
see more please visit: https://homeofbook.com

Hands-On Design Patterns
with Kotlin

Build scalable applications using traditional, reactive,
and concurrent design patterns in Kotlin

Alexey Soshin

BIRMINGHAM - MUMBAI

see more please visit: https://homeofbook.com

Hands-On Design Patterns with Kotlin
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Shriram Shekhar
Content Development Editor: Zeeyan Pinheiro
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jason Monteiro
Production Coordinator: Aparna Bhagat

First published: June 2018

Production reference: 1130618

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-801-7

www.packtpub.com

see more please visit: https://homeofbook.com

http://www.packtpub.com

To Lula Leus, my constant source of inspiration.

To my mentor, Lior Bar On. Without you, I would have never started writing.

see more please visit: https://homeofbook.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

see more please visit: https://homeofbook.com

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Alexey Soshin is a software architect with 13 years of experience of making software,
mostly for JVM. He started exploring Kotlin even before Kotlin 1.0 was released, and since
then, he has been a big enthusiast of the language. He speaks about Kotlin and reactive
frameworks at various conferences and meetups and maintains a technical blog. He's also a
contributor to Vert.x, a toolkit for building reactive applications on the Java Virtual
Machine.

see more please visit: https://homeofbook.com

About the reviewers
Ranga Rao Karanam is a programmer, trainer, and architect. He is the founder of
in28Minutes—helping 200,000 learners reskill on Cloud native applications, microservices,
evolutionary design, high-quality code, DevOps, BDD, TDD, and refactoring. He loves
consulting for startups on the development of scalable component-based cloud-native
applications and following modern development practices, such as BDD,
continuous delivery, and DevOps.

Ranga likes to play cricket and tennis, and he is a regular hiker. His dream is to spend a
year hiking in the Himalayas.

Ganesh Samarthyam is a co-founder of CodeOps Technologies, a software technology,
consultancy, and training company based in Bangalore. He has 16 years of experience in the
IT industry, and his latest book, Refactoring for Software Design Smells by Morgan
Kaufmann/Elsevier, has been translated into Korean and Chinese. Ganesh loves exploring
anything and everything about technology in his free time.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

see more please visit: https://homeofbook.com

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with Kotlin 6
Basic language syntax and features 6

Multi-paradigm 7
Code structure 7

No semicolons 7
Naming conventions 8
Packages 8

Types 8
Type inference 8
val versus var 9
Comparison 9
Null safety 10

Declaring functions 11
Control flow 12

Using the if expression 13
Using the when expression 14

String interpolation 14
Classes and inheritance 15

Classes 15
Inheritance 16
Constructors 17

Properties 18
Data classes 19
More control flow – loops 20

The for loop 20
For-each loop 21
While loop 22

Extension functions 22
Introduction to design patterns 23

What are design patterns? 23
Design patterns in real life 24
Design process 24

Why use design patterns in Kotlin? 25
Summary 25

Chapter 2: Working with Creational Patterns 26
Singleton 26
Factory Method 28

Factory 28

see more please visit: https://homeofbook.com

Table of Contents

[ii]

Static Factory Method 33
Advantages of the Static Factory Method 33

Caching 33
Subclassing 33

Static Factory Method in Kotlin 34
Companion object 34

Abstract Factory 36
Abstract Factory in action 36

Introduction to generics in Kotlin 37
Back to our bases 39
Making improvements 41

Builder 43
Composing an email 43

Collection types in Kotlin 44
Creating an email – first attempt 44
Creating an email – second attempt 45
Creating an email – the Kotlin way 46
Creating an email – the Kotlin way – second attempt 47

Prototype 48
Building your own PC 48

Starting from a prototype 49
Summary 50

Chapter 3: Understanding Structural Patterns 51
Decorator 51

Enhancing a class 52
Operator overloading 53

Dude, where's my map? 55
The great combinator 55

Caveats 57
Adapter 58

Different adapters 59
Adapters in the real world 60

Caveats of using adapters 60
Bridge 61

Bridging changes 63
Type aliases 64
You're in the army now 64
Constants 65
A lethal weapon 65

Composite 66
Get together 66
The Squad 67

Varargs and secondary constructors 68
Counting bullets 69

Facade 71
Keep it simple 72

see more please visit: https://homeofbook.com

Table of Contents

[iii]

Flyweight 73
Being conservative 73
Saving memory 75

Proxy 76
A short detour into the RMI world 77
A replacement 77

Lazy delegation 78
Summary 79

Chapter 4: Getting Familiar with Behavioral Patterns 80
Strategy 81

Fruit arsenal 82
Citizen function 83
Switching sides 84

Iterator 85
One, two... many 85
Running through the values 86

State 89
Fifty shades of State 90
State of the Nation 92

Command 93
Undoing commands 97

Chain of responsibility 98
Interpreter 100

We need to go deeper 101
A language of your own 101

Taking a break 105
Call suffix 105

Mediator 106
Trouble in the Jungle 106
The middleman 109

Flavors 110
Caveats 110

Memento 111
Remembrance 111

Visitor 114
Writing a crawler 114

Template method 117
Observer 120

Animal Choir 121
Summary 125

Chapter 5: Functional Programming 126
Why functional programming? 126
Immutability 127

see more please visit: https://homeofbook.com

Table of Contents

[iv]

Tuples 127
Value mutation 128
Immutable collections 129

Functions as values 130
Higher-order functions 130
Pure functions 131
Currying 132
Memoization 133

Expressions, not statements 134
Pattern matching 134

Recursion 135
Summary 136

Chapter 6: Streaming Your Data 137
The it notation 138
The map() function 139
Filter family 141
Find family 142
Drop family 143
Sort family 144
ForEach 144
Join family 145
Fold/Reduce 146
Flat family 147
Slice 149
Chunked 149
Zip/Unzip 150
Streams are lazy, collections are not 151
Sequences 152
Summary 153

Chapter 7: Staying Reactive 154
Reactive principles 154

Responsiveness 155
Resiliency 155
Elasticity 156
Message-driven 156

Reactive extension 157
Hot Observable 161
Multicast 163
Subject 165

ReplaySubject 166
BehaviorSubject 168
AsyncSubject 169

see more please visit: https://homeofbook.com

Table of Contents

[v]

SerializedSubject 169
Flowables 170

Holding state 175
FlowableProcessor 177
Batching 178
Throttling 180

Summary 182

Chapter 8: Threads and Coroutines 183
Threads 184

Thread safety 186
Threads are expensive 187

Coroutines 188
Starting coroutines 190
Jobs 192
Coroutine starvation 192
Coroutines under the hood 193
Fixing starvation 195
Waiting for a coroutine 197
Canceling a coroutine 198
Returning results 199
Setting timeouts 200
Parent jobs 201
Channels 202
Producers 204
Actors 207

Summary 209

Chapter 9: Designed for Concurrency 210
Active Object 211

Testing 211
Deferred value 212
Barrier 213

CountDownLatch 214
Data class as Barrier 215

Scheduler 216
Understanding contexts 218

Pipelines 219
Establishing a pipeline 221

The fan-out design pattern 223
The fan-in design pattern 224

Managing workers 225
Buffered channels 226
Unbiased select 227
Mutexes 229

see more please visit: https://homeofbook.com

Table of Contents

[vi]

Selecting on close 231
Sidekick channel 232
Deferred channel 234
Summary 236

Chapter 10: Idioms and Anti-Patterns 237
Let 238
Apply 238
Also 239
Run 240
With 241
Instance checks 241
Try-with-resources 242
Inline functions 243
Reified 245
Constants 247
Constructor overload 249
Dealing with nulls 249
Explicit async 251
Validation 251
Sealed, not enumerated 252
More companions 254
Scala functions 255
Summary 256

Chapter 11: Reactive Microservices with Kotlin 257
Getting started with Vert.x 258

Routing 260
Handling requests 262

Verticles 263
Subrouting 263

Testing 264
Helper methods 266

Working with databases 268
Managing configuration 268
Managing the database 271

EventBus 273
Consumer 273
Producer 275
More testing 276

Summary 277

Other Books You May Enjoy 278

see more please visit: https://homeofbook.com

Table of Contents

[vii]

Index 281

see more please visit: https://homeofbook.com

Preface
Design patterns enable you as a developer to speed up the development process by
providing tested, proven development paradigms. Reusing design patterns helps prevent
complex issues that can cause major problems and improves your code base, promotes
code reuse, and makes the architecture more robust.

The mission of this book is to ease the adoption of design patterns in Kotlin and provide
good practices for programmers.

The book begins by showing you the practical aspects of smarter coding in Kotlin,
explaining the basic Kotlin syntax and the impact of design patterns. Furthermore, the book
provides an in-depth explanation of the classic design patterns, such as Creational,
Structural, and Behavioral, before heading into functional programming. It then takes you
through Reactive and Concurrent patterns, teaching you about Streams, Threads, and
Coroutines to write better code. Toward the end, you will learn about the latest trends in
architecture, exploring the design patterns for microservices, and discuss the considerations
when choosing between different architectures, such as microservices and MVC.

By the end of the book, you will be able to efficiently address common problems faced
while developing applications and be comfortable working on scalable and maintainable
projects of any size.

Who this book is for
This book is for developers who would like to master design patterns with Kotlin in order
to build efficient and scalable applications. Basic Java or Kotlin programming knowledge is
assumed.

What this book covers
Chapter 1, Getting Started with Kotlin, covers basic language concepts and syntax, such as
types, functions, classes, and flow control structures.

Chapter 2, Working with Creational Patterns, explains what classical creational patterns are
embedded into the language and how to implement those that aren't. It discusses Singleton
and Factory, among others.

see more please visit: https://homeofbook.com

Preface

[2]

Chapter 3, Understanding Structural Patterns, focuses on how to extend the functionality of
our objects and adapt to changes.

Chapter 4, Getting Familiar with Behavioral Patterns, explains how can we alter object
behavior at runtime, iteration over complex data structures, and communication between
objects using the Observable design pattern.

Chapter 5, Functional Programming, dives into the principles of functional programming
and how they fit into Kotlin. Topics such as data immutability and functions as a first-class
value will be discussed in depth.

Chapter 6, Streaming Your Data, shows how applying the principles of functional
programming help us process potentially infinite streams of incoming data.

Chapter 7, Staying Reactive, explains what reactive principles are and gives extensive
examples based on the Reactive Extensions framework, better known as simply Rx.

Chapter 8, Threads and Coroutines, shows how easy it to work with concurrent code in
Kotlin, making use of its lightweight thread model.

Chapter 9, Designed for Concurrency, covers design patterns that help us process many tasks
at the same time, using coroutines.

Chapter 10, Idioms and Anti-Patterns, provides guidelines on some best practices and
pitfalls that you may encounter while developing in Kotlin.

Chapter 11, Reactive Microservices with Kotlin, goes over a detailed example of writing a
microservice using Kotlin, Vert.x, and PostgreSQL.

To get the most out of this book
In this book, we assume that the reader has basic knowledge of Java programming
language and what JVM is.

It is also assumed that the reader is comfortable working with the command line.

A few command-line examples we use in this book are based on OSX, but could be easily
adapted for Windows or Linux.

see more please visit: https://homeofbook.com

Preface

[3]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Hands- ​on- ​Design- ​Patterns- ​with- ​Kotlin. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Kotlin's extension is usually .kt."

see more please visit: https://homeofbook.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/Hands-on-Design-Patterns-with-Kotlin
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

A block of code is set as follows:

var s = "I'm a string"
s = 1 // s is a String

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

var s = "I'm a string"
s = 1 // s is a String

Any command-line input or output is written as follows:

I would suggest: a guitar

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"One of the most common tasks for Java developers is to create another Plain Old Java
Object (POJO)."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

see more please visit: https://homeofbook.com

http://www.packtpub.com/submit-errata

Preface

[5]

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

see more please visit: https://homeofbook.com

http://authors.packtpub.com/
https://www.packtpub.com/

1
Getting Started with Kotlin

In this chapter, we'll cover basic Kotlin syntax, and discuss what design patterns are good
for and why they should be used in Kotlin.

The goal of this chapter is not to cover the entire language vocabulary, but to get you
familiar with some basic concepts and idioms. The following chapters will slowly expose
you to more language features as they become relevant to the design patterns we'll discuss.

In this chapter, we will cover the following topics:

Basic language syntax and features
Introduction to design patterns

Basic language syntax and features
Whether you come from Java, C#, Scala or any other statically typed programming
language, you'll find Kotlin syntax quite familiar. This is not by coincidence, but to make
the transfer to this new language as smooth as possible for those with previous experience
in other languages. Besides that familiarity, Kotlin brings a vast amount of features, such as
better type safety. As we move ahead, you'll notice that all of them are attempting to solve
real-world problems. That pragmatic approach is very consistent across the language. For
example, one of the strongest sides of Kotlin is complete Java interoperability. You can have
Java and Kotlin classes alongside each other, and freely use any library that is available in
Java for a Kotlin project.

To summarize, the goals of language are as follows:

Pragmatism
Having clear syntax
Being type-safe
Interoperability

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[7]

The first chapter will discuss how these goals are achieved.

Multi-paradigm
Some of the major paradigms in programming languages are procedural, object-oriented,
and functional paradigms.

Being practical, Kotlin allows for any of these paradigms. It has classes and inheritance,
coming from the object-oriented approach. It has higher-order functions from functional
programming. But you don't have to wrap everything in classes if you don't want to. You
can structure your entire code as just a set of procedures and structs. You will see how all
these approaches come together, as different examples will use different paradigms to solve
the problems discussed.

Code structure
The first thing you'll need to do when you start programming in Kotlin is create a new file.
Kotlin's extension is usually .kt.

Unlike Java, there's no strong relationship between the filename and class name. You can
put as many public classes in your file as you want, as long as the classes are related to one
another and your file doesn't grow too long to read.

No semicolons
In Java, every line of code must be terminated with a semicolon:

System.out.println("Hello"); //<- This is a semicolon
System.out.println("World"); //<- I still see you, semicolon

But Kotlin is a pragmatic language. So, instead, it infers during compilation where it should
put the semicolons:

println("Hello") //<- No semicolon here
println("World") //<- Not here

Most of the time, you won't need to put semicolons in your code. They're considered
optional.

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[8]

Naming conventions
As a convention, if your file contains a single class, name your file the same as your class.

If your file contains more than one class, then the filename should describe the common
purpose of those classes. Use CamelCase when naming your files, as per the Kotlin Coding
Conventions: https:/ ​/ ​kotlinlang. ​org/ ​docs/​reference/ ​coding- ​conventions.
html#naming-​rules.

Actually, you don't have to write your code in a file for simple snippets.
You can also play with the language online: try http:/ ​/​kotlinlang. ​org/
 or use REPL and interactive shell after installing Kotlin and running
kotlinc.

Packages
It wouldn't be convenient to have all your classes and functions in the same folder or under
the same namespace. That's the reason Kotlin, similar to many other languages, uses the
notion of a package.

Like Java, Kotlin uses packages:

package me.soshin.controllers

If you're mixing Java and Kotlin, Kotlin files should follow Java package rules.

In purely Kotlin projects, common package prefixes can be omitted from the folder
structure. For example, if all your projects are under the me.soshin package, place your
controllers in the /controllers folder and not in the /me/soshin/controllers folder
like Java does.

Types
We'll start with the Kotlin type system, and compare it to what Java provides.

The Java examples are for familiarity, and not to prove that Kotlin is
superior to Java in any way.

see more please visit: https://homeofbook.com

https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
https://kotlinlang.org/docs/reference/coding-conventions.html#naming-rules
http://kotlinlang.org/
http://kotlinlang.org/
http://kotlinlang.org/
http://kotlinlang.org/
http://kotlinlang.org/
http://kotlinlang.org/
http://kotlinlang.org/

Getting Started with Kotlin Chapter 1

[9]

Type inference
Let's define a simple string in Java:

String s = "Hello World";

We defined that s is of type String. But why? Isn't it obvious at this point?

Kotlin provides us with type inference:

val s = "Hello World"

Now, the compiler will decide what type of variable should be used. Unlike interpreted
languages (such as JavaScript, Groovy, or Ruby), the type of variable is defined only once.
This will not work:

var s = "I'm a string"
s = 1 // s is a String

You may wonder why we've used one var and one val to define the variables. We'll
explain it shortly.

val versus var
In Java, variables can be declared final. Final variables can be assigned only once:

final String s = "Hi";
s = "Bye"; // Doesn't work

Kotlin urges you to use immutable data as much as possible. Final variables in Kotlin are
simply val:

val s = "Hi"
s = "Bye" // Doesn't work

If you do have a case in which you would like to reassign a variable, use var instead:

var s = "Hi"
s = "Bye" // Works now

Comparison
We were taught very early in Java that comparing objects using == won't produce the
expected results, since it tests for reference equality, and we need to use equals() for that.

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[10]

JVM does string interning to prevent that in some basic cases, so for the sake of the example
we'll use new String() to avoid that:

String s1 = "ABC";
String s2 = new String(s1);

System.out.println(s1 == s2); // false

Kotlin translates == to equals():

val s1 = "ABC"
val s2 = String(s1.toCharArray())

println(s1 == s2) // true

If you do want to check for reference equality, use ===:

println(s1 === s2) // false

Null safety
Probably the most notorious exception in the Java world is NullPointerException.

The reason behind this exception is that every object in Java can be null. The code here
shows us why:

String s = "Hello";
...
s = null;
System.out.println(s.length); // Causes NullPointerException

In this case, marking s as final would prevent the exception.

But what about this one:

public class Printer {
 public static void printLength(final String s) {
 System.out.println(s.length);
 }
}

From anywhere in the code it's still possible to pass null:

Printer.printLength(null); // Again, NullPointerException

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[11]

Since Java 8, there's been an optional construct:

if (optional.isPresent()) {
 System.out.println(optional.get());
}

In a more functional style:

optional.ifPresent(System.out::println);

But... it doesn't solve our problem. We can still pass null instead of the proper
Optional.empty() and crash the program.

Kotlin checks it even earlier—during compile time:

val s : String = null // Won't compile

Let's go back to our printLength() function:

fun printLength(s: String) {
 println(s.length)
}

Calling this function with null won't compile any more:

printLength(null) // Null can not be a value of a non-null type String

If you specifically want your type to be able to receive nulls, you'll need to mark it as
nullable using the question mark:

val notSoSafe : String? = null

Declaring functions
Everything is an object in Java. If you have a method that doesn't rely on any state, it still
must be wrapped by a class. You're probably familiar with a lot of Util classes in Java that
only have static methods, and their only purpose is to satisfy the language requirements
and bundle those methods together.

In Kotlin, a function can be declared outside of a class instead of the following code:

public class MyFirstClass {

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[12]

 public static void main(String[] args) {
 System.out.println("Hello world");
 }
}

It's enough to have:

fun main(args: Array<String>) {
 println("Hello, world!")
}

Functions declared outside of any class are already static.

Many examples in this book assume that the code we provide is wrapped
in the main function. If you don't see a signature of the function, it
probably should be:
fun main(args: Array<String>).

The keyword to declare a function is fun. The argument type comes after the argument
name, and not before. And if the function doesn't return anything, the return type can be
omitted completely.

What if you do want to declare the return type? Again, it will come after the function
declaration:

fun getGreeting(): String {
 return "Hello, world!"
}

fun main(args: Array<String>) {
 println(getGreeting())
}

There are lots of other topics regarding function declarations, such as default and named
arguments, default parameters, and variable numbers of arguments. We'll introduce them
in the following chapters, with relevant examples.

Control flow
One could say that control flow is the bread and butter of writing programs. We'll start
with two conditional expressions: if and when.

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[13]

Using the if expression
Previously it was noted that Kotin likes variables to be assigned only once. And it also
doesn't like nulls so much. You probably wondered how that would ever work out in the
real world. In Java, constructs such as this are quite common:

public String getUnixSocketPolling(boolean isBsd) {
 String value = null;
 if (isBsd) {
 value = "kqueue";
 }
 else {
 value = "epoll";
 }

 return value;
}

Of course, this is an oversimplified situation, but still, you have a variable that at some
point absolutely must be null, right?

In Java, if is just a statement and doesn't return anything. On the contrary, in Kotlin, if is
an expression, meaning it returns a value:

fun getUnixSocketPolling(isBsd : Boolean) : String {
 val value = if (isBsd) {
 "kqueue"
 } else {
 "epoll"
 }
 return value
}

If you are familiar with Java, you can easily read this code. This function receives a Boolean
(which cannot be null), and returns a string (and never a null). But since it is an expression,
it can return a result. And the result is assigned to our variable only once.

We can simplify it even further:

The return type could be inferred1.
The return as the last line can be omitted2.
A simple if expression can be written in one line3.

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[14]

So, our final result in Kotlin will look like this:

fun getUnixSocketPolling(isBsd : Boolean) = if (isBsd) "kqueue" else
"epoll"

Single line functions in Kotlin are very cool and pragmatic. But you should make sure that
somebody else other than you can understand what they do. Use with care.

Using the when expression
What if (no pun intended) we want to have more conditions in our if statement?

In Java, we use the switch statement. In Kotlin, there's a when expression, which is a lot
more powerful, since it can embed some other Kotlin features.

Let's create a method that's based on the amount of money that will give cause to suggest a
nice birthday gift:

fun suggestGift(amount : Int) : String {
 return when (amount) {
 in (0..10) -> "a book"
 in (10..100) -> "a guitar"
 else -> if (amount < 0) "no gift" else "anything!"
 }
}

As you can see, when also supports a range of values. The default case is covered by the
else block. In the following examples, we will elaborate on even more powerful ways to
use this expression.

As a general rule, use when if you have more than two conditions. Use if for simple
checks.

String interpolation
What if we would like to actually print those results?

First, as you may have already noticed, in one of the examples above, Kotlin provides a
nifty println() standard function that wraps the bulkier System.out.println() from
Java.

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[15]

But, more importantly, as in many other modern languages, Kotlin supports string
interpolation using the ${} syntax. Following on from the example before:

println("I would suggest: ${suggestGift(10)} ")

The preceding code would print:

I would suggest: a book

If you're interpolating a variable, and not a function, curly braces could be omitted:

val gift = suggestGift(100)
println("I would suggest: $gift ")

This would print the following output:

I would suggest: a guitar

Classes and inheritance
Although Kotlin is multi-paradigm, it has a strong affinity to the Java programming
language, which is based on classes. Keeping Java and JVM interoperability in mind, it's no
wonder that Kotlin also has the notion of classes and classical inheritance.

Classes
To declare a class, we use a class keyword, exactly like in Java:

class Player {
}

There's no new keyword in Kotlin. The instantiation of a class simply looks like this:

// Kotlin figured out you want to create a new player
val p = Player()

If the class has no body, as in this simple example, we can omit the curly brackets:

class Player // Totally fine

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[16]

Inheritance
Exactly like in Java, abstract classes are marked by abstract and interfaces by
the interface keyword:

abstract class AbstractDungeonMaster {
 abstract val gameName: String

 fun startGame() {
 println("Game $gameName has started!")
 }
}

interface Dragon

As in Java 8, interfaces in Kotlin can have a default implementation of functions, as long as
they don't rely on any state:

interface Greeter {
 fun sayHello() {
 println("Hello")
 }
}

There are no inherits and implements keywords in Kotlin. Instead, both the name of an
abstract class and all the names of the interfaces that class implements are put after a colon:

class DungeonMaster: Greeter, AbstractDungeonMaster() {
 override val gameName: String
 get() = "Dungeon of the Beholder"
}

We can still distinguish the abstract class by the parenthesis that comes after its name, and
there can still be only one abstract class, as there are no multiple inheritances in Kotlin.

Our DungeonMaster has access to both functions from Greeter and
AbstractDungeonMaster:

val p = DungeonMaster()
p.sayHello() // From Greeter interface
p.startGame() // From AbstractDungeonMaster abstract class

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[17]

Calling the preceding code, it will print the following output:

Hello
Game Dungeon of the Beholder has started!

Constructors
Our DungeonMaster looks a bit awkward now, since it can proclaim the start of only one
game. Let's add a non-empty constructor to our abstract class to fix that:

abstract class AbstractDungeonMaster(private val gameName : String) {
 fun startGame() {
 println("Game $gameName has started!")
 }
}

Now, our DungeonMaster must receive the name of the game and pass it to the abstract
class:

open class DungeonMaster(gameName: String):
 Greeter, AbstractDungeonMaster(gameName)

What if we wanted to extend DungeonMaster by having an EvilDungeonMaster?

In Java, all classes can be extended, unless they're marked final. In Kotlin, no class can be
extended, unless it's marked open. The same goes for functions in abstract classes. That's
the reason why we declared DungeonMaster as open in the first place.

We'll change AbstractDungeonMaster a bit again to give more power to the evil ruler:

open fun startGame() {
 // Everything else stays the same
}

Now, we add the following to our EvilDungeonMaster implementation:

class EvilDungeonMaster(private val awfulGame: String) :
DungeonMaster(awfulGame) {
 override fun sayHello() {
 println("Prepare to die! Muwahaha!!!")
 }

 override fun startGame() {
 println("$awfulGame will be your last!")
 }
}

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[18]

Whereas in Java, @Override is an optional annotation, in Kotlin it is a mandatory keyword.

You cannot hide supertype methods, and code that doesn't use override explicitly won't
compile.

Properties
In Java, we are used to the concept of getters and setters. A typical class may look
something like this:

public class Person {
 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 // More methods come here
}

If we want to get a person's name, we call getName(). If we want to change it, we call
setName(). That's quite simple.

If we want to set the name only once, during object instantiation, we can specify the non-
default constructor and remove the setter as follows:

public class ImmutablePerson {
 private String name;

 public ImmutablePerson(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }
}

All this dates back to the beginning of Java, somewhere around '95.

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[19]

But if you've worked with C#, for example, you're probably familiar with the idea of
properties. To understand them, let's go to the first example and change it a bit:

public class PublicPerson {
 public String name;
}

Reading a person's name is not much shorter: p.name.

Also, changing the name is much more intuitive: p.name = "Alex";.

But by doing so, we lost a lot of control over our object. We cannot make PublicPerson
immutable. If we want everybody to be able to read the person's name, they'll also be able
to change it at any point in time. And what if later we decide that all names must be
uppercase? With setter, we could do that. But not with the public field.

Properties provide a solution for all those problems:

class Person() {
 var name : String = ""
}

This may look the same as the Java example, with all its problems. But actually, behind the
scenes, it's compiled to a getter and setter pair, just like the first example.

And since properties in Kotlin are translated into getters and setters, we can also control
their behavior:

class Person {
 var name : String = ""
 set(value) {
 field = value.toUpperCase()
 }
}

Note that we don't need to check that value is null. The String type simply cannot receive
nulls.

Coming from Java, it may seem intuitive to use the following assignment: this.name =
value.toUpperCase(). But, in Kotlin, this will create a circular dependency. Instead,
there's a field identifier that we're using, which is provided automatically.

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[20]

Data classes
Remember how Kotlin is all about productiveness? One of the most common tasks for Java
developers is to create another Plain Old Java Object (POJO). If you're not familiar with
POJO, it is basically an object that only has getters, setters, and an implementation of
equals or hashCode methods.

This task is so common that Kotlin has it built into the language:

data class User (val username : String, val password : String)

This will generate a class with two getters and no setters (note the val part), which will also
implement equals, hashCode, and clone functions in the correct way.

The introduction of data classes is one of the biggest improvements in reducing the amount
of boilerplate in the language.

More control flow – loops
Now let's discuss another common control structure—a loop. Loops are a very natural
construct for most developers. Without loops, it would be very hard to repeat the same
block of code more than once (although we will discuss how to do that without loops in
later chapters).

The for loop
The for loop in Java, which prints each character of a string on a new line, may look
something like this:

final String word = "Word";
for (int i = 0; i < word.length; i++) {
}

The same loop in Kotlin is:

val word = "Word";
for (i in 0..(word.length-1)) {
 println(word[i])
}

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[21]

Note that while the usual for loop in Java is exclusive (it excludes the last index by
definition, unless specified otherwise), the for loop over ranges in Kotlin is inclusive.
That's the reason we have to subtract one from the length to prevent overflow (string index
out of range): (word.length-1).

If you want to avoid that, you can use the until function:

val word = "Word";
for (i in 0 until word.length) {
 println(word[i])
}

Unlike some other languages, reversing the range indexes won't work:

val word = "Word";
for (i in (word.length-1)..0) {
 println(word[i])
} // Doesn't print anything

If your intention is to print the word in reverse order, for example, use the downTo
function:

val word = "Word";
for (i in (word.length-1) downTo 0) {
 println(word[i])
}

It will print the following output:

d
r
o
W

It may seem confusing that until and downTo are called functions, although they look
more like operators. This is another interesting Kotlin feature called infix call, which will
be discussed later on.

For-each loop
Of course, if you're a bit familiar with Java, you may argue that the previous code could be
improved by using a for-each construct instead:

final String word = "Word";

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[22]

for (Character c : word.toCharArray()) {
 System.out.println(c);
}

The same in Kotlin would be:

val word = "Word"

for (c in word) {
 println(c)
}

While loop
There are no changes to the while loop functionality, so we'll cover them very briefly:

var x = 0
while (x < 10) {
 x++
 println(x)
}

This will print numbers from 1 to 10. Note that we are forced to define x as var. In the
following chapters, we'll discuss much more idiomatic ways to do this.

The lesser used do while loop is also present in the language:

var x = 5
 do {
 println(x)
 x--
} while (x > 0)

Extension functions
You may have noticed from the previous examples that String in Kotlin has some
methods that its Java counterpart is lacking, such as reversed(). How is that achieved, if
it's the same String type as in Java and, as we know, String in Java cannot be extended
by any other class, since it's declared final?

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[23]

If you look at the source code, you'll find the following:

public inline fun String.reversed(): String {
 return (this as CharSequence).reversed().toString()
}

This feature is called an extension function, and it also exists in some other languages, such
as C# or Groovy.

To extend a class without inheriting from it, we prefix the function name, reversed in our
example, with a class name we want to extend.

Do note that the extension function cannot override the member function.
The inline keyword will be discussed in later chapters.

Introduction to design patterns
Now that we are a bit familiar with basic Kotlin syntax, we can move on to discuss what
design patterns are all about.

What are design patterns?
There are different misconceptions surrounding design patterns. In general, they are as
follows:

Missing language features
Not necessary in dynamic language
Relevant only to object-oriented languages
Relevant only to enterprises

But actually, design patterns are just a proven way to solve a common problem. As a
concept, they are not limited to a specific programming language (Java), nor to a family of
languages (C-family, for example), nor are they limited to programming in general. You
may have even heard of design patterns in software architecture, which discuss how
different systems can efficiently communicate with each other. There are service-oriented
architectural patterns, which you may know as Service-Oriented Architecture (SOA), and
microservice design patterns that evolved from SOA and emerged over the past few years.
The future will, for sure, bring us even more design pattern families.

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[24]

Even in the physical world, outside software development, we're surrounded by design
patterns and commonly accepted solutions to a certain problem. Let's look at an example.

Design patterns in real life
Did you ride an elevator lately? Was there a mirror on the wall of the elevator? Why is that?

How did you feel when you last rode an elevator that had no mirror and no glass walls?

The main reason we commonly have mirrors in our elevators is to solve a common
problem. Riding in an elevator is boring. We could put in a picture. But a picture would
also get boring after a while, if you rode the same elevator at least twice a day. Cheap, but
not much of an improvement.

We could put in a TV screen, as some do. But it makes the elevator more expensive. And it
also requires a lot of maintenance. We need to put some content on the screen, to make it
not too repetitive. So either there's a person whose responsibility is to renew the content
once in a while, or a third-party company that does it for us. We'll also have to handle
different problems that may occur with screen hardware and the software behind it. Seeing
the "Blue Screen of Death" is amusing, of course, but only mildly.

Some architects even go for putting elevator shafts on the building exterior, and making
part of the walls transparent. This may provide some exciting views. But this solution also
requires maintenance (dirty windows don't make for the best view), and a lot of
architectural planning.

So, we put in a mirror. You get to watch an attractive person even if you ride alone. Some
studies indicate that we find ourselves more attractive than we are, anyway. Maybe you get
a chance to review your appearances one last time before that important meeting. Mirrors
visually expand the visual space and make the entire trip less claustrophobic, or less
awkward, if it's the start of a day and the elevator is really crowded.

Design process
Let's try and understand what we did just now.

We didn't invent mirrors in elevators. We've seen them thousands of times. But we
formalized the problem (riding in an elevator is boring) and discussed alternative solutions
(TV screens, glass walls) and the benefits of the commonly used solution (solves the
problem, easy to implement). That's what design patterns are all about.

see more please visit: https://homeofbook.com

Getting Started with Kotlin Chapter 1

[25]

The basic steps of the design process are:

Define exactly what the current problem is.1.
Consider different alternatives, based on the pros and cons.2.
Choose the solution that solves the problem, while best fitting your specific3.
constraints.

Why use design patterns in Kotlin?
Kotlin comes to solve the real-world problems of today. In the following chapters, we will
discuss both Design Patterns first introduced by the Gang of Four back in '94, as well as
design patterns that emerged from the functional programming paradigm.

You'll find that some of the design patterns are so common or useful that they're already
built into the language as reserved keywords or standard functions. Some of them will need
to combine a set of language features. And some are not so useful any more, since the
world has moved forward, and they're being replaced by some other patterns.

But in any case, familiarity with design patterns and best practices expands your
"developer toolbox" and creates shared vocabulary between you and your colleagues.

Summary
So, in this chapter, we covered the main goals of the Kotlin programming language.

We went through the variables that are defined, such as val, var, null safety, and type
inference. We observed how program flow is controlled by commands such as if, when,
for, and while, and we also took a look at the different keywords used to define classes
and interfaces: class, interface, data, and abstract class. We learned how to construct
new classes and how we inherit from interfaces and implement classes. And finally, we
learned what design patterns are good for, and why we need them in Kotlin.

In the next chapter, we'll start discussing the first of the three design pattern families:
creation patterns.

see more please visit: https://homeofbook.com

2
Working with Creational

Patterns
In this chapter, we'll cover how classical creational patterns are implemented in Kotlin.
These patterns deal with how and when you create your objects. Mastering these patterns
will allow you to manage your objects better, adapt well to changes, and write code that is
easy to maintain.

In this chapter, we will cover the following topics:

Singleton
Factory Method
Abstract Factory
Builder
Prototype

Singleton
This is the most popular single guy in the neighborhood. Everybody knows him,
everybody talks about him, and anybody can find him easily.

Even people who will frown when other design patterns are mentioned will know it by
name. At some point, it was even proclaimed an anti-pattern, but only because of its wide
popularity. So, for those who are hearing about it for the first time, what is this pattern
about?

Usually, if you have an object, you can create as many of its instances as you want. Say, for
example, you have the Cat class:

class Cat

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[27]

You can produce as many of its instances (cats, to be precise), as you want:

val firstCat = Cat()
val secondCat = Cat()
val yetAnotherCat = Cat()

And there's no problem with that.

What if we wanted to disallow such behavior? Clearly, we have to create an object in some
way for the first time. But from the second time on, we need to recognize that this object
was initialized once already, and returns its instance instead. That's the main idea behind
being a Singleton.

In Java and some other languages, this task is quite complex. It's not enough to simply
make the constructor private and remember that the object was initialized at least once
already. We also need to prevent race conditions, where two separate threads try to
initialize it exactly at the same time. If we allowed that, it would break the entire concept of
a Singleton, as two threads would hold references to two instances of the same object.

Solving this problem in Java requires doing one of the following:

Accepting that a Singleton will initialize eagerly when your application starts,
and not when it is first accessed
Writing some smart code to prevent such race conditions and still stay
performant
Using a framework that already solves it

Kotlin just introduces a reserved keyword for that. Behold, an object as follows:

object MySingelton{}

You don't need curly brackets there. They're just for visual consistency.

This combines declaration and initialization in one keyword. From now on, MySingleton
can be accessed from anywhere in your code, and there'll be exactly one instance of it.

Of course, this object doesn't do anything interesting. Let's make it count the number of
invocations instead:

object CounterSingleton {
 private val counter = AtomicInteger(0)

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[28]

 fun increment() = counter.incrementAndGet()
}

We won't test it for thread safety yet this is a topic that will be covered in Chapter 8,
Threads and Coroutines, which deals with threads. For now, we test it only to see how we call
our Singleton:

for (i in 1..10) {
 println(CounterSingleton.increment())
}

This will print numbers between 1 and 10, as expected. As you can see, we don't need
the getInstance() method at all.

The object keyword is used for more than just creating Singletons. We'll
discuss it in depth later.

Objects can't have constructors. If you want some kind of initialization logic for your
Singleton, such as loading data from the database or over the network for the first time, you
can use the init block instead:

object CounterSingleton {

 init {
 println("I was accessed for the first time")
 }
 // More code goes here
}

It is also demonstrated that Singletons in Kotlin are initialized lazily, and not eagerly, as
some could suspect from the ease of their declaration. Just like regular classes, objects can
extend other classes and implement interfaces. We'll come back to this in Chapter 10,
Idioms and Anti-Patterns.

Factory Method
The Factory Method is all about creating objects. But why do we need a method to create
objects? Isn't it what constructors are all about?

Well, constructors have their inherent limitations, which we're about to discuss.

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[29]

Factory
We'll start with the Factory Method formalized in the book Design Patterns by Gang of Four.

This is one of the first patterns I teach my students. They're usually very anxious about the
whole concept of design patterns, since it has an aura of mystery and complexity. So, what
I do is ask them the following question.

Assume you have some class declaration, for example:

class Cat {
 val name = "Cat"
}

Could you write a function that returns a new instance of the class? Most of them would
succeed:

fun catFactory() : Cat {
 return Cat()
}

Check that everything works:

val c = catFactory()
println(c.name) // Indeed prints "Cat"

Well, that's really simple, right?

Now, based on the argument we provide it, can this method create one of two objects?

Let's say we now have a Dog:

class Dog {
 val name = "Dog"
}

Choosing between two types of objects to instantiate would require only passing an
argument:

fun animalFactory(animalType: String) : Cat {
 return Cat()
}

Of course, we can't always return a Cat now. So we create a common interface to be
returned:

interface Animal {

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[30]

 val name : String
}

What's left is to use the when expression to return an instance of the correct class:

return when(animalType.toLowerCase()) {
 "cat" -> Cat()
 "dog" -> Dog()
 else -> throw RuntimeException("Unknown animal $animalType")
}

That's what Factory Method is all about:

Get some value.
Return one of the objects that implement the common interface.

This pattern is very useful when creating objects from a configuration. Imagine we have a
text file with the following contents that came from a veterinary clinic:

dog, dog, cat, dog, cat, cat

Now we would like to create an empty profile for each animal. Assuming we've already
read the file contents and split them into a list, we can do the following:

val animalTypes = listOf("dog", "dog", "cat", "dog", "cat", "cat")
for (t in animalTypes) {
 val c = animalFactory(t)
 println(c.name)
}

listOf is a function that comes from the Kotlin standard library that
creates an immutable list of provided objects.

If your Factory Method doesn't need to have a state, we can leave it as a function.
But what if we want to assign a unique sequential identifier for each animal? Take a look at
the following code block:

interface Animal {
 val id : Int
 // Same as before
}

class Cat(override val id: Int) : Animal {
 // Same as before
}

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[31]

class Dog(override val id: Int) : Animal {
 // Same as before
}

Note that we can override values inside the constructor.

Our factory becomes a proper class now:

class AnimalFactory {
 var counter = 0
 fun createAnimal(animalType: String) : Animal {
 return when(animalType.trim().toLowerCase()) {
 "cat" -> Cat(++counter)
 "dog" -> Dog(++counter)
 else -> throw RuntimeException("Unknown animal $animalType")
 }
 }
}

So we'll have to initialize it:

val factory = AnimalFactory()
for (t in animalTypes) {
 val c = factory.createAnimal(t)
 println("${c.id} - ${c.name}")
}

Output for the preceding code is as follows:

1 - Dog
2 - Dog
3 - Cat
4 - Dog
5 - Cat
6 - Cat

This was a pretty straightforward example. We provided a common interface for our
objects (Animal, in this case), then based on some arguments, we decided which concrete
class to instantiate.

What if we decided to support different breeds? Take a look at the following code:

val animalTypes = listOf("dog" to "bulldog",
 "dog" to "beagle",
 "cat" to "persian",
 "dog" to "poodle",
 "cat" to "russian blue",
 "cat" to "siamese")

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[32]

Much like the downTo function we saw in Chapter 1, Getting Started with
Kotlin, it looks like an operator, but it's a function that creates a pair of
objects: (cat, siamese, in our case). We'll come back to it when we
discuss the infix function in depth.

We can delegate the actual object instantiation to other factories:
class AnimalFactory {
 var counter = 0
 private val dogFactory = DogFactory()
 private val catFactory = CatFactory()

 fun createAnimal(animalType: String, animalBreed: String) : Animal {
 return when(animalType.trim().toLowerCase()) {
 "cat" -> catFactory.createDog(animalBreed, ++counter)
 "dog" -> dogFactory.createDog(animalBreed, ++counter)
 else -> throw RuntimeException("Unknown animal $animalType")
 }
 }
}

The factory repeats the same pattern again:

class DogFactory {
 fun createDog(breed: String, id: Int) =
when(breed.trim().toLowerCase()) {
 "beagle" -> Beagle(id)
 "bulldog" -> Bulldog(id)
 else -> throw RuntimeException("Unknown dog breed $breed")
 }
}

You can make sure that you understand this example by implementing Beagle, Bulldog,
CatFactory, and all the different breeds of cats by yourself.

The last point to note is how we're now calling our AnimalFactory with a pair of
arguments:

for ((type, breed) in animalTypes) {
 val c = factory.createAnimal(type, breed)
 println(c.name)
}

This is called a destructuring declaration, and is useful especially when dealing with such
pairs of data.

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[33]

Static Factory Method
The Static Factory Method was popularized by Joshua Bloch in his book Effective Java. To
understand it better, let's look at the examples from Java standard library itself,
the valueOf() methods:

Long l1 = new Long("1");
Long l2 = Long.valueOf("1");

Both the constructor and the valueOf() method receive String as input and produce
Long as output.

So, why is the Static Factory Method sometimes better than a constructor?

Advantages of the Static Factory Method
Here are some of the advantages of a Static Factory Method over constructors:

It provides a better name for the constructor, what it expects, and, sometimes,
what it produces.
We usually don't expect exceptions from a constructor. Exceptions from a regular
method, on the other hand, are totally valid.
Speaking of expectations, we expect the constructor to be fast.

But those are more psychological advantages. There are also some technological advantages
to this approach.

Caching
The Static Factory Method may provide caching, as Long actually does. Instead of always
returning a new instance for any value, valueOf() checks in-cache whether this value was
already parsed. If it is, it returns a cached instance. Repeatedly calling the Static Factory
Method with the same values may produce less garbage for collection than using
constructors all the time.

Subclassing
When calling the constructor, we always instantiate the class we specify. On the other hand,
calling a Static Factory Method may produce either instance of the class, or one of its
subclasses. We'll come to this after discussing the implementation of this design pattern in
Kotlin.

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[34]

Static Factory Method in Kotlin
We've already discussed the object keyword earlier in the Singleton section. Now we'll see
another use of it is a companion object.

In Java, Static Factory Methods are declared static. But in Kotlin, there's no such
keyword. Instead, methods that don't belong to an instance of a class can be declared inside
a companion object:

class NumberMaster {
 companion object {
 fun valueOf(hopefullyNumber: String) : Long {
 return hopefullyNumber.toLong()
 }
 }
}

Companion objects may have a name: companion object Parser, for
example. But this is only for clarity of what the goal of this object is.

Calling a companion object doesn't require instantiating a class:

println(NumberMaster.valueOf("123")) // Prints 123

Moreover, calling it on an instance of a class simply won't work, unlike Java:

println(NumberMaster().valueOf("123")) // Won't compile

The class may have only one companion object.

Companion object
In Java, Static Factory Methods are declared like this:

private static class MyClass {
 // Don't want anybody to use it but me
 private MyClass() {
 }
 // This will replace the public constructor
 public static MyClass create() {
 return new MyClass();

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[35]

 }
}

They are called like this:

MyClass myClass = MyClass.create();

But in Kotlin, there's no such keyword as Static. Instead, methods that don't belong to an
instance of a class can be declared inside a companion object.

We discussed the object keyword earlier, in the section Singletons. Now, we'll look at
another use of this important keyword using the following example:

 class NumberMaster {
 companion object {
 fun valueOf(hopefullyNumber: String) : Long {
 return hopefullyNumber.toLong()
 }
 }
 }

As you can see, inside our class, we have declared an object that is prefixed by the
keyword companion.

This object has its own set of functions. What's the benefit of this? You may wonder.

Just like a Java Static method, calling a companion object doesn't require the instantiation
of a class:

println(NumberMaster.valueOf("123")) // Prints 123

Moreover, calling it on an instance of a class simply won't work, which is not the case with
Java:

println(NumberMaster().valueOf("123")) // Won't compile

A companion object may have a name-Parser, for example. But this is
only for clarity of what the goal of this object is.
The class may have only one companion object.

By using a companion object, we can achieve exactly the same behavior that we see in Java:

private class MyClass private constructor() {

 companion object {
 fun create(): MyClass {

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[36]

 return MyClass()
 }
 }
}

We can now instantiate our object, as shown in the following code:

// This won't compile
//val instance = MyClass()

// But this works as it should
val instance = MyClass.create()

Kotlin proves itself a very practical language. Every keyword in it has a down-to-earth
meaning.

Abstract Factory
Abstract Factory is a greatly misunderstood pattern. It has a notorious reputation for being
very complex and bizarre but actually, it's quite simple. If you understood the Factory
Method, you'll understand this one in no time. This is because Abstract Factory is a factory
of factories. That's all there is to it, really. The factory is a function or class that's able to
create other classes. Abstract Factory is a class that creates factories.

You may understand that and still wonder what the usages of such a pattern may be. The
main usage of Abstract Factory in the real world would probably be frameworks, most
notably Spring Framework, which uses the notion of Abstract Factory to create its
components out of annotations and XML files. But since creating our own framework may
be quite tiresome, let's take another example where this pattern will be very useful—a
strategy game.

We'll call it CatsCraft 2: Revenge of the Dogs.

Abstract Factory in action
Our strategy game will consist of buildings and units. Let's start with declaring what all
buildings share:

interface Building<in UnitType, out ProducedUnit>
 where UnitType : Enum<*>, ProducedUnit : Unit {
 fun build(type: UnitType) : ProducedUnit
}

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[37]

All buildings should implement the build() function. Here we see generics in Kotlin for
the first time, so let's discuss them a bit.

Introduction to generics in Kotlin
Generics are a way to specify the relationships between types. Well, that didn't help explain
much, did it? Let's try again. Generics are an abstraction of types. Nope, still awful.

We'll try an example, then:

 val listOfStrings = mutableListOf("a", "b", "c")

Ok, that's easy; we've covered it a lot of times. This code simply creates a list of strings. But
what does it actually mean?

Let's try the following line of code:

listOfStrings.add(1)

This line doesn't compile. That's because the mutableListOf() function uses generics:

public fun <T> mutableListOf(vararg elements: T): MutableList<T>

Generics create an expectation. No matter which type we use to create our list, from now on
we can only put that type in it. It's a great language feature because, on the one hand, we
can generalize our data structures or algorithms. No matter what types they hold, they'll
still work in exactly the same way.

On the other hand, we still have type safety. The listOfStrings. first() function is
guaranteed to return a String (in this case) and nothing else.

In terms of generics, Kotlin uses an approach that is similar to, but slightly different from,
Java. We won't cover all the aspects of generics in this section, but will only provide some
guidance to better understand this example. As we go on, we'll encounter more uses of
generics.

Let's look at another example.

We'll create a class called Box. Boring, I know:

class Box<T> {
 private var inside: T? = null

 fun put(t: T) {

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[38]

 inside = t
 }
 fun get(): T? = inside
}

What's great about this box, though, is that by using generics, I can put just about anything
in it, for example, a cat:

class Cat

When I create an instance of a box, I specify what it can hold:

val box = Box<Cat>()

At compile time, the generics will make sure that it will only hold objects of the correct
type:

box.put(Cat()) // This will work
val cat = box.get() // This will always return a Cat, because that's what
our box holds
box.put("Cat") // This won't work, String is not a Cat

As you may know, Java uses the wildcards ? extends, and super keywords to specify read-
only and write-only types.

Kotlin uses the concepts of in, out, and where.

A type that is marked as in can be used as a parameter but not as a return value. This is
also called covariance. In fact, it means that we can return ProducedUnit or something
that inherits from it, but not something that is above ProducedUnit in the hierarchy.

Types that are marked as out can be used only as a return value, not as a parameter. This is
called contravariance.

Furthermore, we may introduce constraints on types using the where keyword. In our case,
we require that the first type implements the Type interface, while the second type
implements the Unit interface.

The names of the types themselves, UnitType and ProducedUnit, could be anything we
want, T and P, for example. But for the sake of clarity, we'll use more verbose names.

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[39]

Back to our bases
HQ is a special building that can produce other buildings. It keeps track of all the buildings
it had built up until now. The same type of building can be built more than once:

class HQ {
 val buildings = mutableListOf<Building<*, Unit>>()

 fun buildBarracks(): Barracks {
 val b = Barracks()
 buildings.add(b)
 return b
 }

 fun buildVehicleFactory(): VehicleFactory {
 val vf = VehicleFactory()
 buildings.add(vf)
 return vf
 }
}

You may be wondering what the star (*) means as regards generics. It's
called a star projection, and it means I don't know anything about this type.
It's similar to Java's raw types, but it's type safe.

All other buildings produce units. Units can be either infantry or armored vehicle:

interface Unit

interface Vehicle : Unit

interface Infantry : Unit

Infantry can be either riflemen or rocket soldier:

class Rifleman : Infantry

class RocketSoldier : Infantry

enum class InfantryUnits {
 RIFLEMEN,
 ROCKET_SOLDIER
}

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[40]

Here we see the enum keyword for the first time. Vehicles are either tanks or
armored personnel carriers (APCs):

class APC : Vehicle

class Tank : Vehicle

enum class VehicleUnits {
 APC,
 TANK
}

A barracks is a building that produces infantry:

class Barracks : Building<InfantryUnits, Infantry> {
 override fun build(type: InfantryUnits): Infantry {
 return when (type) {
 RIFLEMEN -> Rifleman()
 ROCKET_SOLDIER -> RocketSoldier()
 }
 }
}

We don't need the else block in our when. That's because we use enum,
and Kotlin makes sure that when on enum is exhaustive.

A vehicle factory is a building that produces different types of armored vehicles:

class VehicleFactory : Building<VehicleUnits, Vehicle> {
 override fun build(type: VehicleUnits) = when (type) {
 APC -> APC()
 TANK -> Tank()
 }
}

We can make sure that we can build different units now:

val hq = HQ()
val barracks1 = hq.buildBarracks()
val barracks2 = hq.buildBarracks()
val vehicleFactory1 = hq.buildVehicleFactory()

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[41]

And now on to producing units:

val units = listOf(
 barracks1.build(InfantryUnits.RIFLEMEN),
 barracks2.build(InfantryUnits.ROCKET_SOLDIER),
 barracks2.build(InfantryUnits.ROCKET_SOLDIER),
 vehicleFactory1.build(VehicleUnits.TANK),
 vehicleFactory1.build(VehicleUnits.APC),
 vehicleFactory1.build(VehicleUnits.APC)
)

We've already seen the listOf() function from the standard library. It will create a read-
only list of different units that our buildings produce. You can iterate over this list and
make sure that those are indeed the units we require.

Making improvements
One may claim that having the VehicleFactory and Barracks classes is too
cumbersome. They don't have any state, after all. Instead, we can replace them with objects.

Instead of the previous implementation of buildBarracks(), we can have the following:

fun buildBarracks(): Building<InfantryUnits, Infantry> {
 val b = object : Building<InfantryUnits, Infantry> {
 override fun build(type: InfantryUnits): Infantry {
 return when (type) {
 InfantryUnits.RIFLEMEN -> Rifleman()
 InfantryUnits.ROCKET_SOLDIER -> RocketSoldier()
 }
 }
 }
 buildings.add(b)
 return b
}

We've already seen two different usages of the object keyword: once in the Singleton
design pattern, and another time in the Factory Method design pattern. Here is the third
way we can use it: for creating anonymous classes on the fly. After all, Barracks is a
building that, given InfantryUnitType, produces Infantry.

If our logic is straightforward, we can even shorten the declaration a bit more:

fun buildVehicleFactory(): Building<VehicleUnits, Vehicle> {
 val vf = object : Building<VehicleUnits, Vehicle> {
 override fun build(type: VehicleUnits) = when (type) {

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[42]

 VehicleUnits.APC -> APC()
 VehicleUnits.TANK -> Tank()
 }
 }
 buildings.add(vf)

 return vf
}

Let's go to the beginning of this chapter. We said that Abstract Factory combines a number
of related factories. So, what's common to all factories in our case? They're all buildings and
they all produce units.

Having that principle in mind, you could apply it to many different cases. If you're familiar
with strategy games, usually they have at least two different factions. Each may have
different structures and units. To achieve that, you can repeat this pattern as many times as
needed.

Let's assume we have two different factions now, cats and dogs, and Tanks and Rocket
Infantry are only prerogatives of this faction. Dogs have Heavy Tanks and Grenadiers
instead. What changes do we need to make in our system?

First, HQ becomes an interface:

interface HQ {
 fun buildBarracks(): Building<InfantryUnits, Infantry>
 fun buildVehicleFactory(): Building<VehicleUnits, Vehicle>
}

What was HQ previously now becomes CatHQ:

class CatHQ : HQ {
// Remember to add override to your methods
}

And DogHQ will have to repeat the same steps, but with a different construction logic.

This ability to accommodate big changes is what makes Abstract Factory so powerful in
some use cases.

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[43]

Builder
Sometimes, our objects are very simple, and have only one constructor, be it an empty or
non-empty one. But sometimes, their creation is very complex, and based on a lot of
parameters. We've seen one pattern already that provides a better constructor—the Static
Factory Method design pattern. Now, we'll discuss Builder design pattern, which is
somewhat similar and somewhat different.

Composing an email
As a software architect, one of my main channels of communication is email. Probably this
is true of most software development roles.

An email has the following:

An address (at least one is mandatory)
CC (zero or more, optional)
Title (optional)
Body (optional)
Attachment (zero or more, optional)

Let's assume I'm really lazy, and would like to schedule emails to be sent while I'm actually
biking around the neighborhood.

The actual scheduling logic will be postponed to Chapter 8, Threads and Coroutines, and
Chapter 9, Designed for Concurrency, which discuss scheduling and concurrency. For now,
let's see what our Mail class may look like:

data class Mail(val to: String,
 val cc: List<String>,
 val bcc: List<String>,
 val title: String?,
 val message: String)

So, we've already seen data class in action in the previous chapters. We've also
discussed nullable and non-nullable types, such as String? versus String.

Now is a good time to discuss how collections work in Kotlin, since this is the first time we
have a class that deals with them directly.

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[44]

Collection types in Kotlin
One of the main Kotlin goals is Java interoperability. So it's no wonder that Kotlin
collections are interoperable with Java. When you specify that your functions receives
List<T>, it is actually the same Java List<T> you're familiar with.

But Kotlin differentiates between mutable and immutable collections.
The listOf() function is delegated to Arrays.asList(), and produces an immutable
list, while mutableListOf() simply calls ArrayList().

On top of data, Kotlin collection has many useful extension methods, which we'll discuss
later.

Creating an email – first attempt
So, at 10 A.M., I plan to drink a coffee in my local cafe. But I also want to contact my
manager, since my payslip didn't arrive yesterday. I attempt to create my first email like so:

val mail = Mail("manager@company.com", // TO
 null, // CC
 null, // BCC
 "Ping", // Title
 null // Message)

This may have worked in Java, but in Kotlin this wouldn't compile, since we cannot pass
null to List<String>. Null-safety is very important in Kotlin:

val mail = Mail("manager@company.com", // TO
 listOf(), // CC
 listOf(), // BCC
 "Ping", // Title
 null // Message)

Note that since our constructor receives a lot of arguments, I had to put in some comments,
so I wouldn't get lost.

The Kotlin compiler is smart enough to infer the type of list that we pass.
Since our constructor receives List<String>, it's enough to pass
listOf() for an empty list. We don't need to specify the type like so:
listOf<String>(). In Java, Diamond Operator serves the same
purpose.

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[45]

Oh, but I forgot about attachments. Let's change our constructor:

data class Mail(val to: String,
 val cc: List<String>,
 val bcc: List<String>,
 val title: String?,
 val message: String?,
 val attachments: List<java.io.File>)

But then our instantiation stops compiling again:

val mail = Mail("manager@company.com", // TO
 listOf(), listOf(),
 "Ping",
 null) // Compilation error, No value passed for for parameter
'attachments'

This clearly becomes a mess.

Creating an email – second attempt
Let's try a fluent setter approach instead. We'll have only mandatory fields in our
constructor, and all others will become setters, so the creation of a new email would look
something like this:

Mail("manager@company.com").title("Ping").cc(listOf<String>())

That's a lot nicer for many reasons:

The order of fields can now be arbitrary, unlike with the constructor.
It's clearer which field is being set, no need for comments anymore.
Optional fields don't need to be set at all. As an example, the CC field is set,
while the BCC field is omitted.

Let's see one way of implementing this approach. There are other convenient ways to do it,
which we'll discuss in Chapter 10, Idioms and Anti-Patterns:

data class Mail(// Stays the same
 private var _message: String = "",
 // ...) {
 fun message(message: String) : Mail {
 _message = message
 return this
 }

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[46]

 // Pattern repeats for every other variable
}

Using underscores for private variables is a common convention in Kotlin.
It allows us to avoid repeating this.message = message and mistakes
such as message = message.

This is nice, and very similar to what we may achieve in Java. Although we did have to
make our message mutable now. But Kotlin provides two other ways that you may find
even more useful.

Creating an email – the Kotlin way
Like some other modern languages, Kotlin provides us with the ability to set default values
for function parameters:

data class Mail(val to: String,
 val title: String = "",
 val message: String = "",
 val cc: List<String> = listOf(),
 val bcc: List<String> = listOf(),
 val attachments: List<java.io.File> = listOf())

So, if you would like to send an email without CC, you can do it like that now:

val mail = Mail("one@recepient.org", "Hi", "How are you")

But what about the case where you want to send an email with BCC? Also, not having to
specify order with fluent setters was very handy. Kotlin has named arguments for that:

val mail = Mail(title= "Hello", message="There", to="my@dear.cat")

Combining default parameters with named arguments makes creating complex objects in
Kotlin a lot easier than before. There's another way to achieve somewhat similar behavior:
the apply() function. This is one of the extension functions that every object in Kotlin has.
In order to use this approach, though, we'll need to make all the optional fields variables
instead of values:

Then we can create our email like this:

val mail = Mail("hello@mail.com").apply {
 message = "Something"
 title = "Apply"
}

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[47]

The apply() function is the only one out of the family of scoping functions. We'll discuss
how scoping functions work and are their uses in later chapters. Now, while my boss
thinks I'm working hard sending all these emails, I can go back to my coffee. It's getting
cold now!

Creating an email – the Kotlin way – second attempt
Let's try a fluent setter approach, instead. We'll have only mandatory fields in our
constructor, and all of the others will become setters. So to create a new email, we no longer
need to do the following:

 val mail = Mail("manager@company.com")
 mail.title("Ping")
 mail.cc(listOf<String>())

Instead, we will do the following:

Mail("manager@company.com").title("Ping").cc(listOf<String>())

Fluent setters allow us to chain one set call to another.

That's a lot nicer for a couple of reasons:

The order of fields can now be arbitrary, unlike the order used with the
constructor.
It's clearer which field is being set; no more need for comments.
Optional fields don't need to be set at all. As an example, the CC field is set while
the BCC field is omitted.

Let's look at one way of implementing this approach. There are other convenient ways to
do this, which we'll discuss in Chapter 10, Idioms and Anti-Patterns:

 data class Mail(// Stays the same
 private var _message: String = "",
 // ...) {
 fun message(message: String) : Mail {
 _message = message
return this }
 // Pattern repeats for every other variable
 }

see more please visit: https://homeofbook.com

mailto:manager@company.com
mailto:manager@company.com

Working with Creational Patterns Chapter 2

[48]

Using underscores for private variables is a common convention in Kotlin. It allows us to
avoid repeating the phrase this.message = message and mistakes, such as message =
message.

This is nice and is very similar to what we may achieve in Java, although we did have to
make our message mutable.

We can also implement a full-blown builder design pattern, of course:

class MailBuilder(val to: String) {
 private var mail: Mail = Mail(to)
 fun title(title: String): MailBuilder {
 mail.title = title
 return this
 }
 // Repeated for other properties
 fun build(): Mail {
 return mail
 }
}

You can use it to create your email in the following way:

val email = MailBuilder("hello@hello.com").title("What's up?").build()

But Kotlin provides two other ways that you may find even more useful.

Prototype
This design pattern is all about customization and creating objects that are similar but
slightly different. To understand it better, we'll start with an example.

Building your own PC
Imagine that you have a shop where you sell PCs.

Regular PC consists of the foll:

Motherboard
CPU
Graphical card
RAM

see more please visit: https://homeofbook.com

mailto:hello@hello.com

Working with Creational Patterns Chapter 2

[49]

Most of your customers don't actually care what components you put in this PC. What they
do care about is whether this PC will be able to run Magnificent Pilfering Car 7 at 60fps
(which is frame per second).

So, you decide to build it like that:

data class PC(val motherboard: String = "Terasus XZ27",
 val cpu: String = "Until Atom K500",
 val ram: String = "8GB Microcend BBR5",
 val graphicCard: String = "nKCF 8100TZ")

So when a new customer comes in wanting to try out this game everybody is talking about
in the neighborhood, you just do:

val pc = PC()

And they are already off toward home, ready to share their newest experiences from MPC7.
Actually, your business goes so well that you have one PC just sitting there, ready for the
next customer to come in.

But then another customer arrives. And this one is tech savvy. So, frankly, they think that
for the games they play, a nKCF 8100TZ graphic card wouldn't be enough at all. They've also
read that there's now BBR6 RAM available and they want 16 GB of it. And of course, they
want it right away. But they're willing to pay in cash.

That's the moment you wish that you could just modify this PC that's sitting in your
warehouse a little, instead of assembling a new one.

Starting from a prototype
The whole idea of a prototype is to be able to clone an object easily. There are a number of
reasons you may want to do this:

Creating your object is very expensive. You need to fetch it from the database.
You create objects that are similar but different from one another, and you don't
want to repeat similar parts over and over again.

There are also more advanced reasons to use this pattern. JavaScript
language, for example, uses prototypes to implement inheritance-like
behavior without having classes.

see more please visit: https://homeofbook.com

Working with Creational Patterns Chapter 2

[50]

Luckily, Kotlin fixes the broken Java clone() method. For data classes, there's the copy()
method, which takes an existing data class, and creates a new copy of it, optionally
changing some of its attributes in the process:

val pcFromWarehouse = PC() // Our boring PC

val pwnerPC = pcFromWarehouse.copy(graphicCard = "nKCF 8999ZTXX",
 ram = "16GB BBR6") // Amazing PC

println(pwnerPC) // Make sure that PC created correctly

By default, the clone() method creates a shallow copy, which may be
unexpected for less experienced developers. It's very hard to implement
the clone() method correctly in Java. You can read about the various
pitfalls at https:/ ​/​dzone. ​com/​articles/ ​shallow- ​and-​deep- ​java-
cloning.

Similar to what we've seen in the Builder design pattern, named arguments allow us to
specify attributes that we can change in any order.

The only thing that's left is for you to count the cash and buy some more of those nKCF
graphic cards. Just in case.

Summary
In this chapter, we learned when and how to use design patterns from the Creational
family. We learned about different usages of the object keyword: as Singleton, as a
container for the Static Factory Methods, and as an anonymous implementation of an
interface. We then saw the workings of the destructuring declaration and generics in Kotlin
with the use of the in, out, and where keywords. We also learned about the default
parameter values and named arguments, followed by the copy() function for data classes.

In the next chapter, we'll cover the second family of design patterns, Structural patterns.
Those patterns help extend the functionality of our objects.

see more please visit: https://homeofbook.com

https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning
https://dzone.com/articles/shallow-and-deep-java-cloning

3
Understanding Structural

Patterns
This chapter covers structural patterns in Kotlin. In general, structural patterns deal with
relationships between objects.

We'll discuss how to extend the functionality of our objects without producing complex
class hierarchies and how to adapt to changes in the future or how to fix some of the
decisions taken in the past, as well as how to reduce the memory footprint of our program.

In this chapter, we will cover the following topics:

Decorator
Adapter
Bridge
Composite
Facade
Flyweight
Proxy

Decorator
In the previous chapter, we discussed the Prototype design pattern, which allowed for
creating instances of classes with slightly (or not so slightly) different data.

What if we would like to create a set of classes with slightly different behavior though?
Well, since functions in Kotlin are first-class citizens (more on that in a bit), you could use
the Prototype design pattern to achieve that. After all, that's what JavaScript does
successfully. But the goal of this chapter is to discuss another approach to the same
problem. After all, design patterns are all about approaches.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[52]

By implementing this design pattern, we allow the user of our code to specify which
abilities he or she wants to add.

Enhancing a class
Your boss—sorry, scrum master—came to you yesterday with an urgent requirement. From
now on, all map data structures in your system are to become HappyMaps.

What, you don't know what HappyMaps are? They are the hottest stuff going around right
now. They are just like the regular HashMap, but when you override an existing value, they
print the following output:

Yay! Very useful

So, what you do is type the following code in your editor:

class HappyMap<K, V>: HashMap<K, V>() {
 override fun put(key: K, value: V): V? {
 return super.put(key, value).apply {
 this?.let {
 println("Yay! $key")
 }
 }
 }
}

We've seen apply() already when we discussed the Builder design pattern in the previous
chapter and this?.let { ... } is a nicer way of saying if (this != null) { ...
}.

We can test our solution using the following code:

fun main(args : Array<String>) {
 val happy = HappyMap<String, String>()
 happy["one"] = "one"
 happy["two"] = "two"
 happy["two"] = "three"
}

The preceding code prints the following output as expected:

Yay! two

That was the only overridden key.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[53]

Operator overloading
Hold on a second, how do square brackets keep working when we extended a map? Aren't
they some kind of magic?

Well, actually no. No magic there. As you may have guessed by the title of this section,
Kotlin supports operator overloading. Operator overloading means that the same operator
acts differently, depending on the type of arguments it receives.

If you've ever worked with Java, you're familiar with operator overloading already. Think
of how the plus operator works. Let take a look at the example given here:

System.out.println(1 + 1); // 2
System.out.println("1" + "1") // 11

Based on whether two arguments are either strings or integers, the + sign acts differently.

But, in the Java world, this is something that only the language itself is allowed to do. The
following code won't compile, no matter how hard we try:

List<String> a = Arrays.asList("a");
List<String> b = Collections.singletonList("b"); // Same for one argument
List<String> c = a + b;

In Java 9, there's also List.of(), which serves a similar purpose to
Arrays.asList().

In Kotlin, the same code prints [a, b]:

val a = listOf("a")
val b = listOf("b")
println(a + b)

Well, that makes a lot of sense, but maybe it's just a language feature:

data class Json(val j: String)
val j1 = Json("""{"a": "b"}""")
val j2 = Json("""{"c": "d"}""")
println(j1 + j2) // Compilation error!

Told you it was magic! You cannot simply join two arbitrary classes together.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[54]

But wait. What if we create an extension function for our Json class, plus(), as follows:

operator fun Json.plus(j2: Json): Json {
 // Code comes here
}

Everything but the first keyword, operator, should look familiar to you. We extend
the Json object with a new function that gets another Json and returns Json.

We implement the function body like this:

val jsonFields = this.j.split(":") + j2.j.split(":")
val s = (jsonFields).joinToString(":")
return Json ("""{$s}""")

This isn't really joining any JSON, but it joins Json in our example. We take values from
our Json, values from the other Json, then join them together and put some curly brackets
around them.

Now look at this line:

println(j1 + j2)

The preceding code prints the following output:

{{"a": "b"}:{"c": "d"}}

Actually, it will print: Json(j={{"a": "b"}:{"c": "d"}}). This is because we didn't
override the toString() method in our example for brevity.

So, what's this operator keyword about?

Unlike some other languages, you cannot override every operator that exists in Kotlin
languages, just a chosen few.

Albeit limited, the list of all operators that can be overridden is quite long,
so we'll not list it here. You can refer to it in the official documentation:
https:/ ​/​kotlinlang. ​org/ ​docs/ ​reference/ ​operator- ​overloading. ​html.

Try renaming your extension method to:

prus(): Just a name with a typo
minus(): The existing function that correlates with the - sign

see more please visit: https://homeofbook.com

https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html
https://kotlinlang.org/docs/reference/operator-overloading.html

Understanding Structural Patterns Chapter 3

[55]

You will see that your code stops compiling.

The square brackets that we started with are called indexed access operators and correlate
to the get(x) and set(x, y) methods.

Dude, where's my map?
The next day, your product manager reaches out to you. Apparently, they want a SadMap
now, which gets sad each time a key is removed from it. Following the previous pattern,
you extend the map again:

class SadMap<K, V>: HashMap<K, V>() {
 override fun remove(key: K): V? {
 println("Okay...")
 return super.remove(key)
 }
}

But then the chief architect asks that in some cases, a map would be happy and sad at the
same time. The CTO already has a great idea for a SuperSadMap that will print the
following output twice:

Okay...

So, what we need is the ability to combine the behaviors of our objects.

The great combinator
We'll start a bit differently this time. Instead of composing our solution piece by piece, we'll
look at the complete solution and decompose it. The code here will help you understand
why:

class HappyMap<K, V>(private val map: MutableMap<K, V> =
mutableMapOf()) :
 MutableMap<K, V> by map {

 override fun put(key: K, value: V): V? {
 return map.put(key, value).apply {
 this?.let { println("Yay! $key") }
 }
 }
}

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[56]

The hardest part here is to understand the signature. What we need in the Decorator
pattern is:

To be able to receive the object we're decorating
To keep a reference to it
When our Decorator is called, we decide if we would like to change the behavior
of the object we're holding, or to delegate the call

Since we need to actually do a lot of stuff, this declaration is quite complex. After all, it does
a lot of stuff in one line, which should be quite impressive. Let's break it down line by line:

class HappyMap<K, V>(...

Our class is named HappyMap and has two type arguments, K and V, which stand for key
and value:

... (private val map: MutableMap<K, V> ...

In our constructor, we receive MutableMap, with types K and V, the same as ours:

... = mutableMapOf()) ...

If no map was passed, we initialize our property with the default argument value, which is
an empty mutable map:

... : MutableMap<K, V> ...

Our class extends the MutableMap interface:

... by map

It also delegates all methods that weren't overridden to the object that we will wrap, in our
case a map.

The code for SadMap using delegate is omitted, but you can easily
reproduce it by combining the declaration of HappyMap and the previous
implementation of SadMap.

Let's compose our SadHappyMap now, to please the chief architect:

val sadHappy = SadMap(HappyMap<String, String>())
sadHappy["one"] = "one"
sadHappy["two"] = "two"

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[57]

sadHappy["two"] = "three"
sadHappy["a"] = "b"
sadHappy.remove("a")

We get the following output:

Yay! two // Because it delegates to HappyMap
Okay... // Because it is a SadMap

In the same way, we can now create SuperSadMap:

val superSad = SadMap(HappyMap<String, String>())

And we can please the CTO too.

The Decorator design pattern is widely used in the java.io.* package,
with classes such as reader and writer.

Caveats
The Decorator design pattern is great because it lets us compose objects on the fly. Using
Kotlin's by keyword will make it simple to implement. But there are still limitations that
you need to take care of.

First, you cannot see inside of the Decorator:

println(sadHappy is SadMap<*, *>) // True

That's the top wrapper, so no problem there:

println(sadHappy is MutableMap<*, *>) // True

That's the interface we implement, so the compiler knows about it:

println(sadHappy is HappyMap<*, *>) // False

Although SadMap contains HappyMap and may behave like it, it is not a HappyMap! Keep
that in mind while performing casts and type checks.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[58]

Second, which is related to the first point, is the fact that since Decorator is usually not
aware directly of which class it wraps, it's hard to do optimizations. Imagine that our CTO
requested SuperSadMap to print Okay... Okay... and that's it, on the same line. For
that, we would need to either capture the entire output, or investigate all the classes that we
will wrap, which are quite complex tasks.

Keep these points in mind when you use this powerful design pattern. It allows for adding
new responsibilities to an object dynamically (in our case, printing Yay is a responsibility),
instead of subclassing the object. Each new responsibility is a new wrapping layer you add.

Adapter
The main goal of an Adapter, or Wrapper, as it's sometimes called, is to convert one
interface to another interface. In the physical world, the best example would be an electrical
plug Adapter, or a USB Adapter.

Imagine yourself in a hotel room in the late evening, with 7% battery left on your phone.
Your phone charger was left in the office, at the other end of the city. You only have an EU
plug charger with a USB mini cable. But your phone is USB type-C, because you had to
upgrade. And you're in New York, so all of your outlets are of course US type-A. What do
you do? Oh, it's easy. You look for a USB mini to USB Type-C Adapter in the middle of the
night and hope you also don't forget to bring that EU to US plug Adapter while you're at it.
Only 5% battery left. Time is running out.

So, now that we understand a bit better what adapters are for in the physical world, let's
see how we can apply the same in code.

Let's start with interfaces:

interface UsbTypeC
interface UsbMini

interface EUPlug
interface USPlug

Now we can declare a phone and a power outlet:

// Power outlet exposes USPlug interface
fun powerOutlet() : USPlug {
 return object : USPlug {}
}

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[59]

fun cellPhone(chargeCable: UsbTypeC) {

}

Our charger is wrong in every way, of course:

// Charger accepts EUPlug interface and exposes UsbMini interface
fun charger(plug: EUPlug) : UsbMini {
 return object : UsbMini {}
}

Here we get the following errors:

Type mismatch: required EUPlug, found USPlug: charger(powerOutlet())

Type mismatch: required UsbTypeC, found UsbMini:
cellPhone(charger(powerOutlet()))

Different adapters
So, we need two types of adapters.

In Java, you would usually create a pair of classes for that purpose. In Kotlin, we can
replace those with extension functions.

We could adopt the US plug to work with the EU plug by using the following extension
function:

fun USPlug.toEUPlug() : EUPlug {
 return object : EUPlug {
 // Do something to convert
 }
}

We can create a USB Adapter between mini USB and type-C USB in a similar way:

fun UsbMini.toUsbTypeC() : UsbTypeC {
 return object : UsbTypeC {
 // Do something to convert
 }
}

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[60]

And finally, we get back online by combining all those adapters together:

cellPhone(
 charger(
 powerOutlet().toEUPlug()
).toUsbTypeC()
)

As you can see, we don't need to compose one object inside the other to adapt them. Nor,
luckily, do we need to inherit both interface and implementation. With Kotlin, our code
stays short and to the point.

Adapters in the real world
You've probably encountered those adapters too. Mostly, they adapt between concepts and
implementations. For example, let's take the concept of collection versus the concept of a
stream:

val l = listOf("a", "b", "c")

fun <T> streamProcessing(stream: Stream<T>) {
 // Do something with stream
}

You cannot simply pass a collection to a function that receives a stream, even though it may
make sense:

streamProcessing(l) // Doesn't compile

Luckily, collections provide us with the .stream() method:

streamProcessing(l.stream()) // Adapted successfully

Caveats of using adapters
Did you ever plug a 110v US appliance into a 220v EU socket through an Adapter, and fry
it totally?

That's something that may also happen to your code, if you're not careful. The following
example, which uses another Adapter, compiles well:

fun <T> collectionProcessing(c: Collection<T>) {
 for (e in c) {
 println(e)

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[61]

 }
}

val s = Stream.generate { 42 }
collectionProcessing(s.toList())

But it never completes, because Stream.generate() produces an infinite list of integers.
So, be careful, and adapt this pattern wisely.

Bridge
Unlike some other design patterns we've met, Bridge is less about a smart way to compose
objects, and more about guidelines on how not to abuse inheritance. The way it works is
actually very simple.

Let's go back to the strategy game we're building. We have an interface for all our infantry
units:

interface Infantry {
 fun move(x: Long, y: Long)

 fun attack(x: Long, y: Long)
}

We have the concrete implementations:

open class Rifleman : Infantry {
 override fun attack(x: Long, y: Long) {
 // Shoot
 }

 override fun move(x: Long, y: Long) {
 // Move at its own pace
 }
}

open class Grenadier : Infantry {
 override fun attack(x: Long, y: Long) {
 // Throw grenades
 }

 override fun move(x: Long, y: Long) {
 // Moves slowly, grenades are heavy
 }
}

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[62]

What if we want to have the ability to upgrade our units?

Upgraded units should have twice the damage, but move at the same pace:

class UpgradedRifleman : Rifleman() {
 override fun attack(x: Long, y: Long) {
 // Shoot twice as much
 }
}

class UpgradedGrenadier : Grenadier() {
 override fun attack(x: Long, y: Long) {
 // Throw pack of grenades
 }
}

Now, our game designer has decided that we also need a light version of those units. That
is, they attack in the same way as regular units, but move at twice the speed:

class LightRifleman : Rifleman() {
 override fun move(x: Long, y: Long) {
 // Running with rifle
 }
}

class LightGrenadier : Grenadier() {
 override fun move(x: Long, y: Long) {
 // I've been to gym, pack of grenades is no problem
 }
}

Since design patterns are all about adapting to change, here comes our dear designer, and
asks that all infantry units be able to shout, that is, to proclaim their unit name loud and
clear:

interface Infantry {
 // As before, move() and attack() functions

 fun shout() // Here comes the change
}

What are we to do now?

We go and change the implementation of six different classes, feeling lucky that there are
only six and not sixteen.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[63]

Bridging changes
Depending on the way you look at it, the Bridge design pattern may resemble Adapter,
which we already discussed, or Strategy, which we'll discuss in the next chapter.

The idea behind the Bridge design pattern is to flatten the class hierarchy, which is
currently three levels deep:

Infantry --> Rifleman --> Upgraded Rifleman
--> Light Rifleman
 --> Grenadier --> Upgraded Grenadier
 --> Light Grenadier

Why do we have this complex hierarchy?

It's because we have three orthogonal properties: weapon type, weapon strength, and
movement speed.

Say instead, we were to pass those properties to the constructor of a class that implements
the same interface we were using all along:

class Soldier(private val weapon: Weapon,
 private val legs: Legs) : Infantry {
 override fun attack(x: Long, y: Long) {
 // Find target
 // Shoot
 weapon.causeDamage()
 }

 override fun move(x: Long, y: Long) {
 // Compute direction
 // Move at its own pace
 legs.move()
 }
}

The properties that Soldier receives should be interfaces, so we could choose their
implementation later:

interface Weapon {
 fun causeDamage(): PointsOfDamage
}

interface Legs {
 fun move(): Meters
}

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[64]

But what are Meters and PointsOfDamage? Are those classes or interfaces we declared
somewhere?

Let's take a short detour.

Type aliases
First, we'll look at how they're declared:

typealias PointsOfDamage = Long
typealias Meters = Int

We use a new keyword here, typealias. From now on, we can use Meters instead of
plain old Int to return from our move() method. They aren't new types. The Kotlin
compiler will always translate PointsOfDamage to Long during compilation. Using them
provides two advantages:

Better semantics, as in our case. We can tell exactly what the meaning of the
value we're returning is.
One of the main goals of Kotlin is to be concise. Type aliases allow us to hide
complex generic expressions. We'll expand on this in the following sections.

You're in the army now
Back to our Soldier class. We want it to be as adaptable as possible, right? He knows he
can move or use his weapon for greater good. But how exactly is he going to do that?

We totally forgot to implement those parts! Let's start with our weapons:

class Grenade : Weapon {
 override fun causeDamage() = GRENADE_DAMAGE
}

class GrenadePack : Weapon {
 override fun causeDamage() = GRENADE_DAMAGE * 3
}

class Rifle : Weapon {
 override fun causeDamage() = RIFLE_DAMAGE
}

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[65]

class MachineGun : Weapon {
 override fun causeDamage() = RIFLE_DAMAGE * 2
}

Now, let's look at how we can move:

class RegularLegs : Legs {
 override fun move() = REGULAR_SPEED
}

class AthleticLegs : Legs {
 override fun move() = REGULAR_SPEED * 2
}

Constants
We define all parameters as constants:

const val GRENADE_DAMAGE : PointsOfDamage = 5L
const val RIFLE_DAMAGE = 3L
const val REGULAR_SPEED : Meters = 1

Those values are very effective, since they are known during compilation.

Unlike static final variables in Java, they cannot be placed inside a class. You should
place them either at the top level of your package or nest them inside object.

Note that although Kotlin has type inference, we can specify the types of
our constants explicitly, and even use type aliases. How about having
DEFAULT_TIMEOUT : Seconds = 60 instead of
DEFAULT_TIMEOUT_SECONDS = 60 in your code?

A lethal weapon
What is left for us is to see that with the new hierarchy, we can still do the exact same
things:

val rifleman = Soldier(Rifle(), RegularLegs())
val grenadier = Soldier(Grenade(), RegularLegs())
val upgradedGrenadier = Soldier(GrenadePack(), RegularLegs())
val upgradedRifleman = Soldier(MachineGun(), RegularLegs())
val lightRifleman = Soldier(Rifle(), AthleticLegs())
val lightGrenadier = Soldier(Grenade(), AthleticLegs())

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[66]

Now, our hierarchy looks like this:

Infantry --> Soldier

Weapon --> Rifle
 --> MachineGun
 --> Grenade
 --> GrenadePack

Legs --> RegularLegs
 --> AthleticLegs

Much simpler to extend and also to comprehend. Unlike some other design patterns we
discussed before, we didn't use any special language feature we didn't know about, just
some engineering best practices.

Composite
You may finish this section with a lingering feeling that this pattern is a bit awkward. That's
because it has a soul mate, it's accompanying pattern, Iterator, which we'll discuss in the
next chapter. When both are combined, that's where they really shine. So, if you're feeling
confused, come back to this pattern after you have got acquainted with Iterator too.

Having said that, we can start analyzing this pattern. It may look a bit strange to have
a Composite design pattern. After all, aren't all Structural Patterns about composing
objects?

Much like in the case of the Bridge design pattern, the name may not reflect its true
benefits.

Get together
Going back to our strategy game, we have a new concept: a squad. A squad consists of zero
or more infantry units. This would be a good example of a somewhat complex data
structure.

Here are the interfaces and classes we have:

interface InfantryUnit

class Rifleman : InfantryUnit

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[67]

class Sniper : InfantryUnit

How would you implement that? We'll see it in the next section.

The Squad
Squad, clearly, must be a collection of infantry units. So, it should be easy:

class Squad(val infantryUnits: MutableList<InfantryUnit> =
mutableListOf())

We even set up a default parameter value, so the other programmer won't need to pass his
own list of soldiers unless he really needs too. MutableList suits us well here, since we
may add units later.

To make sure it works, we'll create three soldiers and put them inside:

val miller = Rifleman()
val caparzo = Rifleman()
val jackson = Sniper()

val squad = Squad()

squad.infantryUnits.add(miller)
squad.infantryUnits.add(caparzo)
squad.infantryUnits.add(jackson)

println(squad.infantryUnits.size) // Prints 3

But the next day, Dave, that's the other programmer, comes to us with a new requirement.
He thinks it consists of too many lines of code to add soldiers one by one, or even to use
mutableListOf() to pass them.

He would like to initialize squads like this:

val squad = Squad(miller, caparzo, jackson)

That looks nice, but how in the name of all the squads are we going to do that?

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[68]

Varargs and secondary constructors
Up until now, we were always using the primary constructor of the class. That's the one
declared after the class name. But in Java, we can define more than one constructor for a
class. Why does Kotlin limit us to only one?

Actually, it doesn't. We can define secondary constructors for a class using
the constructor keyword:

class Squad(val infantryUnits: MutableList<InfantryUnit> = mutableListOf())
{
 constructor(first: InfantryUnit) : this(mutableListOf()) {
 this.infantryUnits.add(first)
 }

 constructor(first: InfantryUnit,
 second: InfantryUnit) : this(first) {
 this.infantryUnits.add(second)
 }

 constructor(first: InfantryUnit,
 second: InfantryUnit,
 third: InfantryUnit) :
 this(first, second) {
 this.infantryUnits.add(third)
 }
}

Note how we delegate one constructor to another:

 constructor(first: InfantryUnit) : this(mutableListOf()) {
 } ⇑
 ⇑
 constructor(first: InfantryUnit, ⇑ // Delegating
 second: InfantryUnit) : this(first) {
 }

But this is clearly not the way to go, since we cannot predict how many more elements
Dave may pass us. If you come from Java, you have probably thought about variadic
functions already, which can take an arbitrary number of arguments of the same type. In
Java, you would declare the parameter as InfantryUnit... units.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[69]

Kotlin provides us with the vararg keyword for the same purposes. Combining those two
approaches, we get the following nice piece of code:

class Squad(val infantryUnits: MutableList<InfantryUnit> =
mutableListOf()) {

 constructor(vararg units: InfantryUnit) : this(mutableListOf()) {
 for (u in units) {
 this.infantryUnits.add(u)
 }
 }
}

Counting bullets
The game designer catches you in the evening, when you are about to go home of course.
He wants to add the ammo count for the entire squad so each squad will be able to report
how much ammo it has left:

fun bulletsLeft(): Long {
 // Do your job
}

Where's the catch?

Well, you see, snipers have ammo as separate bullets:

class Bullet

Riflemen hold their bullets in magazines:

class Magazine(capacity: Int) {
 private val bullets = List(capacity) { Bullet() }
}

Luckily, you don't have machine gunners on your squad yet, because they carry their ammo
in belts...

So, you have a complex structure, which may or may not be nested. And you need to
perform a certain operation on this structure as a whole. Here's where the Composite
design pattern truly comes into play.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[70]

You see, the name is a bit confusing. Composite is not so much about composing objects,
but more about treating different type objects as nodes of the same tree. For that, they
should all implement the same interface.

It may not be that obvious at first. After all, a rifleman is clearly not a squad. But instead of
looking at an interface as an is-a relationship, we should look at it as an ability enabler.
Android, for example, adopts this pattern often.

Our ability is to count bullets:

interface CanCountBullets {
 fun bulletsLeft(): Int
}

Both Squad and InfantryUnit should implement this interface:

interface InfantryUnit : CanCountBullets

class Squad(...) : CanCountBullets {
 ...
}

class Magazine(...): CanCountBullets {
 ...
}

And now, since everybody has the same ability, no matter how deep the nesting, we can
ask the top-level object to query everything beneath it.

Magazine and Sniper simply count the bullets they contain. The following example shows
how we can keep a track of the number of bullets in Magazines:

class Magazine(...): CanCountBullets {
 ...
 override fun bulletsLeft() = bullets.size
}

The following example shows how we can keep a track of the number of
bullets Sniper has:

class Sniper(initalBullets: Int = 50) : InfantryUnit {
 private val bullets = List(initalBullets) { Bullet () }
 override fun bulletsLeft() = bullets.size
}

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[71]

For Rifleman, we can go over their Magazines and check how many bullets they contain:

class Rifleman(initialMagazines: Int = 3) : InfantryUnit {
 private val magazines = List<Magazine>(initialMagazines) {
 Magazine(5)
 }

 override fun bulletsLeft(): Int {
 return magazines.sumBy { it.bulletsLeft() }
 }
}

Finally, for the squad, we count the sum of counts of all the units squad contains:

override fun bulletsLeft(): Int {
 return infantryUnits.sumBy { it.bulletsLeft() }
}

Tomorrow, when your product manager discovers suddenly that he needs to implement a
platoon (that's a collection of squads), you'll be armed and ready.

Facade
In different implementations and approaches, Facade may resemble either an Adapter or
an Abstract Factory.

Its goal seems straightforward—to simplify interacting with another class or a family of
classes:

When we think about simplifying, we usually think of the Adapter design pattern
When we think about the family of classes, we usually think of an Abstract Factory

That's where all the confusion usually comes from. To better understand it, let's go back to
the example we used for the Abstract Factory design pattern.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[72]

Keep it simple
Let's say that we would like to implement the loadGame() method. This method would
take a file we already created (we'll discuss how later), or, at the least, the following will be
required:

At least two HQs will fave to be created (otherwise, the game is already won)1.
Each HQ will have to produce the buildings it had2.
Each building will have to produce the units it had3.
All units will have to magically teleport to the positions they were at when the4.
game was saved
If there were any commands given to units (like obliterating all enemy bases), they5.
should resume executing them

We'll discuss how we actually give commands to our units in the next
chapter, with the Command design pattern. Stay tuned.

Now, usually, it's not just one person working on a game unless it's Minecraft (TM).
There's that other guy, Dave, who deals with all the command logic. He's not much into
constructing buildings. But in his role, he also needs to load saved games quite often.

As the developer of all those bases that belong to you, you could give him a set of
instructions you've written on how the game should be properly loaded. He may or may
not follow this set of instructions. Maybe he'll forget to move the units, or build buildings.
And the game will crash. You could use the Facade design pattern to simplify the job for
him.

What's the main problem Dave has right now?

To load a game, he needs to interact with at least three different interfaces:

HQ
Building
Unit

What he would like is to have only one interface, something like:

interface GameWorld

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[73]

That has exactly the methods he needs:

fun loadGame(file: File) GameWorld

Hey, but that looks like a Static Factory Method there!

Yep, sometimes, design patterns are embedded into one another. We use the Static Factory
Method to create our class, but its goal is to be a Facade for other more complex classes.
Using a Facade doesn't mean we don't expose interfaces our facade hides behind to the
client. Dave can still use every small unit to issue orders after the game is loaded
successfully.

Simple, right?

Flyweight
Flyweight is an object without any state. The name comes from being very light.

If you've been reading either one of the two previous chapters, you may already think of a
type of object that should be very light: a data class. But a data class is all about state. So,
is it related to the Flyweight design pattern at all?

To understand this pattern better, we need to jump back in time some twenty years.

Back in '94, when the original Design Patterns book was published, your regular PC had 4
MB of RAM. One of the main goals was to save that precious RAM because you could fit
only so much into it.

Nowadays, some cell phones have 4 GB of RAM. Bear that fact in mind when we discuss
what the Flyweight design pattern is all about.

Being conservative
Imagine we're building a 2D side-scrolling arcade platformer. That is, you have your
character, which you control with arrow keys or a gamepad. Your character can move left,
right, and jump.

Since we're a really small indie company consisting of one developer (who is also a graphic
designer, product manager, and sales representative), two cats, and a canary named
Michael, we use only sixteen colors in our game. And our character is 64 pixels tall and 64
pixels wide. We call him Maronic, and that's also the name of our game.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[74]

Our character has a lot of enemies, which consist mostly of carnivorous Tanzanian snails:

class TansanianSnail

Since it's a 2D game, each snail has only two directions of movement—left and right:

enum class Direction {
 LEFT,
 RIGHT
}

Each snail holds a pair of images and a direction:

class TansanianSnail() {
 val directionFacing = Direction.LEFT

 val sprites = listOf(java.io.File("snail-left.jpg"),
 java.io.File("snail-right.jpg"))
}

We can get the current sprite that shows us which direction the snail is facing:

 fun TansanianSnail.getCurrentSprite() : java.io.File {
 return when (directionFacing) {
 Direction.LEFT -> sprites[0]
 Direction.RIGHT -> sprites[1]
 }
 }

We can draw it on the screen:

 \|____ \
 /________/ <-- With a bit of imagination you'll see it's a snail

But when it moves, it basically just slides left or right. What we would like is to have three
animated sprites to reproduce the snail's movments:

 _____ | _____ | _____ | _____ | _____ | _____
 |/___∂ \|\|_/___∂ \|\/_/___∂ \|\|_/___∂ \|\|_/___∂ \|\|_/___∂ \
 /_______/| ______/|/_______/|/_______/|/_______/|/_______/

left-3 left-2 left-1 right-1 right-2 right-3

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[75]

To have it in our code:

 val sprites = List(8) { i ->
 java.io.File(when {
 i == 0 -> "snail-left.jpg"
 i == 1 -> "snail-right.jpg"
 i in 2..4 -> "snail-move-left-${i-1}.jpg"
 else -> "snail-move-right${(4-i)}.jpg"
 })
 }

We initialize a list of eight elements passing a block function as a constructor. For each
element, we decide what image to get:

Positions 0 and 1 are for still images
Positions 2 through 4 are for moving left
Positions 5 through 7 are for moving right

Let's do some math now. Each snail is a 64 x 64 image. Assuming each color takes exactly
one byte, single images take 4 KB of RAM in the memory. Since we have eight images for a
snail, we need 32 KB of RAM for each, which allows us to fit only 32 snails into 1 MB of
memory.

Since we want to have thousands of those dangerous and extremely fast creatures on
screen, and to be able to run our game on a ten-year-old phone, we clearly need a better
solution for that.

Saving memory
What's the problem wehave with our snails? They're actually quite fat, heavyweight snails.

We would like to put them on a diet. Each snail stores eight images within its snaily body.
But actually, those images are the same for each snail.

What if we extract those sprites:

val sprites = List(8) { i ->
 java.io.File(when {
 i == 0 -> "snail-left.jpg"
 i == 1 -> "snail-right.jpg"
 i in 2..4 -> "snail-move-left-${i-1}.jpg"
 else -> "snail-move-right${(4-i)}.jpg"
 })
}

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[76]

Then we pass this list each time to the getCurrentSprite() function:

fun TansanianSnail.getCurrentSprite(sprites: List<java.io.File>) :
java.io.File { ... }

That way, we'll only consume 256 KB of memory, no matter how many snails we generate.
We could generate millions of them without affecting the footprint of our program.

Of course, we should worry about the immutability of the data we pass. That means that at
no point in time we should be able to assign null to our sprites variable as follows:

sprites = null

That would produce NullPointerException. Also, it would be disastrous if someone
was to clear() this list:

sprites.clear()

Luckily, Kotlin handles this for us. Since we use val, the list is assigned exactly once. Also,
since we use List, it produces an immutable list, which cannot be changed or cleared.

All of the preceding lines won't even compile:

sprites.clear()
sprites[0] = File("garbage")
sprites[0] = null

You still can argue about the usefulness of this pattern nowadays, when memory is
plentiful. But, as we already said, the tools in the toolbox don't take much space, and
having another design pattern under your belt may still prove useful.

Proxy
This is one misbehaving design pattern. Much like Decorator, it extends object
functionality. But, unlike Decorator, which always does at it's told, having a Proxy may
mean that when asked, the object will do something totally different instead.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[77]

A short detour into the RMI world
While discussing Proxy, a lot of sources, mostly related to Java, diverge into discussing
another concept, RMI.

RMI in the JVM world stands for Remote Method Invocation, which is a sort of Remote
Procedure Call (RPC). What that means is that you're able to call some code that doesn't
exist on your local machine, but sits on some remote machine.

Although a very clever solution, it's very JVM specific, and has become less popular in the
era of microservices, where each piece of code may be written in a totally different
programming language.

A replacement
When we discussed Creational Patterns, we already discussed the idea of expensive objects.
For example, an object that accesses network resources, or takes a lot of time to create.

We at Funny Cat App (name invented by the canary Michael; remember him from
the Flyweight pattern?) provide our users with funny cat images on a daily basis. On our
homepage and mobile application, each user sees a lot of thumbnails of funny cats. When
he clicks or touches any of those images, it expands to its full-screen glory.

But fetching cat images over the network is very expensive, and it consumes a lot of
memory, especially if those are images of cats that tend to indulge themselves in a second
dessert after dinner. So, what we would like to do is to have a smart object, something that
manages itself.

When the first user access this image, it will be fetched over the network. No way of
avoiding that.

But when it's being accessed for the second time, by this or some other user, we would like
to avoid going over the network again, and instead return the result that was cached. That's
the misbehaving part, as we described. Instead of the expected behavior of going over the
network each time, we're being a bit lazy, and returning the result that we already
prepared. It's a bit like going into a cheap diner, ordering a hamburger, and getting it after
only two minutes, but cold. Well, that's because someone else hated onions and returned it
to the kitchen a while ago. True story.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[78]

That sounds like a lot of logic. But, as you've probably guessed, especially after meeting
the Decorator design pattern, Kotlin can perform miracles by reducing the amount of
boilerplate code you need to write to achieve your goals:

data class CatImage(private val thumbnailUrl: String,
 private val url: String) {
 val image: java.io.File by lazy {
 // Actual fetch goes here
 }
}

As you may notice, we use the by keyword to delegate initialization of this field to a
standard function called lazy.

The first call to image will execute a block of our code and save its results into the image
property.

Sometimes, the Proxy design pattern is divided into three sub-patterns:

Virtual proxy: Lazily caches the result
Remote proxy: Issues a call to the remote resource
Protection or access control proxy: denies access to unauthorized parties

Depending on your views, you can regard our example as either a virtual proxy or a
combination of virtual and remote proxies.

Lazy delegation
You may wonder what happens if two threads try to initialize the image at the same time.
By default, the lazy() function is synchronized. Only one thread will win, and others will
wait until the image is ready.

If you don't mind two threads executing the lazy block (it's not that expensive, for
example), you can use by lazy(LazyThreadSafetyMode.PUBLICATION).

If performance is absolutely critical to you, and you're absolutely sure that two threads
won't ever execute the same block simultaneously, you can
use LazyThreadSafetyMode.NONE.

see more please visit: https://homeofbook.com

Understanding Structural Patterns Chapter 3

[79]

Summary
In this chapter, we learned how structural design patterns help us to create more flexible
code that can adapt to changes with ease, sometimes even at runtime. We've
covered operator overloading in Kotlin and its limitations. You should know how to create
a shortcut to a type name with typealias and how to define efficient constants with
const.

We've covered how delegating to another class works in Kotlin, by implementing the same
interface and using the by keyword.

In addition, we covered functions that can receive an arbitrary number of arguments with
vararg and lazy initialization with lazy.

In the next chapter, we'll discuss the third family of classical design patterns: behavioral
patterns.

see more please visit: https://homeofbook.com

4
Getting Familiar with Behavioral

Patterns
This chapter discusses behavioral patterns with Kotlin. Behavioral patterns deal with how
objects interact with one another.

We'll see how an object can behave in a totally different manner based on the situation, how
objects can communicate without knowledge of one another, and how we can iterate over
complex structures easily.

In this chapter, we will cover the following topics:

Strategy
Iterator
State
Command
Chain of responsibility
Interpreter
Mediator
Memento
Visitor
Template method
Observer

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[81]

Strategy
Remember Maronic, the platformer we were designing in Chapter 3, Understanding
Structural Patterns, while discussing the Facade design pattern?

Well, canary Michael, who acts as a game designer in our small indie game development
company, came up with a great idea. What if we were to give our hero an arsenal of
weapons to protect us from those horrible carnivorous snails?

Weapons all shoot projectiles (you don't want to get close to those dangerous snails) in the
direction our hero is facing:

enum class Direction {
 LEFT, RIGHT
}

All projectiles should have a pair of coordinates (our game is 2D, remember?) and a
direction:

abstract class Projectile(private val x: Int,
 private val y: Int,
 private val direction: Direction)

If we were to shoot only one type of projectile, that would be simple, since we already
covered the Factory pattern in Chapter 2, Working with Creational Patterns:

class OurHero {
 private var direction = Direction.LEFT
 private var x: Int = 42
 private var y: Int = 173

 fun shoot(): Projectile {
 return object : Projectile(x, y, direction) {
 // Draw and animate projectile here
 }
 }
}

But Michael wants our hero to have at least three different weapons:

Peashooter: Shoots small peas that fly straight. Our hero starts with it.
Pomegranate: Explodes when hitting an enemy, much like a grenade.
Banana: Returns like a boomerang when it reaches the end of the screen.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[82]

Come on, Michael, give us some slack! Can't you just stick with regular guns that all work
the same?!

Fruit arsenal
First, let's discuss how we could solve this in the Java way.

In Java, we would have created an interface, that abstracts the changes. In our case, what
changes is our hero's weapon:

interface Weapon {
 fun shoot(x: Int,
 y: Int,
 direction: Direction): Projectile
}

Then all other weapons would implement this interface:

class Peashooter : Weapon {
 override fun shoot(x: Int,
 y: Int,
 direction: Direction) =
 object : Projectile(x, y, direction) {
 // Fly straight
 }
}

class Pomegranate : Weapon {
 override fun shoot(x: Int,
 y: Int,
 direction: Direction) =
 object : Projectile(x, y, direction) {
 // Explode when you hit first enemy
 }
}

class Banana : Weapon {
 override fun shoot(x: Int,
 y: Int,
 direction: Direction) =
 object : Projectile(x, y, direction) {
 // Return when you hit screen border
 }
}

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[83]

Then our hero would hold a reference to a weapon (Peashooter at the beginning):

private var currentWeapon : Weapon = Peashooter()

It would delegate the actual shooting process to it:

fun shoot(): Projectile = currentWeapon.shoot(x, y, direction)

What's left is the ability to equip another weapon:

fun equip(weapon: Weapon) {
 currentWeapon = weapon
}

And that's what the Strategy design pattern is all about. Now, our algorithms (Maronic's
weapons, in that case) are interchangeable.

Citizen function
With Kotlin, there's a more efficient way to implement the same functionality using fewer
classes. That's thanks to the fact that functions in Kotlin are first-class citizens.

What does that mean?

For one, we can assign functions to the variables of our class, like any other normal value.

It makes sense that you can assign a primitive value to your variable:

val x = 7

You could either assign an object to it:

var myPet = Canary("Michael")

So, why should you be able to assign a function to your variable? As follows:

val square = fun (x: Int): Long {
 return (x * x).toLong()
}

With Kotlin, this is totally valid.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[84]

Switching sides
So, how do higher-order functions help us here?

First, we'll define a namespace for all our weapons. This is not mandatory, but helps to
keep everything in check:

object Weapons {
 // Functions we'll be there soon
}

Then, instead of classes, each of our weapons will become a function:

val peashooter = fun(x: Int, y: Int, direction: Direction):
Projectile {
 // Fly straight
}

val banana = fun(x: Int, y: Int, direction: Direction):
 Projectile {
 // Return when you hit screen border
}

val pomegranate = fun(x: Int, y: Int, direction: Direction):
Projectile {
 // Explode when you hit first enemy
}

The most interesting part is our hero. It now holds two functions:

class OurHero {
 // As before
 var currentWeapon = Weapons.peashooter

 val shoot = fun() {
 currentWeapon(x, y, direction)
 }
}

The interchangeable part is currentWeapon, while shoot is now an anonymous function
that wraps it.

To test that our idea works, we can shoot the default weapon once, then switch to Banana
and shoot it again:

val h = OurHero()
h.shoot()

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[85]

h.currentWeapon = Weapons.banana
h.shoot()

Notice that this dramatically reduces the number of classes we have to write, while keeping
the functionality the same.

Iterator
When we were discussing the Composite design pattern in the previous chapter, we noted
that the design pattern felt a bit incomplete. Now is the time to reunite the twins separated
at birth. Much like Arnold Schwarzenegger and Danny DeVito, they're very different, but
complement each other well.

One, two... many
We're back to our squads and platoons in our CatsCraft 2: Revenge of the Dogs strategy game.

As you may remember from the previous chapter, Squad consists of InfantryUnits:

interface InfantryUnit

class Squad(val infantryUnits: MutableList<InfantryUnit> =
mutableListOf()) {
}

Each squad should also get a commander now.

The commander of a squad called Sergeant is also an InfantryUnit:

class Squad(...) {
 val commander = Sergeant()
}

class Sergeant: InfantryUnit

Please disregard the fact that our sergeant doesn't have a name and gets created on the fly.
We're two days short of releasing this game and beating the competition. Names are not
important now.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[86]

The platoon is a collection of squads, and it also has a commander, called Lieutenant:

class Platoon(val squads: MutableList<Squad> = mutableListOf()) {
 val commander = Lieutenant()
}

class Lieutenant: InfantryUnit

What our CEO wants is a platoon, and to be able to know which units it consists of.

So, when we have the following lines in our code:

val rangers = Squad("Josh", "Ew an", "Tom")
val deltaForce = Squad("Sam", "Eric", "William")
val blackHawk = Platoon(rangers, deltaForce)

for (u in blackHawk) {
 println(u)
}

We would print by order of seniority:

Lieutenant, Sergeant, Josh, Ewan, Tom, ...

Nowadays, this task may seem trivial to you, especially if you come from the Java world.
But back in '94, data structures were mostly arrays of primitive types. Yes, Array<Int>, I'm
looking at you.

Iterating over an array wouldn't be that hard, even in Java:

int[] array = new int[] {1, 2, 3};
for (int i = 0; i < array.length; i++) {
 System.out.println(i);
}

What are we to do with something much more complex?

Running through the values
If you're using an IDE such as IntelliJ, it will give you a hint on what the problem may be:

for (u in blackHawk) { <== For-loop range must have an 'iterator()'
method
 // Wanted to do something here
}

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[87]

So, our Platoon needs to have a function called iterator(). And since it's a special
function, we'll need to use the operator keyword.

operator fun iterator() = ...

What our function returns is an anonymous object that implements the Iterator<T>
interface:

... = object: Iterator<InfantryUnit> {
 override fun hasNext(): Boolean {
 // Are there more objects to iterate over?
 }

 override fun next(): InfantryUnit {
 // Return next InfantryUnit
 }
}

The idea behind the iterator design pattern is to separate how the object stores data (in our
case, it's something like a tree) and how we can go over this data. As you may know, trees
can be iterated in one of two ways:

depth-first (also known as depth-first search (DFS))
breadth-first (also known as breadth-first search (BFS))

But do we really care when we need to fetch all the elements?

So, we separate these two concerns: storage aside, repeating aside.

To go over all the elements, we need to implement two methods, one to fetch the next
element, and one to let the loop know when to stop.

As an example, we'll implement this object for Squad. For Platoon, the logic would be
similar, but requires a bit more math.

First, we need a state for our iterator. It will remember that the last element is returned:

operator fun iterator() = object: Iterator<InfantryUnit> {
 var i = 0
 // More code here
}

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[88]

Next, we need to tell it when to stop. In our case, the total number of elements is all the
units of the squad, plus the sergeant:

override fun hasNext(): Boolean {
 return i < infantryUnits.size + 1
}

Finally, we need to know which unit to return. If that was the first call, we'll return the
sergeant. The next calls will return one of the squad members:

override fun next() =
 when (i) {
 0 -> commander
 else -> infantryUnits[i - 1]
 }.also { i++ }

Note that we want to return the next unit, but also to increase our counter.
For that, we use the also {} block.

That's only one of the usages of this pattern.

The same object may also have more than one iterator. For example, we could have the
second iterator for our squad that would go over elements in reverse order.

To use it, we'll need to call it by name:

for (u in deltaForce.reverseIterator()) {
 println(u)
}

Since it's just a simple function that returns an iterator now, we don't need the operator
keyword:

fun reverseIterator() = object: Iterator<InfantryUnit> {
 // hasNext() is same as before
}

The only changes are coming in the next() method:

override fun next() =
 when (i) {
 infantryUnits.size -> commander
 else -> infantryUnits[infantryUnits.size - i - 1]
 }.also { i++ }

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[89]

Sometimes, it also makes sense to receive an iterator as a parameter for a function:

fun <T> printAll(iter: Iterator<T>) {
 while (iter.hasNext()) {
 println(iter.next())
 }
}

This function will iterate over anything that supplies an iterator:

printAll(deltaForce.iterator())
printAll(deltaForce.reverseIterator())

This will print our squad members twice, once in regular and once in reverse order.

As a regular developer who doesn't invent new data structures for his or her living, you
may now implement iterators often. But it's important to know how they work behind the
scenes nevertheless.

State
You can think of the State design pattern as an opinionated Strategy, which we discuss at
the beginning of this chapter. But while Strategy is changed from the outside, by the client,
the State may change internally, based solely on the input it gets.

Look at this dialog a client wrote with Strategy:

Client: Here’s a new thing to do, start doing it from now on.

Strategy: OK, no problem.

Client: What I like about you is that you never argue with me.

Compare it with this one:

Client: Here’s some new input I got from you.

State: Oh, I don't know. Maybe I'll start doing something differently. Maybe not.

The client should also expect that the State may even reject some of its inputs:

Client: Here's something for you to ponder, State.

State: I don't know what it is! Don't you see I'm busy? Go bother some Strategy with
this!

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[90]

So, why do clients still tolerate that State of ours? Well, State is really good at keeping
everything under control.

Fifty shades of State
Carnivorous snails have had enough of this Maronic hero. He throws peas and bananas at
them, only to get to another sorry castle. Now they shall act!

By default, the snail should stand still to conserve snail energy. But when the hero gets
close, it dashes towards him aggressively.

If the hero manages to injure it, it should retreat to lick its wounds. Then it will repeat
attacking, until one of them is dead.

First, we'll declare what can happen during a snail's life:

interface WhatCanHappen {
 fun seeHero()

 fun getHit(pointsOfDamage: Int)

 fun calmAgain()
}

Our snail implements this interface, so it can get notified of anything that may happen to it
and act accordingly:

class Snail : WhatCanHappen {
 private var healthPoints = 10

 override fun seeHero() {
 }

 override fun getHit(pointsOfDamage: Int) {
 }

 override fun timePassed() {
 }
}

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[91]

Now, we declare the Mood class, which we mark with the sealed keyword:

sealed class Mood {
 // Some abstract methods here, like draw(), for example
}

Sealed classes are abstract and cannot be instantiated. We'll see the benefit of using them in
a moment. But before that, let's declare other states:

class Still : Mood()

class Aggressive : Mood()

class Retreating : Mood()

class Dead : Mood()

Those are all different states, sorry, moods, of our snail.

In State design pattern terms, Snail is the context. It holds the state. So, we declare a
member for it:

class Snail : WhatCanHappen {
 private var mood: Mood = Still()
 // As before
}

Now let's define what Snail should do when it sees our hero:

override fun seeHero() {
 mood = when(mood) {
 is Still -> Aggressive()
 }
 }

Compilation error! Well, that's where the sealed class comes into play. Much like with an
enum, Kotlin knows that there's a finite number of classes that extend from it. So, it requires
that our when is exhaustive and specifies all different cases in it.

If you're using IntelliJ as your IDE, it will even suggest you "add
remaining branches" automatically.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[92]

Let's describe our state:

override fun seeHero() {
 mood = when(mood) {
 is Still -> Aggressive()
 is Aggressive -> mood
 is Retreating -> mood
 is Dead -> mood
 }
}

Of course, else still works:

override fun timePassed() {
 mood = when(mood) {
 is Retreating -> Aggressive()
 else -> mood
 }
}

When the snail gets hit, we need to decide if it's dead or not. For that, we can use when
without an argument:

override fun getHit(pointsOfDamage: Int) {
 healthPoints -= pointsOfDamage
 mood = when {
 (healthPoints <= 0) -> Dead()
 mood is Aggressive -> Retreating()
 else -> mood
 }
}

Note that we use the is keyword, which is the same as instanceof in Java, but more
concise.

State of the Nation
The previous approach has most of the logic in our context. You may sometimes see a
different approach, which is valid as your context grows bigger.

In this approach, Snail would become really thin:

class Snail {
 internal var mood: Mood = Still(this)

 private var healthPoints = 10

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[93]

 // That's all!
}

Note that we marked mood as internal. That lets other classes in that package alter it.

Instead of Snail implementing WhatCanHappen, our Mood will:

sealed class Mood : WhatCanHappen

And now the logic resides within our state objects:

class Still(private val snail: Snail) : Mood() {
 override fun seeHero() = snail.mood.run {
 Aggressive(snail)
 }

 override fun getHit(pointsOfDamage: Int) = this
 override fun timePassed() = this
}

Note that our state objects now receive a reference to their context in the constructor.

That's the first time we've met the run extension function. It's equivalent would be:

override fun seeHero(): Mood {
 snail.mood = Aggressive(snail)
 return snail.mood
}

By using run, we can preserve the same logic, but omit the function body.

You'll need to decide what approach to use. In our example, this will actually produce
much more code, will have to implement all the methods by itself.

Command
This design pattern allows you to encapsulate action inside an object to be executed
sometime later.

Furthermore, if we can execute one action later on, why not execute many? Why not
schedule exactly when to execute?

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[94]

That's exactly what we need to do in our CatsCraft 2: Revenge of the Dogs game now. Dave, a
new developer that we've hired lately, was working hard the whole weekend, while no one
was allowed to bother him. He implemented the following abstract methods for our furry
soldiers:

class Soldier(...)... {
 fun attack(x: Long, y: Long) {
 println("Attacking ($x, $y)")
 // Actual code here
 }

 fun move(x: Long, y: Long) {
 println("Moving to ($x, $y)")
 // Actual code here
 }
}

He probably even used the Bridge design pattern from the previous chapter to do that.

The problem we need to solve now is that the soldier can remember exactly one command.
That's it. If he starts at (0, 0), the top of the screen, we first tell him to move(20, 0),
that's 20 steps right, and then to move(20, 20), so he'll move straight to (20, 20), and
will probably get totally destroyed, because there are dog enemies to avoid at all costs:

[cat](0, 0) ⇒ good direction ⇒ (20, 0)

 [dog] [dog] ⇓
 [dog] [dog] [dog] ⇓
 [dog] [dog]
 (5, 20) (20, 20)

If you've been following this book from the start, or at least joined at Chapter
3, Understanding Structural Patterns, you probably have an idea of what we need to do, since
we already discussed the concept of functions as first-class citizens in the language.

But even if you decided to just figure out how the Command design pattern should work in
Kotlin, or opened this book randomly to this section, we'll give you a brief explanation on
how that dog obstacle could be solved.

Let's sketch a skeleton for that. We know that we want to hold a list of objects, but we don't
know yet what type they should be. So we'll use Any for now:

class Soldier {
 private val orders = mutableListOf<Any>()

 fun anotherOrder(action: Any) {

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[95]

 this.orders.add(command)
 }
 // More code here
}

Then, we want to iterate over the list and execute the orders we have:

class Soldier {
 ...
 // This will be triggered from the outside once in a while
 fun execute() {
 while (!orders.isEmpty()) {
 val action = orders.removeAt(0)
 action.execute() // Compile error for now
 }
 }
 ...
}

So, even if you're not familiar with the Command design pattern, you can guess that we can
define an interface with a single method, execute():

interface Command {
 fun execute()
}

And then hold a list of the same time in a member property:

private val commands = mutableListOf<Command>()

Implement this interface as needed. That's basically what the Java implementation of this
pattern would suggest in most cases. But isn't there a better way?

Let's look at the Command again. Its execute() method receives nothing, returns nothing,
and does something. It's the same as writing the following code then:

fun command(): Unit {
 // Some code here
}

It's not different at all. We could simplify this further:

() -> Unit

Instead of having an interface for that called Command, we'll have a typealias:

typealias Command = ()->Unit

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[96]

Now, this line stops compiling again:

command.execute() // Unresolved reference: execute

Well, that's because execute() is just some name we invented. In Kotlin, functions use
invoke():

command.invoke() // Compiles

That's nice, but the functions Dave wrote receive arguments, and our function has no
parameters at all.

One option would be to change the signature of our Command to receive two parameters:

(x: Int, y: Int)->Unit

But what if some commands receive no arguments, or only one, or more than two? We also
need to remember what to pass to invoke() at each step.

A much better way is to have a function generator. That is, a function that returns another
function.

If you ever worked with JavaScript language, that's a common practice to use closures to
limit the scope and remember stuff. We'll do the same:

val moveGenerator = fun(s: Soldier,
 x: Int,
 y: Int): Command {
 return fun() {
 s.move(x, y)
 }
}

When called with proper arguments, moveGenerator will return a new function. That
function can be invoked whenever we find it suitable, and it will remember:

What method to call
With which arguments
On which object

Now, our Soldier may have a method like this:

fun appendMove(x: Int, y: Int) = apply {
 commands.add(moveGenerator(this, x, y))
}

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[97]

It provides us with a nice fluent syntax:

val s = Soldier()
s.appendMove(20, 0)
 .appendMove(20, 20)
 .appendMove(5, 20)
 .execute()

This code will print the following:

Moving to (20, 0)
Moving to (20, 20)
Moving to (5, 20)

Undoing commands
While not directly related, one of the advantages of the Command design pattern is the
ability to undo commands. What if we wanted to support such a functionality?

Undoing is usually very tricky, because it involves one of the following:

Returning to the previous state (impossible if there's more than one client,
requires a lot of memory)
Computing deltas (tricky to implement)
Defining opposite operations (not always possible)

In our case, the opposite of the command move from (0,0) to (0, 20) would be move from
wherever you're now to (0,0). This could be achieved by storing a pair of commands:

private val commands = mutableListOf<Pair<Command, Command>>()

You can also add pairs of commands:

fun appendMove(x: Int, y: Int) = apply {
 val oppositeMove = /* If it's the first command, generate move to
current location. Otherwise, get the previous command */
 commands.add(moveGenerator(this, x, y) to oppositeMove)
}

Actually, computing the opposite move is quite complex, as we don't save the position of
our soldier currently (it was something Dave should have implemented anyway), and we'll
also have to deal with some edge cases.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[98]

Chain of responsibility
I'm a horrible software architect, and I don't like to speak with people. Hence, while sitting
in The Ivory Tower (that's the name of the cafe I often visit), I wrote a small web
application. If a developer has a question, he shouldn't approach me directly, oh no. He'll
need to send me a proper request through this system, and I shall answer him only if I
deem this request worthy.

A filter chain is a very common concept in web servers. Usually, when a request reaches to
you, it's expected that:

Its parameters are already validated
The user is already authenticated, if possible
User roles and permissions are known, and the user is authorized to perform an
action

So, the code I initially wrote looked something like this:

fun handleRequest(r: Request) {
 // Validate
 if (r.email.isEmpty() || r.question.isEmpty()) {
 return
 }
 // Authenticate
 // Make sure that you know whos is this user
 if (r.email.isKnownEmail()) {
 return
 }
 // Authorize
 // Requests from juniors are automatically ignored by architects
 if (r.email.isJuniorDeveloper()) {
 return
 }

 println("I don't know. Did you check StackOverflow?")
}

A bit messy, but it works.

Then I noticed that some developers decide they can send me two questions at once. Gotta
add some more logic to this function. But wait, I'm an architect, after all. Isn't there a better
way to delegate this?

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[99]

This time, we won't learn new Kotlin tricks, but use those that we already learned. We
could start with implementing an interface such as this one:

interface Handler {
 fun handle(request: Request): Response
}

We never discussed what my response to one of the developers looked like. That's because
I keep my chain of responsibility so long and complex that usually, they tend to solve
problems by themselves. I've never had to answer one of them, quite frankly. But at least
we know what their requests look like:

data class Request(val email: String, val question: String)

data class Response(val answer: String)

Then we could do it the Java way, and start implementing each piece of logic inside its own
handler:

class BasicValidationHandler(private val next: Handler) : Handler {
 override fun handle(request: Request): Response {
 if (request.email.isEmpty() || request.question.isEmpty()) {
 throw IllegalArgumentException()
 }

 return next.handle(request)
 }
}

Other filters would look very similar to this one. We can compose them in any order we
want:

val req = Request("developer@company.com",
 "Who broke my build?")

val chain = AuthenticationHandler(
 BasicValidationHandler(
 FinalResponseHandler()))

val res = chain.handle(req)

println(res)

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[100]

But I won't even ask you the rhetoric question this time about better ways. Of course there's
a better way, we're in the Kotlin world now. And we've seen the usage of functions in the
previous section. So, we'll define a function for that task:

typealias Handler = (request: Request) -> Response

Why have a separate class and interface for something that receives a request and returns a
response in a nutshell:

val authentication = fun(next: Handler) =
 fun(request: Request): Response {
 if (!request.email.isKnownEmail()) {
 throw IllegalArgumentException()
 }
 return next(request)
 }

Here, authentication is a function that literally receives a function and returns a
function.

Again, we can compose those functions:

val req = Request("developer@company.com",
 "Why do we need Software Architects?")

val chain = basicValidation(authentication(finalResponse()))

val res = chain(req)

println(res)

It's up to you which method you choose. Using interfaces is more explicit, and would better
suit you if you're creating your own library or framework that others may want to extend.

Using functions is more concise, and if you just want to split your code in a more
manageable way, it may be the better choice.

Interpreter
This design pattern may seem very simple or very hard, all based on how much
background you have in computer science. Some books that discuss classical software
design patterns even decide to omit it altogether, or put it somewhere at the end, for
curious readers only.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[101]

The reason behind this is that the interpreter design pattern deals with translating certain
languages. But why would we need that? Don't we have compilers to do that anyway?

We need to go deeper
In this section we discuss that all developers have to speak many languages or sub-
languages. Even as regular developers, we use more than one language. Think of tools that
build your projects, like Maven or Gradle. You can consider their configuration files, build
scripts, as languages with specific grammar. If you put elements out of order, your project
won't be built correctly. And that's because such projects have interpreters to analyze
configuration files and act upon them.

Other examples would be query languages, be it one of the SQL variations or one of the
languages specific to NoSQL databases.

If you're an Android developer, you may think of XML layouts as such languages too. Even
HTML could be considered a language that defines user interfaces. And there are others, of
course.

Maybe you've worked with one of the testing frameworks that define a custom language
for testing, such as Cucumber: github.com/cucumber.

Each of these examples can be called a Domain Specific Language (DSL). A language
inside a language. We'll discuss how it works in the next section.

A language of your own
In this section, we'll define a simple DSL-for-SQL language. We won't define the format or
grammar for it, but only an example of what it should look like:

val sql = select("name, age", {
 from("users", {
 where("age > 25")
 }) // Closes from
 }) // Closes select

println(sql) // "SELECT name, age FROM users WHERE age > 25"

The goal of our language is to improve readability and prevent some common SQL
mistakes, such as typos (like FORM instead of FROM). We'll get compile time validations
and autocompletion along the way.

see more please visit: https://homeofbook.com

https://github.com/cucumber

Getting Familiar with Behavioral Patterns Chapter 4

[102]

We'll start with the easiest part—select:

fun select(columns: String, from: SelectClause.()->Unit):
 SelectClause {
 return SelectClause(columns).apply(from)
}

We could write this using single expression notation, but we use the more
verbose version for clarity of the example.

This is a function that has two parameters. The first is a String, which is simple. The
second is another function that receives nothing and returns nothing.

The most interesting part is that we specify the receiver for our lambda:

SelectClause.()->Unit

This is a very smart trick, so be sure to follow along:

SelectClause.()->Unit == (SelectClause)->Unit

Although it may seem that this lambda receives nothing, it actually receives one argument,
an object of type SelectClause.

The second trick lies in the usage of the apply() function we've seen before.

Look at this:

SelectClause(columns).apply(from)

It translates to this:

val selectClause = SelectClause(columns)
from(selectClause)
return selectClause

Here are the steps the preceding code will perform:

Initialize SelectClause, which is a simple object that receives one argument in1.
its constructor.
Call the from() function with an instance of SelectClause as its only2.
argument.
Return an instance of SelectClause.3.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[103]

That code only makes sense if from() does something useful with SelectClause.

Let's look at our DSL example again:

select("name, age", {
 this@select.from("users", {
 where("age > 25")
 })
})

We've made the receiver explicit now, meaning that the from() function will call
the from() method on the SelectClause object.

You can start guessing what this method looks like. It clearly receives a String as its first
argument, and another lambda as its second:

class SelectClause(private val columns: String) {
 private lateinit var from : FromClause
 fun from(table: String, where: FromClause.()->Unit): FromClause {
 this.from = FromClause(table)
 return this.from.apply(where)
 }
}

This could again be shortened, but then we'd need to use apply()
within apply(), which may seem confusing at this point.

That's the first time we've met the lateinit keyword. This keyword is quite dangerous, so
use it with some restraint. Remember that the Kotlin compiler is very serious about null
safety. If we omit lateinit, it will require us to initialize the variable with a default value.
But since we'll know it only at a later time, we ask the compiler to relax a bit. Note that if
we don't make good on our promises and forget to initialize it, we'll
get UninitializedPropertyAccessException when first accessing it.

Back to our code; all we do is:

Create an instance of FromClause1.
Store it as a member of SelectClause2.
Pass an instance of FromClause to the where lambda3.
Return an instance of FromClause4.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[104]

Hopefully, you're starting to get the gist of it:

select("name, age", {
 this@select.from("users", {
 this@from.where("age > 25")
 })
})

What does it mean? After understanding the from() method, this should be much simpler.
The FromClause must have a method called where() that receives one argument, of
the String type:

class FromClause(private val table: String) {
 private lateinit var where: WhereClause

 fun where(conditions: String) = this.apply {
 where = WhereClause(conditions)
 }
}

Note that we made good on our promise and shortened the method this time.

We initialized an instance of WhereClause with the string we received, and returned it.
Simple as that:

class WhereClause(private val conditions: String) {
 override fun toString(): String {
 return "WHERE $conditions"
 }
}

WhereClause only prints the word WHERE and the conditions it received:

class FromClause(private val table: String) {
 // More code here...
 override fun toString(): String {
 return "FROM $table ${this.where}"
 }
}

FromClause prints the word FROM as well as the table name it received, and everything
WhereClause printed:

class SelectClause(private val columns: String) {
 // More code here...
 override fun toString(): String {
 return "SELECT $columns ${this.from}"

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[105]

 }
}

SelectClause prints the word SELECT, the columns it got, and whatever FromClause
printed.

Taking a break
Kotlin provides beautiful capabilities to create readable and type-safe DSLs. But the
interpreter design pattern is one of the hardest in the toolbox. If you didn't get it from the
get-go, take some time to debug this code. Understand what this means at each step, as
well as when we call a function and when we call a method of an object.

Call suffix
In order not to confuse you, we left out one last notion of Kotlin DSL until the end of this
section.

Look at this DSL:

val sql = select("name, age", {
 from("users", {
 where("age > 25")
 }) // Closes from
 }) // Closes select

It could be rewritten as:

val sql = select("name, age") {
 from("users") {
 where("age > 25")
 } // Closes from
 } // Closes select

This is common practice in Kotlin. If our function receives another function as its last
argument, we can pass it out of parentheses.

This results in a much clearer DSL, but may be confusing at first.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[106]

Mediator
There's no way around it. The Mediator design pattern is simply a control freak. It doesn't
like it when one object speaks to the other directly. It gets mad sometimes when that
happens. No, everybody should speak only through him. What's his explanation? It
reduces coupling between objects. Instead of knowing some other objects, everybody
should know only him, the Mediator.

Trouble in the Jungle
Architectural jokes aside, we, the Maronic development team, have some real problems.
And they're not related to code directly. As you may remember, our little indie company
consists of only me, a canary named Michael that acts as a product manager, and two cat
designers that sleep most of the day, but do produce some decent mockups from time to
time. We have no QA (that's quality assurance guys) whatsoever. Maybe that's one of the
reasons our game keeps crashing all the time.

Lately, Michael has introduced me to a parrot named Kenny, who happens to be QA:

interface QA {
 fun doesMyCodeWork(): Boolean
}

interface Parrot {
 fun isEating(): Boolean
 fun isSleeping(): Boolean
}

object Kenny : QA, Parrot {
 // Implements interface methods based on parrot schedule
}

This section will use objects for the sake of simplicity.

Parrot QAs are very motivated. They're ready to test the latest version of my game any
time. But they really don't like to be bothered when they are either sleeping or eating:

class MyMind {
 val qa = Kenny

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[107]

 fun taskCompleted() {
 if (!qa.isEating() && !qa.isSleeping()) {
 println(qa.doesMyCodeWork())
 }
 }
}

In case Kenny had any questions, I gave him my direct number:

object Kenny : ... {
 val developer = Me
}

Kenny was a hard-working parrot. But we had so many bugs that we also had to hire a
second parrot QA, Brad. If Kenny is free, I give the job to him, as he's more acquainted with
our project. But if he's busy, I check if Brad is free, and give this task to him:

class MyMind {
 ...
 val qa2 = Brad

 fun taskCompleted() {
 ...
 else if (!qa2.isEating() && !qa2.isSleeping()) {
 println(qa2.doesMyCodeWork())
 }
 }
}

Brad, being more junior, usually checks up with Kenny first. And Kenny also gave my
number to him:

object Brad : QA, Parrot {
 val senior = Kenny
 val developer = Me
 ...
}

Then Brad introduces me to George. George is an owl, so he sleeps at different times than
Kenny and Brad. That means that he can check my code at night. The problem is, George is
an avid football fan. So before calling him, we need to check if he's watching a game now:

class MyMind {
 ...
 val qa3 = George

 fun taskCompleted() {

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[108]

 ...
 else if (!qa3.isWatchingFootball()) {
 println(qa3.doesMyCodeWork())
 }
 }
}

Kenny as a habit checks with George too, because George is a very knowledgeable owl:

object Kenny : QA, Parrot {
 val peer = George
 ...
}

And George checks with Kenny, because Kenny is also into football, it seems:

object George : QA, Owl {
 val mate = Kenny
 ...
}

George loves to call me during the night with his questions:

object George : QA, Owl {
 val developer = Me
 ...
}

Then there's Sandra. She's a different kind of bird, because she's not a QA, but a
copywriter:

interface Copywriter {
 fun areAllTextsCorrect(): Boolean
}

interface Kiwi

object Sandra : Copywriter, Kiwi {
 override fun areAllTextsCorrect(): Boolean {
 return ...
 }
}

 I try not to bother her, unless it's a major release:

class MyMind {
 ...
 val translator = Sandra

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[109]

 fun taskCompleted(isMajorRelease: Boolean) {
 ...
 if (isMajorRelease) {
 println(translator.areAllTranslationsCorrect())
 }
 }
}

OK, now I have a few problems:

First, my mind almost explodes trying to remember all those names. So might
yours.
Second, I also need to remember how to interact with each one. I'm the one doing
all the checks before calling them.
Third, notice how George tries to confirm everything with Kenny, and Kenny
with George? Luckily, up until now, George is always watching a football game
when Kenny calls him. And Kenny is asleep when George needs to confirm
something with him. Otherwise, they would get stuck on the phone for eternity...
Fourth, and what bothers me the most, is that Kenny plans to leave soon to open
his own startup, ParrotPi. Imagine all the code we'll have to change now!

All I want to do is to check if everything is alright with my code. Someone else should do
all this talking!

The middleman
So, I decided that Michael should manage all those processes:

interface Manager {
 fun isAllGood(majorRelease: Boolean): Boolean
}

Only he will know all the other birds:

object Michael: Canary, Manager {
 private val kenny = Kenny(this)
 // And all the others
 ...

 override fun isAllGood(majorRelease: Boolean): Boolean {
 if (!kenny.isEating() && !kenny.isSleeping()) {
 println(kenny.doesMyCodeWork())
 }
 // And all the other logic I had in MyMind

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[110]

 ...
 }
}

I'll remember only him, and he'll do the rest:

class MyPeacefulMind(private val manager: Manager) {
 fun taskCompleted(isMajorRelease: Boolean) {
 println(manager.isAllGood(isMajorRelease))
 }
}

I'll also change my phone number, and make sure that everybody gets only Michael's:

class Brad(private val manager: Manager) : ... {
 // No reference to Me here
 ...
}

Now, if somebody needs somebody else's opinion, they need to go through Michael first.

class Kenny(private val manager: Manager) : ... {
 // No reference to George, or anyone else
 ...
}

Flavors
There are two flavors to Mediator. We'll call them strict and loose. The strict version we've
seen previously. We tell Mediator exactly what to do, and expect an answer from it.

The loose version will expect us to notify Mediator of what happened, but not to expect an
immediate answer. Instead, if he needs to notify us in return, he should call us instead.

Caveats
Michael suddenly becomes ever so important. Everybody knows only him, and only he can
manage their interactions. He may even become a God Object, all-knowing and almighty,
which is an antipattern from Chapter 9, Designed for Concurrency. Even if he's so important,
be sure to define what this Mediator should, and, even more importantly, what it shouldn't,
do.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[111]

Memento
Since Michael became a manager, it's been very hard to catch him if I have a question. And
when I do ask him something, he just throws something and runs to the next meeting.

Yesterday, I asked him what the next weapon we would introduce in our Maronic game
should be. He told me it should be a Coconut Cannon, clear as day. But today, when I
presented him with this feature, he chirped at me angrily! He said he told me to implement
a Pineapple Launcher instead. I'm lucky he's just a canary still...

But it would be great if I could just record him, and when we have another meeting that
goes awry because he's not paying full attention, I would just replay everything he said.

Remembrance
Summing up my problems first—Michael's thoughts are his and his only:

class Manager {
 private var lastThought = "Should get some coffee"
 private var repeatThat = 3
 private var thenHesitate = "Or maybe tea?"
 private var secretThought = "No, coffee it is"
 ...
}

Moreover, they're quite complex and scattered. I have no access to them, but only to their
byproduct:

class Manager {
 ...
 fun whatAreYouThinking() {
 for (i in 1..repeatThat) {
 println(lastThought)
 }
 println(thenHesitate)
 }
 ...
}

Even recording what he says is quite hard (because he doesn't return anything).

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[112]

And even if I did record him, Michael can claim it's what he said, not what he meant:

Why did you bring me tea? I wanted coffee!

The solution may seem quite obvious. Let's use an inner class, thought, that will capture
this last thought:

class Manager {
 ...
 class Thought {
 fun captureThought(): CapturedThought {
 return CapturedThought(lastThought,
 repeatThat,
 thenHesitate,
 secretThought)
 }
 }

 data class CapturedThought(val thought: String,
 val repeat: Int,
 val hesitate: String,
 val secret: String)
}

The only problem is that this code doesn't compile. It's because we're missing a new
keyword, inner, to mark our class. If we omit this keyword, the class is called Nested, and
is similar to the static nested class from Java.

Now we can record what Michael says at this moment:

val michael = Manager()

val captured = michael.Thought().captureThought()

Let's assume that Michael changes his mind at some point. We'll add another function for
that:

class Manager {
 ...
 fun anotherThought() {
 lastThought = "Tea would be better"
 repeatThat = 2
 thenHesitate = "But coffee is also nice"
 secretThought = "Big latte would be great"
 }
}
michael.anotherThought()

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[113]

We can always repeat the thought that we captured:

michael.whatAreYouThinking()

This will print:

Tea would be better
Tea would be better
But coffee is also nice

Let's check what we've captured:

println(captured)

This will print:

CapturedThought(thought=Should get some coffee, repeat=3, hesitate=Or maybe
tea?, secret=No, coffee it is)

We can even rewind Michael's thoughts if he would allow it:

class Manager {
 ...
 inner class Thought {
 ...
 fun rewindThought(val previousThought: CapturedThought) {
 with(previousThought) {
 lastThought = thought
 repeatThat = repeat
 thenHesitate = hesitate
 secretThought = secret
 }
 }
 }
 ...
}

Note how here we use the with standard function to avoid repeating previousThought
on each line.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[114]

Visitor
This design pattern is usually a close friend of the Composite design pattern that we
discussed in Chapter 3, Understanding Structural Patterns. It can either extract data from a
complex tree-like structure or add behavior to each node of the tree, much like
the Decorator design pattern.

So, my plan, being a lazy software architect, worked out quite well. Both my mail-sending
system from Builder and my request-answering system from Chain of
Responsibility worked quite well. But some developers still begin to suspect that I'm a bit
of a fraud.

To confuse them, I plan to produce weekly emails with links to all the latest buzzword
articles. Of course, I don't plan to read them myself, just collect them from some popular
technology sites.

Writing a crawler
Let's look at the following structure, which is very similar to what we had when discussing
the Iterator design pattern:

Page(Container(Image(),
 Link(),
 Image()),
 Table(),
 Link(),
 Container(Table(),
 Link()),
 Container(Image(),
 Container(Image(),
 Link())))

The Page is a container for other HtmlElements, but not HtmlElement by itself.
Container holds other containers, tables, links, and images. Image holds its link in the src
attribute. Link has the href attribute instead.

We start by creating a function that will receive the root of our object tree, a Page in this
case, and return a list of all available links:

fun collectLinks(page: Page): List<String> {
 // No need for intermediate variable there
 return LinksCrawler().run {
 page.accept(this)

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[115]

 this.links
 }
}

Using run allows us to control what we return from the block body. In this case, we would
return the links we've gathered.

In Java, the suggested way to implement the Visitor design pattern is to add a method for
each class that would accept our new functionality. We'll do the same, but not for all
classes. Instead, we'll define this method only for container elements:

private fun Container.accept(feature: LinksCrawler) {
 feature.visit(this)
}

// Same as above but shorter
private fun Page.accept(feature: LinksCrawler) = feature.visit(this)

Our feature will need to hold a collection internally, and expose it only for read purposes.
In Java, we would specify only the getter and no setter for that member. In Kotlin, we can
specify the value without a backing field:

class LinksCrawler {
 private var _links = mutableListOf<String>()

 val links
 get()= _links.toList()
 ...
}

We wish for our data structure to be immutable. That's the reason we're calling toList()
on it.

The functions that iterate over branches could be further simplified if
we use the Iterator design pattern.

For containers, we simply pass their elements further:

class LinksCrawler {
 ...
 fun visit(page: Page) {
 visit(page.elements)
 }

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[116]

 fun visit(container: Container) = visit(container.elements)
 ...
}

Specifying the parent class as sealed helps the compiler further:

sealed class HtmlElement

class Container(...) : HtmlElement(){
 ...
}

class Image(...) : HtmlElement() {
 ...
}

class Link(...) : HtmlElement() {
 ...
}

class Table : HtmlElement()

The most interesting logic is in the leaves:

class LinksCrawler {
 ...
 private fun visit(elements: List<HtmlElement>) {
 for (e in elements) {
 when (e) {
 is Container -> e.accept(this)
 is Link -> _links.add(e.href)
 is Image -> _links.add(e.src)
 else -> {}
 }
 }
 }
}

Note that in some cases, we don't want to do anything. That's specified by an empty block
in our else: else -> {}.

That's the first time we've seen smart casts in Kotlin.

Notice that after we checked that the element is a Link, we gained type-safe access to its
href attribute. That's because the compiler is doing the casts for us. The same holds true
for the Image element as well.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[117]

Although we achieved our goals, the usability of this pattern can be argued. As you can see,
it's one of the more verbose elements, and introduces tight coupling between classes
receiving additional behavior and Visitor itself.

Template method
Some lazy people make art out of their laziness. Take me for example. Here's my daily
schedule:

8:00–9:00: Arrive at the office1.
9:00–10:00: Drink coffee2.
10:00–12:00: Attend some meetings or review code3.
12:00–13:00: Go out for lunch4.
13:00–16:00: Attend some meetings or review code5.
16:00: Sneak out home6.

As you can see, some of the parts of the schedule never change, and some do. At first, I
thought I could decorate my changing schedule with that setup and teardown logic, which
happens before and after. But then there's lunch, which is holy for architects and happens in
between.

Java is pretty clear on what you should do. First, you create an abstract class. All methods
that you want to implement by yourself you mark as private:

abstract class DayRoutine {
 private fun arriveToWork() {
 println("Hi boss! I appear in the office sometimes!")
 }

 private fun drinkCoffee() {
 println("Coffee is delicious today")
 }

 ...

 private fun goToLunch() {
 println("Hamburger and chips, please!")
 }

 ...

 private fun goHome() {

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[118]

 // Very important no one notices me
 println()
 }

 ...
}

For all methods that are changing from day to day, you define an abstract:

abstract class DayRoutine {
 ...
 abstract fun doBeforeLunch()
 ...
 abstract fun doAfterLunch()
 ...
}

If you allow the changing of a method, but want to provide a default implementation, you
leave it public:

abstract class DayRoutine {
 ...
 open fun bossHook() {
 // Hope he doesn't hook me there
 }
 ...
}

And finally, you have a method that executes your algorithm. It's final by default:

abstract class DayRoutine {
 ...
 fun runSchedule() {
 arriveToWork()
 drinkCoffee()
 doAfterLunch()
 goToLunch()
 doAfterLunch()
 goHome()
 }
}

If we now want to have a schedule for Monday, we simply implement the missing parts:

class MondaySchedule : DayRoutine() {
 override fun doBeforeLunch() {
 println("Some pointless meeting")
 println("Code review. What this does?")

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[119]

 }

 override fun doAfterLunch() {
 println("Meeting with Ralf")
 println("Telling jokes to other architects")
 }

 override fun bossHook() {
 println("Hey, can I have you for a sec in my office?")
 }
}

What does Kotlin add on top of that? What it usually does—conciseness. As we've seen
previously, this can be achieved through functions.

We have three moving parts—two mandatory activities (the software architect must do
something before and after lunch) and one optional (the boss may stop him before he
sneaks off home or not):

fun runSchedule(beforeLunch: ()->Unit,
 afterLunch: ()->Unit,
 bossHook: (()->Unit)? = fun() { println() }) {
 ...
}

We'll have a function that accepts up to three other functions as its arguments. The first two
are mandatory, and the third may not be supplied at all, or assigned with null to explicitly
state that we don't want that function to happen:

fun runSchedule(...) {
 ...
 arriveToWork()
 drinkCoffee()
 beforeLunch()
 goToLunch()
 afterLunch()
 bossHook?.let { it() }
 goHome()
}

Inside this function, we'll have our algorithm. Invocations of beforeLunch() and
afterLunch() should be clear; after all, those are the functions that are passed to us as
arguments. The third one, bossHook, may be null, so we execute it only if it's not: ?.let {
it() }.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[120]

But what about the other functions, those we want to always implement by ourselves?
Kotlin has a notion of local functions. Those are functions that reside in other functions:

fun runSchedule(...) {
 fun arriveToWork(){
 println("How are you all?")
 }

 val drinkCoffee = { println("Did someone left the milk out?") }

 fun goToLunch() = println("I would like something italian")

 val goHome = fun () {
 println("Finally some rest")
 }

 arriveToWork()
 drinkCoffee()
 ...
 goToLunch()
 ...
 goHome()
}

Those are all valid ways to declare a local function. No matter how you define them, they're
invoked in the same way.

We're left with the same result, as you can see. Define the algorithm structure, but let others
decide what to do at some points: that's what the Template Method is all about.

Observer
Probably one of the highlights of this chapter, this design pattern will provide us with a
bridge to the following chapters, dedicated to functional programming.

So, what is Observer pattern about? You have one publisher, which may also be called a
subject, that may have many subscribers, which may also be called observers. Each time
something interesting happens with the publisher, it should update all of its subscribers.

This may look a lot like the Mediator design pattern, but there's a twist. Subscribers should
be able to register or unregister themselves at runtime.

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[121]

In the classical implementation, all subscribers/observers need to implement a certain
interface in order for the publisher to be able to update them. But since Kotlin has higher-
order functions, we can omit this part. The publisher will still have to provide means for
observers to be able to subscribe and unsubscribe.

Animal Choir
So, animals have decided to have a choir of their own. The cat was elected as the conductor
of the choir (it didn't like to sing anyway).

The problem is that animals escaped from the Java world, and don't have a common
interface. Instead, each has a different method to make a sound:

class Bat {
 fun screech() {
 println("Eeeeeee")
 }
}

class Turkey {
 fun gobble() {
 println("Gob-gob")
 }
}

class Dog {
 fun bark() {
 println("Woof")
 }

 fun howl() {
 println("Auuuu")
 }
}

Luckily, the cat was elected not only because it was vocally challenged, but also because it
was smart enough to follow this chapter until now. So it knows that in the Kotlin world, it
can accept functions:

class Cat {
 ...
 fun joinChoir(whatToCall: ()->Unit) {
 ...
 }

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[122]

 fun leaveChoir(whatNotToCall: ()->Unit) {
 ...
 }
 ...
}

Previously, we've seen how to pass a new function as an argument, as well as passing a
literal function. But how do we pass a reference to a member function?

That's what member reference operator is for—:::

val catTheConductor = Cat()

val bat = Bat()
val dog = Dog()
val turkey = Turkey()

catTheConductor.joinChoir(bat::screech)
catTheConductor.joinChoir(dog::howl)
catTheConductor.joinChoir(dog::bark)
catTheConductor.joinChoir(turkey::gobble)

Now the cat needs to save all those subscribers somehow. Luckily, we can put them on a
map. What would be the key? It could be the function itself:

class Cat {
 private val participants = mutableMapOf<()->Unit, ()->Unit>()

 fun joinChoir(whatToCall: ()->Unit) {
 participants.put(whatToCall, whatToCall)
 }
 ...
}

If all those ()->Unit instances are making you dizzy, be sure to use
typealias to give them more semantic meaning, such as subscriber.

The bat decides to leave the choir. After all, no one is able to hear its beautiful singing
anyway:

class Cat {
 ...
 fun leaveChoir(whatNotToCall: ()->Unit) {
 participants.remove(whatNotToCall)
 }

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[123]

 ...
}

All Bat needs to do is to pass its subscriber function again:

catTheConductor.leaveChoir(bat::screech)

That's the reason we used the map in the first place. Now Cat can call all its choir members
and tell them to sing. Well, produce sounds:

typealias Times = Int

class Cat {
 ...
 fun conduct(n: Times) {
 for (p in participants.values) {
 for (i in 1..n) {
 p()
 }
 }
 }
}

The rehearsal went well. But Cat feels very tired after doing all those loops. It would rather
delegate the job to choir members. That's not a problem at all:

class Cat {
 private val participants = mutableMapOf<(Int)->Unit, (Int)->Unit>()

 fun joinChoir(whatToCall: (Int)->Unit) {
 ...
 }

 fun leaveChoir(whatNotToCall: (Int)->Unit) {
 ...
 }

 fun conduct(n: Times) {
 for (p in participants.values) {
 p(n)
 }
 }
}

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[124]

Our subscribers all look like turkeys here:

class Turkey {
 fun gobble(repeat: Times) {
 for (i in 1..repeat) {
 println("Gob-gob")
 }
 }
}

Actually, it is a bit of a problem. What if the Cat was to tell each animal what sound to
make: high or low? We'll have to change all subscribers again, and the Cat too.

While designing your publisher, pass single data classes with many properties, instead of
sets of data classes or other types. That way, you'll have to refactor your subscribers less, in
case new properties are added:

enum class SoundPitch {HIGH, LOW}
data class Message(val repeat: Times, val pitch: SoundPitch)

class Bat {
 fun screech(message: Message) {
 for (i in 1..message.repeat) {
 println("${message.pitch} Eeeeeee")
 }
 }
}

Make sure that your messages are immutable. Otherwise, you may
experience strange behavior!

What if you have sets of different messages you're sending from the same publisher?

Use smart casts:

interface Message {
 val repeat: Times
 val pitch: SoundPitch
}

data class LowMessage(override val repeat: Times) : Message {
 override val pitch = SoundPitch.LOW
}

data class HighMessage(override val repeat: Times) : Message {

see more please visit: https://homeofbook.com

Getting Familiar with Behavioral Patterns Chapter 4

[125]

 override val pitch = SoundPitch.HIGH
}

class Bat {
 fun screech(message: Message) {
 when (message) {
 is HighMessage -> {
 for (i in 1..message.repeat) {
 println("${message.pitch} Eeeeeee")
 }
 }
 else -> println("Can't :(")
 }
 }
}

Summary
That was a long chapter. But we've also learned a lot. We finished covering all classical
design patterns, including eleven behavioral ones. In Kotlin, functions can be passed to
other functions, returned from functions, and assigned to variables. That's what the
"functions as first-class citizens" concept is all about. If your class is all about behavior, it
often makes sense to replace it with a function. Iterator is yet another operator in the
language. Sealed classes help in making when statements exhaustive. The run extension
function allows for controlling what will be returned from it. A lambda with a receiver
allows more clear syntax in your DSLs. Another keyword, lateinit, tells the compiler to
relax a bit in its null safety checks. Use with care! And finally, we covered how to reference
an existing method with ::.

In the next chapter, we'll move on from an object-oriented programming paradigm with its
well-known design patterns to another paradigm—functional programming.

see more please visit: https://homeofbook.com

5
Functional Programming

In this chapter, we're going to discuss basic principles of functional programming, and how
they fit into the Kotlin programming language. We won't introduce much new syntax, as
you'll soon see. It would have been hard to discuss benefits of the language in the previous
chapters without touching on concepts such as data immutability and functions as first-class
values. But, as we did before, we'll look at those features from a different angle: not how to
use them to implement well-known design patterns in a better way, but their purpose.

In this chapter, we will cover the following topics:

Why functional programming?
Immutability
Functions as values
Expressions, not statements
Recursion

Why functional programming?
Functional programming has been around for almost as long as other programming
paradigms, such as procedural and object-oriented programming, if not longer. But in the
past 10 years, it has gained major momentum. The reason for that is because something else
stalled: CPU speeds. We cannot speed up our CPUs as much as we did in the past, so we
must parallelize our programs. And it turns out that the functional programming paradigm
is exceptional at running parallel tasks.

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[127]

The evolution of multicore processors is a very interesting topic by itself, but we'll be able
to cover it only briefly. Workstations had multiple processors since the 1980s at least, to
support running tasks from different users in parallel. Since workstations were huge
anyway, they didn't need to worry about cramming everything into one chip. But with
multiprocessors coming to the consumer market around 2005, it was necessary to have one
physical unit that could do work in parallel. That's the reason we have multiple cores on
one chip in our PC or laptop.

But that's not the only reason some swear by functional programming. Here are a few
more:

Functional programming favors pure functions, and pure functions are usually
easier to reason about and to test
Code written in a functional way is often more declarative than imperative,
dealing with the what and not the how

Immutability
One of the key concepts of functional programming is immutability. It means that from the
moment the function receives input to the moment the function returns output, the object
doesn't change. How could it change, you wonder? Let's see a simple example:

fun <T> printAndClear(list: MutableList<T>) {
 for (e in list) {
 println(e)
 list.remove(e)
 }
}
printAndClear(mutableListOf("a", "b", "c"))

The output would be first "a", then we'll receive ConcurrentModificationException.

Wouldn't it be great if we could protect ourselves from such runtime exceptions in the first
place?

Tuples
In functional programming, a tuple is a piece of data that cannot be changed after it is
created. One of the most basic tuples in Kotlin is Pair:

val pair = "a" to 1

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[128]

Pair contains two properties, first and second, and is immutable:

pair.first = "b" // Doesn't work
pair.second = 2 // Still doesn't

We can destructure a Pair into two separate values:

val (key, value) = pair
println("$key => $value")

When iterating over a map, we receive another tuple, Map.Entry:

for (p in mapOf(1 to "Sunday", 2 to "Monday")) {
 println("${p.key} ${p.value}")
}

In general, data classes are usually a good implementation for tuples. But, as we'll see in
the Value Mutation section, not every data class is a proper tuple.

Value mutation
In Maronic, we would like to count the average score over one thousand games. For that,
we have the following data class:

data class AverageScore(var totalScore: Int = 0,
 var gamesPlayed: Int = 0) {
 val average: Int
 get() = if (gamesPlayed <= 0)
 0
 else
 totalScore / gamesPlayed
}

We were smart: we protected ourselves from any invalid output by checking for divisions
by zero.

But what will happen when we write the following code?

val counter = AverageScore()

thread(isDaemon = true) {
 while(true) counter.gamesPlayed = 0
}

for (i in 1..1_000) {
 counter.totalScore += Random().nextInt(100)

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[129]

 counter.gamesPlayed++

 println(counter.average)
}

Soon enough, you'll receive ArithmeticException anyway. Our counter somehow
becomes zero.

If you want your data classes to be immutable, be sure to specify all their properties as
val (values), and not var (variables).

Immutable collections
I think that our junior developer learned their lesson. Instead, they produced this code,
which is not very efficient, but which gets rid of those variables:

data class ScoreCollector(val scores: MutableList<Int> = mutableListOf())

val counter = ScoreCollector()

for (i in 1..1_000) {
 counter.scores += Random().nextInt(100)

 println(counter.scores.sumBy { it } / counter.scores.size)
}

But the maleficent thread strikes again:

thread(isDaemon= true, name="Maleficent") {
 while(true) counter.scores.clear()
}

We again receive ArithmeticException.

It's not enough that your data class contains only values. If its value is a collection, it must
be immutable in order for the data class to be considered immutable. The same rule is
applied to classes contained within other data classes:

data class ImmutableScoreCollector(val scores: List<Int>)

Now the maleficent thread cannot even call clear() on this collection. But how should we
add scores to it?

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[130]

One option is to pass the entire list in the constructor:

val counter = ImmutableScoreCollector(List(1_000) {
 Random().nextInt(100)
})

Functions as values
We already covered some of the functional capabilities of Kotlin in the chapters dedicated
to Design Patterns. The Strategy and Command design patterns are but a few that heavily
rely on the ability to accept functions as arguments, return functions, store them as values,
or put them inside collections. In this section, we'll cover some other aspects of functional
programming in Kotlin, such as function purity and currying.

Higher-order functions
As we discussed previously, in Kotlin, it's possible for a function to return another function:

fun generateMultiply(): (Int, Int) -> Int {
 return { x: Int, y: Int -> x * y}
}

Functions can also be assigned to a variable or value to be invoked later on:

val multiplyFunction = generateMultiply()
...
println(multiplyFunction(3, 4))

The function assigned to a variable is usually called a literal function. It's also possible to
specify a function as a parameter:

fun mathInvoker(x: Int, y: Int, mathFunction: (Int, Int) -> Int) {
 println(mathFunction(x, y))
}

mathInvoker(5, 6, multiplyFunction)

If a function is the last parameter, it can also be supplied ad hoc, outside of the brackets:

mathInvoker(7, 8) { x, y ->
 x * y
}

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[131]

In general, a function without a name is called an anonymous function. If a function without
a name uses short syntax, it's called a lambda:

val squareAnonymous = fun(x: Int) = x * x
val squareLambda = {x: Int -> x * x}

Pure functions
A pure function is a function without any side effects. Take the following function, for
example:

fun sayHello() {
 println("Hello")
}

How do you test to see whether "Hello" is indeed printed? The task is not as simple as it
seems, as we'll need some means to capture the standard output, the same console where
we usually see stuff printed.

Compare it to the following function:

fun hello() = "Hello"

The following function doesn't have any side effects. That makes it a lot easier to test:

fun testHello(): Boolean {
 return "Hello" == hello()
}

Does the hello() function look a bit meaningless to your eyes? That's actually one of the
properties of pure functions. Their invocation could be replaced by their result (if we knew
all their results, that is). This is often called referential transparency.

Not every function written in Kotlin is pure:

fun <T> removeFirst(list: MutableList<T>): T {
 return list.removeAt(0)
}

If we call the function twice on the same list, it will return different results:

val list = mutableListOf(1, 2, 3)

println(removeFirst(list)) // Prints 1
println(removeFirst(list)) // Prints 2

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[132]

Try this one:

fun <T> withoutFirst(list: List<T>): T {
 return ArrayList(list).removeAt(0)
}

Now our function is totally predictable, no matter how many times we invoke it:

val list = mutableListOf(1, 2, 3)

println(withoutFirst(list)) // It's 1
println(withoutFirst(list)) // Still 1

As you can see, we used an immutable interface this time, List<T>, which helps us by
preventing even the possibility of mutating our input. Together with immutable values
from the previous section, pure functions provide a very strong tool that allows easier
testing by providing predictable results and parallelization of our algorithms.

Currying
Currying is a way to translate a function that takes a number of arguments into a chain of
functions that each take a single argument. This may sound confusing, so let's look at a
simple example:

fun subtract(x: Int, y: Int): Int {
 return x - y
}
println(subtract(50, 8))

This is a function that returns two arguments. The result is quite obvious. But maybe we
would like to invoke this function with the following syntax instead:

subtract(50)(8)

We've already seen how we can return a function from another function:

fun subtract(x: Int): (Int) -> Int {
 return fun(y: Int): Int {
 return x - y
 }
}

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[133]

Here it is in the shorter form:

fun subtract(x: Int) = fun(y: Int): Int {
 return x + y
}

And here it is in an even shorter form:

fun subtract(x: Int) = {y: Int -> x - y}

Although not very useful by itself, it's still an interesting concept to grasp. And if you're a
JavaScript developer looking for a new job, make sure you understand it really well, since
it's being asked about in nearly every interview.

Memoization
If our function always returns the same output for the same input, we could easily map
between previous input and output, and use it as a cache. That technique is called
memoization:

class Summarizer {
 private val resultsCache = mutableMapOf<List<Int>, Double>()

 fun summarize(numbers: List<Int>): Double {
 return resultsCache.computeIfAbsent(numbers, ::sum)
 }

 private fun sum(numbers: List<Int>): Double {
 return numbers.sumByDouble { it.toDouble() }
 }
}

We use a method reference operator, ::, to tell computeIfAbsent to use the sum()
method in the event that input wasn't cached yet.

Note that sum() is a pure function, while summarize() is not. The latter will behave
differently for the same input. But that's exactly what we want in this case:

val l1 = listOf(1, 2, 3)
val l2 = listOf(1, 2, 3)
val l3 = listOf(1, 2, 3, 4)

val summarizer = Summarizer()

println(summarizer.summarize(l1)) // Computes, new input

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[134]

println(summarizer.summarize(l1)) // Object is the same, no compute
println(summarizer.summarize(l2)) // Value is the same, no compute
println(summarizer.summarize(l3)) // Computes

The combination of immutable objects, pure functions, and plain old classes provides us
with a powerful tool for performance optimizations. Just remember, nothing is free. We
only trade one resource, CPU time, for another resource, memory. And it's up to you to
decide which resource is more expensive for you in each case.

Expressions, not statements
A statement is a block of code that doesn't return anything. An expression, on the other
hand, returns a new value. Since statements produce no results, the only way for them to be
useful is to mutate state. And functional programming tries to avoid mutating the state as
much as possible. Theoretically, the more we rely on expressions, the more our functions
will be pure, with all the benefits of functional purity.

We've used the if expression many times already, so one of its benefits should be clear: it's
less verbose and, for that reason, less error-prone than the if statement.

Pattern matching
The concept of pattern matching is like switch/case on steroids for someone who comes
from Java. We've already seen how when expression can be used, in Chapter 1, Getting
Started with Kotlin, so let's briefly discuss why this concept is important for the functional
paradigm.

As you may know, switch in Java accepts only some primitive types, strings, or enums.

Consider the following code in Java:

class Cat implements Animal {
 public String purr() {
 return "Purr-purr";
 }
}

class Dog implements Animal {
 public String bark() {
 return "Bark-bark";
 }

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[135]

}

interface Animal {}

If we were to decide which of the functions to call, we would need something like this:

public String getSound(Animal animal) {
 String sound = null;
 if (animal instanceof Cat) {
 sound = ((Cat)animal).purr();
 }
 else if (animal instanceof Dog) {
 sound = ((Dog)animal).bark();
 }

 if (sound == null) {
 throw new RuntimeException();
 }
 return sound;
}

This method could be shortened by introducing multiple returns, but in real projects,
multiple returns are usually bad practice.

Since we don't have a switch statement for classes, we need to use an if statement
instead.

Compare that with the following Kotlin code:

fun getSound(animal: Animal) = when(animal) {
 is Cat -> animal.purr()
 is Dog -> animal.bark()
 else -> throw RuntimeException()
}

Since when is an expression, we avoided the intermediate variable altogether. But what's
more, using pattern matching, we can also avoid most of the code that concerns type checks
and casts.

Recursion
Recursion is a function invoking itself with new arguments:

fun sumRec(i: Int, numbers: List<Int>): Long {
 return if (i == numbers.size) {

see more please visit: https://homeofbook.com

Functional Programming Chapter 5

[136]

 0
 } else {
 numbers[i] + sumRec(i + 1, numbers)
 }
}

We usually avoid recursion, due to Stack Overflow error that we may receive if our call
stack is too deep. You can call this function with a list that contains a million numbers to
experience it:

val numbers = List(1_000_000) {it}
println(sumRec(0, numbers)) // Crashed pretty soon, around 7K

One of the great benefits of tail recursion is that it avoids the dreaded stack overflow
exception.

Let's rewrite our recursive function using a new keyword, tailrec, to avoid that problem:

tailrec fun sumRec(i: Int, sum: Long, numbers: List<Int>): Long {
 return if (i == numbers.size) {
 return sum
 } else {
 sumRec(i+1, numbers[i] + sum, numbers)
 }
}

Now the compiler will optimize our call and avoid exception completely.

Summary
You should now have a better understanding of functional programming and its benefits.
We've discussed the concepts of immutability and pure functions. A combination of the
two often results in more testable code, which is easier to maintain.

Currying and memoization are two useful patterns that originate from functional
programming.

Kotlin has a tailrec keyword that allows the compiler to optimize tail recursion. We also
looked at higher-order functions, expressions versus statements, and pattern matching.

In the next chapter, we'll put this knowledge to practical use, and discover how reactive
programming builds upon functional programming in order to create scalable and resilient
systems.

see more please visit: https://homeofbook.com

6
Streaming Your Data

In this chapter, we'll discuss higher-order functions for collections. For Java developers,
they first appeared in Java 8 with the introduction of Stream API. But they were around for
much longer in functional languages.

First, since we expect that many of our readers are familiar with Java 8, let's cover what
Stream API is in Java briefly.

Streams from Java8 are not to be confused with some of the I/O classes with similar names,
such as InputStream or OutputStream. While the latter represent data, the former are
sequences of elements of the same type.

If those are sequences, and they all have the same type, how are they different from Lists?
Well, streams can be infinite, unlike collections.

There is also a set of actions defined for Java streams. Not only are those actions the same
for any kind of stream, they also have familiar names for those that come from totally
different languages. There's the map() function in JavaScript, which does the same as
the map() method in Java.

The idea of making extensive use of small, reusable, and composable functions comes
directly from functional programming, which we discussed in the previous chapter. They
allow us to write code in a manner that tells what we want to do, instead of how we want to
do it.

But in Java, to use those functions, we have to either receive a stream or create a stream
from a collection.

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[138]

In Java, in order to get to all this functional goodness for collections, we can do the
following:

Arrays.asList("a", "b", "c") // Initialize list
 .stream() // Convert to stream
 .map(...) // Do something functional here
 .toList() // Convert back to list

In Kotlin, you can do the same:

listOf("a", "b", "c").stream().map{...}.toList()

But all those methods and more are available directly on collections:

listOf("a", "b", "c").map(...)

That's all; there is no need to convert from the stream and back unless you plan to operate
on infinite data in the first place.

Of course, it's not as simple as that, but we cover the differences and pitfalls near the end of
this chapter, in the Streams are lazy, collections are not section. Let's start by understanding
what those weird functions actually do.

In this chapter, we won't be able to cover all the functions available on collections, but we'll
cover the most widely used ones.

The examples will be somewhat boring, mostly lists of numbers, letters, and people. That's
to let you focus on how each function actually works. We'll go back to some crazy examples
in the next chapter. Stay tuned.

The it notation
We glanced at the notion of it briefly in previous chapters, but for this chapter, we need to
understand it a bit more (pun intended).

Kotlin is all about brevity. First, if our lambda doesn't have an argument, we don't need to
specify anything:

val noParameters = { 1 } // () -> Int implicitly

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[139]

But what if we have a function that takes another function as an argument (and doesn't do
anything with it for simplicity)? See the following code:

fun oneParameter(block: (Int)->Long){ }

We can specify both the argument name and type explicitly, and wrap them in brackets,
like any other function invocation:

val oneParameterVeryVeryExplicit = oneParameter({x: Int -> x.toLong() })

But since the lambda is the last parameter (and the only one, in this case), we can omit the
brackets:

val oneParameterVeryExplicit = oneParameter {x: Int -> x.toLong() }

And since the compiler can infer the type of parameter, we can omit it too:

val oneParameterExplicit = oneParameter {x -> x.toLong() }

And since x is the only parameter, we can use the implicit name for it, which is it:

val oneParameterImplicit = oneParameter { it.toLong() }

We'll use the shortest notation in most of the following examples.

The map() function
One of the most well known higher-order functions on collections is map().

Let's say you have a function that receives a list of strings and returns a new list of the same
size containing each string concatenated to itself:

val letters = listOf("a", "b", "c", "d")

println(repeatAll(letters)) // [aa, bb, cc, dd]

The task is quite trivial:

fun repeatAll(letters: List<String>): MutableList<String> {
 val repeatedLetters = mutableListOf<String>()

 for (l in letters) {
 repeatedLetters.add(l + l)
 }
 return repeatedLetters
}

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[140]

But for such a trivial task, we had to write quite a lot of code. What would we have to
change in order to capitalize each string instead of repeating it twice? We would like to
change only this line:

repeatedLetters.add(l + l) ----> repeatedLetters.add(l.toUpperCase())

But we have to create another function for that.

Of course, in Kotlin, we could pass a function as a second parameter. And since we don't
actually care what the type is, as long as it's the same for both input and output, we can use
generics:

fun <T> repeatSomething(input: List<T>, action: (T) -> T): MutableList<T> {
 val result = mutableListOf<T>()
 for (i in input) {
 result.add(action(i))
 }
 return result
}

Now we can call our generified function as follows:

println(repeatSomething(letters) {
 it.toUpperCase()
})

And that's almost exactly what .map() does:

println(letters.map {
 it.toUpperCase()
})

Another variation of map() is mapTo().

In addition to the lambda, it receives the destination where the results should be
incorporated.

You could do the following:

val letters = listOf("a", "B", "c", "D")
val results = mutableListOf<String>()

results.addAll(letters.map {
 it.toUpperCase()
})

results.addAll(letters.map {

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[141]

 it.toLowerCase()
})

println(results)

But mapTo() lets you do this:

val letters = listOf("a", "B", "c", "D")
val results = mutableListOf<String>()

letters.mapTo(results) {
 it.toUpperCase()
}

letters.mapTo(results) {
 it.toLowerCase()
}

println(results)

In the second option, we use the results list as an argument, which allows us to reduce code
nesting.

Filter family
Another common task is filtering a collection. You know the drill. You iterate over it and
put only values that fit your criteria in a new collection. For example, if given a range of
numbers between 1-10, we would like to return only odd ones. Of course, we've already
learned this lesson from the previous example, and wouldn't simply create a function called
filterOdd(), as later we would be required to also implement filterEven(),
filterPrime(), and so on. We'll receive a lambda as the second argument right away:

fun filter(numbers: List<Int>, check: (Int)->Boolean): MutableList<Int> {
 val result = mutableListOf<Int>()

 for (n in numbers) {
 if (check(n)) {
 result.add(n)
 }
 }

 return result
}

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[142]

Invoking it will print only odd numbers. How odd:

println(filter((1..10).toList()) {
 it % 2 != 0
}) // [1, 3, 5, 7, 9]

And, of course, we have a built-in function that does exactly that already:

println((1..10).toList().filter {
 it % 2 != 0
})

Find family
Say you have an unordered list of objects:

data class Person(val firstName: String,
 val lastName: String,
 val age: Int)
val people = listOf(Person("Jane", "Doe", 19),
 Person("John", "Doe", 24),
 Person("John", "Smith", 23))

And would like to find a first object that matches some criteria. Using extension functions,
you could write something like this:

fun <T> List<T>.find(check: (T) -> Boolean): T? {
 for (p in this) {
 if (check(p)) {
 return p
 }
 }
 return null
}

And then, when you have a list of objects, you can simply call find() on it:

println(people.find {
 it.firstName == "John"
}) // Person(firstName=John, lastName=Doe)

Luckily, you don't have to implement anything. This method is already implemented for
you in Kotlin.

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[143]

There's also an accompanying findLast() method, which does the same, but which starts
with the last element of the collection:

println(people.findLast {
 it.firstName == "John"
}) // Person(firstName=John, lastName=Smith)

Drop family
OK, this is cool if you have to iterate over all elements in your collection anyway. But with
the for loops in Java, you could do something like this:

// Skips first two elements
for (int i = 2; i < list.size(); i++) {
 // Do something here
}

How are you going to achieve that with your funky functions, huh?

Well, for that there's drop():

val numbers = (1..5).toList()
println(numbers.drop(2)) // [3, 4, 5]

Do note that this doesn't modify the original collection in any way:

println(numbers) // [1, 2, 3, 4, 5]

If you would like to stop your loop earlier, there's dropLast() for that:

println(numbers.dropLast(2)) // [1, 2, 3]

Another interesting function is dropWhile(), in which it receives a predicate instead of a
number. It skips until the predicate returns true for the first time:

val readings = listOf(-7, -2, -1, -1, 0, 1, 3, 4)

println(readings.dropWhile {
 it <= 0
}) // [1, 3, 4]

And there's the accompanying dropLastWhile().

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[144]

Sort family
Don't worry, we won't have to implement our own sort algorithm. This is not CS 101.

Having the list of people from the preceding find() example, we would like to sort them
by age:

val people = listOf(Person("Jane", "Doe", 19),
 Person("John", "Doe", 24),
 Person("John", "Smith", 23))

It is easily achieved with sortedBy():

println(people.sortedBy { it.age })

The preceding code prints the following output:

[Person(firstName=Jane, lastName=Doe, age=19), Person(firstName=John,
lastName=Smith, age=23), Person(firstName=John, lastName=Doe, age=24)]

There's also sortedByDescending(), which will reverse the order of the results:

println(people.sortedByDescending { it.lastName })

The preceding code prints the following output:

[Person(firstName=John, lastName=Smith, age=23), Person(firstName=John,
lastName=Doe, age=24), Person(firstName=Jane, lastName=Doe, age=19)]

And if you want to compare by more than one parameter, use the combination of
sortedWith and compareBy:

println(people.sortedWith(compareBy({it.lastName}, {it.age})))

ForEach
This is the first terminator we'll see. Terminator functions return something other than a
new collection, so you can't chain the result of this call to other calls.

In the case of forEach(), it returns Unit. So it's like the plain, old for loop:

val numbers = (0..5)

numbers.map { it * it} // Can continue
 .filter { it < 20 } // Can continue

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[145]

 .sortedDescending() // Still can
 .forEach { println(it) } // Cannot continue

Do note that forEach() has some minor performance impacts compared to the traditional
for loop.

There's also forEachIndexed(), which provides an index in the collection alongside the
actual value:

numbers.map { it * it }
 .forEachIndexed { index, value ->
 print("$index:$value, ")
}

The output for the preceding code will be as follows:

0:1, 1:4, 2:9, 3:16, 4:25,

Since Kotlin 1.1, there's also the onEach() function, which is a bit more useful, since it
returns the collection again:

numbers.map { it * it}
 .filter { it < 20 }
 .sortedDescending()
 .onEach { println(it) } // Can continue now
 .filter { it > 5 }

Join family
In the previous example, we used the side effect of printing to the console, which is not
favorable in terms of functional programming. What's more, we also have this ugly comma
at the end of our output as follows:

0:1, 1:4, 2:9, 3:16, 4:25,

There must be a better way.

How many times have you had to actually write code to simply concatenate some list of
values into a string? Well, Kotlin has a function for that:

 val numbers = (1..5)

 println(numbers.joinToString { "$it"})

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[146]

The preceding code will give the following output:

1, 2, 3, 4, 5

Simply beautiful, isn't it?

And if you want to separate it with other characters, or don't want spaces, there's a way to
configure it:

println(numbers.joinToString(separator = "#") { "$it"})

The output of the preceding code will be as follows:

1#2#3#4#5

Fold/Reduce
Much like forEach(), both fold() and reduce() are terminating functions. But instead
of terminating with Unit, which is not useful, they terminate with a single value of the same
type.

The most common example of reduce is, of course, for adding up stuff. With the list of
people from the previous example, we can do the following:

println(people.reduce {p1, p2 ->
 Person("Combined", "Age", p1.age + p2.age)
 })

The output of the preceding code will be as follows:

Person(firstName=Combined, lastName=Age, age=64)

Well, combining a lot of people into one doesn't make much sense, unless you're a fan of
some horror movies.

But with reduce, we can also compute who's the oldest or the youngest in the list:

println(people.reduce {p1, p2 ->
 if (p1.age > p2.age) { p1 } else { p2 }
})

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[147]

The second function we're about to discuss, fold(), is much like reduce, but it takes
another argument, which is the initial value. It's useful when you've already computed
something, and now want to use this intermediate result:

println(people.drop(1) // Skipping first one
 .fold(people.first()) // Using first one as initial value
 {p1, p2 ->
 Person("Combined", "Age", p1.age + p2.age)
})

Flat family
Say you have a list of other lists. You probably got it from different database queries, or
maybe from different configuration files:

val listOfLists = listOf(listOf(1, 2),
 listOf(3, 4, 5), listOf(6, 7, 8))

// [[1, 2], [3, 4, 5], [6, 7, 8]]

And you want to turn them into a single list such as the following:

[1, 2, 3, 4, 5, 6, 7, 8]

One way to merge those lists is to write some imperative code:

val results = mutableListOf<Int>()

for (l in listOfLists) {
 results.addAll(l)
}

But calling flatten() will do the same for you:

listOfLists.flatten()

You can also control what happens with those results using flatMap():

println(listOfLists.flatMap {
 it.asReversed()
})

Note that in this case, it refers to one of the sublists.

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[148]

You can also decide to use flatMap() for type conversions:

println(listOfLists.flatMap {
 it.map { it.toDouble() }
// ^ ^
// (1) (2)
})

The preceding code prints the following output:

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]

We converted all integers to doubles, and then merged them into a single list.

Note how the first it refers to one of the lists, while the second it refers to a single item
inside the current list.

As far as flatten() goes, it flattens only one level down. To demonstrate that, we'll use
Set for the first level of nesting, List for the second level of nesting, and Set again for the
third level of nesting:

val setOfListsOfSets = setOf(
// ^
// (1)
 listOf(setOf(1, 2), setOf(3, 4, 5), setOf(6, 7, 8)),
// ^ ^
// (2) (3)
 listOf(setOf(9, 10), setOf(11, 12))
// ^ ^
// (2) (3)
)
// Prints [[[1, 2], [3, 4, 5], [6, 7, 8]], [[9, 10], [11, 12]]]

If we call flatten once, we receive only the first level flattened:

println(setOfListsOfSets.flatten())

The preceding code prints the following output:

[[1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]

To completely flatten the list, we need to call flatten() twice:

println(setOfListsOfSets.flatten().flatten())

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[149]

The preceding code prints the following output:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Kotlin prevents us from calling flatten() three times, as it recognizes the amount of
nesting we have:

//Won't compile
println(setOfListsOfSets.flatten().flatten().flatten())

Slice
Say we have a list of elements, as follows:

val numbers = (1..10).toList()
// Prints [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

We can take only part of this list using slice():

println(numbers.slice((0..3)))
// Prints [1, 2, 3, 4], last index is included

We're using Kotlin ranges, which is a nice syntax.

In Java, there's a subList() method, which is similar, but not inclusive:

println(numbers.subList(0, 3))
// Prints [1, 2, 3], last index is excluded

Chunked
It's very common to see this chunking logic in production code.

You have a huge list of identifiers that you read from somewhere and you need to check
whether your database or some remote service contains them. But there are limitations on
how many identifiers you can pass with a single request. Databases, for example, often
have limitations of the number of arguments to a query and on the total query length:

fun dbCall(ids: List<Int>) {
 if (ids.size > 1000) {
 throw RuntimeException("Can't process more than 1000 ids")
 }

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[150]

 // Does something here
}

We can't simply pass an entire list to our function:

// That will fail at runtime
dbCall(hugeList)

So, we write large piles of imperative code:

val pageSize = 1000
val pages = hugeList.size / pageSize

for (i in 0..pages) {
 val from = i * pageSize
 val p = (i+1) * pageSize
 val to = minOf(p, hugeList.size)
 dbCall(hugeList.slice(from until to))
}

Luckily, since Kotlin 1.2, there's the chunked() function for that:

hugeList.chunked(pageSize) {
 dbCall(it)
}

Zip/Unzip
Not related to archiving in any way, zip() allows us to create pairs out of two lists based
on their indexes. That may sound confusing, so let's look at an example.

We have two functions, one fetching all active employees, and the other for how many days
the employee was employed in our startup:

val employeeIds = listOf(5, 8, 13, 21, 34, 55, 89)
val daysInCompany = listOf(176, 145, 117, 92, 70, 51, 35, 22, 12, 5)

Calling zip() between the two of them will produce the following result:

println(employeeIds.zip(daysInCompany))

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[151]

The preceding code prints the following output:

[(5, 176), (8, 145), (13, 117), (21, 92), (34, 70), (55, 51), (89, 35)]

Note that since we had a bug in our second function, and returned the days for the
employees that had already left our startup, the length of the two lists wasn't equal, to
begin with. Calling zip() will always produce the shortest list of pairs:

println(daysInCompany.zip(employeeIds))

The preceding code prints the following output:

[(176, 5), (145, 8), (117, 13), (92, 21), (70, 34), (51, 55), (35, 89)]

Note that this is not a map, but a list of pairs.

Having such a list, we can also unzip it:

val employeesToDays = employeeIds.zip(daysInCompany)

val (employees, days) = employeesToDays.unzip()
println(employees)
println(days)

The preceding code prints the following:

[5, 8, 13, 21, 34, 55, 89]
[176, 145, 117, 92, 70, 51, 35]

Streams are lazy, collections are not
Be careful with those functions on large collections, though. Most of them will copy the
collection for the sake of immutability.

Functions starting with as won't do that, though:

// Returns a view, no copy here
(1..10).toList().asReversed()

// Same here
(1..10).toList().asSequence()

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[152]

To understand the difference, check the following code:

val numbers = (1..1_000_000).toList()
println(measureTimeMillis {
 numbers.stream().map {
 it * it
 }
}) // ~2ms

println(measureTimeMillis {
 numbers.map {
 it * it
 }
}) // ~19ms

You'll notice that code using stream() actually never executes. Streams, being lazy, wait
for a terminating function call. Functions on collections, on the other hand, execute one
after the other.

If we add the terminating call though, we'll see totally different numbers:

println(measureTimeMillis {
 numbers.stream().map {
 it * it
 }.toList()
}) // ~70ms

Converting from the stream back to the list is an expensive operation. Take those points
into consideration when deciding which approach to use.

Sequences
Since streams were introduced only in Java 8, but Kotlin is backward-compatible down to
Java 6, it needed to provide another solution for the possibility of infinite collections. This
solution was named sequenced, so it won't clash with Java streams when they're available.

You can generate an infinite sequence of numbers, starting with 1:

val seq = generateSequence(1) { it + 1 }

To take only the first 100, we use the take() function:

 seq.take(100).forEach {
 println(it)
 }

see more please visit: https://homeofbook.com

Streaming Your Data Chapter 6

[153]

A finite number of sequences can be created by returning null:

val finiteSequence = generateSequence(1) {
 if (it < 1000) it + 1 else null
}

finiteSequence.forEach {
 println(it)
} // Prints numbers up to 1000

A finite number of sequences can be created from ranges or collections by calling
asSequence():

(1..1000).asSequence()

Summary
This chapter was dedicated to practicing functional programming principles and learning
the building blocks of functional programming in Kotlin.

Now you should know how to transform your data with map()/mapTo(), how
to filter() collections, and find() elements by criteria.

You should also be familiar with how to drop() elements to skip them, how to sort()
collections, and how to iterate over them using forEach() and onEach().

Use join() to stringify collections, fold() and reduce() to total collections up,
and flatten() and flatTo() to reduce collection nesting.

slice() is a way to get only a portion of a collection, while chunked() is used to break a
collection into even portions.

Finally, zip() and unzip() combine two collections into a pair, or split the pair back into
two parts.

In the next chapter, we'll discuss how familiarity with those methods helps us to become
truly reactive.

see more please visit: https://homeofbook.com

7
Staying Reactive

Once we're familiar with functional programming and its building blocks, we can start
discussing reactive programming concepts. While it's not coupled with functional
programming (you can be reactive while writing object-oriented or procedural code, too),
it's still better to discuss after learning about functional programming and its foundation.

In this chapter, we will cover the following topics:

Reactive principles
Reactive extension

Reactive principles
So, what is reactive programming?

It's summarized nicely by the reactive manifesto: https:/ ​/​www. ​reactivemanifesto. ​org.

To cite it, reactive programs are:

Responsive
Resilient
Elastic
Message-driven

To understand these four topics, let's imagine 10 people standing in a line for a cashier.
Each one of them can see only the person in front, but not how many people are in the line
ahead of that person or what the cashier is doing. Do you have this picture in your mind?
Let's start then.

see more please visit: https://homeofbook.com

https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org

Staying Reactive Chapter 7

[155]

Responsiveness
Would you stand in that line for the cashier?

That depends on the urgency and how much time you have. If you're in a hurry, you'll
probably leave empty-handed before reaching the cash register.

That's a system being unresponsive to you. You're often in the same situation when
reaching a call center of one of the service providers by phone. You're asked to wait on the
line, and you wait. But, more often than not, a nice automatic voice tells you how many
people are waiting on the same line ahead of you or even how much time you'll have to
wait.

In both cases, the result is the same. You've wasted your time waiting in line or on the line.
But the second system was responsive to your needs, and you could make decisions based
on that.

Resiliency
Let's continue to resiliency. You're waiting on the line for 10 minutes, then the line drops.
Or, you reached one of the customer care representatives, but they hang up on you by
mistake. How often does that happen? That's the system not being resilient to failures. Or,
you've waited in line for half an hour to see a doctor, when they suddenly leave the office
and go to a golf club, asking you to come back tomorrow. That's a system that wasn't
responsive in the face of failure.

The reactive manifesto discusses various ways to achieve resiliency:

Delegation
Replication
Containment
Isolation

Delegation is when the doctor comes out of their office and tells you, I can't see you today,
but knock on the other door; they'll see to you soon.

Replication is for a clinic to always have two doctors available, just in the event that one of
them miss their favorite team playing this evening. It relates to elasticity, which we'll
discuss in the next section.

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[156]

Containment and isolation are usually discussed together. What if you actually don't need
to see the doctor? Maybe you only need a prescription from them. Then, you could leave
them a message (we'll discuss message-passing soon, as it's also an important part of
reactiveness) and they'll send you a recipe when they're between games. You decoupled
yourself from seeing a doctor. It also provided you with isolation from the doctors'
failures or problems. What you didn't know is that, while printing your recipe, their
computer crashed twice and they were really stressed about that. But because you weren't
in front of them, they kept that to themselves.

Elasticity
So, in the previous section, we discussed replication. To prevent failures, our clinic always
has two doctors available. Maybe the second doctor served some patients, or maybe they
were just patiently waiting for the first doctor to leave for their football game to start
working.

But, what would happen to that resilient system if suddenly there is a flu epidemic or a
band of rabid squirrels starts attacking citizens in the nearby park? Two doctors won't be
able to handle all of the patients and then, again, we have a problem with resiliency.

But what if we had a supply of retired doctors sitting in their homes playing mahjong?
Certainly, we could call them to come and help bandage all of those squirrel victims. And
after they were all properly treated, the doctors could return to their mahjong.

That's a system being elastic depending on the workload.

Elasticity builds on scalability. We could treat all of those patients because each doctor
could work independently. But what if all of the bandages were stored in a single box?
Then it would create a bottleneck, with all of those doctors standing around waiting for the
next pack of bandages.

Message-driven
This is also referred to as asynchronous message passing. So, we saw in the Resiliency section
that if you could leave a message for the doctor, it may make the system more resilient.

What if all of the patients would only leave messages? Then each doctor could prioritize
them or batch-process those messages. For example, printing all recipes together, instead of
switching between different tasks.

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[157]

In addition to loose coupling and isolation, there's also location transparency. You didn't
know tha your doctor sent you this prescription while driving home (they snuck out of the
window while you left your message). But you don't care since you got what you wanted.

Using messages also allows an interesting option of backpressure. If your doctor receives too
many messages, they may collapse from stress. To avoid that, they may text you to say that
you'll have to wait a bit longer to receive your prescription. Or, if they have a secretary, we
may even ask them to do that anyway. Again, we're talking about delegation here, as all of
those principles are correlated.

Messages are also non-blocking. After you leave the message, you don't sit there waiting for
the doctor's response. You usually go back home, to your regular tasks. The ability to
perform other tasks while you wait is one of the cornerstones of concurrency.

Reactive extension
The rest of this chapter will be dedicated to the specific implementation of reactive
principles in Kotlin. The predominant library in this field is RxJava. Since Kotlin is fully
interoperable with Java libraries, RxKotlin is only a thin wrapper over the original RxJava.
Hence, we'll discuss it as if these are one and the same library, and highlight the
differences, if any.

As soon as we start talking about RxJava, you'll recognize it's built upon the Observer
design pattern we discussed in Chapter 4, Getting Familiar with Behavioral Patterns.

We'll start by adding the following dependency to our Gradle project:

compile "io.reactivex.rxjava2:rxjava:2.1.14"

Currently, this is the latest version of RxJava2, but when you read this chapter, there will
probably ba a more recent version already. Feel free to use it.

You may remember that the pattern consists of two objects:

publisher: Produces data
subscriber: Consumes data

In RxJava, publishers are called Observable.

The following code will create our first publisher:

val publisher = Observable.fromArray(5, 6, 7)

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[158]

To start consuming those numbers, we can supply a lambda to the subscribe() function:

publisher.subscribe {
 println(it)
} // Prints 1, 2, 3

There are other functions available on Observable that you'll immediately recognize:
map() and filter(), for example. Those are the same functions that are available on
regular arrays in Kotlin:

publisher.filter {
 it > 5
}.map {
 it + it
}.subscribe {
 println(it)
}

OK, this is nice, but we've already discussed collections and streams in sequences in the
previous chapter. Why do it again?

Let's look at the following example:

val publisher = Observable.interval(1, TimeUnit.SECONDS)

publisher.subscribe {
 println("P1 $it")
}

publisher.subscribe {
 println("P2 $it")
}

Thread.sleep(TimeUnit.SECONDS.toMillis(5))

This code will wait for five milliseconds before terminating and it will print the following:

Sleeping <= This was the last line in our code, actually
P2 0 <= P2 came after P1 in code, but it comes before now
P1 0
P2 1
P1 1
P2 2
P1 2

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[159]

This is unexpected. Sleeping was the last line in the code, but it's printed first. Then notice
that P2 is printed before P1 sometimes if you run this example more than once. And
sometimes, it's P1 before P2, much like in the code. What's going on here?

That's asynchronicity in action. We need Thread.sleep() here to allow our listeners to
run for some time, otherwise, our program would terminate. And when they're called, it
doesn't matter where in the actual code they were placed.

In this chapter, we'll use Thread.sleep() and CountDownLatch a lot to
demonstrate how asynchronism works. In a real-life application, you
should never use Thread.sleep. If you're still not familiar with
CountDownLatch, don't worry, we'll explain how it works the first time
we stumble upon it, in the Flowables section.

Well, that's how the Observer design pattern behaves, naturally. But with Observer, there's
also an option to unsubscribe. How do we achieve it here?

Let's replace the second listener with the following code:

...
val subscription = publisher.subscribe {
 println("P2 $it")
}

println("Sleeping")
Thread.sleep(TimeUnit.SECONDS.toMillis(2))
subscription.dispose()
...

A call to subscribe() returns a Disposable. When you no longer want to receive
updates, you can call dispose() on it, which is synonymous with unsubscribe.

Your output may look like this:

Sleeping
P1 0 <= Notice that P1 is the first one now
P2 0
P1 1
Sleeping <= This is after dispose/unsubscribe
P2 1 <= But it may still take some time, so P2 prints again
P1 2
P1 3
P1 4 <= No more prints from P2, it unsubscribed

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[160]

What if we were to create our own Observable, with its own specific logic? There's a
create() method for that:

val o = Observable.create<Int> {
 for (i in 1..10_000) {
 it.onNext(i)
 }
 it.onComplete()
}

We create an Observable that publishes numbers. To push a new value to all listeners, we
use the onNext() method. We notify the listeners that there's no more data with
onComplete(). Finally, if an error occurrs, we can call onError(), supplying the
exception as an argument.

You'll notice that if we try to actually call onError(), we'll get an exception:

val o = Observable.create<Int> {
 it.onError(RuntimeException())
}

o.subscribe {
 println("All went good: $it")
} // OnErrorNotImplementedException

That's because we use the shorthand form with the lambda listener.

If we want to handle errors correctly, we also need to supply error handler as a second
argument:

o.subscribe({
 println("All went good: $it")
}, {
 println("There was an error $it")
})

There's also a third parameter, which is the onComplete handler:

o.subscribe({
 println("All went good: $it")
}, {
 println("There was an error $it")
}, {
 println("Publisher closed the stream")
})

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[161]

In our examples, we'll rarely use error handlers since our code is very
basic. But you should always provide them in real applications.

Hot Observable
Hot Observable is a term we'll use a lot in this chapter, as opposed to cold Observable.
All Observable we discussed before was cold. That meant they knew everything that
happened from the beginning of time, and each time somebody asked them politely, they
could repeat the whole history. Hot Observable only know what happens now. Think of
the weather forecast and weather history, for example. The weather forecast is hot—you'll
get the current weather, let's say every minute. The weather history is cold–you can get the
whole history of weather changes, if you care about it. If you still don't get this concept,
don't worry too much. We have half of the chapter ahead of us to cover it.

As you've probably noticed, up until now, all of our subscribers always got all the data, no
matter when they subscribed:

publisher.subscribe {
 println("S1 $it")
} // Prints 10K times

publisher.subscribe {
 println("S2 $it")
} // Also prints 10K times

But that's not always the case. More often, we have the data source coming from outside
and not created each time by the publisher:

val iterator = (1..10).iterator()

val publisher = Observable.create<Int> {
 while (iterator.hasNext()) {
 val nextNumber = iterator.next()
 it.onNext(nextNumber)
 }
}

Here, instead of creating the list inside, we have a reference to its iterator.

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[162]

Let's see how the following code behaves now:

publisher.subscribeOn(Schedulers.newThread()).subscribe {
 println("S1: $it")
 Thread.sleep(10)
}

Thread.sleep(50)

publisher.subscribeOn(Schedulers.newThread()).subscribe {
 println("S2: $it")
 Thread.sleep(10)
}

Thread.sleep(50)

We have two subscribers, as before. Up until now, all subscribers executed on the same
thread we were running. For this example, we assigned them a separate thread each. That
would allow us to simulate operations that are running for some time: 10 ms, in this case.
To specify on which thread subscriber should run, we use subscribeOn(). Schedulers is
an utility class, much like Executors from Java 5. In this case, it will assign a new thread
for each listener.

The output may look something like this:

S1: 1
S1: 2
S1: 3
S1: 4
S1: 5
S2: 6 <= That's where "Subscriber 2" begins listening
S1: 7
S2: 8
S1: 9
S2: 10

Notice that if every consumer received all the data previously, now the second subscriber
will never receive numbers 1-5.

After the second subscriber is connected, only one of them will receive the data each time.

What if we want to publish data to all of the subscribers simultaneously?

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[163]

Multicast
There's a publish() method for that:

val iterator = (1..5).iterator()
val subject = Observable.create<Int> {
 while (iterator.hasNext()) {
 val number = iterator.nextInt()
 println("P: $number")
 it.onNext(number)
 Thread.sleep(10)
 }
}.observeOn(Schedulers.newThread()).publish()

We again create a somewhat hot Observable, but this time we specify that it will run on a
separate thread with observeOn(). We also use the publish() method, which turns our
Observable into ConnectableObservable.

If we simply subscribe to this type of Observable, nothing will happen. We need to tell it
when to start running. We use that with the connect() method. Since the connect()
method is blocking, we'll execute it from a separate thread for this example:

thread { // Connect is blocking, so we run in on another thread
 subject.connect() // Tells observer when to start
}

Now we'll let publisher work for a few milliseconds, then connect our first listener:

Thread.sleep(10)
println("S1 Subscribes")
subject.subscribeOn(Schedulers.newThread()).subscribe {
 println("S1: $it")
 Thread.sleep(100)
}

After some more time, we connect a second listener, and allow them to finish:

Thread.sleep(20)

println("S2 Subscribes")
subject.subscribeOn(Schedulers.newThread()).subscribe {
 println("S2: $it")
 Thread.sleep(100)
}
Thread.sleep(2000)

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[164]

Let's see the output now, as it's quite interesting:

P: 1 <= Publisher starts publishing even before someone subscribes
S1 Subscribes
P: 2
P: 3
S1: 3 <= Subscriber actually missed some values
S2 Subscribes
P: 4
P: 5
P: 6 <= Publisher completes here
S1: 4
S2: 4
S1: 5
S2: 5 <= Both subscribers receive same values

Of course, having this connect() is not always comfortable.

For that reason, we have a method called refCount(), which turns our
ConnectableObservable back into a regular Observable. It will keep a reference count
of the subscribers, and dispose of the subscriptions only after all subscribers have done so,
too:

// This is a connectable Observable
val connectableSource = Observable.fromIterable((1..3)).publish()

// Should call connect() on it
dataSource.connect()

// This is regular Observable which wraps ConnectableObservable
val regularSource = connectableSource.refCount()

regularSource.connect() // Doesn't compile

And if calling publish().refCount() is too cumbersome, there's also the share()
method that does exactly that:

val regularSource = Observable.fromIterable((1..3)).publish().refCount()

val stillRegular = Observable.fromIterable((1..3)).share()

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[165]

Subject
The easiest way to understand Subject is that Subject = Observable + Observer.

On the one hand, it allows others to subscribe() to it. On the other, it can subscribe to
other Observable:

val dataSource = Observable.fromIterable((1..3))

val multicast = PublishSubject.create<Int>()

multicast.subscribe {
 println("S1 $it")
}

multicast.subscribe {
 println("S2 $it")
}

dataSource.subscribe(multicast)

Thread.sleep(1000)

The following code prints six lines, three for each subscriber:

S1 1
S2 1
S1 2
S2 2
S1 3
S2 3

Note that we didn't use publish() on our dataSource, so it's cold. Cold means that each
time somebody subscribes to this source, it will begin sending data anew. The hot
Observable, on the other hand, doesn't have all the data, and will only send what it has
from this moment on.

For that reason, we need to first connect all the listeners, and only then begin to listen to the
dataSource.

If we're using a hot dataSource, we can switch the calls:

val dataSource = Observable.fromIterable((1..3)).publish()

val multicast = PublishSubject.create<Int>()

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[166]

dataSource.subscribe(multicast)

multicast.subscribe {
 println("S1 $it")
}
println("S1 subscribed")

multicast.subscribe {
 println("S2 $it")
}
println("S2 subscribed")

dataSource.connect()

Thread.sleep(1000)

As in the previous section, we use connect() to tell dataSource when to start emitting
data.

ReplaySubject
In addition to PublishSubject, which we discussed in the previous section, there are
other subjects available. To understand how ReplaySubject works, let's see first the
following example with PublishSubject:

val list = (8..23).toList() // Some non trivial numbers
val iterator = list.iterator()
val o = Observable.intervalRange(0, list.size.toLong(), 0, 10,
TimeUnit.MILLISECONDS).map {
 iterator.next()
}.publish()

val subject = PublishSubject.create<Int>()

o.subscribe(subject)

o.connect() // Start publishing

Thread.sleep(20)

println("S1 subscribes")
 subject.subscribe {
 println("S1 $it")
 }
 println("S1 subscribed")

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[167]

 Thread.sleep(10)

 println("S2 subscribes")
 subject.subscribe {
 println("S2 $it")
 }
 println("S2 subscribed")

 Thread.sleep(1000)

This prints the following:

S1 11 <= Lost 8, 9, 10
S1 12
S2 12 <= Lost also 11
S1 13
S2 13
...

Clearly, some events are lost for good.

Now, let's replace PublishSubject with ReplaySubject and examine the output:

val subject = ReplaySubject.create<Int>()

The following output will be printed:

S1 subscribes
S1 8
S1 9
S1 10 <= S1 catchup
S1 subscribed
S1 11
S1 12
S2 subscribes
S2 8
S2 9
S2 10
S2 11
S2 12 <= S2 catchup
S2 subscribed
S1 13 <= Regular multicast from here
S2 13
...

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[168]

With ReplaySubject, no events are lost. You can see from the output, though, that until
some point, events aren't multicast, even when there is more than one subscriber.
Instead, for each subscriber, ReplaySubject performs a kind of catch-up of what it
missed until now.

The benefits of this approach are clear. We converted what seems to be a hot Observable
into something quite cold. But there are also limitations. By using ReplaySubject.create,
we produce an unbounded subject. If it tries to record too many events, we will simply run
out of memory. To avoid that, we can use the createWithSize() method:

val subject = ReplaySubject.createWithSize<Int>(2)

It creates the following output:

S1 subscribes
S1 9 <= lost 8
S1 10
S1 subscribed
S1 11
S2 subscribes
S1 12
S2 11 <= lost 8, 9, 10
S2 12
S2 subscribed
S1 13
S2 13
...

As you can see, now our subject remembers fewer items, so the earliest events are lost.

BehaviorSubject
Imagine a situation when you have a stream of updates every minute. You want to display
the latest value you received, then keep updating it when new data comes in. You can
use ReplaySubject with a size of one. But there's also BehaviorSubject exactly for this
case:

val subject = BehaviorSubject.create<Int>()

The output will be as follows:

S1 subscribes
S1 10 <= This was the most recent value, 8 and 9 are lost
S1 subscribed
S1 11 <= First update

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[169]

S2 subscribes
S2 11 <= This was most recent value, 8, 9 and 10 lost
S2 subscribed
S1 12 <= As usual from here
S2 12

AsyncSubject
This is a strange subject since, unlike the others, it doesn't update its subscribers. So, what
is it good for?

What if you wanted to have a very basic functionality, simply updating a screen with the
latest value and never refreshing it again until the screen is closed:

val subject = AsyncSubject.create<Int>()

Here is the output:

S1 subscribes
S1 subscribed
S2 subscribes
S2 subscribed
S1 23 <= This is the final value
S2 23

Be careful, though. Since AsyncSubject waits for the sequence to complete, if the sequence
is infinite, it will never call its subscribers:

// Infinite sequence of 1
val o = Observable.generate<Int> { 1 }.publish()
...
o.connect() // Hangs here forever

SerializedSubject
It's important not to call the onNext()/onComplete()/onError() methods from different
threads, as it will make the calls non-serializable.

This is a Proxy of sorts around any regular subject, which synchronizes calls to the unsafe
methods. You can wrap any subject with SerializedSubject using the
toSerialized() method:

val subject = ReplaySubject.createWithSize<Int>(2).toSerialized()

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[170]

Flowables
In all previous examples, we emitted data using Observable or subject, which also
extends Observable, and it worked out pretty well.

But our listeners weren't doing much. What if they were to do something more substantial?

Let's see the following example. We'll produce a lot of unique strings:

val source = Observable.create<String> {
 var startProducing = System.currentTimeMillis()
 for (i in 1..10_000_000) {
 it.onNext(UUID.randomUUID().toString())

 if (i % 100_000 == 0) {
 println("Produced $i events in ${System.currentTimeMillis() -
startProducing}ms")
 startProducing = System.currentTimeMillis()
 }
 }
 latch.countDown()
}

We're using CountDownLatch so the main thread will be able to wait until we finish. In
addition, we're also printing how much time it took to emit 100,000 events. This will be
useful later.

In the subscribe() method, we would repeat those strings 1,000 times:

val counter = AtomicInteger(0)
source.observeOn(Schedulers.newThread())
 .subscribe({
 it.repeat(500)
 if (counter.incrementAndGet() % 100_000 == 0) {
 println("Consumed ${counter.get()} events")
 }
 }, {
 println(it)
 })

AtomicInteger is used to count the number of processed events in a thread-safe way.

We're obviously consuming more slowly than we're producing:

Produced 100000 events in 1116ms
Produced 200000 events in 595ms
Produced 300000 events in 734ms

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[171]

Consumed 100000 events
Produced 400000 events in 815ms
Produced 500000 events in 705ms
Consumed 200000 events
Produced 600000 events in 537ms
Produced 700000 events in 390ms
Produced 800000 events in 529ms
Produced 900000 events in 387ms
Consumed 300000 events
Produced 1000000 events in 531ms
Produced 1100000 events in 537ms
Produced 1200000 events in 11241ms <= What happens here?
Consumed 400000 events
Produced 1300000 events in 19472ms
Produced 1400000 events in 31993ms
Produced 1500000 events in 52650ms

But the interesting point is that, after some period, the producing time will increase
dramatically.

That's the point when we start to run out of memory. Let's now replace our Observable
with Flowable:

val source = Flowable.create<String> ({
 var startProducing = System.currentTimeMillis()
 for (i in 1..10_000_000) {
 it.onNext(UUID.randomUUID().toString())

 if (i % 100_000 == 0) {
 println("Produced $i events in ${System.currentTimeMillis() -
startProducing}ms")
 startProducing = System.currentTimeMillis()
 }
 }
 it.onComplete()
 latch.countDown()
}, BackpressureStrategy.DROP)

As you can see, instead of passing only a lambda, we also pass a second argument, which is
BackpressureStrategy. What happens is that, behind the scenes, Flowable has a
bounded buffer. This is very similar to how we could make ReplaySubject bounded. The
second argument is telling Flowable what should happen if this buffer limit is reached. In
this case, we're asking it to throw away those events.

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[172]

Now, we should check the final part of our output:

...
Produced 9500000 events in 375ms
Produced 9600000 events in 344ms
Produced 9700000 events in 344ms
Consumed 2800000 events
Produced 9800000 events in 351ms
Produced 9900000 events in 333ms
Produced 10000000 events in 340ms

First, note that we didn't get stuck at any point. Actually, the pace of our production is
constant.

Second, you should note that although we produced 10,000,000 events, we consumed only 2.8
million. All other events were dropped.

But we didn't run out of memory, which is the great benefit of Flowable.

If you do want Flowable to behave like Observable, you can
specify BackpressureStrategy.BUFFER, and see that it begins to stutter around the same
lines.

As a general guideline, use Flowable when as follows:

You plan to emit more than 1,000 items (some may say 10,000)
You're reading a file
You're querying a database
You have some network streaming to do

Use Observable as follows:

You have a limited amount of data you plan to emit.
You deal with user input. Humans aren't as quick as they think they are and
don't produce many events.
You care about the performance of the flow: Observable are simpler, thus faster.

When we used the lambda expression, we didn't notice much difference between
Flowable and Observable.

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[173]

Instead, now we'll replace it with an anonymous class and see what benefits this approach
provides:

source.observeOn(Schedulers.newThread())
 .subscribe(object : Subscriber<String> {
 lateinit var subscription: Subscription

 override fun onSubscribe(s: Subscription?) {
 s?.let {
 this.subscription = it
 } ?: throw RuntimeException()
 }

 override fun onNext(t: String?) {
 ...
 }

 override fun onError(t: Throwable?) {
 ...
 }

 override fun onComplete() {
 ...
 }
})

That's obviously a lot more code. We need to implement four methods now.

What interests us the most is the onSubscribe() method. Here, we receive a new object
called Subscription and store it in a property.

For now, we'll drop the fancy code that we were using in our listener before, and simply
print every new string we receive:

override fun onNext(t: String?) {
 println(t)
}

Huh? That's strange. Our listener doesn't print anything.

Let's go to our onSubscribe and modify it a bit:

override fun onSubscribe(s: Subscription) {
 this.subscription = s
 this.subscription.request(100)
}

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[174]

Subscription has a method called request(), which receives the number of items we're
willing to take.

You can run the code again to see that now our subscriber prints the first 100 strings, then
goes silent again.

We've already discussed the BackpressureStrategy.DROP
and BackpressureStrategy.BUFFER strategies. Let's now focus on
the BackpressureStrategy.MISSING strategy. The name is a bit confusing; custom would
be better. We'll see why in a moment:

val source = Flowable.create<String> ({
 ...
}, BackpressureStrategy.MISSING)

And we'll go back to onNext(), which actually does something:

override fun onNext(t: String) {
 t.repeat(500) // Do something

 println(counter.get()) // Print index of this item
 this.subscription.request(1) // Request next

 if (counter.incrementAndGet() % 100_000 == 0) {
 println("Consumed ${counter.get()} events")
 }
}

So, we're back to repeating strings. And after we finish with each, we ask our Flowable to
provide the next one with subscription.request(1).

Quickly enough, though, we receive MissingBackpressureException.

That's because we specified the BackpressureStrategy.MISSING strategy, and didn't
specify the size of the buffer.

To fix that, we'll use the onBackpressureBuffer() method:

val source = Flowable.create<String> ({
 ...
}, BackpressureStrategy.MISSING).onBackpressureBuffer(10_000)

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[175]

That postponed the problem, but we still crash with MissingBackpressureException.

What we need in this case is not to create a Flowable, but to generate it:

val count = AtomicInteger(0)
// This is not entirely correct, but simplifies our code
val startTime = System.currentTimeMillis()
val source = Flowable.generate<String> {
 it.onNext(UUID.randomUUID().toString())

 if (count.incrementAndGet() == 10_000_000) {
 it.onComplete()
 latch.countDown()
 }

 if (count.get() % 100_000 == 0) {
 println("Produced ${count.get()} events in
${System.currentTimeMillis() - startTime}ms")
 startTime = System.currentTimeMillis()
 }
 }

Note that, unlike create(), generate() receives a lambda that represents a single action.
For that reason, we cannot have loops inside it. Instead, we store our state, if any, outside.

The output looks as follows:

Produced 100000 events in 3650ms
Produced 200000 events in 1942ms
Produced 300000 events in 1583ms
Produced 400000 events in 1630ms
...

Take note of how much slower the production is now. That's because we wait for our
consumer to process the event before supplying the next batch.

Holding state
Having those values captured in a closure may seem a bit ugly. There's a more functional
alternative, but it's quite hard to grasp. Generate can receive two functions instead of one:

<T, S> Flowable<T> generate(Callable<S> initialState, BiFunction<S,
Emitter<T>, S> generator)

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[176]

Well, that's a mouthful. Let's try to understand what's going on there.

The first initial state is () -> State. In our case, the state can be represented as follows:

data class State(val count: Int, val startTime: Long)

We don't pass an instance of CountDownLatch to our function for the sake of simplicity.
You'll soon understand why.

So, our first argument is the () -> State function, which has no parameters and returns a
State. Now, the second argument should be a function, that is, (State, Emitter<T>)
-> State. In our case, we emit strings, so our function is (State, Emitter<String>)
-> State.

Since this is all a bit confusing not only to us but also to the Kotlin compiler, we specify
exactly what types of functions those are, Callable<State> and BiFunction<State,
Emitter<String>, State>:

val source = Flowable.generate<String, State>(
 Callable<State> { State(0, System.currentTimeMillis()) },
 BiFunction<State, Emitter<String>, State> { state, emitter ->
 emitter.onNext(UUID.randomUUID().toString())

 // In other cases you could use destructuring
 val count = state.count + 1
 var startTime = state.startTime
 if (count == 10_000_000) {
 emitter.onComplete()
 latch.countDown()
 }

 if (count % 100_000 == 0) {
 println("Produced ${count} events in
${System.currentTimeMillis() - startTime}ms")
 startTime = System.currentTimeMillis()
 }
 // Return next state
 State(count, startTime)
 }
)

As you can see, sometimes purely functional code is much more complex. Luckily for us,
Kotlin allows us to chose different approaches for different situations.

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[177]

FlowableProcessor
Much like any Subject is an Observer and Observable at the same time, any
FlowableProcessor is a Flowable that is both a Publisher and Subscriber.

To understand this statement, let's take the example of ReplaySubject and rewrite it
using ReplayProcessor:

val list = (8..23).toList() // Some non trivial numbers
val iterator = list.iterator()
val o = Observable.intervalRange(0, list.size.toLong(), 0, 10,
TimeUnit.MILLISECONDS).map {
 iterator.next()
}.toFlowable(BackpressureStrategy.DROP).publish()

Any Observable can be converted to Flowable using the toFlowable() method. As
with any Flowable, we need to specify which strategy to use. In our case, we
use BackpressureStrategy.DROP.

As you can see, Flowable supports the publish() method, the same as Observable:

val processor = ReplayProcessor.createWithSize<Int>(2)

Instead of creating ReplaySubject, we create ReplayProcessor, which also supports
size limiting:

o.subscribe(processor)

o.connect() // Start publishing

Thread.sleep(20)

println("S1 subscribes")
processor.subscribe {
 println("S1 $it")
}
println("S1 subscribed")

Thread.sleep(10)

println("S2 subscribes")
processor.subscribe {
 println("S2 $it")
}
println("S2 subscribed")

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[178]

Thread.sleep(1000)

The output is practically the same:

S1 subscribes
S1 9
S1 10
S1 subscribed
S1 11
S2 subscribes
S2 10
S2 11
S2 subscribed
S1 12
S2 12

But in case of big input, we now have backpressure to protect us.

Batching
Sometimes, slowing the producer is not possible. So, are we back to the original problem, of
either dropping some events or running out of memory? Luckily, Rx still has a few tricks
up its sleeve. It is often more efficient to process data in batches. We've already discussed
such a case in the previous chapter. For that, we can specify buffer() for our
subseriber.

Buffer has three flavors. The first one is batch-per-size:

val latch = CountDownLatch(1)
val o = Observable.intervalRange(8L, 15L, 0L, 100L, TimeUnit.MILLISECONDS)

o.buffer(3).subscribe({
 println(it)
}, {}, { latch.countDown()})

latch.await()

It outputs the following:

[8, 9, 10]
[11, 12, 13]
[14, 15, 16]
[17, 18, 19]
[20, 21, 22]

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[179]

The second is the batch-per-time interval. Imagine we have a screen with a screen that
displays the latest news, and new updates arrive every few seconds. But for us, it's fine to
refresh the view only once every five seconds:

val latch = CountDownLatch(1)
val o = Observable.intervalRange(8L, 15L, 0L, 100L, TimeUnit.MILLISECONDS)

o.buffer(300L, TimeUnit.MILLISECONDS).subscribe ({
 println(it)
}, {}, { latch.countDown() })

latch.await()

It outputs the following:

[8, 9, 10, 11]
[12, 13, 14]
[15, 16, 17]
[18, 19, 20]
[21, 22]

The third flavor allows us to become dependent on another Observable. We'll batch until
it asks us to flush the data:

val latch = CountDownLatch(1)
val o = Observable.intervalRange(8L, 15L, 0L, 100L, TimeUnit.MILLISECONDS)

o.buffer(Observable.interval(200L, TimeUnit.MILLISECONDS)).subscribe ({
 println(it)
}, {}, { latch.countDown() })

latch.await()

It outputs the following:

[8, 9, 10]
[11, 12]
[13, 14]
[15, 16]
[17, 18]
[19, 20]
[21, 22]
[]

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[180]

Throttling
Throttling on the consumer side is similar to dropping on the producer side. But it can be
applied not only to Flowable, but also to Observable.

You specify the time interval, and each time get only one element, either the first or last
one, in that interval:

val o = PublishSubject.intervalRange(8L, 15L, 0L, 100L,
TimeUnit.MILLISECONDS).publish()

o.throttleFirst(280L, TimeUnit.MILLISECONDS).subscribe {
 println(it)
}

o.buffer(280L, TimeUnit.MILLISECONDS).subscribe {
 println(it)
}

o.connect()

Thread.sleep(100 * 15)

Execute this example a few times and you will see that you get different results. Throttling
is highly sensitive to timing.

throttleFirst() outputs [8, 11, 15, 17, 21] because it received the following
windows:

8
[8, 9, 10]
11
[11, 12, 13]
14
[14, 15, 16]
17
[17, 18, 19]
20
[20, 21]
[22]

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[181]

Notice that [22] is throttled and never printed.

Now, let's see what happens when we use throttleLast(), instead:

val o = Observable.intervalRange(8L, 15L, 5L, 100L, TimeUnit.MILLISECONDS)

o.throttleLast(280L, TimeUnit.MILLISECONDS).subscribe {
 println(it)
}

o.buffer(280L, TimeUnit.MILLISECONDS).subscribe {
 println(it)
}

Thread.sleep(100 * 30)

throttleLast() outputs [10, 13, 16, 19, 22] because it received the following
windows:

10
[8, 9, 10]
13
[11, 12, 13]
16
[14, 15, 16]
19
[17, 18, 19]
21
[20, 21]
[22]

Again, [22] is throttled and never printed.

Throttling is the last resiliency tool we'll discuss in this chapter, but it's probably one of the
most useful ones.

see more please visit: https://homeofbook.com

Staying Reactive Chapter 7

[182]

Summary
In this chapter, we learned about the main benefits of reactive systems. Such systems
should be responsive, resilient, elastic, and driven by messaging.

We also discussed the Java 9 Reactive Streams API and its most popular implementation,
which is Rx.

Now you should better understand the difference between cold and hot Observable. A
cold Observable starts working only when someone subscribes to it. A hot Observable,
on the other hand, always emits events, even if nobody is listening.

We also discussed the concept of backpressure, implemented with Flowable. It allows for
a feedback mechanism between the producer and consumer.

In addition, you should be familiar with the notion of multicasting using subjects. It allows
us to send the same message to multiple listeners.

Finally, we discussed some resilience mechanisms, such as buffering and throttling, that
allow us to accumulate or drop messages, in case we're unable to process them in time.

In the next chapter, we'll start discussing threads, a concept that should be familiar to you if
you come from a Java background, and coroutines, which are lightweight threads
introduced in Kotlin 1.1.

see more please visit: https://homeofbook.com

8
Threads and Coroutines

In this chapter, we'll discuss how our application can efficiently serve thousands of requests
per second. In the previous chapter, we already had one glimpse at it—reactive streams use
a number of different threads (exposed by the Schedulers API), and we even had to create
a thread once or twice with the thread() function. But before we dive into nuances, let's
first discuss what kind of problems threads are able to solve.

In your laptop, you have a CPU with multiple cores, probably four of them. That means
that it can do four different computations in parallel, which is pretty amazing, considering
that 10 years ago, a single-core CPU was the default and even two cores were only for
enthusiasts.

But even back then, you were not actually limited to doing only a single task at a time,
right? You could listen to music and browse the internet at the same time, even on a single-
core CPU. How does your CPU manage to pull that off? Well, the same way your brain
does. It juggles tasks. When you're reading a book while listening to your friend talking,
part of the time you're not really reading and part of the time you're not really listening.
That is until we get at least two cores in our brains.

The servers you run your code on have pretty much the same CPU. Which still means they
can serve four requests simultaneously. But what if you have 10,000 requests per second?
You can't serve them in parallel, because you don't have 10,000 CPU cores. But you can try
and serve them concurrently.

In this chapter, we will cover the following topics:

Threads
Coroutines
Channels

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[184]

Threads
The most basic concurrency model is provided by JVM threads. Threads allow us to run
code concurrently (but not necessarily in parallel), making better use of multiple CPU cores,
for example. They are more lightweight than processes. One process may spawn hundreds
of threads. Unlike processes, sharing data between threads is easy. But that also introduces
a lot of problems, as we'll see later.

Let's see how we create two threads in Java first:

new Thread(() -> {
 for (int i = 0; i < 100; i++) {
 System.out.println("T1: " + i);
 }
}).start();

new Thread(() -> {
 for (int i = 0; i < 100; i++) {
 System.out.println("T2: " + i);
 }
}).start();

The output will look something like this:

...
T2: 12
T2: 13
T1: 60
T2: 14
T1: 61
T2: 15
T2: 16
...

Note that the output will vary between executions, and at no point is it guaranteed to be
interleaved.

The same code in Kotlin would look as follows:

val t1 = thread {
 for (i in 1..100) {
 println("T1: $i")
 }
}

val t2 = thread {
 for (i in 1..100) {

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[185]

 println("T2: $i")
 }
}

In Kotlin, there's less boilerplate, because there's a function that helps us create a new
thread. Notice that unlike Java, we don't need to call start() to launch the thread. It starts
by default. If we would like to postpone it for later, we can set the start parameter to
false:

val t2 = thread(start = false) {
 for (i in 1..100) {
 println("T2: $i")
 }
}
...
// Later
t2.start()

Another useful concept from Java is daemon threads. These threads don't prevent JVM from
exiting and are very good for non-critical background tasks.

In Java, the API is not fluent, so we'll have to assign our thread to a variable, set it to be a
daemon thread, and then start it:

Thread t1 = new Thread(() -> {
 for (int i = 0; i < 100; i++) {
 System.out.println("T1: " + i);
 }
});
t1.setDaemon(true);
t1.start();

In Kotlin, this is much simpler:

val t3 = thread(isDaemon = true) {
 for (i in 1..1_000_000) {
 println("T3: $i")
 }
}

Notice that although we asked this thread to print numbers up to one million, it prints only
a few hundred. That's because it's a daemon thread. When the parent thread stops, it stops
too.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[186]

Thread safety
There are many books written about thread safety and there are good reasons for that.
Concurrency bugs that are caused by lack of thread safety are the ones hardest to track.
They're hard to reproduce, because you'll usually need a lot of threads competing on the
same resource for an actual race to happen. Because this book is about Kotlin and not
thread safety in general, we'll only scratch the surface of this topic. If you're interested in
the topic of thread safety in the JVM language, you should check out the book Java
Concurrency in Practice by Brian Goetz.

We'll start with the following example, which creates 100,000 threads to increment a
counter:

var counter = 0
val latch = CountDownLatch(100_000)
for (i in 1..100_000) {
 thread {
 counter++
 latch.countDown()
 }
}

latch.await()
println("Counter $counter")

If you have a bit of experience with concurrent programming, you'll understand right away
why this code prints a number that is less than 100,000. The reason is the ++ operation is not
atomic. So the more threads that try to increment our counter, the more chances for data
races.

But, unlike Java, there's no synchronized keyword in Kotlin. The reason is that Kotlin
designers believe that a language shouldn't be tailored to a particular concurrency model.
Instead, there's a synchronized() function:

var counter = 0
val latch = CountDownLatch(100_000)
for (i in 1..100_000) {
 thread{
 synchronized(latch) {
 counter++
 latch.countDown()
 }
 }
}

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[187]

latch.await()
println("Counter $counter")

Now our code prints 100000, as expected.

If you really miss the synchronized methods from Java, there's
the @Synchronized annotation in Kotlin. There's also no volatile keyword, but
the @Volatile annotation instead.

Threads are expensive
There is a price to pay whenever we create a new thread. Each thread needs a new memory
stack.

What if we simulate some work inside each thread by putting it to sleep?

In the following piece of code, we'll attempt to create 10,000 threads, each sleeping for a
relatively short period of time:

val counter = AtomicInteger()
try {
 for (i in 0..10_000) {
 thread {
 counter.incrementAndGet()
 Thread.sleep(100)
 }
 }
} catch (oome: OutOfMemoryError) {
 println("Spawned ${counter.get()} threads before crashing")
 System.exit(-42)
}

Depending on your operation system, this will result in either OutOfMemoryError or the
entire system becoming very slow. Of course, there are ways to limit how many threads are
run at once, using the executors API from Java 5.

We create a new thread pool of a specified size:

// Try setting this to 1, number of cores, 100, 2000, 3000 and see what
happens
val pool = Executors.newFixedThreadPool(100)

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[188]

Now we would like to submit a new task. We're doing this by calling pool.submit():

val counter = AtomicInteger(0)

val start = System.currentTimeMillis()
for (i in 1..10_000) {
 pool.submit {
 // Do something
 counter.incrementAndGet()

 // Simulate wait on IO
 Thread.sleep(100)

 // Do something again
 counter.incrementAndGet()
 }
}

Then we need to make sure that the pool terminates, by using the following lines:

pool.awaitTermination(20, TimeUnit.SECONDS)
pool.shutdown()

println("Took me ${System.currentTimeMillis() - start} millis to complete
${counter.get() / 2} tasks")

Notice that it took us 20 seconds to complete. That's because a new task cannot begin until
previous tasks woke up and completed their job.

And that's exactly what happens in multithreaded systems, which is not concurrent
enough.

In the next section, we'll discuss how coroutines try to solve this problem.

Coroutines
In addition to the threading model provided by Java, Kotlin also introduces a coroutines
model. Coroutines might be considered lightweight threads, and we’ll see what advantages
they provide over an existing model of threads shortly.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[189]

The first thing you need to know is that coroutines are not part of the language. They are
simply another library provided by JetBrains. For that reason, if we want to use them, we
need to specify so in our Gradle configuration file, build.gradle:

dependencies {
 ...
 compile "org.jetbrains.kotlinx:kotlinx-coroutines-core:0.21"
 ...
}

As of Kotlin 1.2, coroutines are still considered experimental. This doesn't mean that they
don't work well, though, as some might think. It only means that some parts of the API
may still change in the next versions.

What could change? For example, in 0.18, an Actor, which we'll discuss later in this chapter,
exposed a channel member. In 0.21, this member was made private and a method was
added instead. So instead of calling actor.channel.send(), you would call
actor.send().

It's fine if you're not aware what actor or channel mean at this point. We'll
cover those terms in the following sections shortly.

For that reason, after you add this dependency and start using them, you may get warnings
during compilation or in your IDE:

The feature "coroutines" is experimental

You can hide those warnings with the following Gradle configuration:

kotlin {
 experimental {
 coroutines 'enable'
 }
}

Now, let's get started with coroutines.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[190]

Starting coroutines
We've already seen how to start a new thread in Kotlin. Now let's start a new coroutine
instead.

We'll create almost the same example we did with threads. Each coroutine will increment
some counter, sleep for a while to emulate some kind of IO, and then increment it again:

val latch = CountDownLatch(10_000)
val c = AtomicInteger()

val start = System.currentTimeMillis()
for (i in 1..10_000) {
 launch(CommonPool) {
 c.incrementAndGet()
 delay(100)
 c.incrementAndGet()
 latch.countDown()
 }
}

latch.await(10, TimeUnit.SECONDS)

println("Executed ${c.get() / 2} coroutines in ${System.currentTimeMillis()
- start}ms")

The first way of starting a new coroutine is by using the launch() function. Again, note
that this is simply another function and not a language construct.

This function receives one argument: context: CoroutineContext.

Under the hood, coroutines still use a thread pool. For that reason, we can specify which
thread pool to use. CommonPool is a singleton provided by the library out of the box.

Another interesting point here is called to the delay() function we use to simulate some
IO bound work, like fetching something from a database or over the network.

Like the Thread.sleep() method, it puts the current coroutine to sleep. But unlike
Thread.sleep(), other coroutines can work while this one sleeps soundly. This is due to
the fact that delay() is marked with a suspend keyword, which we'll discuss in the section
Waiting for coroutines.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[191]

If you run this code, you'll see that the task takes about 200 ms with coroutines, while with
threads it either took 20 seconds or ran out of memory. And we didn't have to change our
code that much. That's all thanks to the fact that coroutines are highly concurrent in their
nature. They can be suspended without blocking the thread that runs them. Not blocking a
thread is great, because we can use less OS threads (which are expensive) to do more work.

But of course, they're not magical. Let's create a Factory for our coroutines, which will be
able to produce either a short-running or long-running coroutine:

object CoroutineFactory {
 fun greedyLongCoroutine(index: Int) = async {
 var uuid = UUID.randomUUID()
 for (i in 1..100_000) {
 val newUuid = UUID.randomUUID()

 if (newUuid < uuid) {
 uuid = newUuid
 }
 }

 println("Done greedyLongCoroutine $index")
 latch.countDown()
 }

 fun shortCoroutine(index: Int) = async {
 println("Done shortCoroutine $index!")
 latch.countDown()
 }
}

We don't actually need the Factory Method design pattern here, but it's a nice reminder.
You'll understand why the long-running coroutine is called greedy very soon.

If you don't remember what the Factory Method is about, you should check Chapter
2, Working with Creational Patterns, section Factory method again. In short, it's a method that
returns an object. Which object does it return in our case? It's a job representing a coroutine,
of course! We'll explain what job is for shortly.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[192]

Jobs
The result of running an asynchronous task is called a job. Much like the Thread object
represents an actual OS thread, the job object represents an actual coroutine. A job has a
simple lifecycle.

It can be either as follows:

New: Created, but not started yet.
Active: Just created by launch() function, for example. This is the default state.
Completed: Everything went well.
Canceled: Something went wrong.

There are two more states relevant to jobs that have child jobs:

Completing: Waiting to finish executing children before completing
Canceling: Waiting to finish executing children before canceling

If you want to understand more about parent and child jobs, just jump to the Parent jobs
section in this chapter.

Job also has some useful methods, which we'll discuss in the following sections.

Coroutine starvation
We'll call both the greedyLongCoroutine() and shortCoroutine() methods 10 times
each and wait until they finish:

val latch = CountDownLatch(10 * 2)
fun main(args: Array<String>) {

 for (i in 1..10) {
 CoroutineFactory.greedyLongCoroutine(i)
 }

 for (i in 1..10) {
 CoroutineFactory.shortCoroutine(i)
 }

 latch.await(10, TimeUnit.SECONDS)
}

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[193]

It's obvious that since coroutines are asynchronous, we'll see first 10 lines of the short
coroutine then 10 lines of the long coroutine:

Done greedyLongCoroutine 2
Done greedyLongCoroutine 4
Done greedyLongCoroutine 3
Done greedyLongCoroutine 5
Done shortCoroutine 1! <= You should have finished long ago!
Done shortCoroutine 2!
Done shortCoroutine 3!
Done shortCoroutine 4!
Done shortCoroutine 5!
Done shortCoroutine 6!
Done shortCoroutine 7!
Done shortCoroutine 8!
Done shortCoroutine 9!
Done shortCoroutine 10!
Done greedyLongCoroutine 6
Done greedyLongCoroutine 7
Done greedyLongCoroutine 1
Done greedyLongCoroutine 8
Done greedyLongCoroutine 9
Done greedyLongCoroutine 10

Oops... That's not what you would expect. It seems like the long coroutines block the short
coroutines somehow.

The reason for this behavior is that there is still an event loop based on the thread pool behind
the coroutines. Since the CPU of my laptop has four cores, four long coroutines took all its
resources, and until they finish their CPU-bound task, no other coroutine can start. To
understand this better, let's dive deeper into how coroutines work.

Coroutines under the hood
So, we've mentioned a couple of times the following facts:

Coroutines are like light-weight threads. They need less resources that regular
threads, so you can create more of them.
Coroutines use thread pool behind the scenes.
Instead of blocking an entire thread, coroutine suspends.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[194]

But how does that actually work?

Let's see an abstract example. How would we compose a user profile?

fun profile(id: String): Profile {
 val bio = fetchBioOverHttp(id) // takes 1s
 val picture = fetchPictureFromDB(id) // takes 100ms
 val friends = fetchFriendsFromDB(id) // takes 500ms
 return Profile(bio, picture)
}

Summing up, our function now takes around 1.6 seconds to complete.

But we've learned about threads. Let's refactor this function to use them instead!

fun profile(id: String): Profile {
 val bio = fetchBioOverHttpThread(id) // still takes 1s
 val picture = fetchPictureFromDBThread(id) // still takes 100ms
 val friends = fetchFriendsFromDBThread(id) // still takes 500ms
 return Profile(bio, picture)
}

Now our function takes on average 1 second, the slowest of the three requests. But since we
created a thread for each request, our memory footprint is three times larger. And we risk
running out of memory quickly.

So, let's use a thread pool to limit the memory footprint:

fun profile(id: String): Profile {
 val bio = fetchBioOverHttpThreadPool()
 val picture = fetchPictureFromDBThreadPool()
 val friends = fetchFriendsFromDBThreadPool()
 return Profile(bio, picture)
}

But what happens if we call this function 100 times now? If we have a thread pool of 10
threads, the first 10 requests will get into the pool and the 11th will get stuck until the first
one finishes. That means we can serve three users simultaneously, and the fourth one will
wait until the first one gets his/her results.

How is that different with coroutines? Coroutines break your methods into even smaller
methods.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[195]

Let's dive deeper into one of the functions to understand how it's done:

fun fetchBioOverHttp(id: String): Bio {
 doSomething() // 50ms
 val result = httpCall() // 900ms
 return Bio(result) // 50ms
}

That's one function that will take 1 second to execute.

What we can do, though, is mark httpCall() with the suspend keyword:

suspend fun httpCall(): Result {
 ...
}

When Kotlin compiler sees this keyword, it knows it can split and rewrite the function into
two like this:

fun fetchBioOverHttp(id: String): Bio {
 doSomething() // 50ms
 httpCall() { // It was marked as suspend, so I can rewrite it!
 callback(it)
 } // Thread is released after 50ms
}

// This will be called after 950ms
fun callback(httpResult: Result) {
 return Bio(httpResult)
}

By doing that rewrite, we are able to release the thread that executes coroutines much
sooner.

For a single user, that doesn't matter much. He will still get the results after 1 second.

But looking at the bigger picture, it means that by using the same amount of threads, we
can serve 20 times more users, all thanks to the smart way Kotlin has rewritten our code.

Fixing starvation
Let's add another method to our Factory using the extension methods:

fun CoroutineFactory.longCoroutine(index: Int) = launch {
 var uuid = UUID.randomUUID()
 for (i in 1..100_000) {

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[196]

 val newUuid = UUID.randomUUID()

 if (newUuid < uuid) {
 uuid = newUuid
 }

 if (i % 100 == 0) {
 yield()
 }
 }

 println("Done longCoroutine $index")
 latch.countDown()
}

We call this method instead in the first loop:

...
for (i in 1..10) {
 CoroutineFactory.longCoroutine(i)
}
...

And when we run it now, we get the output we expected in the first place:

Done shortCoroutine 0!
Done shortCoroutine 1!
Done shortCoroutine 2!
Done shortCoroutine 3!
Done shortCoroutine 5!
Done shortCoroutine 6!
Done shortCoroutine 7!
Done shortCoroutine 8!
Done shortCoroutine 9!
Done shortCoroutine 4!
Done longCoroutine 4 <= That makes more sense
Done longCoroutine 2
Done longCoroutine 3
Done longCoroutine 9
Done longCoroutine 5
Done longCoroutine 1
Done longCoroutine 10
Done longCoroutine 6
Done longCoroutine 7
Done longCoroutine 8

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[197]

Now let's understand what actually happened. We used a new function: yield(). We
could have called yield() on every loop iteration, but decided to do that every 100th one.
It asks the pool whether there is anybody else that wants to do some work. If there's nobody
else, the execution of the current coroutine will resume. Otherwise, another coroutine will
start or resume from the point where it stopped earlier.

Note that without the suspend keyword on our function or a coroutine generator, such as
launch(), we can't call yield(). That's true for any function marked with suspend: it
should be called either from another suspend function or from a coroutine.

Waiting for a coroutine
Up until now, to let our asynchronous code complete, we've used either Thread.sleep()
or CountDownLatch. But there are better options with threads and coroutines. Much like
Thread, a job has the join() function. By invoking it, we can wait for the execution of the
coroutine to complete.

Take a look at the following code:

val j = launch(CommonPool) {
 for (i in 1..10_000) {
 if (i % 1000 == 0) {
 println(i)
 yield()
 }
 }
}

Although it should have printed 10 lines, it doesn't print anything, actually. That's because
our main thread terminates before giving a coroutine a chance to start.

By adding the following lines, our example will print the expected results:

runBlocking {
 j.join()
}

What about this runBlocking, you ask? Remember that we could call yield() only from
another coroutine because it's a suspending function? The same is true for join(). Since our
main method is not a coroutine, we need to have a bridge between our regular code, that is
not a suspending function and coroutines. This function does exactly that.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[198]

Canceling a coroutine
If you are a Java developer, you may know that stopping a thread is quite complicated.

For example, the Thread.stop() method is deprecated. There's Thread.interrupt(),
but not all threads are checking this flag, not to mention setting your own volatile flag,
which is often suggested but is very cumbersome.

If you're using a thread pool, you'll get Future, which has the cancel(boolean
mayInterruptIfRunning) method. In Kotlin, the launch() function returns a job.

This job can be canceled. The same rules as the previous example apply, though. If your
coroutine never calls another suspend method or yields, it will disregard cancel().

To demonstrate that, we'll create one nice coroutine that yields once in a while:

val cancellable = launch {
 try {
 for (i in 1..1000) {
 println("Cancellable: $i")
 computeNthFibonacci(i)
 yield()
 }
 }
 catch (e: CancellationException) {
 e.printStackTrace()
 }
}

And another one that doesn't yield:

val notCancellable = launch {
 for (i in 1..1000) {
 println("Not cancellable $i")
 computeNthFibonacci(i)
 }
}

We'll try to cancel both:

println("Canceling cancellable")
cancellable.cancel()
println("Canceling not cancellable")
notCancellable.cancel()

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[199]

And wait for the results:

runBlocking {
 cancellable.join()
 notCancellable.join()
}

A few interesting points:

Canceling the nice coroutine doesn't happen immediately. It may still print a line1.
or two before getting canceled.
We can catch CancellationException, but our coroutine will be marked as2.
canceled anyway.

Returning results
Calling launch() is much like calling a function that returns Unit. But most of our
functions return some kind of result. For that purpose, we have the async() function. It
also launches a coroutine, but instead of returning a job, it returns Deferred<T>, where T
is the type you expect to get later.

Think of a situation where you would like to fetch the user's profile from one source and
their history from another. It may be two DB queries, or a network call to two remote
services, or any combination.

You must show both the profile and the history, but you don't know which returns first.
Usually, retrieving the profile is faster. But sometimes there may be a delay, since profiles
are updated often and the history will return first.

We run one coroutine that will return the user's profile string in our case:

val userProfile = async {
 delay(Random().nextInt(100))
 "Profile"
}

We'll run another to return the history. For simplicity, we'll just return a list of Ints:

val userHistory = async {
 delay(Random().nextInt(200))
 listOf(1, 2, 3)
}

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[200]

To wait for the results, we use the await() function:

runBlocking {
 println("User profile is ${userProfile.await()} and his history is
${userHistory.await()}")
}

Setting timeouts
What if, as happens in some cases, fetching the user's profile takes too long? What if we
decided that if the profile takes more than 0.5 seconds to return, we'll just show no profile?

This can be achieved using the withTimeout() function:

 val coroutine = async {
 withTimeout(500, TimeUnit.MILLISECONDS) {
 try {
 val time = Random().nextInt(1000)

 println("It will take me $time to do")

 delay(time)

 println("Returning profile")
 "Profile"
 }
 catch (e: TimeoutCancellationException) {
 e.printStackTrace()
 }
 }
}

We set the timeout to be 500 milliseconds, and our coroutine will delay for between 0 and
1,000 milliseconds, giving it a 50 percent chance to fail.

We'll await results from the coroutine and see what happens:

val result = try {
 coroutine.await()
}
catch (e: TimeoutCancellationException) {
 "No Profile"
}

println(result)

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[201]

Here we benefit from the fact that try is an expression in Kotlin. So we can return a result
immediately from it.

If the coroutine manages to return before the timeout, the value of result becomes profile.
Otherwise, we receive TimeoutCancellationException, and set the value of result to
no profile.

The interesting part is that our coroutine always
receives TimeoutCancellationException, which we can handle. And in case of a
timeout, returning profile will never be printed.

A combination of timeouts and try-catch expressions is a really powerful tool that allows us
to create robust interactions.

Parent jobs
What if we want to cancel more than one coroutine at the same time? That's where parent
jobs come into play. Remember that launch() receives CoroutineContext, that's
usually CommonPool? It can also receive other parameters, which will see shortly.

We'll start with a suspending function that works for some time:

suspend fun produceBeautifulUuid(): String {
 try {
 val uuids = List(1000) {
 yield()
 UUID.randomUUID()
 }

 println("Coroutine done")
 return uuids.sorted().first().toString()
 } catch (t: CancellationException) {
 println("Got cancelled")
 }

 return ""
}

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[202]

We would like to launch 10 of these and cancel them after only 100 ms.

For that, we'll use a parent job:

val parentJob = Job()

List(10) {
 async(CommonPool + parentJob) {
 produceBeautifulUuid()
 }
}

delay(100)
parentJob.cancel()
delay(1000) // Wait some more time

As you can see, a parent job is simply a job. We pass it to the async() function. We can use
the + sign due to the fact that CoroutineContext has overloaded the plus() function.
You can also specify it using named arguments:

async(CommonPool, parent= parentJob)

Once we invoke cancel() on parent job, all of its children are canceled too.

Channels
Up until now, we learned how to spawn coroutines and control them. But what if two
coroutines need to communicate with each other?

In Java, threads communicate either by using the wait()/notify()/notifyAll() pattern
or by using one of the rich set of classes from the java.util.concurrent package. For
example: BlockingQueue or Exchanger.

In Kotlin, as you may have noticed, there are no wait()/notify() methods. But there are
channels, which are very similar to BlockingQueue. But instead of blocking a thread,
channels suspend a coroutine, which is a lot cheaper.

To understand channels better, let's create a simple game of two players that will throw
random numbers at each other. If your number is greater, you win. Otherwise, you lose the
round:

fun player(name: String,
 input: Channel<Int>,
 output: Channel<Int>) = launch {

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[203]

 for (m in input) {
 val d = Random().nextInt(100)
 println("$name got $m, ${if (d > m) "won" else "lost" }")

 delay(d)
 output.send(d)
 }
}

Each player has two channels. One is used to receive data, the other to send it.

We can iterate over a channel with a regular for-loop, which will suspend until the next
value is received.

When we want to send our results to the other player, we simply use the send() method.

Now let's play this game for one second:

fun main(vararg args: String) {
 val p1p2 = Channel<Int>()
 val p2p1 = Channel<Int>()

 val player1 = player("Player 1", p2p1, p1p2)
 val player2 = player("Player 2", p1p2, p2p1)

 runBlocking {
 p2p1.send(0)
 delay(1000)
 }
}

Our output may look something like this:

...
Player 1 got 62, won
Player 2 got 65, lost
Player 1 got 29, lost
Player 2 got 9, won
Player 1 got 46, won
Player 2 got 82, lost
Player 1 got 81, lost
...

As you can see, channels are a convenient and type-safe way to communicate between
different coroutines. But we had to define the channels manually, and pass them in the
correct order. In the next two sections, we'll see how this can be further simplified.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[204]

Producers
In Chapter 7, Staying Reactive, which was dedicated to reactive programming, we
discussed Observable and subject that were producing streams of values. Much in the
same way, Kotlin provides us with the produce() function.

This function creates coroutine is backed up by ReceiveChannel<T>, where T is the type
the coroutine produces:

val publisher: ReceiveChannel<Int> = produce {
 for (i in 2018 downTo 1970) { // Years back to Unix
 send(i)
 delay(20)
 }
}

In Rx there's the onNext() method that we covered in Chapter 7, Staying Reactive.

Producers have a send() function, which is very similar.

Much like the Rx Observable that provided the subscribe() method, this channel, has
the consumeEach() function:

publisher.consumeEach {
 println("Got $it")
}

It prints the following:

Got 35
Got 34
Got 33
Got 32
Got 31
Got 30
Got 29

Another great ability that channels provide is select().

If we have more than one producer, we can subscribe to their channels, and take the first
result available:

val firstProducer = produce<String> {
 delay(Random().nextInt(100))
 send("First")
}

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[205]

val secondProducer = produce<String> {
 delay(Random().nextInt(100))
 send("Second")
}

val winner = select<String> {
 firstProducer.onReceive {
 it.toLowerCase()
 }
 secondProducer.onReceive {
 it.toUpperCase()
 }
}

println(winner)

This will randomly print First or Second.

Note that select() happens only once. A common mistake is to have select on two
coroutines that produce a stream of data, without wrapping it in a loop:

// Producer 1
val firstProducer = produce {
 for (c in 'a'..'z') {
 delay(Random().nextInt(100))
 send(c.toString())
 }

}

// Producer 2
val secondProducer = produce {
 for (c in 'A'..'Z') {
 delay(Random().nextInt(100))
 send(c.toString())
 }
}

// Receiver
println(select<String> {
 firstProducer.onReceive {
 it
 }
 secondProducer.onReceive {
 it
 }
})

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[206]

Instead of printing the alphabet, this will only print either "a" or "A," and then exit. Make
sure your select() is wrapped in a loop.

This will print the first 10 characters it receives:

// Receiver
for (i in 1..10) {
 println(select<String> {
 firstProducer.onReceive {
 it
 }
 secondProducer.onReceive {
 it
 }
 })
}

Another option is to signal using the close() function:

// Producer 2
val secondProducer = produce {
 for (c in 'A'..'Z') {
 delay(Random().nextInt(100))
 send(c.toString())
 }
 close()
}

And use onReceiveOrNull() inside the receiver:

// Receiver
while(true) {
 val result = select<String?> {
 firstProducer.onReceiveOrNull {
 it
 }
 secondProducer.onReceiveOrNull {
 it
 }
 }

 if (result == null) {
 break
 }
 else {

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[207]

 println(result)
 }
}

This option will print characters until the first of the producers decide to close the channel.

Actors
The last building block introduced in this chapter is actors. Similar to producer(), actor()
is a coroutine bound to a channel. But instead of a channel going out of the coroutine,
there's a channel going into the coroutine. If you think that was too academic, read on for
another explanation.

So what is an actor, anyway? Let's look at an interaction between Michael and me, an
imaginary product manager, who happens to be a canary, as you may remember from
Chapter 4, Getting Familiar with Behavioral Patterns. Michael has a list of tasks that need to
be completed before the end of the sprint/week/month. And he simply throws them at me,
in the hope that I'll do my magic and translate some vague specifications into a working
code. He's not waiting for my response. He just expects that eventually, it will
happen—and sooner rather than later. For Michael, I'm an actor. Not because I attended an
acting school, but because I act upon his request.

If you've worked with Scala, or some other programming language that has actors, you
may be familiar with a slightly different actor model from what we've described. In some
implementations, actors have both inbound and outbound channels (often called
mailboxes). But it Kotlin, an actor has only an inbound mailbox.

To create a new actor, we use the actor() function:

data class Task (val description: String)
val me = actor<Task> {
 while (!isClosedForReceive) {
 println(receive().description.repeat(10))
 }
}

Note that the same way that select() works, unless we wrap an actor's receive() into
some kind of loop, it will execute only once. If you'll attempt to send it to a closed channel,
you get ClosedSendChannelException.

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[208]

You communicate with actors using send():

// Imagine this is Michael the PM
fun michael(actor: SendChannel<Task>) {
 runBlocking {
 // He has some range of tasks
 for (i in 'a'..'z') {
 // That he's sending to me
 actor.send(Task(i.toString()))
 }
 // And when he's done with the list, he let's me know
 actor.close()
 // That doesn't mean I'm done working on it, though
 }
}

// And he's calling me
michael(me)

Another pattern for an actor is to use the receiveOrNull() function:

val meAgain = actor<Task> {
 var next = receiveOrNull()

 while (next != null) {
 println(next.description.toUpperCase())
 next = receiveOrNull()
 }
}

// Michael still can call me in the same manner
michael(meAgain)

As you can see, instead of checking whether the actor's channel has been closed, our cue is
receiving null on the channel. This approach may be preferable, if the actor receives tasks
from many managers.

The third option, which is the most preferable one usually, is to iterate over the channel:

val meWithRange = actor<Task> {
 for (t in channel) {
 println(t.description)
 }

 println("Done everything")

see more please visit: https://homeofbook.com

Threads and Coroutines Chapter 8

[209]

}

michael(meWithRange)

As you can see, this is the cleanest implementation of the three.

Actors are a very useful for background tasks that need to maintain some kind of state. For
example, you could create an actor that would generate reports. It will receive what kind of
report to generate, and will make sure that only one report is generated at the same time:

data class ReportRequest(val name: String,
 val from: LocalDate,
 val to: LocalDate)
val reportsActor = actor<ReportRequest>(capacity=100) {
 for (req in this) {
 generateReport(req)
 }
}

It is often a good idea to limit the capacity of messages the actor can receive.

Then we can send this actor what type of report to produce:

reportsActor.send(ReportRequest("Monthly Report",
 LocalDate.of(2018, 1, 1),
 LocalDate.of(2018, 1, 31)))

Summary
In this chapter, we covered how to create threads and coroutines in Kotlin, and the benefits
of coroutines.

Kotlin has simplified syntax for creating threads, compared to Java. But they still have the
overhead of memory and often performance. Coroutines are able to solve these issues; use
coroutines whenever you need to execute some code concurrently.

If you want to communicate between two coroutines, use channels.

Kotlin also offers actors with the actor() function, which also spins a coroutine that has
an inbound stream attached to it to process events. And if you need to create a stream of
values, you can use the produce() function.

In the next chapter, we'll discuss how we can use these concurrency primitives to create
scalable and robust systems that suit our needs.

see more please visit: https://homeofbook.com

9
Designed for Concurrency

In this chapter, we'll discuss the most common concurrency design patterns, implemented
with coroutines, and how coroutines can synchronize their execution.

Concurrent design patterns help us to manage many tasks at once. Yeah, I know, that's
what we did in the last chapter. That's because some of those design patterns are already
built into the language.

In this chapter, we'll briefly cover design patterns and other concurrent design patterns that
you'll need to implement by yourself, with little effort.

We will be covering the following topics in this chapter:

Active Object
Deferred value
Barrier
Scheduler
Pipelines
Fan out
Fan in
Buffered channels
Unbiased select
Mutex
Select on close
Sidekick channel
Deferred channel

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[211]

Active Object
This design pattern allows a method to be executed in a safe way on another thread. Guess
what else is being executed on another thread?

You're totally right: actor().

So, it's one of those design patterns that is already built into the language. Or, to be precise,
into one of the accommodating libraries.

We've already seen how to send data to actor(). But how do we receive data from it?

One way is to supply it with a channel for output:

fun activeActor(out: SendChannel<String>) = actor<Int> {
 for (i in this) {
 out.send(i.toString().reversed())
 }
 out.close()
}

Remember to close the output channel when you're done.

Testing
To test the Active Object pattern, we'll launch two jobs. One will send data to our actor:

val channel = Channel<String>()
val actor = activeActor(channel)

val j1 = launch {
 for (i in 42..53) {
 actor.send(i)
 }
 actor.close()
}

And another will wait for output on the outbound channel:

val j2 = launch {
 for (i in channel) {
 println(i)
 }
}

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[212]

j1.join()
j2.join()

Deferred value
We've already met deferred values in Chapter 8, Threads and Coroutines, in the Returning
results section. Deferred is the result of the async() function, for example. You may also
know them as Futures from Java or Scala, or as Promises from JavaScript.

Interestingly enough, Deferred is a Proxy design pattern that we've met in previous
chapters.

Much as the Kotlin Sequence is very similar to the Java8 Stream, Kotlin Deferred is very
similar to Java Future. You'll rarely need to create your own Deferred. Usually, you would
work with the one returned from async().

In cases where you do need to return a placeholder for a value that would be evaluated in
the future, you can do it:

val deferred = CompletableDeferred<String>()

launch {
 delay(100)
 if (Random().nextBoolean()) {
 deferred.complete("OK")
 }
 else {
 deferred.completeExceptionally(RuntimeException())
 }
}

println(deferred.await())

This code will print OK half of the time, and throw RuntimeException the other half of the
time.

Make sure that you always complete your deferred. It is usually a good idea to wrap any
code containing deferred into a try...catch block.

It is also possible to cancel a deferred if you're no longer interested in its results. Simply call
cancel() on it:

deferred.cancel()

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[213]

Barrier
The Barrier design pattern provides us with the means to wait for multiple concurrent tasks
before proceeding further. A common use case is composing objects from different sources.

Take, for example, the following class:

data class FavoriteCharacter(val name: String, val catchphrase: String, val
repeats: Int)

Assume that we're fetching name, catchphrase, and number. This catchphrase is being
repeated from three different sources.

The most basic way would be to use CountDownLatch, as we did in some of the previous
examples:

val latch = CountDownLatch(3)

var name: String? = null
launch {
 delay(Random().nextInt(100))
 println("Got name")
 name = "Inigo Montoya"
 latch.countDown()
}

var catchphrase = ""
launch {
 delay(Random().nextInt(100))
 println("Got catchphrase")
 catchphrase = "Hello. My name is Inigo Montoya. You killed my father.
Prepare to die."
 latch.countDown()
}

var repeats = 0
launch {
 delay(Random().nextInt(100))
 println("Got repeats")
 repeats = 6
 latch.countDown()
}

latch.await()

println("${name} says: ${catchphrase.repeat(repeats)}")

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[214]

You'll notice that the order of the async tasks completing is changing:

Got name
Got catchphrase
Got repeats

But in the end, we always print the same result:

Inigo Montoya says: Hello. My name is Inigo Montoya. ...

But this solution brings a lot of problems. We need to work with mutable variables and
either set defaults for them or use nulls.

Also, this would work as long as we use closures. What if our functions were longer than a
few lines?

CountDownLatch
We could pass them the latch, of course. The latch, which we've already seen a couple of
times, allows one thread to wait until the other threads have completed working:

private fun getName(latch: CountDownLatch) = launch {
 ...
 latch.countDown()
}

But it's not a clear separation of concerns. Do we really want to specify how this function
should be synchronized?

Let's have a second take:

private fun getName() = async {
 delay(Random().nextInt(100))
 println("Got name")
 "Inigo Montoya"
}

private fun getCatchphrase() = async {
 delay(Random().nextInt(100))
 println("Got catchphrase")
 "Hello. My name is Inigo Montoya. You killed my father. Prepare to
die."
}

private fun getRepeats() = async {
 delay(Random().nextInt(100))

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[215]

 println("Got repeats")
 6
}

Just a reminder, fun getRepeats() = async { ... } has nothing magical in it. Its
longer equivalent is:

private fun getCatchphrase(): Deferred<String> {
 return async {
 ...
 }
}

We can call our code to get the same results as before:

val name = getName()
val catchphrase = getCatchphrase()
val repeats = getRepeats()

println("${name.await()} says:
${catchphrase.await().repeat(repeats.await())}")

But we can improve it further by using our old friend, data class.

Data class as Barrier
Now our data class is the Barrier:

val character = FavoriteCharacter(getName().await(),
getCatchphrase().await(), getRepeats().await())

// Will happen only when everything is ready
with(character) {
 println("$name says: ${catchphrase.repeat(repeats)}")
}

The additional benefit of data classes as Barriers is the ability to destructure them easily:

val (name, catchphrase, repeats) = character
println("$name says: ${catchphrase.repeat(repeats)}")

This works well if the type of data we receive from different asynchronous tasks is widely
different. In this example, we receive both String and Int.

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[216]

In some cases, we receive the same types of data from different sources.

For example, let's ask Michael (our canary product owner), Jake (our barista), and me who
our favorite movie character is:

object Michael {
 fun getFavoriteCharacter() = async {
 // Doesn't like to think much
 delay(Random().nextInt(10))
 FavoriteCharacter("Terminator", "Hasta la vista, baby", 1)
 }
}

object Jake {
 fun getFavoriteCharacter() = async {
 // Rather thoughtful barista
 delay(Random().nextInt(100) + 10)
 FavoriteCharacter("Don Vito Corleone", "I'm going to make him an
offer he can't refuse", 1)
 }
}

object Me {
 fun getFavoriteCharacter() = async {
 // I already prepared the answer!
 FavoriteCharacter("Inigo Montoya", "Hello, my name is...", 6)
 }
}

In that case, we can use a list to gather the results:

val favoriteCharacters = listOf(Me.getFavoriteCharacter().await(),
 Michael.getFavoriteCharacter().await(),
 Jake.getFavoriteCharacter().await())

println(favoriteCharacters)

Scheduler
This is another concept we discussed briefly in Chapter 8, Threads and Coroutines, in the
Starting a coroutine section.

Remember how our launch() or async() could receive CommonPool?

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[217]

Here's an example to remind you that you could specify it explicitly:

// Same as launch {}
launch(CommonPool) {
...
}

// Same as async {}
val result = async(CommonPool) {
...
}

This CommonPool is a Scheduler design pattern in a bad disguise. Many async tasks may be
mapped to the same Scheduler.

Run the following code:

val r1 = async(CommonPool) {
 for (i in 1..1000) {
 println(Thread.currentThread().name)
 yield()
 }
}

r1.await()

What is interesting is the fact that the same coroutine is picked up by different threads:

ForkJoinPool.commonPool-worker-2
ForkJoinPool.commonPool-worker-3
...
ForkJoinPool.commonPool-worker-3
ForkJoinPool.commonPool-worker-1

You can also specify the context as Unconfined:

val r1 = async(Unconfined) {
 ...
}

This will run the coroutine on the main thread. It prints:

main
main
...

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[218]

You can also inherit context from your parent coroutine:

val r1 = async {
 for (i in 1..1000) {
 val parentThread = Thread.currentThread().name
 launch(coroutineContext) {
 println(Thread.currentThread().name == parentThread)
 }
 yield()
 }
}

Note though, that running in the same context doesn't mean that we run on the same
thread.

You may ask yourself: what's the difference between inheriting the context and using
Unconfined? We'll discuss this in detail in the next section.

Understanding contexts
To understand different contexts, let's look at the following code:

val r1 = async(Unconfined) {
 for (i in 1..1000) {
 println(Thread.currentThread().name)
 delay(1)
 }
}

r1.await()

Instead of yield(), we're using the delay() function, which also suspends the current
coroutine.

But the output compared to yield() is different:

main
kotlinx.coroutines.DefaultExecutor
...

After calling delay() for the first time, the coroutine has switched context, and as a result,
threads.

For that reason, using Unconfined is not recommended for CPU-intensive tasks or tasks
that need to run on a particular thread, such as UI rendering.

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[219]

You can also create your own thread pool for coroutines to run on:

val pool = newFixedThreadPoolContext(2, "My Own Pool")
val r1 = async(pool) {
 for (i in 1..1000) {
 println(Thread.currentThread().name)
 yield()
 }
}

r1.await()
pool.close()

It prints:

...
My Own Pool-2
My Own Pool-1
My Own Pool-2
My Own Pool-2
...

If you create your own thread pool, make sure that you either release it with close() or
reuse it, since creating a new thread pool and holding to it is expensive in terms of
resources.

Pipelines
In our StoryLand, the same lazy architect, me, is struggling with a problem. Back in
Chapter 4, Getting Familiar with Behavioral Patterns, we wrote an HTML page parser. But it
depends on whether somebody already fetched the pages to parse for us. It is also not very
flexible.

What we would like is for one coroutine to produce an infinite stream of news, and for
others to parse that stream in steps.

To start working with DOM, we'll need a library, such as kotlinx.dom. If you're using
Gradle, make sure you add the following lines to your build.gradle:

repositories {
 ...
 jcenter()
}

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[220]

dependencies {
 ...
 compile "org.jetbrains.kotlinx:kotlinx.dom:0.0.10"
}

Now, to the task at hand.

First, we would like to fetch news pages once in a while. For that, we'll have a producer:

fun producePages() = produce {
 fun getPages(): List<String> {
 // This should actually fetch something
 return listOf("<html><body><H1>Cool stuff</H1></body></html>",
 "<html><body><H1>Event more
stuff</H1></body></html>").shuffled()
 }
 while (this.isActive) {
 val pages = getPages()
 for (p in pages) {
 send(p)
 }
 delay(TimeUnit.SECONDS.toMillis(5))
 }
}

We use shuffled() here so the order of the list elements won't be the same all the time.

The isActive flag will be true as long as the coroutine is running and hasn't been
canceled. It is good practice to check this property in loops that may run for a long time, so
they could be stopped between iterations.

Each time we receive new titles, we send them downstream.

Since tech news isn't updated very often. We can check for updates only once in a while,
using delay(). In the actual code, the delay would probably be minutes, if not hours.

The next step is creating Document Object Model (DOM) out of those raw strings
containing HTML. For that we'll have a second producer, this one receiving a channel that
connects it to the first one:

fun produceDom(pages: ReceiveChannel<String>) = produce {

 fun parseDom(page: String): Document {
 return kotlinx.dom.parseXml(page.toSource())
 }

 for (p in pages) {

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[221]

 send(parseDom(p))
 }
}

We can use the for loop to iterate over the channel as long as more data is coming. This is a
very elegant way of consuming data from a channel.

In this producer, we finally make use of the DOM parser we imported a while ago. We also
introduced an extension function on String for our convenience:

private fun String.toSource(): InputSource {
 return InputSource(StringReader(this))
}

That's because parseXml() expects InputSource as its input. Basically, this is an Adapter
design pattern in action:

fun produceTitles(parsedPages: ReceiveChannel<Document>) = produce {
 fun getTitles(dom: Document): List<String> {
 val h1 = dom.getElementsByTagName("H1")
 return h1.asElementList().map {
 it.textContent
 }
 }

 for (page in parsedPages) {
 for (t in getTitles(page)) {
 send(t)
 }
 }
}

We're looking for the headers, hence getElementsByTagName("H1"). For each header
found, and there may be more than one, we get its text with textContent.

Finally, we're sending each header from each page to the next in line.

Establishing a pipeline
Now, to establish our pipeline:

val pagesProducer = producePages()

val domProducer = produceDom(pagesProducer)

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[222]

val titleProducer = produceTitles(domProducer)

runBlocking {
 titleProducer.consumeEach {
 println(it)
 }
}

We have the following:

pagesProducer |> domProducer |> titleProducer |> output

A pipeline is a great way to break a long process into smaller steps. Note that each
producing coroutine is a pure function, so it's also easy to test and reason about.

The entire pipeline could be stopped by calling cancel() on the first coroutine in line.

We can achieve an even nicer API by using the extension functions:

private fun ReceiveChannel<Document>.titles(): ReceiveChannel<String> {
 val channel = this
 fun getTitles(dom: Document): List<String> {
 val h1 = dom.getElementsByTagName("H1")
 return h1.asElementList().map {
 it.textContent
 }
 }

 return produce {
 for (page in channel) {
 for (t in getTitles(page)) {
 send(t)
 }
 }
 }
}

private fun ReceiveChannel<String>.dom(): ReceiveChannel<Document> {
 val channel = this
 return produce() {
 for (p in channel) {
 send(kotlinx.dom.parseXml(p.toSource()))
 }
 }
}

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[223]

Then we can call our code like this:

runBlocking {
 producePages().dom().titles().consumeEach {
 println(it)
 }
}

Kotlin really excels at creating expressive and fluent APIs.

The fan-out design pattern
What if the amount of work at different steps in our pipeline is very different?

For example, it takes a lot more time to fetch the HTML than to parse it. Or what if we don't
have a pipeline at all, just a lot of tasks we would like to distribute between coroutines.

That's where the fan-out design pattern kicks in. The number of coroutines may read from
the same channel, distributing the work.

We can have one coroutine produce some results:

private fun producePages() = produce {
 for (i in 1..10_000) {
 for (c in 'a'..'z') {
 send(i to "page$c")
 }
 }
}

And have a function that would create a coroutine that reads those results:

private fun consumePages(channel: ReceiveChannel<Pair<Int, String>>) =
async {
 for (p in channel) {
 println(p)
 }
}

This allows us to generate an arbitrary number of consumers:

val producer = producePages()

val consumers = List(10) {

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[224]

 consumePages(producer)
}

runBlocking {
 consumers.forEach {
 it.await()
 }
}

The fan-out design pattern allows us to efficiently distribute the work across a number of
coroutines, threads, and CPUs.

The fan-in design pattern
It would be great if our coroutines could always make decisions by themselves. But what if
they need to return some results from the computation to another coroutine?

The opposite of fan-out is the fan-in design pattern. Instead of multiple coroutines reading
from the same channel, multiple coroutines can write their results to the same channel.

Imagine that you're reading news from two prominent tech resources: techBunch and
theFerge.

Each resource produces the values at its own pace, and sends them over a channel:

private fun techBunch(collector: Channel<String>) = launch {
 repeat(10) {
 delay(Random().nextInt(1000))
 collector.send("Tech Bunch")
 }
}

private fun theFerge(collector: Channel<String>) = launch {
 repeat(10) {
 delay(Random().nextInt(1000))
 collector.send("The Ferge")
 }
}

By providing them with the same channel, we can combine their results:

val collector = Channel<String>()

techBunch(collector)
theFerge(collector)

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[225]

runBlocking {
 collector.consumeEachIndexed {
 println("${it.index} Got news from ${it.value}")
 }
}

Combining the fan-out and fan-in design patterns is a good base for Map/Reduce
algorithms.

To demonstrate that, we'll generate 10,000,000 random numbers and compute the
maximum number among them by dividing this task multiple times.

First, to generate the list of 10,000,000 random integers:

val numbers = List(10_000_000) {
 Random().nextInt()
}

Managing workers
Now we'll have two types of workers:

The divide worker will receive the list of numbers, determine the biggest number
in the list, and send it over to the output channel:

fun divide(input: ReceiveChannel<List<Int>>,
 output: SendChannel<Int>) = async {
 var max = 0
 for (list in input) {
 for (i in list) {
 if (i > max) {
 max = i
 output.send(max)
 }
 }
 }
}

The collector will listen to this channel and each time a new sub-max number
arrives, will decide whether it's the all-time biggest:

fun collector() = actor<Int> {
 var max = 0
 for (i in this) {
 max = Math.max(max, i)

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[226]

 }
 println(max)
}

Now we only need to establish those channels:

val input = Channel<List<Int>>()
val output = collector()
val dividers = List(10) {
 divide(input, output)
}

launch {
 for (c in numbers.chunked(1000)) {
 input.send(c)
 }
 input.close()
}

dividers.forEach {
 it.await()
}

output.close()

Note that in this case, we don't gain performance benefits, and naive numbers.max()
would produce better results. But the more data you need to collect, the more useful this
pattern becomes.

Buffered channels
Up until now, all the channels that we used had a capacity of exactly one element.

This means that if you write to this channel but no one reads from it, the sender will be
suspended:

val channel = Channel<Int>()

val j = launch {
 for (i in 1..10) {
 channel.send(i)
 println("Sent $i")

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[227]

 }
}

j.join()

This code doesn't print anything because the coroutine is waiting for someone to read from
the channel.

To avoid that, we can create a buffered channel:

val channel = Channel<Int>(5)

Now suspension will occur only when the channel capacity is reached.

It prints:

Sent 1
Sent 2
Sent 3
Sent 4
Sent 5

Since produce() and actor() are also backed up by a channel, we can make it buffered
too:

val actor = actor<Int>(capacity = 5) {
 ...
}

val producer = produce<Int>(capacity = 10) {
 ...
}

Unbiased select
One of the most useful ways to work with channels is the select {} clause we saw in
Chapter 8, Threads and Coroutines, in the Producers section.

But select is inherently biased. If two events happen at the same time, it will select the first
clause.

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[228]

In the following example, we'll have a producer that sends five values with a very short
delay:

fun producer(name: String, repeats: Int) = produce {
 repeat(repeats) {
 delay(1)
 send(name)
 }
}

We'll create three such producers and see the results:

val repeats = 10_000
val p1 = producer("A", repeats)
val p2 = producer("B", repeats)
val p3 = producer("C", repeats)

val results = ConcurrentHashMap<String, Int>()
repeat(repeats) {
 val result = select<String> {
 p1.onReceive { it }
 p2.onReceive { it }
 p3.onReceive { it }
 }

 results.compute(result) { k, v ->
 if (v == null) {
 1
 }
 else {
 v + 1
 }
 }
}

println(results)

We run this code five times. Here are some of the results:

{A=8235, B=1620, C=145}
{A=7850, B=2062, C=88}
{A=7878, B=2002, C=120}
{A=8260, B=1648, C=92}
{A=7927, B=2011, C=62}

As you can see, A almost always wins, while C is always third. The more repeats you set,
the larger the bias gets.

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[229]

Now let's use selectUnbiased instead:

...
val result = selectUnbiased<String> {
 p1.onReceive { it }
 p2.onReceive { it }
 p3.onReceive { it }
}
...

The results of the first five executions may look like this:

{A=3336, B=3327, C=3337}
{A=3330, B=3332, C=3338}
{A=3334, B=3333, C=3333}
{A=3334, B=3336, C=3330}
{A=3332, B=3335, C=3333}

Not only are the numbers distributed more evenly now, but all clauses have an equal
chance of being selected.

Mutexes
Also known as mutual exclusions, mutexes provide a means to protect a shared state.

Let's start with same, old, dreaded counter example:

var counter = 0

val jobs = List(10) {
 launch {
 repeat(1000) {
 counter++
 yield()
 }
 }
}

runBlocking {
 jobs.forEach {
 it.join()
 }
 println(counter)
}

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[230]

As you've probably guessed, this prints anything but the result of 10*100. Totally
embarrassing.

To solve that, we introduce a mutex:

var counter = 0
val mutex = Mutex()

val jobs = List(10) {
 launch {
 repeat(1000) {
 mutex.lock()
 counter++
 mutex.unlock()
 yield()
 }
 }
}

Now our example always prints the correct number.

This is good for simple cases. But what if the code within the critical section (that is,
between lock() and unlock()) throws an exception?

Then we'll have to wrap everything in try...catch, which is not very convenient:

repeat(1000) {
 try {
 mutex.lock()
 counter++
 }
 finally {
 mutex.unlock()
 }
 yield()
}

Exactly for that purpose, Kotlin also introduces withLock():

...
repeat(1000) {
 mutex.withLock {
 counter++
 }
 yield()
}
...

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[231]

Selecting on close
Reading from a channel using select() is nice until it gets closed.

You can see an example of that problem here:

val p1 = produce {
 repeat(10) {
 send("A")
 }
}

val p2 = produce {
 repeat(5) {
 send("B")
 }
}

runBlocking {
 repeat(15) {
 val result = selectUnbiased<String> {
 p1.onReceive {
 it
 }
 p2.onReceive {
 it
 }
 }

 println(result)
 }
}

Although the numbers add up, we may often receive ClosedReceiveChannelException
running this code. That's because the second producer has fewer items, and as soon as it
finishes, it will close its channel.

To avoid that, we can use onReceiveOrNull, which will return a nullable version at the
same time. Once the channel gets closed, we'll receive null in our select.

We can handle this null value in any way we want, for example, by making use of the
elvis operator:

repeat(15) {
 val result = selectUnbiased<String> {

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[232]

 p1.onReceiveOrNull {
 // Can throw my own exception
 it ?: throw RuntimeException()
 }
 p2.onReceiveOrNull {
 // Or supply default value
 it ?: "p2 closed"
 }
 }

 println(result)
}

Using that knowledge, we can drain both channels by skipping the null results:

var count = 0
while (count < 15) {
 val result = selectUnbiased<String?> {
 p1.onReceiveOrNull {
 it
 }
 p2.onReceiveOrNull {
 it
 }
 }

 if (result != null) {
 println(result)
 count++
 }
}

Sidekick channel
Up until now, we've only discussed the usages of select as a receiver. But we can also use
select to send items to another channel.

Let's look at the following example:

val batman = actor<String> {
 for (c in this) {
 println("Batman is beating some sense into $c")
 delay(100)
 }
}

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[233]

val robin = actor<String> {
 for (c in this) {
 println("Robin is beating some sense into $c")
 delay(250)
 }
}

We have a superhero and their sidekick as two actors. Since the superhero is more
experienced, it usually takes them less time to beat the villain they're facing.

But in some cases, they still have their hands full, so a sidekick needs to step in.

We'll throw five villains at the pair with a few delays, and see how they fare:

val j = launch {
 for (c in listOf("Jocker", "Bane", "Penguin", "Riddler", "Killer
Croc")) {
 val result = select<Pair<String, String>> {
 batman.onSend(c) {
 Pair("Batman", c)
 }
 robin.onSend(c) {
 Pair("Robin", c)
 }
 }
 delay(90)
 println(result)
 }
}

It prints:

Batman is beating some sense into Jocker
(Batman, Jocker)
Robin is beating some sense into Bane
(Robin, Bane)
Batman is beating some sense into Penguin
(Batman, Penguin)
Batman is beating some sense into Riddler
(Batman, Riddler)
Robin is beating some sense into Killer Croc
(Robin, Killer Croc)

Notice that the type parameter for this select refers to what is returned from the block, and
not what is being sent to the channels.

That's the reason we use Pair<String, String> here.

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[234]

Deferred channel
The more you work with coroutines, the more you'll get used to await results. At some
point, you'll start sending deferred values over channels.

We'll start by creating 10 async tasks. The first will delay for a long time, and others we
delay for a short time:

val elements = 10
val deferredChannel = Channel<Deferred<Int>>(elements)

launch(CommonPool) {
 repeat(elements) { i ->
 println("$i sent")
 deferredChannel.send(async {
 delay(if (i == 0) 1000 else 10)
 i
 })
 }
}

We'll put all those results into a buffered channel.

Now we can read from this channel, and be using a second select block, and await the
results:

val time = measureTimeMillis {
 repeat(elements) {
 val result = select<Int> {
 deferredChannel.onReceive {
 select {
 it.onAwait { it }
 }
 }
 }
 println(result)
 }
}

println("Took ${time}ms")

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[235]

Note that the resulting time is of the slowest task:

Took 1010ms

You can also use onAwait() as a stop signal for another channel.

For that, we'll create an async task that will complete in 600 ms:

val stop = async {
 delay(600)
 true
}

And, as in the previous example, we'll send 10 deferred values over the buffered channel:

val channel = Channel<Deferred<Int>>(10)

repeat(10) {i ->
 channel.send(async {
 delay(i * 100)
 i
 })
}

Then we'll wait for either a new value or a notification that the channel should be closed:

runBlocking {
 for (i in 1..10) {
 select<Unit> {
 stop.onAwait {
 channel.close()
 }
 channel.onReceive {
 println(it.await())
 }
 }
 }
}

This prints only six values out of ten, as expected, stopping after 600 ms have passed.

see more please visit: https://homeofbook.com

Designed for Concurrency Chapter 9

[236]

Summary
In this chapter, we covered various design patterns related to concurrency in Kotlin. Most
of them are based on coroutines, channels, deferred values, or a combination.

Pipeline, fan-in, and fan-out help distribute work and collect the results. Deferred values
are used as placeholders for something that would resolve at a later time. Schedulers help
us manage resources, mainly threads that back up the coroutines. Mutexes and Barriers
help control that concurrency.

Now you should understand the select block and how it can be combined with channels
and deferred values efficiently.

In the next chapter, we'll discuss Kotlin's idioms, best practices, and some of the anti-
patterns that emerged with the language.

see more please visit: https://homeofbook.com

10
Idioms and Anti-Patterns

This chapter discusses the best and worst practices in Kotlin. You'll learn what idiomatic
Kotlin code should look like and which patterns to avoid.

After completing this chapter, you should be able to write more readable and maintainable
Kotlin code, as well as avoid some common pitfalls.

In this chapter, we will cover the following topics:

Let
Apply
Also
Run
With
Instance checks
Try-with-resources
Inline functions
Reified
Constants
Constructor overload
Dealing with nulls
Explicit async
Validation
Sealed, not enumerated
More companions
Scala function

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[238]

Let
Usually, we use let() to do something only if the object is not null:

val sometimesNull = if (Random().nextBoolean()) "not null" else null

sometimesNull?.let {
 println("It was $it this time")
}

One common gotcha here is that let() by itself also works on nulls:

val alwaysNull = null

alwaysNull.let { // No null pointer there
 println("It was $it this time") // Always prints null
}

Don't forget the question mark, ?, when you use let() for null checks.

The return value of let() is not related to the type it operates on:

val numberReturned = justAString.let {
 println(it)
 it.length
}

This code will print "string" and return Int 6 as its length.

Apply
We have already discussed apply() in previous chapters. It returns the same object it
operates on and sets the context to this. The most useful case for this function is setting the
fields of a mutable object.

Think of how many times you had to create a class with an empty constructor, then call a
lot of setters, one after another:

class JamesBond {
 lateinit var name: String
 lateinit var movie: String
 lateinit var alsoStarring: String
}

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[239]

val agentJavaWay = JamesBond()
agentJavaWay.name = "Sean Connery"
agentJavaWay.movie = "Dr. No"

We can set only name and movie, but leave alsoStarring blank, like this:

val `007` = JamesBond().apply {
 this.name = "Sean Connery"
 this.movie = "Dr. No"
}

println(`007`.name)

Since the context is set to this, we can simplify it to the following nice syntax:

val `007` = JamesBond().apply {
 name = "Sean Connery"
 movie = "Dr. No"
}

This function is especially good when you work with Java classes that usually have a lot of
setters.

Also
Single-expression functions are very nice and concise:

fun multiply(a: Int, b: Int): Int = a * b

But often, you have a single-statement function, that also needs to write to a log, for
example.

You could write it the following way:

fun multiply(a: Int, b: Int): Int {
 val c = a * b
 println(c)
 return c
}

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[240]

But then it's not a single statement function anymore, right?

And we also introduced another variable. To the rescue, also():

fun multiply(a: Int, b: Int): Int = (a * b).also { println(it) }

This function will set results of the expression to it and return the result of the expression.

This is also useful when you want to have a side effect on a chain of calls:

val l = (1..100).toList()

l.filter{ it % 2 == 0 }
 .also { println(it) } // Prints, but doesn't change anything
 .map { it * it }

Run
Not related to threads in any way, run() is much like let(), but it sets the context to this
instead of using it:

val justAString = "string"

val n = justAString.run {
 this.length
}

Usually, this could be omitted:

val n = justAString.run {
 length
}

It is mostly useful when you plan to call a number of methods on the same object, much
like apply().

The return result, unlike apply(), may be of a totally different type, though:

val year = JamesBond().run {
 name = "ROGER MOORE"
 movie = "THE MAN WITH THE GOLDEN GUN"
 1974 // <= Not JamesBond type
}

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[241]

With
Unlike the other four scoping functions, with() is not an extension function.

This means you cannot do the following:

"scope".with { ... }

Instead, with() receives the object you want to scope as an argument:

with("scope") {
 println(this.length) // "this" set to the argument of with()
}

And as usual, we can omit this:

with("scope") {
 length
}

Just like run() and let(), you can return any result from with().

Instance checks
Coming from Java, you may be inclined to check what type your object is using, is, and
cast it using as:

interface Superhero
class Batman : Superhero {
 fun callRobin() {
 println("To the Bat-pole, Robin!")
 }
}

class Superman : Superhero {
 fun fly() {
 println("Up, up and away!")
 }
}

fun doCoolStuff(s : Superhero) {
 if (s is Superman) {
 (s as Superman).fly()
 }
 else if (s is Batman) {

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[242]

 (a as Batman).callRobin()
 }
}

But as you may know, Kotlin has smart casts, so implicit casting, in this case, is not needed:

fun doCoolStuff(s : Superhero) {
 if (s is Superman) {
 s.fly()
 }
 else if (s is Batman) {
 s.callRobin()
 }
}

Moreover, in most cases, using when() while smart-casting produces cleaner code:

fun doCoolStuff(s : Superhero) {
 when(s) {
 is Superman -> s.fly()
 is Batman -> s.callRobin()
 else -> println("Unknown superhero")
 }
}

As a rule of thumb, you should avoid using casts and rely on smart casts most of the time:

// Superhero is clearly not a string
val superheroAsString = (s as String)

But if you absolutely must, there's also a safe cast operator:

val superheroAsString = (s as? String)

Try-with-resources
Java7 added the notion of AutoCloseable and the try-with-resources statement.

This statement allows us to provide a set of resources that would be automatically closed
after the code is done with them. No more risk (or at least less risk) of forgetting to close a
file.

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[243]

Before Java7, that was a total mess:

BufferedReader br = null; // Nulls are bad, we know that
try {
 br = new BufferedReader(new FileReader("/some/peth"));
 System.out.println(br.readLine());
}
finally {
 if (br != null) { // Explicit check
 br.close(); // Boilerplate
 }
}

After Java7:

try (BufferedReader br = new BufferedReader(new FileReader("/some/peth")))
{
 System.out.println(br.readLine());
}

In Kotlin, the this statement is replaced with the use() function:

val br = BufferedReader(FileReader(""))

br.use {
 println(it.readLine())
}

Inline functions
You can think of inline functions as a copy/paste instruction for the compiler. Each time the
compiler sees a call to a function marked with inline, it will replace the call with the
concrete function body.

It makes sense to use the inline function only if it's a higher-order function that receives a
lambda as one of its arguments:

inline fun doesntMakeSense(something: String) {
 println(something)
}

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[244]

This is the most common use case where you would like to use inline:

inline fun makesSense(block: () -> String) {
 println("Before")
 println(block())
 println("After")
}

You call it as usual, with the block body:

makesSense {
 "Inlining"
}

But if you view the bytecode, you'll see it's actually translated to the lines produces and not
to a function call:

println("Before")
println("Inlining")
println("After")

In the actual code, you'll see the following:

String var1 = "Before"; <- Inline function call
System.out.println(var1);
var1 = "Inlining";
System.out.println(var1);
var1 = "After";
System.out.println(var1);

var1 = "Before"; // <- Usual code
System.out.println(var1);
var1 = "Inlining";
System.out.println(var1);
var1 = "After";
System.out.println(var1);

Notice there's absolutely no difference between the two blocks.

Since the inline function is copy/paste, you shouldn't use it if you have more than a few
lines of code. It would be more efficient to have it as a regular function.

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[245]

Reified
Since the inline function is copied, we can get rid of one of the major JVM limitations–type
erasure. After all, inside the function, we know exactly what type we're getting.

Let's look at the following example. You would like to create a generic function, which will
receive a number but will print it only if it's of the same type as the function.

You can try writing something like this:

fun <T> printIfSameType(a: Number) {
 if (a is T) { // <== Error
 println(a)
 }
}

But this code won't compile with an error as follows:

Cannot check for instance of erased type: T

What we usually do in Java, in this case, is pass the class as an argument:

fun <T: Number> printIfSameType(clazz: KClass<T>, a: Number) {
 if (clazz.isInstance(a)) {
 println(a)
 }
}

We can check this code by running the following two lines:

printIfSameType(Int::class, 1) // Print 1, as 1 is Int
printIfSameType(Int::class, 2L) // Prints nothing, as 2 is Long

This code has a few downsides:

We had to use reflection, and for that, we had to include the kotlin-reflect
library:

compile group: 'org.jetbrains.kotlin', name: 'kotlin-reflect',
version: '1.2.31'

We cannot use the is operator and must use the isInstance() function
instead.
We must pass the correct class:

clazz: KClass<T>

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[246]

Instead, we canuse a reified function:

inline fun <reified T> printIfSameTypeReified(a: Number) {
 if (a is T) {
 println(a)
 }
}

We can test that our code still works as expected:

printIfSameTypeReified<Int>(3) // Prints 3, as 3 is Int
printIfSameTypeReified<Int>(4L) // Prints nothing, as 4 is Long
printIfSameTypeReified<Long>(5) // Prints nothing, as 5 is Int
printIfSameTypeReified<Long>(6L) // Prints 6, as 6 is Long

We get all the benefits of the language this way:

No need for another dependency
Clear method signature
Ability to use the is construct

Of course, the same rules as regular inline functions apply. This code would be replicated,
so it shouldn't be too large.

Consider another case regarding function overloading:

fun printList(list: List<Int>) {
 println("This is a lit of Ints")
 println(list)
}

fun printList(list: List<Long>) {
 println("This is a lit of Longs")
 println(list)
}

This won't compile because there's a platform declaration clash. Both have the same
signature in terms of JVM: printList(list: List).

But with reified, we can achieve this:

const val int = 1
const val long = 1L
inline fun <reified T : Any> printList(list: List<T>) {
 when {
 int is T -> println("This is a list of Ints")
 long is T -> println("This is a list of Longs")

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[247]

 else -> println("This is a list of something else")
 }

 println(list)
}

Constants
Since everything in Java is an object (unless you're a primitive type), we're used to putting
all the constants inside our objects as static members.

And since Kotlin has companion objects, we usually try putting them there:

class MyClass {
 companion object {
 val MY_CONST = "My Const"
 }
}

This will work, but you should remember that companion object is an object, after all.

So, this will be translated to the following code, more or less:

public final class Spock {
 @NotNull
 private static final String MY_CONST = "My Const";
 public static final Spock.Companion Companion = new
Spock.Companion(...);

 public static final class Companion {
 @NotNull
 public final String getMY_CONST() {
 return MyClass.MY_CONST;
 }

 private Companion() {
 }
 }
}

And the call to our constant looks like this:

String var1 = Spock.Companion.getSENSE_OF_HUMOR();
System.out.println(var1);

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[248]

So, we have our class, Spock, inside of which we have another class. But what we wanted
was only static final String.

Let's now mark this value as constant:

class Spock {
 companion object {
 const val SENSE_OF_HUMOR = "None"
 }
}

Here are the bytecode changes:

public final class Spock {
 @NotNull
 public static final String SENSE_OF_HUMOR = "NONE";
 public static final Spock.Companion Companion = new
Spock.Companion(...);
)
 public static final class Companion {
 private Companion() {
 }
 ...
 }
}

And here is the call:

String var1 = "NONE";
System.out.println(var1);

Notice that there's no call to this constant at all since the compiler already inlined its value
for us. After all, it's constant.

If all you need is a constant, you can also set it up outside of any class:

const val SPOCK_SENSE_OF_HUMOR = "NONE"

And if you need namespacing, you can wrap it in an object:

object SensesOfHumor {
 const val SPOCK = "NONE"
}

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[249]

Constructor overload
In Java, we're used to having overloaded constructors:

class MyClass {
 private final String a;
 private final Integer b;
 public MyClass(String a) {
 this(a, 1);
 }

 public MyClass(String a, Integer b) {
 this.a = a;
 this.b = b;
 }
}

We can simulate the same behavior in Kotlin:

class MyClass(val a: String, val b: Int, val c: Long) {
 constructor(a: String, b: Int) : this(a, b, 0)
 constructor(a: String) : this(a, 1)
 constructor() : this("Default")
}

But it's usually better to have default parameter values and named arguments instead:

class BetterClass(val a: String = "Default",
 val b: Int = 1,
 val c: Long = 0)

Dealing with nulls
Nulls are unavoidable, especially if you work with Java libraries or get data from a
database.

But you can check for null the Java way:

// Will return "String" half of the time, and null the other half
val stringOrNull: String? = if (Random().nextBoolean()) "String" else null

// Java-way check
if (stringOrNull != null) {
 println(stringOrNull.length)
}

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[250]

Or in a shorter form, with the Elvis operator. If the length is not null, this operator will
return its value. Otherwise, it will return the default value we supplied, zero in this case:

val alwaysLength = stringOrNull?.length ?: 0

println(alwaysLength) // Will print 6 or 0, but never null

If you have a nested object, you can chain those checks:

data class Json(
 val User: Profile?
)

data class Profile(val firstName: String?,
 val lastName: String?)

val json: Json? = Json(Profile(null, null))

println(json?.User?.firstName?.length)

Finally, you can use the let() block for those checks:

println(json?.let {
 it.User?.let {
 it.firstName?.length
 }
})

If you want to get rid of the it() everywhere, you can use run:

println(json?.run {
 User?.run {
 firstName?.length
 }
})

By all means, do try to avoid the unsafe !! null operator:

println(json!!.User!!.firstName!!.length)

This will result in KotlinNullPointerException.

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[251]

Explicit async
As you saw in the previous chapter, in Kotlin it is very easy to introduce concurrency:

fun getName() = async {
 delay(100)
 "Ruslan"
}

But that concurrency may be unexpected behavior to the user of the function, as they may
expect a simple value:

println("Name: ${getName()}")

It prints:

Name: DeferredCoroutine{Active}@...

Of course, what's missing here is await():

println("Name: ${getName().await()}")

But it would have been a lot more obvious if we'd named our function accordingly:

fun getNameAsync() = async {
 delay(100)
 "Ruslan"
}

As a rule, you should establish some kind of convention to distinguish async functions
from regular ones.

Validation
How many times did you have to write code like this:

fun setCapacity(cap: Int) {
 if (cap < 0) {
 throw IllegalArgumentException()
 }
 ...
}

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[252]

Instead, you can check arguments with require():

fun setCapacity(cap: Int) {
 require(cap > 0)
}

This makes the code a lot more fluent.

You can use require() to check for nested nulls:

fun printNameLength(p: Profile) {
 require(p.firstName != null)
}

But there's also requireNotNull() for that:

fun printNameLength(p: Profile) {
 requireNotNull(p.firstName)
}

Use check() to validate the state of your object. This is useful when you provide some
object that the user may not have set up correctly:

private class HttpClient {
 var body: String? = null
 var url: String = ""

 fun postRequest() {
 check(body != null) {
 "Body must be set in POST requests"
 }
 }
 fun getRequest() {
 // This one is fine without body
 }
}

And again, there's a shortcut for null: checkNotNull().

Sealed, not enumerated
Coming from Java, you may be tempted to overload your enum with functionality:

// Java code
enum PizzaOrderStatus {

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[253]

 ORDER_RECEIVED,
 PIZZA_BEING_MADE,
 OUT_FOR_DELIVERY,
 COMPLETED;

 public PizzaOrderStatus nextStatus() {
 switch (this) {
 case ORDER_RECEIVED: return PIZZA_BEING_MADE;
 case PIZZA_BEING_MADE: return OUT_FOR_DELIVERY;
 case OUT_FOR_DELIVERY: return COMPLETED;
 case COMPLETED:return COMPLETED;
 }
 }
}

Instead, you can use the sealed class:

sealed class PizzaOrderStatus(protected val orderId: Int) {
 abstract fun nextStatus() : PizzaOrderStatus
 class OrderReceived(orderId: Int) : PizzaOrderStatus(orderId) {
 override fun nextStatus(): PizzaOrderStatus {
 return PizzaBeingMade(orderId)
 }
 }

 class PizzaBeingMade(orderId: Int) : PizzaOrderStatus(orderId) {
 override fun nextStatus(): PizzaOrderStatus {
 return OutForDelivery(orderId)
 }
 }

 class OutForDelivery(orderId: Int) : PizzaOrderStatus(orderId) {
 override fun nextStatus(): PizzaOrderStatus {
 return Completed(orderId)
 }
 }

 class Completed(orderId: Int) : PizzaOrderStatus(orderId) {
 override fun nextStatus(): PizzaOrderStatus {
 return this
 }
 }
}

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[254]

The benefit of this approach is that we can now pass data around along with the status:

var status: PizzaOrderStatus = OrderReceived(123)

while (status !is Completed) {
 status = when (status) {
 is OrderReceived -> status.nextStatus()
 is PizzaBeingMade -> status.nextStatus()
 is OutForDelivery -> status.nextStatus()
 is Completed -> status
 }
}

In general, sealed classes are good if you want to have data associated with a state.

More companions
You are limited to having only one companion object in your class:

class A {
 companion {
 }
 companion {
 }
}

But you can have as many objects in your class as you want:

class A {
 object B {
 }
 object C {
 }
}

This is sometimes used to produce namespacing. Namespacing is important because it
provides you with better naming conventions. Think about having cases when you created
classes such as SimpleJsonParser, which inherits from JsonParser, which inherits from
Parser. You could convert this structure to Json.Parser, for example, which is much
more concise and practical, as Kotlin code should be.

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[255]

Scala functions
Developers coming into Kotlin from Scala may sometimes define their function this way:

fun hello() = {
 "hello"
}

Calling this function won't print what you expect:

println("Say ${hello()}")

It prints the following:

 Say () -> kotlin.String

What we're missing is the second set of parentheses:

println("Say ${hello()()}")

It prints the following:

Say hello

That's because the single-expression definition could be translated into:

fun hello(): () -> String {
 return {
 "hello"
 }
}

It could be further translated into:

fun helloExpandedMore(): () -> String {
 return fun(): String {
 return "hello"
 }
}

Now you can see where that function came from, at least.

see more please visit: https://homeofbook.com

Idioms and Anti-Patterns Chapter 10

[256]

Summary
In this chapter, we reviewed best practices in Kotlin, as well as some of the caveats of the
language. Now you should be able to write more idiomatic code that is also performant and
maintainable.

You should make use of scoping functions, but make sure not to overuse them, as they may
make the code confusing, especially for those newer to the language.

Be sure to handle nulls and type casts correctly, with let(), the Elvis operator, and smart
casts that the language provides.

In the next and final chapter, we'll put those skills to use by writing a real-life microservice
using everything we've learned.

see more please visit: https://homeofbook.com

11
Reactive Microservices with

Kotlin
In this chapter, we'll put the skills we've learned so far to use by building a microservice
using the Kotlin programming language. We also want this microservice to be reactive, and
to be as close to real life as possible. For that, we'll use Vert.x framework, the benefits of
which we'll list in the next section.

You're probably tired of creating to-do or shopping lists.

So, instead, the microservice will be for a cat shelter. The microservice should be able to do
the following:

Supply an endpoint we can ping to check whether the service is up and running
List cats currently in the shelter
Provide us with a means to add new cats

What you'll need to get started:

JDK 1.8 or later
IntelliJ IDEA
Gradle 4.2 or later
PostgreSQL 9.4 or later

This chapter will assume that you have PostgreSQL already installed and that you have
basic knowledge of working with it. If you don't, please refer to the official
documentation: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​9. ​4/​static/ ​tutorial- ​install. ​html.

see more please visit: https://homeofbook.com

https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html
https://www.postgresql.org/docs/9.4/static/tutorial-install.html

Reactive Microservices with Kotlin Chapter 11

[258]

In this chapter, we will cover the following topics:

Getting started with Vert.x
Handling requests
Testing
Working with databases
EventBus

Getting started with Vert.x
The framework we'll be using for our microservice is called Vert.x. It's a reactive
framework that shares much in common with reactive extensions, which we discussed in
Chapter 7, Staying Reactive. It's asynchronous and non-blocking.

Let's understand what this means by using a concrete example.

We'll start with a new Kotlin Gradle project. From your IntelliJ IDEA, open File | New |
Project, and choose Gradle | Kotlin in the New Project wizard. Give your project a
GroupId (I chose me.soshin) and an ArtifactId (catsShelter in my case).

Gradle is a build tool, similar to Maven and Ant. It has a nice syntax and
compiles your projects in an optimised way. You can read about it more
here: https:/ ​/​gradle. ​org/ ​.

On the next screen, choose Use auto-import and Create directories for empty content
roots, then click Finish.

Next, add the following dependencies to your build.gradle.

dependencies {
 def $vertx_version = '3.5.1'
 ...
 compile group: 'io.vertx', name: 'vertx-core', version: $vertx_version
 compile group: 'io.vertx', name: 'vertx-web', version: $vertx_version
 compile group: 'io.vertx', name: 'vertx-lang-kotlin', version:
$vertx_version
 compile group: 'io.vertx', name: 'vertx-lang-kotlin-coroutines',
version: $vertx_version
}

see more please visit: https://homeofbook.com

https://gradle.org/
https://gradle.org/
https://gradle.org/
https://gradle.org/
https://gradle.org/
https://gradle.org/
https://gradle.org/
https://gradle.org/

Reactive Microservices with Kotlin Chapter 11

[259]

The following is an explanation of each dependency:

vertx-core is the core library
vertx-web is needed, since we want our service to be REST based
vertx-lang-kotlin provides idiomatic ways to write Kotlin code with Vert.x
Finally, vertx-lang-kotlin-coroutines integrates with the coroutines we
discussed in detail in Chapter 9, Designed for Concurrency

Note that we defined a variable to specify which version of Vert.x we should use. The latest
stable version to date is 3.5.1, but by the time you read this book, it will be 3.5.2 or even
3.6.0.

As a general rule, all Vert.x libraries should be the same version, and that's when the
variable becomes useful.

Create a file called Main.kt in the src/main/kotlin folder with the following content:

fun main(vararg args: String) {
 val vertx = Vertx.vertx()

 vertx.createHttpServer().requestHandler{ req ->
 req.response().end("OK")
 }.listen(8080)
}

That's all you need to start a web server that will respond OK when you open http:/ ​/
localhost:8080 in your browser.

Now let's understand what actually happens here. We create a Vert.x instance using
the Factory Method from Chapter 3, Understanding Structural Patterns.

Handler is just a simple listener, or a subscriber. If you don't remember how it works,
check Chapter 4, Getting Familiar with Behavioral Patterns, for an Observable design pattern.
In our case, it will be called for each new request. That's the asynchronous nature of Vert.x
in action.

Notice that requestHandler() is a function that receives a block. Like any other idiomatic
Kotlin code, you don't need the parentheses.

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[260]

If you are using an IDE such as IntelliJ IDEA, you can run it directly. An alternative would
be to add the following lines to your build.gradle:

apply plugin: 'application'
mainClassName = "com.gett.MainKt"

And then you can simply start it with the following:

./gradlew run

Another option would be to use VertxGradlePlugin (https:/ ​/​github. ​com/​jponge/
vertx-​gradle-​plugin), which will do the same thing.

Routing
Notice that no matter which URL we specify, we always get the same result.

Of course, that's not what we want to achieve. Let's start by adding the most basic
endpoint, which will only tell us that the service is up and running.

For that, we'll use Router:

val vertx = Vertx.vertx() // Was here before
val router = Router.router(vertx)
...

Router lets you specify handlers for different HTTP methods and URLs.

But, by default, it doesn't support coroutines. Let's fix that by creating an extension
function:

fun Route.asyncHandler(fn : suspend (RoutingContext) -> Unit) {
 handler { ctx ->
 launch(ctx.vertx().dispatcher()) {
 try {
 fn(ctx)
 } catch(e: Exception) {
 ctx.fail(e)
 }
 }
 }
}

If you are familiar with modern JavaScript, this is similar to async() => {}.

see more please visit: https://homeofbook.com

https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin
https://github.com/jponge/vertx-gradle-plugin

Reactive Microservices with Kotlin Chapter 11

[261]

Now we can use this new extension method:

router.get("/alive").asyncHandler {
 // Some response comes here
 // We now can use any suspending function in this context
}

We saw how we return a flat text response in the very first example. So, let's return JSON
instead. Most real-life applications use JSON for communication.

Add the following lines to your handler:

...
val json = json {
 obj (
 "alive" to true
)
}
it.respond(json.toString())
...

Yet another extension function we declare is respond(). It looks as follows:

fun RoutingContext.respond(responseBody: String = "", status: Int = 200) {
 this.response()
 .setStatusCode(status)
 .end(responseBody)
}

Now connect your router to the server.

You can do that by replacing the previous server instantiation with the following line:

vertx.createHttpServer().
 requestHandler(router::accept).listen(8080)

Now all routing will be handled by Router.

You can open http://localhost:8080/alive in your browser and make sure that you
get {"alive": true} as a response.

Congratulations! You've managed to create your first route that returns a JSON. From now
on, whenever you're not sure whether your application is up and running, you can simply
check it using this URL. This becomes even more important when you use a load balancer,
which needs to know how many applications are available at any time.

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[262]

Handling requests
Our next task is adding the first cat to our virtual shelter.

It should be a POST request, where the body of the request may look something like this:
{"name": "Binky", "age": 4}.

If you are familiar with tools such as curl or Postman to issue POST requests, that's great. If
not, we'll write a test in the next section that will check exactly that scenario.

The first thing we'll need to do is add the following line after we initialize our router:

router.route().handler(BodyHandler.create())

This will tell Vert.x to parse the request body into JSON for any request. Another way
would be to use router.route("/*").

Now, let's figure out what our URL should look like. It is good practice to have our API
URLs versioned, so we would like it to be as follows:

api/v1/cats

So, we can assume the following:

GET api/v1/cats will return all cats we have in our shelter
POST api/v1/cats will add a new cat
GET api/v1/cats/34 will return a cat with ID=34 if it exists or 404 otherwise

Having figured that out, we can progress as follows:

router.post("/api/v1/cats").asyncHandler { ctx ->
 // Some code of adding a cat comes here
}
router.get("/api/v1/cats").asyncHandler { ctx ->
 // Code for getting all the cats
}

The last endpoint will need to receive a path argument. We use semicolon notation for that:

router.get("/api/v1/cats/:id").asyncHandler { ctx ->
 // Fetches specific cat
}

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[263]

Verticles
Now come across a problem, though. Our code resides in the Main.kt file, which grows
bigger and bigger. We can start splitting it by using verticles.

You can think of a verticle as a lightweight actor. Let's see an example; look at the
following code:

class ServerVerticle: CoroutineVerticle() {

 override suspend fun start() {
 val router = router()
vertx.createHttpServer().requestHandler(router::accept).listen(8080)
 }

 private fun router(): Router {
 val router = Router.router(vertx)
 // Our router code comes here now
 ...
 return router
 }
}

Now we need to start this verticle. There are different ways of doing that, but the simplest
way is to pass the instance of this class to the deployVerticle() method:

vertx.deployVerticle(ServerVerticle())

Now our code is split into two files, ServerVerticle.kt and Main.kt.

Notice, though, how /api/v1/cats/ is repeated every time. Isn't there a way to remove
that redundancy? Actually, there is. And it's called subrouter.

Subrouting
We'll leave the /alive endpoint as it is, but we'll extract all the other endpoints into a
separate function:

private fun apiRouter(): Router {
 val router = Router.router(vertx)

 router.post("/cats").asyncHandler { ctx ->
 ctx.respond(status=501)
 }
 router.get("/cats").asyncHandler { ctx ->

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[264]

 ...
 }
 router.get("/cats/:id").asyncHandler { ctx ->
 ...
 }
 return router
}

There's a more fluent way to define it, but we left it that way as it is more readable.

Much as we supplied our main router to the Vert.x server instance, we now supply our
subrouter to the main router as follows:

router.mountSubRouter("/api/v1", apiRouter())

Keeping our code clean and well separated is very important.

Testing
Before we continue to add our cats to the database, let's first write some tests to make sure
that everything works correctly so far.

For that, we'll use the TestNG test framework. You can also use JUnit or VertxUnit for the
same purpose.

Start by adding the following line to the dependencies part of your build.gradle:

testCompile group: 'org.testng', name: 'testng', version: '6.11'

Now we'll create our first test. It should be located under
/src/test/kotlin/<your_package>.

The basic structure of all the integration tests looks something like this:

class ServerVerticleTest {
 // Usually one instance of VertX is more than enough
 val vertx = Vertx.vertx()

 @BeforeClass
 fun setUp() {
 // You want to start your server once
 startServer()
 }

 @AfterClass

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[265]

 fun tearDown() {
 // And you want to stop your server once
 vertx.close()
 }

 @Test
 fun testAlive() {
 // Here you assert something
 }

 // More tests come here
 ...
}

A good trick is to name your tests using Kotlin backtick notation.

You could name your tests like this:

@Test
fun testAlive() {
 ...
}

But it is better to name your tests like this:

@Test
fun `Tests that alive works`() {
 ...
}

Now we want to issue an actual HTTP call to our /alive endpoint, for example, and check
the response code. For that, we'll use the Vert.x web client.

Add it to your build.gradle dependencies section:

compile group: 'io.vertx', name: 'vertx-web-client', version:
$vertx_version

If you plan to use it only in tests, you can specify testCompile instead of compile. But
WebClient is so useful you'll probably end up using it in your code anyway.

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[266]

Helper methods
We'll create two helper functions in our test, called get() and post(), which will issue
GET and POST requests to our test server.

We'll start with get():

private fun get(path: String): HttpResponse<Buffer> {
 val d1 = CompletableDeferred<HttpResponse<Buffer>>()

 val client = WebClient.create(vertx)
 client.get(8080, "localhost", path).send {
 d1.complete(it.result())
 }

 return runBlocking {
 d1.await()
 }
}

The second method, post(), will look very similar, but it will also have a request body
parameter:

private fun post(path: String, body: String = ""): HttpResponse<Buffer> {
 val d1 = CompletableDeferred<HttpResponse<Buffer>>()

 val client = WebClient.create(vertx)
 client.post(8080, "localhost", path).sendBuffer(Buffer.buffer(body), {
res ->
 d1.complete(res.result())
 })

 return runBlocking {
 d1.await()
 }
}

Both of those functions use coroutines and the default parameter values Kotlin provides.

You should write your own helper functions or alter those according to your needs.

Another helper function that we'll need is startServer(), which we already mentioned
in @BeforeClass. It should look something like this:

private fun startServer() {
 val d1 = CompletableDeferred<String>()
 vertx.deployVerticle(ServerVerticle(), {

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[267]

 d1.complete("OK")
 })
 runBlocking {
 println("Server started")
 d1.await()
 }
}

We'll need two new extension functions for our convenience. Those functions will convert
the server response to JSON:

private fun <T> HttpResponse<T>.asJson(): JsonNode {
 return this.bodyAsBuffer().asJson()
}

private fun Buffer.asJson(): JsonNode {
 return ObjectMapper().readTree(this.toString())
}

Now we're all set to write our first test:

@Test
fun `Tests that alive works`() {
 val response = get("/alive")
 assertEquals(response.statusCode(), 200)

 val body = response.asJson()
 assertEquals(body["alive"].booleanValue(), true)
}

Run ./gradlew test to check that this test passes.

Next, we'll write another test; this time for the cat's creation endpoint.

At first, it will fail:

@Test
fun `Makes sure cat can be created`() {
 val response = post("/api/v1/cats",
 """
 {
 "name": "Binky",
 "age": 5
 }
 """)

 assertEquals(response.statusCode(), 201)
 val body = response.asJson()

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[268]

 assertNotNull(body["id"])
 assertEquals(body["name"].textValue(), "Binky")
 assertEquals(body["age"].intValue(), 5)
}

Note that our server returns the status code 501 Not Implemented, and doesn't return the
cat ID.

We'll be fixing that in the next section when we discuss persistence in a database.

Working with databases
We won't be able to progress much further without the ability to save our objects, namely
cats, into some kind of persistent storage.

For that, we'll need to connect to the database first.

Add the following two lines to your build.gradle dependencies section:

compile group: 'org.postgresql', name: 'postgresql', version: '42.2.2'
compile group: 'io.vertx', name: 'vertx-jdbc-client', version:
$vertx_version

The first line of code fetches the PostgreSQL driver. The second one adds the Vert.x JDBC
client, which allows Vert.x, having the driver, to connect to any database that supports
JDBC.

Managing configuration
Now we want to hold database configuration somewhere. For local development, it may be
fine to have those configurations hardcoded.

When we connect to the database, we need to specify the following parameters at the very
least:

Username
Password
Host
Database name

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[269]

Where should we store them?

One option is of course to hardcode those values. That would be fine for a local
environment, but what about when deploying this service somewhere?

You'll go, I cant come! XDSpringBoot do, or we could attempt to read them from the
environment variables. Anyway, we'll need an object that would encapsulate this logic, as
shown in the following code:

object Config {
 object Db {
 val username = System.getenv("DATABASE_USERNAME") ?: "postgres"
 val password = System.getenv("DATABASE_PASSWORD") ?: ""
 val database = System.getenv("DATABASE_NAME") ?: "cats_db"
 val host = System.getenv("DATABASE_HOST") ?: ""

 override fun toString(): String {
 return mapOf("username" to username,
 "password" to password,
 "database" to database,
 "host" to host).toString()
 }
 }
 override fun toString(): String {
 return mapOf(
 "Db" to Db
).toString()
 }
}

That's of course only one approach you could take.

We now will create JDBCClient by using this configuration code:

fun CoroutineVerticle.getDbClient(): JDBCClient {
 val postgreSQLClientConfig = JsonObject(
 "url" to
"jdbc:postgresql://${Config.Db.host}:5432/${Config.Db.database}",
 "username" to Config.Db.username,
 "password" to Config.Db.password)
 return JDBCClient.createShared(vertx, postgreSQLClientConfig)
}

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[270]

Here, we chose an extension function that will work on all CoroutineVerticles.

To simplify working with the JDBCClient, we'll add a method called query() to it:

fun JDBCClient.query(q: String, vararg params: Any): Deferred<JsonObject> {
 val deferred = CompletableDeferred<JsonObject>()
 this.getConnection { conn ->
 conn.handle({
 result().queryWithParams(q, params.toJsonArray(), { res ->
 res.handle({
 deferred.complete(res.result().toJson())
 }, {
 deferred.completeExceptionally(res.cause())
 })
 })
 }, {
 deferred.completeExceptionally(conn.cause())
 })
 }

 return deferred
}

We'll also add the toJsonArray() method since that's what our JDBCClient works with:

private fun <T> Array<T>.toJsonArray(): JsonArray {
 val json = JsonArray()

 for (e in this) {
 json.add(e)
 }

 return json
}

Note here how Kotlin generics are being used to simplify the conversion while staying type-
safe.

And we'll add a handle() function, which will provide us with a simple API to handle
asynchronous errors:

inline fun <T> AsyncResult<T>.handle(success: AsyncResult<T>.() -> Unit,
failure: () -> Unit) {
 if (this.succeeded()) {
 success()
 }
 else {

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[271]

 this.cause().printStackTrace()
 failure()
 }
}

To make sure everything works correctly, we'll add a check to our /alive route:

val router = Router.router(vertx)
val dbClient = getDbClient()
...
router.get("/alive").asyncHandler {
 val dbAlive = dbClient.query("select true as alive")
 val json = json {
 obj (
 "alive" to true,
 // This is JSON, but we can access it as an array
 "db" to dbAlive.await()["rows"]
)
 }
 it.respond(json)
}

The lines you need to add are marked in bold.

After adding those lines and opening http:/ ​/​localhost:8080/ ​alive you should get the
following JSON code:

{"alive":true, "db":[{"alive":true}]}

Managing the database
Of course, our test doesn't work. That's because we haven't created our database yet. Make
sure you run the following line in your command line:

$ createdb cats_db

After we have made sure that our database is up and running, let's implement our first real
endpoint.

We'll keep our SQL nicely separated from the actual code. Add this to
your ServerVerticle:

private val insert = """insert into cats (name, age)
 |values (?, ?::integer) RETURNING *""".trimMargin()

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[272]

We use multiline strings here, with | and trimMargin() to re-align them.

Now use the following code to call this query:

...
val db = getDbClient()
router.post("/cats").asyncHandler { ctx ->
 db.queryWithParams(insert, ctx.bodyAsJson.toCat(), {
 it.handle({
 // We'll always have one result here, since it's our row
 ctx.respond(it.result().rows[0].toString(), 201)
 }, {
 ctx.respond(status=500)
 })
 })
}

Notice that we didn't print the error anywhere. That's because we defined the handle()
function to do that.

We also defined our own function that parses the request body, which is JsonObject, to
JsonArray, which is expected by the JDBCClient:

private fun JsonObject.toCat() = JsonArray().apply {
 add(this@toCat.getString("name"))
 add(this@toCat.getInteger("age"))
}

Notice that we have two different versions of this here. One refers to the inner scope of
the apply() function. The other refers to the outer scope of the toCat() function. To refer
to outer scopes, we use the @scopeName notation.

As you can see, extension functions are extremely powerful tools for cleaning up your code.

When you run our test again, you'll notice it still fails, but with a different error code now.
That's because we didn't create our table yet. Let's do it now. There are a few ways to do
this, but the most convenient way would be to simply run the following command:

psql -c "create table cats (id bigserial primary key, name varchar(20), age
integer)" cats_db

Run your test again to make sure it passes.

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[273]

EventBus
This is the second time we have stumbled upon the same problem: our classes get bigger
and bigger, which we would usually like to avoid as much as possible.

What if we split this creation of cats logic into a separate file yet again? Let's call it
CatVerticle.kt.

But then we need a way for ServerVerticle to communicate with CatVerticle. In
frameworks such as SpringBoot, you would use dependency injection for that purpose.
But what about reactive frameworks?

Consumer
To solve communication problems, Vert.x uses EventBus. It's an implementation of
the Observable design pattern we discussed in Chapter 4, Getting Familiar with Behavioral
Patterns. Any verticle can send a message over the event bus, choosing between these two
modes:

send() will send a message to only one subscriber
publish() will send a message to all subscribers

No matter which method is used to send the message, you subscribe to it using
the consumer() method on the EventBus:

const val CATS = "cats:get"

class CatVerticle : CoroutineVerticle() {
 override suspend fun start() {
 val db = getDbClient()
 vertx.eventBus().consumer<JsonObject>(CATS) { req ->
 ...
 }
 }
}

The type specifies which object we expect to receive our message. In this case, it's
JsonObject. Constant CATS is the key we subscribe for. It can be any string. By using a
namespace, we ensure that there won't be a collision in the future. If we were to add dogs
to our shelter, we would use another constant with another namespace. For example:

const val DOGS = "dogs:get" // Just an example, don't copy it

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[274]

Now we add the following two queries, which are just multiline string constants:

private const val QUERY_ALL = """select * from cats"""
class CatVerticle : CoroutineVerticle() {
 private val QUERY_WITH_ID = """select * from cats
 where id = ?::integer""".trimIndent()
...
}

Why are we putting one inside the class and the other outside it?

QUERY_ALL is a short query and it fits on one line. We can allow ourselves to make it a
constant. On the other hand, QUERY_WITH_ID is a longer query and it requires some
indentation. Since we remove the indentation only at runtime, we can't make it a constant.
So, instead, we use a member value. In real-life projects, most of your queries will probably
have to be private values. But it's important to know the difference between the two
approaches.

And we populate our consumer with the following code:

...
try {
 val body = req.body()
 val id: Int? = body["id"]
 val result = if (id != null) {
 db.query(QUERY_WITH_ID, id)
 } else {
 db.query(QUERY_ALL)
 }
 launch {
 req.reply(result.await())
 }
}
catch (e: Exception) {
 req.fail(0, e.message)
}
...

If we got a cat ID in the request, we fetch this specific cat. Otherwise, we fetch all the cats
that are available.

We use launch() because we want to await() the result, and we don't have any return
value.

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[275]

Producer
What's left is only to call the cat from the ServerVerticle. For that, we'll add another
method to our CoroutineVerticle:

fun <T> CoroutineVerticle.send(address: String,
 message: T,
 callback: (AsyncResult<Message<T>>) -> Unit)
{
 this.vertx.eventBus().send(address, message, callback)
}

Then we can handle our request like this:

...
router.get("/cats").asyncHandler { ctx ->
 send(CATS, ctx.queryParams().toJson()) {
 it.handle({
 val responseBody = it.result().body()
 ctx.respond(responseBody.get<JsonArray>("rows").toString())
 }, {
 ctx.respond(status=500)
 })
 }
}
...

Notice that we're reusing the same constant we defined earlier, called CATS.

That way, we can easily check who can send this event and who consumes it. If it's
successful, we'll return a JSON. Otherwise, we'll return an HTTP error code.

Another method that we add is toJson() on MultiMap. MultiMap is an object that holds
our query parameters:

private fun MultiMap.toJson(): JsonObject {
 val json = JsonObject()

 for (k in this.names()) {
 json.put(k, this[k])
 }

 return json
}

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[276]

To make sure everything works as expected, let's create two more tests for our new
endpoints.

Just don't forget to add the following line to your Main.kt and to the startServer()
function in your tests:

...
vertx.deployVerticle(CatVerticle())
...

More testing
Now add the following basic test:

@Test
fun `Make sure that all cats are returned`() {
 val response = get("/api/v1/cats")
 assertEquals(response.statusCode(), 200)

 val body = response.asJson()

 assertTrue(body.size() > 0)
}

To make sure you understand how everything works together, here are some more
assignments you may wish to do:

Move the logic of adding a new cat to the CatVerticle.1.
Implement getting a single cat. Notice how the code is very similar to the one2.
that gets all the cats? Refactor it to use a local function, a cool feature in Kotlin,
which we have already discussed.
Implement deletion and update the cat, following the same principles.3.

see more please visit: https://homeofbook.com

Reactive Microservices with Kotlin Chapter 11

[277]

Summary
This chapter put together everything we've learned about Kotlin design patterns and
idioms, to produce an extensible microservice. And, thanks to Vert.x, it's also reactive,
which makes it extremely scalable. It also has tested in place, as any real-world application
should.

In our application, classes are divided by domains, as opposed to layers, in the usual MVC
architecture. A minimal unit of work in Vert.x is called a verticle, and verticles
communicate using EventBus.

Our API follows all of REST's best practices: using HTTP verbs and meaningful paths to
resources and consuming and producing JSON.

You can apply the same principles to any other real application you're going to write, and
we do hope you'll choose Vert.x and Kotlin to do so.

see more please visit: https://homeofbook.com

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Kotlin Blueprints
Ashish Belagali

ISBN: 9781788390804

See how Kotlin's power and versatility make it a great choice to create
applications across various platforms, and how it delivers business and
technology benefits
Write a robust web applications using Kotlin with Spring Boot
Write Android applications with ease using Kotlin
Write rich desktop applications in Kotlin
Learn how Kotlin can generate Javascript and how this can be used on client side
and server side development
Understand how native applications can be written with Kotlin/Native
Learn the practical aspects of programming in each of the applications

see more please visit: https://homeofbook.com

https://www.packtpub.com/application-development/kotlin-blueprints

Other Books You May Enjoy

[279]

Mastering Android Development with Kotlin
Miloš Vasić

ISBN: 9781788473699

Understand the basics of Android development with Kotlin
Get to know the key concepts in Android development
See how to create modern mobile applications for the Android platform
Adjust your application’s look and feel
Know how to persist and share application database
Work with Services and other concurrency mechanisms
Write effective tests
Migrate an existing Java-based project to Kotlin

see more please visit: https://homeofbook.com

https://www.packtpub.com/application-development/mastering-android-development-kotlin

Other Books You May Enjoy

[280]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

see more please visit: https://homeofbook.com

Index

A
Abstract Factory pattern
 about 36
 HQ class 39, 40, 41
 working 36
Active Object pattern
 about 211
 testing 211
actors 207, 208
Adapter pattern
 about 58, 59, 60
 caveats 60
advantages, Static Factory Method pattern
 caching 33
 subclassing 33
also function 239
apply() 238
armored personnel carriers (APCs) 40

B
Barrier design pattern
 about 213
 CountDownLatch 214
 data class, using as 215
behavioral patterns
 about 80
 citizen function, using 83
 fruit arsenal, solving 82
 sides, switching 84
 strategy 81
breadth-first search (BFS) 87
Bridge pattern
 about 61
 changes 63
 parameters, defining as constants 65
 type aliases 64

 using 64, 94
 using, as lethal weapon 65
Buffered channels pattern 226
build scripts 101
Builder design pattern
 about 43
 email, creating 44, 45
 used, for composing email 43

C
chain of responsibility 98
channel
 about 202
 reading from, select() used 231
chunked() function 149
class enhancement, decorator
 about 52
 operator overloading 53
code structure, programming language
 naming conventions 8
 packages 8
 semicolons, avoiding 7
collection types
 in Kotlin 44
collections
 filtering 141
 versus streams 151
Command design pattern
 about 93
 advantages 97
Composite pattern
 about 66
 counting bullets 69
 iterator 85
 Squad 67
constants 247

see more please visit: https://homeofbook.com

[282]

constructor overload 249
control flow, programming language
 if expression, using 13
 when expression, using 14
coroutines
 about 188
 actors 207
 canceling 198
 channels 202
 facts 193
 jobs 192
 producers 204
 results, returning 199
 starting 190
 starvation 192
 starvation, fixing 195
 timeouts, setting 200
 waiting 197
creational patterns
 Abstract Factory pattern 36
 Builder design pattern 43
 Factory Method pattern 28
 Prototype design pattern 48
 Singleton pattern 26, 28
curl tool 262
currying 132

D
databases
 configuration, managing 268
 managing 271
 working with 268
Decorator pattern
 about 51
 caveats 57
 class, enhancing 52
 great combinator 55
 SadMap, using 55
Deferred channel pattern 234
Deferred value pattern 212
depth-first search (DFS) 87
design patterns
 about 23, 24
 in Kotlin 25
 process 24

destructuring declaration 32
Document Object Model (DOM) 220
Domain Specific Language (DSL) 101
dropWhile() function 143

E
email
 composing, with Builder design pattern 43
EventBus
 about 273
 consumer 273
 producer 275
 testing 276
executors API 187
explicit async 251
expressions 134

F
Facade pattern
 about 71
 loadGame() method, implementing 72
Factory Method pattern 28, 29, 31, 32
fan-in design pattern
 about 224
 workers, managing 225
fan-out design pattern 223
findLast() method 142
flat function 147
Flyweight pattern
 about 73
 conservative feature 73
 memory saving 75
fold function 146
forEach() function 144
functional programming
 about 127
 immutability 127
 immutable collections 129
 tuples 127
 value mutation 128
functions
 currying 132
 higher-order functions 130
 memoization 133

see more please visit: https://homeofbook.com

[283]

 pure functions 131
Funny Cat App 77

G
Gradle
 using 219

H
Handler 259
higher-order functions 130
HQ class 39, 40, 41

I
immutable collections 129
indexed access operators 55
infix call 21
inline functions 243
instance checks 241
Interpreter design pattern
 about 100, 105
 call suffix 105
 exploring 101
 language 101, 104
it notation 138
Iterator design pattern
 about 66, 85
 implementing 86, 89
 using 115

J
join 145
JUnit 264

K
Kotlin Coding Conventions
 reference link 8
Kotlin
 collection types 44
 Static Factory Method pattern 34
 used, for creating email 46

L
language syntax 6

let() 238
loop, programming language
 for each loop 21
 for loop 20
 while loop 22

M
map() function 139, 141
Map/Reduce algorithms 225
Mediator design pattern
 about 106
 caveats 110
 example 106
 flavors 110
 middleman 109
Memento design pattern
 about 111
 remembrance 111, 113
memoization 133
multiple companion 254
Mutexes pattern 229

N
nulls
 dealing with 249

O
Observable design pattern 259, 273
Observer design pattern
 about 120, 157
 Animal Choir 121, 124
operator overloading
 reference 54
Oriented Architecture (SOA) 23

P
parent jobs 201
pattern matching 134
pipelines
 about 219
 establishing 221
Plain Old Java Object (POJO) 20
Postman 262
producers 204

see more please visit: https://homeofbook.com

[284]

programming language
 classes 15
 code structure 7
 constructors 17
 control flow 12
 data classes 20
 extension functions 22
 features 6
 functions, declaring 11
 inheritance 15, 16
 loop 20
 multi-paradigm 7
 properties 18
 string interpolation 14
 types 8
Prototype design pattern
 about 48
 object, cloning 49
 used, for building PC 48, 49
proxy 169
Proxy pattern
 about 76
 image, accessing 77
 lazy delegation 78
 RMI 77
 sub-patterns 78
pure functions 131

Q
query languages 101

R
Reactive extension
 about 157, 160
 batching 178
 FlowableProcessor 177
 flowables 170, 173
 holding state 176
 Hot Observable 161
 multicast 163
 subject 165
 throttling 180
reactive manifesto
 reference 154

Reactive principles
 about 154
 elasticity 156
 message-driven 156
 resiliency 155
 responsiveness 155
reactive programming 154
recursion 135
reduce function 146
reified function 245, 246
requests, handling
 about 262
 subrouting 263
 verticles 263
run() 240

S
Scala functions 255
Scheduler pattern
 about 216
 contexts 218
scoping functions 47
sealed 252
sequences 152
Sidekick channel pattern 232
Singleton pattern 26, 28
slice function 149
smart casts 116
sort algorithm 144
Squad
 secondary constructors 68
 Varargs constructors 68
State design pattern
 about 89, 90
 State of the Nation approach 92
Static Factory Method pattern
 about 33
 advantages 33
 in Kotlin 34
streams
 versus collections 151
structural pattern
 Bridge pattern 61
 Composite pattern 66
 Facade 71

see more please visit: https://homeofbook.com

 Flyweight pattern 73
 Proxy pattern 76
Subject, Reactive extension
 about 165
 AsyncSubject 169
 BehaviorSubject 168
 ReplaySubject 166
 SerializedSubject 169
subrouter 263

T
template method 117, 120
testing framework 101
TestNG test framework 264
tests
 helper methods 266
 writing 264
threads
 about 184, 185
 cost, checking 187, 188
 parent jobs 201
 safety, ensuring 186
try-with-resources statement 242
tuples 127
types, programming language
 comparison 9

 null safety 10
 type inference 9
 val, versus var 9

U
Unbiased select pattern 227
Unless it's Minecraft (TM) 72
unzip function 150
user interfaces 101

V
validation 251
value mutation 128
Vert.x
 routing 260
 using 258, 259
VertxUnit 264
Visitor design pattern
 about 114, 117
 Night Crawler 114

W
with() function 241

Z
zip() function 150

see more please visit: https://homeofbook.com

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Kotlin
	Basic language syntax and features
	Multi-paradigm
	Code structure
	No semicolons
	Naming conventions
	Packages

	Types
	Type inference
	val versus var
	Comparison
	Null safety

	Declaring functions
	Control flow
	Using the if expression
	Using the when expression

	String interpolation
	Classes and inheritance
	Classes
	Inheritance
	Constructors

	Properties
	Data classes
	More control flow – loops
	The for loop
	For-each loop
	While loop

	Extension functions

	Introduction to design patterns
	What are design patterns?
	Design patterns in real life
	Design process

	Why use design patterns in Kotlin?

	Summary

	Chapter 2: Working with Creational Patterns
	Singleton
	Factory Method
	Factory
	Static Factory Method
	Advantages of the Static Factory Method
	Caching
	Subclassing

	Static Factory Method in Kotlin
	Companion object

	Abstract Factory
	Abstract Factory in action
	Introduction to generics in Kotlin
	Back to our bases
	Making improvements

	Builder
	Composing an email
	Collection types in Kotlin
	Creating an email – first attempt
	Creating an email – second attempt
	Creating an email – the Kotlin way
	Creating an email – the Kotlin way – second attempt

	Prototype
	Building your own PC
	Starting from a prototype

	Summary

	Chapter 3: Understanding Structural Patterns
	Decorator
	Enhancing a class
	Operator overloading

	Dude, where's my map?
	The great combinator
	Caveats

	Adapter
	Different adapters
	Adapters in the real world
	Caveats of using adapters

	Bridge
	Bridging changes
	Type aliases
	You're in the army now
	Constants
	A lethal weapon

	Composite
	Get together
	The Squad
	Varargs and secondary constructors

	Counting bullets

	Facade
	Keep it simple

	Flyweight
	Being conservative
	Saving memory

	Proxy
	A short detour into the RMI world
	A replacement
	Lazy delegation

	Summary

	Chapter 4: Getting Familiar with Behavioral Patterns
	Strategy
	Fruit arsenal
	Citizen function
	Switching sides

	Iterator
	One, two... many
	Running through the values

	State
	Fifty shades of State
	State of the Nation

	Command
	Undoing commands

	Chain of responsibility
	Interpreter
	We need to go deeper
	A language of your own
	Taking a break

	Call suffix

	Mediator
	Trouble in the Jungle
	The middleman
	Flavors
	Caveats

	Memento
	Remembrance

	Visitor
	Writing a crawler

	Template method
	Observer
	Animal Choir

	Summary

	Chapter 5: Functional Programming
	Why functional programming?
	Immutability
	Tuples
	Value mutation
	Immutable collections

	Functions as values
	Higher-order functions
	Pure functions
	Currying
	Memoization

	Expressions, not statements
	Pattern matching

	Recursion
	Summary

	Chapter 6: Streaming Your Data
	The it notation
	The map() function
	Filter family
	Find family
	Drop family
	Sort family
	ForEach
	Join family
	Fold/Reduce
	Flat family
	Slice
	Chunked
	Zip/Unzip
	Streams are lazy, collections are not
	Sequences
	Summary

	Chapter 7: Staying Reactive
	Reactive principles
	Responsiveness
	Resiliency
	Elasticity
	Message-driven

	Reactive extension
	Hot Observable
	Multicast
	Subject
	ReplaySubject
	BehaviorSubject
	AsyncSubject
	SerializedSubject

	Flowables
	Holding state

	FlowableProcessor
	Batching
	Throttling

	Summary

	Chapter 8: Threads and Coroutines
	Threads
	Thread safety
	Threads are expensive

	Coroutines
	Starting coroutines
	Jobs
	Coroutine starvation
	Coroutines under the hood
	Fixing starvation
	Waiting for a coroutine
	Canceling a coroutine
	Returning results
	Setting timeouts
	Parent jobs
	Channels
	Producers
	Actors

	Summary

	Chapter 9: Designed for Concurrency
	Active Object
	Testing

	Deferred value
	Barrier
	CountDownLatch
	Data class as Barrier

	Scheduler
	Understanding contexts

	Pipelines
	Establishing a pipeline

	The fan-out design pattern
	The fan-in design pattern
	Managing workers

	Buffered channels
	Unbiased select
	Mutexes
	Selecting on close
	Sidekick channel
	Deferred channel
	Summary

	Chapter 10: Idioms and Anti-Patterns
	Let
	Apply
	Also
	Run
	With
	Instance checks
	Try-with-resources
	Inline functions
	Reified
	Constants
	Constructor overload
	Dealing with nulls
	Explicit async
	Validation
	Sealed, not enumerated
	More companions
	Scala functions
	Summary

	Chapter 11: Reactive Microservices with Kotlin
	Getting started with Vert.x
	Routing

	Handling requests
	Verticles
	Subrouting

	Testing
	Helper methods

	Working with databases
	Managing configuration
	Managing the database

	EventBus
	Consumer
	Producer
	More testing

	Summary

	Other Books You May Enjoy
	Index

