Contents

Chapter 1 (Introduction)

Setup
Building with Stack (Recommended)
Building with Cabal
Building with make

The Basic Language

LLVM Introduction

Full Source

Chapter 2 (Parser and AST)
Parser Combinators o L.
The Lexer o e
The Parser
The REPL o o

Full Source

Chapter 3 (Code Generation)
Haskell LLVM Bindings
Code Generation Setup
Blocks
Instructionso
From ASTtoIR

Full Source

Chapter 4 (JIT and Optimizer Support)
ASTs and Modules
Constant Folding
Optimization Passes
Adding a JIT Compiler
External Functions Lo L L

Full Source

see more please visit: https.//homeofpdf.com

Chapter 5 (Control Flow) 34

47 EXpressionso 34
‘for’ Loop Expressions oo 40
Full Source 45
Chapter 6 (Operators) 45
User-defined Operators 45
Binary Operators 46
Unary Operators vt 48
Kicking the Tires o 49
Full Source 54
Chapter 7 (Mutable Variables) 54
Why is this a hard problem? 55
Memory in LLVM00 57
Mutable Variables oo 60
Assignment 62
Full Source 64
Chapter 8 (Conclusion) 64
Tutorial Conclusion 64
Chapter 9 (Appendix) 66
Command Line Tools 66

Adapted by Stephen Diehl (@smdiehl)

This is an open source project hosted on Github. Corrections and feedback
always welcome.

e Version 1: December 25, 2013
e Version 2: May 8, 2017

The written text licensed under the LLVM License and is adapted from the
original LLVM documentation. The new Haskell source is released under the
MIT license.

see more please visit: https.//homeofpdf.com

https://github.com/sdiehl/kaleidoscope
http://llvm.org/releases/2.8/LICENSE.TXT
http://llvm.org/docs/tutorial/index.html

Chapter 1 (Introduction)

Welcome to the Haskell version of “Implementing a language with LLVM” tutorial.
This tutorial runs through the implementation of a simple language, and the
basics of how to build a compiler in Haskell, showing how fun and easy it can be.
This tutorial will get you up and started as well as help to build a framework
you can extend to other languages. The code in this tutorial can also be used as
a playground to hack on other LLVM specific things. This tutorial is the Haskell
port of the C++, Python and OCaml Kaleidoscope tutorials. Although most
of the original meaning of the tutorial is preserved, most of the text has been
rewritten to incorporate Haskell.

An intermediate knowledge of Haskell is required. We will make heavy use of
monads and transformers without pause for exposition. If you are not familiar
with monads, applicatives and transformers then it is best to learn these topics
before proceeding. Conversely if you are an advanced Haskeller you may notice
the lack of modern techniques which could drastically simplify our code. Instead
we will shy away from advanced patterns since the purpose is to instruct in
LLVM and not Haskell programming. Whenever possible we will avoid cleverness
and just do the “stupid thing”.

The overall goal of this tutorial is to progressively unveil our language, describing
how it is built up over time. This will let us cover a fairly broad range of language
design and LLVM-specific usage issues, showing and explaining the code for it
all along the way, without overwhelming you with tons of details up front.

It is useful to point out ahead of time that this tutorial is really about teaching
compiler techniques and LLVM specifically, not about teaching modern and sane
software engineering principles. In practice, this means that we’ll take a number
of shortcuts to simplify the exposition. If you dig in and use the code as a basis
for future projects, fixing these deficiencies shouldn’t be hard.

I’'ve tried to put this tutorial together in a way that makes chapters easy to skip
over if you are already familiar with or are uninterested in the various pieces.
The structure of the tutorial is:

e Chapter #1: Introduction to the Kaleidoscope language, and the defini-
tion of its Lexer - This shows where we are going and the basic functionality
that we want it to do. LLVM obviously works just fine with such tools,
feel free to use one if you prefer.

e Chapter #2: Implementing a Parser and AST - With the lexer in place,
we can talk about parsing techniques and basic AST construction. This
tutorial describes recursive descent parsing and operator precedence parsing.
Nothing in Chapters 1 or 2 is LLVM-specific, the code doesn’t even link in
LLVM at this point. :)

e Chapter #3: Code generation to LLVM IR - With the AST ready, we
can show off how easy generation of LLVM IR really is.

see more please visit: https.//homeofpdf.com

e Chapter #4: Adding JIT and Optimizer Support - Because a lot of
people are interested in using LLVM as a JIT, we’ll dive right into it and
show you the 3 lines it takes to add JIT support. LLVM is also useful in
many other ways, but this is one simple and “sexy” way to show off its
power. :)

¢ Chapter #5: Extending the Language: Control Flow - With the language
up and running, we show how to extend it with control flow operations
(if/then/else and a ‘for’ loop). This gives us a chance to talk about simple
SSA construction and control flow.

e Chapter #6: Extending the Language: User-defined Operators - This
is a silly but fun chapter that talks about extending the language to let
the user program define their own arbitrary unary and binary operators
(with assignable precedence!). This lets us build a significant piece of the
“language” as library routines.

e Chapter #7: Extending the Language: Mutable Variables - This chapter
talks about adding user-defined local variables along with an assignment
operator. The interesting part about this is how easy and trivial it is to
construct SSA form in LLVM: no, LLVM does not require your front-end
to construct SSA form!

e Chapter #8: Conclusion and other useful LLVM tidbits - This chapter
wraps up the series by talking about potential ways to extend the language.

This tutorial will be illustrated with a toy language that we’ll call Kaleidoscope
(derived from “meaning beautiful, form, and view” or “observer of beautiful
forms”). Kaleidoscope is a procedural language that allows you to define functions,
use conditionals, math, etc. Over the course of the tutorial, we’ll extend
Kaleidoscope to support the if/then/else construct, a for loop, user defined
operators, JIT compilation with a simple command line interface, etc.

Setup
You will need GHC 7.8 or newer as well as LLVM 4.0. For information on

installing LLVM 4.0 (not 3.9 or earlier) on your platform of choice, take a look
at the instructions posted by the llvm-hs maintainers.

With Haskell and LLVM in place, you can use either Stack or Cabal to install
the necessary Haskell bindings and compile the source code from each chapter.

Building with Stack (Recommended)

$ stack build

see more please visit: https.//homeofpdf.com

https://github.com/llvm-hs/llvm-hs/blob/llvm-4/README.md#installing-llvm

You can then run the source code from each chapter (starting with chapter 2) as
follows:

$ stack exec chapter2

Building with Cabal

Ensure that 11vm-config is on your $PATH, then run:

$ cabal sandbox init
$ cabal configure
$ cabal install --only-dependencies

Then to run the source code from each chapter (e.g. chapter 2):

$ cabal run chapter?2

Building with make

The source code for the example compiler of each chapter is included in the /src
folder. With the dependencies installed globally, these can be built using the
Makefile at the root level:

$ make chapter2
$ make chapter6

A smaller version of the code without the parser frontend can be found in the
llvm-tutorial-standalone repository. The LLVM code generation technique is
identical.

The Basic Language

Because we want to keep things simple, the only datatype in Kaleidoscope is a
64-bit floating point type (aka ‘double’ in C parlance). As such, all values are
implicitly double precision and the language doesn’t require type declarations.
This gives the language a very nice and simple syntax. For example, the following
simple example computes Fibonacci numbers:

Compute the z'th fibonacct number.
def fib(x)
if x < 3 then
1

see more please visit: https.//homeofpdf.com

https://github.com/sdiehl/llvm-tutorial-standalone

else
fib(x-1)+fib(x-2);

This expression will compute the 40th number.
£ib(40);

We also allow Kaleidoscope to call into standard library functions (the LLVM
JIT makes this completely trivial). This means that we can use the ‘extern’
keyword to define a function before we use it (this is also useful for mutually
recursive functions). For example:

extern sin(arg);
extern cos(arg);
extern atan2(argl arg2);

atan2(sin(.4), cos(42));
A more interesting example is included in Chapter 6 where we write a little

Kaleidoscope application that displays a Mandelbrot Set at various levels of
magnification.

Let’s dive into the implementation of this language!

LLVM Introduction
A typical compiler pipeline will consist of several stages. The middle phase will

often consist of several representations of the code to be generated known as
intermediate representations.

lexer parser » checking codegen

Figure 1:

LLVM is a statically typed intermediate representation and an associated
toolchain for manipulating, optimizing and converting this intermediate form
into native code. LLVM code comes in two flavors, a binary bitcode format (.bc)
and assembly (.11). The command line tools 11vm-dis and llvm-as can be
used to convert between the two forms. We’ll mostly be working with the human
readable LLVM assembly and will just refer to it casually as IR and reserve the
word assembly to mean the native assembly that is the result of compilation.
An important note is that the binary format for LLVM bitcode starts with the
magic two byte sequence (0x42 0x43) or “BC”.

An LLVM module consists of a sequence of toplevel mutually scoped definitions
of functions, globals, type declarations, and external declarations.

see more please visit: https.//homeofpdf.com

http://llvm.org/docs/BitCodeFormat.html

Symbols used in an LLVM module are either global or local. Global symbols
begin with @ and local symbols begin with %. All symbols must be defined or
forward declared.

declare i32 @putchar(i32)

define 132 @add(i32 %a, i32 %b) {
%1 = add i32 %a, %b
ret i32 %1

+

define void @main() {
%1 = call i32 @add(i32 0, i32 97)
call i32 @putchar(i32 %1)
ret void

3

A LLVM function consists of a sequence of basic blocks containing a sequence
of instructions and assignment to local values. During compilation basic blocks
will roughly correspond to labels in the native assembly output.

define double @main(double %x) {

entry:
%0 = alloca double
br body

body:

store double %x, doublex* %0

%1 = load doublex %0

%2 = fadd double %1, 1.000000e+00
ret double 72

First class types in LLVM align very closely with machine types. Alignment
and platform specific sizes are detached from the type specification in the data
layout for a module.

Type
i1 A unsigned 1 bit integer
i32 A unsigned 32 bit integer
i32% A pointer to a 32 bit integer
132%* A pointer to a pointer to a 32 bit integer
double A 64-bit floating point value

float (i32) A function taking a i32 and returning a 32-bit floating point float

see more please visit: https.//homeofpdf.com

http://llvm.org/docs/LangRef.html#data-layout
http://llvm.org/docs/LangRef.html#data-layout

Type

<4 x i32> A width 4 vector of 32-bit integer values.

{i32, double} A struct of a 32-bit integer and a double.

<{i8#*, i32}> A packed structure of an integer pointer and 32-bit integer.
[4 x i32] An array of four 132 values.

While LLVM is normally generated procedurally we can also write it by hand.
For example consider the following minimal LLVM IR example.

declare i32 G@putchar(i32)

define void @Gmain() {
call i32 @putchar(i32 42)
ret void

}

This will compile (using 11c) into the following platform specific assembly. For
example, using 11c -march=x86-64 on a Linux system we generate output like
the following:

.file "minimal.11"
.text
.globl main

.align 16, 0x90

.type main,@function
main:

movl $42, Y%edi

jmp putchar

.LtmpO:
.size main, .LtmpO-main
.section ".note.GNU-stack","",Q@progbits

What makes LLVM so compelling is it lets us write our assembly-like IR as
if we had an infinite number of CPU registers and abstracts away the register
allocation and instruction selection. LLVM IR also has the advantage of being
mostly platform independent and retargetable, although there are some details
about calling conventions, vectors, and pointer sizes which make it not entirely
independent.

As an integral part of Clang, LLVM is very well suited for compiling C-like
languages, but it is nonetheless a very adequate toolchain for compiling both
imperative and functional languages. Some notable languages and projects using
LLVM are listed on this page and include Rust, Pure and even GHC:

GHC has a LLVM compilation path that is enabled with the -f11vm flag. The
library ghc-core can be used to view the IR compilation artifacts.

see more please visit: https.//homeofpdf.com

http://llvm.org/ProjectsWithLLVM/
https://www.rust-lang.org
https://purelang.bitbucket.io/

Full Source

See src/chapterl for the full source from this chapter.

Chapter 2 (Parser and AST)

Parser Combinators

For parsing in Haskell it is quite common to use a family of libraries known
as Parser Combinators which let us write code to generate parsers which itself
looks very similar to the BNF (Backus—Naur Form) of the parser grammar
itself!

Structurally a parser combinator is a collection of higher-order functions which
composes with other parsing functions as input and returns a new parser as its
output. Our lexer will consist of functions which operate directly on matching
string inputs and are composed with a variety of common combinators yielding
the full parser. The Parsec library exposes a collection of combinators:

Combinators
<|> The choice operator tries to parse the first argument before proceeding to the second. Can be ch:
many Consumes an arbitrary number of patterns matching the given pattern and returns them as a list
manyl Like many but requires at least one match.
optional Optionally parses a given pattern returning its value as a Maybe.
try Backtracking operator will let us parse ambiguous matching expressions and restart with a differe
The Lexer

Our initial language has very simple lexical syntax.

integer: 1, -2, 42

integer :: Parser Integer
integer = Tok.integer lexer

float: 3.14, 2.71, 0.0

float :: Parser Double
float = Tok.float lexer

see more please visit: https.//homeofpdf.com

https://github.com/sdiehl/kaleidoscope/tree/master/src/chapter1
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

identifier: a, b, foo, ncc1701d

identifier :: Parser String
identifier = Tok.identifier lexer

And several tokens which enclose other token(s) returning a compose expression.

parens :: Parser a -> Parser a
parens = Tok.parens lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

commaSep :: Parser a -> Parser [a]
commaSep = Tok.commaSep lexer

Lastly our lexer requires that several tokens be reserved and not used as identifiers,
we reference these as separately.

reserved: def, extern

reservedOp: +, *, -, ;

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

Putting it all together we have our Lexer.hs module.

module Lexer where

import Text.Parsec.String (Parser)
import Text.Parsec.Language (emptyDef)

import qualified Text.Parsec.Token as Tok

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser style
where
ops = ["+", sk ron o]
names = ["def","extern"]
style = emptyDef {
Tok.commentLine = "#"

10

see more please visit: https.//homeofpdf.com

, Tok.reservedOpNames = ops
, Tok.reservedNames = names

3

integer :: Parser Integer
integer = Tok.integer lexer

float :: Parser Double
float = Tok.float lexer

parens :: Parser a -> Parser a
parens = Tok.parens lexer

commaSep :: Parser a -> Parser [a]
commaSep = Tok.commaSep lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

identifier :: Parser String
identifier = Tok.identifier lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

The Parser

The AST for a program captures its behavior in such a way that it is easy for
later stages of the compiler (e.g. code generation) to interpret. We basically
want one object for each construct in the language, and the AST should closely
model the language. In Kaleidoscope, we have expressions, and a function object.
When parsing with Parsec we will unpack tokens straight into our AST which
we define as the Expr algebraic data type:

module Syntax where
type Name = String
data Expr

= Float Double

| BinOp Op Expr Expr
| Var String

11

see more please visit: https.//homeofpdf.com

| Call Name [Expr]

| Function Name [Expr] Expr
| Extern Name [Expr]
deriving (Eq, Ord, Show)

data Op
= Plus
| Minus
| Times
| Divide
deriving (Eq, Ord, Show)

This is all (intentionally) rather straight-forward: variables capture the variable
name, binary operators capture their operation (e.g. Plus, Minus, ...), and
calls capture a function name as well as a list of any argument expressions.

We create Parsec parser which will scan an input source and unpack it into
our Expr type. The code composes within the Parser to generate the resulting
parser which is then executed using the parse function.

module Parser where

import Text.Parsec
import Text.Parsec.String (Parser)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

import Lexer
import Syntax

binary s f assoc = Ex.Infix (reservedOp s >> return (BinOp f)) assoc

table = [[binary "*" Times Ex.AssocLeft,
binary "/" Divide Ex.AssocLeft]
, [binary "+" Plus Ex.Assocleft,

n n

binary "-" Minus Ex.AssocLeft]]

int :: Parser Expr
int = do
n <- integer
return $ Float (fromInteger n)

floating :: Parser Expr
floating = do
n <- float

12

see more please visit: https.//homeofpdf.com

return $ Float n

expr :: Parser Expr
expr = Ex.buildExpressionParser table factor

variable :: Parser Expr
variable = do
var <- identifier
return $ Var var

function :: Parser Expr
function = do
reserved "def"
name <- identifier
args <- parens $ many variable
body <- expr
return $ Function name args body

extern :: Parser Expr
extern = do
reserved "extern"
name <- identifier
args <- parens $ many variable
return $ Extern name args

call :: Parser Expr

call = do
name <- identifier
args <- parens $ commaSep expr
return $ Call name args

factor :: Parser Expr
factor = try floating
<|> try int
<|> try extern
<|> try function
<|> try call
<|> variable
<|> parens expr

defn :: Parser Expr
defn = try extern
<|> try function

<|> expr

contents :: Parser a -> Parser a

13

see more please visit: https.//homeofpdf.com

contents p = do
Tok.whiteSpace lexer

r <-p
eof
return r

toplevel :: Parser [Expr]
toplevel = many $ do
def <- defn
reservedOp
return def

n.n
>

parseExpr :: String -> Either ParseError Expr
parseExpr s = parse (contents expr) "<stdin>" s

parseToplevel :: String -> Either ParseError [Expr]
parseToplevel s = parse (contents toplevel) '"<stdin>" s

The REPL

The driver for this simply invokes all of the compiler in a loop feeding the
resulting artifacts to the next iteration. We will use the haskeline library to give
us readline interactions for the small REPL.

module Main where
import Parser

import Control.Monad.Trans
import System.Console.Haskeline

process :: String -> I0 ()
process line = do
let res = parseToplevel line
case res of
Left err -> print err
Right ex -> mapM_ print ex

main :: I0 QO
main = runInputT defaultSettings loop
where
loop = do
minput <- getInputlLine "ready> "
case minput of

14

see more please visit: https.//homeofpdf.com

http://hackage.haskell.org/package/haskeline

Nothing -> outputStrLn "Goodbye."
Just input -> (1iftI0 $ process input) >> loop

In under 100 lines of code, we fully defined our minimal language, including a
lexer, parser, and AST builder. With this done, the executable will validate
Kaleidoscope code, print out the Haskell representation of the AST, and tell us
the position information for any syntax errors. For example, here is a sample
interaction:

ready> def foo(x y) x+foo(y, 4.0);
Function "foo" [Var "x",Var "y"] (BinOp Plus (Var "x") (Call "foo" [Var "y",Float 4.0]))

ready> def foo(x y) x+y; v;
Function "foo" [Var "x",Var "y"] (BinOp Plus (Var "x") (Var "y"))
Var ”yll

ready> def foo(x y) x+y);

"<stdin>" (line 1, column 18):

unexpected ")"

expecting float, natural, "extern", "def", identifier, "(" or ";"

ready> extern sin(a);
Extern "sin" [Var "a"]

ready> "D
Goodbye.

There is a lot of room for extension here. You can define new AST nodes, extend
the language in many ways, etc. In the next installment, we will describe how
to generate LLVM Intermediate Representation (IR) from the AST.

Full Source

See src/chapter2 for the full source from this chapter.

Chapter 3 (Code Generation)

This chapter illustrates how to transform the Abstract Syntax Tree, built in
Chapter 2, into LLVM IR. This will demonstrate a little bit about how LLVM
does things, as well as demonstrate how easy it is to use.

15

see more please visit: https.//homeofpdf.com

https://github.com/sdiehl/kaleidoscope/tree/master/src/chapter2

Haskell LLVM Bindings

The LLVM bindings for Haskell are split across two packages:

¢ llvm-hs-pure is a pure Haskell representation of the LLVM IR.

e llvi-hs is the FFI bindings to LLVM required for constructing the C rep-
resentation of the LLVM IR and performing optimization and compilation.

llvm-hs-pure does not require the LLVM libraries be available on the system.

On Hackage there is an older version of the LLVM bindings named 11vm and
1llvm-base which should likely be avoided since they have not been updated
since their development a few years ago.

As an aside, the GHCi can have issues with the FFI and can lead to errors when
working with 11vm-hs. If you end up with errors like the following, then you
are likely trying to use GHCi or runhaskell and it is unable to link against your
LLVM library. Instead compile with standalone ghc.

Loading package 1lvm-hs-4.0.1.0

. linking
... ghc: /usr/lib/11vm-4.0/1ib/1ibLLVMSupport.a: unknown symbol ~_ZTVN4llvmlderror_category]
ghc: unable to load package “1lvm-hs-4.0.1.0'

Code Generation Setup

We start with a new Haskell module Codegen.hs which will hold the pure code
generation logic that we’ll use to drive building the llvm-hs AST. For simplicity’s
sake we’ll insist that all variables be of a single type, the double type.

double :: Type
double = FloatingPointType 64 IEEE

To start we create a new record type to hold the internal state of our code
generator as we walk the AST. We’ll use two records, one for the toplevel module
code generation and one for basic blocks inside of function definitions.

type SymbolTable = [(String, Operand)]

data CodegenState
= CodegenState {

currentBlock :: Name -— Name of the active block to append to
, blocks :: Map.Map Name BlockState —-- Blocks for function
, symtab :: SymbolTable -— Function scope symbol table
16

see more please visit: https.//homeofpdf.com

, blockCount :: Int -= Count of basic blocks

, count :: Word -- Count of unnamed instructions
, names :: Names -— Name Supply

} deriving Show

data BlockState
= BlockState {

idx :: Int -— Block indezx
, stack :: [Named Instruction] -- Stack of instructions
, term :: Maybe (Named Terminator) -- Block terminator

} deriving Show

We'll hold the state of the code generator inside of Codegen State monad, the
Codegen monad contains a map of block names to their BlockState representa-
tion.

newtype Codegen a = Codegen { runCodegen :: State CodegenState a }
deriving (Functor, Applicative, Monad, MonadState CodegenState)

At the top level we’ll create a LLVM State monad which will hold all code
a for the LLVM module and upon evaluation will emit an llvim-hs Module
containing the AST. We’ll append to the list of definitions in the AST.Module
field moduleDefinitions.

newtype LLVM a = LLVM (State AST.Module a)
deriving (Functor, Applicative, Monad, MonadState AST.Module)

runlL.LVM :: AST.Module -> LLVM a -> AST.Module
runLLVM mod (LLVM m) = execState m mod

emptyModule :: String -> AST.Module
emptyModule label = defaultModule { moduleName = label }

addDefn :: Definition -> LLVM ()
addDefn d = do
defs <- gets moduleDefinitions
modify $ \s -> s { moduleDefinitions = defs ++ [d] }

Inside of our module we’ll need to insert our toplevel definitions. For our purposes
this will consist entirely of local functions and external function declarations.

define :: Type -> String -> [(Type, Name)] -> [BasicBlock] -> LLVM ()
define retty label argtys body = addDefn $
GlobalDefinition $ functionDefaults {

17

see more please visit: https.//homeofpdf.com

name = Name label
, parameters = ([Parameter ty nm [] | (ty, nm) <- argtys], False)
, returnType = retty
, basicBlocks = body

external :: Type -> String -> [(Type, Name)] -> LLVM ()
external retty label argtys = addDefn $
GlobalDefinition $ functionDefaults {

name = Name label
, linkage = L.External
, parameters = ([Parameter ty nm [] | (ty, nm) <- argtys], False)
, returnType = retty
, basicBlocks = []
}
Blocks

With our monad we’ll create several functions to manipulate the current block
state so that we can push and pop the block “cursor” and append instructions
into the current block.

entry :: Codegen Name
entry = gets currentBlock

addBlock :: String -> Codegen Name
addBlock bname = do

bls <- gets blocks

ix <- gets blockCount

nms <- gets names

let new = emptyBlock ix
(gname, supply) = uniqueName bname nms

modify $ \s -> s { blocks = Map.insert (Name gname) new bls
, blockCount = ix + 1
, names = supply
}

return (Name gname)
setBlock :: Name -> Codegen Name
setBlock bname = do

modify $ \s -> s { currentBlock = bname }
return bname

18

see more please visit: https.//homeofpdf.com

getBlock :: Codegen Name
getBlock = gets currentBlock

modifyBlock :: BlockState -> Codegen ()
modifyBlock new = do
active <- gets currentBlock
modify $ \s -> s { blocks = Map.insert active new (blocks s) }

current :: Codegen BlockState
current = do
c <- gets currentBlock
blks <- gets blocks
case Map.lookup ¢ blks of
Just x -> return x
Nothing -> error $ "No such block: " ++ show ¢

Instructions

Now that we have the basic infrastructure in place we’ll wrap the raw llvim-hs
AST nodes inside a collection of helper functions to push instructions onto the
stack held within our monad.

Instructions in LLVM are either numbered sequentially (%0, %1, ...) or given
explicit variable names (%a, %foo, ..). For example, the arguments to the
following function are named values, while the result of the add instruction is
unnamed.

define i32 0add(i32 %a, i32 %b) {
%1 = add 132 %a, %b
ret i32 %1

}

In the implementation of llvim-hs both these types are represented in a sum type
containing the constructors UnName and Name. For most of our purpose we will
simply use numbered expressions and map the numbers to identifiers within our
symbol table. Every instruction added will increment the internal counter, to
accomplish this we add a fresh name supply.

fresh :: Codegen Word

fresh = do
i <- gets count
modify $ \s -> s { count = 1 + i }
return $ i + 1

19

see more please visit: https.//homeofpdf.com

Throughout our code we will however refer named values within the module,
these have a special data type Name (with an associated IsString instance so
that Haskell can automatically perform the boilerplate coercions between String
types) for which we’ll create a second name supply map which guarantees that
our block names are unique.

type Names = Map.Map String Int

uniqueName :: String -> Names -> (String, Names)
uniqueName nm ns =
case Map.lookup nm ns of
Nothing -> (nm, Map.insert nm 1 ns)
Just ix -> (am ++ show ix, Map.insert nm (ix+1) ns)

Since we can now work with named LLVM values we need to create several
functions for referring to references of values.

local :: Name -> Operand
local = LocalReference double

externf :: Name -> Operand
externf = ConstantOperand . C.GlobalReference double

Our function externf will emit a named value which refers to a toplevel function
(@add) in our module or will refer to an externally declared function (@putchar).
For instance:

declare i32 @putchar(i32)

define 132 ©add(i32 %a, i32 %b) {
%1 = add i32 %a, %b
ret i32 %1

}

define void @main() {
%1 = call i32 @add(i32 0, i32 97)
call i32 @putchar(i32 %1)
ret void

}

Since we’d like to refer to values on the stack by named quantities we’ll implement
a simple symbol table as an association list letting us assign variable names to
operand quantities and subsequently look them up when used.

20

see more please visit: https.//homeofpdf.com

assign :: String -> Operand -> Codegen ()
assign var x = do
lcls <- gets symtab
modify $ \s -> s { symtab = [(var, x)] ++ lcls }

getvar :: String -> Codegen Operand
getvar var = do
syms <- gets symtab
case lookup var syms of
Just x -> return x
Nothing -> error $ "Local variable not in scope: " ++ show var

Now that we have a way of naming instructions we’ll create an internal function
to take an llvim-hs AST node and push it on the current basic block stack. We’ll
return the left hand side reference of the instruction. Instructions will come
in two flavors, instructions and terminators. Every basic block has a unique
terminator and every last basic block in a function must terminate in a ret.

instr :: Instruction -> Codegen (Operand)
instr ins = do
n <- fresh
let ref = (UnName n)
blk <- current
let i = stack blk
modifyBlock (blk { stack = (ref := ins) : i })
return $ local ref

terminator :: Named Terminator -> Codegen (Named Terminator)
terminator trm = do

blk <- current

modifyBlock (blk { term = Just trm })

return trm

Using the instr function we now wrap the AST nodes for basic arithmetic
operations of floating point values.

fadd :: Operand -> Operand -> Codegen Operand
fadd a b = instr $§ FAdd NoFastMathFlags a b []

fsub :: Operand -> Operand -> Codegen Operand
fsub a b = instr $ FSub NoFastMathFlags a b []

fmul :: Operand -> Operand -> Codegen Operand
fmul a b = instr $ FMul NoFastMathFlags a b []

21

see more please visit: https.//homeofpdf.com

fdiv :: Operand -> Operand -> Codegen Operand
fdiv a b = instr $ FDiv NoFastMathFlags a b []

On top of the basic arithmetic functions we’ll add the basic control flow operations
which will allow us to direct the control flow between basic blocks and return
values.

br :: Name -> Codegen (Named Terminator)
br val = terminator $ Do $ Br val []

cbr :: Operand -> Name -> Name -> Codegen (Named Terminator)
cbr cond tr fl = terminator $ Do $ CondBr cond tr f1 []

ret :: Operand -> Codegen (Named Terminator)
ret val = terminator $ Do $ Ret (Just val) []

Finally we’ll add several “effect” instructions which will invoke memory and
evaluation side-effects. The call instruction will simply take a named function
reference and a list of arguments and evaluate it and simply invoke it at the
current position. The alloca instruction will create a pointer to a stack allocated
uninitialized value of the given type.

call :: Operand -> [Operand] -> Codegen Operand
call fn args = instr $ Call Nothing CC.C [] (Right fn) (toArgs args) [1 []

alloca :: Type -> Codegen Operand
alloca ty = instr $ Alloca ty Nothing 0 []

store :: Operand -> Operand -> Codegen Operand
store ptr val = instr $ Store False ptr val Nothing O []

load :: Operand -> Codegen Operand
load ptr = instr $ Load False ptr Nothing O []

From AST to IR

Now that we have the infrastructure in place we can begin ingest our AST from
Syntax.hs and construct a LLVM module from it. We will create a new Emit.hs
module and spread the logic across two functions. The first codegenTop will
emit toplevel constructions in modules (functions and external definitions) and
will return a LLVM monad. The last instruction on the stack we’ll bind into the
ret instruction to ensure and emit as the return value of the function. We’ll
also sequentially assign each of the named arguments from the function to a
stack allocated value with a reference in our symbol table.

22

see more please visit: https.//homeofpdf.com

codegenTop :: S.Expr -> LLVM ()
codegenTop (S.Function name args body) = do
define double name fnargs bls
where
fnargs = toSig args
bls = createBlocks $ execCodegen $ do
entry <- addBlock entryBlockName
setBlock entry
forM args $ \a -> do
var <- alloca double
store var (local (AST.Name a))
assign a var
cgen body >>= ret

codegenTop (S.Extern name args) = do
external double name fnargs
where fnargs = toSig args

codegenTop exp = do
define double "main" [] blks
where
blks = createBlocks $ execCodegen $ do
entry <- addBlock entryBlockName
setBlock entry
cgen exp >>= ret

toSig :: [String] -> [(AST.Type, AST.Name)]
toSig = map (\x -> (double, AST.Name x))

The second is the expression level code generation (cgen) which will recursively
walk the AST pushing instructions on the stack and changing the current block
as needed. The simplest AST node is constant integers and floating point values
which simply return constant values in LLVM IR.

cgen :: S.Expr -> Codegen AST.Operand
cgen (S.Float n) = return $ cons $ C.Float (F.Double n)

We need to reference local variables so we’ll invoke our getvar function in
conjunction with a load use values. The conscious reader will intuit that this
might result in an excessive amount of extraneous instructions pushing temporary
values on the stack, something that we’ll address later with a simple optimization
pass.

cgen (S.Var x) = getvar x >>= load

23

see more please visit: https.//homeofpdf.com

For Call we'll first evaluate each argument and then invoke the function with
the values. Since our language only has double type values, this is trivial and
we don’t need to worry too much.

cgen (S.Call fn args) = do
largs <- mapM cgen args
call (externf (AST.Name fn)) largs

Finally for our operators we’ll construct a predefined association map of symbol
strings to implementations of functions with the corresponding logic for the

operation.

binops = Map.fromList [

("+", fadd)
, ("=, fsub)
, ("x", fmul)
, v/, fdiv)
, ("<, 1t)

For the comparison operator we’ll invoke the uitofp which will convert a
unsigned integer quantity to a floating point value. LLVM requires the unsigned
single bit types as the values for comparison and test operations but we prefer
to work entirely with doubles where possible.

1t :: AST.Operand -> AST.Operand -> Codegen AST.Operand
1t a b = do

test <- fcmp FP.ULT a b

uitofp double test

Just like the call instruction above we simply generate the code for operands
and invoke the function we just looked up for the symbol.

cgen (S.BinaryOp op a b) = do
case Map.lookup op binops of
Just £ -> do
ca <- cgen a
cb <- cgen b
f ca cb
Nothing -> error "No such operator"

Putting everything together we find that we nice little minimal language that
supports both function abstraction and basic arithmetic. The final step is to
hook into LLVM bindings to generate a string representation of the LLVM IR
which will print out the string on each action in the REPL. We'll discuss these
functions in more depth in the next chapter.

24

see more please visit: https.//homeofpdf.com

codegen :: AST.Module -> [S.Expr] -> I0 AST.Module

withContext $ \context ->

liftError $ withModuleFromAST context newast $ \m -> do
1lstr <- moduleLLVMAssembly m
putStrLn 1llstr
return newast

codegen mod

where

fns =

modn = mapM codegenTop fns
runlLLVM mod modn

newast

Running Main.hs we can observe our code generator in action.

ready> def foo(a b) akxa + 2%axb + bxb;
; ModuleID = 'my cool jit'

define double @foo(double %a, double %b) {

entry:
%0 = fmul
%1 = fmul
%2 = fmul
%3 = fadd
%4 = fmul
%5 = fadd

double
double
double
double
double
double

ret double %5

3

ha,
ha,
,
%0,
%b,
W4,

%a
2.000000e+00
%b
%2
%b
%3

ready> def bar(a) foo(a, 4.0) + bar(31337);
define double Gbar(double %a) {

entry:

%0 = alloca double
store double %a, doublex %0

%1 = load doublex %0

%2 = call double @foo(double %1, double 4.000000e+00)

%3
%4

ret double %4

Full Source

call double @bar(double 3.133700e+04)
fadd double %2, %3

See src/chapter3 for the full source from this chapter.

25

see more please visit: https.//homeofpdf.com

https://github.com/sdiehl/kaleidoscope/tree/master/src/chapter3

Chapter 4 (JIT and Optimizer Support)

In the previous chapter we were able to map our language Syntax into the
LLVM IR and print it out to the screen. This chapter describes two new
techniques: adding optimizer support to our language, and adding JIT compiler
support. These additions will demonstrate how to get nice, efficient code for the
Kaleidoscope language.

ASTs and Modules

We'll refer to a Module as holding the internal representation of the LLVM
IR. Modules can be generated from the Haskell LLVM AST or from strings
containing bitcode.

Both data types have the same name (Module), so as convention we will qualify
the imports of the libraries to distinguish between the two.

e AST.Module : Haskell AST Module
e Module : Internal LLVM Module

llvm-hs provides two important functions for converting between them.
withModuleFromAST has type ExceptT since it may fail if given a malformed
expression, it is important to handle both cases of the resulting Either value.

withModuleFromAST :: Context -> AST.Module -> (Module -> IO a) -> ExceptT String I0 a
moduleAST :: Module -> IO AST.Module

We can also generate the assembly code for our given module by passing a
specification of the CPU and platform information we wish to target, called the
TargetMachine.

moduleTargetAssembly :: TargetMachine -> Module -> ExceptT String IO String

Recall the so called “Bracket” pattern in Haskell for managing IO resources.
llvm-hs makes heavy use this pattern to manage the life-cycle of certain LLVM
resources. It is very important to remember not to pass or attempt to use
resources outside of the bracket as this will lead to undefined behavior and/or

segfaults.
bracket :: I0 a -— computation to run first ("acquire resource”)
-> (a -> I0 b) -- computation to run last ("release resource”)
-> (a -> I0 c) -- computation to rTun in-between
-> 10 c
26

see more please visit: https.//homeofpdf.com

In addition to this we’ll often be dealing with operations which can fail in an
EitherT monad if given bad code. We’ll often want to lift this error up the
monad transformer stack with the pattern:

liftExcept :: ExceptT String I0 a -> I0 a
liftExcept = runExceptT >=> either fail return

To start we’ll create a runJIT function which will start with a stack of brackets.
We'll then simply generate the IR and print it out to the screen.

runJIT :: AST.Module -> IO (Either String ())
runJIT mod = do
withContext $ \context ->
runErrorT $ withModuleFromAST context mod $ \m —>
s <- moduleLLVMAssembly m
putStrln s

Constant Folding

Our demonstration for Chapter 3 is elegant and easy to extend. Unfortunately, it
does not produce wonderful code. However the naive construction of the LLVM
module will perform some minimal transformations to generate a module which
not a literal transcription of the AST but preserves the same semantics.

The “dumb” transcription would look like:

ready> def test(x) 1+2+x;

define double Qtest(double 7x) {

entry:
%addtmp = fadd double 2.000000e+00, 1.000000e+00
%addtmpl = fadd double Yaddtmp, %x
ret double Jaddtmpl

}

The “smarter” transcription would eliminate the first line since it contains a
simple constant that can be computed at compile-time.

ready> def test(x) 1+2+x;

define double Qtest(double 7%x) {

entry:
%addtmp = fadd double 3.000000e+00, %x
ret double Jaddtmp

}

27

see more please visit: https.//homeofpdf.com

Constant folding, as seen above, in particular, is a very common and very
important optimization: so much so that many language implementors implement
constant folding support in their AST representation. This technique is limited
by the fact that it does all of its analysis inline with the code as it is built. If
you take a slightly more complex example:

ready> def test(x) (1+2+x)*(x+(1+2));

define double Q@test(double 7x) {

entry:
%addtmp = fadd double 3.000000e+00, %x
%addtmpl = fadd double %x, 3.000000e+00
Jmultmp = fmul double %addtmp, %addtmpl
ret double Jmultmp

In this case, the left and right hand sides of the multiplication are the same value.
We'd really like to see this generate tmp = x+3; result = tmp*tmp instead of
computing x+3 twice.

Unfortunately, no amount of local analysis will be able to detect and correct
this. This requires two transformations: reassociation of expressions (to make
the adds lexically identical) and Common Subexpression Elimination (CSE) to
delete the redundant add instruction. Fortunately, LLVM provides a broad range
of optimizations that we can use, in the form of “passes”.

Optimization Passes

LLVM provides many optimization passes, which do many different sorts of
things and have different trade-offs. Unlike other systems, LLVM doesn’t hold
to the mistaken notion that one set of optimizations is right for all languages
and for all situations. LLVM allows a compiler implementor to make complete
decisions about what optimizations to use, in which order, and in what situation.

As a concrete example, LLVM supports both “whole module” passes, which look
across as large of body of code as they can (often a whole file, but if run at link
time, this can be a substantial portion of the whole program). It also supports
and includes “per-function” passes which just operate on a single function at a
time, without looking at other functions. For more information on passes and
how they are run, see the How to Write a Pass document and the List of LLVM
Passes.

For Kaleidoscope, we are currently generating functions on the fly, one at a time,
as the user types them in. We aren’t shooting for the ultimate optimization
experience in this setting, but we also want to catch the easy and quick stuff
where possible.

28

see more please visit: https.//homeofpdf.com

http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/Passes.html
http://llvm.org/docs/Passes.html

We won’t delve too much into the details of the passes since they are better
described elsewhere. We will instead just invoke the default “curated passes”
with an optimization level which will perform most of the common clean-ups
and a few non-trivial optimizations.

passes :: PassSetSpec
passes = defaultCuratedPassSetSpec { optLevel = Just 3 }

To apply the passes we create a bracket for a PassManager and invoke
runPassManager on our working module. Note that this modifies the module
in-place.

runJIT :: AST.Module -> IO (Either String AST.Module)
runJIT mod = do
withContext $ \context ->
runExceptT $ withModuleFromAST context mod $ \m ->
withPassManager passes $ \pm -> do
runPassManager pm m
optmod <- moduleAST m
s <- moduleLLVMAssembly m
putStrln s
return optmod

With this in place, we can try our test above again:

ready> def test(x) (1+2+x)*(x+(1+2));
; ModuleID = 'my cool jit'

; Function Attrs: nounwind readnone
define double @test(double %x) #0 {
entry:
%0 fadd double %x, 3.000000e+00
%1 = fmul double %0, %0
ret double %1
}

attributes #0 = { nounwind readnone }

As expected, we now get our nicely optimized code, saving a floating point
add instruction from every execution of this function. We also see some extra
metadata attached to our function, which we can ignore for now, but is indicating
certain properties of the function that aid in later optimization.

LLVM provides a wide variety of optimizations that can be used in certain

circumstances. Some documentation about the various passes is available, but it

29

see more please visit: https.//homeofpdf.com

isn’t very complete. Another good source of ideas can come from looking at the
passes that Clang runs to get started. The “opt” tool allows us to experiment
with passes from the command line, so we can see if they do anything.

One important optimization pass is an “analysis pass” which will validate that
the internal IR is well-formed. Since it quite possible (even easy!) to construct
nonsensical or unsafe IR it is very good practice to validate our IR before
attempting to optimize or execute it. To do so, we simply invoke the verify
function with our active module.

runJIT :: AST.Module -> IO (Either String AST.Module)
runJIT mod = do

withPassManager passes $ \pm -> do
runExceptT $ verify m

Now that we have reasonable code coming out of our front-end, let’s talk about
executing it!

Adding a JIT Compiler

Code that is available in LLVM IR can have a wide variety of tools applied to it.
For example, we can run optimizations on it (as we did above), we can dump it
out in textual or binary forms, we can compile the code to an assembly file (.s)
for some target, or we can JIT compile it. The nice thing about the LLVM IR
representation is that it is the “common currency” between many different parts
of the compiler.

In this section, we’ll add JIT compiler support to our interpreter. The basic
idea that we want for Kaleidoscope is to have the user enter function bodies as
they do now, but immediately evaluate the top-level expressions they type in.
For example, if they type in “1 4 2;”, we should evaluate and print out 3. If
they define a function, they should be able to call it from the command line.

In order to do this, we add another function to bracket the creation of the JIT
Ezxecution Engine. There are two provided engines: jit and mcjit. The distinction
is not important for us but we will opt to use the newer mcjit.

import qualified LLVM.ExecutionEngine as EE
jit :: Context -> (EE.MCJIT -> I0 a) -> I0 a
jit ¢ = EE.withMCJIT c optlevel model ptrelim fastins

where
optlevel = Just 2 -- optimization level

30

see more please visit: https.//homeofpdf.com

model = Nothing -- code model (Default)
ptrelim Nothing -- frame pointer elimination
fastins = Nothing -- fast instruction selection

The result of the JIT compiling our function will be a C function pointer which we
can call from within the JIT’s process space. We need some (unsafe!) plumbing
to coerce our foreign C function into a callable object from Haskell. Some care
must be taken when performing these operations since we’re telling Haskell to
“trust us” that the pointer we hand it is actually typed as we describe it. If we
don’t take care with the casts we can expect undefined behavior.

foreign import ccall "dynamic" haskFun :: FunPtr (IO Double) -> (IO Double)

run :: FunPtr a -> I0 Double
run fn = haskFun (castFunPtr fn :: FunPtr (IO Double))

Integrating this with our function from above we can now manifest our IR as
executable code inside the ExecutionEngine and pass the resulting native types
to and from the Haskell runtime.

runJIT :: AST.Module -> IO (Either String ())
runJIT mod = do

jit context $ \executionEngine ->

EE.withModuleInEngine executionEngine m $ \ee -> do
mainfn <- EE.getFunction ee (AST.Name "main"
case mainfn of
Just fn -> do
res <- run fn
putStrln $ "Evaluated to: " ++ show res
Nothing -> return ()

Having to statically declare our function pointer type is rather inflexible. If we
wish to extend to this to be more flexible, a library like libffi is very useful for
calling functions with argument types that can be determined at runtime.

External Functions
The JIT provides a number of other more advanced interfaces for things like
freeing allocated machine code, rejit’ing functions to update them, etc. However,

even with this simple code, we get some surprisingly powerful capabilities - check
this out:

31

see more please visit: https.//homeofpdf.com

ready> extern sin(x);
; ModuleID = 'my cool jit'

declare double @sin(double)

ready> extern cos(x);
; ModuleID = 'my cool jit'

declare double @sin(double)
declare double @cos(double)

ready> sin(1.0);
; ModuleID = 'my cool jit'

declare double @sin(double)
declare double @cos(double)

define double @main() {

entry:
%0 = call double @sin(double 1.000000e+00)
ret double %0

}

Evaluated to: 0.8414709848078965

Whoa, how does the JIT know about sin and cos? The answer is surprisingly
simple: in this example, the JIT started execution of a function and got to a
function call. It realized that the function was not yet JIT compiled and invoked
the standard set of routines to resolve the function. In this case, there is no
body defined for the function, so the JIT ended up calling d1sym("sin") on the
Kaleidoscope process itself. Since “sin” is defined within the JI'T’s address space,
it simply patches up calls in the module to call the libm version of sin directly.

The LLVM JIT provides a number of interfaces for controlling how unknown
functions get resolved. It allows us to establish explicit mappings between IR
objects and addresses (useful for LLVM global variables that we want to map to
static tables, for example), allows us to dynamically decide on the fly based on
the function name, and even allows us JIT compile functions lazily the first time
they’re called.

One interesting application of this is that we can now extend the language by
writing arbitrary C code to implement operations. For example, we create a
shared library cbits.so:

32

see more please visit: https.//homeofpdf.com

/* cbits

$ gcc -fPIC -shared cbits.c -o cbits.so

$ clang -fPIC -shared cbits.c -o cbits.so
*/

#include "stdio.h"

// putchard - putchar that takes a double and returns O.
double putchard(double X) {

putchar ((char)X);

fflush(stdout);

return O;

3

Compile this with your favorite C compiler. We can then link this into our
Haskell binary by simply including it alongside the rest of the Haskell source
files:

$ ghc cbits.so --make Main.hs -o Main

Now we can produce simple output to the console by using things like: extern
putchard(x); putchard(120);, which prints a lowercase ‘x’ on the console
(120 is the ASCII code for ‘x’). Similar code could be used to implement file
1/0, console input, and many other capabilities in Kaleidoscope.

To bring external shared objects into the process address space we can call
Haskell’s bindings to the system dynamic linking loader to load external libraries.
In addition if we are statically compiling our interpreter we can tell GHC to link
against the shared objects explicitly by passing them in with the -1 flag.

This completes the JIT and optimizer chapter of the Kaleidoscope tutorial.
At this point, we can compile a non-Turing-complete programming language,
optimize and JIT compile it in a user-driven way. Next up we’ll look into
extending the language with control flow constructs, tackling some interesting
LLVM IR issues along the way.

Full Source

See src/chapter4 for the full source from this chapter.

33

see more please visit: https.//homeofpdf.com

https://github.com/sdiehl/kaleidoscope/tree/master/src/chapter4

Chapter 5 (Control Flow)

Welcome to Chapter 5 of the Implementing a language with LLVM tutorial.
Parts 1-4 described the implementation of the simple Kaleidoscope language
and included support for generating LLVM IR, followed by optimizations and a
JIT compiler. Unfortunately, as presented, Kaleidoscope is mostly useless: it
has no control flow other than call and return. This means that we can’t have
conditional branches in the code, significantly limiting its power. In this episode
of “build that compiler”, we’ll extend Kaleidoscope to have an if/then/else
expression plus a simple ‘for’ loop.

‘if” Expressions

Extending Kaleidoscope to support if/then/else is quite straightforward. It
basically requires adding lexer support for this “new” concept to the lexer,
parser, AST, and LLVM code emitter. This example is nice, because it shows
how easy it is to “grow” a language over time, incrementally extending it as new
ideas are discovered.

Before we get going on “how” we add this extension, let’s talk about “what” we
want. The basic idea is that we want to be able to write this sort of thing:

def fib(x)
if x < 3 then
1
else
fib(x-1) + fib(x-2);

In Kaleidoscope, every construct is an expression: there are no statements. As
such, the if/then/else expression needs to return a value like any other. Since
we’re using a mostly functional form, we’ll have it evaluate its conditional, then
return the ‘then’ or ‘else’ value based on how the condition was resolved. This is
very similar to the C “?7:” expression.

The semantics of the if/then/else expression is that it evaluates the condition
to a boolean equality value: 0.0 is considered to be false and everything else is
considered to be true. If the condition is true, the first subexpression is evaluated
and returned, if the condition is false, the second subexpression is evaluated and
returned. Since Kaleidoscope allows side-effects, this behavior is important to
nail down.

Now that we know what we “want”, let’s break this down into its constituent
pieces.

To represent the new expression we add a new AST node for it:

34

see more please visit: https.//homeofpdf.com

data Expr

| If Expr Expr Expr
deriving (Eq, Ord, Show)

We also extend our lexer definition with the new reserved names.

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser style
where

ops = [+, jrn e e egn]
names = ["def","extern","if","then","else"]
style = emptyDef {
Tok.commentLine = "#"
, Tok.reservedOpNames = ops
, Tok.reservedNames = names

}

Now that we have the relevant tokens coming from the lexer and we have the
AST node to build, our parsing logic is relatively straightforward. First we define
a new parsing function:

ifthen :: Parser Expr
ifthen = do

reserved "if"

cond <- expr

reserved "then"

tr <- expr

reserved "else"

fl <- expr

return $ If cond tr fl

Now that we have it parsing and building the AST, the final piece is adding LLVM
code generation support. This is the most interesting part of the if/then/else
example, because this is where it starts to introduce new concepts. All of the
code above has been thoroughly described in previous chapters.

To motivate the code we want to produce, let’s take a look at a simple example.
Consider:

extern foo();
extern bar();
def baz(x) if x then foo() else bar();

35

see more please visit: https.//homeofpdf.com

declare double @foo()
declare double @bar()

define double @baz(double %x) {

entry:
%ifcond = fcmp one double %x, 0.000000e+00
br i1 %ifcond, label Jthen, label Jelse

then: ; preds = Jentry
%calltmp = call double @foo()
br label %ifcont

else: ; preds = Jentry
%calltmpl = call double @bar()
br label %ifcont

ifcont: ; preds = Yelse, Jthen
%iftmp = phi double [%calltmp, %then], [%calltmpl, %else]
ret double %iftmp

}

To visualize the control flow graph, we can use a nifty feature of the LLVM opt
tool. If we put this LLVM IR into “t.11” and run

$ llvm-as < t.11 | opt -analyze -view-cfg

A window will pop up and we’ll see this graph:

LLVM has many nice features for visualizing various graphs, but note that these
are available only if your LLVM was built with Graphviz support (accomplished
by having Graphviz and Ghostview installed when building LLVM).

Getting back to the generated code, it is fairly simple: the entry block evaluates
the conditional expression (“x” in our case here) and compares the result to 0.0
with the fcmp one instruction (one is “Ordered and Not Equal”). Based on the
result of this expression, the code jumps to either the “then” or “else” blocks,
which contain the expressions for the true/false cases.

Once the then/else blocks are finished executing, they both branch back to the
if.exit block to execute the code that happens after the if/then/else. In this
case the only thing left to do is to return to the caller of the function. The
question then becomes: how does the code know which expression to return?

The answer to this question involves an important SSA operation: the Phi
operation. If you're not familiar with SSA, the Wikipedia article is a good
introduction and there are various other introductions to it available on your

36

see more please visit: https.//homeofpdf.com

https://en.wikipedia.org/wiki/Static_single_assignment_form

entry:
%ifcond = femp one double %x, 0.000000e+00
bril %ifcond, label %then, label %else

T F
then: else:
Ycallimp = call double @foo() Yecalltmp = call double @bar()
br label %ifcont br label %ifcont

ifcont:

Yoiftmp = phi double | %calltmp, %then], [%calltmpl, %else |
ret double %iftmp

CFG for 'baz' function
Figure 2:

favorite search engine. The short version is that “execution” of the Phi operation
requires “remembering” which block control came from. The Phi operation takes
on the value corresponding to the input control block. In this case, if control
comes in from the if.then block, it gets the value of calltmp. If control comes
from the if.else block, it gets the value of calltmpl.

At this point, you are probably starting to think “Oh no! This means my
simple and elegant front-end will have to start generating SSA form in order
to use LLVM!”. Fortunately, this is not the case, and we strongly advise not
implementing an SSA construction algorithm in your front-end unless there is an
amazingly good reason to do so. In practice, there are two sorts of values that
float around in code written for your average imperative programming language
that might need Phi nodes:

¢ Code that involves user variables: x = 1; x = x + 1;
e Values that are implicit in the structure of your AST, such as the Phi node
in this case.

In Chapter 7 of this tutorial (“mutable variables”), we’ll talk about #1 in depth.
For now, just believe and accept that you don’t need SSA construction to handle
this case. For #2, you have the choice of using the techniques that we will
describe for #1, or you can insert Phi nodes directly, if convenient. In this case,
it is really really easy to generate the Phi node, so we choose to do it directly.

37

see more please visit: https.//homeofpdf.com

Okay, enough of the motivation and overview, let’s generate code!

In order to generate code for this, we implement the Codegen method for If
node:

cgen (S.If cond tr fl) = do
ifthen <- addBlock "if.then"
ifelse <- addBlock "if.else"
ifexit <- addBlock "if.exit"

-- Jentry

cond <- cgen cond

test <- fcmp FP.ONE false cond

cbr test ifthen ifelse —- Branch based on the condition

-— 4f.then

setBlock ifthen

trval <- cgen tr -- Generate code for the true branch
br ifexit -= Branch to the merge block

ifthen <- getBlock

-— if.else

setBlock ifelse

flval <- cgen fl -- Generate code for the false branch
br ifexit -— Branch to the merge block

ifelse <- getBlock

-— if.exit

setBlock ifexit
phi double [(trval, ifthen), (flval, ifelse)]

We start by creating three blocks.

ifthen <- addBlock "if.then"
ifelse <- addBlock "if.else"
ifexit <- addBlock "if.exit"

Next emit the expression for the condition, then compare that value to zero to
get a truth value as a 1-bit (i.e. bool) value. We end this entry block by emitting
the conditional branch that chooses between the two cases.

38

see more please visit: https.//homeofpdf.com

test <- fcmp FP.ONE false cond
cbr test ifthen ifelse —- Branch based on the condition

After the conditional branch is inserted, we move switch blocks to start inserting
into the if.then block.

setBlock ifthen

We recursively codegen the tr expression from the AST. To finish off the if.then
block, we create an unconditional branch to the merge block. One interesting
(and very important) aspect of the LLVM IR is that it requires all basic blocks to
be “terminated” with a control flow instruction such as return or branch. This
means that all control flow, including fallthroughs must be made explicit in the
LLVM IR. If we violate this rule, the verifier will emit an error.

trval <- cgen tr -- Generate code for the true branch
br ifexit —-— Branch to the merge block
ifthen <- getBlock -- Get the current block

The final line here is quite subtle, but is very important. The basic issue is
that when we create the Phi node in the merge block, we need to set up the
block/value pairs that indicate how the Phi will work. Importantly, the Phi node
expects to have an entry for each predecessor of the block in the CFG. Why
then, are we getting the current block when we just set it 3 lines above? The
problem is that theifthen expression may actually itself change the block that
the Builder is emitting into if, for example, it contains a nested “if/then/else”
expression. Because calling cgen recursively could arbitrarily change the notion
of the current block, we are required to get an up-to-date value for code that
will set up the Phi node.

setBlock ifelse

flval <- cgen fl —-- Generate code for the false branch
br ifexit -— Branch to the merge block

ifelse <- getBlock

Code generation for the if.else block is basically identical to codegen for the
if .then block.

setBlock ifexit
phi double [(trval, ifthen), (flval, ifelse)]

The first line changes the insertion point so that newly created code will go into
the if.exit block. Once that is done, we need to create the Phi node and set
up the block/value pairs for the Phi.

39

see more please visit: https.//homeofpdf.com

Finally, the cgen function returns the phi node as the value computed by the
if/then/else expression. In our example above, this returned value will feed into
the code for the top-level function, which will create the return instruction.

Overall, we now have the ability to execute conditional code in Kaleidoscope.
With this extension, Kaleidoscope is a fairly complete language that can calculate
a wide variety of numeric functions. Next up we’ll add another useful expression
that is familiar from non-functional languages. . .

‘for’ Loop Expressions

Now that we know how to add basic control flow constructs to the language, we
have the tools to add more powerful things. Let’s add something more aggressive,
a ‘for’ expression:

extern putchard(char);

def printstar(n)
for i =1, i <n, 1.0 in
putchard(42); # ascii 42 = 'x'

print 100 '*' characters
printstar(100);

This expression defines a new variable (i in this case) which iterates from a
starting value, while the condition (i < n in this case) is true, incrementing by
an optional step value (1.0 in this case). While the loop is true, it executes its
body expression. Because we don’t have anything better to return, we’ll just
define the loop as always returning 0.0. In the future when we have mutable
variables, it will get more useful.

To get started, we again extend our lexer with new reserved names “for” and

(Cin”.
lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser style
where

ops = [ll+|l I|*|I n_n |l/ll n.n 1] n ll<ll]

names = ["def","extern","if","then","else","in","for"]

style = emptyDef {

Tok.commentLine = "#"

, Tok.reservedOpNames = ops
, Tok.reservedNames = names

}

40

see more please visit: https.//homeofpdf.com

As before, let’s talk about the changes that we need to Kaleidoscope to support
this. The AST node is just as simple. It basically boils down to capturing the
variable name and the constituent expressions in the node.

data Expr

| For Name Expr Expr Expr Expr
deriving (Eq, Ord, Show)

The parser code captures a named value for the iterator variable and the four
expressions objects for the parameters of the loop parameters.

for :: Parser Expr

for = do
reserved "for"
var <- identifier
reservedOp "="
start <- expr
reservedOp ","
cond <- expr
reservedOp ","
step <- expr
reserved "in"
body <- expr
return $ For var start cond step body

Now we get to the good part: the LLVM IR we want to generate for this thing.
With the simple example above, we get this LLVM IR (note that this dump is
generated with optimizations disabled for clarity):

declare double @putchard(double)

define double Qprintstar(double %n) {
entry:
br label %loop

loop:
%i = phi double [1.000000e+00, %entry 1, [%nextvar, %loop]
%calltmp = call double @putchard(double 4.200000e+01)
Jnextvar = fadd double %i, 1.000000e+00

%cmptmp = fcmp ult double %i, %n
%booltmp = uitofp il Ycmptmp to double
%loopcond = fcmp one double %booltmp, 0.000000e+00

41

see more please visit: https.//homeofpdf.com

br il Yloopcond, label %loop, label jafterloop

afterloop:
ret double 0.000000e+00
b

entry:
br label %loop

loop:

%1 = phi double [1.000000e+00, %entry |, [Yonextvar, %loop]
%calltmp = call double @putchard(double 4.200000e+01)
%nextvar = fadd double %i, 1.000000e+00

%cmptmp = femp ult double %1, %n

%booltmp = uitofp il %cmptmp to double

%loopcond = femp one double %booltmp, 0.000000e+00

br il %loopcond, label %loop, label “oafterloop

T F

afterloop:
ret double 0.000000e+00

CFG for 'printstar’ function

Figure 3:

The code to generate this is only slightly more complicated than the above “if”
statement.

cgen (S.For ivar start cond step body) = do
forloop <- addBlock "for.loop"
forexit <- addBlock "for.exit"

-- Jentry

i <- alloca double
istart <- cgen start —-— Generate loop variable initial value
stepval <- cgen step —-- Generate loop wvariable step

42

see more please visit: https.//homeofpdf.com

store i istart -- Store the loop wvariable initial value

assign ivar i -— Assign loop wvariable to the wariable name
br forloop —-— Branch to the loop body block
-- for.loop

setBlock forloop

cgen body —-- Generate the loop body
ival <- load i —-- Load the current loop tteration
inext <- fadd ival stepval —-- Increment loop wvariable

store i inext

cond <- cgen cond —-- Generate the loop condition
test <- fcmp FP.ONE false cond - Test if the loop condition is True (1.0)
cbr test forloop forexit —-- Generate the loop condition

The first step is to set up the LLVM basic block for the start of the loop body.
In the case above, the whole loop body is one block, but remember that the
generating code for the body of the loop could consist of multiple blocks (e.g. if
it contains an if/then/else or a for/in expression).

forloop <- addBlock "for.loop"
forexit <- addBlock "for.exit"

Next we allocate the iteration variable and generate the code for the constant
initial value and step.

i <- alloca double
istart <- cgen start -- Generate loop wvariable initial value
stepval <- cgen step -— Generate loop wvariable step

Now the code starts to get more interesting. Our ‘for’ loop introduces a new
variable to the symbol table. This means that our symbol table can now contain
either function arguments or loop variables. Once the loop variable is set into
the symbol table, the code recursively codegen’s the body. This allows the body
to use the loop variable: any references to it will naturally find it in the symbol

table.
store i istart —-- Store the loop wvariable initial wvalue
assign ivar i —-- Assign loop wvariable to the wvariable name
br forloop -- Branch to the loop body block

Now that the “preheader” for the loop is set up, we switch to emitting code for
the loop body.

43

see more please visit: https.//homeofpdf.com

setBlock forloop
cgen body -- Generate the loop body

The body will contain the iteration variable scoped with its code generation.
After loading its current state we increment it by the step value and store the

value.
ival <- load i -— Load the current loop tteration
inext <- fadd ival stepval —-— Increment loop wvariable

store i inext

Finally, we evaluate the exit test of the loop, and conditionally either branch
back to the same block or exit the loop.

cond <- cgen cond —-- Generate the loop condition
test <- fcmp FP.ONE false cond - Test if the loop condition is True (1.0)
cbr test forloop forexit —-- Generate the loop condition

Finally, code generation of the for loop always returns 0.0. Also note that the
loop variable remains in scope even after the function exits.

setBlock forexit
return zero

We can now generate the assembly for our printstar function, for example the
body of our function will generate code like the following on x86.

printstar: # Oprintstar
.cfi_startproc

BB#0: # Jentry
subq $24, Yrsp

.Ltmpl:
.cfi_def cfa_offset 32
vmovsd %xmmO, 8(%rsp) # 8-byte Spill

vmovsd .LCPIO_O(%rip), %xmmO
vmovapd %xmmO, %xmmi
.align 16, 0x90

.LBBO_1: # Jloop
=>Thts Inner Loop Header: Depth=1
vmovsd Yxmml, 16(%rsp) # 8-byte Spill

vmovsd .LCPIO_1(%rip), %xmmO

callg putchard

vmovsd 16(%rsp), ’%xmml # 8-byte Reload
vucomisd 8(%rsp), %xmml # 8-byte Folded Reload

44

see more please visit: https.//homeofpdf.com

sbbl %eax, %heax

andl $1, %eax

vcevtsi2sd Yeax, %xmmO, %xmmO
vaddsd .LCPIO_O(%rip), %xmml, %xmml

vucomisd .LCPIO0_2, %xmmO
jne .LBBO_1
BB#2: # Jafterloop

vxorpd YxmmO, %xmmO, %xmmO
addq $24, Yrsp
ret

Full Source

See src/chapter5 for the full source from this chapter.

Chapter 6 (Operators)

Welcome to Chapter 6 of the “Implementing a language with LLVM?” tutorial.
At this point in our tutorial, we now have a fully functional language that is
fairly minimal, but also useful. There is still one big problem with it, however.
Our language doesn’t have many useful operators (like division, logical negation,
or even any comparisons besides less-than).

This chapter of the tutorial takes a wild digression into adding user-defined
operators to the simple and beautiful Kaleidoscope language. This digression
now gives us a simple and ugly language in some ways, but also a powerful one
at the same time. One of the great things about creating our own language is
that we get to decide what is good or bad. In this tutorial we’ll assume that it
is okay to use this as a way to show some interesting parsing techniques.

At the end of this tutorial, we’ll run through an example Kaleidoscope application
that renders the Mandelbrot set. This gives an example of what we can build
with Kaleidoscope and its feature set.

User-defined Operators

The “operator overloading” that we will add to Kaleidoscope is more general than
languages like C++. In C++, we are only allowed to redefine existing operators:
we can’t programmatically change the grammar, introduce new operators, change
precedence levels, etc. In this chapter, we will add this capability to Kaleidoscope,
which will let the user round out the set of operators that are supported.

45

see more please visit: https.//homeofpdf.com

https://github.com/sdiehl/kaleidoscope/tree/master/src/chapter5

The two specific features we’ll add are programmable unary operators (right
now, Kaleidoscope has no unary operators at all) as well as binary operators.
An example of this is:

Logical unary not.
def unary! (v)
if v then
0
else
1;

Define > with the same precedence as <.
def binary> 10 (LHS RHS)
RHS < LHS;

Binary "logtical or", (note that it does mot "short circuit”)
def binary| 5 (LHS RHS)

if LHS then
1

else if RHS then
1

else
0;

Define = with slightly lower precedence than relationals.
def binary= 9 (LHS RHS)
'(LHS < RHS | LHS > RHS);

Many languages aspire to being able to implement their standard runtime library
in the language itself. In Kaleidoscope, we can implement significant parts of
the language in the library!

We will break down implementation of these features into two parts: implement-
ing support for user-defined binary operators and adding unary operators.

Binary Operators

We extend the lexer with two new keywords for “binary” and “unary” toplevel

definitions.
lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser style
where
o = [ll+ll Il*ll n_n ll/ll n.n ll=l| n n II<|I Il>l| n | n n. Il]
ps b b b b I b b 2 b b b b -
names = ["def","extern","if","then","else","in","for"

46

see more please visit: https.//homeofpdf.com

,"binary", "unary"]
style = emptyDef {
Tok.commentLine = "#"
, Tok.reservedOpNames = ops
, Tok.reservedNames = names

}

Parsec has no default function to parse “any symbolic” string, but it can be
added simply by defining an operator new token.

operator :: Parser String

operator = do
¢ <- Tok.opStart emptyDef
cs <- many $ Tok.opLetter emptyDef
return (c:cs)

Using this we can then parse any binary expression. By default all our operators
will be left-associative and have equal precedence, except for the bulletins we
provide. A more general system would allow the parser to have internal state
about the known precedences of operators before parsing. Without predefined
precedence values we’ll need to disambiguate expressions with parentheses.

binop = Ex.Infix (BinaryOp <$> op) Ex.AssocLeft

Using the expression parser we can extend our table of operators with the “binop”
class of custom operators. Note that this will match any and all operators even
at parse-time, even if there is no corresponding definition.

binops = [[binary "*" Ex.AssocLeft,
binary "/" Ex.AssocLeft]

, [binary "+" Ex.AssocLeft,

binary "-" Ex.AssocLeft]

, [binary "<" Ex.AssocLeft]]

expr :: Parser Expr
expr = Ex.buildExpressionParser (binops ++ [[binop]]) factor

The extensions to the AST consist of adding new toplevel declarations for the
operator definitions.

data Expr =
| BinaryOp Name Expr Expr
| UnaryOp Name Expr

| BinaryDef Name [Name] Expr
| UnaryDef Name [Name] Expr

47

see more please visit: https.//homeofpdf.com

The parser extension is straightforward and essentially a function definition with
a few slight changes. Note that we capture the string value of the operator as
given to us by the parser.

binarydef :: Parser Expr
binarydef = do
reserved "def"
reserved "binary"
o <- op
prec <- int
args <- parens $ many identifier
body <- expr
return $ BinaryDef o args body

To generate code we’ll implement two extensions to our existing code generator.
At the toplevel we’ll emit the BinaryDef declarations as simply create a normal
function with the name “binary” suffixed with the operator.

codegenTop (S.BinaryDef name args body) =
codegenTop $ S.Function ("binary" ++ name) args body

Now for our binary operator, instead of failing with the presence of a binary
operator not declared in our binops list, we instead create a call to a named
“binary” function with the operator name.

cgen (S.BinaryOp op a b) = do
case Map.lookup op binops of
Just £ -> do
ca <- cgen a
cb <- cgen b
f cacb
Nothing -> cgen (S.Call ("binary" ++ op) [a,b])

Unary Operators

For unary operators we implement the same strategy as binary operators. We
add a parser for unary operators simply as a Prefix operator matching any
symbol.

unop = Ex.Prefix (UnaryOp <$> op)

We add this to the expression parser like above.

48

see more please visit: https.//homeofpdf.com

expr :: Parser Expr
expr = Ex.buildExpressionParser (binops ++ [[unop]l, [binopl]) factor

The parser extension for the toplevel unary definition is precisely the same as
function syntax except prefixed with the “unary” keyword.

unarydef :: Parser Expr
unarydef = do
reserved "def"
reserved "unary"
o <- op
args <- parens $ many identifier
body <- expr
return $ UnaryDef o args body

For toplevel declarations we’ll simply emit a function with the convention that

' %«

the name is prefixed with the word “unary”. For example (“unary!”; “unary-").

codegenTop (S.UnaryDef name args body) =
codegenTop $ S.Function ("unary" ++ name) args body

Up until now we have not have had any unary operators so for code generation
we will simply always search for an implementation as a function.

cgen (S.UnaryOp op a) = do
cgen $ S.Call ("unary" ++ op) [al

That’s it for unary operators, quite easy indeed!

Kicking the Tires

It is somewhat hard to believe, but with a few simple extensions we’ve covered
in the last chapters, we have grown a real-ish language. With this, we can do a
lot of interesting things, including I/0, math, and a bunch of other things. For

example, we can now add a nice sequencing operator (printd is defined to print
out the specified value and a newline):

ready> extern printd(x);
declare double @printd(double)

ready> def binary : 1 (x y) O;

ready> printd(123) : printd(456) : printd(789);

49

see more please visit: https.//homeofpdf.com

123.000000
456.000000
789.000000
Evaluated to 0.000000

We can also define a bunch of other “primitive” operations, such as:

Logical unary not.
def unary! (v)
if v then
0
else
1;

Unary negate.
def unary-(v)
0-v;

Define > with the same precedence as <.
def binary> 10 (LHS RHS)
RHS < LHS;

Binary logical or, which does not short circuit.
def binary| 5 (LHS RHS)
if LHS then
1
else if RHS then
1
else
0;

Binary logical and, which does mot short circuit.
def binary& 6 (LHS RHS)
if !'LHS then
0
else
!''RHS;

Define = with slightly lower precedence than relationals.
def binary = 9 (LHS RHS)
' (LHS < RHS | LHS > RHS);
Define ':' for sequencing: as a low-precedence operator that ignores operands

and just returns the RHS.
def binary : 1 (x y) y;

50

see more please visit: https.//homeofpdf.com

Given the previous if/then/else support, we can also define interesting functions
for I/O. For example, the following prints out a character whose “density” reflects
the value passed in: the lower the value, the denser the character:

ready>

extern putchard(char);
def printdensity(d)
if d > 8 then
putchard(32) # ' '
else if d > 4 then
putchard(46) # '.'
else if d > 2 then
putchard(43) # '+’
else
putchard(42); # '*'

ready> printdensity(l): printdensity(2): printdensity(3):
printdensity(4): printdensity(5): printdensity(9):
putchard(10);

®oktt

Evaluated to 0.000000

The Mandelbrot set is a set of two dimensional points generated by the complex
function z = z2 4+ ¢ whose boundary forms a fractal.

Based on our simple primitive operations defined above, we can start to define
more interesting things. For example, here’s a little function that solves for the
number of iterations it takes a function in the complex plane to converge:

Determine whether the specific location diverges.
Solve for z = 272 + ¢ tn the complex plane.
def mandelconverger(real imag iters creal cimag)
if iters > 255 | (real#*real + imag*imag > 4) then
iters
else
mandelconverger (real*real - imag+*imag + creal,
2*real*imag + cimag,
iters+1, creal, cimag);

Return the number of iterations required for the iteration to escape
def mandelconverge(real imag)

mandelconverger(real, imag, O, real, imag);

Our mandelconverge function returns the number of iterations that it takes
for a complex orbit to escape, saturating to 255. This is not a very useful

o1

see more please visit: https.//homeofpdf.com

Figure 4:

92

see more please visit: https.//homeofpdf.com

function by itself, but if we plot its value over a two-dimensional plane, we can
see the Mandelbrot set. Given that we are limited to using putchard here, our
amazing graphical output is limited, but we can whip together something using
the density plotter above:

Compute and plot the mandelbrot set with the specified 2 dimensional range
info.
def mandelhelp(xmin xmax xstep ymin ymax ystep)
for y = ymin, y < ymax, ystep in (
(for x = xmin, x < xmax, xstep in
printdensity(mandelconverge(x,y)))
putchard (10)
)

mandel - This is a conventient helper function for plotting the mandelbrot set
from the specified position with the spectified Magnification.
def mandel(realstart imagstart realmag imagmag)
mandelhelp(realstart, realstart+realmag#78, realmag,
imagstart, imagstart+imagmag+40, imagmag) ;

Given this, we can try plotting out the mandelbrot set! Let’s try it out:

sk sk ok sk ok ok ok ok ok ok ok ok ok sk ok sk ok o ok sk ok sk ok ok ok ok ook o ok s ok sk ok ok ok ok sk ok ok sk ok o ok sk ok sk ok ok sk ok sk ok s ok o ok sk ok sk ok ok ok ok ok o ok sk ok ok ok ok ok ok ok
sk sk ok sk ok ok 3 ok ok ok ok ok ok ok ok o ok o ok sk ok sk ok ok ok ok ok s ok o ok ok sk ok ok ok ok ok s ok o ok ok ok ok ok K ok sk ok s ok ok 3k ok sk ok ok ok ok ook o ok ok ok ok ok ok K
ok sk ok ok 3 oK 3 oK ok ok ok ok ok ok 3 ok 3 oK 3 ok 3k oK ok oK ok 3 ok 3 ok 3 oK 3 oK 3k oK ok K ok o o 3 ok ok ok ok ok ok ok s ok 3 ok 3 ok sk ok ok ok ok ok 3 ok 3 ok ok ok ok ok ok K

>k >k >k >k >k 3k 3k 3k 5k ok 5k 3k %k %k %k >k >k %k %k >k ok >k ok ok %k %k %k >k >k >k >k k kK kk+++++ ok ok ok kKoK ok ok ok 5k 5k %k %k %k %k %k %k K ok ok ok ok 5k %k %k %k %k %k

sk ok ok K ok 3 oK 3 oK oK ok oK ok ok oK KoK Kok KoKk oKk kR Kok bbb bbbt | L L L b kokokokok ok ok sk ok sk ok ok ok ok o ok ok ok sk ok K ok sk ok koK
sk sk ok sk ok o ok ok ok ok ok ok ok ok ook o ok ok ok ok ok ok Kok Kok ok ok kb, L kR okokok ok ok ok skok ok sk ok ok ok sk ok sk okok ok ok
sk sk ok sk ok o ok ok ok ok ok ok ok ok ok o ok ok ok sk ok ok ok ok kb b LR kokok ok sk ok ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok sk koK
sk sk ok ok o ok ok ok ok ok ok ok ok Kok Kk kKK k kb L L ook ok ok ok ok sk ok ok ok ok ok sk ok ok ok kK ok K

>k >k >k >k K K 3k 3k 5k ok 5k %k %k %k %k >k k kK kKKK ok kk++++++++ %k ok ok ok ok >k kK ok ok ok ok ok %k %k %k %k k >k k k k

ook ook ok ok ok ok ok ok ok ok ok ok ok ok ok b | . e Rokskokskokok ok kokok ok ok ok kR ok ok
ook ok ok ook ok ok ok ok ok ok ok ok Kk kb, L L ook ok ok ook sk ok ok ook ok sk ok ok ok ok
ook ok ok ok ok kK ok ok kK ok kK kK Kb L L L kokskokskokok ok sk ok ok ok ok ok ok
skokskokkokok ok ok ok kokok ok k4, L FHHH+, L L L kR skokok ok ook ok ok ok ok ok
skoksokkkokdokkdokkok 4+, L L. ok skokok ok sk ok ok ok ok sk kok ok
ok ok kR okdok Kk, .. L A skokok ok ok ok ok ok ok ok ok ok ok

kokckokkokkkk++++++++++ o b skosk kok sk ok sk sk ok ok sk ok ok ok ok >k k ok

Fokkkokokk K+ttt | « ok ko kKK oK oK ok ok ok ok ok oK
sokokokokokk+H+HHH++, L L o Rk kKoK KoK ok ok ok ok ok K
sokkkkKRKt L L, v ook koK ok ok ok ok ok ok ok ok ok ok ok
sokkkkkkt, L L L. v o bbbk okok ok ok ok ok ok ok ok ok ok ok
sokskokskskokttt++ L o« skokokokskokok sk sk sk sk sk ok ok sk sk ok ok
$okk kKRR okttt L « ok ok kKKK sk ok ok ok ok ok ok ok
Fokok koK ok kKt L b ok ok ok ok kKKK oK oK oK oK ok ok ok ok

93

see more please visit: https.//homeofpdf.com

ok skokkkokdokk+++H++++++ | .
ok ok kFokkkokdkok kb, L L.

ok ok ok Kok kR ok kR Fok kRt | L+, L L

ook ok ok Ok K koK Ok KKK K Fok kb4, L

ook ok ok Ok ok ok Ok KKKk Ok ROk KRk H e+,

ook ook ok ok 3k ok Ok K Kok Ok ok ok KRk dok .

ook ok ok ook o ok ok ok ok ok ok ok ok ok kok ok kb, L L L L L
ook ok ok ok ok ok ok ok ok ok ok ok ok Kk ok Kok ok kb L L
ook ok ok ok ok ok ok ok ok ok ok ok Ok K KKKk FOk Kb bt

ook ok ko ok ok ok ok K ok ok ok ok ok K Kok K K Kok Kk ok kK kbt
ook ok ok ok ok ok ok K ok ok ok ok ok Kok ok K Kok ok Rk Rk bt | |

ook ok ok ok ok ok K K ok ok K ok ok K K K ok ok Kok ok Kk ok ok Kok kK ++++

L Rokskokokokok ok kok ok ok ok kR ok ok
bk ok ok okok ok ok ok ok ok ok ok ok kok ok

L kskokokokok ok ok kok ok ok ok koK ok

L Akokskokskok ok ok kokok ok ok ok ok ok

ok ok sk ok ok ok ok ok ok ok ok ok

e Roksokskokokok ok ok ok ok ok ok ok ok
,,,,,, o sk sk ok ok sk ok ok ok ook ok ok ok ok ok ook ok ok
o b skskok ok ok sk kook ok ok ook s sk ok ok ok ook
L ok ok ok ok sk ok sk ok ok ok ok sk ok ok sk ok sk ok ok K
L ARtk okokok ook ok ok ok sk ok ok ok ok ok ok ok
ook okok ok ok sk ok ok sk ok sk ok ok ok ok Kk k ok

b sk sk ok ook sk ko ok ok ok K ok ok ok K ok ok ok ok ok Kok K

Sk 3k sk >k >k >k 3k sk ok ok >k 3k Sk ok sk ok >k 3k Sk ok sk sk sk Sk Sk sk sk sk >k Sk ok sk sk >k >k Sk sk ok sk - - Sk ok ok sk sk sk ok sk sk sk sk Sk ok sk sk sk sk Sk sk sk sk sk Sk sk ok ok sk sk koskok

sk sk ok sk ok o ok o ok sk ok ok ok ok sk ok s ok o ok sk ok sk ok ok ok ok s ok o ok sk ok o ok sk ok ok sk ok ok s ok o ok s ok sk ok ok K ok sk ok s ok o ok sk ok sk ok ok ok ok ok o ok ok ok ok ok ok ok K

3k >k >k >k >k 3K 3K 3K 3k 5k 5k 3k 3k 5k 5k 5k >k 5k >k 3k 3k 3k 3k 3k 5k 3k 3k 5k 5k >k %k %k 3K 3K 3k 3k 3k 3k 3k %k 5k 5k 5k %k %K K 3K 3K 5K 5k 3k 3k 3k 5k 5k >k %k %K K 5K 5K 5K 5k 5k %k %k %k %k >k >k %k Xk K K K >k >k >k

>k >k >k >k >k 3k 3k 3k 5k 5k 5k 3k 3k k >k >k >k >k >k 3k 3k 3k 3k 5k 5k 3k 3k 5k 5k >k %k >k >k 5k 5k 3k 3k 3k 3k %k %k >k %k %k K >k >k 5k 5k 5k 5k 3k 3k %k >k >k %k %k K >k >k >k >k >k 5k %k %k %k >k >k >k %k K >k >k >k %k >k

>k >k >k >k >k >k 5k 5k ok ok 5k 5k 5k >k >k >k >k >k >k >k 5k 5k 5k 5k 5k >k >k 5k >k >k >k >k >k >k >k 5k 5k 3k >k >k >k >k >k >k >k >k >k >k 5k 5k 5k 5k >k >k >k >k %k >k >k >k >k >k >k >k >k >k %k >k >k >k >k %k >k >k >k >k >k >k

At this point, you may be starting to realize that Kaleidoscope is a real and
powerful language. It may not be self-similar :), but it can be used to plot things
that are!

With this, we conclude the “adding user-defined operators” chapter of the tutorial.
We have successfully augmented our language, adding the ability to extend the
language in the library, and we have shown how this can be used to build a simple
but interesting end-user application in Kaleidoscope. At this point, Kaleidoscope
can build a variety of applications that are functional and can call functions
with side-effects, but it can’t actually define and mutate a variable itself.

Strikingly, variable mutation is an important feature of imperative languages,
and it is not at all obvious how to add support for mutable variables without
having to add an “SSA construction” phase to our front-end. In the next chapter,
we will describe how we can add variable mutation without building SSA in our
front-end.

Full Source

See src/chapter6 for the full source from this chapter.

Chapter 7 (Mutable Variables)

Welcome to Chapter 7 of the “Implementing a language with LLVM” tutorial.
In chapters 1 through 6, we’ve built a very respectable, albeit simple, functional

o4

see more please visit: https.//homeofpdf.com

https://github.com/sdiehl/kaleidoscope/tree/master/src/chapter6

programming language. In our journey, we learned some parsing techniques, how
to build and represent an AST, how to build LLVM IR, and how to optimize
the resultant code as well as JIT compile it.

While Kaleidoscope is interesting as a functional language, the fact that it is
functional makes it “too easy” to generate LLVM IR for it. In particular, a
functional language makes it very easy to build LLVM IR directly in SSA form.
Since LLVM requires that the input code be in SSA form, this is a very nice
property and it is often unclear to newcomers how to generate code for an
imperative language with mutable variables.

The short (and happy) summary of this chapter is that there is no need for
our front-end to build SSA form: LLVM provides highly tuned and well tested
support for this, though the way it works is a bit unexpected for some.

Why is this a hard problem?

To understand why mutable variables cause complexities in SSA construction,
consider this extremely simple C example:

int G, H;
int test(_Bool Condition) {
int X;
if (Condition)
X = G;
else
X = H;
return X;

}

In this case, we have the variable “X”, whose value depends on the path executed
in the program. Because there are two different possible values for X before the
return instruction, a Phi node is inserted to merge the two values. The LLVM
IR that we want for this example looks like this:

QG
@H

weak global i32 0O ; type of @G is i32x%
weak global i32 O ; type of @H is i32%

define i32 @test(il %Condition) {
entry:
br i1 %Condition, label %cond_true, label %cond_false

cond_true:
%X.0 = load i32* @G
br label %cond_next

99

see more please visit: https.//homeofpdf.com

cond_false:
%X.1 = load i32* @H
br label %cond_next

cond_next:
%X.2 = phi i32 [%X.1, Ycond_false], [%X.0, %cond_true]
ret i32 %X.2

}

The control flow graph for the above IR:

entry:
br il %Condition, label %cond_true, label %cond_false
T F
cond true: cond false:
%X.0 = load 132* @G %X.1 = load i32* @H
br label %cond next br label %cond next

cond next:

%X.2 =phi132 [%X.1, %cond false], [%X.0, %cond true]
ret 132 %X.2

CFG for 'test' function

Figure 5:

In this example, the loads from the G and H global variables are explicit in
the LLVM IR, and they live in the then/else branches of the if statement
(cond__true/cond_ false). In order to merge the incoming values, the X.2 phi
node in the cond_ next block selects the right value to use based on where control
flow is coming from: if control flow comes from the cond_ false block, X.2 gets
the value of X.1. Alternatively, if control flow comes from cond__ true, it gets the
value of X.0. The intent of this chapter is not to explain the details of SSA form.
For more information, see one of the many online references.

The question for this article is “who places the phi nodes when lowering assign-

ments to mutable variables?”. The issue here is that LLVM requires that its IR

96

see more please visit: https.//homeofpdf.com

be in SSA form: there is no “non-SSA” mode for it. However, SSA construction
requires non-trivial algorithms and data structures, so it is inconvenient and
wasteful for every front-end to have to reproduce this logic.

Memory in LLVM

The ‘trick’ here is that while LLVM does require all register values to be in SSA
form, it does not require (or permit) memory objects to be in SSA form. In the
example above, note that the loads from G and H are direct accesses to G and
H: they are not renamed or versioned. This differs from some other compiler
systems, which do try to version memory objects. In LLVM, instead of encoding
dataflow analysis of memory into the LLVM IR, it is handled with Analysis
Passes which are computed on demand.

With this in mind, the high-level idea is that we want to make a stack variable
(which lives in memory, because it is on the stack) for each mutable object in
a function. To take advantage of this trick, we need to talk about how LLVM
represents stack variables.

In LLVM, all memory accesses are explicit with load/store instructions, and it is
carefully designed not to have (or need) an “address-of” operator. Notice how
the type of the @G/@H global variables is actually i32* even though the variable
is defined as 132. What this means is that @G defines space for an i32 in the
global data area, but its name actually refers to the address for that space. Stack
variables work the same way, except that instead of being declared with global
variable definitions, they are declared with the LLVM alloca instruction:

define i32 @example() {

entry:
%X = alloca 132 ; type of %X is i32x.
%tmp = load i32* X ; load the stack value %X from the stack.
%tmp2 = add 132 Y%tmp, 1 ; increment it

store i32 Ytmp2, i32*% %X ; store it back

This code shows an example of how we can declare and manipulate a stack
variable in the LLVM IR. Stack memory allocated with the alloca instruction is
fully general: we can pass the address of the stack slot to functions, we can store
it in other variables, etc. In our example above, we could rewrite the example to
use the alloca technique to avoid using a Phi node:

0G = weak global i32 0 ; type of @G is i32%
OH = weak global i32 0 ; type of QH is 132
57

see more please visit: https.//homeofpdf.com

define i32 @test(il %Condition) {
entry:
%X = alloca i32
br il %Condition, label %cond_true, label %cond_false

cond_true:
%X.0 = load i32* @G
store i32 %X.0, i32* %X
br label %cond_next

cond_false:
%X.1 = load i32* G@H
store i32 %X.1, i32* %X
br label Y%cond_next

cond_next:
%X.2 = load i32% %X
ret i32 %X.2

}

With this, we have discovered a way to handle arbitrary mutable variables
without the need to create Phi nodes at all:

o Each mutable variable becomes a stack allocation.

Each read of the variable becomes a load from the stack.

o Each update of the variable becomes a store to the stack.

e Taking the address of a variable just uses the stack address directly.

While this solution has solved our immediate problem, it introduced another
one: we have now apparently introduced a lot of stack traffic for very simple
and common operations, a major performance problem. Fortunately for us, the
LLVM optimizer has a highly-tuned optimization pass named “mem2reg” that
handles this case, promoting allocas like this into SSA registers, inserting Phi
nodes as appropriate. If we run this example through the pass, for example,
we’ll get:

$ llvm-as < example.ll | opt -mem2reg | llvm-dis
@G = weak global i32 O

@H = weak global i32 0O

define i32 Q@test(il %Condition) {

entry:

br i1 %Condition, label %cond_true, label %cond_false

cond_true:

98

see more please visit: https.//homeofpdf.com

%X.0 = load i32* @G
br label %cond_next

cond_false:
%X.1 = load i32* @H
br label %cond_next

cond_next:
%X.01 = phi i32 [%X.1, Y%cond_false], [%X.0, J%cond_true]
ret 132 %X.01

}

We say a block “A” dominates a different block “B” in the control flow graph
if it’s impossible to reach “B” without passing through “A”, equivalently “A”
is the dominator of “B”. The mem2reg pass implements the standard “iterated
dominance frontier” algorithm for constructing SSA form and has a number of
optimizations that speed up (very common) degenerate cases.

The mem2reg optimization pass is the answer to dealing with mutable variables,
and we highly recommend that you depend on it. Note that mem2reg only works
on variables in certain circumstances:

o mem2reg is alloca-driven: it looks for allocas and if it can handle them, it
promotes them. It does not apply to global variables or heap allocations.

o mem2reg only looks for alloca instructions in the entry block of the function.
Being in the entry block guarantees that the alloca is only executed once,
which makes analysis simpler.

e« mem2reg only promotes allocas whose uses are direct loads and stores. If
the address of the stack object is passed to a function, or if any funny
pointer arithmetic is involved, the alloca will not be promoted.

« mem?2reg only works on allocas of first class values (such as pointers, scalars
and vectors), and only if the array size of the allocation is 1 (or missing in
the .1l file).

e mem?2reg is not capable of promoting structs or arrays to registers. Note
that the “scalarrepl” pass is more powerful and can promote structs,
“unions”, and arrays in many cases.

All of these properties are easy to satisfy for most imperative languages, and
we’ll illustrate it below with Kaleidoscope. The final question you may be asking
is: should I bother with this nonsense for my front-end? Wouldn’t it be better if
I just did SSA construction directly, avoiding use of the mem?2reg optimization
pass? In short, we strongly recommend that you use this technique for building
SSA form, unless there is an extremely good reason not to. Using this technique
is:

99

see more please visit: https.//homeofpdf.com

e Proven and well tested: clang uses this technique for local mutable variables.
As such, the most common clients of LLVM are using this to handle a bulk
of their variables. You can be sure that bugs are found fast and fixed early.

o Extremely Fast: mem2reg has a number of special cases that make it fast
in common cases as well as fully general. For example, it has fast-paths
for variables that are only used in a single block, variables that only have
one assignment point, good heuristics to avoid insertion of unneeded phi
nodes, etc.

e Needed for debug info generation: Debug information in LLVM relies
on having the address of the variable exposed so that debug info can be
attached to it. This technique dovetails very naturally with this style of
debug info.

If nothing else, this makes it much easier to get our front-end up and running, and
is very simple to implement. Let’s extend Kaleidoscope with mutable variables
now!

Mutable Variables

Now that we know the sort of problem we want to tackle, let’s see what this
looks like in the context of our little Kaleidoscope language. We're going to add
two features:

o The ability to mutate variables with the ‘=" operator.
o The ability to define new variables.

While the first item is really what this is about, we only have variables for
incoming arguments as well as for induction variables, and redefining those only
goes so far :). Also, the ability to define new variables is a useful thing regardless
of whether we will be mutating them. Here’s a motivating example that shows
how we could use these:

Define ':' for sequencing: as a low-precedence operator that tignores operands
and just returns the RHS.
def binary : 1 (x y) y;

Recursive fib, we could do this before.
def fib(x)
if (x < 3) then
1
else
fib(x-1)+fib(x-2);

Iterative fib.

60

see more please visit: https.//homeofpdf.com

def fibi(x)
var a =1, b=1, ¢ =0 in
(for 1 = 3, i < x in
c (a + b)
a=>b:
c)

o’
]

b;

Call it.
£ibi(10);

At this point in Kaleidoscope’s development, it only supports variables for two
things: incoming arguments to functions and the induction variable of ‘for’ loops.
For consistency, we’ll allow mutation of these variables in addition to other
user-defined variables. This means that these will both need memory locations.

We introduce a new var syntax which behaves much like the let notation in
Haskell. We will let the user define a sequence of new variable names and inject
these new variables into the symbol table.

data Expr

| Let Name Expr Expr
deriving (Eq, Ord, Show)

The parser for it will allow for multiple declarations on a single line and right
fold the AST node bodies, allowing us to use variables declared earlier in the list
in subsequent declarations (i.e. var x = 3, y = x + 1).

letins :: Parser Expr
letins = do
reserved "var"
defs <- commaSep $ do
var <- identifier
reservedOp "="
val <- expr
return (var, val)
reserved "in"
body <- expr
return $ foldr (uncurry Let) body defs

The code generation for this new syntax is very straight forward, we simply
allocate a new reference and assign it to the name given then return the assigned
value.

61

see more please visit: https.//homeofpdf.com

cgen (S.Let a b ¢) = do
i <- alloca double
val <- cgen b
store i val
assign a i
cgen c

We can test out this new functionality. Note that code below is unoptimized
and involves several extraneous instructions that would normally be optimized
away by mem2reg.

ready> def main(x) var y = x + 1 in y;
; ModuleID = 'my cool jit'

define double @main(double %x) {
entry:

%0 = alloca double

store double %x, double* 70

%1 = alloca double

%2 = load doublex* %0

%3 fadd double %2, 1.000000e+00

store double %3, doublex 71

%4 = load doublex %1

ret double %4

Evaluated to: 1.0

Assignment

Mutation of existing variables is also quite simple. We’ll add a special case to
our code generator for the “=" operator to add internal logic for looking up the
LHS variable and assign it the right hand side using the store operation.

cgen (S.BinaryOp "=" (S.Var var) val) = do
a <- getvar var
cval <- cgen val
store a cval
return cval

Testing this out for a trivial example we find that we can now update variables.

ready> def main(x) x = 1;
; ModuleID = 'my cool jit'

62

see more please visit: https.//homeofpdf.com

define double @main(double %x) {
entry:
%0 = alloca double
store double %x, double* 70
store double 1.000000e+00, doublex*x %0
ret double 1.000000e+00
}

Evaluated to: 1.0
Finally we can write down our Fibonacci example using mutable updates.
def fibi(x)

var a = 1, b=1, ¢ = 0 in
(for i = 3, i < x, 1.0 in

c = (a+b)
a=>b:
b=c
): b;
fibi(10);

With this, we completed what we set out to do. Our nice iterative fib example
from the intro compiles and runs just fine. The mem2reg pass optimizes all of
our stack variables into SSA registers, inserting PHI nodes where needed, and
our front-end remains simple: no “iterated dominance frontier” computation
anywhere in sight.

define double @fibi(double %x) #0 {
entry:
br label Yfor.loop

for.loop: ; preds = %for.loop, %entry
%0 = phi double [%4, %for.loop], [3.000000e+00, %entry]
%1 = phi double [%3, %for.loop], [1.000000e+00, %entry]

%2 = phi double [%1, %for.loop], [1.000000e+00, %entry]
%3 = fadd double %2, %1

%4 = fadd double %0, 1.000000e+00

%5 = fcmp ult double %4, %x

br il %5, label Yfor.loop, label %for.exit
for.exit: ; preds = Yfor.loop
%6 = call double @"binary:"(double 0.000000e+00, double %3)

ret double %6
}

63

see more please visit: https.//homeofpdf.com

Running the optimizations we see that we get nicely optimal assembly code for
our loop. The auto-vectorizer pass has also rewritten our naive code to used
SIMD instructions which yield much faster execution.

fibi: # ofibi
BB#0: # Jentry
vmovsd .LCPI2_O(%rip), ’%xmm2
vmovsd .LCPI2_1(Yrip), %xmm3
vmovaps %xmm2, %xmmil
vmovaps %xmm2, %xmmé
.align 16, 0x90
.LBB2_1: # Jfor.loop
vmovaps %xmml, %xmmb
vaddsd Y%xmm4, %xmm5, %xmml
vaddsd %xmm2, %xmm3, %xmm3
vucomisd %xmmO, %xmm3
vmovaps %xmmb5, %xmmé
jb .LBB2_1
BB#2: # Jfor.exit
vmovaps %xmml, %xmmO
ret

Full Source

See src/chapter? for the full source from this chapter.

Chapter 8 (Conclusion)

Tutorial Conclusion

Welcome to the final chapter of the “Implementing a language with LLVM”
tutorial. In the course of this tutorial, we have grown our little Kaleidoscope
language from being a useless toy, to being a semi-interesting (but probably still
useless) toy. :)

It is interesting to see how far we’ve come, and how little code it has taken. We
built the entire lexer, parser, AST, code generator, and an interactive run-loop
(with a JIT!) by-hand in under 700 lines of (non-comment/non-blank) code.

Our little language supports a couple of interesting features: it supports user
defined binary and unary operators, it uses JIT compilation for immediate
evaluation, and it supports a few control flow constructs with SSA construction.

64

see more please visit: https.//homeofpdf.com

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://github.com/sdiehl/kaleidoscope/tree/master/src/chapter7

Part of the idea of this tutorial was to show how easy and fun it can be to define,
build, and play with languages. Building a compiler need not be a scary or
mystical process! Now that we’ve seen some of the basics, I strongly encourage
you to take the code and hack on it. For example, try adding:

o global variables - While global variables have questionable value in
modern software engineering, they are often useful when putting together
quick little hacks like the Kaleidoscope compiler itself. Fortunately, our
current setup makes it very easy to add global variables: just have value
lookup check to see if an unresolved variable is in the global variable symbol
table before rejecting it.

o typed variables - Kaleidoscope currently only supports variables of type
double. This gives the language a very nice elegance, because only sup-
porting one type means that we never have to specify types. Different
languages have different ways of handling this. The easiest way is to require
the user to specify types for every variable definition, and record the type
of the variable in the symbol table along with its Value*.

e arrays, structs, vectors, etc - Once we add types, we can start extending
the type system in all sorts of interesting ways. Simple arrays are very
easy and are quite useful for many different applications. Adding them is
mostly an exercise in learning how the LLVM getelementptr instruction
works: it is so nifty /unconventional, it has its own FAQ! If we add support
for recursive types (e.g. linked lists), make sure to read the section in the
LLVM Programmer’s Manual that describes how to construct them.

o standard runtime - Our current language allows the user to access
arbitrary external functions, and we use it for things like “printd” and
“putchard”. As we extend the language to add higher-level constructs, often
these constructs make the most sense if they are lowered to calls into a
language-supplied runtime. For example, if we add hash tables to the
language, it would probably make sense to add the routines to a runtime,
instead of inlining them all the way.

« memory management - Currently we can only access the stack in Kalei-
doscope. It would also be useful to be able to allocate heap memory, either
with calls to the standard libc malloc/free interface or with a garbage
collector such as the Boehm GC. If we would like to use garbage collection,
note that LLVM fully supports Accurate Garbage Collection including
algorithms that move objects and need to scan/update the stack.

¢ debugger support - LLVM supports generation of DWARF Debug info
which is understood by common debuggers like GDB. Adding support for
debug info is fairly straightforward. The best way to understand it is to
compile some C/C++ code with “clang -g -O0” and taking a look at what
it produces.

¢ exception handling support - LLVM supports generation of zero cost
exceptions which interoperate with code compiled in other languages. You
could also generate code by implicitly making every function return an error
value and checking it. You could also make explicit use of setjmp/longjmp.

65

see more please visit: https.//homeofpdf.com

http://www.hboehm.info/gc/

There are many different ways to go here.

e object orientation, generics, database access, complex numbers,
geometric programming, ... - Really, there is no end of crazy features
that we can add to the language.

o unusual domains - We’ve been talking about applying LLVM to a domain
that many people are interested in: building a compiler for a specific
language. However, there are many other domains that can use compiler
technology that are not typically considered. For example, LLVM has been
used to implement OpenGL graphics acceleration, translate C++ code
to ActionScript, and many other cute and clever things. Maybe you will
be the first to JIT compile a regular expression interpreter into native
code with LLVM? Have fun and try doing something crazy and unusual.
Building a language like everyone else always has, is much less fun than
trying something a little crazy or off the wall and seeing how it turns out.
If you get stuck or want to talk about it, feel free to email the llvindev
mailing list: it has lots of people who are interested in languages and are
often willing to help out.

Chapter 9 (Appendix)

Command Line Tools

llvm-as
The assembler transforms the human readable LLVM assembly to LLVM bitcode.
Usage:

$ clang -S -emit-1lvm hello.c -c -o hello.ll
$ 1llvm-as hello.ll -o hello.bc

llvm-dis

The disassembler transforms the LLVM bitcode to human readable LLVM
assembly.

Usage:

$ clang -emit-1lvm hello.c -c -o hello.bc
$ 1llvm-dis < hello.bc | less

i
1li is the LLVM interpreter, which can directly execute LLVM bitcode.
Usage:

66

see more please visit: https.//homeofpdf.com

$ clang -emit-1lvm hello.c -c -o hello.bc
$ 11i hello.bc
$ 11i -use-mcjit hello.bc

llc

llc is the LLVM backend compiler, which translates LLVM bitcode to native
code assembly.

Usage:

$ clang -emit-1lvm hello.c -c -o hello.bc
$ 1lc hello.bc -o hello.s
$ cc hello.s -o hello.native

$ 1lc -march=x86-64 hello.bc -o hello.s
$ 1lc -march=arm hello.bc -o hello.s

opt

opt reads LLVM bitcode, applies a series of LLVM to LLVM transformations
and then outputs the resultant bitcode. opt can also be used to run a specific
analysis on an input LLVM bitcode file and print out the resulting IR or bitcode.

Usage:

$ clang -emit-1lvm hello.c -c -o hello.bc

$ opt -mem2reg hello.bc

$ opt -simplifycfg hello.bc

$ opt -inline hello.bc

$ opt -dce hello.bc

$ opt -analyze -view-cfg hello.bc

$ opt -bb-vectorize hello.bc

$ opt -loop-vectorize -force-vector-width=8

1lvim-link

llvm-link links multiple LLVM modules into a single program. Together with
opt this can be used to perform link-time optimizations.

Usage:

$ 1lvm-link foo.ll bar.ll -o foobar.ll
$ opt -std-compile-opts -std-link-opts -03 foobar.bc -o optimized.bc

67

see more please visit: https.//homeofpdf.com

	Chapter 1 (Introduction)
	Setup
	Building with Stack (Recommended)
	Building with Cabal
	Building with make

	The Basic Language
	LLVM Introduction
	Full Source

	Chapter 2 (Parser and AST)
	Parser Combinators
	The Lexer
	The Parser
	The REPL
	Full Source

	Chapter 3 (Code Generation)
	Haskell LLVM Bindings
	Code Generation Setup
	Blocks
	Instructions
	From AST to IR
	Full Source

	Chapter 4 (JIT and Optimizer Support)
	ASTs and Modules
	Constant Folding
	Optimization Passes
	Adding a JIT Compiler
	External Functions
	Full Source

	Chapter 5 (Control Flow)
	if Expressions
	for Loop Expressions
	Full Source

	Chapter 6 (Operators)
	User-defined Operators
	Binary Operators
	Unary Operators
	Kicking the Tires
	Full Source

	Chapter 7 (Mutable Variables)
	Why is this a hard problem?
	Memory in LLVM
	Mutable Variables
	Assignment
	Full Source

	Chapter 8 (Conclusion)
	Tutorial Conclusion

	Chapter 9 (Appendix)
	Command Line Tools

