.123456789

 DESIRED: 0.12345678

Approximately equal arrays
In this section, we will introduce another assert function. The assert_approx_equal 
function raises an exception if two numbers are not equal up to a certain number 
of significant digits. The function result is an exception that is triggered by the 
following condition:

abs(actual - expected) >= 10**-(significant - 1)

Let's take the numbers from the previous tutorial, and let the assert_approx_equal 
function work on them:

1. Call the function with low significance:
print "Significance 8", np.testing.assert_approx_
equal(0.123456789, 0.123456780,
significant=8)

The result is:
Significance 8 None

2. Call the function with high significance:
print "Significance 9",  
  np.testing.assert_approx_equal 
  (0.123456789, 0.123456780, significant=9)

An exception is thrown:
Significance 9

Traceback (most recent call last):

  ...

    raise AssertionError(msg)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Profiling, Debugging, and Testing

[ 116 ]

AssertionError: 

Items are not equal to 9 significant digits:

 ACTUAL: 0.123456789

 DESIRED: 0.12345678

The assert_array_almost_equal function
Sometimes we need to check whether two arrays are almost equal. The assert_
array_almost_equal function raises an exception if two arrays are not equal up to a 
specified precision. The function checks whether the two arrays have the same shape. 
Then, the values of the arrays are compared element by element as follows:

|expected - actual| < 0.5 10-decimal

Let's form arrays with the values from the previous tutorial by adding a zero to  
each array:

1. Calling the function with lower precision:
print "Decimal 8", np.testing.assert_array_almost_equal([0,  
  0.123456789], [0, 0.123456780], decimal=8)

The result is:
Decimal 8 None

2. Calling the function with higher precision:
print "Decimal 9", np.testing.assert_array_almost_equal([0,  
  0.123456789], [0, 0.123456780], decimal=9)

An exception is thrown:
Decimal 9

Traceback (most recent call last):

  …

 assert_array_compare

    raise AssertionError(msg)

AssertionError: 

Arrays are not almost equal

(mismatch 50.0%)

 x: array([ 0.        ,  0.12345679])

 y: array([ 0.        ,  0.12345678])

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 6

[ 117 ]

Profiling a program with IPython
As most of us learned in programming classes, premature optimization is the root 
of all evil. However, once you approach the final stages of software development, it 
could very well be that certain parts of the code are unnecessarily slow or use more 
memory than is strictly needed. We can find these issues through the process of 
profiling. Profiling involves measuring metrics such as execution time for a piece of 
code such as a function or a single statement.

IPython is an interactive Python environment, which also comes with a shell similar 
to the standard Python shell. In IPython, we can profile small snippets of code using 
timeit. We can also profile a larger script. We will show both approaches.

1. Timing a snippet:
Start IPython in pylab mode
ipython -pylab

2. Create an array containing 1,000 integer values between 0 and 1,000.
In [1]: a = arange(1000)

This is the time to search for the answer to everything 42 in the array.
In [2]: %timeit searchsorted(a, 42)

100000 loops, best of 3: 7.58 us per loop

3. Profile a script:
We will profile this small script that inverts a matrix of varying size 
containing random values:
import numpy

def invert(n):
   a = numpy.matrix(numpy.random.rand(n, n))
   return a.I

sizes = 2 ** numpy.arange(0, 12)

for n in sizes:
   invert(n)

We can time this as follows:
In [1]: %run -t invert_matrix.py

IPython CPU timings (estimated):

  User   :       6.08 s.

  System :       0.52 s.

Wall time:      19.26 s.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Profiling, Debugging, and Testing

[ 118 ]

Then we can profile the script with the p option.
In [2]: %run -p invert_matrix.py

852 function calls in 6.597 CPU seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall 
filename:lineno(function)

       12    3.228    0.269    3.228    0.269 {numpy.linalg.
lapack_lite.dgesv}

       24    2.967    0.124    2.967    0.124 {numpy.core.
multiarray._fastCopyAndTranspose}

       12    0.156    0.013    0.156    0.013 {method 'rand' of 
'mtrand.RandomState' objects}

       12    0.087    0.007    0.087    0.007 {method 'copy' of 
'numpy.ndarray' objects}

       12    0.069    0.006    0.069    0.006 {method 'astype' of 
'numpy.ndarray' objects}

       12    0.025    0.002    6.304    0.525 linalg.py:404(inv)

       12    0.024    0.002    6.328    0.527 defmatrix.
py:808(getI)

        1    0.017    0.017    6.596    6.596 invert_matrix.
py:1(<module>)

       24    0.014    0.001    0.014    0.001 {numpy.core.
multiarray.zeros}

       12    0.009    0.001    6.580    0.548 invert_matrix.
py:3(invert)

       12    0.000    0.000    6.264    0.522 linalg.py:244(solve)

       12    0.000    0.000    0.014    0.001 numeric.
py:1875(identity)

        1    0.000    0.000    6.597    6.597 {execfile}

       36    0.000    0.000    0.000    0.000 defmatrix.py:279(__
array_finalize__)

       12    0.000    0.000    2.967    0.247 linalg.py:139(_
fastCopyAndTranspose)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 6

[ 119 ]

       24    0.000    0.000    0.087    0.004 defmatrix.py:233(__
new__)

       12    0.000    0.000    0.000    0.000 linalg.py:99(_
commonType)

       24    0.000    0.000    0.000    0.000 {method '__array_
prepare__' of 'numpy.ndarray' objects}

       36    0.000    0.000    0.000    0.000 linalg.py:66(_
makearray)

       36    0.000    0.000    0.000    0.000 {numpy.core.
multiarray.array}

       12    0.000    0.000    0.000    0.000 {method 'view' of 
'numpy.ndarray' objects}

       12    0.000    0.000    0.000    0.000 linalg.py:127(_to_
native_byte_order)

        1    0.000    0.000    6.597    6.597 interactiveshell.
py:2270(safe_execfile)

The interpretation for the column headers is the same as for the standard 
Python profiler (refer to https://docs.python.org/2/library/profile.
html#module-pstats):

Header Description
ncalls This is the number of calls..
tottime This is the total time spent in the given function (and 

excluding time spent in making calls to subfunctions).
percall This is the quotient of tottime divided by ncalls.
cumtime This is the total time spent in this and all subfunctions (from 

invocation till exit). This figure is accurate even for recursive 
functions.

percall (second) This is the quotient of cumtime divided by primitive calls..

Debugging with IPython
Debugging is one of those tasks that we try to avoid by having good unit tests in 
place. Debugging can take a long time, and most likely, you don't have that time. 
Therefore, it is important to be systematic and know your tools well. After you have 
found the issue and implemented a fix, you should have a unit test in place. This way 
at least you will not have to go through the torture of debugging again.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

https://docs.python.org/2/library/profile.html#module-pstats
http://www.it-ebooks.info/


Profiling, Debugging, and Testing

[ 120 ]

We will debug some incorrect code that is trying to access an array element out  
of bounds:

import numpy

a = numpy.arange(7)
print a[8]

Proceed with the following steps:

1. Run the faulty script in IPython.
Start the ipython shell. Run the faulty script in IPython by issuing the 
following command:
In [1]: %run buggy.py

------------------------------------------------------------------
---------

IndexError                                Traceback (most recent 
call last)

.../site-packages/IPython/utils/py3compat.pyc in execfile(fname, 
*where)

    173             else:

    174                 filename = fname

--> 175             __builtin__.execfile(filename, *where)

.../buggy.py in <module>()

      2 

      3 a = numpy.arange(7)

----> 4 print a[8]

IndexError: index out of bounds

2. Start the debugger.
Now that our program crashed, we can start the debugger. This will set a 
breakpoint on the line where the error occurred:
In [2]: %debug

> .../buggy.py(4)<module>()

      2 

      3 a = numpy.arange(7)

----> 4 print a[8]

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 6

[ 121 ]

3. List code.
We can list code with the list command or use the shorthand l.
ipdb> list

      1 import numpy

      2 

      3 a = numpy.arange(7)

----> 4 print a[8]

4. Evaluate code at the current line.
We can now evaluate arbitrary code at the current line.
ipdb> len(a)

7

ipdb> print a

[0 1 2 3 4 5 6]

5. View the call stack.
We can view the call stack with the bt command:
ipdb> bt

 .../py3compat.py(175)execfile()

    171             if isinstance(fname, unicode):

    172                 filename = fname.encode(sys.
getfilesystemencoding())

    173             else:

    174                 filename = fname

--> 175             __builtin__.execfile(filename, *where)

> .../buggy.py(4)<module>()

      0 print a[8]

Move the call stack up:
ipdb> u

> .../site-packages/IPython/utils/py3compat.py(175)execfile()

    173             else:

    174                 filename = fname

--> 175             __builtin__.execfile(filename, *where)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Profiling, Debugging, and Testing

[ 122 ]

Move the call stack down:
ipdb> d

> .../buggy.py(4)<module>()

      2 

      3 a = numpy.arange(7)

----> 4 print a[8]

Performing Unit tests
Unit tests are automated tests that test a small piece of code, usually a function or 
method. Python has the PyUnit API for unit testing. As NumPy users, we can make 
use of the assert functions that we saw in action before.

We will write tests for a simple factorial function. The tests will check for the  
so-called happy path (regular conditions and is expected to always pass) and  
for abnormal conditions:

1. We start by writing the factorial function:
def factorial(n):
   if n == 0:
      return 1

   if n < 0:
      raise ValueError, "Unexpected negative value"

   return np.arange(1, n+1).cumprod()

The code is using the arange and cumprod functions that we have already 
seen to create arrays and calculate the cumulative product, but we added a 
few checks for boundary conditions.

2. Now we will write the unit test. Let's write a class that will contain the  
unit tests. It extends the TestCase class from the unittest module, which  
is a part of standard Python. We test for calling the factorial function with  
the following:

 ° A positive number, the happy path
 ° Boundary condition zero
 ° Negative numbers, which should result in an error

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 6

[ 123 ]

class FactorialTest(unittest.TestCase):
   def test_factorial(self):
      #Test for the factorial of 3 that should pass.
      self.assertEqual(6, factorial(3)[-1])
      np.testing.assert_equal(np.array([1, 2, 6]), factorial(3))

   def test_zero(self):
      #Test for the factorial of 0 that should pass.
      self.assertEqual(1, factorial(0))

   def test_negative(self):
      #Test for the factorial of negative numbers that should 
fail.
      # It should throw a ValueError, but we expect IndexError
      self.assertRaises(IndexError, factorial(-10))

We rigged one of the tests to fail as you can see in the following output:
$ python unit_test.py

.E.

==================================================================
====

ERROR: test_negative (__main__.FactorialTest)

------------------------------------------------------------------
----

Traceback (most recent call last):

  File "unit_test.py", line 26, in test_negative

    self.assertRaises(IndexError, factorial(-10))

  File "unit_test.py", line 9, in factorial

    raise ValueError, "Unexpected negative value"

ValueError: Unexpected negative value

------------------------------------------------------------------
----

Ran 3 tests in 0.003s

FAILED (errors=1)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Profiling, Debugging, and Testing

[ 124 ]

We made some happy path tests for the factorial function code. We let the 
boundary condition test fail on purpose (see unit_test.py) as follows:
import numpy as np
import unittest

def factorial(n):
   if n == 0:
      return 1

   if n < 0:
      raise ValueError, "Unexpected negative value"

   return np.arange(1, n+1).cumprod()

class FactorialTest(unittest.TestCase):
   def test_factorial(self):
      #Test for the factorial of 3 that should pass.
      self.assertEqual(6, factorial(3)[-1])
      np.testing.assert_equal(np.array([1, 2, 6]), factorial(3))

   def test_zero(self):
      #Test for the factorial of 0 that should pass.
      self.assertEqual(1, factorial(0))

   def test_negative(self):
      #Test for the factorial of negative numbers that should 
fail.
      # It should throw a ValueError, but we expect IndexError
      self.assertRaises(IndexError, factorial(-10))

if __name__ == '__main__':
    unittest.main()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 6

[ 125 ]

Nose tests decorators
Nose is a Python framework that makes (unit) testing a bit easier. Nose helps you 
organize tests. According to the nose documentation:

Any python source file, directory or package that matches the testMatch regular 
expression (by default: (?:^|[b_.-])[Tt]est) will be collected as a test.

Nose makes extensive use of decorators. Python decorators are annotations that 
indicate something about a method or a function. The numpy.testing module  
has a number of decorators:

Decorator Description
numpy.testing.decorators.
deprecated

This is the filter's deprecation warning when 
running tests

numpy.testing.decorators.
knownfailureif

This raises the KnownFailureTest 
exception based on a condition.

numpy.testing.decorators.
setastest

This marks a function as being a test or not 
being a test.

numpy.testing.decorators.skipif This raises the SkipTest exception based on 
a condition.

numpy.testing.decorators.slow This labels test functions or methods as slow.

Additionally, we can call the decorate_methods function to apply decorators on 
methods of a class matching a regular expression or a string.

We will apply the setastest decorator directly to test functions. Then we will apply 
the same decorator to a method to disable it. Also, we will skip one of the tests and 
fail another. First we will install nose as follows in the case that you don't have it yet:

1. Install nose with setup tools as follows:
easy_install nose

Or pip:
pip install nose

2. Apply the decorators directly as follows:
We will apply one function as being a test and another as not being a test:
@setastest(False)
def test_false():

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Profiling, Debugging, and Testing

[ 126 ]

   pass

@setastest(True)
def test_true():
   pass

3. Skip tests as follows:
We can skip tests with the skipif decorator. Let's use a condition that 
always leads to a test being skipped:
@skipif(True)
def test_skip():
   pass

4. Fail tests with the knownfailureif decorator as follows:
Add a test function that always passes. Then decorate it with the 
knownfailureif decorator so that the test always fails:
@knownfailureif(True)
def test_alwaysfail():
     pass

5. Define test classes as follows:
We will define some test classes with methods that normally should be 
executed by nose:
class TestClass():
   def test_true2(self):
      pass

class TestClass2():
   def test_false2(self):
      pass

6. Disable a test method as follows:
Let's disable the second test method from the previous step:
decorate_methods(TestClass2, setastest(False), 'test_false2')

7. Run the tests as follows:
We can run the tests with the following command:
nosetests -v decorator_setastest.py

decorator_setastest.TestClass.test_true2 ... ok

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 6

[ 127 ]

decorator_setastest.test_true ... ok

decorator_test.test_skip ... SKIP: Skipping test: test_skipTest 
skipped due to test condition

decorator_test.test_alwaysfail ... ERROR

==================================================================
====

ERROR: decorator_test.test_alwaysfail

------------------------------------------------------------------
----

Traceback (most recent call last):

  File "…/nose/case.py", line 197, in runTest

    self.test(*self.arg)

  File …/numpy/testing/decorators.py", line 213, in knownfailer

    raise KnownFailureTest(msg)

KnownFailureTest: Test skipped due to known failure

------------------------------------------------------------------
----

Ran 4 tests in 0.001s

FAILED (SKIP=1, errors=1)

8. We decorated some functions and methods as not being tests so that  
they were ignored by nose. We skipped one test and failed another too.  
We did this by applying decorators directly and with the following 
decorate_methods function (see decorator_test.py):
from numpy.testing.decorators import setastest
from numpy.testing.decorators import skipif
from numpy.testing.decorators import knownfailureif
from numpy.testing import decorate_methods

@setastest(False)
def test_false():
   pass

@setastest(True)
def test_true():

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Profiling, Debugging, and Testing

[ 128 ]

   pass

@skipif(True)
def test_skip():
   pass

@knownfailureif(True)
def test_alwaysfail():
     pass

class TestClass():
   def test_true2(self):
      pass

class TestClass2():
   def test_false2(self):
      pass

decorate_methods(TestClass2, setastest(False), 'test_false2')

Summary
We learned about testing and NumPy testing utilities in this chapter. We covered unit 
testing, assert functions, profiling, and debugging. Unit testing is a standard practice 
since it should give you better quality code with a low risk of regression. NumPy 
provides assert functions to help you with unit testing. We covered some of these 
functions in this chapter. No matter how good your unit tests are, at a certain point, 
you will have to do profiling and debugging, so pointers are given in that respect.

The topic of the next chapter is the scientific Python ecosystem and how NumPy fits 
in it.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


The Scientific  
Python Ecosystem

SciPy is built on top of NumPy. It adds functionality such as numerical integration, 
optimization, statistics, and special functions. Historically, NumPy was part of SciPy 
but was then separated in order to be used by other Python libraries. These, when 
combined, define the common stack for scientific and numerical analysis. Of course, 
the stack itself is not set in stone; however, everybody agrees on NumPy being at 
the center of it all. The examples in this chapter should give you some idea about the 
power of the scientific Python ecosystem.

In this chapter, we will cover the following topics:

• Numerical integration
• Interpolation
• Using Cython with NumPy
• Clustering with scikit-learn
• Detecting corners
• Comparing NumPy to Blaze

Numerical integration
Numerical integration is integration using numerical methods instead of analytical 
methods. SciPy has a numerical integration package, scipy.integrate, which has 
no equivalent in NumPy. The quad function can integrate a one-variable function 
between two points. These points can be at infinity.

The quad function uses the old and tried 
QUADPACK Fortran library under the hood.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


The Scientific Python Ecosystem

[ 130 ]

The Gaussian integral is related to the error function, but has no finite limits.  
It evaluates to the square root of pi. Let's calculate the Gaussian integral with  
the quad function as shown in the following line of code:

print "Gaussian integral", np.sqrt(np.pi), 
integrate.quad(lambda x: np.exp(-x**2),  
-np.inf, np.inf)

The return value is the outcome, and its error would be:

Gaussian integral 1.77245385091 (1.7724538509055159,  
  1.4202636780944923e-08)

Interpolation
Interpolation predicts values within a range based on observations. For instance, 
we could have a relationship between two variables x and y and we have a set of 
observed x-y pairs. In this scenario, we could try to predict the y value given a range 
of x values. This range will start at the lowest x value already observed and end at 
the highest x value already observed. The scipy.interpolate function interpolates 
a function based on experimental data. The interp1d class can create a linear or 
cubic interpolation function. By default, a linear interpolation function is constructed, 
but if the kind parameter is set, a cubic interpolation function is created instead.  
The interp2d class works in the same way but is two dimensional.

We will create data points using a sinc function and then add some random  
noise to it. After that, we will do a linear and cubic interpolation and plot the  
results as follows:

1. Create the data points and add noise as follows:
x = np.linspace(-18, 18, 36)
noise = 0.1 * np.random.random(len(x))
signal = np.sinc(x) + noise

2. Create a linear interpolation function, and then apply it to an input array 
with five times as many data points:
interpolated = interpolate.interp1d(x, signal)
x2 = np.linspace(-18, 18, 180)
y = interpolated(x2)

3. Do the same as in the previous step but with cubic interpolation:
cubic = interpolate.interp1d(x, signal, kind="cubic")
y2 = cubic(x2)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 7

[ 131 ]

4. Plot the results with Matplotlib as follows:
plt.plot(x, signal, 'o', label="data")
plt.plot(x2, y, '-', label="linear")
plt.plot(x2, y2, '--', lw=2, label="cubic")

plt.legend()
plt.show()

The following diagram is a plot of the data, linear, and cubic interpolations:

We created a dataset from the sinc function and added noise to it. We then did linear 
and cubic interpolation using the interp1d class of the scipy.interpolate module 
(see the sincinterp.py file in the Chapter07 folder of this book's code bundle):

import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt

x = np.linspace(-18, 18, 36)
noise = 0.1 * np.random.random(len(x))
signal = np.sinc(x) + noise

interpolated = interpolate.interp1d(x, signal)
x2 = np.linspace(-18, 18, 180)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


The Scientific Python Ecosystem

[ 132 ]

y = interpolated(x2)

cubic = interpolate.interp1d(x, signal, kind="cubic")
y2 = cubic(x2)

plt.plot(x, signal, 'o', label="data")
plt.plot(x2, y, '-', label="linear")
plt.plot(x2, y2, '--', lw=2, label="cubic")

plt.legend()
plt.show()

Using Cython with NumPy
Cython is a relatively young programming language based on Python. The 
difference is that with Python we can optionally declare static types for variables in 
the code. Cython is a compiled language that generates CPython extension modules. 
Besides providing performance enhancement, a major use of Cython is interfacing 
already existing C/C++ software with Python.

We can integrate Cython and NumPy code in the same way that we can integrate 
Cython and Python code. Let's go through an example that analyses the ratio of  
up days (close higher than the previous day) for a stock. We will apply the formula 
for binomial proportion confidence (http://en.wikipedia.org/wiki/Binomial_
proportion_confidence_interval). This indicates how significant the ratio is.

1. Write a .pyx file.
The .pyx files contain Cython code. Basically, Cython code is standard 
Python code with optional static type declarations added for variables. Let's 
write a .pyx file that contains a function that calculates the ratio of up days 
and their associated confidence. Firstly, this function computes the differences 
between the prices. Then, we count the number of positive differences, giving 
us a ratio for the proportion of up days. Finally, we apply the formula for the 
confidence from the Wikipedia page in the introduction, as follows.
import numpy

def pos_confidence(numbers):
   diffs = numpy.diff(numbers)
   n = float(len(diffs))
   p = len(diffs[diffs > 0])/n
   confidence = numpy.sqrt(p * (1 - p)/ n)

   return (p, confidence)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
http://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval
http://www.it-ebooks.info/


Chapter 7

[ 133 ]

2. Write the setup.py file.
We will use the following setup.py file:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("binomial_proportion",  
  ["binomial_proportion.pyx"])]

setup(
        name = 'Binomial proportion app',
        cmdclass = {'build_ext': build_ext},
        ext_modules = ext_modules
     )

3. Now, use the Cython module.
We can build with the following command:
python setup.py build_ext --inplace

After building, we can use the Cython module from the previous step by 
importing. We will write a Python program that downloads stock price  
data with Matplotlib. Then, we will apply the confidence function to the  
close prices.
from matplotlib.finance import quotes_historical_yahoo
from datetime import date
import numpy
import sys
from binomial_proportion import pos_confidence

#1. Get close prices.
today = date.today()
start = (today.year - 1, today.month, today.day)

quotes = quotes_historical_yahoo(sys.argv[1], start, today)
close =  numpy.array([q[4] for q in quotes])
print pos_confidence(close)

The output of the program for AAPL is as follows:
(0.56746031746031744, 0.031209043355655924)

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


The Scientific Python Ecosystem

[ 134 ]

Clustering stocks with scikit-learn
Scikit-learn is an open source software for machine learning. Clustering is a type  
of machine learning algorithm that aims to group items based on similarities.

A legion of scikits exists. These are all open source 
scientific Python projects. For a list of scikits, please refer 
to https://scikits.appspot.com/scikits.

Clustering is unsupervised, which means that you don't have to create learning 
examples. The algorithm puts items in the appropriate bucket based on some 
measure of distance, so that items that are close to each other end up in the same 
bucket. In this example, we will use the log returns of stocks in the Dow Jones 
Industrial (DJI) Index to cluster.

A myriad of clustering algorithms exist, and since this is a rapidly 
evolving field, new algorithms are invented each year. Due to the 
exigencies of this book, we cannot touch upon all of them. The 
interested reader can have a look at https://en.wikipedia.
org/wiki/Cluster_analysis.

First, we will download EOD price data for these stocks from Yahoo Finance. 
Second, we will calculate a square affinity matrix. Finally, we will cluster the stocks 
with the AffinityPropagation class. Affinity propagation, in contrast to other 
clustering algorithms, doesn't require the number of clusters as a parameter. The 
algorithm relies on a so-called affinity matrix. This is a matrix that contains affinities 
of data points, which can be interpreted as distances.

1. We will download price data for 2013 using the stock symbols of the DJI 
Index. In this example, we are only interested in the close price. The code  
is as follows:
# 2012 to 2013
start = datetime.datetime(2012, 01, 01)
end = datetime.datetime(2013, 01, 01)

#Dow Jones symbols
symbols = ["AA", "AXP", "BA", "BAC", "CAT",  
  "CSCO", "CVX", "DD", "DIS", "GE", "HD",  
  "HPQ", "IBM", "INTC", "JNJ", "JPM",  
  "KO", "MCD", "MMM", "MRK", "MSFT", "PFE",  
  "PG", "T", "TRV", "UTX", "VZ", "WMT", "XOM"]

for symbol in symbols:
      try :

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

https://scikits.appspot.com/scikits
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Cluster_analysis
http://www.it-ebooks.info/


Chapter 7

[ 135 ]

         quotes.append(finance.quotes_historical_yahoo_
ochl(symbol,  
  start, end, asobject=True))
      except urllib2.HTTPError:
         print symbol, "not found"

close = np.array([q.close for q in  
  quotes]).astype(np.float)

2. Calculate the similarities between different stocks using the log returns as the 
metric. The code is as follows:
logreturns = np.diff(np.log(close))
print logreturns.shape

logreturns_norms = np.sum(logreturns ** 2, axis=1)
S = - logreturns_norms[:, np.newaxis] -  
  logreturns_norms[np.newaxis, :] + 2 * np.dot(logreturns,  
  logreturns.T)

3. Give the AffinityPropagation class the result from the previous step.  
This class labels the data points or, in our case, stocks, with the appropriate 
cluster number. The code is as follows:
aff_pro = sklearn.cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_

for i in xrange(len(labels)):
    print '%s in Cluster %d' % (symbols[i], labels[i])

The following is the complete clustering program:

import datetime
import numpy as np
import sklearn.cluster
from matplotlib import finance
import urllib2

#1. Download price data

# 2012 to 2013
start = datetime.datetime(2012, 01, 01)
end = datetime.datetime(2013, 01, 01)

#Dow Jones symbols

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


The Scientific Python Ecosystem

[ 136 ]

symbols = ["AA", "AXP", "BA", "BAC", "CAT",  
  "CSCO", "CVX", "DD", "DIS", "GE", "HD",  
  "HPQ", "IBM", "INTC", "JNJ", "JPM",  
  "KO", "MCD", "MMM", "MRK", "MSFT", "PFE",  
  "PG", "T", "TRV", "UTX", "VZ", "WMT", "XOM"]

quotes = []

For symbols within symbols, the code is as follows:

      try :       
  quotes.append(finance.quotes_historical_yahoo_ochl(symbol,  
  start, end, asobject=True))
      except urllib2.HTTPError:
         print symbol, "not found"

close = np.array([q.close for q in quotes]).astype(np.float)
print close.shape

#2. Calculate affinity matrix
logreturns = np.diff(np.log(close))
print logreturns.shape

logreturns_norms = np.sum(logreturns ** 2, axis=1)
S = - logreturns_norms[:, np.newaxis] -  
  logreturns_norms[np.newaxis, :] + 2 * np.dot(logreturns,  
  logreturns.T)

#3. Cluster using affinity propagation
aff_pro = sklearn.cluster.AffinityPropagation().fit(S)
labels = aff_pro.labels_

for i in xrange(len(labels)):
    print '%s in Cluster %d' % (symbols[i], labels[i])

The output with the cluster numbers for each stock is as follows:

AA in Cluster 2

AXP in Cluster 0

BA in Cluster 0

BAC in Cluster 1

CAT in Cluster 2

CSCO in Cluster 3

CVX in Cluster 8

DD in Cluster 0

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 7

[ 137 ]

DIS in Cluster 6

GE in Cluster 8

HD in Cluster 0

HPQ in Cluster 4

IBM in Cluster 0

INTC in Cluster 0

JNJ in Cluster 6

JPM in Cluster 5

KO in Cluster 6

MCD in Cluster 6

MMM in Cluster 8

MRK in Cluster 6

MSFT in Cluster 0

PFE in Cluster 6

PG in Cluster 6

T in Cluster 6

TRV in Cluster 6

UTX in Cluster 0

VZ in Cluster 6

WMT in Cluster 7

XOM in Cluster 8

Detecting corners
Corner detection is a standard technique in computer vision. Scikits-image  
(a package specialized in image processing) offers a Harris corner detector, which 
is great since corner detection is pretty complicated. Obviously, we could do it 
ourselves from scratch, but that would violate the cardinal rule of not reinventing 
the wheel. We will load a sample image from scikits-learn. This is not absolutely 
necessary for this example. You can use any other image instead.

For more information on corner detection, please refer to 
https://en.wikipedia.org/wiki/Corner_detection.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


The Scientific Python Ecosystem

[ 138 ]

You might need to install jpeglib on your system to be able to load the scikits-learn 
image, which is a JPEG file. If you are on Windows, use the installer; otherwise, 
download the distribution, unpack it, and build from the top folder with the 
following command line:

./configure

 make

  sudo make install

To detect corners of an image, perform the following steps:

1. Load the sample image.
Scikits-learn currently has two sample JPEG images in a dataset structure. 
We will look at the first image only, as follows:
dataset = load_sample_images()
img = dataset.images[0]

2. Then, detect corners by calling the harris function to get the coordinates  
of corners:
harris_coords = harris(img)
print "Harris coords shape", harris_coords.shape
y, x = np.transpose(harris_coords)

The code for corner detection is given as follows:
from sklearn.datasets import load_sample_images
from matplotlib.pyplot import imshow, show, axis, plot
import numpy as np
from skimage.feature import harris

dataset = load_sample_images()
img = dataset.images[0] 
harris_coords = harris(img)
print "Harris coords shape", harris_coords.shape
y, x = np.transpose(harris_coords)
axis('off')
imshow(img)
plot(x, y, 'ro')
show()

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Chapter 7

[ 139 ]

We get an image with red dots, where corners are detected as follows:

Comparing NumPy to Blaze
Since we are close to the end of the book, it seems appropriate to discuss the future  
of NumPy. The future of NumPy is Blaze, a new open source Python numerical 
library. Blaze is supposed to process Big Data better than NumPy ever can. Big Data 
can be defined in many ways. Here, we will define Big Data as data that cannot 
be stored in memory or even on a single machine. Usually, the data is distributed 
amongst several servers. Blaze should also be able to handle large quantities of 
streaming data that is never stored.

Blaze can be found at http://blaze.pydata.org/.

Blaze, just like NumPy, allows scientists, analysts, and engineers to quickly write 
efficient code. Blaze, however, goes a step further and also takes care of the work 
related to distributing calculations as well as extracting and transforming data from  
a variety of data source types.

Blaze is centered around general multidimensional array and table abstractions.  
The classes in Blaze represent different data types and data structures as found in  
the real world. Blaze has a generic computation engine that can process data spread 
out over multiple servers and send instructions to specialized low-level kernels.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://blaze.pydata.org/
http://www.it-ebooks.info/


The Scientific Python Ecosystem

[ 140 ]

Blaze extends NumPy to provide custom-defined data types and heterogeneous 
shapes. This, of course, allows for greater flexibility and ease of use.

Blaze is designed around arrays. Just like the NumPy ndarray, Blaze offers metadata 
with extra computational information. The metadata defines how data is stored, 
(heterogeneously) typed and indexed as multidimensional arrays. Computation  
can be performed on various hardware including heterogeneous clusters of CPUs 
and GPUs.

Blaze has the ambition to become the NumPy of multiple node clusters and 
distributed computing. The main idea, just as with NumPy, is to focus on arrays  
and array operations while abstracting the messy details away.

Blaze has a special LLVM compiler. For more information about the 
LLVM compiler, see http://en.wikipedia.org/wiki/LLVM. 
In short, LLVM is an open source compiler technology project.

Data can be converted between different formats using the Blaze data adapters.  
Blaze also manages scheduling of computations, which can be either automatic  
or configured by the user, with the possibility to lazily evaluate expressions.

Summary
In this chapter, we only scratched the surface of what is possible with the  
scientific Python ecosystem. We used some of the libraries that are considered, if 
not part of the common stack, then at least fundamental. We used interpolation 
and numerical integration provided by SciPy. Two of the dozens of algorithms in 
scikit-learn were demonstrated. We also saw Cython in action, which is technically 
a programming language in its own right. Finally, we had a look at Blaze, a library 
supposed to generalize and extend the principles of NumPy. This is in light of recent 
developments such as Big Data and Cloud Computing. Blaze and related projects 
are still in the incubation phase, but we can expect stable software to be produced in 
the near future. You can refer to http://continuum.io/developer-resources for 
some of these projects.

Unfortunately, we have come to the end of this book. Because of this book's format, 
that is the number of pages, you should have essential NumPy knowledge and might 
feel the need for more. However, don't worry if this wasn't enough for you. You can 
look forward to Learning Python Data Analysis by the same author, which will come 
out in early 2015.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://en.wikipedia.org/wiki/LLVM
http://continuum.io/developer-resources
http://www.it-ebooks.info/


Index
Symbols
#scipy channel  18

A
adjusted autoregressive model

setting up  89, 90
ARMA model

about  105
used, for forecasting  105, 106

array() function  21
array shapes, NumPy

array attributes  35
arrays, converting  38
arrays, flattening  28
arrays, splitting  33
arrays, stacking  29
manipulating  28

assert_almost_equal function  114
assert_approx_equal function  114, 115
assert_array_almost_equal function  114, 116
assert_array_equal function  114
assert_array_less function  114
assert_equal function  114
assert functions, NumPy

about  114
assert_almost_equal function  114
assert_approx_equal function  115, 116
assert_array_almost_equal function  116

assert_raises function  114
assert_string_equal function  114
assert_warns function  114
atmospheric humidity  69
atmospheric humidity, KNMI De Bilt  

data file
analyzing  69-71

atmospheric pressure  67
atmospheric pressure, KNMI De Bilt  

data file
analyzing  67-69

Augmented Dickey Fuller (ADF) test  110
Autoregressive (AR) model  88
Autoregressive Moving Average (ARMA) 

model  88
average De Bilt temperature

outliers analysis  92
average temperature autocorrelation

examining, with pandas  73-76

B
basic data analysis

dataset  51
Blaze

about  139
NumPy, comparing with  139
URL  139

Boolean indexing
about  43
performing  43, 44

C
character codes  24
clustering  134
cointegration

about  109
demonstrating  109-111

column_stack() function  31
column stacking, NumPy arrays  31
concatenate() function  30
corner detection

about  137

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


[ 142 ]

performing  138
Cython

about  132
using, with NumPy  132, 133

D
daily temperature range, KNMI De Bilt  

data file
about  53
determining  53, 54

data analysis, KNMI weather station
daily temperature range,  

determining  53, 54
De Bilt atmospheric humidity,  

analyzing  69-71
De Bilt atmospheric pressure,  

analyzing  67, 68
De Bilt precipitation data, analyzing  66, 67
precipitation, analyzing  63-66
solar radiation, comparing with 

temperature   57-59
sunshine duration, analyzing  63-66
wind direction, analyzing  61
wind speed, analyzing  62, 63
yearly average temperature,  

determining  55, 56
data type objects  24
day-of-the-year temperature model

about  83
used, for modeling temperature  85

debugging
about  119
IPython, used  119, 120

decorators
applying  125-127

deprecated decorator  125
depth stacking, NumPy arrays  31
depth-wise splitting, NumPy arrays  34
Dow Jones Industrial (DJI)  134
dsplit() function  34
dtype attributes  26
dtype constructors  25

E
Empirical Mode Decomposition (EMD)  97

F
fancy indexing

about  40
performing  40, 41

filter
designing  108

flat attribute, ndarray  37
flatten() function  28
forecasting

ARMA model, used  105, 106

G
Gaussian integral  130

H
horizontal splitting, NumPy arrays  33
horizontal stacking, NumPy arrays  29

I
iirdesign function  107
imag attribute, ndarray  36
interp1d class  130
interpolation  130, 131
inter-quartile range  92
intra-year daily average temperatures

analyzing  81, 82
Intrinsic Mode Functions (IMF)

about  97
extracting, via sifting  98

IPython
about  117
debugging with  119, 121
installing, on Linux  10
installing, on Windows  8, 9
program, profiling with  117, 118

itemsize attribute, ndarray  35
ix_() function  42

K
KNMI

about  51
URL  51

knownfailureif decorator  125

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


[ 143 ]

L
linear combination  105
Linux

IPython, installing  10
Matplotlib, installing  10
NumPy, installing  10
SciPy, installing  10

Linux distributions
Arch Linux  10
Debian  10
Fedora  10
Gentoo  10
OpenSUSE  10
Slackware  10

loadtxt function  52

M
Mac OS X

Matplotlib, installing  12, 13
NumPy, installing  11, 12
SciPy, installing  13

Matplotlib
installing, on Linux  10
installing, on Mac OS X  13
installing, on Windows  9

monthly precipitation, KNMI De  
Bilt data file

analyzing  66, 67
Moving Average (MA) model  88
moving averages

about  101
plotting  102

moving average temperature model  87
multidimensional NumPy array

creating  21

N
nbytes attribute, ndarray  35
ndarray

about  19
flat attribute  37
imag attribute  36
itemsize attribute  35
nbytes attribute  35
ndim attribute  35

real attribute  36
size attribute  35
T attribute  36

ndim attribute, ndarray  35
nose

about  125
decorators, using  125
installing  125

Not a Number (NaN)  52
numerical integration  129, 130
NumPy

about  7
assert functions  114
basic data analysis  51
building, from source  14
comparing, to Blaze  139, 140
Cython, using with  132, 133
forum link  18
installing, on Linux  10
installing, on Mac OS X  11
installing, on Windows  8, 9
online resources  18
predictive analytics  73

NumPy array object  19
NumPy arrays

about  14
adding  15, 17
advantages  20
array elements, selecting  21, 22
broadcasting  47, 48
converting  38
fancy indexing  40
indexing, performing with list of  

locations  42, 43
indexing, with Booleans  43, 44
one-dimensional, indexing  27
one-dimensional, slicing  27
record data type, creating  26
stride tricks, applying for Sudoku  45, 47
views, creating  39, 40

NumPy basics
NumPy array object  19

NumPy numerical types
bool  22
character codes  24
complex  23
complex64  23

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


[ 144 ]

complex128   23
data type objects  24
dtype attributes  26
dtype constructors  25
float16  22
float32  22
float64  22
int8  22
int16  22
int32  22
int64  22
inti  22
overview  22, 23
uint8  22
uint16  22
uint32  22
uint64  22

numpy.testing module
decorators  125

O
one-dimensional NumPy arrays

indexing  27
slicing  27

outliers analysis, average De Bilt 
temperature

performing  92, 93

P
pandas DataFrame

used, for descriptive statistics  76
pandas library

about  73
used, for correlating weather and stocks  78
used, for examining average temperature 

autocorrelation   73-76
precipitation, KNMI De Bilt data file

analyzing  63-66
predictive analytics

average temperature autocorrelation, 
examining with pandas  73-76

data, describing with pandas  
DataFrames  76

day-of-the-year temperature  85

day-of-the-year temperature model  83
intra-year daily average temperatures, 

analyzing  81, 82
moving average temperature model  87
temperature, modeling with SciPy leastsq 

function  84
temperature, predicting  79
weather and stocks, correlating with 

pandas  78
program

profiling, with IPython  117, 118
Python  7
PyUnit API  122

Q
quad function  129

R
ravel() function  28
real attribute, ndarray  36
record data type

about  26
creating  26

resize() method  29
robust statistics  94
row stacking, NumPy arrays  32

S
scikit-learn

about  134
used, for clustering stocks  134-136

SciPy
about  7, 129
forum link  18
installing, on Linux  10
installing, on Mac OS X  11-13
installing, on Windows  9
online resources  18

scipy.integrate  129
scipy.interpolate function  130
SciPy leastsq function

used, for modeling temperature  84
setastest decorator  125

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


[ 145 ]

shape() function  28
sifting process

about  98
steps  99-101

signal
filtering  107

signal processing techniques
about  97
moving averages  101
Sunspot data  97

size attribute, ndarray  35
skipif decorator  125
slow decorator  125
smoothing functions  103, 104
solar radiation

comparing, with temperature  57-59
split() function  33
splitting, NumPy arrays

depth-wise splitting  34
horizontal splitting  33
performing  33
vertical splitting  34

stacking, NumPy arrays
column stacking  31
depth stacking  31
horizontal stacking  29
performing  29
row stacking  32
vertical stacking  30

stocks
clustering, with scikit-learn  134-136

stride tricks
applying, to Sudoku  45, 46

sunshine duration, KNMI De Bilt data file
analyzing  63-66

sunspot data  97, 98
sunspots  97

T
T attribute, ndarray  36

temperature
autoregressive model with lag 1  79
autoregressive model with lag 2  80
modeling, with SciPy leastsq function  84
predicting  79

transpose() function  29

U
unit tests

performing  122, 124

V
vertical splitting, NumPy arrays  34
vertical stacking, NumPy arrays  30
views, NumPy arrays

creating  39, 40
vsplit() function  34

W
weather and stocks

correlating, with pandas  78
wind direction, KNMI De Bilt data file

analyzing  61
Windows

IPython, installing  8
Matplotlib, installing  9
NumPy, installing  8, 9
SciPy, installing  9

wind speed, KNMI De Bilt data file
analyzing  62

Y
yearly average temperature, KNMI De Bilt 

data file
determining  55, 56

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Thank you for buying

Learning NumPy Array

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books 
give you the knowledge and power to customize the software and technologies you're using 
to get the job done. Packt books are more specific and less general than the IT books you have 
seen in the past. Our unique business model allows us to bring you more focused information, 
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike.  
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order  
to continue its focus on specialization. This book is part of the Packt Open Source brand,  
home to books published on software built around Open Source licenses, and offering 
information to anybody from advanced developers to budding web designers. The Open 
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty 
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 
We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


NumPy Beginner's Guide
Second Edition
ISBN: 978-1-78216-608-5              Paperback: 310 pages

An action packed guide using real world examples of 
the easy to use, high performance, free open source 
NumPy mathematical library

1. Perform high performance calculations with 
clean and efficient NumPy code.

2. Analyze large data sets with statistical functions.

3. Execute complex linear algebra and 
mathematical computations.

NumPy Cookbook
ISBN: 978-1-84951-892-5              Paperback: 226 pages

Over 70 interesting recipes for learning the Python 
open source mathematical library, NumPy

1. Do high performance calculations with clean 
and efficient NumPy code.

2. Analyze large sets of data with  
statistical functions.

3. Execute complex linear algebra and 
mathematical computations.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/


Learning IPython for Interactive 
Computing and Data Visualization
ISBN: 978-1-78216-993-2             Paperback: 138 pages

Learn IPython for interactive Python programming, 
high-performance numerical computing, and  
data visualization

1. A practical step-by-step tutorial which will 
help you to replace the Python console with the 
powerful IPython command-line interface.

2. Use the IPython notebook to modernize the 
way you interact with Python.

3. Perform highly efficient computations with 
NumPy and Pandas.

Learning SciPy for Numerical and 
Scientific Computing
ISBN: 978-1-78216-162-2             Paperback: 150 pages

A practical tutorial that guarantees fast, accurate, 
and easy-to-code solutions to your numerical and 
scientific computing problems with the power of 
SciPy and Python

1. Perform complex operations with large 
matrices, including eigenvalue problems, 
matrix decompositions, or solution to large 
systems of equations.

2. Step-by-step examples to easily implement 
statistical analysis and data mining that rivals 
in performance any of the costly specialized 
software suites.

 
Please check www.PacktPub.com for information on our titles

www.it-ebooks.infosee more please visit: https://homeofpdf.com 

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with NumPy
	Python
	Installing NumPy, Matplotlib, SciPy, and IPython on Windows
	Installing NumPy, Matplotlib, SciPy, and IPython on Linux
	Installing NumPy, Matplotlib, and SciPy on Mac OS X
	Building from source
	NumPy arrays
	Adding arrays

	Online resources and help
	Summary

	Chapter 2: NumPy Basics
	The NumPy array object
	The advantages of using NumPy arrays

	Creating a multidimensional array
	Selecting array elements
	NumPy numerical types
	Data type objects
	Character codes
	dtype constructors
	dtype attributes

	Creating a record data type
	One-dimensional slicing and indexing
	Manipulating array shapes
	Stacking arrays
	Splitting arrays
	Array attributes
	Converting arrays

	Creating views and copies
	Fancy indexing
	Indexing with a list of locations
	Indexing arrays with Booleans
	Stride tricks for Sudoku
	Broadcasting arrays
	Summary

	Chapter 3: Basic Data Analysis 
with NumPy
	Introducing the dataset
	Determining the daily temperature range
	Looking for evidence of global warming
	Comparing solar radiation versus temperature
	Analyzing wind direction
	Analyzing wind speed
	Analyzing precipitation and sunshine duration
	Analyzing monthly precipitation in De Bilt
	Analyzing atmospheric pressure in De Bilt
	Analyzing atmospheric humidity in De Bilt
	Summary

	Chapter 4: Simple Predictive Analytics with NumPy
	Examining autocorrelation of average temperature with pandas
	Describing data with pandas DataFrames
	Correlating weather and stocks with pandas
	Predicting temperature
	Autoregressive model with lag 1
	Autoregressive model with lag 2

	Analysing intra-year daily average temperatures
	Introducing the day-of-the-year temperature model
	Modeling temperature with the SciPy leastsq function
	Day-of-year temperature take two
	Moving-average temperature model with lag 1
	The Autoregressive Moving Average temperature model
	The time-dependent temperature mean adjusted autoregressive model
	Outliers analysis of average De Bilt temperature
	Using more robust statistics
	Summary

	Chapter 5: Signal Processing Techniques
	Introducing the Sunspot data
	Sifting continued

	Moving averages
	Smoothing functions
	Forecasting with an ARMA model
	Filtering a signal
	Designing the filter

	Demonstrating cointegration
	Summary

	Chapter 6: Profiling, Debugging, 
and Testing
	Assert functions
	The assert_almost_equal function
	Approximately equal arrays
	The assert_array_almost_equal function

	Profiling a program with IPython
	Debugging with IPython
	Performing Unit tests
	Nose tests decorators
	Summary

	Chapter 7: The Scientific 
Python Ecosystem
	Numerical integration
	Interpolation
	Using Cython with NumPy
	Clustering stocks with scikit-learn
	Detecting corners
	Comparing NumPy to Blaze
	Summary

	Index

