on Tutona\s

FIRST EDITION
Mastering coroutines in Kotlin and Android

By Filip Babi¢ & Nishant Srivastava

Kotlin Coroutines by Tutorials
By Filip Babi¢ and Nishant Srivastava

Copyright ©2018 Razeware LLC.

Notice of Rights

All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability

This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks

All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Euy

see more please visit: https://homeofbook.com

Euy

"To my friends and family. And mostly to my loved one. Thank you
for being patient and understanding, when I couldn’t grab a cup of
coffee or tea and catch up. Huge thanks to everyone who’s supported
me throughout the entire process, with positive and motivational
encouragement. This wouldn’t have gone as nearly as smooth
without you."

— Filip Babi¢

"I would like to thank the many people who have made this book
possible. To my father, who gave me the desire to be a curious soul
and learn more. To my mom, who has supported me all along
whenever I have had doubts about my own capabilities as a writer. To
my friends, Saachi Chawla and Kirti Dohrey, who have always
believed in me during my ups and downs. To people who have
directly or indirectly been my mentor and helped me through
understanding technology at a deeper level whenever I found myself
stuck. And lastly, to the team at raywenderlich.com, my co-author,
editors and everyone involved in making this book a reality."

— Nishant Srivastava

see more please visit: https://homeofbook.com

Nishant Srivastava is an author on this book. Nishant is a Sr.Android
Engineer at Soundbrenner in Berlin, Germany and an open source
enthusiast who spends his time doodling when not hacking on
Android. He is a caffeine-dependent life-form and can be found either
talking about android libraries or advocating that coffee is the elixir
of life at community gatherings. He has been part of two startups in
the past (Founding Team Member at OmniLabs, Inc. and one of the
first employees at Silverpush) with experience in Android SDK
Engineering and Audio Digital Signal Processing(DSP) on Android.
While working at his past company (Silverpush), he developed the
company’s patented UAB (Unique Audio Beacon) Technology.

Filip Babic is an author of this book. He is an experienced Android
developer from Croatia, working at the Five Agency, building world-
known applications, such as the RosettaStone language-learning
application and AccuWeather, the globally known weather reporting
app. Previously he worked at COBE d.o.0., a German-owned mobile
agency, which is partners with the biggest German media company.
He's enthusiastic about the Android ecosystem, focusing extensively
on applying Kotlin to Android applications, and building scalable,
testable and user-friendly applications. Passionately building up good
spirit in local development groups in Croatia, focusing on lectures,
education, and engagement of new, aspiring developers in the
Croatian IT community. But also pursuing global conferences,
meetups, and IT fests. Altruistic when it comes to consulting and
mentoring, trying to give help to everyone, whenever possible,
motivated by the ideology that the Android ecosystem we live in is
only as good as we make it.

Eric Crawford is a tech editor of this book. Eric is a Senior Software
Developer at John Deere, where he bounces between iOS and Android
development. Before coming to Deere he did freelance mobile
development and serverside web development utilizing Java. In his
free time he likes to dabble into other platforms like IOT and cloud
computing.

see more please visit: https://homeofbook.com

Euy

see more please visit: https://homeofbook.com

Massimo Carli is the final pass editor of this book. Massimo has been
working with Java since 1995 when he co-founded the first Italian
magazine about this technology (http://www.mokabyte.it). After
many years creating Java desktop and enterprise application, he
started to work in the mobile world. In 2001 he wrote his first book
about J2ME. After many J2ME and Blackberry applications, he then
started to work with Android in 2008. The same year he wrote the first
Italian book about Android; best seller on Amazon.it. That was the
first of a series of 8 books. he worked at Yahoo and Facebook and he's
actually Engineering Tech Lead at Lloyds. He's a musical theatre lover
and a supporter of the soccer team S.P.A.L.

Manda Frederick is an editor of this book. She has been involved in
publishing for over ten years through various creative, educational,
medical and technical print and digital publications, and is thrilled to
bring her experience to the raywenderlich.com family as Managing
Editor. In her free time, you can find her at the climbing gym,
backpacking in the backcountry, hanging with her dog, working on
poems, playing guitar and exploring breweries.

About the Artist

Vicki Wenderlich is the designer and artist of the cover of this book.
She is Ray’s wife and business partner. She is a digital artist who
creates illustrations, game art and a lot of other art or design work for
the tutorials and books on raywenderlich.com. When she’s not
making art, she loves hiking, a good glass of wine and attempting to
create the perfect cheese plate.

Kotlin Coroutines by Tutorials

Table of Contents: Overview

Early Access EitioN.... e 11
What You Need..... ettt 12
BOOK LICENSE .ttt eseses s sesassesens 13
Book Source Code & FOrums.......eeceeeeeeceeeneeeererenenennns 14

Chapter 1: What Is Asynchronous Programming? ... 15

Chapter 2: Setting Up Your Build Environments....... 30
Chapter 3: Getting Started with Coroutines............... 42
Chapter 4: Suspending Functions..........eeenennee. 53
Chapter 5: ASYNC/AWAIT......eeeeeeccceeeeeee e 54
Chapter 6: Building Sequences & Iterators with

YHCI ettt sebese s s s seses s sesenes 55
Chapter 7: Coroutine Contexts & Dispatchers.......... 56
Chapter 8: Exception Handling & Cancellation.......... 57
Chapter 9: Coroutines as State Machines.................... 77
Chapter 10: Channels.... e renenene /8
Chapter 11: Producers & ACtOrs....eccceennee 79
Chapter 12: Broadcast Channels...........vennnnnee. 80
Chapter 13: Coroutine Operators.......eeeeeeevennnne. 81
Chapter 14: Coroutines & RxKotlin Comparison...... 82
u raywenderlich.com 6

see more please visit: https.//homeofbook.com

Kotlin Coroutines by Tutorials

Chapter 15: Coroutines on Android: Part 1 83
Chapter 16: Coroutines on Android: Part 2.............. 123
Chapter 17: Coroutines on Android: Part 3.............. 124
More Books You Might ENjoy ... 125
h raywenderlich.com 7

see more please visit: https://homeofbook.com

Kotlin Coroutines by Tutorials

Table of Contents: Extended

Early Access EitioN.... e 11
What YOU NEEd......eererrerevesenenesesesesenes 12
BOOK LICENSE ..ttt ssssessnasenans 13
Book Source Code & FOrums.....eeeeeeeeeeeeenes 14
Chapter 1: What Is Asynchronous Programming? ... 15
Providing fEeADACK ...ttt sees 15
WhY MUIRIERIEAAINGT ...ttt sess s ssses s sesessesessesens 17
Interacting with the Ul thread from the background............eeeeereennnnes 18
Handling work completion using callbacks ... 21
INAENEALION NEII .ttt s s s s s ses s sessenens 23
Using reactive extensions for background Work............eeeeeseeeeerecsennes 24
Diving deeper into the complexity Of RXeeeeeeeeeeeeeeeeressesessenens 25
A DIASt frOM thE PAST ... sese s s assenes 26
Explaining coroutines: The inNer WOIrKiNgSceeeeerernererneseresensesessesessenes 27
Variations throUgh NISTOIY .. se s senans 27
KEY POINTS .ttt s s s s s ssas s s ses s sesssseses s sesasaesesasassenes 28
WheEre to 0 frOM NEIEY ...t sessbessesessesesaesessesans 29
Chapter 2: Setting Up Your Build Environments....... 30
Choosing the build €NVIrONMENLS ...ttt sessessens 30
INStalliNg the INLEITII IDEA...... et sssesssesssesss s ssesessesessesessesans 31
Building the Android €nNVIrONMENT ... sessesesaenens 36
IMPOFEING @ PrOJECT ..ttt s s s b s s sesassesesassssenes 38
KEY POINTS .ttt sse s s s s s s s sas s sesassesesasassesasaesesasasseses 40
WheEre to 0 frOM NEIEY ..t ses s bes s bessssessesens 41
Chapter 3: Getting Started with Coroutines............... 42
EXECULING FOULINES. ...ttt s s s s ses s ses s ssesassesessssssenes 42
LAUNCRING @ COMOULINE. ...ttt sssesss s sassessesessesasssans 43
u raywenderlich.com 8

see more please visit: https.//homeofbook.com

Kotlin Coroutines by Tutorials

BUIIAING COMOULINES ...ttt sessesesssssessssesas s sassessesessssassesans 44
EXPIAINING JODS ettt st s s sesassessssssssessssesassassesans 46
CaANCEIING JODS ettt se s s s s sese s s s s sesesesassesesasssesassene 47
Digging deeper iNtO COrOULINES.......ieeeeeeceeeeeteeeteseses s sess s sessssessesessesessesens 47
Posting to the Ul thread..... sttt senes 50
KEY POINTS .ttt sesesess s s s assesssessssasasasssssssssssasasasassesesssesasanas 52
WhEre tO 0 frOM NEIEY ..t be s sessesessenans 52
Chapter 4: Suspending Functions...........eerennee. 53
Chapter 5: ASYNC/AWAIT......eeeceeeeee e 54
Chapter 6: Building Sequences & Iterators with
YHEI o s se s senes 55
Chapter 7: Coroutine Contexts & Dispatchers.......... 56
Chapter 8: Exception Handling & Cancellation.......... 57
EXCEPLiON ProPASALION ..t se s seses s sessssesesassesenes 58
HaNAIING EXCEPLIONS ...ttt sesesssessssesesassesesassesenes 58
CallDACK WIAPPING c.eevreerrreeeieeeteeeteeesesesesseses s sssssessssessssessesessesessessssessssessssessssesseses 65
CanCeliNg @ COrOULINE ...ttt st sssesssses s ssssssessessessesassassassens 67
KEY POINTS .ttt sesese s s s s assssssesessasasasssssssssssasasasassesesssssasanas 75
WhEre tO 0 frOM NEIEY .. be s sessesesaesans 76
Chapter 92: Coroutines as State Machines.................... 77
Chapter 10: Channels..... . eeeeceeeceereresenene /8
Chapter 11: Producers & AcCtOors....eeeccceernnee 79
Chapter 12: Broadcast Channels..........evveennnnnne. 80
Chapter 13: Coroutine Operators......eecccnennee. 81
Chapter 14: Coroutines & RxKotlin Comparison...... 82
Chapter 15: Coroutines on Android: Part 1 83
u raywenderlich.com 9

see more please visit: https.//homeofbook.com

Kotlin Coroutines by Tutorials

GELEING STAITEA et ses s se e b ssnes 84
Does Android really need COroUtiNgS? ... eeeeeesesesesesessaens 86
COTOULINES ettt s s s s s s s sas s sesasseses s s s sas s s sasassenes 117
INErOAUCING ANKO....veeeeteetcttcteteieesetee s sess s se s s sesassesesasassesasassssesass 119
KEY POINTS .ttt ses s sesesesesssssesesesesesesesasassesesesessesasasassenes 120
WheEre to 0 froOmM NEIE1... s bbb s asas s saee 122
Chapter 16: Coroutines on Android: Part 2.............. 123
Chapter 17: Coroutines on Android: Part 3.............. 124
More Books You Might ENjoy ... 125
NEW £0 1OS OF SWITE7 et ssssesesssassesesassesesans 125
Experienced iOS deVelOPEI?.... et sse s s sessssesesans 127
Want t0 MaKE SAMEST....... st ss s s s sessesessesessssassesases 140
Want to learn ANdroid or KOtliN?....eeecesereseetesesesesessesessesssesene 144
u raywenderlich.com 10

see more please visit: https://homeofbook.com

Early'Access Edition

You’re reading an early access edition of Kotlin Coroutines by Tutorials. As we continue
to add chapters to the early access edition of this book, we’ll notify you and let you
know how to access the updated versions.

We hope you enjoy the preview of this book, and that you’ll come back to help us
celebrate more releases of Kotlin Coroutines by Tutorials as we work on the book!

The best way to get update notifications is to sign up for our monthly newsletter. This
includes a list of the tutorials that came out on raywenderlich.com that month, any
important news like book updates or new books, and a list of our favorite development
links for that month. You can sign up here:

o www.raywenderlich.com/newsletter

h raywenderlich.com 11

see more please visit: https://homeofbook.com

Yy-

To follow along with this book, you'll need the following:

 Intelli] IDEA Community Edition 2018.2: Available at https://www.jetbrains.com/
idea/. This is the environment in which you'll develop most of the sample code in
this book.

» Jave SE Development Kit 8.: Most of the code in this book will be run on the Java
Virtual Machine or JVM, for which you need a Java Development Kit or JDK. The J]DK
can be downloaded from Oracle at http://www.oracle.com/technetwork/java/javase/
downloads/index.html.

» Android Studio 3.x.: For the examples about Android described in Section 3, you
can the IDE available at https://developer.android.com/studio/.

If you haven't installed the latest versions of Intelli] IDEA Community Edition and JDK
8, be sure to do that before continuing with the book. Chapter 2: "Setting Up Your Build
Environments" will show you how to get started with Intelli] IDEA to run Kotlin
coroutines code on the JVM.

h raywenderlich.com 12

see more please visit: https://homeofbook.com

yok License

By purchasing Kotlin Coroutines by Tutorials, you have the following license:

You are allowed to use and/or modify the source code in Kotlin Coroutines by Tutorials
in as many apps as you want, with no attribution required.

You are allowed to use and/or modify all art, images and designs that are included in
Kotlin Coroutines by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from Kotlin
Coroutines by Tutorials, available at www.raywenderlich.com.”

The source code included in Kotlin Coroutines by Tutorials is for your personal use
only. You are NOT allowed to distribute or sell the source code in Kotlin Coroutines by
Tutorials without prior authorization.

This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

Euy

see more please visit: https://homeofbook.com

BoelesSource Code &

Forums

This book comes with the source code for the starter and completed projects for each
chapter. These resources are shipped with the digital edition you downloaded from
store.raywenderlich.com.

We’ve also set up an official forum for the book at forums.raywenderlich.com. This is a
great place to ask questions about the book or to submit any errors you may find.

u raywenderlich.com 14

see more please visit: https.//homeofbook.com

pter 1: What s

chronous Programming?

i¢

The UI (user interface) is a fundamental part of almost every application. It’s what
users see and interact with in order to do their tasks. More often than not, the
applications do complex work, such as talking to external services or processing data
from a database. Then, when the work is done, it shows a result, mostly in some form of
a message.

The UI must be responsive. If the work at hand takes a lot of time to complete, it’s
necessary to provide feedback to the users so that they don’t feel like the application
has frozen, for example, or that they didn’t click a button properly — or perhaps that
the feature doesn’t work at all.

In this chapter, you’ll learn how to provide useful information to the users about what’s
happening in the application and what different mechanisms exist for working with
multiple tasks. You’ll see what problems arise while trying to do complex and long-
running synchronous operations and how asynchronous programming comes to rescue.

You’ll start off by analyzing the flow of a function that deals with data processing and
provides feedback to the user.

Providing feedback

Suppose you have an application that needs to upload content to a network. When the
user selects the Upload button, loading bars or spinners appear to indicate that
something is ongoing and the application hasn’t stop working. This information is
crucial for a good user experience since no one likes unresponsive applications. But
what does providing feedback look like in code?

h raywenderlich.com 15

see more please visit: https://homeofbook.com

Consider the following task wherein you want to upload an image but must wait for the
application to complete the upload:

fun uploadImage(image: Image) {
showLoadingSpinner()
// Do some work
uploadService.upload(image)
// Work’s done, hide the spinner
. hideLoadingSpinner()

At first glance, the code gives you an idea of what’s happening:
* You start by showing a spinner.

* You then upload an image.

» When complete, you hide the spinner.

Unfortunately, it’s not exactly that simple because the spinner contains an animation,
and there must be code responsible for that. The showLoadingSpinner function must
then contain code such as this:

fun showLoadingSpinner() {
showSpinnerView()
while(running) {
rotateSpinnerImage()
delay()
¥
b

The showSpinnerView displays the actual View component, and the following cycle
manages the image rotation. But when does this function actually return?

In the uploadImage code, you assumed that the spinner animation was running even
after the completion of the showLoadingSpinner function, so that the uploading of the
image could start. Looking at the previous code, this is not possible. If the spinner is
animating, it means that the showLoadingSpinner has not completed. If the
showLoadingSpinner has completed, and so the upload has started, it means that the
spinner is not animating anymore. This is happening because when you invoke the
showLoadingSpinner function you’re making a blocking call.

A blocking call is essentially a function that only returns when it has completed. In the
example above, the showLoadingSpinner function prevents the upload of an image
because it keeps the main thread of execution busy until it returns. But, when it
returns, because the running variable becomes false, the spinner stops rotating.

Euy

see more please visit: https://homeofbook.com

So how can you solve this problem and animate the spinner even while the upload
function is executing?

Simply put, you need additional threads on which to execute your long-running tasks.

The main thread is also known as UI thread, because it’s responsible for rendering
everything on the screen, and this should be the only thing it does. This means that it
should manage the rotation of the spinner but not the upload of the image — that has
nothing to do with UI. But if the main thread cannot do it because that isn’t its job,
what can execute the upload task? Well, quite simply, you need a new thread on which
to execute your long-running tasks!

Computers nowadays are far more advanced than they were 10 or 15 years ago. Back in
the day computers could only have one thread of execution, making them freeze up
often, if you tried to do multiple things at once. But because of technological
advancements, your applications support a mechanism known as multi-threading. It’s
the art of having multiple threads, where each can process a piece of work, collectively
finishing the needed tasks.

There’s always been a hardware limit on how fast computers could be — that’s not really
about to change. Moreover, the number of operations a single processor in a computer
can complete is reaching the law of diminishing returns.

Because of that, technology has steered in the direction of increasing the number of
cores each processor has, and the number of threads each core can have running
concurrently. This way, you could logically divide any number of tasks between
different threads, and the cores could prioritize work by organizing them. And, by doing
so, multithreading has drastically improved how computer systems optimize work and
the speed of execution.

You can apply the same idea to modern applications. For example, rather than spending
large amounts of money on servers with better hardware, you can speed up the entire
system using multithreading and a smart application of concurrency.

The main thread, or the Ul thread, is the thread responsible for managing the Ul.
Every application can only have one main thread in order to avoid a classical problem
called deadlock that can happen when many threads access the same resources — in

Euy

see more please visit: https://homeofbook.com

this case, Ul components — in a different order. The other threads, which are not
responsible for rendering the Ul, are called worker threads or background threads.
The ability to allow the execution of multiple threads of control is called
multithreading, and the set of techniques in order to control their collaboration and
synchronization, is called concurrency.

Given this, you can rethink how the uploadImage function should work. The
showLoadingSpinner starts a new thread that is responsible for the rotation of the
spinner image, which interacts with the main thread just to notify a refresh in the UI.
Starting a new thread, the function is now a no blocking call and can returns
immediately allowing the image upload to start into its own worker thread. When
completed, this background thread will notify the main thread to hide the spinner.

Once the program launches a background thread, it can either forget about it or expect
some result. You will see how background threads process the result, and communicate
it to the main thread, in the following section.

The upload image example demonstrates how important managing threads is. The
thread responsible to rotate the spinner image needs to communicate with the main
thread in order to refresh the Ul at each frame. The worker thread responsible for the
actual upload needs, when it completes, to communicate with the previous in order to
stop the animation and with the main thread for hiding the spinner. All this must
happen without any type of blocks. Knowing how threads communicate is key to
achieving the full potential of concurrency.

In order to communicate, different threads need to share some data. For instance, the
thread responsible for the rotation of the spinner image needs to notify the main thread
that a new image is ready to be displayed. Sharing data is not simple, and it needs some
sort of synchronization that is the main reason for concurrency.

What happens, for instance, if the main thread receives a notification that a new image
is available and, before displaying it, the image is replaced? In this case, the application
would skip a frame and a race condition would happen. You then need some sort of
thread safe data structure. This means that the data structure should work correctly
even if accessed by multiple threads at the same time.

Euy

see more please visit: https://homeofbook.com

Accessing the same data from multiple threads maintaining the correct behavior and
good performance, is the real challenge of concurrent programming.

There are special cases, however. What if the data is only accessed and never updated?
In this case, multiple threads can read the same data without any race condition, and
your data structure is referred as immutable. Immutable objects are always thread safe.

As a pratical example, take a coffee machine in an office. If two people shared it, and it
wasn’t thread safe, they could easily make bad coffee or spill it around and make a mess.
As one person started making a mocha latte, but another would want a black coffee,
they would ultimately ruin the machine — or worse, the coffee.

What are the data structures that you can use in order to safely share data in a thread?
The most important data structures are queues and, as a special case, pipelines.

Threads usually communicate using queues, and they can act on them as producers or
consumers. A producer is a thread that puts information into the queue, and the
consumer is the one that reads and uses them. You can think of a queue as a list in
which producers append data at the end, and then consumers read data from the top,
following a logic called FIFO (First In First Out). Threads usually put data into the
queue as objects called messages, which encapsulate the information to share.

A queue is not just a container, but provides synchronization in order to allow a thread
to consume a message only if it is available, otherwise, it waits if the message is not
available. Depending if the queue is a blocking queue, the consumer can block and
wait for a new message — or just retry later.

Euy

see more please visit: https://homeofbook.com

The same can happen for the producer if the queue is full. Queues are thread safe, so it
is possible to have multiple producers and multiple consumers.

A great real-life example of queues are fast food lines.

Imagine having three lines at a fast food restaraunt. The first line has no customers, so
the person working the line is blocked until someone arrives. The second has
customers, so the line is slowly getting smaller as the worker serves customers.
However, the last line is full of customers, but there’s no one to serve them; this, in
turn, blocks the line until help arrives.

In this example customers form a queue waiting to consume what the fast food workers
are preparing for them. When the food is available, the customer consume it and leaves
the queue.

Pipelines

If you think about pipes, or faucets, and how they work, it’s a fairly simple concept.
When you release the pressure by turning the valve, you’re actually requesting water.
On the other side of that request, there’s a system that regulates the flow of water. As
soon as you make a request, it is blocked until the water comes running — just like a
blocking call.

The same process is used for pipelines or pipes in programming. There’s a pipe that
allows streams of data to flow, and there are listeners. The data is usually a stream of
bytes, which the listeners parse into something more meaningful.

Euy

see more please visit: https://homeofbook.com

As an example, you can also think about factory lines. Just like in a factory line, if
there’s too much product, the line has to stop until you process everything. That is, if
there’s too much data that you haven’t yet processed, the pipeline is blocked until you
consume some of the data and make room for more to flow. And, alternatively, if there’s
not enough product, the person processing it sits and waits until something comes up.

In other words, if there’s not enough data to flow — the pipe is empty — you’re blocked
until some data emerges. Because you’re either trying to send data to an overflowed
stream, or trying to get data from an empty stream, the mechanism doesn’t know how
to react but to block until the conditions are met.

You can think of pipes as blocking queues wherein you don’t have messages, but chunks
of bytes.

Handling work completion using
callbacks

Out of all the asynchronous programming mechanisms, callbacks are the most often
used. This consists in the creation of objects that encapsulate code that somebody else
can execute later — when a specific task completes, for example. This approach can be
also used in real life when you ask somebody to push a button when they have
completed some task you have assigned to them. When using callbacks, the button is
analogous to code for them to execute; the person executing the task is a no blocking
function.

Euy

see more please visit: https://homeofbook.com

How can you put some code into an object to pass around? One way is by using
interfaces. You can create the interface in this way:

interface OnUploadCallback {

fun onUploadCompleted()

With this, you are passing an implementations to the function that is executing the
long-running task. At completion, this function will invoke onUploadCompleted on the
object. The function doesn’t know what that implementations does, and it’s not
suppose to know it.

In modern programming languages, like Kotlin, which supports functional
programming features, you can do the same with a lambda expression. In the previous
example, you could pass the lambda to the upload function as a callback. The lambda
would then contain the code to execute when the upload task completes:

fun uploadImage(image: Image) {
showLoadingSpinner()

uploadService.upload(image) { hideLoadingSpinner() }

}

Looking back at the first snippet, not much has changed. You still show a loading
spinner, call the upload method and hide the spinner when the upload is done. The core
difference, though, is that you’re not calling hideLoadingSpinner right after the upload.
That function is now part of the lambda block, passed as parameter to the upload,
which will execute it at completion.

Doing so, you can call the wrapped function anytime you’re done with the connected
task. And the lambda block can do pretty much anything, not just hide a loading
spinner.

In case some value is returned, it has passed down the lambda block, so that you can
use it from within. Of course, the inner implementation of the uploadService depends
on the service and the library that you’re using. Generally, each library has its own type
of callbacks. However, even though callbacks are one of the most popular ways to deal
with asynchronicity, they have become notorious over the years. You’ll see how in the
next section.

Euy

see more please visit: https://homeofbook.com

Callbacks are simpler than building your own mechanisms for thread communication.
They syntax is also fairly readable, when it comes to simple functions. However, it’s
often the case that you have multiple function calls, which need to be connected or
combined somehow, mapping the results into more complex objects.

In these cases, the code becomes extremely difficult to write, maintain and reason.
Since you can’t return a value from a callback, but have to pass it down the lambda
block itself, you have to nest callbacks. It’s similar to nesting forEach or map
statements on collections, where each operation has its lambda parameter.

When nesting callbacks, or lambdas, you get a large number of braces ’{}’, each forming
a local scope. This, in turn, creates a structure called indentation hell — or callback
hell, when it’s specific to callbacks. A good example, following our example so far,
would be fetching, resizing and uploading images:

fun uploadImage(imagePath: String) {
showLoadingSpinner()

loadImage(imagePath) { image —>
resizeImage(image) { resizedImage —>
uploadImage(resizedImage) {
hideLoadingSpinner()

}
}

You show the upload spinner before the upload itself, as before. But, after you load the
image from a file, you proceed to resize it. Next, when you’ve resized the image
successfully, you start uploading it. Finally, once you manage to upload it, you hide the
loading spinner.

The first thing you notice is the amount of braces and indentation that form a stairs-
like code structure. This makes the code very hard to read, and it’s not even a complex
operation. When building services on the web, nesting can easily reach 10 levels, if not
more. Not only is the code hard to read, but it’s also extremely hard to maintain such
code. Because of the structure, you suffer from cognitive load, making it harder to
reason about the functionality and flow. Trying to add a step in between, or change the
lambda-result types, will break all the subsequent levels.

Additionally, some people find callbacks really hard to grasp at first. Their steep
learning curve, combined with the cognitive load and the lack of extensibility, make
people look elsewhere for a solution to asynchronous programming.

Euy

see more please visit: https://homeofbook.com

This is where reactive extensions come to life. You’ll see how they solve the nesting
problem in the next section.

The most significant issue of a callback-based approach is passing the data from one
function to another. This results in nested callbacks, which are tough to read and
maintain. If you think about the queues and pipes, they operate with streams of data,
wherein you can listen to the data as long as you need.

Rx was built upon the idea of having asynchronous operations wrapped up in streams
of events.

Rx incorporates the observer pattern into helpful constructs. Furthermore, there are a
large number of operators, extending the behavior of observable streams, allowing
for clean and expressive data processing. You can subscribe to a stream of events,
map, filter, reduce and combine the events in numerous ways, as well as handle errors
in the entire chain of operations, using a single lambda function.

The previous example of loading, uploading and resizing an image, using Rx, can be
represented:

fun uploadImage(imagePath: String) {
loadImage(imagePath)
.doOnSubscribe(::showLoadingSpinner)
.flatMap(::resizeImage)
.flatMap(::uploadImage)
.subscribe(::hideLoadingSpinner, ::handleError)

s

At first, the code might look weird. In reality, it’s a stream of data modified by using a
bunch of operators. It begins with the flatMap operator, which takes some data — the
image from loadImage function — and passes it to another function, creating a new
stream. Then, the new stream sends events in the form of resizedImage value, which
gets passed to the uploadImage, again using flatMap, and operator chaining.

Finally, the uploadImage stream doesn’t pass data but, rather, completion events,
which tell you to hide the loading spinner, since the upload has finished.

These streams of data and operations don’t actually get executed until someone
subscribes to them, using the subscribe(onComplete, onError) function.

Euy

see more please visit: https://homeofbook.com

Additionally, the doOnSubscribe function takes an action that the stream executes
whenever you subscribe to it. There are also functions like doOnSuccess and doOnError,
which propagate their respective events.

Further, it’s important to know that, if any error or exception occurs in any of the
operations in a chain, it’s not thrown, and the application doesn’t crash. Instead, the
stream passes it down the chain, finally reaching the onError lambda. Callbacks do not
have this behavior; they just throw the exception and you have to handle it yourself,
using try/catch blocks.

Reactive extensions are cleaner than callbacks when it comes to asynchronous
programming, but they also have a steeper learning curve. With dozens of operators,
different types of streams and a lot of edge cases about switching between threads, it
takes a larger amount of time to fully understand them.

The learning curve, and a few other issues, will be discussed in the next section.

Since this book isn’t about Rx, you’ll only have a narrow overview of its positive and
negative features. As seen before, Rx makes asynchronous programming clean and
readable. Further, compared with the operators that allow for data processing, Rx is a
powerful mechanism. Moreover, the error handling concept of streams adds extra safety
to applications.

But Rx is not perfect. It has its problems like any other framework, or paradigm, some of
which are really coming up in the programming community lately.

To start, there is the learning curve. When you start learning Rx, you have to learn a
number of additional concepts, such as the observer pattern and streams. You will
also find that Rx is not just a framework; it brings a completely new paradigm called
reactive programming. Because of this, it’s very hard to start working with Rx. But it’s
even harder to grasp the finesse of its operators. The amount of operators, types of
thread scheduling, and the combinations between the two, creates so many options
that it’s nearly impossible to know the full extent of Rx.

Another problematic issue with using Rx is the hype. Over the years, people have moved
towards Rx as a silver bullet for asynchronous operations.

This eventually led to such programming being Rx-driven, introducing even more
complexity to existing applications. Finding workarounds and using numerous design
patterns, just to make Rx work, introduced new layers of unwanted complexity. Because

Euy

see more please visit: https://homeofbook.com

of this, in Android, the Rx community has been debating if programmers should
represent things like network requests as streams of data versus just a single event that
they could handle using callbacks or something even simpler. The same debate
transitions to navigation events, as an example. Should programmers represent clicks
as streams of events, too? The community opinion is very divided on this topic.

So, with all this in mind, is there a better or simpler way to deal with asynchronicity?
Oddly enough, there’s a concept dating back decades, which has recently become a hot
topic.

This is a book about coroutines. They’re a mechanism dating to the 1960’s, depicting a
unique way of handling asynchronous programming. The concept revolves around the
use of suspension points, functions and continuations as first-class citizens in a

language.
They’re a bit abstract, so it’s better to show an example:

fun fetchUser(userId: String) {
val user = userService.getUser(userId) // 1

print("Fetching user") // 2

print(user.name) // 3

print("Fetched user") // 4
b

Using the above code snippet, and revisiting what you learned about blocking calls,
you’d say that the execution order was 1, 2, 3 and 4. If you carefully look at the code,
you realize that this is not the only possible logical sequence. For instance, the order
between 1 and 2 is not important, nor is the order between 3 and 4. What is important is
that the user data are fetched before they are displayed; 1 must happen before 3. You
can also delay the fetching of the user data to a convenient time before the user data is
actually displayed. Managing these issues in a transparent way is the black magic called
coroutines!

They’re a part-thread, part-callback mechanism, which use the system’s power of
scheduling and suspending work. This way, you can immediately return a result from
the call without using callbacks, threads or streams. Think of it this way, once you start a
coroutine, or call a suspension functions, it gets nicely wrapped up and prepared like a
taco. But, until you want to eat the taco, the code inside might not get executed.

Euy

see more please visit: https://homeofbook.com

It’s not really magic — only a smart way of using low-level processing. The getUser
function is marked as a suspension function, meaning the system prepares the call in
the background, and you get an unfinished, wrapped taco. But it might not execute the
function yet. The system moves it to a thread pool, where it waits further command.
Once you’re ready to eat the taco and you call the result, the program blocks until you
get a ready-to-go snack.

Knowing this, the program can skip over to the rest of the function code, until it
reaches the first line of code on which it uses the user. This is called awaiting the
result. At that point, it executes the getUser function, if it hasn’t already, blocking the
program.

This means you can do as much processing as you want, in between the call itself and
using its result. Because the compiler knows suspension points and functions are
asynchronous, but treats their execution sequentially, you can write understandable
and clean code, which is very extensible and easy to maintain.

Since writing asynchronous code is so simple with coroutines, you can easily combine
multiple requests or transform the data. No more staircases, strange stream mapping to
pass the data around, or complex operators to combine or transform the result. All you
need to do is mark functions as suspendable, and call them in a coroutine block.

Another, extremely important thing to note about coroutines is that they’re not
threads. They are a low-level mechanism that utilizes thread pools to shuffle work
between multiple, existing threads. This allows you to create millions of coroutines,
without overflowing the memory; a million threads would take so much memory, even
today’s state-of-the-art computers would crash.

Although many languages support coroutines, each has a different implementation.

As mentioned, coroutines are a dated but powerful concept. Throughout the years,
several programming languages have evolved their version of the implementation. For
example, in languages like Python and Smalltalk, coroutines are first-class citizens, and
can be used without an external library.

Euy

see more please visit: https://homeofbook.com

A generator in Python would look like this:

def coroutine():
while True:
value = yield
print(’'Received a value:’, value)

This code defines a function, which loops forever, listening and printing any arguments
you send to it. The concept of an infinite loop, which listens for data is called a
generator. The keyword yield is what triggers the generator, receiving the value. As you
can see, there’s awhile True statement in the function. In regular code, this would
create an standard infinite loop, effectively blocking the program, since there’s no exit
condition. But this is a coroutine-powered call, so it waits in the background until you
send some value to the function, which is why it doesn’t block.

Another language with first-class coroutines is C#. In C#, there’s a support for the yield
statement, like in Python, but also for async and await calls, like this:

MyResult result = await AsyncMethodThatReturnsAResult();
await AsyncMethodThatReturnsAResult()
Here, by adding the await keyword, you can return an asynchronous result, using

normal, sequential code. It’s pretty much what you saw in the example above, where
you first learned about coroutines.

Both Python and C# have first-class support for coroutines. Many other programming
languages utilize external libraries in order to support programming with coroutines.
Kotlin also has coroutines support in its standard library. By including them in the
language itself, it allows you to make asynchronous calls without including a third-
party framework. Additionally, the way Kotlin coroutines are built — global functions
with receivers, makes them very extensible, you can create your own API by building
on top of the existing functions.

You’ll see how to do this in the next chapters of the book.

* Multithreading allows you to run multiple tasks in parallel.
» Asynchronous programming is a common pattern for thread communication.

o There are different mechanisms for sharing data between threads, some of which
are queues and pipelines.

Euy

see more please visit: https://homeofbook.com

* Most mechanisms rely on push-pull tactic, blocking threads when there is too much,
or not enough data, to process

» Callbacks are a complex, hard-to-maintain and cognitive-load-heavy mechanism.
» It’s easy to reach callback hell when doing complex operations using callbacks.

» Reactive extensions provide clean solutions for data transformation, combination
and error handling.

» Rx can be too complex, and doesn’t fit all applications.
» Coroutines are an established, and reliable concept, based on low-level scheduling.

» Too many threads can take up a lot of memory, ultimately crashing your program or
computer.

» Coroutines don’t always create new threads, they can reuse existing ones from
thread pools.

» It’s possible to have asynchronous code, written in a clean, sequential style, using
coroutines.

Well that was a really brief overview of the history and theory beind asynchronous
programming and coroutines.

If you’re excited about some code and Kotlin’s coroutines, in the next section of the
book you’ll learn about suspending functions and suspension points. Moreover,
you’ll see how coroutines are created in Kotlin, using coroutine builders. Next, you’ll
build asynchronous calls, which return some data with the async function, and see how
you await the result. And, finally, you’ll learn about jobs and their children, in
coroutines.

You’ll cover the entire base API for Kotlin Coroutines, learning how to wrap
asynchronous calls into async blocks, how to combine multiple operations and how to
build Jobs which have multiple layers of coroutines.

But before that, you have to set up your build environment, so let’s get going!

Euy

see more please visit: https://homeofbook.com

To start learning about coroutines and suspending functions, you need a place to work.
Throughout this book, you will utilize Intelli] IDEA or Android Studio, which will serve
as workstations for all the projects and challenges of this book.

Android Studio is based off of Intelli] IDEA, so both tools will look and fuction
similiarly. Once you set up a good part of the first environment, the second one should
be easier to do.

Choosing the build environments

Intelli] IDEA is great when you have pure Kotlin or Java projects, but it also supports a
variety of plugins to those projects, like the Spring framework. Android Studio, on the
other hand, is the prime tool used for building Android applications, and it’s crucial for
the last section of this book.

Since both of these tools require a Java Virtual Machine (JVM) environment, you’ll have
to set that up first.

Configuring the Java development kit

When writing Kotlin, you’re dependent upon the JVM and its build tools. This means
that you have to set up the Java development Kit (JDK).

h raywenderlich.com 30

see more please visit: https://homeofbook.com

First, go to the |DK download site.

Java SE Development Kit 8 Downloads

using the Java programming language.

language and running on the Java platform.

See also:

Technology, and subscribe to Java.
» Java Developer Day hands-on workshops (free) and other events
« Java Magazine

JDK 8u181 checksum

software.
Accept License Agreement

Product / File Description File Size
Linux ARM 32 Hard Float ABI 7295 MB #jdk-8u181
Linux ARM 64 Hard Float ABI 69.89 MB #jdk-8u181
Linux x86 165.06 MB #dk-8u181
Linux x86 179.87 MB #{dk-8u181
Linux x64 16215 MB #jdk-8u181
Linux x64 177.05 MB #jdk-8u181
Mac OS X x64 24283 MB #jdk-8u181
Solaris SPARC 64-bit (SVR4 package) 133.17 MB #jdk-8u181-
Solaris SPARC 64-bit 94.34 MB #dk-8u181-
Solaris x64 (SVR4 package) 133.83 MB #jdk-8u181-
Solaris x64 92,11 MB #jdk-8u181-
Windows x86 194 41 MB
Windows x64 202.73MB #dk-8u181-

Thank you for downloading this release of the Java™ Platform, Standard Edition Development Kit
(JDK™). The JDK is a development environment for building applications, applets, and components

The JDK includes tools useful for developing and testing programs written in the Java programming

« Java Developer Newsletter: From your Oracle account, select Subscriptions, expand

Java SE Development Kit 8u181

You must accept the Oracle Binary Code License Agreement for Java SE to download this

Decline License Agreement

Download

-linux-arm32-vfp-hfit.tar.gz
-linux-arm64-vfp-hfit.tar.gz
-linux-i586.rpm
-linux-i586.tar.gz
-linux-x64.rpm

-linux-x64 tar.gz
-macosx-x64.dmg

solaris-sparcv9.tar.Z
solaris-sparcv9.tar.gz
solaris-x64.tar.Z
solaris-x64 tar.gz

#®)dk-8u181-windows-i586.exe

windows-x64.exe

Please note that there are newer versions of the JDK avaiblle, but Android only supports
are based in Android. This is
why JDK 1.8 (or Java 8) is a safe bet for you to use. Once you download it, you can
proceed with the installation, and that should be it regarding the Java dependencies.

up to version 1.8, and some of the projects in this book

Your next step is Intelli] IDEA.

Installing the IntelliJ IDEA

To work with most of the projects in this book, you’ll use Intelli]. It’s a powerful tool
built by Jetbrains, and it helps with productivity using features such as smart

autocomplete, code and project templates, and much more.

Euy

see more please visit: https://homeofbook.com

To install it, go to the Jetbrains website.

Download IntelliJ IDEA

Windows macOS Linux

Ultimate Community
For web and enterprise For JVM and Android
development development

Choose the free community edition, as it is sufficient enough for the projects that you’ll
work on. Download it and, once the download completes, run the installer. This chapter
uses MacOS; if you’re using Windows or Linux, make sure to pick the right version for
you. The user interface for the installers might be a bit different, depending on which
operating system you are using. When you finish installing it, you can run the program,
and it will prompt you for settings like so:

@ @ Complete Installation

Import Intelli) IDEA settings from:

Custom location. Config folder or installation home of the previous version:

© Do not import settings

If you haven’t worked with Intelli] before, choose the default settings or the Do not
import settings option. If you already have it installed, or have used it before, you can
import your previous settings.

Euy

see more please visit: https://homeofbook.com

Next, read through and accept the license agreement and privacy policy, which should
like like this:

® @ JetBrains Privacy Policy

Please read and accept these terms and conditions:

JetBrains Privacy Policy

Version 2.0, last updated: May 18th, 2018

In this Privacy Policy, we describe the type of data, including personal
data (collectively, "data"), that we and our associated companies collect
from you when you use JetBrains Websites and certain JetBrains products
and services as described in this Privacy Policy (collectively, our
"services"), how we and our associated companies use and disclose that
data, and your options to access or update your data.

This Privacy Policy may be amended from time to time. The respective
latest version of the Privacy Policy at the point of time of the purchase or
registration of a JetBrains Software Product (whichever occurs later) shall
apply. The data controllers are JetBrains s.r.o., Praha 4, Na Hrebenech Il
1718/10, PSC 140 00, Czech Republic, and the associated companies of
JetBrains.

JetBrains and its associated companies act as joint data controllers, who
are jointly responsible for compliance with data protection legislation.

Scroll to the end to accept Reject and Exit Accept

Once you accept everything, the home screen should appear and give you the option to
create new projects or open existing ones.

@ Welcome to IntelliJ IDEA

N

i
!

Intellid IDEA

+ Create New Project
I¥ Import Project
% Open

K Check out from Version Control ~

2 Configure » Get Help ~

To make sure everything works, try creating a simple Kotlin JVM project and see what
happens.

Euy

see more please visit: https://homeofbook.com

You should see a window that asks you what type of a project you would like. Make sure
to select Kotlin and the Kotlin/JVM option.

9 @ New Project

" Kotlin/JVM

" Kotlin

When you press Next, you should see a project overview screen. This screen shows you
details like the project name, the type of runtime and the version of the Java SDK.

2 El New Project

Cotlin runtime

Use library

Configure...

Previous

see more please visit: https://homeofbook.com

The program should find your Java SDK location, but, if it doesn’t, you can manually
add it by:

» Pressing New.
» Locating the JDK install directory on your computer.
* You can also go through the the File » Project Structure menu.

o Currently, this image shows JDK 10, but you should pick JDK 1.8, since the newer
versions have some issues when building projects with the Gradle build system.

Project name:

getting_started_with_coroutines

Project SDK:
This SDK is default for all project modules.
A module specific SDK can be configured for each of the modules as required.

1.8 v New.. Edit

Project language level:
This language level is default for all project modules.
A module specific language level can be configured for each of the modules as required

9 - Modules, private methods in interfaces etc. v

Project compiler output:

This path is used to store all project compilation results.

A directory corresponding to each module is created under this path.

This directory contains two subdirectories: Production and Test for production code and test sources, respectively
A module specific compiler output path can be configured for each of the modules as required.

If you have to set it up manually, pick the Java 1.8 SDK that you’ve installed and press
Apply or Accept. Once the JDK path is set up, you should be able to build and run
Kotlin and Java projects! When you open the project, you should see the default layout
of an Intellij IDEA project.

Euy

see more please visit: https://homeofbook.com

On the left, you have the project structure view. You can change between different
view types, but mostly you’ll use the project overview, as it shows everything. There you
can browse through all the files and libraries that you will use in the project.

On the bottom, there are a few things to note, such as the Terminal and the Event log.
The bottom strip is reserved for system and build messages, logs, the terminal and the
console. You can see any output-related data there. On the top, below the project name,
there’s another strip, but this one generally shows tools for the build system and
debugging.

Intelli] is filled with features, which you’ll learn as you read through the book. You
could also look up the official documentation to see everything the IDE offers. Now that
you’ve set up Intelli], the only thing left is the Android Studio!

Later on in the book, you’ll work on an Android project to see how coroutines can be
implemented in a multi-threaded environment like Android. To do this, you first need
Android Studio. Android Studio is an IDE built by Jetbrains, as well. It also contains
many helpful features, like autocomplete and various templates. However, the main
benefit is the end-to-end Android build system, powered by Gradle.

To set Android studio up, first go to the

studio

Android Studio provides the fastest tools for building apps on every type of Android device

DOWNLOAD ANDROID STUDIO \

321 for Mac {989 MB)

DOWNLOAD OPTIONS RELEASE NOTES

Download the latest stable version and run the installer. You’ll be prompted for a few
things, like the SDK you wish to download and the emulator settings. The default
options should be alright, but if you wish you can tweak them.

Euy

see more please visit: https://homeofbook.com

Once you install it, you should see a window similar like this:

Android Studio

Start a new Android Studio project
= Open an existing Android Studio project
Check out project from Version Control «
[#7 Profile or debug APK
Import project (Gradle, Eclipse ADT, etc.)

¥ |mport an Android code sample

Configure » Get Help ~

Starting a new project

You can start a new project.

» Select Next on the first step.

* On the second step, where you choose the target API level, pick API 21.
e Click Next, again.

 Finally, select the Empty Activity option.

» Press Next one final time, followed by a Finish.

This should set you up with an empty Android project. You’ll find out about the settings
for each Android project later on in the Android section of the book.

If the build system finishes without any errors, it means you have succesfully configured
Android Studio, and you’ll be able to work on the Android section of the book. Don’t
worry about the time it takes for the project to build; the build system is doing alot of
work, so it may take a few minutes.

Euy

see more please visit: https://homeofbook.com

Importing a project

One of the things you’ll be doing in this book is importing projects. This means that
you’re taking in an already-built project and adding it to your workspace. After adding
it, the IDE builds it and connects any modules that should be connected in order for the
project to work.

For example, if you’re importing a Gradle project, the build environment will connect
the scripts and load all the dependencies that you need. You’ll do this in the following
chapters, so let’s walk through an example project import.

Note: This is just an example of what it would look like to import a project. You
don’t actually have this project available yet; it’s in the next chapter. You don’t
have to follow the steps yourself, but do remember to go back to this in case you
forget how to import projects in the future.

To import a project in Intelli], you have to open it up, and then click the Import project
button:

e Welcome to IntelliJ IDEA

)

IntelliJ IDEA

Once you press it, a pop-up should appear, asking you which project you want to
import.

Euy

see more please visit: https://homeofbook.com

Find the project you want — the image shows a project from the next chapter of the
book, but you get the idea:

< =v | 5 final < Q

Favorites Name Date Modified Size Kind

& Recents » B getting_started_with_coroutines Today at 11:51

#% Applications

o Downloads
iCloud

¢ iCloud Drive

7 Desktop

[B Documents
Locations

Q Unity Down... &

@ Remote Disc
Tags

. Important

Work

New Folder Cancel

Once you pick the project, import by pressing Open; you’ll get a pop-up asking you
what type of project would you like to import it as. Usually, the IDE will understand
which type it is, so here it knows it’s a Gradle project:

& @ Import Project
Create project from gxisting sc
* |mport project from external model
cclipse
Fx Flash Builder
(. Gradle

Maven

Canceil

Euy

see more please visit: https://homeofbook.com

Then, once you choose the type of module you want to import and press Next, you’ll
see some general settings for the Gradle modules. But, in general, you can just press
Finish and everything should work:

® o Import Project

ts/linal/getting_started_with_coroutines

Use Project JDK

dea (directory based)

For this chapter, you don’t have a project; in the next chapter, you’ll have to import a
project with Gradle. Once you’ve done that, you’ll see a new project, and you’ll be ready
to play around with coroutines!

Key points

e The Build environments that you’ll use for the book require Java.

» Intelli] IDEA is the most popular JVM development environment, and it is developed
by Jetbrains.

« Intelli] is powered by the Intelli] platform, enabling features such as autocomplete,
templates, pre-baked projects and many more.

» For Android projects, you’ll use Android Studio, also developed by Jetbrains.

Euy

see more please visit: https://homeofbook.com

» Android Studio uses the Gradle build system, fully integrated into every project.

» Importing project connects all the gears that need to run fluently for you to work.

Where to go from here?

Now that you have environments set up, you can finally work on projects and write
some Kotlin and coroutines code. Some of the chapters in the book might come with
starter projects, which are already set up, so you don’t have to do any extra work. Some
might require you to complete a challenge. Without further ado, time to start writing
practical code!

Euy

see more please visit: https://homeofbook.com

er 3: Getting Started

oroutines

So you’ve heard a lot about working with asynchronous programming. It’s time for you
to learn a bit more about coroutines and how they work in the background (pun
intended).

In this chapter, you will:

» Learn about routines and how a program controls its execution flow.
» Learn about suspending functions and suspension points in code.

« Launch your first Kotlin coroutine, creating jobs in the background.

» Practice what you’ve learned by creating a few typical tasks, including posting to the
UI thread.

Let’s get started with routines!

Executing routines

Every time you start a process — launching an application, for instance — your
computer creates something called a main routine. This is the core part of every
program because it’s where you set up and run all the other components in your code.
As the most basic learning samples, you often have a main function, which prints Hello
World. That main function is the entry point of your program and is part of the main
routine.

But as your programs gets bigger, so does the number of functions and the number of
calls to other functions. Whenever you call some other function in the main block, you
start something called a subroutine. A subroutine is just a routine, nested within

h raywenderlich.com 42

see more please visit: https://homeofbook.com

another routine. The computer places all of these routines on the call stack, a
construct that keeps track of what’s currently running and how the current routine has
been called. When a subroutine is finished running it is popped off the stack, and
control is passed back to the caller routine. Lastly, if the stack is empty, and there’s
nothing else to run, the program finishes.

Invoking a subroutine is like doing a blocking call. A coroutine is then a subroutine
that you can invoke as a not blocking call. Because of this, the main difference
between a standard subroutine and a coroutine is that the latter can run in parallel with
other code. You can start and forget them, moving on to the rest of the program.

Open up the starter project in Intelli]. When the project opens, locate and open the
Main.kt file. There, you will find the following code:

fun main() {
(1..10000).forEach {
GlobalScope. launch {
val threadName = Thread.currentThread().name
println("$it printed on thread ${threadName}")

¥
Thread.sleep(1000)

¥

Since launching your first coroutine is not that fascinating, you’ll launch your first ten
thousand coroutines! Now, launching ten thousand threads is a bit tedious for a
computer, and most of the threads would get an Out0OfMemoryException. But since
coroutines are extremely lightweight, you’re able to launch a large number of them,
without any performance impact. If you run the program, you should see a lot of text,
each line saying which number it is printing and on which thread.

There are a few important things to notice in the snippet above. The first is about the
coroutine body that is represented by the block of code passed as the parameter to the
launch function, which is called coroutine builder.

Second, when launching coroutines, you have to provide a Scope, because they are
background mechanisms, which don’t really care about the lifecycle of their starting
point. What would happen if the program ended before the completion of the
coroutines body? In this case, you use something called the GlobalScope, which makes
explicit the fact that the coroutine lifecycle is bound to the lifecycle of the application.
Because of this, you also need to put the current thread on hold, calling
Thread.sleep(1000) in the end of the main function.

Euy

see more please visit: https://homeofbook.com

This is the basic explanation of what you’re doing, but these concepts are more complex
than that.

You’ve heard the term launching coroutines quite a few times now. In truth, you first

have to use a coroutine builder. The Coroutine library has several coroutine builder

functions for you to use to start a new coroutine. In the previous example, you used the
launch builder with this signature:

public fun CoroutineScope.launch(
context: CoroutineContext = EmptyCoroutineContext,
start: CoroutineStart = CoroutineStart.DEFAULT,
block: suspend CoroutineScope.() —> Unit

): Job

As you can see, the launch function has a few arguments that you can pass in: a
CoroutineContext, a CoroutineStart and a lambda function, which defines what’s going
to happen when you launch the coroutine. The first two are optional.

A CoroutineContext is a persistent dataset of contextual information about the current
coroutine. This can contain objects like the Job and Dispatcher of the coroutine, both
of which you will touch on later. Since you haven’t specified anything in the snippet
above, it will use the EmptyCoroutineContext, which points to whatever context the
specified CoroutineScope uses. You can create custom contexts if you’d like, but for the
most part, the existing ones are sufficient.

The CoroutineStart is the mode in which you can start a coroutine. Options are:

DEFAULT: Immediately schedules a coroutine for execution according to its context.

LAZY: Starts coroutine lazily.

ATOMIC: Same as DEFAULT but cannot be cancelled before it starts.

UNDISPATCHED: Runs the coroutine until its first suspension point.

Last but not least, you specify a lambda block with the code that the coroutine will
execute. If you check the previous definition of the launch function, you will notice that
this lambda block has a somewhat different signature than standard lambda blocks. Its
signature is block: suspend CoroutineScope.() —-> Unit.It’s a lambda with a receiver
of type CoroutineScope. This allows you to have nested jobs, as you can launch more
coroutines from another launch block. Another thing that is specific is the suspend
modifier.

Euy

see more please visit: https://homeofbook.com

As you’ve learned, coroutines build upon the concept of suspending functions. You can
use the modifier at hand to mark a lambda or another function suspendable. You’ll
learn a bit more about suspension functions in the next chapter.

As you’ve learned, coroutines can be launched in parallel with the main execution of a
program. However, this doesn’t mean that if the main program finishes, or stops, the
coroutines will do the same. Or at least it didn’t in the first few versions of the API. This
behavior leads to subtle bugs in which applications would execute tasks even if you
closed the application.

To mitigate these cases, the coroutines API team implemented a CoroutineScopes. Each
scope knows which context it’s related to, and each scope has its own lifecycle. If the
lifecycle for your selected scope ends, while it’s trying to run coroutines, all the work,
even if in progress, will stop. This is why, if you try running the snippet without
Thread.sleep, there may not be any output or there may be only some.

Since you have to call the launch function on a CoroutineScope, there are two ways of
doing this. You can use the GlobalScope, as you did so far, not caring about where
exactly the coroutine is launched. Or you can implement the CoroutineScope interface,
and provide an instance of the CoroutineContext in which you’ll run coroutines. The
former is easier, and it’s a great option when you don’t care about coroutine results,
posting to the Ul thread or about the job completion. The latter is crucial if you want to
specify where you need to use the result (like the UI thread), and when you want to bind
the jobs to the lifecyle of a certain object instance, like Activity instances in Android.

There are cases in which the lifecycle or manual cancellation don’t necessarily cancel
the coroutines. It’s not only important that you provide cancellation mechanisms, but
that you also have to write cooperative code. This means that your functions check
whether or not their wrapping Job is running. You’ll see how to do this in this later in
the chapter.

You should have a better understanding of how coroutines work and what’s important
to define when launching them. In the next few sections, you’ll learn a bit more about
different functionalities coroutines have and, finally, you’ll see how to combine jobs
running a few different tasks using the launch function.

Euy

see more please visit: https://homeofbook.com

If you’ve noticed, most things in coroutines refer to a Job, which you create and run. A
Job is also what the launch function you used earlier returns. But what is a Job object
and what can you do with it?

When you launch a coroutine, you basically ask the system to execute the code you pass
in, using a lambda expression. That code is not executed immediately, but it is, instead,
inserted into a queue.

A Job is basically a handle to the coroutine in the queue. It only has a few fields and
functions, but it provides a lot of extensibility. For instance, it’s possible to introduce a
dependency relation between different Job instances using the join function. If Job A
invokes the join function on Job B, it means that the former won’t be executed until
the latter has come to completion. It is also possible to set up a parent-child relation
between Job instances using specific coroutine builders. A Job cannot complete if all
its children are not completed. A Job must complete in order to its parent to complete.

The Job abstraction makes this possible through the definition of states, whose
transitions follow the workflow described by the diagram below:

wait children
S-tﬂ'-to| ACTIVE |33'2'3'33’[C0HPL£TING ﬁ"-'i“o[COMPLETED]

cancel / fail s

A 4 \ 4

[CANCELLING]----------------------'-"45-"0[CANCELLED]

When you launch a coroutine, you create a Job, which is always in the New state. It
then goes directly into the Active state, depending on the value used for the
CoroutineStart parameter when supported by the coroutine builder that you use. You
can also move a Job from the New to the Active state using the start or join function.
A running coroutine is always in the Active state. As you can see in the state diagram,
the Job can complete or can be canceled.

It’s very important to note how completion and cancellation work for dependent Job
instances. In particular, you can see that a Job remains in the Completing state until all
of its children complete. It’s important to say that the Completing state is internal and,
if queried from outside, the Job will result in Active state.

Euy

see more please visit: https://homeofbook.com

States are fundamental because they give you information about what’s going on with
the coroutines and what you can do with them. You can also query the state of a Job
acting accordingly or simply iterate over the children and do something with them.

Creating a Job is pretty easy and nesting isn’t hard either. You’ve seen how they work
with completion, but how do things work in the case of cancellation or errors?

When you launch a coroutine and you create a Job, many things can happen. An
exception can occur, or you might need to cancel the Job because of some new
conditions in the application. Consider, for instance, a list of images that you download
from the network. Every time you need to display an image into a list item, you start a
coroutine for the download. This download might fail because there’s no connection,
and you have to handle the related exception. Or the download might be canceled
because the user scrolls the list and the image goes out of the screen before it’s
available. It’s very important to understand how you can manage this use cases when
using coroutines.

Usually, a uncaught exception would cause the entire program to crash. However,
since coroutines have suspended behavior, if an exception occurs, it can also be
suspended and managed later.

Much easier is the way you can handle cancellation. You can do it by invoking the
cancel function on the related Job instance. The system is then smart enough to
understand the dependencies between Job objects. If you cancel a Job, you
automatically cancel all its children. If it has a parent, the parent is canceled. A parent
of a Job is also canceled if one of its children fails.

As mentioned before, even though you cancel a Job , your code might not be co-
operative with the cancellation events. You can check this by using its isActive
property. If your code does computational work, without checking the isActive flag, it
won’t listen to cancellation events. So running while loops with the isActive flag is
safer than with your own conditions.

So far you’ve launched a large amount of coroutines, and you’ve seen how you can
create multiple coroutine jobs. But there are other things you can do when launching a
coroutine. For example, if you have some work that you have to first delay for a period

Euy

see more please visit: https://homeofbook.com

of time, before running, you can do so with the delay function. Open up the Main.kt
file again, and replace the code with the following snippet:

fun main() {

GlobalScope. launch {
println("Hello coroutine!")
delay(500)
println("Right back at ya!")

Thread.sleep(1000)
}

If you run the code above, you should see “Hello coroutine,” in the console, and, briefly
after that, “Right back at ya.” The delay function is really useful because you can
effectively wait for the given amount of time and then run work when everything is
ready.

So far, you’ve learned that, every time you launch a coroutine, you can get a Job
reference. You can also create dependencies between different Job instances — but
how? Just replace the previous code with this:

fun main(args: Array<String>) {
val jobl = GlobalScope.launch(start = CoroutineStart.LAZY) {
delay(200)
printin('Pong")
delay(200)

GlobalScope. launch() {
delay(200)
printin("Ping")
jobl.join()
println("Ping")
delay(200)

¥
Thread.sleep(1000)
b

Going through the code above:

* You first launch a coroutine that contains some delays and prints the Pong word,
saving the created Job into the job1 reference.

» Then, you launch a second coroutine that contains a couple of println but also
invokes the join function on job1.

What is the expected output? If you follow the code, you would expect to see Pong and
then the Ping twice, but this is not the case. As you can see, you used the

Euy

see more please visit: https://homeofbook.com

CoroutineStart.LAZY value as CoroutineStart, and this means that the related code is
going to be executed when you actually need it.

This happens when the second coroutine invokes the join function on job1. This is why
the result of the previous code is then Ping, Pong and, finally, Ping again.

In the previous code, you created a dependency between different Job instances, but
this is not the kind of relation you can refer as parent-child. Again, replace the previous
code with the following, when you can use the with function in order to avoid the
repetition of the GlobalScope receiver:

fun main(args: Array<String>) {
with(GlobalScope) {
val parentJob = launch() {
delay(200)
println("I'm the parent")
delay(200)

launch(context = parentJob) {
delay(200)
println("I'm a child")
delay(200)

if (parentJob.children.iterator().hasNext()) {
println("The Job has children ${parentJob.children}")
} else {
println("The Job has NO children")

¥
Thread.sleep(1000)

¥
}

Going through the above code, in turn:
» Here, you launch a coroutine and assign its Job to the parentJob reference.

» Then, you launch another coroutine using the previus Job as CoroutineContext. This
is possible because also the Job abstraction implements the CoroutineContext
interface. Under the hood, the CoroutineContext you pass here is merged with the
one currently active one that in your case was EmptyCoroutineContext.

If you run the previous code, you can see how the parentJob has children. If you run
the same code, removing the context for the second coroutine builder, you can see that
the parent-child relationship is not established and the children are not present.

Euy

see more please visit: https://homeofbook.com

Another thing you can do with coroutines is build retry-logic mechanisms. Using the
repeat function from the standard library, paired up with the delay coroutine function
you learned above, you can create code that attempts to run work in delayed periods of
time. Once again, replace the Main.kt file code with the next snippet:

fun main(args: Array<String>) {
var isDoorOpen = false

println("Unlocking the door... please wait.\n")
GlobalScope. launch {
delay(3000)

isDoorOpen = true

GlobalScope. launch {
repeat(4) {
println("Trying to open the door...\n")
delay(800)

if (isDoorOpen) {
println("Opened the door!\n")
} else {
println("The door is still locked\n")

b
by

Thread.sleep(5000)
}

Try running the code. You should see that someone’s trying to open the door a few
times before ultimately succeeding. So using the delay function, and repeat from
Kotlin’s standard library, you managed to build a mechanism that tries to run some
code multiple times, before you meet a time or logic condition. You can use the same
flow to build networking back-off and retry logic. And once you learn how to return
values from coroutines later in this book, you’ll see how powerful this can be.

From what you’ve seen so far, coroutines are all about simplicity, with a large part of
functionality built into the language itself. Posting to the UI thread isn’t complicated; it
comes down to starting a new coroutine with a UI dispatcher as its threading context.

Euy

see more please visit: https://homeofbook.com

Since we’re talking about applications with a visible user interface, you can post to the
main thread in Android, Swing and JavaFx applications. You can do it using the
Dispatchers.Main as context in the following way:

GlobalScope.launch(Dispatchers.Main) { ... }

You need to be careful, though, because this is not enough. You need to set one of the
following dependencies:

implementation ‘org.jetbrains.kotlinx:kotlinx-coroutines—-android:...’
implementation 'org.jetbrains.kotlinx:kotlinx—-coroutines—-swing:...’
implementation 'org.jetbrains.kotlinx:kotlinx—coroutines—javafx:...’

Otherwise, you’ll get an exception like this:

Exception in thread "DefaultDispatcher-worker-3"
java.lang.IllegalStateException: Module with the Main dispatcher is
missing. Add dependency providing the Main dispatcher, e.g. 'kotlinx-
coroutines—android’

You can try this behavior with a simple Swing example. First, you need to add this
dependency to the gradle.build:

implementation 'org.jetbrains.kotlinx:kotlinx-coroutines—-swing:1.3.0’

Then, you can replace the main function with this:

fun main() {
GlobalScope. launch {

val bgThreadName = Thread.currentThread().name

println("I'm Job 1 in thread $bgThreadName'")

delay(200)

GlobalScope. launch(Dispatchers.Main) {
val uiThreadName = Thread.currentThread().name
println("I'm Job 2 in thread $uiThreadName")

¥
Thread.sleep(1000)

}

The external coroutine prints the name of the thread it’s executed in. After a short
delay, you launch another coroutine using Dispatchers.Main as CoroutineContext. This
is the one that allow you to interact with the main thread. If you run the code, you’ll get
something like:

I'm Job 1 in thread DefaultDispatcher-worker-1
I'm Job 2 in thread AWT-EventQueue-0

The first Job has been executed in background by a worker thread. The second is the
main thread in Swing. Pretty simple, right?

Euy

see more please visit: https://homeofbook.com

* You can build coroutines using coroutine builders.

» The main coroutine builder is the launch function.

» Whenever you launch a coroutine, you get a Job object back.

» Jobs can be canceled or combined together using the join function.
» You can nest jobs and cancel them all at once.

» Try to make your code cooperative — check for the state of the job when doing
computational work.

» Coroutines need a scope they’ll run in.

» Posting to the Ul thread in advanced applications is as easy as passing in the Ul
scope.

» Coroutines can be postponed, using the delay function.

You’re ready to launch as many coroutine jobs as you want! But this is only a small
piece of the Kotlin coroutine API. So far, you’ve only launched Jobs, pieces of work that
you need to finish. The real power of suspending code is being able to return values
asynchronously, without any callbacks or additional mechanisms.

In the next chapter, you’ll learn a bit more about the fundamentals of coroutines and
how code is suspended in programs. You’ll learn about the execution of programs, how
the computer passes directions to functions and how the program knows where to go
back once a suspended function returns.

So let’s not leave you in suspense!

Euy

see more please visit: https://homeofbook.com

Chapter 4: Suspending

Functions

Suspending functions is the main concept around coroutines. In this chapter, you'll
learn how to define a suspending function and how to manage its results.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 53

see more please visit: https://homeofbook.com

Chapter 5: Async/Await

Synchronization is a fundamental part of every concurrent framework, and coroutines
aren't any different. In this chapter, you'll learn how to master the async and away
functions in order to achieve an efficient synchronization between tasks.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 54

see more please visit: https://homeofbook.com

Chapter 6: Building Sequences

& Iterators with Yield

Functional programming is one of the coolest concept you can use in Kotlin and, in this
chapter, you'll see how you can use coroutines with sequences and iterators in order to
manage theoretically infinite collections of data.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 55

see more please visit: https://homeofbook.com

Chapter 7: Coroutine

Contexts & Dispatchers

Long and expensive tasks that run in the background and want to display the results on
the main thread is a typical scenario in programming. In this chapter, you'll understand
how to achieve this through Context and Dispatchers.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 56

see more please visit: https://homeofbook.com

er 8: Exception

@ ng & Cancellation

Exception and error handling are an integral part of asynchronous programming.
Imagine that you initiate an asynchronous operation, it runs through without any error
and finishes with the result. That’s an ideal case. What if an error occurred during the
execution? As with any unhandled exception, the application would normally crash.
You may set yourself up for failure if you assume that any asynchronous operation is
going to run through successfully without any error.

When you initiate multiple asynchronous operations that are dependent on each other,
the possibilities of one failing, then leading to others also failing, increases. This means
that the result is not going to end as you expected. Coroutines address this problem and
provide mechanisms to handle this and many more such cases.

This chapter serves to help you understand the mechanics of exception handling and
cancellation for coroutines. You will address questions such as:

« What happens if an exception is thrown during cancellation?
« What happens if multiple children of the same coroutine throw an exception?
These answers will become more clear as you dive deeper into the concepts.

Before you can understand error and exception handling during coroutine execution, it
is important that you have an understanding of how these errors and exceptions are
propagated through the process.

Euy

see more please visit: https://homeofbook.com

You can build a coroutine in multiple ways. The kind of coroutine builder you use
dictates how exceptions will propagate and how you can handle them.

» When using launch and actor coroutine builders, exception are propagated
automatically and are treated as unhandled, similar to to Java’s
Thread.uncaughExceptionHandler.

* When using async and produce coroutine builders, exceptions are exposed to the
users to be consumed finally at the end of the coroutine execution via await or
receive.

Understanding how exceptions are propagated helps to figure out the right strategy for
handling them.

Exception handling is pretty straightforward in coroutines. If the code throws an
exception, the environment will automatically propagate it and you don’t have to do
anything. Coroutines make asynchronous code look synchronous, similar to the
expected way of handling synchronous code — i.e., try-catch applies to coroutines, too.

Here is a simple example that creates new coroutines in GlobalScope and throws
exceptions from different coroutine builders:

fun main() = runBlocking {
val asyncJob = GlobalScope.launch {
println("1. Exception created via launch coroutine")

// Will be printed to the console by
// Thread.defaultUncaughtExceptionHandler
throw IndexOutOfBoundsException()

}

asyncJob.join()
println("2. Joined failed job")

val deferred = GlobalScope.async {
println("3. Exception created via async coroutine'")

// Nothing is printed, relying on user to call await
throw ArithmeticException()

¥

try {
deferred.await()

Euy

see more please visit: https://homeofbook.com

println("4. Unreachable, this statement is never executed")
} catch (e: Exception) {
println("5. Caught ${e.javaClass.simpleName}")

}
Output:

1. Exception created via launch coroutine
Exception in thread "DefaultDispatcher-worker-1"
java. lang.IndexOutOfBoundsException

2. Joined failed job
3. Exception created via async coroutine
5. Caught ArithmeticException

Note: You can find the executable version of the above snippet of code in the
starter project in the file called CoroutineExceptionHandlingExample.kt.

In the previous code you launch a coroutine using the GlobalScope. launch coroutine
builder and you throw an IndexOutOfBoundsException in its body. This is an example of
the normal exception propagation which is handled by the default
Thread.uncaughExceptionHandler implementation. This is the object responsible of
managing the unhandled exceptions thrown in the application. It just propagates the
exceptions to the caller’s thread handler, if any, or prints their message on the standard
output. In this case you’re into the main function so the error message is part of the
output.As you know, the GlobalScope. launch creates a Job instance and you invoke the
join function on it. The first job, because of the exception, completes so the 2. Joined
failed job is also part of the output.In the second coroutine you use the
GlobalScope.async coroutine builder which throws an ArithmeticException into its
body. In this case the exception is not handled by the Thread.uncaughExceptionHandler
the moment it’s been created, but can be thrown by the await function invoked on the
Deferred object that the GlobalScope.async returns.In this case also the possible
exception is deferred in time.

Similar to using Java’s Thread.defaultUncaughtExceptionHandler, which returns a
handler for uncaught thread exceptions, coroutines offer an optional and generic catch
block to handle uncaught exceptions called CoroutineExceptionHandler.

Note: On Android, uncaughtExceptionPreHandler is the global coroutine
exception handler.

Euy

see more please visit: https://homeofbook.com

Normally, uncaught exceptions can only result from coroutines created using launch
coroutine builder. A coroutine that was created using async always catches all its
exceptions and represents them in the resulting Deferred object.

When using the launch builder, the exception will be stored in a Job object. To retrieve
it, you can use the invokeOnCompletion helper function:

fun main() {
runBlocking {
val job = GlobalScope.launch {
println("1. Exception created via launch coroutine")

// Will NOT be handled by
// Thread.defaultUncaughtExceptionHandler
// since it is being handled later by " invokeOnCompletion®
throw IndexOutOfBoundsException()
b

// Handle the exception thrown from " launch® coroutine builder
job.invokeOnCompletion { exception —>
println("2. Caught $exception")

// This suspends coroutine until this job is complete.
job.join()
¥
b

Output:

1. Exception created via launch coroutine
Exception in thread "main" java.lang.IndexOutOfBoundsException

2. Caught java.lang.IndexOutOfBoundsException

Note: You can find the executable version of the above snippet of code in the
starter project in the file called ExceptionHandlingForLaunch.kt.

By default, when you don’t set a handler, the system handles uncaught exceptions in
the following order:

1. If exception is CancellationException then the system ignores it because that is
the mechanism to cancel the running coroutine.

2. Otherwise, if there is a Job in the context, then Job. cancel is invoked.

3. Otherwise, all instances of CoroutineExceptionHandler found via ServiceLoader and
current thread’s Thread.uncaughtExceptionHandler are invoked.

Euy

see more please visit: https://homeofbook.com

Note: CoroutineExceptionHandler is invoked only on exceptions which are not
expected to be handled by the user, so registering it in async coroutine builder
and the like of it has no effect.

Here is a simple example to demonstrate the usage of CoroutineExceptionHandler:

fun main() {
runBlocking {

}

¥

// 1
val exceptionHandler = CoroutineExceptionHandler { _, exception —>
println("Caught $exception')
b
// 2
val job = GlobalScope.launch(exceptionHandler) {
throw AssertionError("My Custom Assertion Error!')
b
// 3
val deferred = GlobalScope.async(exceptionHandler) {
// Nothing will be printed,
// relying on user to call deferred.await()
throw ArithmeticException()
b
// 4
// This suspends current coroutine until all given jobs are complete.
joinAll(job, deferred)

Output:

Caught java.lang.AssertionError: My Custom Assertion Error!

Note: You can find the executable version of above snippet of code in the starter
project in the file called GlobalExceptionHandler.kt

Here is the explanation of the code block:

1.

Euy

Implementing a global exception handler i.e CoroutineExceptionHandler. This is
where you define how to handle the exception when one is thrown from an
unhandled coroutine.

Creating a simple coroutine using launch coroutine builder, that throws a custom
message AssertionError

Creating a simple coroutine using async coroutine builder, that throws an
ArithmeticException

joinAllis used to suspend the current coroutine until all given jobs are complete.

see more please visit: https://homeofbook.com

CoroutineExceptionHandler is useful when you want to have a global exception
handler shared between coroutines, but if you want to handle exceptions for a specific
coroutine in a different manner, you are require to provide the specific implementation.
Let us take a look at how.

When it comes to handling exceptions for a specific coroutine, you can use a try-catch
block to catch exceptions and handle them like you would do in normal synchronous
programming with Kotlin.

Here is the catch though. Coroutines created with async coroutine builder can typically
“swallow” exceptions if you’re not careful. If an exception is thrown during an async
block, the exception is not actually thrown immediately. Instead, it will be thrown at the
time you call await on the Deferred object that is returned. This behavior, if not taken
into account, can lead to situations where no exceptions are ever tracked, but deferring
exception handling until a later time can also be a desired behavior depending on the
use case at hand.

Here is an example to demonstrate the same:

fun main() {
runBlocking {
// Set this to 'true’ to call await on the deferred variable
val callAwaitOnDeferred = true

val deferred = GlobalScope.async {
// This statement will be printed with or without
// a call to await()
println("Throwing exception from async")
throw ArithmeticException("Something Crashed")
// Nothing is printed, relying on a call to await()

b

if (callAwaitOnDeferred) {
try {
deferred.await()
} catch (e: ArithmeticException) {
println("Caught ArithmeticException")

Note: You can find the executable version of above snippet of code in the starter
project in the file called TryCatch.kt

Euy

see more please visit: https://homeofbook.com

Output for the case in which callAwaitOnDeferred is set to false —i.e., no call to await
is made:

1. Throwing exception from async

Output for the case in which callAwaitOnDeferred is set to false —i.e., no call to await
is made:

1. Throwing exception from async
2. Caught ArithmeticException

Having just a single coroutine is a very ideal use case. In practice, you may have
multiple coroutines with other child coroutines running under them. What happens if
those child coroutines throw exceptions? This is where all this might become tricky. In
this case the general rule is “the first exception wins.” If you set a
CoroutineExceptionHandler, it will manage only the first exception suppressing all
the others.

Here is an example to demonstrate this:

fun main() = runBlocking {

// Global Exception Handler
val handler = CoroutineExceptionHandler { _, exception —>
println("Caught $exception with suppressed " +

// Get the suppressed exception
"${exception.suppressed?.contentToString()}")

// Parent Job
val parentJob = GlobalScope.launch(handler) {
// Child Job 1
launch {
try {
delay(Long.MAX_VALUE)
} catch (e: Exception) {
println("${e.javaClass.simpleName} in Child Job 1'")
} finally {
throw ArithmeticException()
¥

¥
// Child Job 2
launch {
delay(100)
throw IllegalStateException()
¥

// Delaying the parentJob

Euy

see more please visit: https://homeofbook.com

delay(Long.MAX_VALUE)

b
// Wait until parentJob completes
parentJob.join()

Note: You can find the executable version of the above snippet of code in the
starter project in the file called ExceptionHandlingForChild.kt.

Output:

JobCancellationException in Child Job 1
Caught java.lang.IllegalStateException with suppressed
[java.lang.ArithmeticException]

In the example above:

You define a CoroutineExceptionHandler, which prints the name of the first
exception caught along with the suppressed ones that it obtains from the
suppressed property.

After this, you start a parent coroutine using the launch coroutine builder with the
exception handler as the parameter. The parent coroutine contains a couple of child
coroutines that you launch using again the launch function. The first coroutine
contains a try-catch-finally block.

In the try block, you invoke the delay function with a very high parameter value in
order to wait for a long time.

In the catch, you print a message about the caught exception.
With finally, you throw an ArithmeticException.

In the second coroutine, you delay just some milliseconds and then throw an
IllegalStateException.

You then complete the parent coroutine, invoking the delay function for another
very long period of time.

The last instruction of the main function allows the program to wait the completion
of the parent job.

When you run this code, the parent coroutine starts and so do its children. The first
child waits and the second throws an IllegalStateException, which is the first
exception that the handler will manage as you can see in the output.

Euy

see more please visit: https://homeofbook.com

This exception causes Because of this, the system forces the delay of the first coroutine
to be canceled and this is the reason for the JobCancellationException message. This
also makes the parent Job fail and, so, the handler will be invoked and its output
displayed.

It’s important to note that the CoroutineExceptionHandler is part of the parent
coroutine and so it manages exceptions related to it.

Handling asynchronous code execution usually involves implementing some sort of
callback mechanism. For example, with an asynchronous network call, you probably
want to have onSuccess and onFailure callbacks so that you can handle the two cases
appropriately.

Such code can often become quite complex and hard to read. Luckily, coroutines
provide a way to wrap callbacks to hide the complexity of the asynchronous code
handling away from the caller via a suspendCoroutine suspending function, which is
included in the coroutine library. It captures the current continuation instance and
suspends the currently running coroutine.

The Continuation object provides two functions with which you can resume the
coroutine execution. Invoking the resume function resumes the coroutine execution
and returns a value, while resumeWithException re-throws the exception right after
the last suspension point.

Resuming is done by scheduling calling to Continuation method in the future inside a
suspending function.

Look at an example of a simple long-running job with a callback for handling the result.
You’re going to wrap the callback in a coroutine and simplify the job significantly:

fun main() {
runBlocking {
try {
val data = getDataAsync()
println("Data received: $data")
} catch (e: Exception) {
println("Caught ${e.javaClass.simpleName}")

¥
s

// Callback Wrapping using Coroutine
suspend fun getDataAsync(): String {
return suspendCoroutine { cont —>

Euy

see more please visit: https://homeofbook.com

getData(object : AsyncCallback {
override fun onSuccess(result: String) {
cont.resumeWith(Result.success(result))
b

override fun onError(e: Exception) {
cont.resumeWith(Result.failure(e))

// Method to simulate a long running task
fun getData(asyncCallback: AsyncCallback) {
// Flag used to trigger an exception
val triggerError = false

try {
// Delaying the thread for 3 seconds
Thread.sleep(3000)

if (triggerError) {
throw IOException()
} else {
// Send success
asyncCallback.onSuccess(" [Beep.Boop.Beepl")

} catch (e: Exception) {
// send error
asyncCallback.onError(e)
¥
}
// Callback
interface AsyncCallback {
fun onSuccess(result: String)
fun onError(e: Exception)

}

Note: You can find the executable version of the above snippet of code in the
starter project in the file called CallbackWrapping.kt.
Output:
e« When triggerError field is set to false in getData() method:
Data received: [Beep.Boop.Beepl
 When triggerError field is set to true in getData() method:

Caught IOException

Euy

see more please visit: https://homeofbook.com

As with any multi-threading concept, the lifecycle of a coroutine can become a problem.
You need to stop any potentially long-running background tasks when it is in an
inconsistent state in order to prevent memory leaks or crashes. To resolve this,
coroutines provide a simple canceling mechanism.

As you’ve seen in Chapter 3, “Getting Started with Coroutines,” when you launch a new
routine using the launch coroutine builder, you get a Job object as the return value.
This Job object represents the running coroutine, which you can cancel at any point by
calling the cancel function.

With Kotlin coroutines, this is interesting because it provides the ability to specify a
parent job as a context for multiple coroutines, and calling cancel on the parent
coroutine will result in all coroutines being canceled.

Note: When you cancel the parent coroutine, all of its children are recursively
cancelled, too.

The launch coroutine builder is used as a fire-and-forget way of starting a coroutine.
It is similar to starting a new thread. If the code inside the coroutine that was started
from launch terminates with an exception, the system treats it like an uncaught
exception in a thread — usually printed to stderr in backend JVM applications — and the
Android applications crash. You use join to wait for completion of the launched
coroutine but it does not propagate its exception. However, a crashed child coroutine
cancels its parent with the corresponding exception, too.

In a long-running application, you might need fine-grained control on your background
coroutines. For example, a task that launched a coroutine might have finished, and now
its result is no longer needed; consequently, its operation can be canceled. This is
where the cancel method comes in.

In order to cancel a coroutine, you simply need to call the cancel method on the Job
object that was returned from the coroutine builder. Calling the cancel function on a
Job, or on a Deferred instance, will stop the inner computation on a coroutine if the
handling of the isActive flag is properly implemented.

Euy

see more please visit: https://homeofbook.com

Coroutine cancelation is cooperative. This means that the suspending function has to
cooperate in order to support canceling. In practice, the suspending function has to
periodically test the isActive property, which is set to false when the coroutine is
canceled. This applies to your suspending functions, too. All suspending functions
provided by the Kotlin coroutine library support cancelation already.

Note: isActive is checked between child coroutine suspension points by the
standard library, so you only have to check isActive in your own long-running
computations.

In the below code snippet, the launch function returns a Job that can be used to cancel
running coroutine:

fun main() = runBlocking {
val job = launch {
repeat(1000) { i —
println("$i. Crunching numbers [Beep.Boop.Beep]...")
delay(500L)

¥

delay(1300L) // delay a bit
println("main: I am tired of waiting!")
job.cancel() // cancels the job
job.join() // waits for job’s completion
println("main: Now I can quit.")

Note: You can find the executable version of the above snippet of code in the
starter project in the file called CancelCoroutine.kt.

\
ﬂ

==/<ON

RESULTS

‘_ .‘,

Crunching numbers via coroutine

Euy

see more please visit: https://homeofbook.com

Output:

0. Crunching numbers [Beep.Boop.Beep]...
1. Crunching numbers [Beep.Boop.Beep]...
2. Crunching numbers [Beep.Boop.Beep]...
main: I am tired of waiting!

main: Now I can quit.

Coroutines internally use CancellationException instances for cancellation, which are
then ignored by all handlers. They are typically thrown by cancellable suspending
functions if the Job of the coroutine is canceled while it is suspending. It indicates
normal cancellation of a coroutine.

Note: CancellationException is not printed to console/log by default uncaught
exception handler.

When you cancel a coroutine using the cancel function on its Job object without a
cause, it terminates but it does not cancel its parent. Canceling without cause is a
mechanism for a parent to cancel its children without canceling itself.

The following piece of code shows an example of CancellationException handling
when child jobs are canceled, which is pretty straightforward:

fun main() = runBlocking {
val handler = CoroutineExceptionHandler { _, exception —>
println("Caught original $exception")

val parentJob = GlobalScope.launch(handler) {
val childJob = launch {
// Sub-child job
launch {
// Sub-child job
launch {
throw IOException()
b
}
¥

try {
childJob.join()
} catch (e: CancellationException) {
println("Rethrowing CancellationException" +
" with original cause")
throw e
}
b
parentJob.join()

}

Euy

see more please visit: https://homeofbook.com

Note: You can find the executable version of the above snippet of code in the
starter project in the file called CancellationExceptionExample.kt.

Output:

Rethrowing CancellationException with original cause
Caught original java.io.IOException

The Kotlin standard library provides a couple of convenience functions for handling a
coroutines completion and cancellation.

1. When using coroutines, you will most likely be interested in the result of a
completed job. To know about the completion of the coroutine, the join function is
available, which suspends the coroutine execution until the canceled job is

complete:
fun main() = runBlocking {

val job = launch {
println("Crunching numbers [Beep.Boop.Beepl...")

delay(500L)

// waits for job’s completion
job.join()
println("main: Now I can quit.")

Note: You can find the executable version of the above snippet of code in the
starter project in the file called JoinCoroutineExample.kt.

Output:

Crunching numbers [Beep.Boop.Beep]...
main: Now I can quit.
2. If you would like to wait for completion of more than one coroutine, then you
should use the joinAll function:

fun main() = runBlocking {

val jobOne = launch {
println("Job 1: Crunching numbers [Beep.Boop.Beep]...")

delay(500L)
¥

Euy

see more please visit: https://homeofbook.com

val jobTwo = launch {

println("Job 2: Crunching numbers [Beep.Boop.Beep]...")
delay(500L)

// waits for both the jobs to complete
joinAll(jobOne, jobTwo)
println("main: Now I can quit.")

Note: You can find the executable version of the above snippet of code in the
starter project in the file called JoinAllCoroutineExample.kt.

Output:

Job 1: Crunching numbers [Beep.Boop.Beepl]...
Job 2: Crunching numbers [Beep.Boop.Beep]...
main: Now I can quit.

3. If you would like to cancel and then wait for the completion of coroutine, then a
cancelAndJoin function that combines the two is also provided:

fun main() = runBlocking {
val job = launch {
repeat(1000) { i —
println("$i. Crunching numbers [Beep.Boop.Beep]l...")
delay(500L)

¥

delay(1300L) // delay a bit

println("main: I am tired of waiting!")

// cancels the job and waits for job’s completion
job.cancelAndJoin()

println("main: Now I can quit.")

Note: You can find the executable version of above snippet of code in the
starter project in the file called CancelAndJoinCoroutineExample.kt

Output:

0. Crunching numbers [Beep.Boop.Beepl...
1. Crunching numbers [Beep.Boop.Beepl]...
2. Crunching numbers [Beep.Boop.Beep]...
main: I am tired of waiting!

main: Now I can quit.

Euy

see more please visit: https://homeofbook.com

4. If your coroutine has multiple child coroutines and you would like to cancel all of
them, then you should use the cancelChildren method:

fun main() = runBlocking {
val parentJob = launch {
val childOne = launch {
repeat(1000) { i —
println("Child Coroutine 1: " +
"$i. Crunching numbers [Beep.Boop.Beep]...")
delay(500L)

// Handle the exception thrown from " launch®

// coroutine builder

childOne.invokeOnCompletion { exception —>
println("Child One: ${exception?.messagel}")

val childTwo = launch {
repeat(1000) { i —
println("Child Coroutine 2: " +
"$i. Crunching numbers [Beep.Boop.Beep]l...")
delay(500L)

¥

// Handle the exception thrown from " launch’

// coroutine builder

childTwo.invokeOnCompletion { exception —>
println("Child Two: ${exception?.messagel}")

¥
delay(1200L)

println("Calling cancelChildren() on the parentJob")
parentJob.cancelChildren()

println("parentJob isActive: ${parentJob.isActivel}")

Note: You can find the executable version of the above snippet of code in the
starter project in the file called CancelChildren.kt.

Output:

Child Coroutine
Child Coroutine
Child Coroutine
Child Coroutine
Child Coroutine

Crunching numbers [Beep.Boop.Beep]...
Crunching numbers [Beep.Boop.Beep]...
Crunching numbers [Beep.Boop.Beep]...
Crunching numbers [Beep.Boop.Beep]...
Crunching numbers [Beep.Boop.Beep]...

PN NP
NFRRSOS

Euy

see more please visit: https://homeofbook.com

Child Coroutine 2: 2. Crunching numbers [Beep.Boop.Beep]...
Calling cancelChildren() on the parentJob

parentJob isActive: true

Child One: Job was cancelled

Child Two: Job was cancelled

This is all nice, but how do you cancel a coroutine after a set time?

Long-running coroutines are sometimes required to terminate after a set time has
passed. While you can manually track the reference to the corresponding Job and
launch a separate coroutine to cancel the tracked one after a delay, the coroutines
library provides a convenience function called withTimeout.

Take a look at the following example:

fun main() = runBlocking {
withTimeout(1500L) {
repeat(1000) { i —>
println("$i. Crunching numbers [Beep.Boop.Beep]...")
delay(500L)
¥
¥
b

Note: You can find the executable version of the above snippet of code in the
starter project in the file called WithTimeoutExample.kt.

Output:

0. Crunching numbers [Beep.Boop.Beep]...

1. Crunching numbers [Beep.Boop.Beep]...

2. Crunching numbers [Beep.Boop.Beep]...

Exception in thread "main"
kotlinx.coroutines.TimeoutCancellationException: Timed out waiting for
1500 MILLISECONDS

The TimeoutCancellationException that withTimeout throws is a subclass of
CancellationException. You haven’t seen its stack trace printed on the console before.
That is because, inside a canceled coroutine, CancellationException is considered to
be a normal reason for coroutine completion. However, in this example, you have used
withTimeout right inside the main function.

Euy

see more please visit: https://homeofbook.com

Because cancellation is just an exception, you close all the resources in the usual way.
You can wrap the code with a timeout in atry {...} catch (e:
TimeoutCancellationException) {...} block if you need to do some additional action,
specifically on any kind of timeout or use withTimeoutOrNull function:

fun main() = runBlocking {
try {
withTimeout(1500L) {
repeat(1000) { i —
println("$i. Crunching numbers [Beep.Boop.Beepl...")
delay(500L)

} catch (e: TimeoutCancellationException) {
println("Caught ${e.javaClass.simpleName}")

Note: You can find the executable version of the above snippet of code in the
starter project in the file called TimeoutCancellationExceptionHandling.kt.

Output:

0. Crunching numbers [Beep.Boop.Beep]...
1. Crunching numbers [Beep.Boop.Beep]...
2. Crunching numbers [Beep.Boop.Beep]...
Caught TimeoutCancellationException

If you want to set a timeout for a coroutine Job, wrap the suspended code with the
withTimeoutOrNull function, which will return null in case of timeout:

fun main() = runBlocking {
val result = withTimeoutOrNull(1300L) {
repeat(1000) { i —
println("$i. Crunching numbers [Beep.Boop.Beepl...")
) delay(500L)
"Done" // will get cancelled before it produces this result

}

// Result will be "null’

println("Result is $result")
}

Note: You can find the executable version of the above snippet of code in the
starter project in the file called WithTimeoutOrNullExample.kt.

Euy

see more please visit: https://homeofbook.com

Output:

0. Crunching numbers [Beep.Boop.Beepl]...
1. Crunching numbers [Beep.Boop.Beep]...
2. Crunching numbers [Beep.Boop.Beep]...
Result is null

» If an exception is thrown during an asynchronous block, it is not actually thrown
immediately. Instead, it will be thrown at the time you call await on the Deferred
object that is returned.

» To ignore any exceptions, launch the parent coroutine with the async function,;
however, if required to handle, the exception use a try-catch block on the await()
call on the Deferred object returned from async coroutine builder.

» When using launch builder the exception will be stored in a Job object. To retrieve it,
you can use the invokeOnCompletion helper function.

» Add a CoroutineExceptionHandler to the parent coroutine context to catch
unhandled exceptions and handle them.

» CoroutineExceptionHandler is invoked only on exceptions that are not expected to
be handled by the user; registering it in an async coroutine builder or the like has no
effect.

» When multiple children of a coroutine throw an exception, the general rule is the
first exception wins.

» Coroutines provide a way to wrap callbacks to hide the complexity of the
asynchronous code handling away from the caller via a suspendCoroutine
suspending function, which is included in the coroutine library.

» When the parent coroutine is canceled, all of its children are recursively canceled,
too.

» CancellationException is not printed to console/log by default uncaught exception
handler.

» Using the withTimeout function, you can terminate a long-running coroutine after
a set time has elapsed.

Euy

see more please visit: https://homeofbook.com

Where to go from here?

Exception handling and cancellation are a crucial step in working with asynchronous
programming. If the basics are not clear, it makes the process of programming and
dealing with various asynchronous tasks pretty complex. Thankfully, when it comes to
coroutines, you are now well versed with the concepts and implementations.

Next up, you will explore coroutines as a state machine and how they enable
management of states in an efficient yet simple way.

Euy

see more please visit: https://homeofbook.com

Chapter 9: Coroutines as

State Machines

Every time you use a framework, it's important to understand how it works under the
hood in order to fix unusual problems or to extend the way it works. In this chapter,
you'll learn what is a state machine and how it's used by coroutines in order to do its
magic.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 77

see more please visit: https://homeofbook.com

Chapter 10: Channels

Think about a box: Somebody can put objects into it and somebody else can remove
them. Imagine, then, that the first actor, the producer, suspends its job if the box is full
and that the second actor, the consumer, does the same if the box is empty. This is the
logic behind channels, which you'll learn about in this chapter.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 78

see more please visit: https.//homeofbook.com

Chapten11: Producers &

Actors

This has nothing to do with Hollywood! Here, you'll learn a different concurrent model
that will allow you to manage the state of your application in a convenient and type-
safe way.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 79

see more please visit: https.//homeofbook.com

Chapter 12: Broadcast

Channels

The channel you've covered in Chapter 10 is usually between a single sender and a
single receiver. In this chapter, you'll learn what is happening exactly and what you can
do if you have multiple receivers.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 80

see more please visit: https.//homeofbook.com

Chapter 13:Coroutine

Operators

Learn the most important operators that you can use in order to elaborate and combine
streams, as you usually do with Rx.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 81

see more please visit: https.//homeofbook.com

Chapter14: Coroutines &

RxKotlin,Comparison

Coroutines are not the silver bullet of concurrent programming. Here, you'll learn what
is the difference between coroutines and RxKotlin and how to understand which is the
best for you.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 82

see more please visit: https.//homeofbook.com

Coroutines on

The importance of concurrency is discovered quite early on by people who start with
Android development. Android is inherently asynchronous and event-driven, with strict
requirements as to on which thread certain things can happen. Add to this the often-
cumbersome Java callback interfaces, and you will be trapped in spaghetti code pretty
quickly (aptly termed as “Callback Hell”). No matter how many coding patterns you use
to avoid that, you will have to encounter the state change across multiple threads in
one way or the other.

The only way to create a responsive app is by leaving the Ul thread as free as possible,
letting all the hard work be done asynchronously by background threads.

Note: You’ve already met the term “Callback Hell” in the first chapter. It’s the
situation in which you have to serially execute and process the results of
asynchronous services by nesting callback, often several layers deep.

The purpose of coroutines is to take care of the complications in working with
asynchronous programming. You write code sequentially, like you usually would, and
then leave the hard asynchronous work up to coroutines.

Using coroutines in Android provides some of the following benefits:

» Coroutines are a language feature provided out of the box by Kotlin and, thus, they
can be updated independently from the Android platform releases.

» Coroutines make asynchronous code look synchronous, making the code more
readable. Also, since a synchronous sequence of steps is much easier to manage — as
opposed to asynchronous code — coroutines enable greater confidence in changing
the flow when needed.

Euy

see more please visit: https://homeofbook.com

* Thanks to coroutines, getting rid of any callbacks and the need to pass around state
information is fairly easy, i.e., storing temporary state in Presenter/ViewModel is
simplified and state is not passed across multiple methods any longer.

e Coroutines enable better, concise and testable code.

In this chapter, you’ll learn about what different mechanisms already exist for
asynchronous programming on the Android platform and why coroutines are a much
better replacement for all of them. You’ll see what Kotlin coroutines bring to the table
and how they simplify various facets of Android development.

For this chapter, you will use a basic app called Async Wars in order to learn about
various async primitives in Android and coroutines at a high level. If you have already
downloaded the starter project, then import it into Android Studio.

The project consists of some pre-written utility classes under the package utils. Let’s
go over them one by one:

1. DownloaderUtil: A singleton which has a method called downloadImage() that
fetches an image from a pre-setup URL returning a Bitmap. This is done on the main
thread and it will be your goal to execute this method on a background thread, and
then you will display the image on the screen.

2. ImageDownloadListener: Interface which is used as a listener for images being
downloaded.

3. BroadcasterUtil: A singleton which is used to abstract away the calls made using
LocalBroadcastManager.

4. MyBroadcastReceiver: Implementation of BroadcastReceiver class used as an
adapter between the sender and an ImageDownloadListener.

5. Extensions.kt: Utility Kotlin extension methods.

Euy

see more please visit: https://homeofbook.com

Async Wars

Under the package async, you will find GetImageAsyncTask and MyIntentService classes,
which will be used and discussed at a later stage in this chapter.

Apart from that, there is MainActivity class wherein everything is wired up for making
calls to download images using various async constructs in Android, and to display
them in the UI. Almost all the code is pre-written to make it easier for you to switch
between these async constructs and see the results. There are two important sections
inside MainActivity class that you should take note of:

1. MethodToDownloadImage: This is an enum class defined inside the MainActivity
class, which enumerates all the various types of async construct types in Android.

2. Inside the onCreate() is a code region marked to be modified:

//region

val doProcessingOnUiThread = true

val methodToUse = MethodToDownloadImage.Thread
//endregion

This is where you will mostly make the changes to trigger the right kind of async
construct for downloading an image and displaying it in the UI. Here, when working
with async constructs, you will have to set doProcessingOnUiThread = false. After that,
the value of methodToUse, which will be one of the items from the

Euy

see more please visit: https://homeofbook.com

MethodToDownloadImage enum class, will be used later to trigger the specific async
method. When not dealing with async constructs, simply set back to
doProcessingOnUiThread = true.

Run the app. You will see a UI like below with a button and an animating spinner. The
spinner is there to show the impact of calls on the UI thread while a widget is
animating. The button will trigger a calculation of a Fibonacci sequence number on the
main thread when the flag doProcessingOnUiThread is set to true.

1247 & I |

Async Wars

START

Calculating on Ul thread: Fibonacci Number

Starter Project

When you start an Android application, the first thread spawned by its process is the
main thread, also known as the Ul thread. This is the most important thread of an
application. It is responsible for handling all the user interface logic, user interaction
and also tying the application’s moving parts together.

Android takes this very seriously; if your UI thread is stuck working on a task for more
than a few seconds, the Android framework will throw an Application Not
Responding (ANR) error and the app will crash. Most importantly, even small work on
the Ul/Main thread can lead to your Ul freezing, i.e., animations will stop, and the Ul
will become non-responsive to the user interaction; everything will stop until the work
is finished.

Euy

see more please visit: https://homeofbook.com

To demonstrate this behavior, inside the MainActivity.kt of the starter app, make sure
that the value of the flag doProcessingOnUiThread is set to true. If it is, then simply run
the app.

You will see the below app state:

1247 & I
Async Wars
START
Calculating on Ul thread: Fibonacci Number
| ® @
UI blocking processing

Now, click the Start button in the UI. This will trigger a call to
runUiBlockingProcessing() method. Here is the method definition:

fun runUiBlockingProcessing() {

// Processing

showToast("Result: ${fibonacci(40)}")
}

Here, fibonacci(number) method is a helper method and has the below naive
implementation:

/] ———————— Helper Methods ——————————- //
fun fibonacci(number: Int): Long {
return if (number == 1 || number == 2) {
1
} else fibonacci(number - 1) + fibonacci(number - 2)
b

Here, the runUiBlockingProcessing() method starts a calculation of the 40th Fibonacci
sequence number. Since the processing is done on the Ul thread, you will see that the
animating spinner stops until the calculation has completed.

Euy

see more please visit: https://homeofbook.com

You will see a toast message with the result value when the calculation completes, after
which the spinner start animating again.

1247 & N S]

Async Wars

START

Calculating on Ul thread: Fibonacci Number

Result- 102334155

| ® 5]

UI blocking processing

Now, here is the problem: almost all code in an Android application will be executed on
the UI thread by default. Since the tasks on a thread are executed sequentially, this
means that your user interface could become unresponsive while it is processing some
other work.

Long-running tasks called on the Ul thread could be fatal to your application, leading to
an ANR dialog, which gives the user the opportunity to force-quit the application. Even
small tasks can compromise the user experience; hence, the correct approach is to move
as much work off of the UI thread onto a background thread.

Android comes with some pre-built solutions to handle such situations, but, due to its
design, it has proven to be really difficult for many. Using the low-level threading
packages with Android means that you have to worry about a lot of tricky
synchronization to avoid race conditions or, worse, deadlocks. The good news is that
the folks working on the Android framework noticed this and provided better API to
deal with such situations. AsyncTask, IntentService, ExecutorService, etc. are some
of the very useful classes, as well as the HaMeR classes Handler, Message and
Runnable. Each comes with its own pros and cons.

Let’s take a quick look at each one of them.

Euy

see more please visit: https://homeofbook.com

Note: Before you continue with the chapter, from here onwards, inside the
MainActivity.kt of the starter app, ensure that the value of the flag
doProcessingOnUiThread is set to false. You will not be needed to set it to true
anymore.

A thread is an independent path of execution within a program. Every thread in Java is
created and controlled by a java. lang.Thread instance. A Java program can have many
threads, and these threads can run concurrently, either asynchronously or
synchronously.

Every Android developer, at one point or another, needs to deal with threads in their
application. The main thread is responsible for dispatching events to the appropriate
user-interface widget, as well as communicating with components from the Android Ul
toolkit. To keep your application responsive, it is essential to avoid using the main
thread to perform operations that may last for long.

Network operations and database calls, as well as the loading of certain components,
are common examples of operations that should not run in the main thread. When they
are called in the main thread, they are called synchronously, which means that the Ul
will remain completely unresponsive until the operation completes. For this reason,
they are usually performed in separate threads, which thereby avoids blocking the Ul
while they are being performed (i.e., they run asynchronously from the UI).

Sample usage:
You can create a thread in two ways:
1. Extending the Thread class:

// Creation
class MyThread : Thread() {

override fun run() {
doSomeWork()
}
}

// Usage
val thread = MyThread()
thread.start()

Euy

see more please visit: https://homeofbook.com

2. Passing a Runnable interface implementation as Thread constructor parameter:

// Creation
class MyRunnable : Runnable {

override fun run() {
doSomeWork ()

s

// Usage

val runnable = MyRunnable()
val thread = Thread(runnable)
thread.start()

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.Thread. This makes sure that, when the
button is clicked, the method getImageUsingThread() is called. Here is the method
definition:

fun getImageUsingThread() {

// Download image

val thread = Thread(myRunnable)
! thread.start()

Where myRunnable has the below implementation:

inner class MyRunnable : Runnable {
override fun run() {
// Download Image
val bmp = DownloaderUtil.downloadImage()

// Update UI on the UI/Main Thread with downloaded bitmap
runOnUiThread {
imageView?.setImageBitmap (bmp)

Euy

see more please visit: https://homeofbook.com

Run the app.

1248 & R P}

Async Wars

START

Download image using:Thread

| ® 5]
Download image using Thread
When you click the Start button, you will see that the image is downloaded and

displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

1248 &
Async Wars

= aubr=nd) NG

e TNCNARS
I
START
Download image using:Thread
| ® 5]

Download image using Thread

Euy

see more please visit: https://homeofbook.com

It’s important to note how the downloaded image has been passed to the Ul thread
using the runOnUiThread() function that you inherit from the Activity class.

Note: The animation will stop now just for a very short time. Passing an image
from one thread to another never comes for free.

inner class MyRunnable : Runnable {
override fun run() {
// Download Image
val bmp = DownloaderUtil.downloadImage()

// Update UI on the UI/Main Thread with downloaded bitmap
runOnUiThread {
imageView?.setImageBitmap (bmp)

¥
iy

Interacting with UI components from a background thread would have caused an error
like this:

E/AndroidRuntime: FATAL EXCEPTION: Thread-4
Process: com.raywenderlich.android.asyncwars, PID: 3127
android.view.ViewRootImpl$CalledFromWrongThreadException:
Only the original thread that created a view hierarchy can touch
its views.

The operative system’s scheduler is responsible for the management of the lifecycle of
each thread. It can execute, suspend and resume threads depending on its state and
some synchronization requirement. This is an expensive job and, if you try to launch a
high number of threads — a million, for example — your processor will spend more time
changing from one thread to another than executing the code you want it to execute.
This is called context switch. Every Thread you instantiate in Java (or Kotlin)
corresponds to a thread of the operating system (either physical or virtual), and,
therefore, it is the scheduler of the operating system that is in charge of prioritizing
which thread should be executed in every moment.

In a nutshell, threads might be:

» Expensive: Context switching and having upper limits in the number of threads that
can be spawned.

» Difficult: Creating a multithreaded program is quite complex requiring a lot of
ceremonies around how the code is referenced and executed across the threads.

Euy

see more please visit: https://homeofbook.com

Taking that into account, engineers working on the Android framework came up with a
solution to handle this scenario of doing work on the background thread to then
publish it to the Ul thread; it is called AsyncTask.

In Java, you usually put the code you want to run asynchronously into the run method
of a class, which implements the Runnable interface. This works well if all you need to
do is offload work off to another thread. However, it becomes cumbersome when you
need to relay the results of that thread back to the UI thread.

When Google adopted Java for Android, it released a new type of class called AsyncTask
that made it easier to offload long-running tasks to a background thread, then update
the UI thread with the result if there was one. Using AsyncTask instances certainly was
easier than Runnable, but it came with its own set of issues.

AsyncTask is the most basic Android component for threading. It’s simple to use and
can be good for basic scenarios. The only important thing you should know here is that
only one method of this class is running on another thread: doInBackground. The other
methods are running on Ul thread.

AsyncTask

PARAMS PROGRESS RESULT

AsyncTask Process Flow

Here is a sample usage:

class ExampleActivity : Activity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

MyTask().execute(url)

Euy

see more please visit: https://homeofbook.com

private inner class MyTask : AsyncTask<String, Void, String>() {

override fun doInBackground(vararg params: String): String {
val url = params[0]
return doSomeWork(url)

b

override fun onPostExecute(result: String) {
super.onPostExecute(result)
// do something with result
}
}
}

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.AsyncTask. This makes sure that, when the
button is clicked, the method getImageUsingAsyncTask() is called. Here is the method
definition:

fun getImageUsingAsyncTask() {
// Download image
val myAsyncTask = GetImageAsyncTask(imageDownloadListener)
myAsyncTask.execute()

Here, GetImageAsyncTask has the below implementation:

class GetImageAsyncTask(val imageDownloadListener: ImageDownloadListener)

AsyncTask<String, Void, Bitmap>() {

// This executes on the background thread

override fun doInBackground(vararg p@: String?): Bitmap? {
// Download Image
return DownloaderUtil.downloadImage()

b

// This executes on the UI thread
override fun onPostExecute(bmp: Bitmap?) {
super.onPostExecute(bmp)
if (isCancelled) {
return
b

// Pass it to the listener
imageDownloadListener.onSuccess (bmp)

// Cancel this async task after everything is done.
cancel(false)

Euy

see more please visit: https://homeofbook.com

ImageDownloadListener is used to setup a listener, which will return the bitmap once it
is downloaded. In the MainActivity.kt, an instance of this is created and used inside
the getImageUsingAsyncTask() method while creating the GetImageAsyncTask, which, in
turn, is used to update the UI:

private val imageDownloadListener = object : ImageDownloadListener {
override fun onSuccess(bitmap: Bitmap?) {
// Update UI with downloaded bitmap
imageView?.setImageBitmap(bitmap)

Run the app.
12:49 & OR®ol
Async Wars
er anir
START
Download image using:AsyncTask
4 ® a

Download image using AsyncTask

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

Euy

see more please visit: https://homeofbook.com

The image downloads:

12:50 & S
Async Wars
= aaeir=0.0 =iy
REAISNRERS

START

load image using:AsyncTask

Download image using AsyncTask

The AsyncTask defines some callback methods in order to simplify the way cancellation
and the progression of the task are communicated to the UI; however, it does not play
out well when it comes to doing complex operations based on an Android component’s
lifecycle. It is actually unaware of Activity lifecycle; in other words, if the activity is
destroyed, the AsyncTask doesn’t know about it in the onPostExecute() method unless
you tell it.

It is worth noting that even something as simple as screen rotation can cause the
activity to be destroyed. Also, canceling an AsyncTask just puts it in a canceled state —
it’s up to you to check whether it’s been canceled and halt operations.

Handler is part of the HaMeR Framework (Handler, Message & Runnable), which is the
recommended framework for communication between threads in Android. This is the
one used, under the hood, by the AsyncTask class.

As you have seen in the previous chapters, threads can share data using queues, which
usually have a producer and a consumer. The producer is the object that puts data into
the queue, and the consumer is the object that reads those data from the queue when
available.

Euy

see more please visit: https://homeofbook.com

If the producer runs into thread A and the consumer into thread B, you understand that
you can use the queue as a communication channel between different threads. This is
basically the idea behind the HaMeR framework. The queue is actually a MessageQueue,
and the data you pass are encapsulated into a Message object. Each Message can contain
some data or the reference to a Runnable implementation that defines the code to
execute into the thread of the consumer.

If you had to implement the consumer of the queue on your own, you would probably
implement it with a cycle that waits for a Message and, when available, reads and uses
the information into it or else run the code into the Runnable object if available. That
cycle would be into the run implementation of the related Thread class. Android defines
this cycle into a class called Looper. It’s important to note that you decide the
destination thread putting the message into the related queue. This also implies that
there is only one Looper per Thread.

What’s the role of the Handler in all of this? Each Handler instance is associated with a
specific Thread through its Looper. You can bind a Looper to a Handler, passing it as the
constructor parameter or by simply creating the Handler instance into the Looper’s
thread. You can then use a Handler in two different ways:

1. You can use it in order to put a Message into the queue that its Looper will read into
the associated Thread.

2. You can also use Handler as the object containing the actual consumer logic. In this
case, you usually override the handleMessage (Message?) method like this:

object handler: Handler(){
override fun handleMessage(msg: Message?) {
// Consume the message
}
}

This is possible because, when a thread reads a message from its queue, it delegates the
actual usage of the data to its handlers.

How can you use all this in order to send data from a background thread to the UI? You
just need a Handler associated with the main looper that is available calling
Looper.getMainLooper() and then post an action as a Runnable:

val runnable = Runnable {
// update the ui from here

val handler = Handler(Looper.getMainLooper())
handler.post(runnable)

Euy

see more please visit: https://homeofbook.com

You can summarize the different objects responsibilities as:

» Looper: Runs a loop on its Thread, waiting for Message instances on its
MessageQueue.

» MessageQueue: Holds a list of messages for a given Thread.

» Handler: Allows the sending and processing of Message and Runnable to the
MessageQueue. It can be used to send and process messages between threads.

» Message: Contains a description and data that can be created and sent using a
Handler.

» Runnable: Represents a task to be executed.

Handler is then the HaMeR workhorse. It’s responsible for sending Message (data
message) and post Runnable (task message) objects to the MessageQueue associated with
a Thread.

After delivering the tasks to the queue, the handler receives the objects from the looper
and processes the messages at the appropriate time. It can be used to send or post some
message or runnable objects between threads, as long as such threads share the same
process. Otherwise, it will be necessary to use an Inter Process Communication (IPC)
mechanism, like the Messenger class or some Android Interface Definition Language
(AIDL) implementation.

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.Handler. This makes sure that, when you
click the button, the method getImageUsingHandler() is called. Here is the method
definition:

fun getImageUsingHandler() {
// Create a Handler using the main Looper
val uiHandler = Handler(Looper.getMainLooper())

// Create a new thread
Thread {
// Download image
val bmp = DownloaderUtil.downloadImage()
// Using the uiHandler update the UI
uiHandler.post {
imageView?.setImageBitmap (bmp)

}.start()

Euy

see more please visit: https://homeofbook.com

Run the app.

1252 & I

Async Wars

START

Download image using:Handler

| ® 5]
Download image using Handler
When you click the Start button, you will see that the image is downloaded and

displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

1253 &
Async Wars

e T\) T T

e TNCNARS
I
START
Download image using:Handler
| ® 5]

Download image using Handler

Euy

see more please visit: https://homeofbook.com

The Ul thread already comes with a Looper and a MessageQueue. For other threads, you
need to create the same objects if you want to leverage the HaMeR framework. You can
do this by extending the Thread class as follow:

// Preparing a Thread for HaMeR
class MyLooperThread : Thread() {

lateinit var handler: Handler

override fun run() {
// adding and preparing the Looper
Looper.prepare()

// the Handler instance will be associated with Thread’s Looper
handler = object : Handler() {
override fun handleMessage(msg: Message) {
// process incoming messages here

b
b

// Starting the message queue loop using the Looper
Looper. loop()
I
b

However, it’s more straightforward to use a helper class called HandlerThread, which
creates a Looper and a MessageQueue for you. Check out the implementation of
getImageUsingHandlerThread() method inside MainActivity.kt of the starter app:

var handlerThread: HandlerThread? = null
fun getImageUsingHandlerThread() {
// Download image
// Create a HandlerThread
handlerThread = HandlerThread("MyHandlerThread")

handlerThread?. let{
// Start the HandlerThread
it.start()
// Get the Looper
val looper = it.looper
// Create a Handler using the obtained Looper
val handler = Handler(looper)
// Execute the Handler
handler.post {
// Download Image
val bmp = DownloaderUtil.downloadImage()

// Send local broadcast with the bitmap as payload
BroadcasterUtil.sendBitmap(applicationContext, bmp)

Euy

see more please visit: https://homeofbook.com

}

override fun onDestroy() {
super.onDestroy()

// Quit and cleanup any instance of dangling HandlerThread
handlerThread?.quit()

¥

Here, you create an instance of the HandlerThread, passing a name that is very useful
for debugging purposes. The HandlerThread extends the Thread class and you have to
start it in order to use its Looper. You then access looper property and pass it as the
constructor paramenter of the Handler. You can then use the handler that you have
created for sending Runnable objects to the HandlerThread. All of the code you
encapsulate into the Runnable object will be then executed into the HandlerThread.

Note: It is important that you call quit() on the HandlerThread instance when the

work is done, possibly in the onDestroy() of the activity so as to release resources
it would be holding.

HandlerThread

MessageQueue

HANDLER

[Message]

HANDLER

[Message]

Append Message to Message Queue

HandlerThread

Note: When the Activity is destroyed, it’s important to terminate the
HandlerThread. This also terminates the Looper.

Euy

see more please visit: https://homeofbook.com

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.HandlerThread. This makes sure that, when
you click the button, the method getImageUsingHandlerThread() is called.

Run the app.

1254 &

Async Wars

START

4 < ||

Download image using HandlerThread

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageVview without blocking the UI; the spinner animates while the
image is being downloaded.

1254 @

Async Wars

START

4] ||

Download image using HandlerThread

Euy

see more please visit: https://homeofbook.com

The definition of component implies the existence of a container. You usually
describe all your components to the container using some document; the container will
create, suspend, resume and destroy components depending on the state of the
application or on the available resources on the device. You would say that the
container is responsible for the component’s lifecycle. You can apply the same concept
to Android when you describe all your components to the system using the
AndroidManifest.xml file.

In the example you’ve seen earlier, the component is an Activity whose lifecycle
depends mainly on the application usage and on the available resources. For instance,
when the user rotates the device, the activity is destroyed and then re-created — unless
you don’t configure differently. What happens when you start a task in the background
from an Activity and then rotate the device? In the case of the HandlerThread, you
should make it aware of the lifecycle and cancel the tasks, if any, and execute them
again. This is not always the best solution — especially in cases of very long tasks like
downloading a file.

For situations like these, Android provides a different component whose lifecycle
doesn’t depend on what’s happening on the UI but that can only depend on the
available resources: the service. It’s an Android component and, as such, you have to
declare it into the AndroidManifest.xml file, but it has lifecycle different from the
activities lifecycle.

The Service is a component that you can use as the owner of a very long task because
the system will change its state only if it really needs resources. You can think of it as a
safe place to put your long-running code. It’s important to note that a service does not
create its own thread and does not run in a separate process unless you explicitly say
SO.

A sample usage:

class ExampleService : Service() {

fun onStartCommand(intent: Intent, flags: Int, startId: Int): Int {
doSomeLongProccesingWork()
return START_NOT_STICKY

¥

fun onBind(intent: Intent): IBinder? {
return null

¥

fun doSomeLongProccesingWork(){
// Do some work

Euy

see more please visit: https://homeofbook.com

// Stop service when required
stopSelf()
¥
b

It is your responsibility to stop a Service when its work is complete by calling either the
stopSelf() or the stopService() method. The Service doesn’t know what is going on
in the code running in your thread or executor task — it is your responsibility to let it
know when you’ve started and when you’ve finished.

A basic service can exist in two flavors:

» A started service is initiated by a component in your application and remains active
in the background of the device, even if the original component is destroyed. When a
started service finishes running its task, the service will stop itself. A standard started
service is generally used for long-running background tasks that do not need to
communicate with the rest of the app.

» Abound service provides a client/server communication paradigm. The service is
usually thought of as the server and an Android context, usually an activity, is the
client. This type of service is similar to a started service, and it also provides
callbacks for various app components that can bind to it. When all bound
components have unbound themselves from the service, the service will stop itself.

It is important to note that these two ways to run a service are not mutually exclusive
So you can start a service that will run indefinitely and can have components bound to
it.

However, since the Api Level 26 (Android 8.0), the Service usage as you might know it
today, has been deprecated. It is no longer allowed to fulfill its primary purpose, namely
to execute the long-running task in the background. Calling startService() method
when your app has been put in background throws an I1legalStateException. The only
way one can use services now is as a foreground service.

As stated previously, Service components, by default, are started in the main thread
like any other Android component. If you need the service to run a task as a background
task, then it’s up to you to create a separate thread and move your work to that thread.
The Android frameworks also offer sub-class of Service that can do all the threading
work for you: IntentService.

Euy

see more please visit: https://homeofbook.com

It runs on a separate thread and stops itself automatically after it completes its work.
IntentService is usually used for short tasks that don’t need to be attached to any UL.
Since IntentService doesn’t attach to any activity and it runs on a non-UI thread, it
serves the need perfectly. Moreover, IntentService stops itself automatically, so there
is no need to manually manage it, either.

One of the biggest issues with a standard started service is that it cannot handle
multiple requests at a time, but that is not the case with an IntentService. It creates a
default worker thread for executing all intents that are received in onStartCommand(), so
all operations can happen off the main thread. It then creates a work queue for sending
each intent to onHandleIntent() one at a time so that you don’t need to worry about
multi-threading issues.

Essentially, there is always only one instance of your IntentService implementation at
any given time and it has only one HandlerThread. This means that if you need more
than one thing to happen at the same time, IntentServices may not be a good option.

Sample usage:

// Required constructor with a name for the service
class MyIntentService : IntentService("MyIntentService") {

override fun onHandleIntent(intent: Intent?) {
//Perform your tasks here
doSomeWork() ;
¥
}

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.IntentService. This makes sure that when
the button is clicked, the method getImageUsingIntentService() is called. Here is the
method definition:

fun getImageUsingIntentService() {
// Download image
val intent = Intent(this@ainActivity, MyIntentService::class.java)
startService(intent)

b
Here,MyIntentService has the below implementation:

// Required constructor with a name for the service
class MyIntentService : IntentService("MyIntentService") {

override fun onHandleIntent(intent: Intent?) {
// Download Image
val bmp = DownloaderUtil.downloadImage()

// Send local broadcast with the bitmap as payload

Euy

see more please visit: https://homeofbook.com

BroadcasterUtil.sendBitmap(applicationContext, bmp)
¥
b

Here, BroadcasterUtil is a utility class that internally uses LocalBroadcastManager. It
is used here to easily send the image back to the Ul thread. You will learn more about
this process in the next section. Run the app.

1251 & B0

Async Wars

START

4] ||

Download image using IntentService

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageVview without blocking the UI; the spinner animates while the
image is being downloaded.

1282 & BYL0

Async Wars

= e
AEMISHARSE

START

4] 2

Download image using IntentService

Euy

see more please visit: https://homeofbook.com

You learned that a started Service is an Android component that is not bound to the UI.
If you need to send some data from a service to a different component, like an Activity,
you need some other mechanisms like the LocalBroadcastManager that you used via the
BroadcasterUtil in the previous example. You can see how to send data from a service
in the onHandleIntent () method of the MyIntentService class:

override fun onHandleIntent(intent: Intent?) {
// Download Image
val bmp = DownloaderUtil.downloadImage()

// Send local broadcast with the bitmap as payload
BroadcasterUtil.sendBitmap(applicationContext, bmp)

}

Here, sendBitmap(applicationContext, bmp) is a method defined inside
BroadcasterUtil class with the below implementation:

/%%
* Send local broadcast with the bitmap as payload
* @param context Context
* @param bmp Bitmap
* @return Unit
*/
fun sendBitmap(context: Context, bmp: Bitmap?) {
val newIntent = Intent()
bmp?.let {
newIntent.putExtra("bitmap", it)
newIntent.action = MainActivity.FILTER_ACTION_KEY

LocalBroadcastManager.getInstance(context).sendBroadcast(newIntent)

b
Iy

As you can see, it uses LocalBroadcastManager to send a broadcast using an intent,
which has a payload of the passed bitmap. A LocalBroadcastManager needs a
BroadcastReceiver to be registered via using the registerReceiver() method. In the
starter app, there is an implementation for a BroadcastReceiver already provided
named MyBroadcastReceiver, which has the below implementation:

class MyBroadcastReceiver(val imagdeDownloadListener:
ImageDownloadListener) : BroadcastReceiver() {
override fun onReceive(context: Context, intent: Intent) {
val bmp = intent.getParcelableExtra<Bitmap>("bitmap")

// Pass it to the listener
imagdeDownloadListener.onSuccess (bmp)

Euy

see more please visit: https://homeofbook.com

ImageDownloadListener is used here to set up a listener, which will return the bitmap
once it is downloaded. In the MainActivity.kt, you’ve already created an instance of
this during the AsyncTask section of this chapter.

BroadcasterUtil abstracts register and unregister of MyBroadcastReceiver for the
LocalBroadcastManager by defining helper methods:

/%%
* Register Local Broadcast Manager with the receiver
* @param context Context
* @param myBroadcastReceiver MyBroadcastReceiver
* @return Unit
*/
fun registerReceiver(context: Context, myBroadcastReceiver:
MyBroadcastReceiver?) {
myBroadcastReceiver?.let {
val intentFilter = IntentFilter()
intentFilter.addAction(MainActivity.FILTER_ACTION_KEY)
LocalBroadcastManager.getInstance(context).registerReceiver(it,
intentFilter)
¥
b

* Unregister Local Broadcast Manager from the receiver
* @param context Context
* @param myBroadcastReceiver MyBroadcastReceiver
* @return Unit
*/
fun unregisterReceiver(context: Context, myBroadcastReceiver:
MyBroadcastReceiver?) {
myBroadcastReceiver?.let {
LocalBroadcastManager.getInstance(context).unregisterReceiver(it)
b

}

You use these helper methods later to register and unregister an instance of
MyBroadcastReceiver to the LocalBroadcastManager in onStart() and onStop()
respectively, of the MainActivity:

A Lifecycle Methods ———————— //
override fun onStart() {
super.onStart()
BroadcasterUtil.registerReceiver(this, myReceiver)

}

override fun onStop() {
super.onStop()
BroadcasterUtil.unregisterReceiver(this, myReceiver)

¥

Euy

see more please visit: https://homeofbook.com

Important points to note, here:
o Ifthere’s no BroadcastReceiver registered, there won’t be any update in the UI.
» The thread that will perform the Imageview update is the UI thread.

» IntentService uses HandlerThread internally.

You’ve seen that you can encapsulate code into a Runnable implementation in order to
eventually run it in some given Thread. Every object that can execute what’s defined
into a Runnable can be abstracted using the Executor interface, introduced in Java 5.0 as
part of the concurrent APIs.

interface Executor {
fun execute(command: Runnable)
}

You can execute a Runnable in many different ways. You can, for instance, simply invoke
directly the run() method or pass the Runnable object as constructor parameter of the
Thread class and start it, as seen previously. In the former case, you’re executing the
runnable code in the caller thread. In the latter, you’re executing the same code into a
different thread. This depends on the particular Executor implementation.

Creating a thread is very simple in the code but expensive in practice. Every time you
create a Thread instance you need to request resources to the operative system and
every time the thread completes its job — when its run() method ends — it must be
collected as garbage. The typical solution, in this case, is the usage of a pool of
threads, which, on the other hand, needs some kind of lifecycle.

The pool needs to be initialized with a minimum number of threads. When the
application ends, the pools should shut down and release all the resources. Even when
the pool is active, you can have a different policy for the minimum number of instances
of thread to keep alive or how to manage the creation of new instances when needed.
You could limit the number of threads forcing the client to wait, or create a new thread
every time you need. This is something more than a simple Executor that concurrent
APIs abstracts with the ExecutorService interface.

The ExecutorService is then the abstraction for specific Executor, which needs to be
initialized and shut down to allow for the execution of Runnable objects in an efficient
and optimized way. The way this is happening depends on the specific implementation.
One of the most important is ThreadPoolExecutor. [t manages a pool of worker threads
and a queue of tasks to execute.

Euy

see more please visit: https://homeofbook.com

Depending on the configured policy, it reuses an available thread or creates a new one
in order to consume the tasks from a queue.

The concurrent APIs provide different implementations that are available through
some static factory methods of the Executors class. The most common are
Executors.newSingleThreadExecutor(), which create an executor that will process a
single task at a time, and Executors.newFixedThreadPool(N), which creates an executor
with an internal pool of N threads.

It’s important to note that an ExecutorService also provides the option of executing
Callable<T> implementations. While the Runnable interface defines a run() method,
which returns Unit, a Callable<T> is a generic interface, which defines the call()
method that returns an object of type T:

interface Callable<T> {
fun call(): T
}

You can think of a Callable<T> as a Runnable that actually returns an object of type T at
the end of the task. You can ask the ExecutorService to run the given Callable<T>
using the invoke () method, getting a Future<T> in return. The Future<T> provides a
get () method, which blocks until the result of type T is available or throws an exception
in case of error or interruption.

Sample usage:

val executor = Executors.newFixedThreadPool(4)
(1..10).forEach {
executor.submit {
print("[Iteration $it] Hello from Kotlin Coroutines! ")
println("Thread: ${Thread.currentThread()}")
¥
}

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.Executor. This makes sure that, when you
click the button, the method getImageUsingExecutors() is called. Here is the method
definition:

fun getImageUsingExecutors() {
// Download image
val executor = Executors.newFixedThreadPool(4)
executor.submit(myRunnable)

}

Here, myRunnable in the MainActivity.kt is a instance of MyRunnable class, which
you’ve already created during the Thread section of this chapter.

Euy

see more please visit: https://homeofbook.com

Run the app.

1255 & I R

Async Wars

START

Download image using:Executor

| ® 5]

Download image using Executor

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

1256 &

Async Wars

AEATERES

START

Download image using:Executor

| ® 5]

Download image using Executor

Euy

see more please visit: https://homeofbook.com

The main advantages of using ThreadPoolExecutor in an Android application are:

» Powerful task execution framework as it supports task addition in a queue, task
cancellation and task prioritization.

» Reduces the overhead associated with thread creation as it manages a required
number of threads in its thread pool.

» Reduces boilerplate code as it abstracts most of the codebase behind factory method
with sane defaults.

However, although ExecutorService implementations provide an optimized usage of
threads in terms of creation and reuse, they don’t solve the problems related to context
switching between threads.

Announced at Google I/O 2018 as part of Jetpack, WorkManager aims to simplify the
developer experience by providing a first-class API for system-driven background
processing. The WorkManager API makes it easy to specify deferrable, asynchronous
tasks and when they should run. It is intended for background jobs that should run even
if the app is no longer in the foreground. Where possible, it delegates its work to a
JobScheduler, Firebase JobDispatcher, or Alarm Manager + Broadcast receivers. If your
app is in the foreground, it will even try to do the work directly in your process. The task
is still guaranteed to run, even if your app is force-quit or the device is rebooted.

WorkManager chooses the appropriate way to run your task based on such factors as
the device API level and the app state.

By default, WorkManager runs each task immediately, but you can also specify the
conditions the device needs to fulfill before the task can proceed, including network
conditions, charging status and the amount of storage space available on the device. If
WorkManager executes one of your tasks while the app is running, it can run your task
in a new thread in your app’s process.

If your app is not running, WorkManager chooses an appropriate way to schedule a
background task — depending on the device API level and included dependencies. You
don’t need to write device logic to figure out what capabilities the device has and
choose an appropriate API; instead, you can just hand your task off to WorkManager
and let it choose the best option.

Euy

see more please visit: https://homeofbook.com

WorkManager

extends

override doWork()
(All work is done here)

CREATE SCHEDULE

WorkManager Process Flow

Sample usage:

// A simple Worker
class DoSomeWorker : Worker() {
// This method will run in background thread and WorkManger
// will take care of it
override fun doWork() : WorkerRequest() {
doSomeWork()
return WorkResult.SUCCESS

}

// Usage

// Create the request

val request : WorkRequest = OneTimev?rkRequestBuilder<DoSomeWorker>()
.build

// Enqueue the request

val workManager : WorkManager = WorkManager.getInstance()

workManager.enqueue(request)

In short, the WorkManager is another library that is trying to solve the old problem of
executing long-running jobs on the Android platform. It delegates the logic to different
components that are available only on specific versions of the platform. If you accept to
use this library, you also accept all the fallbacks and workarounds used to enable
support for older platforms/APIs. WorkManager is seen as the third attempt by Google
to solve the job management on Android Platform and probably not the last.

Euy

see more please visit: https://homeofbook.com

Reactive programming is an asynchronous programming paradigm concerned with data
streams and the propagation of change. The essence of reactive programming is the
observer pattern.

Note: The observer pattern is a software design pattern wherein data sources or
streams, called observables, emit data and one or more observers, who are
interested in getting the data, subscribe to the observable.

In reactive programming, you are allowed to create data streams from anything
including Array, ArrayList, etc. These data streams can be observed, modified, filtered
or operated upon. You can use a stream as an input to another one. You can even use
multiple streams as inputs to another stream. You can merge two streams. You can filter
a stream to get another one that has only those events you are interested in. You can
map data values from one stream to another one. A typical data stream can emit three
different values: one on when the event occurs, one on when the error occurs or one on
when the event is completed.

RxJava is a library that makes it easier for you to implement reactive programming
principles on any JVM-based platform, including Android. To manage threads, RxJava
has a helper class called Schedulers. Schedulers are how you tell where the observer
and observables should run.

Some general use Schedulers to observe:

Schedulers.computation(): Used for CPU intensive tasks.

Schedulers.io(): Used for IO bound tasks.

Schedulers. from(Executor): Used with custom ExecutorService.

Schedulers.newThread(): It always creates a new thread when a worker is needed.

This is where RxAndroid library comes into the picture, which plays a major role in
supporting multi-threading concepts in Android applications. It provides a Scheduler
that schedules on the main thread or any given Looper.

Sample usage:

Observable. just("Hello", "from", "RxJava')
.subscribeOn(Schedulers.newThread())
.observeOn(AndroidSchedulers.mainThread())
.subscribe(/* an Observer */);

Euy

see more please visit: https://homeofbook.com

This will execute the Observable on a new thread and emit results through onNext () on
the main thread.

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.RxJava. This makes sure that when you
click the button, the method getImageUsingRx() is called. Here is the method
definition:

var single: Disposable? = null
fun getImageUsingRx() {
// Download image
single = Single.create<Bitmap> { emitter —>
DownloaderUtil.downloadImage()?.let { bmp —>
emitter.onSuccess(bmp)

}.observeOn(AndroidSchedulers.mainThread())
.subscribeOn(Schedulers.io())
.subscribe { bmp —>
// Update UI with downloaded bitmap
, imageView?.setImageBitmap (bmp)
}

override fun onDestroy() {
super.onDestroy()

// Cleanup disposable if it was created i.e not null
single?.dispose()

}

Note: It is important that you call dispose() on the Single instance when the
work is done, possibly in the onDestroy() of the activity so as to release resources
it would be holding and close the stream.

Also note that the topic of reactive extensions is pretty vast; covering the
mechanics of its functionalities is out of the scope of this book. The example
shown here is for comparison purpose only and you can learn more in “Chapter 14:
Coroutines and RxKotlin Comparison.”

Euy

see more please visit: https://homeofbook.com

Run the app.

1257 & ORP.0

Async Wars

START

)O\

wnload image using:RxJava

| ® 5]
Download image using RxJava
When you click the Start button, you will see that the image is downloaded and

displayed in the ImageView without blocking the UI; the spinner animates while the
image is being downloaded.

1257 &
Async Wars

= aubr=nd) NG

P NGRS
I
START
Jownload image using:RxJava
| ® 5]

Download image using RxJava

Euy

see more please visit: https://homeofbook.com

Although reactive programming is a compelling tool and solves a lot of complex
concurrency problems, the learning curve for RxJava is very steep and complex. It is a
different approach towards programming and can lead to some confusion when
programming larger apps.

Now that you have a clear idea about various ways of doing asynchronous work in
Android, as well as the pros and cons, let’s come back to Kotlin coroutines. Kotlin
coroutines are a way of doing things asynchronously in a sequential manner. Creating
coroutines is cheap versus creating threads.

Note: Coroutines are completely implemented through a compilation technique
(no support from the VM or OS side is required), and suspension works through
code transformation.

Coroutines are based on the idea of suspending functions: functions that can stop the
execution when they are called and make it continue once it has finished running their
own task. Enabling Kotlin coroutines in Android involves just a few simple steps. To
show how easy it is to enable coroutines, head back to the starter project and add the
Android coroutine library dependency into your app’s build.gradle file under
dependencies block, replacing the line // TODO: Add Kotlin Coroutine Dependencies
here with the following:

dependencies {

// Coroutines

final def coroutineVer = "1.0.1"

implementation "org.jetbrains.kotlinx:kotlinx—coroutines—core:
$coroutineVer"

implementation "org.jetbrains.kotlinx:kotlinx—coroutines—android:
$coroutineVer"

¥

Note: In order to use the stable Coroutines v1.0.1, the accompanying Koltin
version should be v1.3.0 and above. Make sure that the Kotlin standard library is at
least v1.3.0

Euy

see more please visit: https://homeofbook.com

Next, inside your MainActivity.kt file, add the implementation for the method

getImageUsingCoroutines() by replacing // TODO: add implementation here with the
below code snippet:

GlobalScope. launch {
// Download Image in background
val deferredJob = async(Dispatchers.I0) {
DownloaderUtil.downloadImage()

withContext(Dispatchers.Main) {
val bmp = deferredJob.await()
// Update UI with downloaded bitmap
imageView?.setImageBitmap (bmp)
b

To see a working example, in your MainActivity.kt file under the onCreate() function,
set methodToUse = MethodToDownloadImage.Coroutine.

This makes sure that when you click the button, the method
getImageUsingCoroutines() is called.

Run the app.

12:58 & U |

Async Wars

START

Download image using Coroutine

Euy

see more please visit: https://homeofbook.com

When you click the Start button, you will see that the image is downloaded and
displayed in the ImageVview without blocking the; the spinner animates while the image
is being downloaded.

1258 & N

Async Wars

START

Download image using Coroutine

A lot has already been explained about the mechanics of Kotlin coroutines in the
previous chapters; in the subsequent chapters, you will mostly cover the usage of Kotlin
coroutines in the Android apps.

While Kotlin does remove much of the verbosity and complexity typically associated
with Java, no programming language is perfect and, thus, libraries that build on top of
the language are born. Anko is one such library that uses Kotlin and provides a lot of
extension functions to make your Android development easier.

Note: That’s how Anko got its name: (An)droid (Ko)tlin.

Anko was originally designed as a single library. As the project grew, adding Anko as a
dependency began to have a significant impact on the size of the APK (Android
Application Package).

Euy

see more please visit: https://homeofbook.com

Today, Anko is split across several modules:

e Commons: Helps you perform the most common Android tasks, including displaying
dialogs and launching new Activities.

» Layouts: Provides a Domain Specific Language (DSL) for defining Android layouts.

» SQLite: A query DSL and parser that makes it easier to interact with SQLite
databases.

» Coroutines: Supplies utilities based on the kotlinx.coroutines library.
You can see the differences in a sample comparison, below.
Using language provided coroutines:

button.setOnClickListener {
launch (UI)A{
val userId = fetchUserString("user_id_1").await()
val user = deserializeUser(userId).await()
showUserData(user)

}
Using an Anko-provided coroutine helper:
button.onClick {
val userld= bg { fetchUserString("user_id_1").await() }

val user = bg { deserializeUser(userId).await() }
showUserData(user)

onClick and bg are some of many helper functions Anko provides for making the
process of handling coroutines even simpler, which will be covered in depth in later
chapters.

» Android is inherently asynchronous and event-driven, with strict requirements as
to which thread certain things can happen on.

e The Ul thread — a.k.a. main thread — is responsible for interacting with the Ul
components and is the most important thread of an Android application.

» Almost all code in an Android application will be executed on the UI thread by
default; blocking it would result in a non-responsive application state.

Euy

see more please visit: https://homeofbook.com

» Thread is an independent path of execution within a program allowing for
asynchronous code execution, but it is highly complex to maintain and has limits on
usage.

» AsyncTask is a helper class which simplifies asynchronous programming between Ul
thread and background threads on Android. It does not work well with complex
operations based on Android Lifecycle.

» Handler is another helper class provided by Android SDK to simplify asynchronous
programming, but requires a lot of moving parts to set up and get running.

» HandlerThread is typically a thread that is ready to receive a Handler because it has
a Looper and a MessageQueue built into it.

» Service is a component that is useful for performing long (or potentially long)
operations without any UI, and it runs in the main thread of its hosting process.

» IntentService is a service that runs on a separate thread and stops itself
automatically after it completes its work; however, it cannot handle multiple
requests at a time.

» Executors is a manager class that allows running many different tasks concurrently
while sharing limited CPU time, used mainly to manage thread(s) in an efficent
manner.

» WorkManager is a fairly new API developed as part of JetPack libraries provided by
Google, which makes it easy to specify deferrable, asynchronous tasks and when they
should run.

* RxJava + RxAndroid are libraries that make it easier to implement reactive
programming principles in the Android platform.

» Coroutines make asynchronous code look like synchronous and work pretty well
with Android platform out of the box.

» Anko is a library that uses Kotlin and provides a lot of extension functions to make
our Android development easier.

Euy

see more please visit: https://homeofbook.com

Where to go from here?

Phew! That was a lot of background on asynchronous programming in Android! But the
good thing is that you made it!

In the upcoming chapters, you dive deeper into how you can leverage coroutines in
Android apps to handle async operations while keeping in sync with various nuances of
the Android platform, such as respecting lifecycles of an app and efficient context
switching to facilitate the various use cases of apps to fetch-process-display data.

Euy

see more please visit: https://homeofbook.com

Chaptergl6: Coroutines on

Android: Part 2

Learn how to use different contexts in order to run long tasks in the background
returning data to the main thread. You'll learn how to use async callbacks for long-
running tasks, such as a database or network access into sequential tasks, while also
keeping track of and handling app lifecycles.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 123

see more please visit: https.//homeofbook.com

Chapter ¥7: Coroutines on

Android: Part 3

Learn how to use Kotlin coroutines in an Android app with logging, exception handling,
debugging and testing of code. Anko library will also be covered.

This is an early access release of this book. Stay tuned for this chapter in a future
release!

u raywenderlich.com 124

see more please visit: https.//homeofbook.com

We hope you enjoyed this book! If you’re looking for more, we have a whole library of
books waiting for you at https://store.raywenderlich.com.

New to iOS or Swift?

Learn how to develop iOS apps in Swift with our classic, beginner editions.

iOS Apprentice

https://store.raywenderlich.com/products/ios-apprentice

iOS , 10,000
Apprentice S

SEVENTH EDITION
Beginning iOS development with Swift 4.2

By Matthijs Hollemans & Fahim Farook

Euy

see more please visit: https://homeofbook.com

The i0OS Apprentice is a series of epic-length tutorials for beginners where you’ll learn
how to build 4 complete apps from scratch.

Each new app will be a little more advanced than the one before, and together they
cover everything you need to know to make your own apps. By the end of the series
you’ll be experienced enough to turn your ideas into real apps that you can sell on the
App Store.

These tutorials have easy to follow step-by-step instructions, and consist of more than
900 pages and 500 illustrations! You also get full source code, image files, and other
resources you can re-use for your own projects.

Swift Apprentice

https://store.raywenderlich.com/products/swift-apprentice

BNt

Apprentice

FOURTH EDITION
Beginning programming with Swift 4.2

This is a book for complete beginners to Apple’s brand new programming language —
Swift 4.

Everything can be done in a playground, so you can stay focused on the core Swift 4
language concepts like classes, protocols, and generics.

This is a sister book to the iOS Apprentice; the iOS Apprentice focuses on making apps,
while Swift Apprentice focuses on the Swift 4 language itself.

Euy

see more please visit: https://homeofbook.com

Experienced iOS developer?

Level up your development skills with a deep dive into our many intermediate to
advanced editions.

Data Structures and Algorithms in Swift

https://store.raywenderlich.com/products/data-structures-and-algorithms-in-swift

Data Structures
& Algorithms in switt

SECOND EDITION
Implementing practical data structures with Swift 4.2

By Kelvin Lau & Vincent Ngo

Understanding how data structures and algorithms work in code is crucial for creating
efficient and scalable apps. Swift’s Standard Library has a small set of general purpose
collection types, yet they definitely don’t cover every case!

In Data Structures and Algorithms in Swift, you’ll learn how to implement the most
popular and useful data structures, and when and why you should use one particular
datastructure or algorithm over another. This set of basic data structures and
algorithms will serve as an excellent foundation for building more complex and special-
purpose constructs. As well, the high-level expressiveness of Swift makes it an ideal
choice for learning these core concepts without sacrificing performance.

Euy

see more please visit: https://homeofbook.com

Realm: Building Modern Swift Apps with Realm Database

https://store.raywenderlich.com/products/realm-building-modern-swift-apps-with-
realm-database

¥
Realm

Bullding Modern SwiltApps
with Realm Database

FIRST EDITION

Realm Platform is a relatively new commercial product which allows developers to
automatically synchronize data not only across Apple devices but also between any
combination of Android, iPhone, Windows, or macOS apps. Realm Platform allows you
to run the server software on your own infrastructure and keep your data in-house
which more often suits large enterprises. Alternatively you can use Realm Cloud which
runs a Platform for you and you start syncing data very quickly and only pay for what
you use.

In this book, you’ll take a deep dive into the Realm Database, learn how to set up your
first Realm database, see how to persist and read data, find out how to perform
migrations and more. In the last chapter of this book, you'll take a look at the
synchronization features of Realm Cloud to perform real-time sync of your data across
all devices.

Euy

see more please visit: https://homeofbook.com

Design Patterns by Tutorials

https://store.raywenderlich.com/products/design-patterns-by-tutorials

Design Patterns
oy Tutorials

SECOND EDITION
Learning design patterns in Swift 4.2

By Joshua Greene & Jay Strawn

Design patterns are incredibly useful, no matter what language or platform you develop
for. Using the right pattern for the right job can save you time, create less maintenance
work for your team and ultimately let you create more great things with less effort.
Every developer should absolutely know about design patterns, and how and when to
apply them. That's what you're going to learn in this book!

Move from the basic building blocks of patterns such as MVC, Delegate and Strategy,
into more advanced patterns such as the Factory, Prototype and Multicast Delegate
pattern, and finish off with some less-common but still incredibly useful patterns
including Flyweight, Command and Chain of Responsibility.

Euy

see more please visit: https://homeofbook.com

Server Side Swift with Vapor

https://store.raywenderlich.com/products/server-side-swift-with-vapor

Server Side Swift with

Vapor

FIRST EDITION
ding Web ard Web Apps in Swift

vweanderich.com Tulorial Team

If you’re a beginner to web development, but have worked with Swift for some time,
you’ll find it’s easy to create robust, fully-featured web apps and web APIs with Vapor 3.

Whether you’re looking to create a backend for your iOS app, or want to create fully-
featured web apps, Vapor is the perfect platform for you.

This book starts with the basics of web development and introduces the basics of Vapor;
it then walks you through creating APIs and web backends; creating and configuring
databases; deploying to Heroku, AWS, or Docker; testing your creations and morel

Euy

see more please visit: https://homeofbook.com

iI0S 11 by Tutorials

https://store.raywenderlich.com/products/ios-11-by-tutorials

oy Tutorials

FIRST EDITION
Learning the new iOS APls with Swift 4

By the raywenderlich.com Tutorial Team

Jawwad Ahmad, Jerry Beers, Michael Ciurus, Richard Critz
Mike Katz, Andy Pereira, Mic Pringle & Jeff Rames

This book is for intermediate iOS developers who already know the basics of iOS and
Swift development but want to learn the new APIs introduced in iOS 11.

Discover the new features for developers in iOS 11, such as ARKit, Core ML, Vision, drag
& drop, document browsing, the new changes in Xcode 9 and Swift 4 — and much, much
more.

Euy

see more please visit: https://homeofbook.com

Advanced Debugging and Reverse Engineering

https://store.raywenderlich.com/products/advanced-apple-debugging-and-reverse-
engineering

Advanced
Apple Debugging

& Reverse Engineering

SECOND EDITION
Explonng Appie code thvough LLDS, Python, and Ditage

Derek Sefander

In Advanced Apple Debugging and Reverse Engineering, you'll come to realize
debugging is an enjoyable process to help you better understand software. Not only will
you learn to find bugs faster, but you’ll also learn how other developers have solved
problems similar to yours.

You'll also learn how to create custom, powerful debugging scripts that will help you
quickly find the secrets behind any bit of code that piques your interest.

After reading this book, you'll have the tools and knowledge to answer even the most
obscure question about your code — or someone else’s.

Euy

see more please visit: https://homeofbook.com

RxSwift: Reactive Programming with Swift

https://store.raywenderlich.com/products/rxswift

)

RxSwift

Reactive Programming
with Swift

SECOND EDITION

This book is for iOS developers who already feel comfortable with iOS and Swift, and
want to dive deep into development with RxSwift.

Start with an introduction to the reactive programming paradigm; learn about
observers and observables, filtering and transforming operators, and how to work with
the Ul, and finish off by building a fully-featured app in RxSwift.

Euy

see more please visit: https://homeofbook.com

Core Data by Tutorials

https://store.raywenderlich.com/products/core-data-by-tutorials

Core Data
oy Tutorials

FIFTH EDITION
iIOS 12 and Swift 4.2 edition

By the raywenderlich.com Tutorial Team

iron Douglas, Saul Mora, Matthew Morey & Pietro Rea

This book is for intermediate iOS developers who already know the basics of iOS and
Swift 4 development but want to learn how to use Core Data to save data in their apps.

Start with with the basics like setting up your own Core Data Stack all the way to
advanced topics like migration, performance, multithreading, and more!

Euy

see more please visit: https://homeofbook.com

iIOS Animations by Tutorials

https://store.raywenderlich.com/products/ios-animations-by-tutorials

Animations
oy Tutorials

FIFTH EDITION
iI0S 12 and Swift 4.2 edition

By Marin Todorov

This book is for iOS developers who already know the basics of iOS and Swift 4, and
want to dive deep into animations.

Start with basic view animations and move all the way to layer animations, animating
constraints, view controller transitions, and more!

Euy

see more please visit: https://homeofbook.com

ARKit by Tutorials

https://store.raywenderlich.com/products/arkit-by-tutorials

oy Tutorials

SECOND EDITION
Building Augmented Reality Apps in Swift 4.2

By the raywenderlich.com Tutorial Team
Chris Language mrata Bandekar, Antonio Bello & Tammy Coron

Learn how to use Apple’s augmented reality framework, ARKit, to build five great-
looking AR apps:

» Tabletop Poker Dice

e Immersive Sci-Fi Portal
» 3D Face Masking

e Location-Based Content

e Monster Truck Sim

Euy

see more please visit: https://homeofbook.com

watchOS by Tutorials

https://store.raywenderlich.com/products/watchos-by-tutorials

watchéS

by Tutorials

THIRD EDITION
Making Apple Watch 8ppa'w

This book is for intermediate iOS developers who already know the basics of iOS and
Swift development but want to learn how to make Apple Watch apps for watchOS 4.

Euy

see more please visit: https://homeofbook.com

tvOS Apprentice

https://store.raywenderlich.com/products/tvos-apprentice
—

Apprentice

THIRD EDITION
Beginning tvOS deveiopment with Swift 4

w1 Tutorls m

This book is for complete beginners to tvOS development. No prior iOS or web
development knowledge is necessary, however the book does assume at least a
rudimentary knowledge of Swift.

This book teaches you how to make tvOS apps in two different ways: via the traditional
method using UIKit, and via the new Client-Server method using TVML.

Euy

see more please visit: https://homeofbook.com

Metal by Tutorials

https://store.raywenderlich.com/products/metal-by-tutorials

Metal

by Tutorials

FIRST EDITION
Beginning game engine development with Metal

By Caroline Begbie & Marius Horga

This book will introduce you to graphics programming in Metal — Apple’s framework
for programming on the GPU. You’ll build your own game engine in Metal where you
can create 3D scenes and build your own 3D games.

Euy

see more please visit: https://homeofbook.com

Want to make games?

Learn how to make great-looking games that are deeply engaging and fun to play!

2D Apple Games by Tutorials

https://store.raywenderlich.com/products/2d-apple-games-by-tutorials

In this book, you will make 6 complete and polished mini-games, from an action game
to a puzzle game to a classic platformer!

This book is for beginner to advanced iOS developers. Whether you are a complete
beginner to making iOS games, or an advanced iOS developer looking to learn about
SpriteKit, you will learn a lot from this book!

Euy

see more please visit: https://homeofbook.com

3D Apple Games by Tutorials

https://store.raywenderlich.com/products/3d-apple-games-by-tutorials

Through a series of mini-games and challenges, you will go from beginner to advanced
and learn everything you need to make your own 3D game!

This book is for beginner to advanced iOS developers. Whether you are a complete
beginner to making iOS games, or an advanced iOS developer looking to learn about
SceneKit, you will learn a lot from this book!

Euy

see more please visit: https://homeofbook.com

Unity Games by Tutorials

https://store.raywenderlich.com/products/unity-games-by-tutorials

Through a series of mini-games and challenges, you will go from beginner to advanced
and learn everything you need to make your own 3D game!

This book is for beginner to advanced iOS developers. Whether you are a complete
beginner to making iOS games, or an advanced iOS developer looking to learn about
SceneKit, you will learn a lot from this book!

Euy

see more please visit: https://homeofbook.com

Beat ’Em Up Game Starter Kit - Unity

https://store.raywenderlich.com/products/beat-em-up-game-starter-Kkit-unity

e \; ;_\?ﬁ
- \\‘\\\\\\\\\\\\\F

(g YT

The classic beat ’em up starter kit is back — for Unity!

Create your own side-scrolling beat ’em up game in the style of such arcade classics as
Double Dragon, Teenage Mutant Ninja Turtles, Golden Axe and Streets of Rage.

This starter kit equips you with all tools, art and instructions you’ll need to create your
own addictive mobile game for Android and iOS.

Euy

see more please visit: https://homeofbook.com

Want to learn Android or Kotlin?

Get a head start on learning to develop great Android apps in Kotlin, the newest first-
class language for building Android apps.

Android Apprentice

https://store.raywenderlich.com/products/android-apprentice

Ahdrid

Apprentice

FIRST EDITION
Beginning Android development with Kotlin 1.2

By Darryl Bayliss & Tom Blankenship

If you’re completely new to Android or developing in Kotlin, this is the book for you!

The Android Apprentice takes you all the way from building your first app, to
submitting your app for sale. By the end of this book, you’ll be experienced enough to
turn your vague ideas into real apps that you can release on the Google Play Store.

You’ll build 4 complete apps from scratch — each app is a little more complicated than
the previous one. Together, these apps will teach you how to work with the most
common controls and APIs used by Android developers around the world.

Euy

see more please visit: https://homeofbook.com

Kotlin Apprentice

https://store.raywenderlich.com/products/kotlin-apprentice

Apprentice

FIRST EDITION
Beginning programming with Kotlin

By the raywenderlich.com Tutorial Team

Iina Galata, Joe Howard, Richard Lucas & Ellen Shapiro

This is a book for complete beginners to the new, modern Kotlin language.

Everything in the book takes place in a clean, modern development environment, which
means you can focus on the core features of programming in the Kotlin language,
without getting bogged down in the many details of building apps.

This is a sister book to the Android Apprentice the Android Apprentice focuses on
making apps for Android, while the Kotlin Apprentice focuses on the Kotlin language
fundamentals.

Euy

see more please visit: https://homeofbook.com

Learn Coroutines in Kotlin!

Executing background tasks has always been a big challenge in every environment and, in
particular, on mobile devices where resources are limited. Kotlin has simplified the way you can
write code improving your productivity with a new programming paradigm, enhancing
object-oriented and functional programming with with simple, powerful and new constructs.
Coroutines are one of these!

Who This Book Is For

This book is for intermediate Kotlin or Android developers who already know the basics of Ul
development but want to learn coroutine API in order to simplify and optimise their code.

Topics Covered in Kotlin Coroutines by Tutorials:

» Asynchronous programming: Learn what asynchronous programming means and how to
achieve it using not blocking calls.

» Configuration: Learn how to configure IntelliJ and Android Studio in order to use
Coroutine APls

» Coroutine principles: Learn what coroutines and launching builders are and how to
manage Job dependencies.

» Suspending functions: This is the main concept around coroutines. Learn how to declare a
suspending function and how to deal with results.

» Sequences and Iterators: Learn how to manage theoretically infinite collections of data in an
efficient way using Sequences, Iterators and the yield function.

» Thread communication techniques: Learn how different tasks can communicate using
Channels, Actors, and specific coroutine operators.

» And much more, including benchmarks, Broadcast Channels, and State machines!

One thing you can count on: After reading this book, you'll be prepared to take advantage
of all the improvements coroutines have to offer!

About the iOS Tutorial Team

The Tutorial Team is a group of app developers and authors who write tutorials at the popular website
raywenderlich.com. We take pride in making sure each tutorial we write holds to the highest standards of
quality. We want our tutorials to be well written, easy to follow, and fun.

If you’ve enjoyed the tutorials we’ve written in the past, you’re in

for a treat. The tutorials we’ve written for this book are some of

our best yet — and this book contains detailed technical knowledge
you simply won’t be able to find anywhere else.

raywenderlich.com

