
see more please visit: https://homeofbook.com

Section 1
Getting Started With
Android Studio
Android addresses a major expected market.It
is additionally the most open of the“large”
telephone and tablet stages. You can compose
a program for an Android and let your
companions have a duplicate, hush up about
it or put it on special in an application store.
Android telephones and tablets are similarly
modest and this makes it simpler to get
everything rolling.What is far and away
superior,every one of the instruments you
really want to make an Android application
are free. You don’t have to pay anything to
make, or circulate, your Android applications.
To sell them utilizing a notable commercial
center there may something to pay– there is a
one-time charge of $25 to enroll for Google
Play, yet you don’t need to utilize a specific
conveyance method. All that stands among

see more please visit: https://homeofbook.com

you and your Android application is your
creative mind and programming capacity. I
can’t do a lot to work on your creative mind,
yet I can assist with the programming side of
things. In the event that you are new to
Android programming this is the spot to start.
In this book I will show you the basics of
Android programming. Not the tips and
deceives, but rather how to ponder what is
happening. You’ll be acquainted with the
overall rules that will make it feasible for you
to dominate anything that you experience that
is new later on. It is preposterous to expect to
cover all of Android in one book as the
subject is extremely enormous. Rather we
center around the rudiments of making a User
Interface (UI) as all applications must have
some method of cooperating with a user.
There are numerous ways of making an
Android application however Google’s
Android Studio is a simple to utilize Android
IDE – Integrated Development Environment
– and it is presently the suggested method of
doing the job.
Before Android Studio you needed to go
through the Eclipse IDE and set the SDK and

see more please visit: https://homeofbook.com

different bits of programming required. This
was easy, however Android Studio wipes out
additional means and it makes programming
Android simple. Set forth plainly, it is the
method of things to come thus worth your
interest in learning it.
With the arrival of Android Studio Google
halted work on the Eclipse module and this
implies that Android Studio truly is the best
way to create applications from now on.

The Language
Choice
With the arrival of Android Studio 3 you
currently have a decision of programming in
Java or Kotlin. The benefit of Java is that it is
a notable and all around upheld language. To
obtain the ability then you likely could be in
an ideal situation beginning with Android
Programming In Java: Starting with an App
ISBN: 978-1871962550
Kotlin might be a be another dialect yet it is

see more please visit: https://homeofbook.com

now all around upheld for the straightforward
explanation that it is 100% viable with Java.
The Android libraries are totally written in
Java, however Kotlin can utilize them
without any issues. It is this that makes
Kotlin Android improvement conceivable.
Likewise, you’re not limited to Kotlin in a
venture. You can add Java code to your new
Kotlin venture and you can add Kotlin code
to a current Java project.
Put essentially, there is next to no danger
implied in moving to Kotlin and there is a
great deal to be acquired. Kotlin is a lot less
difficult and cleaner language than Java. It
has had the advantage of perceiving how Java
developed and keeping away from those slip-
ups. Kotlin endeavors to cut to the chase. In
Java you will more often than not think of
some code over and throughout and it very
well may be tedious and conceals the
effortlessness of what you are attempting to
do. At whatever point this happens Kotlin
changes the language with the goal that you
can communicate what you are doing
compactly. Software engineers moving from
Java to Kotlin by and large see that they like

see more please visit: https://homeofbook.com

this is on the grounds that they completely
finish less composing.Developers who just
realize Kotlin don’t have the foggiest idea
how fortunate they are!
Kotlin does things another way from Java and
keeping in mind that you can get the language
as you go you may jump at the chance to
peruse Programmer’s Guide To Kotlin
ISBN:978-1871962536.It isn’t required, as
long as you probably are aware Java or
another item situated language, you can get
Kotlin as you foster your Android
applications however I suggest learning the
better places of the language sometime. It
pays off to know your language.
The manner in which Kotlin is utilized and
the manners in which it changes Android
programming specifically are presented as we
come. In any case, the last section is a
concise gander at the significant impacts of
Kotlin on Android programming. If you want
a quick overview before you start then read
the final chapter, but in many ways it makes
moresense to read itas a summary after you
have encountered the ideas incontext.
Most importantly, except if you have a

see more please visit: https://homeofbook.com

promise to Java, you likely should begin new
undertakings in Kotlin and convert existing
tasks to Kotlin a cycle at a time.

What You Need to
Know
You should have the option to program in an
advanced article situated language. Java
would be best as it is nearest to Kotlin, yet
C++, C#, Visual Basic or anything
comparable are close enough in soul to Java
for you to have the option to adapt. You may
well have to gaze things upward with regards
to the points of interest of specific highlights
of Kotlin, yet more often than not it ought to
be self-evident, or clear with the assistance of
a couple comments.
It isn’t important to be a specialist developer
in light of the fact that for a ton of Android
programming you are basically utilizing the
elements and offices gave. That is, a ton of
Android writing computer programs is simply

see more please visit: https://homeofbook.com

an issue of following the rules.
However, assuming you desire to deliver
something remarkable and valuable you will
eventually need to add something of your
own– and here imagination and ability are
required. So you won’t have to be a specialist
software engineer to begin,yet you really
want to become one when you make your
astounding app.
Fortunately practice is a decent instructor
thus figuring out how to benefit as much as
possible from Android Studio will really
assist you with figuring out how to code.

Making a Start
I ’m not going to invest a ton of energy
disclosing how to introduce Android Studio
in a bit by bit manner as the Android site
works effectively and it is bound to be
exceptional. It is worth, nonetheless, going
over the fundamental principles.
https://developer.android.com/studio/
The installer will download all that you really

see more please visit: https://homeofbook.com

want including the JDK. Windows:

1. Launch the downloaded EXE file,
android-studio-pack <version>.exe.

2. Follow the arrangement wizard to
introduce Android Studio. Mac OS X:
1. Open the downloaded DMG file,
android-studio-group <version>.dmg

2. Drag and drop Android Studio into the
Applications folder. Linux:
1. Unpack the downloaded ZIP file,
android-studio-group <version>.tgz,

into a suitable area for your applications.
2. To dispatch Android Studio, explore to the
android-studio/receptacle/

catalog in a terminal and execute studio.sh.
You might need to add android-studio/container/

to your PATH ecological variable so you can
begin Android Studio from any directory.
Accept any defaults that the arrangement
program offers you– except if you have a
valid justification not to.It introduces Android
Studio, yet the SDK and the virtual gadget
framework that allows you to test your
application.

see more please visit: https://homeofbook.com

In many cases Android Studio simply
introduces with no problem. Now you ought
to have the option to run Android Studio. If
not the most probable reason for the issue is
the JDK thus re-establishment is a best first
option.

Your First Program
You can select to begin Android Studio later
the establishment. You will likely not get
directly to Android Studio whenever it first
beginnings as it downloads updates to itself
and to the Android SDK. You simply must be
patient.
When it at last gets moving you will see the
Android Studio welcome screen:
If you have as of now made a few projects
you may well see them recorded in Recent

see more please visit: https://homeofbook.com

projects.
Assuming this is your first project select
theoption: Start

anewAndroidStudioproject

You can overlook the subtleties of the new
task for the occasion.You should simply
supply a name for your application–
HelloWorld for this situation. Additionally
ensure you have Include Kotlin support
ticked– this is the thing that makes the
undertaking use Kotlin rather than Java.
Acknowledge different defaults that Android
Studio has filled in for you.

When you click Next you are allowed the
opportunity to pick what gadgets you are

see more please visit: https://homeofbook.com

focusing on. Again essentially acknowledge
the defaults:
Most of the time you will need to make
applications that sudden spike in demand for
an adaptation of Android that catches the
greatest market however assuming this isn’t a
worry then it tends to be smarter to choose a
later Android version.

The next page lets you select a template for
your project. In this case change the selection
to Basic Activity. This gives you some
additional generated code which makes the
app easier to create an app that looks right.
Every Android application consists of at least
one Activity and this template generates a
projectwith asingleActivityready for youto
customize:

On the nextpage youcan assigncustomnames

see more please visit: https://homeofbook.com

for the variouscomponents of
yourprojectthatthetemplategenerates.Forarealprojectyouwouldassign
names that were meaningful but in this case
you can accept the defaults:

Finally you can tap the Finish button and
stand by as Android Studio makes every one
of the documents you want. Indeed, even a
straightforward Android project has heaps of
documents so again everything takes time.

First Look
When everything is prepared you will see
Android Studio for the first time. As long as
everything has worked you ought to
ultimately, it requires around three minutes or
more, be given a perspective on your new
undertaking getting going in the Layout

see more please visit: https://homeofbook.com

Editor:

Problems?

If you get any mistake messages then the
odds are good that your venture hasn’t got
done with being handled. Trust that the
movement will stop. Assuming that you
check out the status line at the lower part of
the window you will see a message
saying“Gradle Build Finished” when Android
Studio has wrapped up with your new project.
If you actually have issues it merits
attempting the File,Invalidate Caches/Restart
order. This normally works for“Missing
styles” and comparable errors.

The IDE
Although there resembles a ton to dominate
in Android Studio ’s UI, the majority of it
you will just visit at times. The vital things to
see are that moving from left to right you
have:

see more please visit: https://homeofbook.com

☐ The Project window
☐ The instrument Palette and the Component
Tree window ☐ The Layout Editor
☐ The Attributes window

Most of the time you will utilize the Project
window and the Attributes window. You will
likewise see various editors relying upon
what kind of record you have chosen. For this
situation you have of course a design
document, content_main.xml,chose and thus
you have a format supervisor in the screen.

Before we go into design, which is one of the
primary subjects of this book, you actually
must know a little with regards to the record
construction of a task so you can explore to
its distinctive parts.

Basic Project
Structure
When the venture has wrapped up building

see more please visit: https://homeofbook.com

each of the records made can be seen by
opening the Projects tab. The most
compelling thing to see is that there are a
large number of organizers and files:

It appears to be practically unfathomable that
the least difficult Android application you can
make includes so many files.
Don’t freeze. The greater part of the
documents that have been made are
auto-produced and more often than not you
don’t have to know at least
something about them,not to mention open or
alter them. Indeed opening
and altering auto-created records truly is
definitely not a decent idea.
So how about we center around the
documents that make a difference to us.
For our straightforward program there are just
two significant
documents. One of them decides the conduct

see more please visit: https://homeofbook.com

of the Activity:
MainActivity.kt

The other decides the visual appearance, or
View, of the app:

content_main.xml

You can set which Activity is the one that the
framework begins, yet naturally it is the
single action that you made and named when
you set up the venture. You can change the
default names yet for the second leave them
as they are.

Despite this being a Kotlin project, the java
registry, according to your perspective, is the
place where the majority of the development
of your application happens, so ensure you
know where it is. The res catalog is the place
where you store each of the assets, formats,
bitmaps, and so on, that your application
needs.

So while things look muddled right now the
main two venture records that make a
difference to you, and your undertaking, are
MainActivity.kt in the java envelope and

see more please visit: https://homeofbook.com

content_main.xml in the res folder.

The two different organizers in the java
organizer are worried about making tests for
your program. This isn’t something that we
want to stress over when initially beginning
to compose Android apps.

Anatomy of an
Activity
An Android application is comprised of at
least one Activity classes. You can consider
an Activity being something like a page total
with HTML to figure out what showcases and
JavaScript to figure out what it does. For the
situation of an Activity the format is
controlled by the XML record in asset (res)
organizer, this is frequently called the View,
and the conduct is dictated by the Kotlin or
Java code in the java folder.
The XML can be considered as a markup
language similar as HTML or

see more please visit: https://homeofbook.com

XAML. It characterizes an underlying format
for the screen when the application first runs.
It is feasible to produce new format parts at
runtime from the Java record. Truth be told,
assuming you truly need to, you can get rid of
the XML record and produce everything from
code, yet as you will find the XML markup
approach is a lot of the most ideal way to do
the occupation as a result of the accessibility
of the Layout Editor.

So to be 100% clear in a Kotlin project:

☐ The kt document contains the code that
makes your application act specifically ways.
☐ The.xml format document contains a
meaning of the underlying UI, the View, of
your app.

Hello Layout Editor
Let ’s investigate the two records that have
been created for our underlying Hello World
application starting with the XML design.
Double tap on content_main.xml document in

see more please visit: https://homeofbook.com

the Project tab and the record will open
(assuming it isn’t as of now open). Assuming
it is as of now open you can likewise choose
its tab showed simply over the editorial
manager region. You can choose any record
that is open for altering by choosing its tab.
You can work with the XML
straightforwardly to characterize where every
one of the buttons and text go, and later you
will figure out how to alter it when things
turn out badly or to adjust it. Be that as it
may, Android Studio gives you an
exceptionally decent intelligent manager– the
Layout Editor and this is worth using.
As you become more encountered
exchanging between a plan view and a XML
view will turn out to be natural. Consider the
intuitive proofreader an exceptionally simple
method of creating the XML that in any case
would take you ages to get right. Assuming
that you check out the base left you will see
two tabs– Design and Text:

see more please visit: https://homeofbook.com

You can switch between altering the XML as
text, and altering it in the intuitive Layout
Editor basically by tapping on the tab.
Assuming you presently click on the tab the
window will show the Layout Editor however
show restraint whenever you first do this it
may take a couple moments.

The Layout Editor looks excessively a lot to
take in when you first see it yet you will
rapidly become accustomed to it. On the left
is a Palette of all of the components or
controls - buttons, text, checkboxes and so on
- that you can place on the design surface:

In the center is the plan surface and this
defaults to the screen size and presence of the
Nexus 5.You can choose different gadgets to

see more please visit: https://homeofbook.com

work with.

There are, indeed, two perspectives on the
format that you can utilize, the plan and the
outline. As a matter of course you are shown
the plan view yet you can show either view
utilizing the menu at the upper left of the plan
area.

You can show the two perspectives together
yet as a rule accessible screen region is the
primary issue and showing only one is the
most ideal choice. The plan view shows you
the design as a nearby estimation to how it
will show up on a genuine gadget. The
outline view doesn’t attempt to deliver the UI
all things considered however it gives you
will more design data to assist you with
situating and size components.Use whichever
you are most cheerful with.

see more please visit: https://homeofbook.com

On the left, beneath the Palette, you have the
Component Tree which shows you the design
of your format, that is the way unique UI
parts are contained inside others. It shows
you the design of the XML record in a more
straightforward to utilize structure. You can
utilize the Component Tree as a simple
method of to choose individual UI parts by
tapping on their names. You can likewise
move UI parts onto the Component Tree to
situate them precisely inside the hierarchy.
On the right you have the Attributes window
that can be used to set the attributes, such as
width, height, color and so on of any
component in the layout. In the event that you
have utilized any simplified Layout Editor
then this will appear to be natural and
assuming you have battled with itemized
design utilizing a markup language, be it

see more please visit: https://homeofbook.com

HTML, XAML or XML, you will see the
value in how simple the Layout Editor makes
building and testing a UI. For the situation of
our example program the main part is a
solitary TextView previously containing the
text“Hi World”. A TextView is the standard
part to utilize when all we need to do is to
show some static text.

You can alter the hello text assuming you
need to. Select the TextView part either on
the plan or in the Component Tree and utilize
the Attributes window to observe its Text
quality. Change this to peruse “Hi Android
World”:

see more please visit: https://homeofbook.com

Use the text field without the spanner
symbol.The properties with the spanner
symbol close to them are utilized to set
qualities that main show in the Layout Editor.
For this situation the text field without the
spanner symbol is the one that controls what
shows up in your application at runtime.
You can utilize the Layout Editor to make
any UI you want to and you truly don’t need
to engage in the XML that relates to the
design– except if things turn out badly or you
want to accomplish something so complex
that the Layout Editor doesn’t uphold it.

Inspecting the XML

see more please visit: https://homeofbook.com

The Layout Editor will consequently produce
the XML expected to make the format for
yourself and adjust it as you change the
layout.
If you truly need to see the XML then you
should simply choose the Text tab at the
lower part of the Layout Editor window:
<?xml version=“1.0” encoding=“utf-8”?>
<android.support.constraint.ConstraintLayout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width=“match_parent” android:layout_height=“match_pare
nt”
app:layout_behavior=“@string/appb ar_scrolling_view_behavior”
tools:context=“com.example.mikejames.helloworld1.MainActivity”
tools:showIn=“@layout/activity_main”>

<TextView
android:layout_width=“wrap_ content”
android:layout_height=“wr ap_content”
android:text=“Hello World!” app:layout_constraintBotto
m_toBottomOf=“parent” app:layout_constraintLeft_ toLeftOf=“parent”
app:layout_constraintRight _toRightOf=“parent” app:layout_constraintTop_
toTopOf=“parent”/>

</android.support.constraint.ConstraintLayout>

You should find it genuinely straightforward
– read the <TextView> tag for instance– yet
pass on it to the Layout Editor to make and
alter it.
The amounts beginning with @ are generally

see more please visit: https://homeofbook.com

references to things characterized somewhere
else in asset records, a greater amount of this
in section 11.
We will get back to the Layout Editor and the
XML it creates in numerous later chapters.

The Kotlin
If you double tap on the MainActivity .kt

document, or select the MainActivity.kt tab, you will see the
code it contains.A portion of the code may be
covered up however you can investigate it to
by tapping the + button to grow it.

The significant piece of the code is:
class MainActivity : AppCompatActivity() {
supersede fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

You can disregard the guidelines that keep
the setContentView work in light of the fact
that these set up the guideline“additional
items” that each Android application
currently upholds– a drifting ActionBar.
There are two different capacities beneath the

see more please visit: https://homeofbook.com

onCreate work yet overlook these for the
occasion. They execute highlights you didn’t
actually look for which can be helpful, yet
not when you are simply getting started. The
onCreate work is the main thing that is
important right now. This capacity is
considered when your application is run and
it is relied upon to make the view and do the
activities the Activity is concerned with. As
our Activity doesn’t actually do anything
much the main thing onCreate needs to do is
first call the acquired OnCreate strategy,
super.onCreate, to do every one of the
standard things and afterward utilize the
setContentView capacity to choose the XML
record that decides the format of the
Activities screen.
The line:
setContentView(R.layout.activity_main)

is the most important of all and really the
only one that actually does
anything.ItgetstheresourceobjectRthatrepresentsthelayoutas
definedby the XML file created by the
Layout Editor and makes it the current
ContentView, i.e. it is what is displayed on
the screen. In other words, it makes the

see more please visit: https://homeofbook.com

connection between the layout you have
defined using the Layout Editor and stored in
the XML file, and the user interface that
appears on the device’s screen.
You might be perplexed concerning why you
altered an asset record called
content_main.xml but the Kotlin is stacking
an asset document called activity_main.xml
The appropriate response is that to make
broadening your application more
straightforward Android Studio makes two
design records,
activity_main.xml that makes the“standard”
controls that

are shown and content_main.xml that you use
to plan your custom UI. Obviously,
activity_main.xml contains a reference to
content_main.xml. This makes things more
muddled for the fledgling however it is a
disentanglement later.
We have more to find out with regards to the
asset object R yet you can see that its
fundamental job is to shape a connection
between your Java code and the assets that
have been made as XML records by the

see more please visit: https://homeofbook.com

Layout Editor. As this is everything our
Activity does this is all the code we want.
While I concur it is not really an“movement”
it is sufficient to see the
fundamental blueprint of an Android
application and to perceive how to make it
run– which is our next job.

Getting Started with
the Emulator
There are two unmistakable methods of
running an Android application utilizing
Android Studio. You can utilize the emulator
or a genuine Android gadget. In the end you
should find how to run an application on a
genuinely associated Android gadget in light
of the fact that the emulator just permits you
to test a subset of things and it is slow.
However, for the second running your first
application on an emulator is sufficient to get
started.
All you need to do is click the green run

see more please visit: https://homeofbook.com

symbol in the top toolbar– or utilize the
Run,Run“application” menu thing. At the
point when you do this interestingly it will
take some time for the application to be
aggregated. Ensuing runs are a lot quicker
because of advancements presented in
Android Studio 3.
When your application is fit to be ordered
you will see a discourse box seem which
permits you to either choose a running
emulator or start one going:

If no emulators are recorded then you should
make one. Select the Create New Emulator
button. This will introduce an exchange box
where you can choose the gadget you need to
test on.
The default is the Nexus 5 running Nougat
API 25 and for a first test you should utilize
this. Assuming that you really want different
gadgets you can utilize the AVD (Android

see more please visit: https://homeofbook.com

Virtual Device) Manager to characterize
them.
If you see a message on the right of the
screen“HAXMis notinstalled” then it is a
good idea to click the Install Haxm link just
below. HAXM is a gas pedal that is utilized
on Intel machines to make the Android
Emulator run quicker. You needn’t bother
with it yet it speeds things up:

You can acknowledge every one of the
defaults in this previously run. You can
screen the stacking of the imitating in the Run
window which shows up naturally at the
lower part of Android Studio.You might see a
few admonitions show up– these can
generally be ignored.

see more please visit: https://homeofbook.com

The entire interaction takes some time
whenever you first do it. Later
whenever the emulator first is as of now
running and the moment run include attempts
to re-run your application with the base
changes:

Finally, make sure to delay until the Android
working framework is stacked and you see
the natural home screen before you begin to
ponder where your application is. Even when
it is loaded it is a good idea to give it a few
seconds for Android Studio to notice it and to
upload your app:

see more please visit: https://homeofbook.com

For our situation this isn ’t especially
noteworthy– simply the words“Hi Android
World!”, however when you think about the
excursion voyaged it definitely should
impress.
From this point you would now be able to
alter the code or the format and run the
application again to see the impacts of the
changes. Assuming that anything turns out
badly and you get wrecked then basically
erase the project and make it again from
scratch.
You actually have a ton to find regarding how
to broaden the application and make it
helpful, yet the experience has begun.

Summary
☐ Android Studio makes making Android
applications significantly more
straightforward than different methodologies
and it is presently the main authority method
for doing the job.

see more please visit: https://homeofbook.com

☐ An application has somewhere around one
Activity and this characterizes a screen
format, the View, and a conduct. An Activity
doesn’t must have a UI, however much of the
time it has one.

☐ To make a straightforward application
utilize the Basic Activity format without any
additional items selected.

☐ The screen design is constrained by a
XML markup record, Main_Activity.xml, put
away in the res catalog. There is additionally
content_main.xml, which is the place where
we place our custom UI controls.

☐ Android Studio gives a simplified Layout
Editor that permits you to make a UI without
working straightforwardly with the XML.

☐ The conduct of the application is
constrained by a Kotlin
record,MainActivity.kt for our situation,put
away in the java organizer.You can alter the
code in the Kotlin document
straightforwardly in Android Studio. The

see more please visit: https://homeofbook.com

code needs to load and show the design
characterized in the XML file.

☐ To run an application you really want
either an emulator based AVD or a genuine
Android gadget associated with the machine.

☐ When you run the application you can
choose which AVD or which equipment
gadget is utilized to test it. When you initially
start just utilize the default AVD, a Nexus 5.

☐ You can change and yet again run your
application without restarting the AVD or any
genuine equipment associated with the
machine.

Chapter 2
Activity and User
Interface
So you know how to make an Android

see more please visit: https://homeofbook.com

application, yet do you truly know how it
functions? In this section we check out how
to make a (UI) and how to attach it to the
code in the Activity.
We found in Chapter 1 how to utilize
Android Studio to construct the most
straightforward application. In transit we
found that an Android application comprises
of two sections– an Activity and a View. The
Activity is the code that accomplishes
something and the View gives the (UI). You
can consider this duality being like the
HTML page and the JavaScript that rushes to
cause it to accomplish something, or as a
XAML structure and the code behind.
The key thought is that an Activity is the
code that works with a UI screen
characterized by the View. This isn’t exactly
precise in that an Activity can change its view
so one piece of code can uphold various
perspectives. In any case, there are benefits to
utilizing one Activity for each view in light of
the fact that,for instance, this how the
Android back button explores your
application– from Activity to Activity. A
complex application almost consistently

see more please visit: https://homeofbook.com

comprises of numerous Activities that the
client can move between like pages yet a
straightforward application can oversee very
well with only one Activity. There is no rigid
guideline regarding the number of Activities
your application must have, yet it must have
least one.
If you are contemplating whether an Activity
can exist without a View the appropriate
response is that it can, yet it doesn’t check out
as this would pass on the client with no real
way to cooperate with your application.
Exercises are dynamic when their View is
introduced to the user. It truly is an
extraordinary improvement to think as far as
an Activity as a solitary screen with a client
interface.
If you need something to run without a UI
then what you need is an assistance or a
substance supplier which is past the extent of
this book. It is also worth making clear at this
early stage that an Activity has only one
thread of execution– the UI thread – and you
need to be careful not to perform any long
running task because this would block the UI
and make your app seem to freeze. That is, an

see more please visit: https://homeofbook.com

Activity can just do each thing in turn and
this incorporates cooperating with the client.
Assuming you compose a program utilizing a
solitary action and it does a confounded
estimation when the client clicks a

button then the movement can not react to
any extra snaps or whatever occurs in the UI
until it completes the calculation.
In many cases the entire motivation behind
the Activity that is related with the UI is to
take care of the UI and this is the thing that
this book is for the most part about.
Also notice that making extra Activities
doesn’t make new strings. Just a single
Activity is dynamic at some random time, a
greater amount of this some other time when
we consider the Activity lifecycle in detail. In
this book we will focus on the single screen
UI Activity since it is the most widely
recognized application building block you
will experience, and it is even where most
complex applications start from.

The MainActivity

see more please visit: https://homeofbook.com

There is one movement in each undertaking
that is assigned as the one to be dispatched
when your application begins. Assuming you
use Android Studio to make another Basic
Activity application called SimpleButton and
acknowledge every one of the defaults, the
startup Activity is called MainActivity of
course. You can change which Activity
begins the application by changing a line in
the application’s manifest.
The Manifest is a project file we haven't
discussed before because if you are using
Android Studio you can mostly ignore it and
allow Android Studio to construct and
maintain it for you, but it is better if you
know it exists and whatitdoes.
The Manifest is put away in the
application/shows registry
and is called AndroidManifest.xml.
It is a XML record that tells the Android
framework all that it has to know about your
application, including what authorization it
needs to run on a device.
Specifically it records the exercises as a
whole and which one is the one to use to
begin the app.

see more please visit: https://homeofbook.com

If you open the produced Manifest, by double
tapping on it, you will see somewhat way
down the file:
<activity android:name=“.MainActivity”

android:label=“SimpleButton” >

This characterizes the Activity the framework
has made for yourself and the lines just
underneath this characterize it as the startup
Activity:

<intent-filter>
<action android:name=“android.intent.action.MAIN”/>
<category android:name=“android.intent.category.LAUNCHER”/>
</purpose filter>

</activity>

Notice that the choice of which Activity starts
the app has nothing to do with what you call
it, i.e. calling it MainActivity isn't enough.
For the second you can depend on Android
Studio to care for the Manifest for you. Much
of the time you will possibly have to alter it
straightforwardly when you really want to
address a blunder or add something
advanced.

Inside the Activity

see more please visit: https://homeofbook.com

The produced Activity has one class,
MainActivity, which holds the techniques as
a whole and properties of your activity.
It likewise has three created methods:

☐ onCreate
☐ onCreateOptionsMenu
☐ onOptionsItemSelected

The last two are clearly associated with the
working of the OptionsMenu, which is a
significant point however one that can be
overlooked for the occasion.Not movements
of every sort need to have an OptionsMenu
and you could even erase these strategies to
help a choices menu. All three of these
techniques are occasion controllers. That is
they are called when the occasion that they
are named after happens. The entire of an
Android application is an assortment of only
occasion controllers and their assistant
functions.

The main strategy produced by Android
Studio is onCreate.This is an occasion
overseer and it is considered when your

see more please visit: https://homeofbook.com

application is made and is the place where we
do all the instatement and setting up for the
whole application. It is likewise commonly
the spot we show the application’s primary
UI screen.

Let’s look again at the initial two lines of
produced code for onCreate, which are the
most important:
abrogate fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

The onCreate occasion overseer is passed a
Bundle object called savedInstanceState. This
is expected to safeguard state data between
summons of your application and we will
perceive how this is utilized later. For this
situation no information has been saved thus
savedInstanceState is invalid– however you
actually need to give it to the acquired
onCreate strategy.You will glean some
significant knowledge more with regards to
Bundle in Chapter 12.

The last guidance calls setContentView,
which is a strategy that has various diverse

see more please visit: https://homeofbook.com

over-burden structures. For this situation we
pass a number that demonstrates which XML
document depicts the design to be utilized for
the view. The setContentView strategy
utilizes this to make every one of the parts of
your UI as characterized in the XML record.
That is, this is the association between the
format you made utilizing the Layout Editor
and the design that shows up on the gadget’s
screen.

It merits looking somewhat nearer at the way
that the design document is determined on the
grounds that this is an overall way that
Android allows you to get to assets. There is
an entire section about assets later yet it is as
yet worth a presentation now.

The R object is built by the framework to
permit you to get to the assets you have put in
the asset catalogs.For instance,in onCreate
the utilization of R.layout.activity_main
returns a number worth, its id, that permits
the setContentView technique to find the
activity_main XML design document.
Overall all assets are found through the R

see more please visit: https://homeofbook.com

object, consider it a file of resources.

View and
ViewGroup
So far so great, however it is critical to
understand that what occurs next it that the
XML record is delivered as a bunch of View
objects. That is, Java protests that are largely
sub-classes of the View object. The whole UI
and illustrations framework is executed as a
pecking order of parts got from the View
class.

If you have utilized practically any GUI
structure, AWT, Swing, XAML, and so on,
this thought won’t be unfamiliar to you. For
instance, a button is a class gotten from View
and to make a button you should simply make
an example of the Button class. You can
obviously make however many buttons as
you like essentially by making more
instances.

see more please visit: https://homeofbook.com

This leaves open the topic of where the
button shows up in the layout?

The response to this is that there are
ViewGroup objects which go about as
compartments for other View objects. You
can set the place of the kid View objects or
simply permit them to be constrained by
different design rules, a greater amount of
which later. You can select to make the
whole UI in code by making and working
with occurrences of View articles and this is
an exhibited thing in Chapter 7.

So to be 100% clear all of the UI objects are
characterized in code and each UI object, like
a button, has a class with a comparative name
that allows you to make the UI in code. Truth
be told this is the best way to make the UI,
yet there are alternate methods of determining
it. Rather than composing code to make the
UI you can indicate what you need in a XML
document and afterward utilize provided code
to show it. This is the thing that
setContentView does– it peruses the XML
record you indicate and makes protests that

see more please visit: https://homeofbook.com

execute the UI.

This implies you could make the UI by
physically composing a XML file that
characterizes view items and how they home
one inside another and depend on the
framework to make the view object
progressive system for you. Albeit this is
conceivable, it is a lot more straightforward
to utilize the Layout Editor to make the XML
document and afterward permit the
framework to make the items for you from
the created XML record. That is, you can
relocate a button onto the Layout Editor and
it will naturally produce the XML expected to
make it and determine where it is and every
one of different subtleties you set.

That is, at the surface level there are three
methods for making the UI: 1. You can
compose code to produce the fundamental
objects.
2. You can compose XML labels and utilize
the framework to change the XML over to the
equivalent objects.

see more please visit: https://homeofbook.com

3. You can utilize the Layout Editor to
intelligently make the UI and create the XML
record which is then changed over into the
Java objects required. You can imagine this
as:

simplified format - > XML - > View objects

Being ready to work with the UI in an
intuitive manager is one of the extraordinary
benefits of utilizing Android Studio and,
regardless of whether you know how to alter
the XML design record
straightforwardly, it’s anything but an
element you ought to disregard. It is almost
consistently a smart thought to utilize the
format proofreader as the initial step and
apply any changes, if essential, to the XML
record later.

Creating Our First
UI
To perceive how each of this fits together

see more please visit: https://homeofbook.com

how about we add a button and a textView
object. You most likely definitely realize that
a button is for squeezing and you can figure
that a textView is utilized to show the client
some text.
First eliminate the Hello World text that is
produced naturally when you make another
clear Activity. Load the content_main.xml
document by opening it from the task view.
The content_main.xml is the place where you
make all of your UI. There is another format
document, however as clarified in Chapter 1
this essentially gives the standard
components in a UI like the AppBar. Notice
that on account of this you can see UI parts in
the Layout Editor that you can’t alter - they
have a place with the other format document.
To eliminate“Hi World” you should simply
choose it and press the erase key: Notice that
there is a fix order, Ctrl-Z, assuming you
erase something by mistake.

see more please visit: https://homeofbook.com

Next select the button in the Widgets segment
of the Palette by tapping on it:

If you currently place
the cursor over the plan region you will find
that as you move it different arrangements are
demonstrated by lines:

see more please visit: https://homeofbook.com

To situate the button
essentially click and a full button, complete
with the default inscription Button, will
appear.

However, just dropping the button on the plan
surface isn ’t exactly enough. Assuming you
simply do this the button will be situated
however with no situating imperatives.
Assuming you have a go at running the
program you will observe that the button here
and there disappears on the emulator or
genuine gadget.The explanation is that
without any imperatives to its situating
applied it ascends to the highest point of the
screen and is taken cover behind other
controls.
This conduct is normal for the default
ConstraintLayout, a greater amount of which
later. For the second we simply need to apply

see more please visit: https://homeofbook.com

a few requirements to the button.
The most straightforward arrangement is to
tap on the Infer limitations symbol and let
Android Studio work out how to position the
button:

When you click this button imperatives are
added by where the Button is situated. Right
now precisely what requirements you wind
up applying matters not exactly the basic
truth that there are a few. In the screen dump
underneath the button is obliged to be a
decent separation from the top and right-hand
side. Notice that you can situate the button
and afterward click the Infer limitations
button to set the requirements expected to
keep the button in its location:

Now you have a button on the UI all set, we

see more please visit: https://homeofbook.com

should add a TextView Widget in the very
same manner– click on its symbol in the
Palette, position in the Layout Editor and
snap to set the position. Notice that Android
Studio gives situating data to assist you with
adjusting parts of the UI. Again you really
want to tap the Infer requirements symbol to
situate the TextView.
The simplest thing to do is position the
TextView where you want it and then
clicktheInferconstraintsicontoset
theconstraintsneededforthatposition:

Notice that Android Studio gives situating
data to assist you with adjusting parts of the
UI. The least complex way to deal with
making a format is to put the parts where you
need them and afterward click the Infer
limitations symbol to apply imperatives to fix
their position. By and by these requirements
may not be by and large what you want
however it gives you a beginning stage.

see more please visit: https://homeofbook.com

That’s the long and short of it and indeed
making a total complex UI is only business as
usual, simply a question of picking parts from
the Palette and situating them on the plan
surface.
If you presently run the program, by tapping
the green Run symbol (allude back to Chapter
1 assuming you don’t have the foggiest idea
how to do this) you will see your new UI:

Obviously it sits idle, regardless of whether
you can tap the button. The button clicks,
however there is no code associated with the
button click occasion to express what ought
to occur, something we will manage very
soon.

see more please visit: https://homeofbook.com

Properties &
Attributes
Our next task is to change the caption on the
button. Recall that objects have properties
and methods.Things like caption
text,background color and so on for UI
widgets are represented as properties. You
can change properties in code, or at design
time you can use the Attributes window on
the right-hand side of the screen.
What is the difference between a property
and an attribute?
The reality is that all of the UI objects are
code objects and quantities like text are
properties of the object but when you specify
a quantity in XML it is known as an attribute.
You could say that you set attributes in the
XML to set the properties of code objects.
If you select the button and examine the
Attributes window on the right you will find
the button’s text attribute. This currently
contains the value “Button”. If you change

see more please visit: https://homeofbook.com

this to“Click Me!” and re-run the app you
will see that the Button’s caption has
changed:

You can set the initial properties of any of the
widgets that you have placed in the UI. There
are a great many properties and we need to
spend some time looking at some of them.
However, for the moment the important thing
is that you see how easy it is to change a
property using the Attributes window. As you
might guess, the property that you changed
results in a change in the XML file defining
the layout. Recall that the general principle is
that the Layout Editor creates the XML file
that you could have created by hand without
any help from the Layout Editor. In this
sense, the Layout Editor doesn’t add anything
to the process,other than being much easier.

see more please visit: https://homeofbook.com

Events
Now we want to do something when the
button is clicked.Android supports a complete
event-driven UI. So what we need to do next
is define a method, or function, that is called
when the button is clicked. Java’s way of
implementing events is complicated but now
much simplified in Java 8. Kotlin makes
event handlers comparatively easy, but still
slightly more difficult than in languages such
as C#.
There are a number of different ways to
specify an event handler, but the simplest is
to use the Layout Editor to generate the XML
needed for the system to hookup the event
handler to the event. This is not an approach
that you can use all of the time. It only works
for the click event, but it gets you started.
If you have used something like Visual
Studio,it is also worth pointing out that
Android Studio doesn’t automatically create
event handlers for you.In the case of Android
Studio you have to create a function and then

see more please visit: https://homeofbook.com

assign it as the onClick handler.
Using the Layout Editor approach, method
click event handlers are simply public
methods of the current Activity with the
signature:
fun buttonOnClick(v: View){

Just in case you have missed or forgotten
what a function’s signature is: A function’s
signature is the number and types of the
parameters it accepts. Functions with the
same name but different signatures are
considered to be different functions.In this
case the function takes a single
parameter,which is a View, and returns Unit,
i.e. nothing.
You can call the method anything you like,
but in most cases it helps to specify exactly
what the event it handles is. In this case we
want to handle the button’s onClick event–
which occurs when the user clicks on the
button with a mouse or more likely taps on
the button using a touch sensitive device.
Load the MainActivity.kt file into the code
editor and add the following method:
fun buttonOnClick(v: View){

// do something when the button is clicked

see more please visit: https://homeofbook.com

}

This needs to be added directly following the
onCreate method, or anywhere that makes it a
method of the MainActivity class.

With all this code out of the way, now switch
back to the Layout Editor, select the button,
find the onClick property in the Attributes
window and enter buttonOnClick:

At the mome nt the IDE doesn’t notice Kotlin
methods that are suitable event handlers so
you have to type them in, but this might well
change in the near future. Notice that you
don’t type in parameters, just the name of the
method.
That’s all there is to it. You define your event
handler with the correct signature and return
type and set the appropriate onClick property
in the Attributes window.
When it comes to other types of event you
have to do the job in code– the XML/Layout
Editor method only works for onClick.

see more please visit: https://homeofbook.com

Connecting the
Activity to the UI
Now we have an event handler hooked up to
the button click event we usually want to do
something that affects the UI as a result.
Let’s suppose that when the button is clicked
we want to change the text displayed in the
TextView widget to“I’ve Been Clicked!”.
We can do this by changing the TextView
widget’s text property to the new text. The
only problem is how do we find the
TextView widget in code? This is a fairly
standard problem when you use a markup
language to define a UI. The markup
language defines widgets, or other UI objects,
and the code has to have a way of making the
connection to those UI objects. For example,
in JavaScript you make use of the
getElementById method to retrieve a DOM
object corresponding to a particular HTML
element. In Android we do something similar.
First make sure you follow the idea that all of

see more please visit: https://homeofbook.com

the XML generated by the Layout Editor gets
converted into a set of objects, one for each
component or View placed on the design
surface. These objects have the same range of
properties as you saw in the Attributes
window and have methods to get other things
done. All you need to do is find a way to
reference one of them.

In the case of the View object that caused the
event this is very easy as it is passed to the
event handler as the only argument of the
call. So if the event handler is:

fun buttonOnClick(v: View){

and the event handler is only hooked up to
the button, then you can be 100% sure that v
is the button object when the event occurs.
If you want to change the button’s caption
you could just use its text property to change
its value.
Note: this is a Java property as all Android
classes are Java classes. This means

they don’t have properties but have get and
set methods which retrieve and modify

see more please visit: https://homeofbook.com

property values. Kotlin automatically
converts such get and set properties to
properties that can be used without reference
to get and set methods. In other words in
Java you would have to write v.setText(“New
Text”); but in Kotlin you can write v
.text=”New Text”. Kotlin automatically
converts the assignment to a call to setText.
So if you are a Java programmer get out of
the habit of calling getter and setters and just
use assignment.

So, in principle, all you have to write is:
v. text=“I’ve Been Clicked!”

However, this doesn ’t work because v is
declared to be a general View object which
doesn’t have a text property– not all View
objects have any text to display.

To use the Button ’s text property we have to
cast v to its correct type, namely a Button.
Note:Casting is where you tell the system the
type of the object you are working with. If
classB is a subclass of classA then you can
treat a classB object as a classA - after all it

see more please visit: https://homeofbook.com

has all of the methods and properties that
classA does by inheritance.
However, if you want to make use of a
property or method that only classB has then
you need to cast the reference to the classB
object to make its type clear.
For example, assuming classB inherits from
classA:
val myObject:classA = classB()

creates an instance of classB but myObject is
declared to be of type classA. This is fine but
you can only access the methods and
properties of the classA object.

However, if you try:
myObject.classBMethod()

then it will fail if classBMethod only exists in
classB.
To use the classB method you have to cast
myObject to its real type: myObject as classB

You can store a reference to the cast in a new
variable:
val myClassBObject:classB = myObject as classB

and then call the method:
myClassBObject.classBMethod()

or you can just do the cast on the fly at the
cost of an extra pair of parentheses: (myObject as

see more please visit: https://homeofbook.com

classB).classBMethod()

If you simply change the code to cast the v
object to a Button object, i.e. (Button) v, you
will discover that Android Studio flags an
error by showing Button in red. If you hover
over the red symbol you will see the exact
error message:

This is because you have used a class without
importing it. You may see other classes,
View, for example highlighted in red as
which classes are imported by default
depends on the exact project template you are
using.

Any class that you use has to be listed at the
top of the program in an import
statement.Whenever you see a“Cannot
resolve symbol” error message the most
likely cause is that you haven’t imported the
class.

This can be a tedious business but Android
Studio has some help for you.If you click on

see more please visit: https://homeofbook.com

the error symbol you will see a blue hint
message:

If you look at the hint message it suggests
pressing Alt+Enter which is always good
advice because it produces a list of possible
fixes for the problem:

You can implement the fix simply by
selecting it from the list. In this case you have
to add the class definition to the start of the
program. import android.widget.Button

You can do this manually, i.e. you can type it
in, or just select the first option. The import is
added and in a moment the red errors
disappear. If you hover over the corrected
Button class name you will also see a light
bulb:

see more please visit: https://homeofbook.com

Android Studio offers you hints on improving
your code even when there are no errors–
look out for the light bulbs. If you click on
this one it will offer to remove the explicit
type specification which is perfectly
reasonable as:
val button = v as Button

can be considered more idiomatic Kotlin with
the use of type inference. However the
second option is to add a @Deprecated
annotation which is unlikely at best. Android
Studio is full of hints and offers to make your
code better at every turn– you don’t have to
accept them.

Now we have the button object we can use its
text property:
button.text =“I’ve Been Clicked”

Remember: No need to use get and set. In
Java you would have to write button.setText(“I’ve Been
Clicked”);

The complete event handler is:

fun

see more please visit: https://homeofbook.com

buttonOnClick(
v: View){ val
button = v as
Button
button.text =“I’ve Been Clicked”

}

Now if you run the program you will see the
button’s caption change when you click the
button.
This is a common pattern in making your UI
work – event handlers change the properties
of View objects to modify the UI.
Notice that this approach only works if you
know the type of the object that caused the
event and called the event handler. If your
event handler is

only connected to a single component then
you do know the type of the object that
caused the event. If it isn’t, or if you want to
modify the properties of a View object that
isn’t the subject of the event, then you have to
find it.

This is exactly what we are going to do next.

see more please visit: https://homeofbook.com

Finding View
Objects
Now suppose we want to do something to one
of the other components in the View. In this
case we have to find the object that represents
the component without the help of the event
handler’s argument.
For example how do we find the TextView
that we placed below the button? Kotlin
makes this very easy.
Every View object defined in the XML file
has an id. You can assign an id manually but
the Layout Editor automatically assigns an id
to each component you place on the design
surface. You can see the id of an object by
selecting the object and then looking at the
top right of the Attributes window:

You can also use this window to enter a new

see more please visit: https://homeofbook.com

value for the id i.e. you can use it to “rename”
controls.
In this case you can see that our TextView
object has been assigned an id of “textView”.
In fact this is in reality an integer constant
used to identify the View object in the layout
but Kotlin makes use of this identifier to
create an Activity property of the same name.
The rule is that for every View object defined
in the XML file that has an id Kotlin creates
an Activity property of the same name. That
is, in this case the id of the TextView is
textView and so Kotlin automatically creates
a property
this.textView

or, as you can generally drop this, just:
textView

When the program runs each of these
properties is set to reference the View object
created with the same id. That is, the
textView property references the TextView
object.
This makes working with the UI very much
easier. For example, to set the text property of
the TextView object all we have to do is:
textView.text=”You clicked my button”

see more please visit: https://homeofbook.com

As you type “text” notice that Android Studio
will prompt you to import a definition
derived from the XML file– accept this and
you will be able to refer to all of the
components in the XML file by their id.

This adds the import:
import kotlinx.android.synthetic.main.content_main.* The
complete event handler is:

fun
buttonOnClick(
v: View) { val
button = v as
Button
button.text = “I’ve Been
Clicked” textView.text = “You
clicked my button”

}

Notice that the button variable is a local
variable that hides the button property that
Kotlin automatically created for you from the
XML ids.

If you now run the program you will see that
you are informed twice of the fact that this
very important button has been clicked:

see more please visit: https://homeofbook.com

You may think that this is all very small stuff
and nothing like a real app, but this is how
building a UI works in Android.
You now know how to design a single screen
app using the widgets available in the Layout
Editor’s Toolbox, how to hook them up to
handle their click events, how to find the
object that represents them and how to call
the methods that modify them.
Apart from the fine detail of how each of the
widgets works – radio buttons, checkboxes
and so on– you now have the general outline
of how to build a single screen app.

Summary

see more please visit: https://homeofbook.com

☐ An Activity is the unit of the Android app
and it roughly corresponds to one screenful of
user interface plus the code to make it work.
☐ In most cases you will create an Activity
for each UI screen you want to present to
your user.
☐ Only one Activity from your app is
running at any given time. ☐ An Activity is
single-threaded and runs on the UI thread. ☐
You can set which Activity starts the app in
the Manifest. Android Studio sets this to
MainActivity by default.

☐ The Activity has events corresponding to
different stages in its lifecycle. The onCreate
event is called when the app first starts and
this is where you perform all initialization.

☐ You can also restore the app’s state from
previous runs at this point. ☐ The Activity
then loads a View or ViewGroup object to
create its user interface.
☐ You can create View/ViewGroup objects
in three possible ways: in code, using XML
or using the Layout Editor to generate the
XML.

see more please visit: https://homeofbook.com

☐ The Layout Editor is far the easiest way to
create a UI. ☐ By opening the XML file you
can use the Layout Editor to place widgets
corresponding to View objects on the design
surface. ☐ You can use the Attribute window
to set the attributes of each widget.

☐ The XML file that the Layout Editor
creates is used by the Activity to set its UI by
creating objects that correspond to each of the
View objects placed using the Layout Editor.

☐ When you reference a class that isn’t
defined in the file, i.e. most of them, then you
need to add an import statement to the start of
the code.

☐ If you use Alt+Enter when the cursor is
positioned within any word that is displayed
in red then Android Studio will help you fix
the problem.

☐ You can hook up onClick event handlers
defined within the current Activity to the
widgets using the Attributes window.
☐ An onClick event handler is just a public

see more please visit: https://homeofbook.com

function with the signature
myEventHandler(v:View):Unit.

☐ The View object parameter is sent to the
View object that raised the event. This can be
used to access the properties/methods of the
View object that the user interacted with.

☐ To access other View objects directly you
can make use of the fact that Kotlin converts
all of the id attributes assigned by the Layout
editor into Activity property initialized to
reference the corresponding View object.

Chapter 3
Building a Simple UI
By this point in you understand how the
Activity and the View fit together to create a
simple application, but the Android UI is
more complicated than most because of its
need to cope with a range of very different
screen sizes and orientations. In this chapter

see more please visit: https://homeofbook.com

we look at the problem of layout and working
with the UI framework and on the way we’ll
build a calculator app.
When building an Android app you will
spend far more time than you could possibly
imagine on perfecting the UI. So it is
important that you master the basics so that
you can move on to code that does more
interesting things.
The learning curve with any UI framework is
more or less the same. First you have to find
out what constitutes an application that you
can run i.e. where is the code? In Android’s
case this is an Activity.
Next you have to work out how UI
components are represented, how you can
create them and how to hook up the UI with
the code. In Android’s case this is a matter of
a hierarchy of View objects and hooking up
with the code is a matter of finding the
objects representing each UI component and
adding event handlers.
Once you have the basics you have to start
exploring what components you have been
provided with to build a UI. In general this
varies from the extremely simple - the

see more please visit: https://homeofbook.com

Button, for example - to almost complete
applications in themselves - the Listview, for
example. It would take a long time to master
all of them, but what most programmers do is
make sure that they can use the basic
components and then find out about the
bigger more sophisticated components when
needed. The good news is that once you
know how one component, even the simplest,
works then most of it generalizes to bigger
more complicated things.
We also have to worry about how to lay out
the UI – how to size and position sets of
components. Android is particularly
sophisticated in this respect because being a
mobile operating system it has to contend
with a wide range of screen sizes and even
orientation changes while an app is running.
This is not a simple topic and we will have to
consider it in more detail later, but for the
moment let’s just take a look at the easier
aspects of screen layout.

Using the Layout Editor is the simplest and
most productive way to work so let’s
continue to concentrate on this method of

see more please visit: https://homeofbook.com

creating a UI. This chapter is mostly about
how to use the Layout Editor with the default
layout and the challenges of creating a UI.

What's in the Palette
Start Android Studio and create a new simple
basic activity project called UItest. This is
going to be our UI playground for the rest of
this chapter. Accept all the defaults, apart
from selecting a Basic Activity, and
wait while the project is created. Make sure
you have checked Include Kotlin support on
the first dialog page.
If you now open the file content_main.xml in
the app/res/layout folder then the Layout
Editor will open and you will see the familiar
rendering of the default layout.
Now it is time to look at the Palette in more
detail:

see more please visit: https://homeofbook.com

The top four sections of
the Palette hold the most important UI
components with a further five sections with
more specialized ones.

1. The Widgets section contains the most
frequently used components
– Buttons, Checkboxes and so on. This is the
set of components you need to learn to use
first.

2. Text Fields are a set of text input
components which all work in more or less
the same way.
3. Layouts are containers for other
components that provide different layout

see more please visit: https://homeofbook.com

rules.
4. Containers are like mini-layouts in that you
generally put other components inside them
and the container“looks after” them:
5. Images and media are containers for
specific types of resources such as images
and videos.

6. Date and time are widgets concerned with
date and time entry and display.
7. Transitions perform limited animation
between different components.
8. Advanced doesn’t really mean advanced–
more bigger and complex components such
as the number picker.
9. Google is for services provided by Google
and consists of MapView and AdView at the
moment.
10. Design is a collection of more advanced
controls such as tabbed pages.
11. AppCompat are controls that provide up-
to-date controls for older versions of

see more please visit: https://homeofbook.com

Android.

The Button an
Example
Where else should we start – the Button is
almost the“Hello World” of UI construction.
If you know how to work with a Button you
are well on your way to understanding all of
the possible components. The good news is
that we have already met and used the Button
in Chapter 2 and discovered how to work
with it in code. However, there is still a lot to
find out.
Generally there are three things you need to
discover about using any component.
1. How to make it initially look like you want
it to. This is a matter of

discovering and setting properties using the
attributes provided in the Layout Editor.

2. How to modify the way a component looks

see more please visit: https://homeofbook.com

at runtime. This is a matter of finding out
how to work with properties in code.

3. How to hook up the events generated by
the component to the code. Setting properties
sounds easy, but there are different types of
properties and these have different
appropriate ways of allowing you to interact
with them. The first thing we have to find out
about is how to position a component.

Positioning– the
ConstraintLayout
Before you continue with the project select
and delete the default “hello world” text– it
makes trying things out easier to have a clean
design surface.
There are two views of your layout you can
opt for– design and blueprint. The design
view looks like your UI when it runs on a real
device. It is useful for getting an overall feel
and impression of what the UI really looks

see more please visit: https://homeofbook.com

like. The blueprint view shows you the UI in
skeleton form. This makes it quicker and
easier to work with when you are positioning
things. You can view both at the same time
but this is mostly a waste of screen space.
Some users prefer the blueprint view because
it seems to be light weight others prefer the
design view because it is complete. Use
whichever you find workable but there is no
doubt that the blueprint view is faster and
suffers from less lag as you try to position
components.
Next click on the Button in the palette and
drag it onto the layout.

Notice the way the layout information
changes as you move the button around the
design surface:

It is important to realize that this positioning
information is only to help you locate UI
components relative to the existing

see more please visit: https://homeofbook.com

layout.With the new constraint layout where
you drop a component has no effect on where
is will show when the app is run.In fact if you
simply drop a UI component on the design
surface without applying any constraints then
when you run the app the component will
drift up to the top left-hand corner.In fact
things are slightly more complicated because
there is a facility that will automatically add
constraints when you drop the component
that realizes the alignments shown at the
moment you drop.However this can be turned
off as we will see.The key thing to realize is
that the alignments displayed are not
constraints.
Using the constraint layout the only thing that
affects where a component is displayed are
the constraints you apply.
So how do you apply a constraint?
You can have the Layout Editor suggest them
for you automatically or you can apply them
manually.
Automatic constraints are the easiest to use
and there are two ways to get the editor to
apply constraints dynamically:

see more please visit: https://homeofbook.com

1. Autoconnect mode
2. Infer Constraints

They do slightly different things and you
need to learn to make them work together.

The Autoconnect mode seems the most useful
when you first meet it but in practice it can be
confusing and error prone.However, it is
worth trying out. To turn Autoconnect on
simply click the Autoconnect icon on at the
top of the Layout Editor:

With Autoconnect on,when you place a
component on the design surface the editor
attempts to work out suitable constraints
based on where you drop the component. If it
fails to apply any constraints then it will try
again if you drag the component to another
location. It will only apply constraints to
satisfy the alignments that are indicated in the
Layout Editor. If you drop a component at an
arbitrary point on the screen with no
alignments indicated then no constraints will

see more please visit: https://homeofbook.com

be applied.
Once it has applied constraints, these are not
altered if you modify the component. For
example if you drop a component in the
middle of the screen then constraints are
applied to place the component 50% of the
way down the screen and 50% from the left.
If you then move the component the
percentages are changed to position it but the
actual constraint use wont change to anything
more appropriate if you move it to say the top
left hand corner. Once a constraint has been
applied its type will not change. The Infer
Constraints option is actually easier to use
and reasonably effective. All you have to do
is position all the components where you
want them and then click the Infer
Constraints button:

When you do this constraints will be
calculated based on where each component
is. This gives you more time to position the
components and you can always delete all the

see more please visit: https://homeofbook.com

constraints and click Infer Constraints again
to recompute them. Only constraints that are
necessary to fix the position of a component
are added – existing constraints are not
modified.This means you can use Infer
Constraints to make sure that your layout has
enough constraints to make it work– if none
are added it was OK.

Also notice that once Infer Constraints has
added a constraint the type of constraint wont
change if you drag the component.

A good strategy is to switch off Autoconnect
and use Infer Constraints every time you
place a new component on the design surface.
This allows you to build up a layout one
component at a time and check each new set
of constraints. You can then modify the
newly added constraints and move on to the
next component.
Where things get difficult is when you have a
multi component layout and need to make
radical changes. Often it is easier in this case
to delete all of the constraints using the Clear
All Constraints icon, and start again:

see more please visit: https://homeofbook.com

For a component that has been placed on its
own close to the top and lefthand edge of the
screen, constraints will be added that fix its
distance from the left and top:

From now on when the button is displayed it
will position itself at 36 from the left and 33
from the top.These constraints are applied no
matter what the size of the physical screen is.
This is the sense in which they are constraints
rather than absolute positioning.

It is worth knowing that the actually
positioning is achieved by setting the button’s
margin properties to 36 and 33. The
constraint layout may be the most
sophisticated of the layout components but it
positions other components using properties
that have been in use from the start of

see more please visit: https://homeofbook.com

Android.

You can see that things aren't quite as simple
as positioning relative to the edge of the
screen if you place a second button on the
surface and move it closetothe
first.NowifyouclicktheInferConstraintsbuttontheconstraints
thatareappliedaretakenrelative
tothefirstbutton:

You can see that in this case the second
button is positioned 88 from the left edge of
the first button and 49 below it. Once again
these constraints will be obeyed no matter
how large or small the physical screen the UI
is displayed on.What is more if you move the
first button the second button will keep its
position relative to the first. In fact if you
click and drag the first button, the second will
move with it.
If you play with the positioning in the Layout

see more please visit: https://homeofbook.com

Editor you will quickly get the idea.
The big problem with inferring constraints is
that the system sometimes gets it wrong.
Rather than let the Layout Editor infer
constraints incorrectly you can place them
manually. All you have to do is drag a line
from the constraint circles on the component
to the edge you want to use as a reference
point.
For example to position the button relative to
the right side of the screen simply drag the
circle on the right of the button to the right
side of the screen and then move the button
where you want it:

There are quite a few different types of
constraint that you can apply and we will go
into these in detail in Chapter 5 where we
examine layouts in depth. For the moment
this almost all you need to know.
Constraints can be applied automatically or
manually and they often set the distance from

see more please visit: https://homeofbook.com

some point on the component to a point on
some other component.
For example, if you want to place a
component relative to another then simply
drag the constraint point on the first to an
edge of the second. In the case shown below
manual constraints have been applied because
constraint inference would have placed
constraints on the left-hand edge of the
screen:

It is also worth knowing at this early stage
that the Attributes window can help you in a
number of ways. The first is that it has a
diagram that shows you the currently applied
constraints, and lets you modify them and set
distances exactly:

see more please visit: https://homeofbook.com

If you click on one of the constraint lines then
you can enter a value for the distance. You
can also click on the dot and delete the
constraint completely or on the + and add a
constraint.

As you might guess, there are attributes
which let you set the location and margins for
each position using the editor.
To see all of the attributes you have to click
on the View all attributes icon at the top right
of the Attributes window– the double arrow.
The attributes listed in the window are not a
simple representation of the properties that
you might set in code to achieve the same
results.They are organized and simplified to
make using the Layout Editor easier. For
example, if you look in the fully expanded
Attributes window you will see:
Layout

Top

which gives the distance from the top edge
and

Contraints
top_toTopOf

see more please visit: https://homeofbook.com

which specifies the object that the positioning
is
relative to. If you look in the XML file you
will see:

app:layout_constraintTop_toTopOf=“parent”
android:layout_marginTop=“348dp”

All layout attributes start with layout_name
where the name gives the positioning
affected. The mapping from the Attributes
window to the XML properties is fairly
obvious.
It is also worth understanding that in allowing
you to set the position of a component by
simply dragging it to the location you want,
the Layout Editor is working out how to set
multiple properties correctly.In the example
above it sets the top_toTopOf and MarginTop
attributes.You could do this manually to get
the same effect but the Layout Editor does it
simply from where you have positioned a
component.
This is why it is easier to let the Layout
Editor set the attributes for you. The ability to
set which other component to position against
i.e. which component to set the position

see more please visit: https://homeofbook.com

relative to means you can build sets of
components all aligned to one that is aligned
to the container, so that they all move
together as a group.
You can also set components to align with the
left and right side of the screen and allow for
rotation from portrait to landscape. You can
also set constraints which divide the available
space up by percentages – more of this in
Chapter 5.

The constraint layout is the preferred layout
component.The reason is that it is fast and
efficient compared to the usual alternative of
putting one layout inside another.Unless you
have a good reason not to, it is the one to use.

However, all this said it is very easy to get
into a complete mess with the layout in the
Layout Editor. If components go missing then
chances are they are on top of each other.The
easiest way to sort this problem out is to go to
the Attributes window and manually reset one
of the positioning properties.

It is helpful to notice the following:

see more please visit: https://homeofbook.com

☐ Use positioning relative to another
component if it makes logical sense. That is if
you have a text entry component then it make
sense to position its Accept Button relative to
its right-hand side.

☐ If you position everything relative to the
container parent then you effectively have an
absolute layout.

☐ If the screen size changes then it is
possible that components will overlap one
another if there isn’t enough space. Always
make sure your layouts have plenty of
unnecessary space.

☐ A good strategy when working with a
group of components is to pick one that you
position relative to the container, then
position all other components relative to it to
ensure that you can move the group and keep
alignments.

☐ Remember that some components can
change their size as well as location and this
can modify the position of components

see more please visit: https://homeofbook.com

positioned relative to them.

The Constraint Layout component is used by
default but you can change this for any of the
other layout components– Relative, Linear,
Table, Grid and Frame. There are also other
container components which can be used in
place of these standard layout components.

One thing worth knowing at this early stage is
that components have layout properties that
are provided by their container,so the set of
properties that we have looked at in
connection with the Constraint layout
component are unique to it. That is if you use
another Layout then you have to learn its
layout properties from scratch.

Again this is another topic we have to return
to.

Sizing
In comparison to positioning, sizing a
component is almost trivial. All components

see more please visit: https://homeofbook.com

have a Height and Width property and these
correspond to their drawn height and width
when the component is actually rendered on
the screen.
You may have noticed that there are what
look like sizing handles in the corners of the
components that you place in the Layout
Editor. If you drag any of these, the
component will change its size. However, the
components content will not be resized. All
that happens is that the content has some
space around it.If the content gets bigger or
smaller the component stays the same size.If
the content it too big then it won’t fit in the
component.
You can see the space is fixed in the
Attributes window. The lines shown
insidethecomponentrelatetothesizeofthecomponentanditsrelationto
its content. Straight lines indicate a fixed size:

An alternative to fixed size components is to

see more please visit: https://homeofbook.com

allow them to automatically resize to fit or
wrap their contents. To set this all you have
to do is click on the inner straight lines which
change to <<< to suggest springs which allow
the component to change its size:

The third option is Match Constraints which
lets thecomponent change it size to fill the
availablespace.

This auto-sizing behavior is set by the
layout_width and layout_height properties.
You can modify this by typing in an exact
size e.g. 100dp into the value box next to the
property.

Also notice that you can set a maximum and
a minimum size for most components.

see more please visit: https://homeofbook.com

Setting a maximum will result in the content
being truncated if it doesn’t fit. Setting a
minimum is often the best plan because then
the component will increase in size when
necessary.

The Component Tree
If you look to the bottom left corner of
Android Studio in Design mode you will see
a window called Component Tree. This is
almost self explanatory and hardly needs
explanation other than to draw your attention
to it.Notice that you can see the tree structure
of the layout starting at the Layout container.
You can see that the default layout is
ConstraintLayout and you can see all of the
other components correctly nested within
their parent containers:
Notice that you can select and delete layout
elements directly in the tree. This is useful
when you have a complex layout that has
gone so wrong that you are finding it hard to
select components reliably. You can also

see more please visit: https://homeofbook.com

move elements around in the tree to change
the way that they are nested.

A Simple Button
Example – Baseline
Alignment
As a simple demonstration let ’s first place a
Button on the Layout Editor and use the Infer
Constraints button to apply some constraints.
If you find it difficult get a rough position
and then enter the exact margins then always
remember that you can move to the Attributes
window and enter them directly.
Next place a TextView widget on the Layout
Editor.
In this case the alignment we want is for the
text to be on the same line as the text in the
Button. This is a baseline alignment and one
of the more sophisticated alignments but if
you have the Layout Editor zoomed so that
you can see the full area of the screen the

see more please visit: https://homeofbook.com

chances are all you will be able to do is align
to the top or bottom of the Button.
If you look at the TextView’s representation
in the Layout Editor you will see that there
are two small icons below it. The first
removes all of the constraints from the
component, and the second makes the text
baseline, a small elliptical box, appear inside
it:
This represents the text in the TextView and
you can use it to set up a baseline constraint.

All you have to do is select the TextView and
hover the cursor over the elliptical box until
is highlighted. Next drag from the elliptical
box to the baseline of the text in the button,
or any component that you want to align the
baseline with:

That ’s all you have to do.After this the text
in the button and the text in the TextView
will share a common baseline.If you move

see more please visit: https://homeofbook.com

the Button then the TextView will move with
it.If you want to remove the baseline
alignment then all you have to do is select the
TextView, hover over the elliptical box, and
click when the remove baseline constraint
appears.

Orientation and
Resolution
One of the biggest challenges in creating apps
for Android is allowing for the range of
screen sizes and orientations. Mobile app
development is distinctly different from
desktop development because of this need to
deal with differing screen sizes. Even when
your app is running on a fixed device, the
user can still turn it though 90 degrees and
change the screen dimensions in a moment
and then turn it back again. So your app has
to respond to these changes. Fortunately
Android makes is easier for you by providing
facilities that specifically deal with resolution

see more please visit: https://homeofbook.com

and orientation changes, but you need to
come to terms with this situation as early as
possible in your progress to master Android
programming.

Android Studio has lots of tools to help with
the problem of variable layout. For example,
it lets you see your layout in a range of
devices, orientations and resolutions. This
makes it so much easier.

We can test our layout in landscape mode
simply by selecting the Landscape option:
The relative positions that you set in portrait
mode are applied in landscape mode without
modification and so it is important that you
work on their specification so that the UI
looks good in either orientation. If this isn’t
possible then you can provide a separate
layout for each orientation. You can also see
what your UI looks like on the range of
supported screen sizes by selecting from the
list of devices that appears when you click on
the Device In Editor button:
For simple layouts this is probably enough
but Android has more up its sleeve to help

see more please visit: https://homeofbook.com

you work with different sized screens. In
particular you can make use of“fragments”
and create a separate layout for each screen
orientation and resolution. Fragments are
advanced and the subject of a separate
book,Android Programming: Mastering
Fragments & Dialogs.On the other hand,
using different layouts for each orientation
and resolution is fundamental to Android UI
design and you need to at least know it exists
at this early stage.
The idea is quite simple– provide a layout
resource for each orientation and resolution
you want to support. The system will
automatically select the resource layout
needed when the app is run on a real device.
How this works is simple, but Android Studio
has some helpful features that shield you
from the underlying implementation. It is a
good idea to first discover how it works and
then move on to see how Android Studio
does it for you.
If you create a new layout file called
activity_main.xml, i.e. exactly the same name
as the portrait layout file you have already
created, but in the folder

see more please visit: https://homeofbook.com

format land this will be utilized consequently
when the client pivots the gadget into scene
mode. That is, the design document utilized
in any circumstance is dictated by the name
of the envelope it is put away in.With this
new design which applies just to a scene
direction you would now be able to make a
format that may be utilized in this orientation.
What happens in general is that when your
app starts the system picks the best available
layout file for the screen according to what
has been stored in
theresourcefolders,i.e.layoutforportraitandlayout-
landforlandscape.. When the gadget is
pivoted the framework restarts your
application and burdens the best accessible
design. In the event that you just have a
picture format then it is utilized for all
directions, yet assuming you additionally
have a scene design document then it will be
utilized for scene mode.
What has recently been portrayed is by and
large what occurs.To recap, there are
organizers for every goal and direction and
you can make different forms of format assets
all with a similar name. The framework

see more please visit: https://homeofbook.com

consequently picks the organizer to use to
stack the design fitting to the equipment at
runtime.
Android Studio, be that as it may, attempts to
introduce this to you in a less complex
manner. The undertaking view conceals the
way that various organizers are utilized and
essentially shows you the various adaptations
of the asset records with a qualifier affixed -
(land) for a scene document etc. Let’s
perceive how this works.
To add a scene format to the button and
message design given above just utilize the
Orientation in Editor button:

Initially the picture design is utilized as the
layout for the scene format. Ensure you are
altering the content_main.xml document
before you make the scene format dependent
on it. This guarantees that this is the
document that is utilized as the layout for the

see more please visit: https://homeofbook.com

scene form of the file. The scene variant of
the record will contain all of the UI parts that
the format record does. This implies that your
code can collaborate with it in the standard
manner without realizing that it is working
with an alternate design. All the code thinks
often about is that there is a button or there is
a textView– not where they are put for sure
direction is in use. If you analyze the Project
window you will see the new design
document listed:

You can see that there are currently two
content_main.xml records and one has (land)
added later its name. As currently clarified
this is an improvement that Android Studio
offers you.

If you change to the Project Files view you
will see that truth be told the new format
asset is in another registry, design land:

see more please visit: https://homeofbook.com

Android Studio ’s view is more
straightforward, however when you really
want to realize where records are truly put
away this view is useful.
At first the new scene design is as old as
picture design, yet you can alter it to make it
more reasonable for the direction. For
instance, we should put the text under the
button in scene mode:

Now assuming you run the application
utilizing the test system you will at first see
the picture screen, however assuming that
you turn the test system to scene mode
utilizing the menu to one side, you will see a
delay where the representation format is
apparent and afterward it will change to the
scene layout.
If you view the application on a scope of

see more please visit: https://homeofbook.com

gadgets you can pivot to scene and see your
custom scene layout.
Overall the best arrangement is to make a
total picture design and produce a scene
format as late as conceivable in the turn of
events so you don’t need to rehash UI tweaks.
Also notice that the auto-exchanging of
designs causes a possible issue. At the point
when the format is exchanged your
application is restarted and this implies that it
can lose its present status. It is as though your
application has quite recently been begun by
the user.
To take care of this issue we want to
investigate the application lifecycle and find
how to safeguard state, which is shrouded in
Chapter 13.

You can likewise utilize similar way to deal
with supporting distinctive screen goals. The
thought is something similar– various format
XML documents are given, one for every
goal, and the framework consequently picks
which one to utilize. This is somewhat more
convoluted than managing direction since
you may well need to give diverse goal

see more please visit: https://homeofbook.com

pictures to make the design look great.
Favoring this later we have taken a gander at
assets and asset management.
This is only our first glance at a specific part
of application improvement that makes
Android more confounded than producing for
a decent screen size and it turns out not to be
so exceptionally troublesome as it would first
appear.

A First App– Simple
Calculator
To act as an illustration of building a basic
application utilizing the ConstraintLayout and
the Layout Editor, how about we fabricate a
Calculator App. A portion of the procedures
utilized in this application are a little past
what we have covered up to this point
however you ought to have the option to
follow and the time has come to show what
more than a solitary button application looks
like.

see more please visit: https://homeofbook.com

This is an exceptionally straightforward mini-
computer - everything it does is structure a
running total. It has only ten numeric buttons
and a showcase. It takes the qualities on
every one of the buttons and adds them to a
running aggregate.There are no administrator
buttons,add,deduct or clear
– however you could add them to expand its
functionality.

Start another Basic Activity project called
ICalc or anything you desire to call it.
Acknowledge all of the defaults.

The rule of activity is that we will set up a
framework of ten buttons. Set each button to
0 through 9 as a text name. We are then going
to allot similar onClick overseer to every one
of the buttons. All it will do is recover the
text inscription appearing on the
button,convert it to a whole number,add it to
the running total, and afterward store it back
in the TextView in the wake of changing over
it back to a String.
Put essentially, when a button is tapped the
occasion overseer is called which recovers

see more please visit: https://homeofbook.com

the button’s name as a digit and adds it to the
running all out on display.

Code

So the code is decently easy.
We really want a private property to keep the
running all out in: hidden var complete = 0

Next we want an onButtonClick work which
will be utilized to deal with the onClick
occasion for the buttons in general.Allude
back to Chapter 2 assuming you don’t be
aware of straightforward occasion handling.

The button that the client clicks is passed as a
View object as the main contention to the
capacity and we can utilize this to get its text
caption: fun

onButtonClick
(v: View) { val
button = v as
Button
val bText = button.text.toString()

Now that we have the button ’s subtitle, 0, 1,
2, etc, we can change it over to a number and
add it to the running total:

see more please visit: https://homeofbook.com

val esteem =
bText.toInt()
absolute += value

Finally we set the TextView’s text property
to the all out changed over to a String:
textView.text= total.toString()
}

The total occasion overseer is:
private var complete = 0

fun
onButtonClick
(v: View){ val
button=v as
Button
val
bText=button.text.toString()
val value=bText.toInt()
total+=value
textView.text= total.toString()

}

Put this code inside the MainActivity class as
one of its strategies, for instance right toward
the end not long before the last shutting }.
When you enter this code you will see a
considerable lot of the classes and techniques
in red:

see more please visit: https://homeofbook.com

This is on the grounds that they should be
imported to be utilized by the task. You can
do this physically, adding the essential import
articulations toward the beginning of the
record, however it is a lot more
straightforward to put the cursor into every
last one of the images in red and press
Alt+Enter and select Import Class if
fundamental. This ought to be turning out to
be natural by now.
Notice that the blunder hailed in textView
can’t be cleared– it is a genuine mistake. We
haven’t at this point characterized the UI and
textView doesn’t exist. It will once we make
the UI, so for the second overlook the error.

Layout

Now we direct our concentration toward the
design. Open the format document, erase the
default text and spot a solitary button on the
plan surface at the upper right of the screen
with a little space. We want to alter its text
characteristic and we can utilize an easy route
to get to it. Assuming that you double tap on

see more please visit: https://homeofbook.com

it you will be moved to the text property
window where you can enter 7 as its text
attribute.
While in the Attributes window observe the
onClick quality. Set this to onButtonClick,
the occasion overseer you have only written:

To make a network of buttons you need to
rehash this interaction nine additional
occasions. You could do this by hauling each
button onto the plan surface and physically
set the requirements expected to find every
one comparative with the buttons previously
positioned. Notwithstanding, we can utilize
the one Button we have as of now made to
make the rest utilizing duplicate and paste.
Select the button in the Component Tree and
utilize the Copy order and afterward glue two
additional Buttons onto the plan surface. The
duplicates will be put on top of the main
Button so drag them to shape a harsh line of
three Buttons. Try not to stress at this stage
over definite situating, we just need to do this

see more please visit: https://homeofbook.com

later the requirements are set up. Change the
text property of each button to understand 7,
8 and 9 respectively:

If you attempt to utilize Infer Constraints you
will find that it works yet the imperatives
applied are not really as consistent as you
may want. For this situation the requirements
are sensible however notice that the upward
place of the line is set by the center button
and the even situation by the first button:

There are numerous ways of setting the
limitations yet it is helpful to have the option
to situate the whole cluster of buttons
utilizing the upper left-hand button. So
position it with imperatives to the top and left
of the screen. The second button in its
column can have a limitation set to situate it

see more please visit: https://homeofbook.com

to the right of the principal fasten and adjust
its base to the lower part of the first button.
The third button in the line has similar
requirements as the button on its left:

Now is additionally a fun opportunity to
situate the buttons precisely either by hauling
or by utilizing the Attributes window.
Continue this example with the following
line, don’t attempt to reorder a
whole line on the grounds that the limitations
become convoluted. Reorder
three additional buttons. Apply requirements
concerning the main column,
however for this situation position the
primary button in the line comparative
with the upper left button:

Change the text in the buttons to 4, 5 and 6 as

see more please visit: https://homeofbook.com

shown.
The last line is something similar yet its first
button is situated comparative with the
principal button in the subsequent line. At
long last add the solitary zero button and
position it comparative with the principal
button in the third row:

Make sure that you change the text of the last
four buttons to 1, 2, 3 and 0 respectively.
Check the limitations cautiously as it is
extremely simple to commit an error.
The rule is that the primary button in each
line is situated upward by the
button above and different buttons in the line
are situated comparative with
the first button.
This is a ton of work!
Nowwe need to make thegrid moreregular.
Select each buttonin turn and

see more please visit: https://homeofbook.com

make sure its caption is correct and that it has
the onclick event handler set.
Thenforeachbuttonset thehorizontal margins
usingtheAttributes window
to 16 horizontally and to 0 vertically. The
only exception to this is the first

button in each row that needs to be set to 0
horizontally and 16 vertically - if you think
about it then it should make logical and fairly
simple sense:

Now you have a matrix of buttons accurately
positioned.
Try to ensure that each Button you add is
comparative with one of

different Buttons and ensure that you have set
them all to a similar onClick overseer. You
can make sure that you have done this
effectively by hauling one of the Buttons and

see more please visit: https://homeofbook.com

check whether they all follow! Assuming a
couple don’t then take a stab at repositioning
them comparative with one of different
Buttons. Assuming you find any situating
troublesome zoom in.
If you get into a wreck erase every one of the
limitations and start over.

To make this look more like a keypad select
the 0 key and size it so it possesses a twofold
width.
Finally add a TextView at the top. You can
situate it comparative with the top line and
the 7 key and afterward size it so it traverses
the total arrangement of buttons. To do this
you should erase the limitations on the 7 key
and set its top comparative with the lower
part of the TextView and its left to agree with
the left of the TextView.

Don't forget to position the TextView relative
to the top of the screen:

see more please visit: https://homeofbook.com

Now you ought to have the option to move
the whole square when you move simply the
TextView to a new location.
It is great to realize that you can fix an
activity by utilizing Ctrl-Z. In the event that
you find the Layout Editor too hard to even
consider working with to make this format,
and it tends to be troublesome, you may like
to set the design credits utilizing the
Attributes window.
Select the TextView and utilize the Attributes
window to change the text dimension to 18p
or more – you will think that it is under the
textAppearance field.
Finally run the program in the usual way and
you will be please to discover your first app
does actually calculate things!

see more please visit: https://homeofbook.com

Try pivoting the emulator to see what it
resembles in scene mode. Not terrible yet as
cautioned, as the application restarts you lose
any computation you were performing since
the application is restarted when the direction
changes.
If you can, give it a shot on a genuine
Android gadget. This allows you to discover
what it truly feels like. Likewise examine
what the format resembles on a scope of
screens and orientations.
This isn’t a very remarkable adding machine,
yet you could cause it into a great one.

☐ Right to adjust the text in the display
☐ Add a + and– button and execute the
action
☐ Allow the client to enter multi-digit
numbers

see more please visit: https://homeofbook.com

☐ Add a decimal point key
☐ Add * and/keys
☐ Add an unmistakable key

Summary
☐ You can make the XML design document
manually, however utilizing the Layout
Editor is easier.
☐ It is as yet helpful to know how the XML
record functions so you can alter it when the
Layout Editor lets you down in some way. ☐
The Layout Editor alters the manner in which
parts examine the Layout mode by changing
a part’s attributes.
☐ How you position a part relies upon the
Layout you are using. ☐ ConstraintLayout
allows you to situate parts comparative with
one another or to the container.
☐ The Layout Editor might change
numerous qualities to situate the part where
you need it.
☐ Use the Component Tree to choose parts
that are hard to choose in the Layout Editor.

see more please visit: https://homeofbook.com

☐ You can utilize the Attributes window to
choose and straightforwardly set any
attribute.
☐ If you see as situating or measuring
troublesome in the Layout Editor take a stab
at zooming in. ☐ You can utilize Android
Studio to see what your application resembles
on different screen sizes and orientations.

☐ Different directions and goals can be
obliged by making extra design records all
with a similar name. The framework will pick
which one to use at runtime.

☐ You can reorder parts in the Layout Editor
to rapidly develop rehashed UI designs.
☐ A solitary occasion controller can be
appended to numerous components.

Chapter 4
Android Events
Working with Android Studio makes

see more please visit: https://homeofbook.com

assembling the UI simple with an intelligent
supervisor, yet you actually need to discover
how to deal with the things it isn’t exactly so
great at. We currently need to discover how
to function with any occasion, not simply
onClick. Despite the fact that most controls
can be utilized effectively utilizing only the
onClick occasion, there are different kinds of
occasion that can’t be dealt with basically by
setting an onEvent property in the Attribute
Window.
In this section we examine profundity at
Android occasion taking care of. As in the
past, the accentuation will be on utilizing
Android Studio and the Layout Editor to get
as a large part of the work done as possible.
Fortunately Kotlin’s help for passing
capacities as boundaries makes it all a lot
simpler. In any case, this doesn’t imply that
you can totally overlook the way that Java
handles the issue. Kotlin needs to work with
libraries written in Java and depend in transit
of executing occasion controllers.You don’t
need to dive excessively deep,however you
do have to know how Kotlin utilizes the Java
object-arranged occasion mechanism.

see more please visit: https://homeofbook.com

How Java Passes
Functions
If you would rather not know how things
work you can avoid this part until you stall
out with an occasion overseer and afterward
return and read it.
Events in Java are slightly more complicated
than other languages because originally
everything in Java was an object and the only
way a function can exist is as a method, i.e.
as part of an object. When you need to set up
an event handler you need to specify the
function to be called when the event happens.
Youcan’tpass a function as a parameter to
another function as Java
doesn’tsupportfunctiontypes.
The solution is to definean Interface that has
one abstract method–a SAM or Single
Abstract Method. The abstract method is the
function that will be used as the event
handler. To pass it you have to create an
instance of the Interface,i.e. an object that has

see more please visit: https://homeofbook.com

the method defined, and pass it.

An interface resembles a class yet it basically
characterizes the capacities that a class
needs to help.Assuming a class acquires or
executes an interface then you need to
compose code for each capacity
characterized in the interface.You can
consider an interface a determination for a
rundown of capacities you need to write to
execute the interface.Both Kotlin and Java
support interfaces.
It merits saying at this beginning phase that
not all occasion overseers in the Android
SDK are carried out as SAMs.
Some are classes or interfaces that have more
than one unique technique. That is they are
objects that wrap up a bunch of related
occasions. Both Java and Kotlin have
furnished simpler methods of working with
SAMs, yet these don’t work when the item
being referred to has numerous theoretical
strategies. At the point when you experience
the present circumstance you need to make a
full case of the class being referred to–
fortunately there are simple methods of doing

see more please visit: https://homeofbook.com

this as well.

Android Events
How occasions are executed in Android
observe a guideline pattern. Any item that can
produce an occasion will have a
seteventListener technique which can be
utilized to join an onEventListener item to the
occasion overseer list.

The name of the strategy and the article
incorporates the name of the occasion. So
there is a setOnClickListener strategy which
takes an OnClickListener object as its just
parameter.

Notice that this naming framework is
altogether show and not piece of the Java
language.
The OnEventListener items are completely
gotten from an interface of a similar name
which characterizes a solitary conceptual
technique which goes about as the occasion
handler.

see more please visit: https://homeofbook.com

For instance, OnClickListener is an interface
which has the single strategy onClick(View
v) defined.
To utilize it as an occasion overseer you need
to make an example that carries out onClick
and afterward add it to the occasion controller
list utilizing setOnClickListener.
In Java this is a straightforward yet drawn-out
process, assuming you utilize the central
method of carrying out an occasion
controller, that includes a ton of standard
code. First you would need to make another
class that executed the Interface. Then you
would have to create a new instance of this
class and pass it to setOnClickListener.

The Kotlin Object
In Kotlin you don ’t need to initially make a
class and afterward make a case, you can go
straightforwardly to the new article you
require utilizing the capacity to pronounce
objects directly.
You can announce an item utilizing very

see more please visit: https://homeofbook.com

much like language structure to proclaiming a
class. For example:
object myObject { fun

myMethod() {
. ..
}
}

makes an article occasion called myObject
with a solitary strategy. Notice that this gives
you an article without characterizing a class.
Objects proclaimed in this manner can carry
out an interface similarly as a Class. object
myObject:myInterface {

. ..
}

So to make a case that carries out
OnClickListener we should simply begin the
affirmation of the article with:
object MyOnClick:View.OnClickListener{
}

Android Studio will carry out the techniques
characterized in the interface for you. You
should simply put the cursor in the red line
that flags that you haven’t executed the
interface and afterward press Alt and Enter.
Select Implement individuals from the menu

see more please visit: https://homeofbook.com

that appears:

The created
code is not difficult to understand:
object MyOnClick: View.OnClickListener { abrogate fun onClick(p0:
View?) {
TODO(“not implemented”)
}

}

The question mark toward the finish of View
is the main thing that may confound you.
This proclaims p0 to be a nullable kind. Java
doesn’t utilize Kotlin’s non-nullable sorts and
leads and thus anything passed into a Kotlin
work that is a Java object must be treated as a
nullable kind– subsequently the question
mark. It is great practice not to change
nullable sorts over to non-nullable sorts
without making sure that it isn’t really
invalid– see Chapter 17 for more information.
For this situation it is basically impossible
that that p0 can be invalid so we can project
it“dangerously” to Button which is non-
nullable:

see more please visit: https://homeofbook.com

object MyOnClick:View.OnClickListener{ supersede fun onClick(v:

View?) {
(v as Button).text = “You Clicked Me”
}
}

If, under any condition v is invalid, an
exemption will be thrown. Now that we have
our occasion of OnClickListener we can set it
as an occasion overseer for the Button b:
b.setOnClickListener(MyOnClick)

You can likewise utilize an item articulation
to make and pass the article in one step.
An item articulation is a mysterious article
that you make in the typical manner, yet
without providing a name
object {

fun myMethod() {
. ..
}
}

An item made in this manner can carry out an
interface or acquire from a class:
object:myInterface{
}

So you can compose the past model as:
b.s etOnClickListener(object: View.OnClickListener { abrogate fun

onClick(p0: View?) {
(p0 as Button).text = “You Clicked Me”

see more please visit: https://homeofbook.com

}
})

This is the easiest method of doing the work,
however now and then it is valuable to
characterize the article so it very well may be
reused. There is likewise an inconspicuous
contrast in the thing factors are open
contingent upon where the article is made–
see the part on conclusion later in this
chapter.

This technique for making occasion overseers
works for an occasion. All you need to do is:

1. make an example of the OnEventListener
object and give executions to all of the
theoretical methods.
2. Use the setOnEventListener capacity to
add the OnEventListener you have recently
made to the rundown of occasion handlers. If
there are numerous occasion overseers
characterized in the OnEventListener you
essentially carry out them all and pass the
whole object.
In many cases, nonetheless, there is just a
solitary dynamic technique (SAM) and for

see more please visit: https://homeofbook.com

this situation there are considerably easier
methods of accomplishing the equivalent
result.

Passing Functions In
Kotlin
We have examined the fundamental way of
passing an object that hosts event handlers as
methods, but there are three different,
althoughrelated, ways of passing an event
handler when the event object is a SAM, i.e.
only defines a single event handler:

Function References
Anonymous Functions
Lambda Expressions

Of the three, the lambda articulation is the
most usually utilized and encountered.
Notice that Kotlin gives alternate ways of
characterizing and work with capacities
including capacity types, augmentation work,

see more please visit: https://homeofbook.com

infix capacities and more.

Function References
Kotlin upholds capacities that don ’t have a
place with an article. Truth be told, the
adaptability of Kotlin’s way to deal with
capacities is one the purposes behind needing
to utilize it.
So in Kotlin it is entirely legitimate to write:
fun myFunction(){

…
}

outside of a class definition. Obviously, to
remain viable with Java this high level
capacity is truth be told a technique for a
class, yet one that is created by the compiler
to have a name that is gotten from the bundle
and the document name.

You can expressly set the name of the class
used to contain high level capacities with the
@file:JvmName(“class name”)

comment.Notice likewise that Kotlin allows

see more please visit: https://homeofbook.com

you to call the high level or bundle level
capacity without giving the class name.

That is:
myFunction()

is legal.
Kotlin additionally has a capacity reference
administrator :: which can be

utilized to pass practically any capacity as a
boundary in one more capacity or store a
reference to the capacity in a variable. This
makes it conceivable to utilize any capacity
as an occasion handler.

For instance, assuming you characterize the
capacity at the bundle level:

fun clickEvent(v: View?) {
(v as Button).text = “You
Clicked Me”

}

then, at that point, you can write:
b.setOnClickListener(::clickEvent)

If the capacity is characterized as a technique
inside a class you need to write:
b.setOnClickListener(this::clickEvent)

see more please visit: https://homeofbook.com

The most recent form of Kotlin will permit
you to drop the this for strategy references.

Notice that despite the fact that this looks as
though you are utilizing and passing a
reference to a capacity, what’s going on is
that the capacity is being changed over into
an occurrence of the SAM That is indicated
by the boundary’s sort. That is, it’s anything
but a reference to a capacity that is passed,
however an item built utilizing the capacity.
Each time you elapse the capacity, another
article is built from the capacity. More often
than not this doesn’t have any effect yet you
should know about it in the event that you are
utilizing the capacity reference administrator
to pass a capacity on different occasions.
Each time you use it another item carrying
out the SAM is made and this uses memory
quicker than you may expect.

Anonymous
Functions

see more please visit: https://homeofbook.com

An unknown capacity is actually what its
name recommends – a capacity with no name
characterized. You basically write:
fun(parameters){body of function} You can store a
reference to a mysterious capacity in a
variable of the right kind and pass it to
another capacity.For example:
b.setOnClickListener(fun(v: View?) {

(v as Button).text = “You Clicked Me” })

You don ’t need to utilize the reference
administrator on the grounds that the
compiler comprehends that you need to pass
the mysterious capacity. It changes the
mysterious capacity over to an occasion of
the SAM determined by the boundary’s sort.
You could save the mysterious capacity in a
variable and afterward pass the variable.
For example:
val clickEvent=fun(v: View?) {

(v as Button).text = “You Clicked Me” }
b.setOnClickListener(clickEvent)

It is hard to see any benefit of doing this,
nonetheless, other than assuming you are
utilizing a similar capacity more than once.

see more please visit: https://homeofbook.com

The Lambda
First, what is a lambda?

A lambda is a function that you can define
using special notation . According to this
perspective, you don’t actually require
lambda as

you can do all that you need to utilizing the
reference administrator and unknown
functions.
Indeed, a lambda is similar as an unknown
capacity that you can characterize all the
more without any problem. As the capacity
doesn’t have a name, it is an unknown
capacity and it can likewise be put away in a
reasonable variable and passed to another
function.

You characterize a lambda by providing
boundaries and some code: {parameter list - >code… }

For example:
{a:Int,b:Int - > a+b}

is a lambda that will add its two boundaries

see more please visit: https://homeofbook.com

together.

Note that a lambda can ’t have a return
articulation – the last worth that the lambda
figures is naturally returned. In the past
model the lambda consequently returns an Int
which is a+b.
A lambda acts like an articulation and you
can store a lambda in a variable:
var sum={a:Int,b:Int - > a+b}

You can utilize the lambda by calling it as a
function:
sum(1,2)

which returns 3.
There are a couple of disentanglements of the
lambda language structure that can make
them look baffling until you become
accustomed to them. If a lambda has no
boundaries then you can forget about them
and the bolt. So: {1+2}

is a lambda that profits 3.
At its most outrageous a lambda can
essentially return a value:
{0}

These principles can make lambda
articulations look exceptionally unusual in
your code and this may make it harder to

see more please visit: https://homeofbook.com

peruse. Try not to go for the briefest and most
minimized articulation ensure your code is
not difficult to understand.

Events Using
Lambdas
To characterize an occasion overseer for an
occasion you should simply to utilize the
SetEventListener technique with a lambda as
its boundary. The lambda is the occasion
dealing with function.

For example:

button.setOnClickListener({ view - >
(view as Button).text = “You Clicked Me”
})

sets the lambda:

{view - > (view as Button).text = “You Clicked Me”} as the
occasion overseer. Notice that you don’t need
to determine the sort of the boundary on the
grounds that the compiler can conclude it

see more please visit: https://homeofbook.com

from the kind of the boundary that the
setOnClickListener takes. There is one final
syntactic rearrangements. Assuming a
capacity

acknowledges a solitary capacity as its main
boundary you can overlook the parentheses:

b.s etOnClickListener {view->(view as Button).text =“You Clicked Me”}

This is the structure Android Studio utilizes
for any occasions it creates in layouts. Its
possibly advantage is that it looks more as
though the code of the occasion overseer is
essential for the strategy it is being
characterized in.
You can likewise store the lambda in a
variable and use it later, yet for this situation
the compiler can’t work out what the
boundary and return types are thus you need
to determine them.
For example:
val clickEvent=

{view:View - > (view as Button).text = “You Clicked Me”}
b.setOnClickListener(clickEvent)

Notice that, similarly as with different
techniques, the lambda is changed over to an

see more please visit: https://homeofbook.com

occurrence of the occasion object before it is
passed to the setOnEventListener method.

Lambdas are utilized for all Android Studio
produced occasion controllers and it is the
standard method of doing the work. Where
conceivable it is the strategy utilized in all
further models in this book.

Closure
Closure is one of those themes that sounds as
though it will be troublesome. Lambda
articulations are not the same as most
capacities in that they approach each of the
factors that have a place with the strategy that
they are proclaimed in.
The way that the lambda approaches the
factors in the encasing technique has the
abnormal outcome that you could compose
the occasion controller as:
val message=“You Clicked Me”

button.setOnClickListener {view - > button.text = message} This
might look odd however it works. Assuming
you don’t believe that it is odd then you

see more please visit: https://homeofbook.com

haven’t saw that the occasion overseer, the
lambda, will be executed when the Button is
clicked and this is probably going to be well
later the encasing strategy has gotten done
and every one of its factors not longer exist–
but the lambda can in any case utilize
message to set the Button’s text.
The framework will keep the worth of
message so the lambda can utilize it. This is
the pith of a conclusion – the protecting of
factors that have left extension so a lambda
can in any case get to them.
Unlike Java the factors caught by the Kotlin
conclusion don’t need to be final.
Notice that accessing message within the
lambda makes it look as if the lambda is
naturally still part of the code it is being
defined in and not a “detached”functional
entity that runs at some time in the distant
future– which is what it really is.

Now we come to an unobtrusive point.
The factors caught by a Kotlin conclusion are
divided among all elements that catch them.
That is, they are caught as references to the
variable. This possibly matters when more

see more please visit: https://homeofbook.com

than one lambda is in use.
For instance place two Buttons on the plan
surface and in the onCreate occasion
controller add:
var i=0

button.setOnClickListener {view - > button.text =
(++i).toString()} button2.setOnClickListener {view - > button2.text =
(++i).toString()}

Notice that the snap occasion overseer for
each button catches the variable I inside its
conclusion and both offer a similar variable.
If you click the first
buttonyouwillsee1asitscaptionandifyouthenclickthe
otherbuttonyou willsee2asitscaption.The
lambdas are sharing a solitary caught
variable.
Lambdas are by all account not the only
element that you can use to characterize a
capacity complete with a conclusion.
Neighborhood capacities passed by reference,
protests that carry out SAMs and unknown
capacities all have terminations that work
similarly. Work references don’t have
conclusion since they are characterized away
from where they are used.
For instance, utilizing a neighborhood named

see more please visit: https://homeofbook.com

function:
var i=0
fun eventHandler(v:View){

button.text = (++i).toString()
}
button.setOnClickListener(::eventHandler)

Notice that this doesn’t work for an overall
named capacity or technique. It must be a
neighborhood function.
Similarly for a mysterious function:
var i=0
button.setOnClickListener(fun (v:View){
button.text = (++i).toString() })

This works due to a similar
conclusion. For instance, utilizing an
object:

var i=0
button.setOnClickListener(object: View.OnClickListener { supersede fun
onClick(p0: View?) {
button.text = (++i).toString() }

})

the capacity characterized in the article
approaches I by means of a closure. When
you initially meet the possibility of a
conclusion it can appear to be exceptionally
peculiar and surprisingly superfluous.
Nonetheless, when a capacity is characterized

see more please visit: https://homeofbook.com

inside a strategy the technique frames its

neighborhood setting and it is extremely
regular that it ought to approach the nearby
factors that are in scope when it is defined.

Closure is helpful for occasion overseers yet
it is especially valuable when utilized with
callbacks provided to long running capacity.
The callback normally needs to deal with the
aftereffect of the long running capacity and
approaching the information that was current
when it was made is regular and useful.
There are risks,in any case,to depending on a
conclusion.Not all that was in scope at the
time the capacity was proclaimed can be
ensured to in any case exist. Assuming a
neighborhood variable is set to reference an
item then it will be remembered for the
conclusion and the variable will exist, yet
there is no assurance that the article it
referred to will in any case exist at the time
that occasion controller is executed.

Using Breakpoints

see more please visit: https://homeofbook.com

The most straightforward method for making
sure that the occasion overseer is called is to
embed a breakpoint on the primary line of the
onClick method.

Breakpoints are a basic investigating device
and you really want to figure out how to
utilize them as ahead of schedule as possible.
To put a breakpoint essentially click in
the“edge” close to the line of code. A red
mass appears:

Now when you run the program utilizing the
Debug symbol or the Run, Debug order the
program will stop when it arrives at any line
of code with a breakpoint set.

Once the program stops you
can see where it has reached in its execution
and you can analyze what is put away in each
of the factors in use:

see more please visit: https://homeofbook.com

You can likewise restart the program or step
through it – see the symbols at the highest
point of the investigate window. As you
venture through you will see the qualities in
the factors change. Any bug will be found at
the primary spot you observe an error
between what you hope to find and what you
really find.

Lambdas represent a specific issue for
breakpoints on the grounds that you
frequently just have a solitary line to work
with:
button.setOnClickListener {view - > button.text =
(++i).toString()}

If you attempt to set a breakpoint on this
Android Studio springs up a message that
allows you to choose where you need to set
the breakpoint – on the setOnClickListener or
the lambda:

see more please visit: https://homeofbook.com

There is significantly more to find out about
investigating however until further notice this
little acquaintance is enough with save you a
ton of time.

Modern Java Event
Handling
If you keep to Kotlin code then you presently
realize all you really want to regarding how
to characterize an occasion controller.
Notwithstanding, assuming you want to work
with existing Java code you will experience
various alternate methods of doing the job.
Java 8 presently has lambdas and these are
utilized to characterize occasion handlers.
Before Java 8 there were two fundamental
methods of making an occasion overseer.
One way was to get the Activity to carry out
the interface. This transformed the

see more please visit: https://homeofbook.com

Activity into an occasion taking care of
article and it needed to carry out the occasion
dealing with work as a strategy. The even
overseer was then set using:
setOnClickListener(this);

Which passes the Activity to the part’s
occasion controller list.When the even
happens the occasion taking care of capacity
inside the Activity is called.
Although utilizing the Activity as the
occasion taking care of item is experienced
the most well-known method of doing the
occupation is to utilize a nearby mysterious
class:
Button button= (Button)findViewById(R.id.button);
button.setOnClickListener(new View.OnClickListener() {

@Override
public void onClick(View view) { Button
b=(Button) view; b.setText(“you
clicked me”);
}
});

You can see that the OnClickListener object
is made in one stage and the onCLick
occasion controller characterized similarly as
utilizing a Kotlin object. Truth be told the
two are straightforwardly same and the Kotlin
object is gone along into a mysterious class.

see more please visit: https://homeofbook.com

Fortunately you possibly need to stress over
these things is assuming you stray from
Kotlin.

Summary
☐ In Java you can’t pass a capacity to set up
an occasion controller you need to pass an
item that contains the capacity as a method.

☐ Events are for the most part dealt with by
Single Abstract Method SAM interfaces. The
technique proclaimed in the SAM is the
capacity that does the occasion handling.

☐ For every occasion and each control that
can produce that occasion there is a SAM of
the structure onEventListener and the item
has a seteventListener strategy which can be
utilized to join the occasion handler.

☐ You can make a SAM in various ways the
most broad of which is to utilize a Kotlin
object. This can be utilized in any event,
when the occasion isn’t carried out as a SAM.

see more please visit: https://homeofbook.com

☐ There are three elective methods of
carrying out a SAM other than utilizing an
object:

1. Function References
2. Anonymous Functions
3. Lambda Expressions

☐ Function references can be utilized to pass
a bundle or nearby level capacity or a
method.
☐ A mysterious capacity works similarly
however you needn’t bother with the
reference operator.

☐ A lambda is a more limited method of
composing an unknown capacity and it is the
standard method of executing occasion
handlers.

☐ The last syntactic rearrangements is that
assuming the setListener work has a solitary
capacity boundary then you can drop the
parentheses.

☐ Local articles, neighborhood work

see more please visit: https://homeofbook.com

references, unknown capacities and lambda
are altogether likely to terminations which
make the factors that are available to them at
the hour of their statement open when they
are run.

☐ Breakpoints are the most effective way to
investigate your program and they become
fundamental when you begin to carry out a
few occasion controllers. At the point when
run in investigate mode a breakpoint will stop
your program so you can analyze the
substance of variables.

☐ If you can confine your regard for Kotlin
you can make occasion overseers utilizing
only items and lambdas. Assuming you really
want to comprehend Java code then there are
various alternate methods of doing the
occupation incorporating carrying out the
interface in the Activity and utilizing
mysterious neighborhood classes.

Chapter 5

see more please visit: https://homeofbook.com

Basic Controls
We have effectively utilized some UI controls
in past sections, yet presently we have found
how occasions work the time has come to
analyze how they work and how you can
change the way they look.

Basic Input Controls
The term control comes from the possibility
that the client “controls” your program
utilizing them. Gadget or part are additionally
terms that are utilized to mean exactly the
same thing. The Android people group
appears to be extremely messy about
terminology.
The fundamental info controls are:

Buttons
Text Fields
Checkboxes
Radio Buttons

see more please visit: https://homeofbook.com

Toggle Buttons
Switches

If you have utilized other UI structures a
considerable lot of these will be known to
you and you can presumably jump to simply
the ones that interest you.

TextView also has to be included in the full
list of basic controls, but unlike the Text
Field it cannot be modified by the user, i.e. it
is an output control only.
Starting right toward the start, we should
return to the Button in somewhat more detail.

Button Styles and
Properties
There are two essential sorts of button,
Button and ImageButton. The ImageButton is
similarly as the Button yet it has a src
(source) property which can be set to a
picture which will be shown as the button

see more please visit: https://homeofbook.com

symbol and it doesn’t show any text.

The primary credits that you work with on
account of a button are things like foundation,
which can be set to a shading or a realistic.
You can spend a long

time changing the manner in which buttons
yet examine, the principle the main
significant quality of a button is its onClick
overseer. A button is in your UI to be clicked.
If you place a Button on the plan surface you
can utilize the Attributes window to redo it.
There are two unmistakable ways you can
change the manner in which a control
looks.You can set a style or adjust an
attribute. Setting the style alters a bunch of
qualities to given standard qualities. You can
set a style and afterward change individual
ascribes to change it. Regularly when you
initially start work on a UI you will set
individual credits simply later to define a
cognizant style to be applied to the whole UI.
Set the foundation of the Button to dim dark
by tapping on the ellipsis at the right of the
attribute:

see more please visit: https://homeofbook.com

The Resources window that seems gives you
admittance to every one of the assets that
your program can utilize.Assets are a major
piece of programming in Android and we
cover them exhaustively in later chapters.

You could enter a shading for the foundation
straight by indicating the worth of RGB and
alternatively Alpha, its straightforwardness.
Utilizing an asset, notwithstanding, implies
that assuming you change the asset esteem
later on all of the UI parts that utilize it
change.

There are various kinds of asset you can
choose from, and there are assets
characterized by the task, the Android
framework and any Themes you may be
utilizing.Now and again you can’t see these

see more please visit: https://homeofbook.com

three classifications since they are ventured
into long lists:

For this situation you need to choose a
shading so select the Color tab and afterward
the android list. Look down and you will see
a bunch of predefined colors that you can
utilize. Find background_dark and select it:

Obviously, you currently can ’t see the text in
the Button. To change its shading look down
in the Attributes window until you can see
TextView. The Button is a composite article
and it has a TextView object within it that
shows the Button’s text. In the event that you
drop down the textAppearance menu you will
see textColor.

see more please visit: https://homeofbook.com

Simply choose an elective light tone to use:

If you presently place an ImageButton, found
lower in the range in Images, on the plan
surface, the Resources window opens
immediately. This is to permit you to choose
a “drawable”, or symbol, for the ImageButton
to show. Look down until you find
ic_menu_add.At the point when you select it
this turns into the src property for the button:

The outcome is
two fastens that look something like:

see more please visit: https://homeofbook.com

You can invest a lot of energy investigating
ways of utilizing a button ’s ascribes to style
it similarly as you need it to look.
To join a tick occasion overseer on the two
buttons you can essentially characterize a
capacity in the Activity and set the onClick
property on each button. You can track down
instances of utilizing buttons this way in prior
chapters.

Now that we know how to deal with
occasions utilizing lambdas it merits applying
this more modern method. As we need to
allot similar occasion overseer to each of the
three buttons we really want to make an
occurrence of OnClickListener utilizing a
lambda.

All you need to do is enter:
val myOnClickListener = { view: View? - >
val b = (view as Button)
b.text =“You
Clicked Me”

}

Notice that you currently need to supply the
kind of the boundary as the framework can’t
derive it. All that still needs to be done is to

see more please visit: https://homeofbook.com

set a case on each of the buttons:

button.setOnClickListener(myOnClickListener)
imageButton.setOnClickListener(myOnClickListener)

Now when you click on both of the buttons
myonClickListener is called.
Note that saving the lambda in a variable for
reuse isn’t more effective than replicating out
the lambda each time it is required– another
occurrence of onClickListener is made for
each Button. Its main benefit is that there is a
solitary capacity that you really want to
change and keep up with rather than two.
It is likewise important that, while a button
has no capacity in life other than to be
clicked, every one of different controls can
likewise react to an onClick occasion. That is
you can utilize anything as a button assuming
you need to.

All Attributes
If you have checked out any instance of
utilizing Buttons in the

see more please visit: https://homeofbook.com

documentation, or then again on the off
chance that you take a gander at marginally
more seasoned Android code, you might find
a few ascribes that you can’t get to utilizing
Android Studio. This is on the grounds that
the Attributes window just shows you the
most utilized traits. To see them all you really
want to tap as soon as possible bolt symbol at
the top or lower part of the window.

The huge issue with it is that you go from a
tiny subset to a mind-boggling list. The most
ideal way to manage this is to know what you
need to change and observe the specific name
of the characteristic that does the work. This
is simpler to say than to do much of the time.
For instance, assume you need to set a
symbol inside a standard text button so it
presentations to one side of the message that
the button contains. This gives off an
impression of being unimaginable assuming
you limit yourself to the qualities introduced

see more please visit: https://homeofbook.com

in the underlying property window.
If you look into the subtleties of the traits that
Button acquires you will find:

drawableLeft
drawableRight
drawableStart
drawableEnd
drawableBottom
drawableTop

which are not in the Attributes window list.
These allow you to display a drawable, i.e. a
graphic or icon,at the location specified
relative to the text. Once you know the name
of the characteristic you can think that it is in
the
rundown of all attributes:
Click on the ellipsis button close to it and
select a drawable of your decision to show
the realistic to one side of the text:

see more please visit: https://homeofbook.com

Text Fields
Text Fields are the manner in which you get
the client to enter some text for you to
process and as you can figure they structure a
significant piece of most UIs.
There are a great deal of Text Fields gave in
the Toolbox, however they all work similarly
varying just in the sort of info they anticipate
that the user should type. Throughout
creating applications you will experience the
greater part of them eventually,however you
truly just need to know how to utilize one of
them to see how they all work.
If you have utilized another UI Framework
then you will have experienced some type of
the Text Field previously, yet the Android
control is marginally divergent in that it by
and large offers the client a redid virtual
console alluded to as an IME (Input Method
Editor). You can construct your own IMEs,
however for the second how about we simply
utilize the ones gave by the system.
If you need the Android emulator to utilize

see more please visit: https://homeofbook.com

the IME that a genuine Android gadget would
utilize then you really want to deselect the
Hardware Keyboard Present choice when you
are making the AVD (Android Virtual
Device). Assuming the emulator utilizes the
host machine’s console you don’t see the
IME at all.

The main thing to clear up is that despite the
fact that there give off an impression of being
many sorts of Text Field controls in the
Toolbox,they are on the whole instances of
the EditText control with its inputType
property set to a specific value.
When you place one on the plan surface you
will see that it is of type EditText and in the
event that you look down to its inputType
property you can change the kind of info the
Text Field will handle.
When you utilize a specific inputType the
client is given a virtual console that is
reasonable for composing a value:

see more please visit: https://homeofbook.com

For instance assuming you select a numeric
kind you will give the client a worked on
IME that main shows numeric keys:

You likewise get an activity key at the base
right of the console that the client can press to
finish the activity - Send on account of a
SMS message, for instance. To choose the
activity button for a specific console you
should utilize the All Attributes view and
select a setting for the imeOptions property:
For instance setting it to actionSend powers a
Send button, the green paper dart button, to
be displayed:

see more please visit: https://homeofbook.com

There are numerous different properties that
you can use to tweak a Text Field, however
there is one standard assignment worth
clarifying exhaustively– composing a
controller for the onEditorAction event.

The onEditorAction
Event
Returning to the EditText control, how about
we add an overseer for the Send button. This
gives one more freedom to an illustration of
the overall course of adding an occasion
handler.
First spot an EditText for an email on the
plan surface and utilize the Attributes
window as depicted in the last area to add a

see more please visit: https://homeofbook.com

Send button to the IME that springs up when
the client enters message, that is track down
imeOptions and select actionSend.
Before you can deal with any new occasion
you need to find the name of the occasion
audience interface and the setOn technique
for that occasion. For the EditorAction
occasion the audience interface is called
OnEditorActionListener and the setOn
strategy is setOnEditorActionListener. With
this data we can continue as in the past and
utilize a lambda to execute the occasion
controller. For this situation we should do the
occupation inside the
setOnEditorActionListener as the occasion
overseer may be required by this one control:
editText.setOnEditorActionListener {v, actionId, occasion >

process the event
true
}

Notice that now our occasion controller has
three boundaries however we actually don’t
need to supply their sort as the compiler can
construe them. The last worth genuine is the
return value.
Now all that remains is to compose the

see more please visit: https://homeofbook.com

occasion controller,
onEditorAction.You can look into the
subtleties of the occasion overseer in the
documentation:
@Override
public boolean onEditorAction(

TextView textView,
int i,
KeyEvent keyEvent)

For this situation textView is the control that
the occasion is related with, I is the activity id
and keyEvent is invalid except if the enter
key was used.

If the action has been “consumed”,i.e. acted
upon, then the routine should return true and
no other handlers will get a chance to process
it.In general, events can be passed on to other
controls that contain the source of the event.

For a straightforward model how about we
add a TextView and move the message that
the client enters when they select the send
button. Envision that the situation is really
sending an email or sms.
We test to check whether the client chose the

see more please visit: https://homeofbook.com

send button or another button and assuming
they did we move the text:

editText.setOnEditorActionListener { v, actionId, occasion - > if (actionId
==
EditorInfo.IME_ACTION_SEN D) {

textView.text = editText.text }
true

}

Notice the utilization of the EditorInfo static
class to get the whole number id comparing
to the send activity. The EditorInfo class has
heaps of valuable constants and methods.
If you run the application you will find that
you can enter an email address into the
EditText field with the assistance of the
console and when you press the Send button
the location is moved to the TextView.

CheckBoxes
A CheckBox is a genuinely clear UI
component. It shows a little name,
constrained by the text property with or
without a tick mark close to it. The client can

see more please visit: https://homeofbook.com

choose or deselect as numerous checkboxes
as desired. In many cases you try not to
manage the condition of a CheckBox until the
client squeezes another control,generally a
major button stamped Done or comparative.
Then you can discover the state of each
CheckBox by simply using theisChecked method
which returns true or false:

For instance, assuming you
have a CheckBox with id checkBox then you
can find its state when a button some place on
the view is clicked using:

var checked = checkBox.isChecked

Notice that you can utilize the isChecked
technique as though it was a Kotlin property
as not exclusively are get and set techniques
changed over to a property yet additionally
strategies beginning with is returning a
boolean.
The CheckBox likewise upholds the onClick
occasion which can be utilized to deal with

see more please visit: https://homeofbook.com

changes to its state, and you can set up the
onClick occasion overseer utilizing the
Attributes window as on account of a Button.
So to deal with the CheckBox change of
express you should simply set its onClick
occasion controller to:

checkBox.setOnClickListener { v - > checked =
checkBox.isChecked }

Obviously the occasion controller would
regularly accomplish something other than
store the state in a variable.
If you really want to adjust a CheckBox
esteem then, at that point, utilize the
setChecked or the flip methods.

Switches and Toggle
buttons
Switches and Toggle buttons are only
CheckBoxes in another configuration. They
store one of two states and they change state
when the client taps on them, very much like

see more please visit: https://homeofbook.com

a CheckBox:

You can actually look at the condition of a
Switch/Toggle button utilizing the isChecked
strategy and you can utilize its onClick
occasion to screen when its state changes.
The main genuine contrast is that you can
utilize the textOn and textOff to set what is
shown when the switch/flip is on or off.

Radio Buttons
The last “straightforward” input control is the
RadioButton. This works like a CheckBox in
that it very well may be in one of two states,
however the enormous contrast is that a
bunch of RadioButtons works in a gathering
and just one of them can be chosen at a time.
The justification for the expression “radio
button” is that, in the beginning of hardware,

see more please visit: https://homeofbook.com

vehicle radios had mechanical tuning buttons
organized in a line which let the driver
rapidly select a station by squeezing a button.
At the point when you squeezed another
button the current button sprung up so just
one button was squeezed out of nowhere,
ensuring that you simply paid attention to one
station at a time.
The main entanglement in utilizing
RadioButtons is ensuring you assemble them
accurately.To do this we need to utilize a
RadioGroup holder which is utilized to hold
each of the buttons that cooperate. There are
various compartments used to bunch
controls,however the most fundamental of
these is the RadioGroup.
Using Android Studio you can make a
gathering of RadioButtons by first setting a
RadioGroup holder on the plan surface and
afterward putting however many
RadioButtons inside the holder as you
require. Assuming a gathering of
RadioButtons doesn’t function as you
expect,the odds are not every one of the
buttons are inside the RadioGroup.
The least demanding method for checking,

see more please visit: https://homeofbook.com

make and alter a gathering of RadioButtons is
to utilize the Component Tree window where
you will actually want to see precisely how
they are settled.You can likewise add
RadioButtons to the holder by hauling to the
Component Tree window.

All the
RadioButtons inside a RadioGroup
consequently work so just each button can be
chosen in turn and you don’t need to
accomplish any additional work to execute
this behavior.

To discover which button is chosen you can
utilize the isChecked technique as on account
of the CheckBox. Truth be told you can work
with a bunch of RadioButtons in the very
same manner as a bunch of CheckBoxes, with
the main contrasts being the utilization of the
RadioGroup and the way that just one button
can be chosen at any one time.

see more please visit: https://homeofbook.com

You can utilize the onClick occasion to
recognize when any button has been changed
and the setChecked or the flip techniques to
alter the condition of a button.

Summary
☐ The essential controls that make up the
majority of the

straightforward Android UI are: Buttons
Text Fields
CheckBoxes
Radio Buttons
Toggle Buttons
Switches

☐ Each control is tweaked utilizing its
ascribes and occasion handlers.
☐ Some credits are stowed away from you
by Android Studio except if you select the All

see more please visit: https://homeofbook.com

Attributes button.

Chapter 6
Working With
Layouts
The decision of Layout is imperative to an
Android UI. The Layout is the thing that
permits you to position and by and large
organize different parts. A decent
comprehension of what is on offer in every
one of the accessible Layouts can have the
effect between a simple and a troublesome
UI, according to both the perspective of the
software engineer and the client. This is
particularly the situation to help a scope of
devices.
All of the classes and articles that make up
the Android UI are gotten from a similar base
class, the View. That is, a Button is a View as
are the Layout classes.Be that as it may,
Layouts appear to act in totally different ways

see more please visit: https://homeofbook.com

to the straightforward Button and this brings
up the issue what precisely is a Layout?

Understanding
Layouts
A Layout is a compartment for other View-
inferred objects.At the point when the Layout
is approached to deliver itself, it delivers all
of the View objects it contains and organizes
them inside the space of the showcase it
occupies.
The default Layout utilized by Android
Studio is the ConstraintLayout and we have
as of now checked out utilizing it in prior
parts, however it isn’t the main Layout you
can use with the Layout Editor.
There are six presently upheld Layouts:

☐ ConstraintLayout
☐ GridLayout
☐ FrameLayout
☐ LinearLayout

see more please visit: https://homeofbook.com

☐ RelativeLayout
☐ TableLayout

The ConstraintLayout was new in Android
Studio 2.2. It is at present the prescribed
design to utilize, and it is the default in
Android Studio 3. It very well may be
considered as an improvement on the
RelativeLayout. On a basic level, it very well
may be utilized to make any format that you
can carry out utilizing a blend of different
designs.It is asserted that ConstraintLayout
based UIs are simpler to

constructandfaster because they are "flat" i.e.
do notuse multiple layouts
nestedinsideoneanother.
Android Studio truly doesn’t need you to
utilize any format other than
ConstraintLayout as the underlying holder
thus it doesn’t allow you to erase the default
design. It will allow you to supplant a
RelativeLayout in a current task with a
ConstraintLayout, yet you can’t erase or
supplant it by some other format. The
explanation is that supplanting one format by

see more please visit: https://homeofbook.com

another is troublesome on account of every
one of the progressions in the upheld
properties.
You can alter the XML record
straightforwardly to supplant one design by
another, however you should re-alter all of
the design properties. You can supplant a
vacant design by one more by altering the
XML record and this is as of now the best
way to do the job.
Despite the way that ConstraintLayout is the
prescribed format to use there are as yet
numerous Android projects that utilization
the first designs and a few software engineers
essentially would rather avoid the
ConstraintLayout. Henceforth it merits
knowing how the less complex formats work.
Among the first designs, RelativeLayout and
LinearLayout are the most utilized, with
FrameLayout coming a far off third. The last
two, TableLayout and GridLayout, are
appropriate for particular sorts of UI and in
Android Studio 3 are pretty much
unsupported in the Layout Editor so you need
to work straightforwardly with their
properties.Hence they are best avoided.

see more please visit: https://homeofbook.com

Before checking out these other options and
how to function with them, it merits having
the opportunity to grasps with the
fundamental thoughts of formats and the
standards they share in like manner. Then we
will look at the Frame, Linear and Relative
layouts because they are still important.
ConstraintLayout, nonetheless, is so
significant on the grounds that it is the
favored format type for the future that it gets
a section all to itself.

Layout Properties
Mostly you will more often than not think
about the properties that are applicable to a
control as having a place with the control, yet
a design can take care of its business in
numerous ways and requires the control to
have bunches of unmistakable properties to
decide how it is situated.As such,the
properties that a control needs to work with a
design rely upon the format picked and this
makes things hard to organize.

see more please visit: https://homeofbook.com

The least complex yet impossible method of
executing this is demand that each control
carried out each property utilized by each
format, even the ones not as of now being
utilized. This is obviously inefficient. The
answer for the issue really utilized is that
every format characterizes a settled class,
gotten from LayoutParams, that has each of
the properties it needs the control to
characterize.The control that will be put
inside the format makes an

occasion of the proper LayoutParams class
thus differs the boundaries it approaches
relying upon the design compartment it ends
up in. That is, instead of defining every
possible property that any layout could want,
a UI component that can be placed in a layout
uses the appropriate LayoutParams class
to“import” the properties it needs for the
layout it finds itself in. This means that a
control has two types of property– its own
and those that it gets from LayoutParams.
Thus in the Layout Editor where the
properties are represented by XML attributes
a control’s attributes are shown in two

see more please visit: https://homeofbook.com

groups:

☐ Attributes that belong to the object.
☐ Attributes that are required by the Layout
object.
You can tell Layout attributes because they
are of the form layout_name in

the XML file. You can see them in the
Attributes window in the Layout Editor:

So in the screen dump the layout_margin
attributes are supplied by the
ConstraintLayout.LayoutParams object, but
the Padding attribute is something that the
Button supports. In other words, which layout
attributes you see depends on what sort of
layout the control is, but the other attributes

see more please visit: https://homeofbook.com

belong to the control and are always listed. It
is also worth knowing at this early stage that
the Layout Editor often presents a simplified
set of layout attributes which it then maps
onto a larger and more confusing set of
layout_ attributes in the XML.

Width and Height
The exact set of Layout attributes that you see
depends on the Layout you use. However,
there are two that all Layouts support:
☐ layout_width
☐ layout_height
You might think that the width and height of
a control were attributes that should belong to
a control,but here things are more subtle.A
control doesn’t necessarily have a fixed size.
It can, for example, ask the Layout to give it
as much space as possible, in which case the
Layout sets the size of the control. This is the
reason why controls have layout_width and
layout_height and not just width and height.
You can set these properties to any one of

see more please visit: https://homeofbook.com

three possible values:
☐ a fixed size, e.g.24px
☐ wrap_content, which sets the size so that it
just fits the control’s content without clipping
☐ match_parent, which lets the control
become as big as the parent Layout can allow
If you use the mouse to drag the frame of a
control in the Layout Editor then what
happens depends on the control and the
Layout.
In most cases the default set by the Layout
Editor is wrap_content and it will ignore any
attempts you make to interactively size a
control. Indeed, in most cases trying to
interactively resize a control doesn’t change
the layout_width or layout_height
properties.However,depending on the Layout
in use you might appear to change the size of
the control due to the setting of other layout
properties. More of this when we deal with
particular Layout types.
The point is that the layout_width and
layout_height are not necessarily the only
attributes that control the final displayed size
of a control. One thing is fairly certain, if you
want to set a fixed size for a control then you

see more please visit: https://homeofbook.com

need to type the values into the Property
window.

Units
If you are going to enter a fixed size or a
location you need to know how to do it.
Android supports six units but only two, both
pixel-based units, are used routinely:

px– pixel
dp– density-independent pixel

The unit that it is most tempting to use when
you first start creating an app is px, the pixel,
because you generally have one testing
device in mind with a

particular screen size and resolution. This is
not a good idea if you want your app to look
roughly the same as screen resolution
changes. For this you need the density-
independent unit,dp,because it adjusts for the
screen resolution. If the device has a screen
with 160 pixels per inch then 1dp is the same

see more please visit: https://homeofbook.com

as 1px. If the number of pixels per inch
changes then dp to px changes in the same
ratio. For example, at 320 pixels per inch 1dp
is the same as 2px.

By using density-independent pixels you can
keep controls the same size as the resolution
changes.
Notice that this does not compensate for the
screen size. If you keep the number of pixels
fixed and double the resolution then the
screen size halves. A control on the screen
specified in px would then display at half its
original size. A control specified in dp would
display at its original size but take up twice
the screen real-estate.

Using dp protects you against screens
changing their resolution, not their physical
size.
not their physical size.

inch tablet, no matter what resolution it has.
As well as pixel-based measures there are
also three real world units: mm– millimeters
in– inches

see more please visit: https://homeofbook.com

pt– points 1/72 of an inch
All three work in terms of the size of the
screen, and the number of
pixels a control uses is related to the screen
resolution.If the screen has
160 pixels per inch then 1/160 in=1 px and so
on. Notice that once again
these units protect you against resolution
changes,but not changes to the
actual screen size. Your button may be 1 inch
across on all devices, but
how much of the screen this uses up depends
on the size of the screen
the device has. The danger in using real
world units is that you might well
specify a fractional number of pixels and end
up with an untidy looking
display.
The final unit is also related to pixels but is
tied to the user’s font size
preference:
sp – scale-independent pixel
This works like the dp unit in that it is scaled
with the device’s resolution
but it is also scaled by the user’s default font
size preference. If the user

see more please visit: https://homeofbook.com

sets a larger font size preference then all sp
values are scaled up to match.
Which unit should you use? The simple
answer is that you should use
dp unless you have a good reason not to,
because this at least means
that if you have tested your UI on a device of
size x it should work
reasonably on all devices of size x,no matter
what the resolution.
Android Studio defaults to working in dp
whenever you enter a value
without a unit or when you interactively size
or move a control.

A Control is Just a
Box
As far as a Layout is concerned, a control is
just a rectangle. Its size is given by
layout_width and layout_height and these can
be set by the control or, more often, by the
Layout. Once the Layout knows the size of

see more please visit: https://homeofbook.com

the control it can position it according to the
rules you have established using the Layout’s
properties.
If you want to know the position that a
control has been assigned then you can use its
Top and Left properties. This gives you the
position of the top left- hand corner of the
control’s rectangle. You can work out where
the other corners are by using Width and
Height properties,but to make things easier
there is also Right and Bottom
property.Notice that the position of the top
left-hand corner of the rectangle is always
relative to the Layout it is in. That is,the
position is not an absolute screen position. It
is also worth knowing that controls also
support padding, dead-space inside the
control. This is space left between the outside
edge and the content. In addition some, but
not all, layouts support margins, dead-space
outside a control that can be used to add
space between controls:

see more please visit: https://homeofbook.com

Notice that padding is a property of the
control and margin is a layout property. You
can set each margin or padding on the left,
right, top or bottom individually or specify a
single value to be used for all of them.

In theory, padding is used to put space around
the content of a control, but it can also be
used simply to make the control bigger when
its dimensions are set to wrap its contents.For
example,the Button on the left has zero
padding and the one on the right has a
padding of 30dp all round:

Similarly, margins are used to put space

see more please visit: https://homeofbook.com

around a control, but they can be used to
position one control relative to another or to
its container. This is how RelativeLayout and
ConstraintLayout work.

Gravity
Gravity is often regarded as mysterious,
partly because of its name and partly because
there are often two gravity properties in play.
Basically, gravity just sets where in a
dynamic layout something is positioned.

Simple gravity settings are:
top
bottom
left
right
center
center_vertical
center_horizontal

The meaning of all of these is obvious in that
the object just moves to the specified
position. However, things get a little

see more please visit: https://homeofbook.com

complicated if you try to set an object to
display at the left when the size of its
container has been adjusted to fit, i.e. it is
already as far to the left and the right as it can
be. You can also set multiple gravity options.
For example, you can set left and right at the
same time and this just centers the object
horizontally.

What makes gravity even more complicated
is that there are settings that change the size
of the object affected:
fill
fill_vertical
fill_horizontal
In each case the object grows to fill the
specified
dimension. There are also two clipping
settings:
clip_vertical
clip_horizontal
These work with the top, bottom, left and
right to clip an object to fit the container. For
example, if you set gravity to top and
clip_vertical then the object will be
positioned at the top of the container and its

see more please visit: https://homeofbook.com

bottom edge will be clipped.
Most of the time you will simply use gravity
settings like center or top. If you try to use
complicated combinations then things tend
not to work as you might expect.
The final complication, which in fact turns
out to be quite straightforward, is that
controls have a gravity property and Layouts
provide a
layout_gravity property. The dIfference is
very simple. The gravity property sets what
happens to the contents of a control and the
layout_gravity sets how the control is
positioned in the Layout container. For
example, if you have a Button and you set its
gravity property to top then the text within
the button will be moved to align with the
top. If, on the other hand, you set the Button’s
layout_gravity to top the whole Button moves
to the top of the Layout container. Notice that
not all Layouts provide a layout_gravity
property to their child controls.

The FrameLayout

see more please visit: https://homeofbook.com

The FrameLayout is the simplest of all the
Layouts. It really doesn ’t do very much to
position the controls it contains and its
intended use is to host a single control, i.e. it
really does just act as a frame around a
control.

The Layout Editor no longer provides as
much help with FrameLayout as it did and if
you have used an earlier version you may
well find the new behavior frustrating.
Indeed, the only way you can make a
FrameLayout the main layout control is to
edit the XML file and replace
ConstraintLayout by FrameLayout. If you
want to try out a FrameLayout, simply drag
and drop it onto the default ConstraintLayout
and use it there.

When you drop a control in a FrameLayout it
is positioned at the top left and you cannot
drag it to a new position within the layout. To
set a control’s position you have to find the
layout_gravity attribute, not the gravity
attribute, and set one or more of top, bottom,
left, right, center_horizontal, and

see more please visit: https://homeofbook.com

center_vertical.

You can use this to position multiple controls
in the same FrameLayout, but notice that if
the total size of the FrameLayout changes the
different controls may welloverlap:

If two controls overlap in a FrameLayout,
they are drawn in the order in which they
were added. In other words, the last one
added is drawn on top of the others. This
aspect of the FrameLayout makes it useful if
you want to display multiple controls and
switch which one is visible. Simply put all

see more please visit: https://homeofbook.com

the controls into the FrameLayout and select
one to be visible using its Visible property.
More commonly a FrameLayout is used
simply as a placeholder for a component of a
layout that isn’t specified until some time
later. For example, if you make use of a
Fragment, see the companion book Android
Programming:Mastering Fragments &
Dialogs,to create part of a UI or read in a list
of things to display, then often you need a
container for the new component to be
present in your static layout. A FrameLayout
does the job very efficiently.

☐ Use a FrameLayout when you need the
simplest Layout that will hold one or a small
number of components without the need for
much in the way of positioning or sizing.

LinearLayout
The next layout we need to consider is the
LinearLayout. This is a simple layout that can
be used to do a great deal of the basic work of

see more please visit: https://homeofbook.com

organizing a UI. In fact once you start using
LinearLayout, it tends to be the one you think
of using far too often. You can use a
LinearLayout as the base Layout, replacing
the default ConstraintLayout that Android
Studio provides, or you can place a
LinearLayout within the ConstraintLayout.
In Android Studio LinearLayout occurs twice
in the Palette– once as a vertical and once as
a horizontal LinearLayout. The difference,
however, is just the setting of the orientation
property to horizontal or vertical.In other
words, you can swap a horizontal and vertical
linear layout with a simple property change.
The horizontal LinearLayout acts as a row
container and a vertical LinearLayout acts as
a column container. You can use nested
LinearLayouts to build up something that
looks like a table, but if this gets very
complicated it is better to use
ConstraintLayout. Nesting layouts like this is
also inefficient as the rendering engine has to
compute the layout multiple times to get it
right. The advice is to use a ConstraintLayout
and avoid nesting.
If you place a LinearLayout on the

see more please visit: https://homeofbook.com

ConstraintLayout then you can position it like
any other control. If you then place other
controls inside it then they will stack up
horizontally to form a row or vertically to
form a column.
This sounds easy but there are lots of ways to
use a LinearLayout.

For example, if you put a horizontal and a
vertical LinearLayout in the ConstraintLayout
then how they behave depends on what you
set their
layout_widthandlayout_heightto.Ifyousetittowrap_contentthenthetwo
Layouts act like a horizontal and vertical
panelof controls, i.e. you can move all of the
controls as a block:

It can be very difficult to be sure what you
are dragging in the Layout Editor as it is easy
to pick up one of the Buttons rather than the
layout. Make use of the Component Tree
window to select the layout and to make sure

see more please visit: https://homeofbook.com

that the Buttons are in the layout you think
they are. Things get more interesting when
you nest one LinearLayout inside another to
create a table. For example, you can create a
calculator style keypad by nesting three
horizontal LinearLayouts inside a single
vertical LinearLayout.

421

That is, place a vertical LinearLayout on the
screen and then place three horizontal
LinearLayouts within it. Within each
horizontal LinearLayout place three buttons.
If you have difficulty doing this, use the
Component Tree
tomakesurethatthecomponentsarecorrectlynested.Makesurethatyouset
the layout_width and layout_height to
wrap_content, otherwise the LinearLayouts
willoverlap:

This is easier to arrange than using the

see more please visit: https://homeofbook.com

ConstraintLayout. The final Button is just
placed into the vertical LinearLayout and it
forms a row all of its own. ☐ LinearLayout is
a useful grouping device whenever you need
a row or column of controls.

Layout_weight

There ’s one last mystery of the LinearLayout
to discuss, layout_weight, a layout property
that only the LinearLayout supports. If you
assign a layout_weight to any of the controls
in a LinearLayout then the controls are
adjusted in size to fill any unused space in
proportion to their weights. The really
important part of this description is“unused
space”. What happens is that Android first
computes the layout ignoring any weight
assignments.
This means that the controls are set to the
sizes you specified. Next the system
determines what space remains unused in the
containing LinearLayout. This is then
distributed between the controls that have
nonzero values of layout_weight in

see more please visit: https://homeofbook.com

proportion to their weights. For example,
suppose we have a horizontal LinearLayout
with three Buttons all set to
wrap_content.The screen has been rotated to
provide a lot of unused space for the
example:

You can see that there is a lot of unused space
over to the right. If we now set the first
Button’s layout_weight to 1 it will be
allocated all of that unused space:

If you now set the second Button ’s
layout_weight to 1 then the unused space will
be shared between the first two Buttons
equally:

see more please visit: https://homeofbook.com

You can guess what would happen If we now
set the third Button ’s layout_weight to 1, the
space would be shared equally and all three
buttons would be the same size. If, however,
the first button was given a weight of 2 then
the unused space would be shared out in the
ratio 2:1:1 and so on. More interestingly what
do you think would happen if you assigned a
fixed width to the third Button? The answer is
simple. If the third Button’s layout_weight is
zero then it is set to the width specified and
the other two buttons get the unused
space.For example setting the third Button to
350dp gives:

However, if the third button has a
layout_weight set then it will probably

see more please visit: https://homeofbook.com

change its width because it gets a share of the
unused space just like the other buttons.In
other words,when you set a non-zero
layout_weight a control can change its size
even though you have set a specific size for
it. This leads to the idea of“measured size”
and“actual size”.

In the case of the third Button its measured
size is 350dp but if its layout_weight is non-
zero then its actual size on the screen will be
different– it will be allocated some of the
unused space.

When you are working with components in
code the Width and Height properties will
give you the actual width and height of the
control. The MeasuredWidth and
MeasuredHeight properties will give you the
measured width and height before any
adjustment by the Layout has been
performed. Finally, it is worth pointing out
that if you want to be sure that the three
Buttons are the same size you have to set
their widths to 0dp and weight to 1 (or the
same value). Why is this necessary? When

see more please visit: https://homeofbook.com

you set the widths to zero all of the space is
unused and the system will divided it equally
between each one. You can also set their
widths to some constant minimum value and
then let the weight mechanism share out the
unused space.

RelativeLayout
The RelativeLayout was the most used in the
past and it is still worth knowing about
because you will meet it in existing apps and
you might have to use it if ConstraintLayout
doesn’t work for you. It was the one that was
favored by Android Studio until the
ConstraintLayout was introduced.

It is a complex and sophisticated layout
component and you might think that you
should prefer simpler alternatives if at all
possible. For example, you can often use a
number of LinearLayouts to do the work of a
single RelativeLayout. The most commonly
quoted rule is that you should try to design

see more please visit: https://homeofbook.com

your UI using the smallest number of
Layouts. In particular, deep nesting of
Layouts, i.e. one Layout inside another, slows
things down because the system has to dig
deep into each layer of Layout and this can
take a lot of work. The rule is:

☐ Prefer a shallow sophisticated Layout to a
deep nest of simpler ones. You can usually
replace a set of nested LinearLayouts with a
RelativeLayout or a ConstraintLayout.

For such a capable Layout, RelativeLayout
has only a few Layout properties. They fall
into two groups:
Properties concerned with positioning the
control relative to the parent container
Properties concerned with positioning relative
to another control.

At least one of the controls in the Layout has
to be positioned relative to the parent
container to give the rest of the Layout a
position. However, any number of controls
can be positioned relative to the parent
container if this fits in with what you are

see more please visit: https://homeofbook.com

trying to achieve.

The RelativeLayout attributes are presented
and organized by the Attributes window
slightly differently to the way they are
represented as attributes in the XML or in
code. This description applies to the way
Android Studio presents them. Refer to the
documentation for the XML or programmatic
constants.

Edge Alignment

The principle is that you can specify the
alignment of any pair of edges, one in the
parent and one in the child. This will move
the child control so that its edge lines up with
the parent edge, For example, top edge to top
edge. If you specify two pairs of edges then
you can change the size of the control as well
as positioning it. Forexample, top to top and
bottom to bottom makes the child control the
same height as the parent.

Layout Relative to Parent

see more please visit: https://homeofbook.com

The fundamental parent layout attributes are:
layout_alignParentTop

layout_alignParentLeft
layout_alignParentBottom
layout_alignParentRight

which adjust the relating edge of the control
with that of the parent container.
For instance: setting layout_alignParentLeft
moves the passed on side of the control to the
left half of the parent:

This works with practically no resizing of the
control. Assuming you select two restricting
arrangements, top and base or left and right,
then, at that point, both the edges are moved
and the control is resized.

For instance, setting layout_alignParentLeft
and layout_alignParentRight produces:

see more please visit: https://homeofbook.com

You can likewise adjust to the focal point of
the parent with:
layout_centerInParent
layout_centerVertical
layout_centerHorizontal

Layout Relative to Another
Component

The Layout Editor used to plan a
confounding arrangement of XML properties
that situated a part comparative with another
part.The most recent form no longer plays out
this disentanglement. Rather you can either
permit the Layout Editor to work out how to
set position comparative with another part or
you can work with the crude credits in the
Attributes window.
The fundamental thought behind each of the
situating ascribes comparative with another
part is that you just stock the name of the
other part to the applicable attributes:

layout_alignTop
layout_alignLeft
layout_alignBottom

see more please visit: https://homeofbook.com

layout_alignRight

For example:
layout_alignRight= button1

sets the right-hand edge of the control to line
up with the right-hand edge of button1.As
continually, adjusting two edges top/base and
left/right changes the size of the control.
The attributes:

layout_above
layout_below

adjust the lower part of the control to the
highest point of the referred to control and the
base with the top respectively.

Similarly the attributes:
layout_toLeftOf
layout_toRightOf

adjust the left/right of the control with the
right/left of the referred to control. At long
last the attribute:
baseline

adjusts the text benchmark in the parent and
youngster controls. In API 17 a new feature
was added to take account of the direction
that text

see more please visit: https://homeofbook.com

should flow within a layout, this caters for
languages such as Arabic that start at the
right-hand side and go towards the left. As a
matter of course Layout_Direction is left-to-
right and the beginning edge is as old as left
edge and the end edge is as old as right edge.
If Layout_Direction is set right-toleft then
start is the same as right and end is the same
as left. You can set startpadding to control the
cushioning on the left or right contingent
upon the design direction
set. The entirety of the left/right ascribes have
a beginning/end version.

Margin Offsets

So far nothing remains at this point but to
adjust sets of edges. How would you
determine definite positions comparative with
another control or the parent?

The appropriate response is to utilize the
normal example of setting the edges of the
control. On the off chance that you adjust top
edges however set a top edge of 10dp on the

see more please visit: https://homeofbook.com

kid then the highest point of the youngster
control will be 10dp lower than the parent
control:

So the edge arrangement is utilized to
determine the overall course of one control to
another and the edges set give the specific
offset.

RelativeLayout and the
Layout Editor

With all of this comprehended you would
now be able to perceive how the Layout
Editor allows you to create a
RelativeLayout.As you move a control
around the plan surface, the closest other
control or the parent Layout is chosen as the
parent to use for situating, the nearest edges
are utilized for arrangement and that edge is
set to the distance between the parent and

see more please visit: https://homeofbook.com

child.
This functions admirably however it can once
in a while be hard to get the Layout Editor to
pick the control or the Layout as you move a
control around. You can generally utilize the
Attributes window to physically set this
assuming it demonstrates too hard to even
think about setting interactively.
Also notice that in the event that you drag an
edge of one control near arrangement with
the edge of another control then this will
bring about that edge being adjusted and the
control changes its size. For instance,
assuming that you drag the right half of a
control to the right size of the Layout then the
width of the control changes. This conduct
can confound fledglings utilizing the Layout
Editor as it gives off an impression of being
feasible to resize controls by hauling an edge,
yet more often than not the control snaps
back to its unique size when delivered.
Obviously, it possibly resizes when the edge
you are hauling lines up with a comparing
edge on another control.
It must be said again that the Layout Editor
isn’t as simple to use with the RelativeLayout

see more please visit: https://homeofbook.com

as in past forms of Android Studio. For
instance, it no longer supplies intuitive
situating criticism as far as pixel
counterbalances and it no longer uses a
worked on arrangement of format properties
which map onto the genuine XML properties.
These things may change in later forms,
however with the accentuation on
ConstraintLayout it appears unlikely.
Once you comprehend the way that the
RelativeLayout works then, at that point,
utilizing the Layout Editor turns out to be a
lot more straightforward thus does utilizing
RelativeLayout to make a complex UI.

Summary
☐ You can utilize diverse Layout holders to
make UIs. Every Layout has its own offices
for how youngster controls are situated and
sized.

☐ The default in Android Studio 3 is
ConstraintLayout. ☐ The main choices are

see more please visit: https://homeofbook.com

FrameLayout, LinearLayout and
RelativeLayout. ☐ Each Layout has its own
arrangement of format properties to

control situating and estimating of a control.
Kid controls have an occasion of the format
properties class to advise the Layout how to
position and measure them. All Layouts
support layout_width and layout_height.

☐ You can indicate position utilizing various
units, yet much of the time use dp (thickness
free pixels) as this works the same way on
screens of a similar size however unique
resolutions.

☐ As far as the Layout is concerned, a
control is only a square shape, width by
tallness, situated utilizing top and left.

☐ All controls have cushioning properties
which determine additional room around the
control’s content.
☐ Some Layouts give layout_margin
properties that set additional room around the
outside of the control.

see more please visit: https://homeofbook.com

☐ Gravity simply sets the simple positioning
of an object - top, bottom, right, left. Every
control has a gravity property which sets the
position of its content, e.g. the text in a
Button. Some Layouts have a
layout_gravitypropertythatsetshowacontrolwillbepositioned.
☐ The FrameLayout is the most
straightforward of all Layouts and simply has
layout_gravity for situating. As a rule it holds
a solitary control and it is regularly utilized as
a placeholder.
☐ The LinearLayout can be utilized to
coordinate controls as a line or a segment.
Just as gravity, the LinearLayout additionally
upholds the detail of a control’s weight. Later
the deliberate size of each control is dictated
by the Layout, the excess unused space is
allotted to the controls in similar extents as
their allocated weights.
☐ Complex designs can be made by settling
LinearLayouts inside one another to create a
segment of lines or a line of segments. This
has brought about the LinearLayout being the
most used.
☐ The overall guideline is to attempt to
choose a Layout that outcomes in the littlest

see more please visit: https://homeofbook.com

settling of Layout compartments. It is
subsequently better to utilize a solitary
RelativeLayout or ConstraintLayout rather
than profoundly settled LinearLayouts.

Chapter 7
The
ConstraintLayout
The ConstraintLayout was new in Android
Studio 2.2 and it utilizes an extra library. The
help library is viable with all variants of
Android back to Gingerbread (2.3, API level
9) thus you can utilize the ConstraintLayout
except if you plan focusing on gadgets
running sooner than Gingerbread.
ConstraintLayout was acquainted in a work
with make design more receptive to screen
size changes, and to work on the productivity
of format by making it conceivable to try not
to settle designs. It is, basically, a further
developed RelativeLayout and on the off

see more please visit: https://homeofbook.com

chance that you have perused the part on the
RelativeLayout quite a bit of what follows
will appear to be natural. The Layout Editor
has been changed to function admirably with
the ConstraintLayout at the expense of
making different Layouts harder to work
with. This may change as Android Studio
keeps on growing yet with the accentuation
on ConstraintLayout being the answer for all
that this appears progressively unlikely.
In the past the ConstraintLayout was
immature and didn’t function admirably in all
circumstances. In Android Studio 3 the help
library has improved alongside the Layout
Editor. It currently appears to be sensible to
base all of your future applications on the
ConstraintLayout. At the hour of composing
the default variant of ConstraintLayout is
1.0.2. This backings all highlights including
chains and rules yet not hindrances and
gatherings. The current documentation
recommends that the Layout Editor upholds
obstructions and gatherings yet assuming you
utilize the default rendition of
ConstraintLayout they aren’t and they don’t
show up in the setting menu.

see more please visit: https://homeofbook.com

If you need to utilize these highlights you
need to guarantee that your venture is
utilizing 1.1.0 or later. This is at present in
beta however could well arrive at a last form
before the following variant of Android
Studio.To utilize it you want to alter the
build.gradle record to read:
conditions {
execution fileTree(dir: ‘libs’, include: [‘*.jar’]) execution
‘com.android.support:appcompat-v7:26.1.0’
execution‘com.android.support.constraint:

requirement layout:1.1.0-beta3 ’

Onlythelastlineneedschangingi.e.from1.0.2to1.1.0-
beta3.Youwillneed
toresynctheprojectandthenyouwillseegroupandbarriersintherightclick
contextmenu.
If you have a current Layout then you can
request that Android Studio convert it to
ConstraintLayout. You should simply right
tap on the Layout in the Component Tree and
select Convert to ConstraintLayout.This can
be utilized to diminish a settled design to a
solitary“level”
ConstraintLayout,however be cautioned that
by and by it regularly gets things
exceptionally off-base. Regularly all that you
can say of a changed over format is that it

see more please visit: https://homeofbook.com

gives a beginning stage to re-implementation.
Let’s investigate how the ConstraintLayout
functions in the Layout Editor in more detail
than in past chapters.
Using the ConstraintLayout implies the main
thing that influences where a part shows are
the requirements you apply. So how would
you apply an imperative? There are two
methodologies and we have appear them both
momentarily prior parts. You can have the
Layout Editor recommend them for you
consequently, or you can apply them
manually.

Automatic
Constraints
Automatic imperatives, which we met in
Chapter 3, should make things simple. There
are two methods for getting the manager to
apply limitations dynamically:
Autoconnect mode– for a solitary component
Infer Constraints– for the whole layout

see more please visit: https://homeofbook.com

They do marginally various things and you
want to figure out how to make them work
together.
To turn Autoconnect on essentially click its
symbol at the highest point of the Layout
Editor:

As previously clarified in Chapter 3,
Autoconnect applies imperatives to a solitary
part that you are either setting on the plan
surface
interestingly,or to a part that doesn’t as of
now have requirements applied that you drag
to another area.At the point when a
requirement is added,Autoconnect doesn’t
endeavor to transform it assuming that you
move the part to where an alternate limitation
may be more proper.The other issue
previously referenced is that Autoconnect
doesn’t add imperatives that seem

self-evident. It adds imperatives for focusing
and setting near an edge, however it doesn’t

see more please visit: https://homeofbook.com

add any requirement comparative with
another part or to by and large position the
component.
Right now Autoconnect is a genuinely frail
element and scarcely worth turning on in
most cases.
The Infer Constraints option is, in many
ways, easier to use and more
powerfulthanAutoconnect.Allyou have to
dois positionthecomponents where youwant
them andthen click the Infer Constraints icon:

Only limitations that are important to fix the
place of a part are added – existing
imperatives are not adjusted. This implies
you can utilize Infer Constraints to ensure
that your design has an adequate number of
requirements to make it work. On the off
chance that none are added it was OK. It
likewise implies that assuming you click Infer
Constraints a subsequent time nothing
changes regardless of whether you have
moved parts.To get another arrangement of

see more please visit: https://homeofbook.com

requirements you need to erase the limitations
you need recomputed and afterward click
Infer Constraints. You can delete all of the
constraints in a layout using the Clear All
Constraints button:

You can get
all free from the imperatives on a specific
part by choosing it and tapping on the red
cross symbol that shows up beneath it:

To clear asingle
constraintsimply hover themouseover
thecircle that marks the location of the
constraint until it turns red and then click it:

see more please visit: https://homeofbook.com

In this manner you can specifically erase
imperatives and yet again apply the Infer
Constraints activity, or basically physically
apply a more fitting constraint.
Infer Constraints works in an extremely basic
manner. It applies limitations to parts as per
what they are nearest to.This methodology
brings about a format that works however it
probably won’t be the most sensible for
future modification.
A decent system is to turn off Autoconnect
and utilize the Infer Constraints choice each
time you place another part on the plan
surface. This permits you to develop a design
each part in turn and actually look at each
new arrangement of imperatives. You would
then be able to adjust the recently included
imperatives and move to the following
component.
Where things get troublesome is the point at

see more please visit: https://homeofbook.com

which you have a multi-part design and need
to roll out revolutionary improvements.
Regularly it is more straightforward for this
situation to erase the requirements in general
and start again.
As longas suitable constraints are in place,
the ConstraintLayout works much like the
RelativeLayout. For a component that has
been placed on its own close to the top and
left-hand edge of the screen, constraints will
be added that fix its distance from the left and
top:

From now on when the button is shown it
will situate itself at 80dp from the left and
80dp from the top. These requirements are
applied regardless the size of the actual
screen is.

It merits realizing that the genuine situating is

see more please visit: https://homeofbook.com

accomplished, as on account of the
RelativeLayout, by setting the button’s edge
properties to 80dp. However, in contrast to
what occurs in the RelativeLayout. if you
move the Button closer to the right-hand
edge, then the constraint will not change to
one relative to that edge. When an imperative
is set it stays set except if you erase it and
apply another one. All that happens when you
drag a part is that the worth of the imperative
changes, not its type.
It is additionally worth realizing that the
Attributes window has an outline that shows
you the right now applied limitations and
allows you to alter them and set distances
exactly:

If you click on one of the requirement lines,
you can enter an incentive for the distance.
You can likewise tap on the X that shows up
and erase the limitation completely.
You can likewise set the default edge that is

see more please visit: https://homeofbook.com

utilized for new imperatives utilizing the
default edge symbol in the menu bar:

Just like a RelativeLayout, you can set
requirements comparative with the parent or
comparative with different controls in the
format. Have a go at putting a second button
on a superficial level and moving it near the
first. Presently assuming you click the Infer
Constraints button,the imperatives that are
applied are taken comparative with the first
button:

You can see that for
this situation the subsequent button is situated
114 from the left edge of the main button and
57 beneath it.

see more please visit: https://homeofbook.com

Once again these limitations will be
submitted to regardless of how huge or little
the actual screen the UI is shown on.
Likewise, assuming you move the main
button, the subsequent button will keep its
position comparative with the first. This is by
and large like the RelativeLayout and, as long
as you set the right requirements, anything
you can do with RelativeLayout should be
possible with ConstraintLayout.

If you play with the situating in the Layout
Editor you will rapidly get the idea.

The huge issue with the Layout Editor
naturally applying imperatives is that it
regularly misses the point. Working out how
one control should be fixed relative to
another reallyrequires someintelligence and,at
the moment, the LayoutEditordoesn’thaveit.

Manual Constraints
You can place constraints on positioning
manually. All you have to do is drag a line

see more please visit: https://homeofbook.com

from the constraint circles on the component
to the edge you want to use as a reference
point. For example, to position the button
relative to the right side of the screen simply
drag the circle on the right of the button to the
right side of the screen and then move the
button where you want it:

You can blend the programmed and manual
setting of limitations and this is regularly the
most ideal way to work. By and large, you
are determining the imperative as the
separation from some point on the part to a
point on some other component.
For instance, to put a part comparative with
another then essentially drag the requirement
point on the first to an edge of the second.
For the situation displayed beneath manual
imperatives have been applied in light of the
fact that limitation induction would have put
requirements on the lefthand edge of the
screen:

see more please visit: https://homeofbook.com

At this point it merits making a little, yet
significant, point extremely clear. While you
can physically set negative edges in the
RelativeLayout, you can’t utilize them in
ConstraintLayout.You can’t drag a part so it
needs a negative offset– the Layout Editor
stops your drag at nothing.Assuming you set
a negative edge in the edge properties it will
show as negative however be treated as zero.

What this means in practice is that if you
align the left side of a component to the left
side of another, then the only type of
constraint you can apply shifts the second
button to the right. Assuming you attempt to
move it to the left then the negative edge that
would result is overlooked. To
comprehend this attempt it in the Layout
Editor and you will observe that you can’t
drag the lower button in the past screen dump
past the left half of the top button. Similarly,
you can’t drag the lower button over the
lower part of the upper button.This has a
specific rationale, however it is additionally
prohibitive on the grounds that it implies you
can’t set an imperative that interfaces the

see more please visit: https://homeofbook.com

highest point of a part to the highest point of
a part that is beneath it.
You can utilize left-side to left-side
requirements to left-adjust parts and right-
side to right-side limitations to right-adjust
parts, etc. To assist you with doing this there
is an arrangement instrument palette:

To utilize it select every one of the parts that
you need to adjust and afterward click the
ideal arrangement apparatus. It is critical to
understand that utilizing these arrangement
instruments essentially applies the proper
imperatives. You could accomplish similar
outcomes by applying the imperatives
yourself manually.
As well as having the option to adjust various
sides of a control,you can likewise set a
pattern limitation so text lines up. This was
clarified exhaustively in Chapter 3,however
set forth plainly– assuming you click on the
second symbol that seems when you select a
part, a circular box appears:

see more please visit: https://homeofbook.com

Hover the cursor over the curved box until is
featured and haul from the circular box to the
pattern of the text in the part that you need to
adjust with:

Bias Constraints
So far the ConstraintLayout hasn ’t actually
given anything new, yet it has a more modern
requirement that doesn’t have a partner in the
RelativeLayout. Alluded to as“inclination”
this kind of limitation works as far as
proportions, communicated as rates and
shown as crisscross lines:
To utilize it you need to make two
requirements that “battle” one another. For

see more please visit: https://homeofbook.com

instance, assuming you drag one imperative
to the left and its partner to the right, the
outcome is a flat inclination used to situate
the control at the ideal extent of the format
size. You can accomplish an upward
predisposition by hauling requirements from
the top and the bottom.

As you drag the control around the screen,
the divisions or rates are refreshed in the
Attributes window. You can utilize the sliders
that seem to set the percentages:

Things are somewhat more muddled in that
you can likewise determine an edge which
gives a general part to the predisposition
imperative. Assuming you investigate the
showcase in the Attributes windows
displayed above, you can see that the
limitations have a worth of 8 showed close by
them. This is the default edge alloted when
you made the limitation.As you drag the part

see more please visit: https://homeofbook.com

around the screen you can’t situate it nearer
to the sides than the edge set in that direction.
For example, if you edit the left margin to be
100, then the constraint display acquires a
straight portion 100 units long. Assuming you
currently attempt to move the button to one
side, you will observe you can’t draw nearer
than 100 units. Notice that it is the distance
between the predefined edges that is split in
the proportion set by the predisposition. If
you want the entire screen to be used, then set
the margins to zero:

Chains
An as of late acquainted element is the
capacity with set inclination imperatives
between parts just as to the parent
compartment. That is, you can set sets of
limitations between parts that work similarly
as a
predisposition requirement. In doing as such

see more please visit: https://homeofbook.com

you make what is currently called a“chain” of
parts. The justification behind acquainting
chains is with make it simpler for
ConstraintLayout to make the kind of thing
that you would have used

LinearLayout for, specifically lines or
segments of parts with corresponding
spacing.

Creating a chain is a marginally secretive
interaction. To make an even chain of say
three Buttons the primary errand is to
organize them generally into a line:

If they aren ’t in a sensible line the limitations
will be applied independently to every
part.Select each of the three by hauling a
marquee around the three and afterward right
snap while every one of the three are chosen
and utilize the Chain, Create Horizontal
Chain:

see more please visit: https://homeofbook.com

To make an upward chain you orchestrate the
parts in an upward section, select them all
and right snap and utilize the Chain,Create
Vertical Chain order.All that works similarly
however pivoted by 90 degrees.

If everything goes to design and the parts are
recognized as a likely chain, the unique
imperatives will be applied and you will see a
chain symbol between the internal
components:

Notice that the default format for the chain is
Spread which conveys the perspectives
equitably, assessing edges. There are three
elective design modes which are chosen by
tapping on the chain symbol that seems when
you select a part that is important for a chain.

see more please visit: https://homeofbook.com

If you click this once the format changes to
Spread Inside, which puts the first and last
part hard against the compartment and
disseminates the others equitably in the space
available:

If you click a second time the design changes
to Packed which puts every part as near one
another as could be expected, taking into
account edges, and afterward puts them as a
gathering focused in the container.

You can situate the gathering utilizing the
predisposition setting of the main part in the
chain. Notice that the inclination setting has
no impact in the other chain design modes:

You can set a format weight utilizing

see more please visit: https://homeofbook.com

layout_constraintHorizontal_weight and
layout_constraintVertical_weight. In spread
or spread inside mode this conveys the space
with respect to the loads and emulates the
manner in which loads work in a
LinearLayout.

A Chained Keypad
To show how helpful chains are, we should
carry out a keypad of the sort that we utilized
in the number cruncher project toward the
finish of Chapter 3.
First spot nine buttons on the plan surface in
an unpleasant 3 by 3 grid:

Selecteachrowin
turnandusetheChain,CreateHorizontalChaincommand
toconverteachoneintoachainofthreebuttons:

see more please visit: https://homeofbook.com

Then select the three chains, i.e. all nine
buttons, and use the Chain, Create
VerticalChaincommandtocreatethegrid:

If you need to change the design to Packed
basically choose the main button in each line
and snap the chain symbol until you get a
pressed row:

To get a stuffed segment is more troublesome
on the grounds that the chain symbol just
controls the principal chain that a part is in.
At the hour of composing the best way to set

see more please visit: https://homeofbook.com

stuffed on the sections is to alter the XML
file.
The chain style is constrained by the primary
part in the chain. Assuming you check out the
XML for the main button in the primary
column you will see:

app:layout_constraintHorizontal_chainStyle=“packed”

This is liable for setting the principal line to
stuffed design. To set the primary section to
stuffed you need to change the XML to read:
app:layout_constraintHorizontal_chainStyle=“packed”

app:layout_constraintVertical_chainStyle=“packed”/> If you do
this you will see the first column in packed
format:

You need to change the
XML for the button at the highest point of the
subsequent line and at the top third line to

see more please visit: https://homeofbook.com

read:
app:layout_constraintVertical_chainStyle=“packed”/>

If you change the top row button’s XML
correctly you should see a packed array of
buttons:

The large issue currently is that to situate the
matrix of Buttons you need to change the
predisposition settings of the main button in
each line, which sets the even inclination for
that line, and the settings of the principal
button in every segment, which sets the
upward inclination. There is no single setting
that will situate the whole network, and this
doesn’t make situating easy.
What about adding the 10th Button?
It might have been added to the principal

see more please visit: https://homeofbook.com

segment yet it is similarly as simple to add it
now and set a limitation from the lower part
of the last Button in the primary segment and
from the right and left half of the button:

Guidelines
The last situating apparatus you have
available to you is the rule. You would now
be able to relocate a level or vertical rule on
the plan surface and use it to situate different
parts. The main thing about rules is that they
don’t exist as a View item, or whatever else
in the last format. A rule is an item in the
Layout Editor and any limitations that you set
utilizing it are changed over to situating that
makes no reference to the rule when the
application is run.
To add a rule you should simply utilize the
Guidelines tool:

see more please visit: https://homeofbook.com

Once the rule has been added, you can drag it
to the ideal area and afterward position parts
comparative with maybe it was a part by its
own doing. You can set any limitation that
you can use with a part, including
predisposition. Notice that assuming you
move a rule any parts of the UI that are
compelled to is will likewise move– this can
be very useful.

You can erase a rule by choosing it and
squeezing erase. Right now the large issue
with rules is that, while the Layout Editor
shows the area as you drag, there is definitely
not a simple method for entering a worth to
situate it exactly:

You can enter a precise position assuming
you grow the Attributes you can enter a
careful worth in the guide_begin quality

see more please visit: https://homeofbook.com

which you will find under the Constraints set.
While rules are another situating instrument,
and you can never have too much, there isn’t
anything you can do with a rule that you can’t
manage without one. Likewise, considering
that rules are situated totally on the screen,
they don’t give any offices to changing the
format as the screen size changes.

Groups
Notice that this is just accessible in
ConstraintLayout 1.1.0 or later – see the
beginning of the section for more
information.
A Group enables you to make gatherings of
parts. Right now this just gives a
straightforward method for changing the
perceivability of a bunch of parts. You can
put a gathering on the plan surface utilizing
the Add Group menu command.

see more please visit: https://homeofbook.com

The Group is least demanding to use in the
Component Tree.You can drag quite a few
parts and drop them on the Group. Notice that
there is no sense wherein the parts are
offspring of the Group, it’s anything but a
compartment. The Group essentially keeps a
rundown of the parts that it controls the
perceivability of:

In the model displayed over, the Group
controls the perceivability of button and
button2. In the event that the Group’s
perceivability property is set to undetectable
then button and button2 don’t really show in
the UI however they actually occupy design
room. Assuming you set perceivability to
gone then they are imperceptible and don’t
occupy room in the UI. The Group office is a
minor accommodation as you could
accomplish the very outcome by composing
code that sets the perceivability of every one

see more please visit: https://homeofbook.com

of the parts. In any case, it very well may be
valuable as a method of getting sorted out a
complex UI with various arrangements of
parts that can be made gone or apparent with
a solitary command.

Sizing
In contrast with situating, estimating a part is
practically minor yet with some intriguing
twists.
You can see how the component is sized in
the Attributes window. The type of lines
shown inside the component indicate the size
of the component and its relation to its
content. Straight lines indicate a fixed size:

This auto-sizing behavior is set by the
layout_width and layout_height properties.
You can modify this by typing in an exact
size, e.g. 100dp, into

see more please visit: https://homeofbook.com

thevalueboxnexttotheproperty.
An option in contrast to fixed size parts is to
permit them to
consequently resize to fit or wrap their
substance. To set this you should simply tap
on the inward straight lines which change to
<<< and permit the part to change its size:

This conduct is constrained by layout_width
and layout_height properties set to
wrap_content and it is the most normal
estimating conduct utilized in Android. That
is, most parts change their size to suit their
contents. There is a third chance– the size of
the part can be set by limitations. Assuming
that you click once again on the inner lines
they change from <<< to a spring-like
graphic:

see more please visit: https://homeofbook.com

Using Match Constraints you can set
measuring freely in the flat or vertical.
implying that limitations can be utilized to set
the width or the stature of the part. To set the
width you need to set a limitation on the left
and an imperative on the right and to set a
stature you set a requirement on the top and
one on the base. Match Constraints is set by
setting a decent size of 0dp.

For instance, assuming you have a Button and
physically apply a requirement from the right
and one from the left to the parent and have
wrap_content set as the flat measuring then
the Button stays at its unique size, and
inclination imperatives are added to split the
accessible space in the Button’s position:

If you leave the limitations set up and change
the level estimating to Match Constraints then
the button resizes to utilize the even space
accessible to it:

see more please visit: https://homeofbook.com

The thought is exceptionally basic – the
imperatives control the place of the part, or
the size of the component.
You can apply Match Constraints to parts that
are obliged comparative with different parts
just as the parent container.

For instance, assuming you have two Buttons
and you associate the passed on side of one to
the left half of the other and the equivalent
for the right side then the compelled Button
will situate itself to agree with the center of
the other Button:

You can likewise
set the arrangement guide utilizing the
predisposition control toward cause the

see more please visit: https://homeofbook.com

Button to have a rate offset.

If you leave the limitations set up and change
the even estimating to Match Constraints,
then, at that point, the obliged button resizes
to be a similar size as the other button:

Again, the requirements can be utilized to set
either the position or the size. A similar
guideline works for chains of parts. In the
event that you have a chain set to Spread or
Spread Inside, yet not Packed, you can set
MatchConstraints and the parts will resize to
occupy the space. You can set a

portion of the parts in the chain to Match
Constraints, and just those parts will resize to
occupy the space allotted to them.

For instance, in this chain of three Buttons
just the subsequent two Buttons are set to
Match Constraints and the first is set to Wrap

see more please visit: https://homeofbook.com

Content:
The last measuring choice can be utilized to
set the size of one aspect as a proportion of
the other. To make this work, one of the
aspects should have its size set in another
manner– either by a Wrap Content, a decent
size or a constraint.
The aspect that will be set as a proportion
must be set to Match Constraints and
afterward you click the little triangle toward
the side of the Attributes window to flip
Aspect Ratio Constraint.
For instance, assuming you place a Button on
the plan surface and set its width to Wrap
Content, and its tallness to Match Constraint,
then, at that point, a little triangle will show
up in the top left:

If you click on the
triangle, you will set a default proportion for
width:height of 1:1.

see more please visit: https://homeofbook.com

If you type in a worth of say 1:2 then the
stature will be set to double the width, which
thus is set by the contents:
You can set one of the aspects utilizing
limitations. For instance assuming you
physically put both ways requirements on the
Button and afterward set its flat size to Match
Constraints, the Button will be pretty much as
wide as the screen. Assuming you currently
set Match Constants on the stature and set the
Aspect proportion to 2:1 you will get a
Button that is just about as wide as the screen
and half as high.

see more please visit: https://homeofbook.com

Barriers
Notice that this is just accessible in
ConstraintLayout 1.1.0 or later – see the
beginning of the part for more information.
Barriers take care of numerous
ConstraintLayout issues that would somehow
or another be hard to handle, yet they are not
something you are probably going to utilize
each day.
A Barrier is a brilliant rule. You place a
Barrier on the plan surface and afterward
intuitive quite a few parts onto it– most
effectively inside the Component Tree.This
works similarly as the Group part in that the
Barrier isn’t a holder of any kind, yet
essentially keeps a rundown of parts that it
will work with. The Barrier additionally has a
bearing and positions itself to line up with the
part in its rundown that is the most extreme

toward that path. That is, assuming the
Barrier is set to right it positions itself on the
right edge of the part in its rundown that is
farthest to one side. If you think of the

see more please visit: https://homeofbook.com

groupof components that the Barrier has in its
list as beingsurrounded by a box that just
contains them, a bounding box, then another
way of thinking of this is that the Barrier will
position itself on one of the edges of the
bounding box–the right-hand edge in our
example. Like a Guideline you can situate
different parts comparative with it by setting
imperatives to it. You can see that this
permits you to situate parts so they are to the
extreme right, left, top or lower part of a
group. For instance, utilize the Add Vertical
boundary menu choice to put a Vertical
Barrier on the plan surface. At this stage you
wont have the option to see this is on the
grounds that its default bearing is left and it
accepts up position as far to one side as
possible.

Next
place two Buttons on the plan surface and,

see more please visit: https://homeofbook.com

utilizing the Component Tree simplified them
onto the barrier:

The default Barrier
heading is passed on thus it will presently
situate itself to be on the left hand edge of the
Button that is uttermost to the left. You can
see the Barrier as a gray shaded strip in the
diagram below:

If you move the two Buttons you will see that
the Barrier consistently secures itself to the
left most edge in the gathering. You can
change this conduct to one more edge by
choosing the Barrier in the Component Tree
and afterward utilizing the Attributes window
to change barrierDirection to right say:

see more please visit: https://homeofbook.com

With this change the Barrier positions itself
on the right most edge of the group. Now if
you place a third Button on the design surface
and constrain it to be to the right of the
Barrier, then it will always stay to the right of
the
rightmostedgeofthecomponentsintheBarrier’slist:

If you move the two Button ’s around you
will before long get the possibility that this
Barrier is a method of setting parts to one
side of the furthest right part of the gathering
whichever one this is.Without a Barrier
object you would need to place the Button’s
into a Frame and afterward position different
parts comparative with the Frame.This would
work yet it makes a settled format.The

see more please visit: https://homeofbook.com

Barrier approach keeps the ConstraintLayout
flat.
The Barrier is helpful at whatever point you
have a gathering of parts that change their
size because of client information or
information or district or whatever. You can
utilize a Barrier to split the screen region into
something adequately enormous to oblige the
gathering and afterward the remainder of the
parts can situate themselves in what is left
over.

Constraint Attributes

As you would figure, there are ascribes
basically the same as those utilized by the
RelativeLayout which set the limitations for a
ConstraintLayout. To see each of the
properties you need to tap on the View all
ascribes symbol at the upper right of the
Attributes window– the twofold arrow.
For instance, assuming that you examine the
Attributes window you will see:
Constraints

Left_toLeftOf

see more please visit: https://homeofbook.com

This prompts you to supply the id of the other
control being utilized in the

arrangement– left-hand side to left-hand side
for this situation. There are comparable
imperatives for different potential
outcomes.For example:

Bottom_toBottomOf

thus on.
It is likewise worth arrangement that, in
permitting you to set the place of a part by
essentially hauling it to the area you need, the
Layout Editor is

working out how to set different properties
accurately. You could do this physically to
get a similar impact, yet the Layout Editor
does it just from where you have situated a
part. For this reason it is simpler to let the
Layout Editor set the properties for you.

Troubleshooting
The ConstraintLayout gives a method of

see more please visit: https://homeofbook.com

making responsive designs that change in
accordance with the size of the screen.
Notwithstanding, doing this viably is
troublesome. The measure of knowledge
required works out in a good way past what
the Infer Constraints device has. It might
even be past a human. A less difficult,
however more work-concentrated way, is to
give a different design to profoundly unique
screen sizes and use requirements to make
little adjustments.

The ConstraintLayout library utilizes a
straight imperative solver to work out the
places of the parts as a whole. This then
produces a layout that is used in your app that
is intended to be fast and efficient. As of now
the framework and the Layout Editor are
going through quick change and
advancement. There are many elements that
don’t exactly fill in as promoted, and many
elements don’t have the offices expected to
make them simple to use. However,
ConstraintLayout is the method of things to
come by the Android advancement team.
Given the upside of delivering a solitary

see more please visit: https://homeofbook.com

design that provides food for an assortment of
screen sizes and directions it merits persisting
with.Be that as it may, it is extremely simple
to get into a total wreck in the Layout Editor.
One exceptionally normal issue is for parts to
clearly disappear. This is typically on the
grounds that they are on top of one another or
situated off the screen. The most
straightforward method for figuring this issue
out is to go to the Attributes window and
physically reset one of the situating
properties.
You will likewise find the accompanying tips
useful:

Use situating comparative with another part
in the event that it seems OK. That is,
assuming you have a text passage part then it
seem OK to situate its acknowledge button
comparative with its right-hand side.
If you position everything comparative with
the parent holder then you adequately have an
outright design that indicates the specific and
unchanging place of everything.
If the screen size changes then it is
conceivable that parts will cover each other in

see more please visit: https://homeofbook.com

the event that there isn’t sufficient room.
Continuously cause your designs to have a lot
of extra space. A good strategy when working
with a group of components is to pick one
that you position relative to the container,
then position all other components relative to
it to ensure that you can move the group and
keep alignments.
Remember that a few parts can change their
size too as area and this can adjust the place
of parts situated comparative with them.
Automatically produced limitations now and
again work, however they are seldom pretty
much as legitimate as a bunch of physically
made imperatives. If you plan to make use of
the layout in the future, then it is worth
creating a set of manually applied constraints.
Use Infer Constraints gradually as you add
parts and afterward physically change what it
makes to be more logical.
It is more sensible to deliver a different
design asset for little to medium-sized screens
and one for enormous screens.

see more please visit: https://homeofbook.com

Summary
☐ The ConstraintLayout is the format of
things to come and the new Layout Editor
was made to work best with it.

☐ There are two programmed imperative
devices– Autoconnect which works out
requirements for a solitary part, and Infer
Constraints which works out any missing
limitations for the whole design.Neither one
of the apparatuses is as of now especially
useful.

☐ You can get all free from the limitations in
a format, or only those on a solitary part or an
imperative at a time.
☐ Constraints can be applied from a part to
the parent compartment and these carry on
like outright positioning.
☐ You can set default edges to make
situating parts more regular.
☐ Components can be situated comparative
with another component.
☐ You can’t set negative margins.

see more please visit: https://homeofbook.com

☐ You can adjust text baselines.
☐ Bias requirements permit you to set places
that partition the space accessible in a
predetermined proportion.
☐ Chains give a portion of the highlights of a
LinearLayout.For instance, you can utilize a
chain to disperse parts across the accessible
space.
☐ Guidelines can be added to a layout and
components can be positioned relative to
them, even though they don’t appear in the
final layout.
☐ Groups can be created which allow you to
set the visibility of all of the components in
one go.
☐ You can set the size of a component
absolutely or to be determined by the content.
In addition, you can allow a pair of
constraints to determine the size.
☐ An Aspect Ratio Constraint can set one
dimension as the ratio of another.
☐ A Barrier is a smart guideline that tracks a
specified group of components and is
positioned at the most extreme edge of the
group in a specified direction. You can
position other components relative to the

see more please visit: https://homeofbook.com

Barrier.

Chapter 8
Programming The
UI
If you want to be a really good Android
programmer,not only do you need to know
how to create a UI, but also how the UI is
created. To be really confident in what you
are doing, you need to understand some of
the inner workings of the Android graphics
system. This is also essential if you want to
modify the UI in code and work with menus.

A UI Library
There are lots of different UI construction
kits for Java and other languages, AWT,
Swing, Qt, MFC, WPF and on, and you might
think that mastering them all would be a

see more please visit: https://homeofbook.com

difficult, if not impossible, task. In fact it is a
lot easier than you might think because most
UI libraries use the same general approach
and the Android UI library, which doesn’t
seem to have a given name, is no different.
Let’s take a careful look at how it works.
An Activity has a window associated with it
and this is usually the entire graphics screen
of the device it is running on. In other words,
an Activity can allow other objects to draw
on the device’s screen. However, rather than
simply providing direct access to the graphics
hardware, there is an extensive set of classes
that make building a UI and performing
graphics operations easier.
Before we look at general graphics we need
to first find out how the UI is constructed.

The View
The basis of all UI components and general
2D graphics is the View class. This is a
general-purpose class that has lots and lots of
methods and properties that determine how it

see more please visit: https://homeofbook.com

will display the component or other graphics
entity it represents. It also takes part in the
event handling system, which means Views
can respond to events. There are View classes
that implement all of the standard
components that you make use of in the
Android Studio Layout
Editor,i.e.Button,TextView and so on.

Every View object has an onDraw method
that can draw the graphic representation of
what it represents onto a Canvas object which
is essentially a bitmap with drawing methods.
What happens is that the Activity calls the
View’s onDraw method when it needs to
update the UI and passes it a Canvas object
that it then renders to the screen– you don’t
have to worry about how the Canvas is
rendered to the screen at this level. You can
think of this as, “every View object knows
how to draw itself”.
To summarize:

An Activity can be associated with a View
object.
When the Activity needs to draw its UI it

see more please visit: https://homeofbook.com

calls the View object’s onDraw method
e.g.view.onDraw(Canvas).

The View object then draws on the Canvas
whatever it needs to, whether a button, text or
something else.
The Activity then displays the Canvas object
on the screen.

An Activity can only be associated with a
single View object, which determines what is
drawn on the screen. This might seem a bit
limited but, as you will see, it is far from
limited because View objects can be nested
within one another.

Using
setContentView
How do you set a View object to show in the
Activities window? The answer is that you
use the Activities setContentView method,
which is what we have been doing all along.

see more please visit: https://homeofbook.com

To see this in action, start a new Basic
Activity project
and change onCreate to read:

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState) val b = Button(this)
setContentView(b)

}

Don’t forget to use Alt+Enter to add the
import statements needed to allow you to use
the Button class, and don’t leave any code in
onCreate that would use other View objects
such as the menu.

The first instruction creates a Button object,
which is a subclass of View, and the second
sets this as the Activities View. If you run
this program what you will see is a gray area
that fills the entire screen:

Yes, this is the button! You can even click it
although, with no event handler, nothing

see more please visit: https://homeofbook.com

happens.
To make this button a tiny bit more
interesting we can customize it by setting
properties.For example:
val b = Button(this)
b.text=“Hello
Button”
setContentView(
b)

If you run this you will see a button that fills
the screen with the caption "HelloButton".

Don ’t bother setting any layout properties in
code because at the moment there is no layout
in force so they will be ignored. How to
activate a layout is our next topic.

The ViewGroup
If an Activity can only show a single View
object, how can we ever create a complex UI

see more please visit: https://homeofbook.com

with multiple buttons, textViews and other
components? The answer, and you probably
already guessed it, is that there are Layout, or
ViewGroup, objects which can be used to
host other View objects. You already know
about using Layouts in the Layout Editor or
in an XML file, but they, like all UI elements,
correspond to particular classes that do the
actual work.
A ViewGroup can display multiple View
objects. So in nearly all cases the View object
that is associated with an Activity is a Layout
View. When the Activity asks the Layout
View to render itself, by calling its onDraw
method, the Layout calls the onDraw method
of each of the View objects it contains and
puts them together to make a single result. Of
course,it also performs a layout operation
positioning and sizing the View objects it
contains.

So a Layout does two things:
it hosts other View objects
it performs the layout function after which it
is named.

see more please visit: https://homeofbook.com

To see this in action try:
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState) val linLayout= LinearLayout(this)

val b = Button(this)
b.text=“Hello Button”
linLayout.addView(b)
setContentView(linLayout)

}

If you run this program you will see a button
at the very top left of the screen.

The first instruction creates a LinearLayout
object. This is a subclass of View that can
contain other View objects and it organizes
them in a left to right or top to bottom way
depending on the setting of its orientation
property. Next we create a button object and
then use the standard addView method of the
LinearLayout to add it to the layout.
All Layouts have an addView method, which
can be used to add multiple View objects.

You can add more buttons to see how the
default LinearLayout works: override fun
onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
val linLayout= LinearLayout(this)

val b1 = Button(this) b1.text=“Hello
Button 1”

see more please visit: https://homeofbook.com

linLayout.addView(b1)

val b2 = Button(this) b2.text=“Hello
Button 2”
linLayout.addView(b2)

val b3 = Button(this) b3.text =“Hello Button 3”
linLayout.addView(b3) setContentView(linLayout)

}

460

Programming
Layout Properties
At the moment we are relying on default
settings for the properties,and the layout
properties in particular,of the View objects
we are creating. However, in practice you
could spend the time and lines of code to set
all of the properties needed to create any user
interface and layout you wanted to.

see more please visit: https://homeofbook.com

You now know how to create a UI
completely in code. All you have to do is
create all of the objects you need, set their
properties and add them to suitable layout
objects. This is a little more complicated than
you might think because each layout type has
a different set of layout properties. Exactly
how this is done is easy enough, but if you
don’t want to know about it at this stage you
can skip ahead as it doesn’t change any of the
general principles.
As explained in the previous chapter, each
type of Layout has an associated class
derived from LayoutParams called
layout.LayoutParams where layout is the
name of the Layout class. For example,
LinearLayout has the
LinearLayout.LayoutParams class, which is
used to define all of the layout properties that
a View object can use when added to a
LinearLayout object.

You can probably guess how to make use of
the LayoutParams class. All you do is create
a correctly initialized instance of the
appropriate LayoutParams class and use

see more please visit: https://homeofbook.com

setLayoutParams on any View object you
want to customize.

For example, to set the height and width in a
LayoutParams object we could use:
val LP= LinearLayout.LayoutParams(100,100)

There is a constructor for all of the
LayoutParams classes that accepts just the
width and the height properties. Once you
have a LayoutParams object you can assign it
to any View object by setting the View
object’s
LayoutParams property:
b3.layoutPar
ams =LP
linLayout.ad
dView(b3)

With this change the third button in our
previous layout will be exactly 100 by 100
pixels.
Notice that the constructor works in pixels,
i.e. px, instead of deviceindependent pixels,
dp.You can also use constants for
MATCH_PARENT and WRAP_CONTENT.
For example:
val
LP=LinearLayout.LayoutParams(WRAP_CONTENT,WRAP_CONTENT)

There is also a constructor that allows you to
set the weight. Other layout properties have

see more please visit: https://homeofbook.com

to be set using properties after the constructor
has done its job. Some properties might have
to set using set property methods. For
example:

LP.setMargins(20,20,20,20)

which sets the left, top, right and bottom
margins accordingly:

More complex Layout objects have
correspondingly more
complex LayoutParams that you have to
spend time setting up.
So to be clear– there are properties such as
text that you set directly on the View object,
but there are also Layout properties that you
have to set on an appropriate LayoutParams
object, which is then set as the View object’s
LayoutParam property.

The View Hierarchy

see more please visit: https://homeofbook.com

Notice also that a Layout can contain other
Layouts and so the set of View objects that
make up a UI is structured like a tree, the
View hierarchy. When the screen is redrawn
each View object is asked to draw itself and
this is done for all View objects in the
hierarchy from top to bottom. Normally the
View hierarchy is drawn just once when the
Activity loads. If an area of the screen is
obscured by another graphic for any reason,
the redraw is clever enough not to draw the
entire View hierarchy. It only redraws View
objects that intersect with the invalidated area
of the screen. The View hierarchy is also
involved in passing events between objects
and in determining which component has the
current focus.

XML Layout
So far the principles of the graphic system are
simple enough. Every control or component
corresponds to a View object and you can
build a UI by creating View objects in code

see more please visit: https://homeofbook.com

and adding them to Layouts. You control the
way the View objects are arranged using the
LayoutParams object or by directly setting
properties. An Activity will draw its View
hierarchy to the screen when it needs to.OK,
this is how to create a UI in code,but so far
we have been building a UI using the Layout
Editor. How does this relate to the View
hierarchy?
The Layout Editor creates an XML file which
describes the View hierarchy that you want to
create. The way that this works is fairly
obvious. Each tag in the XML file
corresponds to a View object for which you
want to create an instance.For example:
<LinearLayout>
</LinearLayout>

creates an instance of a LinearLayout object.
Nesting tags within a layout indicates that the
objects created need to be added to the layout
as child Views. For example:
<LinearLayout>

<Button />
</LinearLayout>

creates a LinearLayout object and a Button
object and then adds the Button object to the

see more please visit: https://homeofbook.com

LinearLayout using its addView method. You
can see that the XML captures the idea of the
View hierarchy perfectly.

To set object properties all you have to do is
is use the corresponding attributes in the
XML. For example to set the button’s text:
<Button

android:text=“New Button”
/>

Layout parameters are set using properties
prefixed with layout_property. For example:
<Button

android:layout_width= “wrap_conte
nt”
android:layout_height=“wrap_conte
nt”

/>

That is really all there is to it. The XML
defines a hierarchy of objects and their
properties and the system reads the file and
creates the objects.This use of XML as an
object instantiation system is not an
uncommon one. Of course, the XML created
by the Layout Editor looks a lot more

see more please visit: https://homeofbook.com

complicated than the examples above, but
this is mainly because of the number of
attributes it defines. The basic idea is still the
same.

Inflation Theory
The final big question to be answered is how
does the XML get converted into a real object
hierarchy? The answer to this is to use
an“inflater”. To inflate a layout is Android
jargon for instantiating the objects defined by
an XML file. You normally don’t have to call
an inflater because the system does it for you
behind the scenes, but you can if you want to.
For example, to inflate a layout you would
use an instance of the LayoutInflater.
Normally you wouldn’t create a fresh
instance. Instead you can simply use an
existing one supplied by the system using the
LayoutInflater property of the Activity. Once
you have the LayoutInflater you can use one
of its many inflate methods to create a View
object hierarchy as specified by the XML.

see more please visit: https://homeofbook.com

Which method you use depends on where the
XML is stored. You can simply supply a
resource id for an XML file included in the
res directory. For example, to inflate the
usual activity_main.xml layout you can use:
val inf = layoutInflater
val myView = inf.inflate(R.layout.activity_main,null)
setContentView(myView)

The second parameter of inflate can be used
to provide a View object to act as the root
container for the inflated View hierarchy. The
container is just used as a reference“parent”
for the purposes of calculating the layout.
That is, it simply provides the container that
everything has to fit into according to the
layout rules. Of course this is entirely
equivalent to the usual:
setContentView(R.layout.activity_main)

which calls the LayoutInflater and sets the
view in a single instruction. The only reason
that you would manually inflate an XML
layout is if you wanted to do something
clever, such as put one layout together with
another or in some way manipulate the View
hierarchy.
Notice that there are other types of inflater

see more please visit: https://homeofbook.com

objects, e.g. the Menu inflater, which do the
same job of converting XML to instantiated
objects with the given properties. We will
come back to these more specialized inflaters
when we look at menus in the next chapter.
There is also a version of the inflate method:
inflate(R.layout.activity_main,root, true/false) which will inflate
the XML resource using root as its container
for the purposes of layout if the last
parameter is false, and it will add the inflated
View to the root if the last parameter is true.

Finding View objects
One problem we have to solve if you want to
work with the View hierarchy created by an
inflater is finding View objects in the
hierarchy. In the example where we built the
View hierarchy in code it was easy to keep
track of a button or a textView by simply
keeping a reference to when it was created.
An inflater simply returns the View hierarchy
without an easy way to get at a particular
object, a button say. One way of solving the

see more please visit: https://homeofbook.com

problem would be to “walk” the View tree. A
ViewGroup object, e.g. a Layout, not only
has an addView method but also a range of
methods that allow you to access the objects
it contains. Each child object is assigned an
integer index– think of it like an array. The
method:
getChildAt(i)

will return the child object at index i. You can
also use:
getChildCount()

to find out how many child objects are stored
in the container.
Using these methods you can search the
hierarchy for the View object you want but
how do you know which one it is? The
answer is that all View objects have an id
property which should identify them
uniquely. The id property is set as part of the
XML file.
To avoid you having to work out an id value,
the standard way of setting an id is to define a
resource within the XML file:

<Button
android:id=“@+id/my_button”

When the XML file is inflated the @+

see more please visit: https://homeofbook.com

symbol is inteRpreted as “create a
resource”.An integer id is generated using the
generateViewId method and this is used to
both create the id property and to add a
my_button property to the id property of the
R object, R.id.

If you are using Kotlin to work with the XML
file it automatically converts all of the string
labels on the ids to Activity properties and
then makes them reference the objects that
the inflater creates. To allow this to happen
you have to enable the kotin-android-
extensions plugin– which is enabled by
default in a Kotlin project. You can then
specify which layout files you want to create
properties for using:
import kotlinx.android.synthetic.main.layout.* So to import
properties for all of the View created by the
two standard XML files
main.activity_main.xml and
main.content_main.xml you would use:
import
kotlinx.android.synthetic.main.activity_main.* import
kotlinx.android.synthetic.main.content_main.*

These are automatically added to your project
file when it is created. Any other layout

see more please visit: https://homeofbook.com

resource files that you create will also be
added automatically so that their ids are
properties also.
The only minor complication is that when
you set an id using the Layout Editor it will
auto generate the @+id/ for you.So in the
Attributes window you will see my_button
not @+id/my_button which is what is entered
into the XML file. This is helpful, but it can
be confusing.
There is a lot more to say about resources, but
for the moment this is enough to understand
what is going on. Resources deserve a chapter
all to themselves and you’ll come to it after
we’ve looked at menus.
What all this means is that not only do you
get an autogenerated id value, but also a way
to get this value into running code. You could
use the getChildAt methods to step through
all of the View objects in the hierarchy, but it
is much easier to use:
findViewById<Button>(R.id.my_button)

which returns the object in one instruction. If
you are not using Kotlin’s conversion of ids
to properties then this is the only sensible
way to work and Java programmers make use

see more please visit: https://homeofbook.com

of the findViewById before they can work
with any View object in code.
The general method, in Kotlin, is to inflate
the XML, set it as the content of the View,
and use the generated Activity properties to
work with any View object you want to.

How to Build a UI?
You now have two distinct approaches to
building a UI. You can do the whole job in
code or you can create an XML layout. In
practice it is usually easier to use the Layout
Editor to generate the XML file for you. You
can, however,mix the two approaches and
change a UI “on the fly”. For example you
can load a UI by implicitly or explicitly
inflating an XML file and then

writing code to create and add other
components or even remove View objects
from the layout. To remove View objects you
simply use the removeView or
removeViewAt methods of the ViewGroup

see more please visit: https://homeofbook.com

object.

There are other UI components such as
menus that the Layout Editor doesn ’t
support. In this case you have to work with
the XML or create the UI in code. This means
you do need to know the inner workings of
the View hierarchy even though the Layout
Editor is the easiest way to create a UI.

Summary
☐ All of the UI components are derived from
the View class.
☐ An Activity can host and display a single
instance of the View class set by one of its
setContentView methods.
☐ You can create instances of View objects
in code and set them to be displayed by the
Activity.

☐ A Layout or ViewGroup object is a View
object that can contain many View objects, so
creating a sophisticated layout that the
Activity can display.

see more please visit: https://homeofbook.com

☐ Each Layout has its associated
LayoutParams class, which is used by each
View object it contains to control how it
treats it within the layout.

☐ You generally have to create an instance
of the LayoutParams class, set the parameters
you want to determine, and then set the
instance as the LayoutParams of each View
object that needs to use it via the
LayoutParams property.

☐ The use of Layout containers results in a
View hierarchy, i.e.
hieayoiewojewhhedpybheiv

☐ You can also code the View hierarchy
using XML. Each XML tag corresponds to a
View object and they are nested to define the
hierarchy. The properties of the objects are
set within the XML as attributes. Layout
properties are treated in the same way but
with layout_ as a prefix.

☐ When the time comes for the View
hierarchy to be assigned to the Activity, the

see more please visit: https://homeofbook.com

XML file is converted into a nested set of
View objects by the use of an inflater
method. This simply reads the XML and
converts each tag to an object and sets the
object’s properties.

☐ To find particular View objects in an
inflated hierarchy the usual approach in
Kotlin is to generate properties corresponding
to the ids.If you don’t want to do this then
you have to use use the findViewById
method.

Chapter 9
Menus – Toolbar
A UI isn ’t just made up of buttons and other
widgets or components; the menu is still a
useful way of letting the user select what
happens next. Android’s menu system is easy
to master.We also need to find out about the
Toolbar implementation of the action bar.
There is a menu Layout Editor in Android

see more please visit: https://homeofbook.com

Studio 3.0 and it works quite well, but it is
still worth knowing how to create the XML
yourself. The basic principles of menu
creation are the same as for building a UI in
that a menu is a collection of View objects.
You can create the View objects in code or
you can use an XML file and a special
inflater, a MenuInflater, to convert it into the
objects. Defining a menu is more or less the
same process every time, although the way in
which you use the menu varies according to
where and when the menu is shown, but even
this follows roughly the same steps. Let’s
look a the general idea first.

Creating a Menu
Resource
Menus are generally defined by a menu
resource file, which is an XML file whichis
rendered to createthemenu.All menu
resources arestoredin the app\res\menu
directory. Ifyou right click on this directory

see more please visit: https://homeofbook.com

you can select the New, Menu resource
option and type in a name–all lowercase as
usual:

You can ignore the Available qualifiers for
the moment. The idea is that each resource
you create will be used in a given situation
according to the qualifiers you select. In this
way you can create custom menus for
particular languages for example. More about
this idea in Chapter 11.

When you click the OK button the resource
file is created and it will be opened in the
layout editor. This in principle should allow
you to edit the menu using drag-and-drop just
like a general layout, but at the moment it is
very limited and tends to create XML that
doesn’t work. You can place a menu item
onto the menu and customize some of its
properties, but this is about as far as it goes:

see more please visit: https://homeofbook.com

You can work either with the menu editor or
the XML directly. You will discover that the
XML Editor suggests auto-completions so
you aren’t entirely without help even if you
have to abandon the menu editor.
Before we can create a menu we need to
know something about the XML tag.and the
corresponding menu items./

The Menu Tree
A menu is a hierarchy of options. The top-
level menu presents a set of items. If any of
the items is itself a menu, i.e. a submenu,
then it can contain more items.
Android menus make use of three objects,
and hence three XML tags:

<menu>
<item>

see more please visit: https://homeofbook.com

<group>

At the top level the <menu> tag inflates to a
Menu object which is a container for menu
items and group elements. The <item> tag
inflates to a MenuItem object which is a
single option in the menu. It can also contain
a <menu> tag which can in turn contain more
<item> tags to create a submenu. The
<group> tag doesn’t inflate to an object.
Instead it sets the group id of all of the items
it contains. You can set various properties of
a group of items in one operation i.e. they act
as a group.
There are a range of attributes that can be
used with <item> and <group> and not all
can be used in every situation. The three that
you need to know about are:

id - an integer that you use to identify the
menu item title - a string that determines what
the menu item displays icon - a drawable
image used when the menu item can be
displayed as an icon.

With all this explained let ’s define a menu

see more please visit: https://homeofbook.com

with a single File item and a submenu
consisting of two items, New and Open:
<?xml version=“1.0” encoding=“utf-8”?>
<menu xmlns:android=

"http://schemas.android.com/apk/res/android">
<item
android:id=“@+id/file” android:title=“File”> ” android:title=“Open”
/>

<!- “file” submenu -->
<menu>

<item
android:id=“@+id/create_ne w” android:title=“New” />

<item
android:id=“@+id/open

</menu>
</item>
</menu>

You can see in the example that we have a
top-level menu item that we don’t bother
giving an id which contains a single <item>
tag. This displays the text File when the menu
is displayed. In case you have forgotten the
notation“@+id/name” automatically creates
the id resource name and sets it to a newly
generated integer value. You can then use
name in code to find and work with the menu
item.

see more please visit: https://homeofbook.com

The <item> tag contains another <menu> tag
which in turn contains two more items that
correspond to New and Open file menu
options.You can see the structure in the
Component Tree:

The Component Tree can also be used to do
some limited editing of the menu by
dragging-and-dropping to modify how items
are nested. Exactly how this simple menu
looks depends on how it is displayed, but it
defines a menu with a single top-level File
option which when selected displays a
submenu of two other options, New and
Open.

Displaying a Menu
There are four different ways you can display
a menu:
1. Action bar such as the App Bar

see more please visit: https://homeofbook.com

2. Context menu
3. Contextual action Bar (CAB)
4. Popup
The action bar or App bar was introduced in
Android 3 as a replacement for the original
options menu and has become the standard
primary menu for apps. With Android 5 a
new way of implementing it was introduced,
namely the Toolbar, which is a standard
widget that can be edited using the Layout
Editor. This makes it easier to integrate and
work with. If you want to use the ActionBar
in earlier versions of Android you need to
make use of the Support Library – this is
automatically included when Android Studio
creates a project for you.
The context menu is a popup menu that
appears in response to a long click on a
component of the UI.
The Contextual Action Bar appears at the top
of the screen when the user long-clicks on a
UI element and it is supposed to be used to
provide actions that are appropriate for the
item that has been selected. It too needs the
Support Library to work with older versions
of Android.

see more please visit: https://homeofbook.com

The popup menu can be displayed in
response to almost any user action you care to
use. It appears next to the View object that
causes it to be displayed. For example you
could have a button that displays a popup
when clicked or a popup could appear when a
user types something into a text field. It is
difficult to know exactly when to use a popup
menu. Logically the next step would be to use
the XML file we just created to display either
a CAB or a popup, but it is better to start with
the default project type as it generates the
code and menu resource file needed to
implement an action bar, the Toolbar, and it
is used in most applications. The remaining
menu types are the topic of the next chapter.

Using the Toolbar
If you start a new Basic Activity project
called MenuSample then you will discover
that it automatically creates a main_menu
resource file and the code needed to display it
as a Toolbar.

see more please visit: https://homeofbook.com

The Basic Activity template uses the support
library to make it possible in earlier versions
of Android. This is why the MainActivity
class in your project has to derive from the
AppCompatActivity class and not the more
basic Activity class:
class MainActivity : AppCompatActivity() {

and why we need the imports:
import
android.support.design.widget.Snackbar
import android.support.v7.app.AppCompatActivity

The Toolbar is defined in activity_main.xml
as a custom widget:
<android.support.design.widget.AppBarLayout
android:layout_width=“match_parent”

android:layout_height= “wrap_content”
android:theme=“@style/AppTheme.AppBarOverlay”>
app:popupTheme=“@style/AppTheme.PopupOverlay”
style=“@style/AppTheme” />

<android.support.v7.widget.Toolbar
android:id=“@+id/toolbar”
android:layout_width=“match _parent”
android:layout_height=“?attr/a ctionBarSize”
android:background=“?attr/colorPrimary”

</android.support.design.widget.AppBarLayout>
<include layout=“@layout/content_main” />
...

Notice that the Toolbar ’s style is set to
AppTheme. This is important as the style
selected changes the way the Toolbar is

see more please visit: https://homeofbook.com

displayed and can stop it from displaying
altogether.
Also notice the tag:
<include layout=“@layout/content_main” />

This loads the layout that you design in
content_main.xml. As explained in earlier
chapters, the layout files are split into two
parts– activity_main.xml which defines the
layout that should be common to all Android
apps, and content_main.xml which is used for
the layout specific to your app. The two files
are automatically merged together when
activity_main.xml is loaded.
When the Activity loads, onCreate runs and
inflates the layout in activity_main.xml and
the included content_main.xml. This is
enough for the Toolbar to display, but for it to
be used as an action bar menu by the system
we need to add:
setSupportActionBar(toolbar)

This is generated for you automatically and
you will find it in the MainActivity.java file
in onCreate:

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

see more please visit: https://homeofbook.com

Now if you run the app you will see the
familiar Hello world message and the default
App bar:

In fact, this toolbar is so familiar you may not
even have realized that it is a menu. It has the
name of the app to the left and a three dot
icon to the right.
If you select the three dot icon the Settings
menu item appears:

If you take a look
at the menu_main.xml file you can see the
definition of this menu:
<menu xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"

see more please visit: https://homeofbook.com

tools:context="com.example.mikejames.myapplication.MainActivity”>

<item
android:id=“@+id/action_settings”
android:orderInCategory=“100”
android:title=“Settings”
app:showAsAction=“never” />

</menu>

You can see that this defines a single menu
with a single item with the title “Settings”.
There are some new attributes being used in
the item tag.The showAsAction attribute is
important for the way the Toolbar,or action
bar,

works.By default the system places menu
items into the overflow area that is only
revealed when the user selects the three dot
icon or more generally the action overflow
icon. However, for items that you would like
to give the user more direct access,you can
set the showAsAction attribute.

This can be set to any of the following:
ifRoom - show if there is room
never - never show in the visible area
withText - show with text
always - always show even if it means

see more please visit: https://homeofbook.com

overlapping other items collapseActionView
- show a collapsed view of the item.

As you can see, the Settings item in the
default Toolbar is set to never show.
The showAsAction attribute works with the
orderInCategory attribute to determine the
order in which items are shown.

To see this in action let’s add another item,
one to perform a Send, to the end of the
menu_main.xml file before the final </menu>
tag:
<item android:id=“@+id/action_send”
android:title=“Send”
app:showAsAction=“ifRoom” />

You can do the same job using the Menu
editor. Simply drag-and-drop a Menu Item
from the Palette to the Component Tree and
use the Attributes window to customize it:

see more please visit: https://homeofbook.com

No matter how you
do the job the result is the same:

Now if you run the app
you will see:

The new Send item will be displayed as long
as there is room. If there isn ’t it will appear
when the user selects the three dots icon.
It is usual to show toolbar items as icons so

see more please visit: https://homeofbook.com

change the item tag to read:

<item android:id= “@+id/action_send”
android:title=“Send” app:showAsAction=“ifRoom”
android:icon=“@android:drawable/ic_menu_send”/>

which specifies one of the many supplied
icons. You can also use the property window
to select ic_menu_send in the Resources
window:

You can carry on adding menu items to the
Toolbar and customizing how they display
given different screen widths. The general
idea is the same for all menus.

Creating the App
Bar

see more please visit: https://homeofbook.com

So far we have just looked at the
menu_main.xml file and the XML
specification of the action bar menu. There is
also some code generated to actually create
the menu displayed in the App bar. The
Activity will fire a CreateOptionsMenu event
when it is ready to display the App bar -
recall that before Android 3 there was an
options menu rather than an action bar.

All the onCreateOptionsMenu event handler
has to do is inflate the XML file that defines
the menu:
override fun onCreateOptionsMenu(menu: Menu): Boolean {
menuInflater.inflate(R.menu.menu_main, menu) return
true

}

The onCreateOptionsMenu is called once
when the Activity starts.Before Android 3 it
was called each time the menu was displayed
on the screen, but now the App bar is always
on display. How to change a toolbar is
discussed later.

All the event handler has to do is use the
appropriate inflater object to create the menu
from the resource file. The new View

see more please visit: https://homeofbook.com

hierarchy of menu and item objects is added
to the menu object passed to the event
handler. This is important because it means
that your new menu items are added to any
that are already there. This allows other
Activities and Fragments to add items to a
common toolbar.

Where's My
Toolbar?
If you try any of this out then there is a
chance that you will do everything correctly
and yet your Toolbar will not show.
There are only two common reasons for this:

1. You are targeting and using an early
version of Android which doesn’t support the
action bar. This is unlikely, especially if you
are using the Support Library.

2. Much more common is that you are using a
theme that doesn’t support the type of action

see more please visit: https://homeofbook.com

bar you are using.
The solution is easy. For Android 5 or later,
or when using the Support Library,select one
of the AppCompat themes if you want to
make use of the new features introduced with
Android 5. As always, Android Studio
generates the correct XML for the styles that
work with the Toolbar.

Responding to Menu
Events
You can attach click event handlers to the
various items in a menu in the usual way.
This is something that is often overlooked
because there is a simpler and standard way
of doing the job. However, it is worth seeing
the direct method if only to convince yourself
that a menu is just another part of the View
hierarchy that your application displays. If
you aren’t fully familiar with how to attach a
click event handler to a View object, refer
back to Chapters 4 and 5.

see more please visit: https://homeofbook.com

When you inflate a menu resource in
onCreateOptionsMenu what happens is that
the View hierarchy that is created when you
inflate the XML is added to the current menu.
This is passed into the onCreateOptionsMenu
event handler in the menu parameter:

override fun onCreateOptionsMenu(menu: Menu): Boolean {

Next you use the inflater and inflate the
resource:
menuInflater.inflate(R.menu.menu_main, menu)

After this, menu contains the View hierarchy,
that is the entire menu as created so far.
At this point you might be thinking that you
can access the menu items using

Activity properties that Kotlin adds. You
can’t and you can’t import the menu XML
file as you can with a layout. Instead you
have to use findViewById however you can’t
do this because the menu hasn’t yet been
added to the complete View hierarchy. The
menu is only added to the View hierarchy
after the onCreateOptionsMenu event handler
finishes. That is, the menu’s View hierarchy
is built up in menu and this is added to the
app’s full View hierarchy only when the

see more please visit: https://homeofbook.com

onCreateOptionsMenu event handler finishes.

To allow you to find the menu item while in
onCreateOptionsMenu, the menu object has
its own findItem method. So to find the
MenuItem that corresponds to the item with
id action_send you would use:
val mItem = menu.findItem(R.id.action_send)

Now that you have the MenuItem object
corresponding to the Send item you can add a
click event handler:
mItem.setOnMenuItemClickListener {item→>

process event
fals
e
}

Now the event handler will be called when
the Send menu item is selected by the user.
The event handler should return true if it has
consumed the event and false if it wants to
pass it on to other handlers.

The entire onCreateOptions Menu method is:

override fun onCreateOptionsMenu(menu: Menu): Boolean {
menuInflater.inflate(R.menu.menu_main, menu) val
mItem = menu.findItem(R.id.action_send)
mItem.setOnMenuItemClickListener {item
>

see more please visit: https://homeofbook.com

process event false
}
return true

}

You can also add an event handler for the
menu in the XML resource using the
android:onClick attribute. The event handler
has to have the same signature as the one
demonstrated above,i.e.it has to return a
boolean and have a single MenuItem
parameter.
For example:

fun myOnClick(
item:MenuItem):
Boolean { return true

}

and:

<item android:id= “@+id/action_send” android:title=“Send”
app:showAsAction=“ifRoom”
android:icon=“@android:drawable/ic_menu_send”
android:onClick=“myOnClick”

/>

You can use this method to connect as many
individual event handlers as you

require for each of the menu items.
This is not the way it is usually done. It tends

see more please visit: https://homeofbook.com

not to be a good idea to attach event handlers
to the click events of each menu item.

Instead the Activity has an
onOptionsItemSelected event handler method
which is called when any of the items in the
menu is selected. Obviously this saves a great
deal of effort because you just have to
implement a single event handler– and you
don’t even have to hook it up to the menu.

Android Studio automatically generates an
event handler ready for you to use:
override fun onOptionsItemSelected(item: MenuItem): Boolean { return
when

(item.itemId) {
R.id.action_settings -> true
else -> super.onOptionsItemSelected(item)

}
}

This just handles the single autogenerated
Settings menu option, but you can see the
general principle. The event handler is passed
the menu item that has

been selected - the actual object not just its id.
You can then use the menu item’s ItemId

see more please visit: https://homeofbook.com

property to retrieve the id and you can then
test it against the ids that you assigned in the
resource file.

So in our simple example with a Settings and
a Send item we might rewrite the generated
event handler as:
override fun onOptionsItemSelected(item: MenuItem): Boolean { return
when

(item.itemId) {
R.id.action_settings ->
true R.id.action_send -> {

perform send action
true
}
else -> super.onOptionsItemSelected(item)

}
}

You can see the overall thought – test for
every one of the thing’s id in every one of the
provisos and return valid assuming you have
handled the thing occasion. This is the
standard method of handling thing occasions
in menus, that is with a solitary occasion
controller and a, potentially huge, when
statement.

see more please visit: https://homeofbook.com

Changing Menus in
Code
A menu is only a View progression thus you
can make changes to it very much like any
View order by adding and redoing View
objects. Nonetheless, menus have some
additional contemplations since they are
shown in a marginally unique manner to the
remainder of the UI. The issue is that the
menu things are not in every case part of the
View progressive system. They are made
when the menu is shown. This implies that
you may attempt to alter them before they are
available thus cause an application crash.
The way to adjusting a menu on the fly is the
onPrepareOptionsMenu occasion controller.
This is called not long before the menu is
shown and the menu View objects are
remembered for the View chain of
importance. The onCreateOptionsMenu
occasion possibly fires once when the menu
is made,however the onPrepareOptionsMenu

see more please visit: https://homeofbook.com

is called each time the menu is redisplayed.
Consequently you can utilize it to make
changes to the menu.

Finding a straightforward illustration of its
utilization is troublesome as we will find, so
we should simply add another thing through
the
onPrepareOptionsMenu. Select a reasonable
area in the class and right snap, select
Generate and afterward Override strategy.
You can choose onPrepareOptionsMenu from
the rundown and Android Studio will make a
stub for you:
abrogate fun onPrepareOptionsMenu(menu: Menu?): Boolean { return

super.onPrepareOptionsMenu(menu)
}

Now we should simply utilize the add
strategy to add another thing. There are
various over-burden adaptations of add that
permit you to determine the thing
exhaustively. The easiest is simply
add(CharSequence) which adds a thing with
the predefined title:
supersede fun onPrepareOptionsMenu(menu: Menu?): Boolean {
menu?.add(“New

see more please visit: https://homeofbook.com

Item”)
return super.onPrepareOptionsMenu(menu)

}

Now assuming you run the program you will
find that each opportunity you select the
Settings menu two or three New Items are
added to the menu:

What is continuing? The appropriate response
is that each time the menu is drawn the
onPrepareOptionsMenu is called. For
instance, assuming you make the Settings
menu be shown, this overwrites the menu
show and thus it must be redrawn and
onPrepareOptionsMenu is called.
If you need to alter the menu in this manner
you really want to check in the event that it
has effectively been made.As such, you really
want to actually look at the situation with the
menu to check whether the thing you need to
add is now there.

see more please visit: https://homeofbook.com

A somewhat more practical model is to add
and eliminate a menu thing relying upon the
setting of a checkbox. Add a checkbox and
change the technique to read:
abrogate fun onPrepareOptionsMenu(menu: Menu?): Boolean { if

(checkBox.isChecked()) {
menu?.add(Menu.NONE, 10, Menu.NONE,“New Item”)
} else {
menu?.removeItem(10)
}
return super.onPrepareOptionsMenu(menu)
}

Notice that every one of the things added are
given id 10 – there can be more than one
menu thing with a similar id. If the checkbox
isn't checked then the menu item with id 10 is
removed. Assuming that there is no menu
thing with id 10 nothing occurs and assuming
there are more than one simply the first is
eliminated. Utilizing this you can add
different New Items and eliminate them by
basically seeing the Settings menu which
refutes the menu display.
In a more reasonable application you
wouldn’t trust that the menu will be nullified
by a client activity. You would call
invalidateOptionsMenu() when you needed

see more please visit: https://homeofbook.com

the onPrepareOptionsMenu to be called.So
maybe a superior model is to add a button
that calls invalidateOptionsMenu to refresh
the activity bar:
button.setOnClickListener { view-> invalidateOptionsMenu() } and
have the onPrepareOptionsMenu possibly add
the thing assuming it isn’t as of now in the
menu:
abrogate fun onPrepareOptionsMenu(menu: Menu?): Boolean { if

(checkBox.isChecked()) {
if (menu?.findItem(10) == invalid) { menu?.add(Menu.NONE, 10,
Menu.NONE,“New Item”)

}
} else {
menu?.removeItem(10)
}
return super.onPrepareOptionsMenu(menu)
}

Finally, how would you set different
properties of the MenuItem you have added?
The appropriate response is that add returns
the MenuItem made. So to set the new thing
to show in the activity bar you would utilize
something like:

val menuItem= menu?.add(Menu.NONE, 10, Menu.NONE, “New Item”)
menuItem.setShowAsAction(MenuItem.SHOW_AS_ACTION_AL WAYS)

Dynamically adjusting the menu involves

see more please visit: https://homeofbook.com

monitoring its present status and really at that
time changing it.

Controlling the
Toolbar
There are two or three inquiries that actually
remain. You can perceive how to add things,
submenus and for the most part control what
the Toolbar shows, Nonetheless shouldn’t
something be said about controlling when it
is shown or what it looks like? The response
to these inquiry depends on working with the
ActionBar object and as you would expect
this isn’t an overall thing to all menus.
ActionBar has heaps of highlights for
showing menus in various ways and to cover
it totally would take an excessive amount of
room.However,it merits knowing a portion of
the fundamental customizations that you can
apply. You can get the ActionBar object in an
Activity utilizing supportActionBar or
actionBar properties. When you have the

see more please visit: https://homeofbook.com

ActionBar object you can utilize its show()
and stow away() techniques to show/conceal
it as required: supportActionBar?.hide()

Similarly you can change the title and caption
showed in the activity bar: supportActionBar?.title =“My
Action Bar”
supportActionBar?.subtitle =“My Subtitle”

There are
numerous different properties and strategies
that you can use to alter the manner in which
the activity bar looks and behaves.

Things that merit gazing upward are: utilizing
a split Toolbar; Up Navigation; Action
Views; Collapsible Action Views; Action
suppliers; and Navigation tabs.

Summary
☐ A menu is an order of View protests very

see more please visit: https://homeofbook.com

much like any UI element. ☐ You can make
a menu in code, however utilizing a menu
XML asset document is the most widely
recognized method of doing the job. ☐ There
are Menu articles and labels which go about
as compartments for Item protests and tags.
☐ Submenus can be made by settling Menu
objects inside other Menu objects.
☐ Menu things can have a title, symbol, and
numerous different qualities which oversee
how they are displayed.
☐ There are four distinct ways you can show
a menu: App bar/Toolbar; setting menu;
logical activity mode; popup.

☐ To utilize the App bar/Toolbar and the
relevant activity mode in prior renditions of
Android you really want to utilize the
AppCompatActivity and the other help
classes.

☐ To show a Toolbar you should simply
utilize the onOptionsCreate occasion
controller to make a menu, as a rule by
swelling a menu resource.

see more please visit: https://homeofbook.com

☐ Overall you can deal with click occasions
on every menu thing or, all the more
ordinarily, you can utilize a thing’s snap
occasion overseer that the framework gives
that reacts to a tick on any of the items.

☐ For the Toolbar the thing’s snap occasion
controller is characterized in the Activity as
abrogate fun onOptionsItemSelected(item: MenuItem): Boolean

Chapter 10
Menus – Context and
Popup
As well as the generally useful Toolbar which
fills in as an application ’s principle menu,
there are three other regularly experienced
menus– the setting menu, the context oriented
activity menu, and the popup menu. They
share the essential Android way to deal with
menus while having some unmistakable
characteristics.
The setting menu is a drifting menu that

see more please visit: https://homeofbook.com

presentations orders that take the thing
clicked as their subject. For instance,
choosing a line in a table may raise a setting
menu that permits you to erase or move the
thing. The setting menu is straightforward
and genuinely simple to carry out, yet there is
a slight turmoil brought about by the
presentation of the Contextual Action mode,
a setting menu as an activity bar which is
upheld in Android 3 or more. A popup menu
shows a rundown of things and is moored to
the View that summoned it. It tends to be
utilized, for instance, to give extra decisions
to tweak an action.

The Context Menu
Now that we have the standards of menu
development surely knew it is not difficult to
broaden what you are familiar the activity bar
to different sorts of menu. To make a setting
menu is exceptionally simple once you know
the essential mechanism.
You can enlist any View object in the UI to

see more please visit: https://homeofbook.com

react to a long snap. At the point when any
enlisted View object gets a long snap, the
Activity’s onCreateContextMenu occasion
overseer is called. This is the place where you
make the menu that will be displayed as the
setting menu. Notice that you can enlist as
many View objects as you like and every one
will react to a long snap by
onCreateContextMenu being called. This
implies that to show an alternate menu for
each View object you want to test to see
which one has caused the event.
So the formula is:

1. Create a XML menu resource
2. Register all of the View protests that you
need to trigger the setting menu utilizing
registerForContextMenu

3. Override the onCreateContextMenu
occasion overseer and utilize a menu inflater
to make the menu

For a basic model make another menu asset,
right snap in the res/menu registry and select
the new asset menu record choice. Call it

see more please visit: https://homeofbook.com

mycontext.xml and enter the following:
<?xml version=“1.0” encoding=“utf-8”?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item
<item

android:title=“MyItem1”
android:id=“@+id/myitem1”/>
android:title= “MyItem2”
android:id=“@+id/myitem2”/>
</menu>

Next place a button and a checkbox on the UI
and in the OnCreate strategy add the lines as
displayed below:
supersede fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

registerForContextMenu(button)
registerForContextMenu(checkBox)

}

You can see what’s going on here, We
observe the Button and CheckBox items and
register them utilizing
registerForContextMenu.Later this a long
snap on either UI part will trigger the

see more please visit: https://homeofbook.com

onCreateContextMenu event.

We want to add an overseer for this occasion
and we should allow Android Studio to
produce the code for us. Assuming you right-
click at a reasonable spot in the Java code for
the Activity and select the Generate and
afterward the Override Methods choices in
the menu that seems you will see a rundown
of techniques you can override:

Select onCreateContextMenu and Android
Studio will produce a stub for you. You can
observe the technique you are searching for
by composing in its name character by
character and permitting Android Studio to
show you matches in the rundown. Select the
one you need when you can see it.
All you need to do in this hit is expand the
menu asset record or in any case make a
menu object in code:
supersede fun onCreateOptionsMenu(menu: Menu): Boolean {

see more please visit: https://homeofbook.com

menuInflater.inflate(R.menu.menu_main, menu) return true

}

If you currently run the program you will see
that a similar setting menu seems when you
long snap on either the Button or the
CheckBox:

Obviously assuming you truly need this to be
a setting menu then you really want to test the
View object passed into the
onCreateContextMenu occasion controller
and burden the menu asset that relates to the
fitting menu for the View object.
How would you deal with the setting menu
thing determination? n pretty much the same
way concerning the Toolbar.

When any of the things in the setting menu is

see more please visit: https://homeofbook.com

chosen the Activity ’s onContextItemSelected
occasion overseer is called. So you should
simply supersede this and utilize the thing’s
id to control what ought to occur. For
example:
supersede fun onContextItemSelected(item: MenuItem): Boolean { return
when

(item.itemId) {
R.id.myitem1 → {
myitem1 action
true

}

R.id.myitem2 → {
myitem2 action
true

}
else - >
super.onContextItemSelected(item)
}
}

The main additional detail is the accessibility
of the ContextMenuInfo object which is
passed to the onCreateContextMenu overseer
and can be recovered from the thing in the
occasion controller utilizing
item.getMenuInfo(). This contains extra
information such as which line in a list view
has been long clicked. Precisely what data is

see more please visit: https://homeofbook.com

incorporated relies upon the View object that
produced the event.
If you need to see a setting menu in real life
add a TextView to the UI and try: supersede fun
onContextItemSelected(item: MenuItem): Boolean { return when

(item.itemId) {

R.id.myitem1 - > {
textView.text =
“item1” true

}

R.id.myitem2 - > {
textView.text =
“item2” true

}
else - >
super.onContextItemSelected(item) }
}

Contextual Action
Bar
The setting menu is not difficult to utilize Be
that as it may later Android 3 the Contextual
Action Bar menu is liked as it expands the
conduct of the move bar,assuming control

see more please visit: https://homeofbook.com

over the App bar position at the highest point
of the screen. However, it works, and is
executed, freely of the App bar.

When a client long snaps a View object a
relevant activity bar (CAB) shows up at the
highest point of the screen, rather than close
by the related View object as the setting
menu does, and it offers the client to chance
to play out various activities. This might be
the method for getting things done, yet it is
more convoluted in light of the fact that it
expects you to carry out more code.
Contextual activity mode can be utilized in
before forms of Android through the Support
Library which Android Studio consequently
incorporates for you.
Unlike the setting menu you don’t simply
enlist UI parts that trigger the menu. You
need to call the startActionMode strategy to
show the relevant activity mode menu, and
this implies you need to compose a long snap
occasion controller. Notice that it is
dependent upon you what client activity
triggers the relevant activity mode, however
it is almost consistently a long click.

see more please visit: https://homeofbook.com

The means to making a context oriented
activity bar are:

1. First make an occurrence of
ActionMode.Callback which contains
strategies for various stages in the menu’s
lifecycle.
2. You need to at minimum abrogate the
onCreateActionMode and this generally calls
a menu inflater to produce the menu.
3. To deal with occasions on the menu you
likewise need to supersede
onActionItemClicked.
4. To cause the menu to seem you need to
call
startSupportActionMode and pass it the case
of
ActionMode.Callback you made earlier.
Notice that ActionMode.Callback is the
primary illustration of an occasion object that
we can’t carry out utilizing a lambda for the
basic explanation it characterizes four
occasion overseers. As such it’s anything but
a SAM and we need to carry out an item to
pass to the setListener method.
For instance, assuming that you have a button

see more please visit: https://homeofbook.com

and you need a long snap occasion to trigger
the menu you really want to write in the
Activity’s OnCreate something like:
button.setOnLongClickListener { view-> bogus } So far all we
have executed is a void long snap occasion
controller for the button. To make the long
snap occasion show a menu we first need an
occurrence of the ActionMode.Callback
interface.
You just need to enter
object:ActionMode.callback and afterward
you can utilize the create code choice to
execute the interface:
val mycallback=object : ActionMode.Callback { abrogate fun
onActionItemClicked(
mode: ActionMode?, thing: MenuItem?): Boolean { TODO(“not
implemented”)
}

supersede fun onCreateActionMode(
mode: ActionMode?, menu: Menu?): Boolean { TODO(“not implemented”)
}

supersede fun onPrepareActionMode(
mode: ActionMode?, menu: Menu?): Boolean { TODO(“not implemented”)
}
abrogate fun onDestroyActionMode(mode:
ActionMode?) {
TODO(“not implemented”)
}

}

The Callback object has four techniques

see more please visit: https://homeofbook.com

every one of which is called as a component
of the menu’s life cycle. You really must
supplant the TODOs with code that profits
the right sort for each method.
You need to ensure that when you import the
class you import the rendition from the help
library:
import android.support.v7.view.ActionMode

As you would well theory, to cause the menu
to seem you need to fill in the subtleties for
the onCreateActionMode method:

abrogate fun onCreateActionMode(
mode: ActionMode?, menu: Menu?): Boolean {
mode?.menuInflater?.inflate(R.menu.mycontext, menu) return true
}

All we do is swell the menu asset and the
framework adds it to the menu. You can
likewise finish up the subtleties of different
strategies– you in all probability will need to
add something to
onActionItemClicked, however this doesn’t
include anything new. Finally we want to
enact the logical activity menu in the button’s
onLongClick occasion handler:

button.setOnLongClickListener { view
>

see more please visit: https://homeofbook.com

startSupportActionMode(mycallbac
k) true

}

Now when you long click the button a new
context action bar menu appears above the
usual App bar:

Notice that this acts somewhat better in that
the menu stays on the screen until the client
taps the left bolt button in the corner. You can
permit the client to make numerous
determinations or excuse the menu when the
client chooses one choice. In this sense the
logical activity bar is more complex and
adaptable than the basic setting menu.
The total code to make the relevant activity
bar show up, with the article changed to a
mysterious item withing the
setOnLongClickListener is: abrogate fun
onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

see more please visit: https://homeofbook.com

button.setOnLongClickListener {
view - > startSupportActionMode(object : ActionMode.Callback {
supersede fun onActionItemClicked(

mode: ActionMode?,
thing:
MenuItem?):
Boolean {
return false
}
supersede fun onCreateActionMode(mode:
ActionMode?,
menu: Menu?): Boolean { mode?.menuInflater?.inflate(R.menu.mycontext,
menu) return true
}

supersede fun onPrepareActionMode(mode: ActionMode?,
menu: Menu?): Boolean { return false

}

abrogate fun onDestroyActionMode(mode: ActionMode?) { }
})
true
}

This presentation has quite recently start to
expose how context oriented menus can be
utilized however the overall standards
observe the thoughts of the overall Android
menu and large numbers of the points of
interest of the activity bar.

The Popup Menu

see more please visit: https://homeofbook.com

The last menu is so basic by correlation with
the rest it is not really important to disclose
how to carry out it! What is more
troublesome is to say when it ought to be
utilized. It positively shouldn’t be utilized as
a substitute for a setting menu where the tasks
influence the substance that it is“connected”
to. On account of a popup it appears to be
that its normal use is to refine an activity
choice by giving boundaries that adjust it.

To show a popup menu, you should simply
launch a PopupMenu object, set its
onMenuItemClick occasion overseer, make
the menu by blowing up an asset document
lastly utilize its show strategy. Where on the
screen the PopupMenu shows relies upon the
View object you pass while making the
instance.

The means are:

1. Create an occurrence of PopupMenu and
pass the View object you need to use to
position the menu.
2. If you need to deal with thing

see more please visit: https://homeofbook.com

determination, supersede the
onMenuItemClick method.
3. Use the case’s blow up technique to make
the menu.
4. Use the case’s show strategy to show the
menu.

A popup menu is generally displayed in light
of some client activity thus we want an
occasion controller to make the popup in.
Assuming that you place a button into the UI
you can characterize its snap occasion
controller as:

button.setOnClickListener { view - >
val popup = PopupMenu(view.context, view)
popup.inflate(R.menu.mycontext) popup.show()

}

ThePopupMenuconstructoraccepts the
context andtheViewobjectit will be displayed
next to. Usually this is the View object that
the user clicked or interacted with i.e. the
button in this case. Next we inflate the menu
as usual by using the Popups own inflater
which adds the menu to the Popup. Finally
we call Show which displays thePopup:

see more please visit: https://homeofbook.com

The menu is quickly excused assuming the
client taps on a thing or on some other piece
of the display.
Obviously on the off chance that you were
truly utilizing the popup menu you would
likewise deal with the thing click event:

popup.setOnMenuItemClickListener { thing >
textView.text =
item.title false

}

As before you would utilize a when to find
which thing the client had chosen and follow
up on that selection.
The total code is:

abrogate fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

button.setOnClickListener { view - >
val popup = PopupMenu(view.context, view)
popup.inflate(R.menu.mycontext)
popup.setOnMenuItemClickListener { thing >

see more please visit: https://homeofbook.com

textView.text =
item.title false
}
popup.show()
}
}

Summary
☐ The setting menu is summoned for all
View objects in the UI that are enlisted
utilizing registerForContextMenu(View).

☐ When the client long taps on any enrolled
object
onCreateContextMenu is called and you can
utilize this to show the menu. At the point
when the client chooses any of the things in
the menu, the framework
onContextItemSelected occasion controller is
called.

☐ The logical activity bar menu is the most
muddled to execute. You need to make an
ActionMode.Callback object total with
techniques to make the menu and handle
occasions from its items.

see more please visit: https://homeofbook.com

☐ To show the menu you call the
startSupportActionMode(Callback) indicating
the Callback object to be used.

☐ If you need to utilize the relevant activity
mode menu on prior variants of Android you
need to utilize the Support Library classes.

☐ The popup menu is the most
straightforward to execute. Basically make a
Popup object, swell the menu asset, and
utilize its show technique to show the menu.

Chapter11
Resources
So far we have disregarded assets, yet the
subject can be overlooked no more. Assets
fill too significant a need in Android. They
not just make limitation more
straightforward, they are critical to making
applications that adjust to the gadget they are
being run on.

see more please visit: https://homeofbook.com

Why Use Resources?
Any limited scale information that your
application utilizes – strings, constants,
designs, format documents– should be
generally included as assets rather than hard
coded into your application. For instance, up
to this point we have entered any text that the
UI required straightforwardly as a string
property estimation. For a button this
approach has meant setting the Textproperty
bytypinginastringsuchas "HelloWorld".
Android Studio does it best to save you this
effort. If you run the Warnings and Errors
"linter" by clicking on the red icon in the
Layout Editor, then for any string you have
entered as a literal into the Attributes window
you will see awarning:

While you shouldn ’t freeze about each notice

see more please visit: https://homeofbook.com

that the linter shows you, this one is a smart
thought on the grounds that an asset can be
reused in different pieces of the program and
it is not difficult to change without jumping
into the code.
A lot greater benefit is that you can give
elective assets, which are naturally chosen by
your application as per the conditions. For
instance, for this situation you can give
strings in another dialect and they will be
utilized naturally as indicated by the district
where the application runs. This is an
extremely incredible method for making
custom applications that work anyplace on
the planet and on any device.

So how would we make an asset? It relies
upon the sort of the asset however in Android
Studio there are two different ways of making
a string resource.
The first is to click the "..." at the right of the
property entry box which makes
theResourcesdialogpopup:

see more please visit: https://homeofbook.com

This rundowns existing assets characterized
by the framework, the venture and the topic
being used. You can likewise utilize the Add
New Resource dropdown to make extra
assets.For this situation a string resource:

All you need to do is enter an asset name and
its worth – the remainder of the sections can
be left at their defaults, their significance will
turn out to be clear as we proceed.
When you click OK you will see the
Attributes window with the entry: @string/Greeting

This is a reference to your recently made

see more please visit: https://homeofbook.com

asset. You will likewise see the string that
you have determined show up as the button’s
inscription. You would now be able to reuse
the string asset by entering @string/Greeting
anyplace the“Hi World” string is required–
obviously it must be utilized with a property
that acknowledges a string. Assuming you
change the meaning of an asset then clearly
each of its uses are updated.
The second method of making a string asset
is to alter the asset XML document.
Assuming you check out the record
strings.xml in the res/values catalog you will
find it contains:
<resources>

<string name= “app_name”>Resources1</string>
<string name=“hello_world”>Hello world</string>
<string name=“action_settings”>Settings</string>
<string name=“Greeting”>Hello World</string>

</resources>

You can see the welcome world string that
we have quite recently added and some
different strings that Android Studio makes
naturally for you, including one more
welcome world string which is utilized in the
at first produced UI. You can alter the asset

see more please visit: https://homeofbook.com

record straightforwardly or you can utilize the
Resources exchange to make and alter
existing string resources.

What are Resources?
☐ Resources are any information that your
program needs to use. Resources are arranged
into your program’s executable fit to be
appropriated

to your end clients as a feature of your
application. For a string this doesn ’t appear
to be especially valuable, later everything you
could straightforwardly utilize a string steady
in code, however for different sorts of asset it
tends to be the best way to get the
information remembered for the application’s
executable.

For instance, drawables, a scope of various
kinds of illustrations objects, can be
incorporated as assets. Assuming you
incorporate a .gif document as an asset then
that .gif record is fused into your application

see more please visit: https://homeofbook.com

by the compiler. This implies you don’t need
to give the gif as a different document and
you don’t need to stress over where it is put
away. Notice, in any case, that adding a .gif
record to your application builds its size.

All assets are put away in organizers inside
the res registry. The organizer name gives the
kind of the asset and, as we will see, can
indicate when the asset is to be used.
You can see a rundown of asset types in the
documentation yet the usually utilized ones
are:

☐ drawable/
Any realistic– normally .png, .gif or .jpg yet
there are a scope of other less often utilized
sorts. The standard is– assuming it’s in any
sense a realistic it has a place in drawable.

☐ design/
We have been utilizing formats since we
began programming Android and XML
format is an asset assembled into your
application prepared to be used.

see more please visit: https://homeofbook.com

☐ menu/
The XML records that determine a menu are
additionally assets and aggregated into your
app.

☐ values/
XML files that define simple values such as
strings, integers and so on. You can imagine
these as characterizing constants for your

program to utilize. In spite of the fact that you
can put any combination of significant worth
characterizing XML into a solitary record in
the qualities/index, it is common to bunch
esteems by information type and additionally
use.

Typically:
• arrays.xml for composed arrays
• color.xml for shading values
• dimens.xml for dimensions
• strings.xml for strings
• styles.xml for styles.

You can likewise incorporate subjective
documents and discretionary XML

see more please visit: https://homeofbook.com

documents in crude/and xml/. There are two
registries managing liveliness, illustrator/and
anim/.There is likewise an index where you
can store symbols appropriate for various
screen goals,however a greater amount of this
when we take a gander at contingent
resources.

Drawables
Drawables are somewhat unique in relation to
different assets in that there is no XML
record that characterizes them. To make and
utilize a drawable you should simply
duplicate the realistic record that you need to
use into the drawable/index. You needn’t
bother with XML to characterize the asset in
light of the fact that the asset’s id is only the
document name.
The most ideal way to clarify how drawable
assets work is through a straightforward
model. To make a jpg bitmap asset you
should simply duplicate the jpg record into
the right asset index. Android Studio

see more please visit: https://homeofbook.com

naturally makes the drawable/catalog for
yourself and you should simply duplicate the
bitmap document into it– however how?
The primary comment is that the record name
for a drawable asset can just hold back lower
case letters and digits. Assuming the first
document name doesn’t adjust to this
example you can rename it later you have
replicated it into the directory.
There are two genuinely simple ways:

1. You can observe the record in the typical
record registry construction and use reorder
to glue it into the index showed in Android
Studio.

2. Alternatively you can right tap on the
drawable organizer in Android Studio and
select Show in Explorer which opens the
envelope as a standard document framework
organizer to which you can duplicate the
bitmap record in any capacity that you like,
intuitive for instance:

see more please visit: https://homeofbook.com

Once you have the record, dsc0208.jpg for
this situation, in the drawable/catalog you can
utilize it. Place an ImageView control on the
UI utilizing the Layout Editor.The Resources
window opens naturally for you select the
drawable you need to use.
If you need to change the drawable sometime
in the not too distant future, find its src
property in the Attributes window and snap
on the ... button at the extreme right and the
Resources window will open.

Select the Project tab and look down until
you can see the name of the record you have
recently replicated into the drawable
organizer and select it:

You will see that @drawable/dsc0208.jpg has
been entered as the worth of the src property–

see more please visit: https://homeofbook.com

you might have entered this string
straightforwardly without the assistance of
the Resources window. You will likewise see
the picture showed in the ImageView control:

That ’s practically everything to
drawable/assets, however there is something
else to find out with regards to the various
kinds of drawables that you can store there.
This is best talked about when we cover
designs overall in the following chapter.

Values
The simplest of the asset envelopes to utilize
is likely qualities/,yet it additionally will in
general be the least frequently utilized. The
strings.xml record will in general be utilized,
yet the others are underutilized.The

see more please visit: https://homeofbook.com

justification behind is that the framework will
in general incite you to enter strings as assets
and there is an undeniable benefit to string
assets in that they permit simple confinement.
Nonetheless,placing constants of different
kinds in assets is a decent idea.
Although the documentation just notices
string, clusters, shadings, aspects and styles,
you can incorporate a more extensive scope
of information types in the XML file:

☐ Bool
<bool name=“resourcename”>true</bool>

☐ Integer
<integer name=“resourcename”>1234</integer>

☐ String
<string name=“resourcename”>A String</string>

There is likewise a string manager which you
can use to deal with an assortment of strings
including interpretations to different dialects.
Its utilization is genuinely self evident:

There are additionally two exhibit types:

see more please visit: https://homeofbook.com

☐ Integer Array
<integer-cluster name= “resourcename”>
<item>123</item>
<item>456</item>

</number array>

☐ Typed Array

<array name= “resourcename”>
<item>resource</item>
<item>resource</item>

</array>

Dimension is likewise two straightforward
worth resources:
☐ Dimension is basically a number worth
complete with a units

designator. For example:
<dimen name=“resourcename”>10px</dimen>

Obviously you can utilize any of the standard
Android estimation scales– pt, mm, in, etc.
You use aspects anyplace that you want to
determine a size or area in a specific
arrangement of units.

Finally Color allows you to put together the
shadings you are utilizing in your app:

☐ Color gives simple to utilize names to hex

see more please visit: https://homeofbook.com

shading
codes. For example;
<color name=“resourcename”> #f00 </color>

characterizes a red tone. You can indicate a
shading utilizing any of:

#RGB, #ARGB, #RRGGBB or #AARRGGBB

where every one of the letters addresses a
solitary hex person with R= Red, G=Green,
B=Blue and A=Alpha (transparency).

IDs
Ids are esteem assets and can be set up very
much like some other worth asset. For
instance, to set up an id for a button you may
use:
<item type=“id” name=“resourcename”/>

Notice that this is somewhat not the same as
other worth assets in that you don’t need to
offer a benefit. The explanation is that the
framework

gives an exceptional whole number worth to
every id. You don ’t regularly have to
characterize an id in a XML record all of its

see more please visit: https://homeofbook.com

own on the grounds that ids can be made on
the fly inside other XML files.
Putting a + before an asset id makes the asset
without having to unequivocally do the work.
For example:
<Button
android:text=“@string/Greeting”
android:id=“+@id/button2”

makes the button2 asset. On
the other hand:

<Button
android:text=“@string/Greeti
ng” android:id=“@id/button2”

will possibly work on the off chance that you
have characterized button2 in an asset
document in the qualities/folder.
Obviously in Android Studio you can
essentially type in an id in the
property window say and the framework will
naturally give the +@id to
make it auto-make. Additionally remember
that the Kotlin module changes
over ids into properties that reference the
View objects.So in the model
above there will be a button2 property that

see more please visit: https://homeofbook.com

references the Button object.

Accessing Resources
in Code– The R
Object
For a significant part of the time you truly
don ’t have to waste time with getting to
assets in code on the grounds that the task is
finished for you consequently. For instance,
in the event that you relegate a string asset to
a button’s text:

<Button
android:text=“@string/Greetin
g”

then the framework recovers the string asset
and sets the button ’s text property to it when
the format is swelled. You don’t need to
effectively make everything work. In any
case, in some cases assets are required inside
the code of an application and you need to
expressly recover them.

see more please visit: https://homeofbook.com

When your application is assembled by
Android Studio it consequently makes an
asset id,a one of a kind whole number,for
each asset in your res/catalog.These are put
away in a produced class called R - for
Resources. The registry structure beginning
with res/is utilized to produce properties for
the R object that permits you to observe the
id that relates to any asset. This implies that
an asset id is constantly named something
like R.type.name. For example:

R.string.Greeting

recovers the asset id for the string asset with
asset name“Hello” that is: <string name=“Greeting”>Hello
World</string>

Notice that the asset id is a number and not
the string it
distinguishes. So how would you convert an
asset id to the asset value?

The main comment is that you don ’t
generally need to. There are numerous
techniques that acknowledge an asset id as a
boundary and will get to the asset for your
benefit. It is normally essential to recognize
when a technique is content with an asset id

see more please visit: https://homeofbook.com

and when you need to pass it the real asset
value.

If you do have to pass the resource, or you
want to work with the resource, then you
have to make use of the Resources object.
This has a scope of gettype(resource_id)
strategies that you can use to get to any asset.
For instance, to get the string with the asset
name“Hello” you would write:
var myString=resources.getString(R.string.Greeting)

and myString would contain “Hi
World”.Assuming you are not with regards to
the movement you may need to utilize
applicationContext.resources.

The main issue with utilizing the Resources
object is attempting to work out which get
techniques you really need.
There are likewise utility strategies that will
return any part or all of its asset name given
the id:

☐ getResourceEntryName(int resid)

Returns the passage name for a given asset
identifier

see more please visit: https://homeofbook.com

☐ getResourceName(int resid)

Returns the complete name for a given asset
identifier
☐ getResourcePackageName(int resid)

Returns the bundle name for a given asset
identifier
☐ getResourceTypeName(int resid)

Returns the sort name for a given asset
identifier.
There are additionally a few techniques that
will interaction the asset just as basically
recover it. For instance, assuming you have a
crude XML asset,

getXml(int id) returns a XmlResourceParser
that allows you to manage the XML
recovering labels, ascribes, etc.

Conditional
Resources
So far assets have recently been a method for
getting information into your application.
You may have imagined that assuming there

see more please visit: https://homeofbook.com

was one more method for doing the work
then it very well may be comparable.
Notwithstanding,Android Resources are vital
to altering your application so it works with
the wide scope of gadget types and client that
an Android application needs to adapt to. The
cunning part is that you can utilize contingent
assets to give a bunch of assets modified for
the current gadget at runtime.
The thought is basic. First you give a default
asset record. This is the one that is situated in
the proper index,/res/values say, however
presently you use qualifiers as a component
of the catalog name.
For instance, you can make a registry
called/res/values-es which is planned to give
asset esteems to the application when running
on a gadget set to a Spanish language region.
What happens is that first any qualities that
you have characterized are taken from the
XML records in the qualities registry, these
are viewed as the default. Then, if the
application is running on a Spanish language
gadget the XML records in qualities es are
handled and any assets with a similar name
supplant the ones gave by the defaults.

see more please visit: https://homeofbook.com

You can see that this gives a genuinely
simple method for ensuring that your
application presents a UI in the nearby
language, however there are a greater number
of qualifiers than just area, and these permit
you to alter the application for different
elements of the gadget. You can even pile up
qualifiers as a feature of envelope names to
get more exact focusing on. For instance, the
index esteems es-little would possibly be
utilized assuming that the language was
Spanish and the screen was like a low
thickness QVGA screen. The main thing to
be cautious about is that the qualifiers are
utilized in the request where they are
recorded in the documentation. There are
qualifiers for district, screen thickness, size
and direction, gadget type, night v day,
contact screen type, console accessibility and
stage adaptation (API level). You can think
that they are totally recorded in the
documentation, yet much of the time this is
pointless in light of the fact that Android
Studio assists you with making qualified
resources.
If you select an asset catalog, values say, and

see more please visit: https://homeofbook.com

right snap you will see a New,Values asset
document in the setting menu. On the off
chance that you select this choice then the
New Resource File discourse opens.You can
utilize this to make an asset file
– enter its name - and you can apply any
qualifiers you need to by essentially choosing
from the rundown of accessible quantifiers to
the left:

If you select Locale then you will be
permitted to enter any subtleties of the
qualifier.On account of Locale you can
choose the dialects and districts you need to
apply from a list:

see more please visit: https://homeofbook.com

Using the New Resource File exchange saves
you a ton of time looking into qualifiers and
language/area codes. It is a lot less difficult
than hand coding the indexes and XML
documents. Be that as it may, you should
know about how Android Studio presents
qualified assets to you in the undertaking
program. For instance, assuming you make
another strings document in the qualities
registry and select Locale and es for the
Spanish language in Any Region then this
makes an index res/esteem es and a
strings.xml record inside it. So presently you
have:
values/strings.xml

and:
values-es/strings.xml

This isn’t what the undertaking program
shows naturally which is the Android view. It
shows the new document as being in the

see more please visit: https://homeofbook.com

qualities index inside another envelope called
strings.xml.

The project browser is trying toshow you the
resource files with allofthe similar files, i.e.
strings, all grouped together in a single
directory, but with qualifiers displayed to the
right. In the case of locale it even shows the
country flag as anicon:

This is a reasonable method of getting sorted
out things and it apparently makes working
with different asset documents more
straightforward.For this situation you can see
that the two strings.xml documents are shown
as minor departure from strings.xml.
You can see the genuine record structure by
choosing Project Files starting from the drop
menu in the upper left-hand corner.

see more please visit: https://homeofbook.com

Select the Android view to get back to the
recognizable perspective on your project.
Working with Android Studio you can,
generally, disregard the real record and index
structure and basically add extra asset records
utilizing the New Resource File exchange, or
for adding regions the Translation Editor
depicted in the following segment. Every so
often, notwithstanding, you should find a

document and physically alter the index
structure.Specifically,there are no orders that
permit you to alter the qualifiers related with
an asset document. The most straightforward
arrangement is to erase the document and
once again make it with new qualifiers if
vital.It is additionally worth focusing on that
you can make custom format documents
similarly and that the Layout Editor likewise
has offices to permit you to clone a current
picture design as a scene design, for example.

see more please visit: https://homeofbook.com

A Simple
Localization
As we have as of now made a Spanish
strings.xml record it is trifling to give a
Spanish variant of the good tidings
string.You should simply alter the Spanish
strings.xml to read:
<?xml version=“1.0” encoding=“utf-8”?>
<resources>

<string name=“Greeting”>Hola Mundo</string>
</resources>

Now all you have to do is run the app and
change the locale of the emulator

504

or the real Android device. The simplest way
to change the locale is to use
theCustomLocaleapp:
When you run this you can see the current

see more please visit: https://homeofbook.com

area and select another one:

When you run the
application in the emulator you will see the
string asset recovered from the Spanish
strings.xml file:

Notice that while the button ’s text has
changed the default strings.xml has been
utilized for different strings in the app.
It is vital to ensure that every one of the
assets you use have a default esteem.
Assuming you miss an asset out of a district

see more please visit: https://homeofbook.com

document that doesn’t have a default, your
application will not run.

Android Studio
Translation Tools
Android Studio likewise has some extra
instruments to permit you to see restrictive
assets. The World symbol showed in the
Layout Editor permits you to choose an area.
It merits utilizing this to check that your
application great examines other locales:

505

However, new areas possibly show in the
drop-down list assuming they have been
added utilizing the Translation Editor.
Assuming you have physically added the
Spanish area utilizing the directions prior add

see more please visit: https://homeofbook.com

it in the Translation Editor any interpretations
that you have as of now added will be
retained.

If you are attempting to keep an application
that upholds various dialects then the simplest
method for keeping up with it is to utilize the
Edit Translations choice. This presentation an
editorial manager for string assets that shows
every region rendition on the equivalent line:

You can utilize this to enter interpretations of
default strings and you can make new string
assets across each of the areas with a solitary
activity– enter the key, default and
interpretations. You can likewise utilize the
world symbol at the upper left to make new
districts and this is by a wide margin the most
effective way to do the work. There is even a
connection to arrange an interpretation from
Google Translate.

see more please visit: https://homeofbook.com

Summary
☐ Use assets for as much information as
possible. It makes it more straightforward to
change things.
☐ You can utilize the Property window to
make and utilize assets or you can alter the
XML directly.

☐ There is a wide scope of asset types.
Notwithstanding designs and menus, you are
sure to utilize values and drawables.

☐ Drawables are an illustration of an asset
that doesn’t utilize a XML record. You just
duplicate the illustrations asset documents
into the drawables directory.

☐ You can store straightforward information
types in the qualities asset catalog and this is
frequently a preferred method for getting
things done over utilizing constants in the
code.

☐ The R object is consequently created and

see more please visit: https://homeofbook.com

its construction emulates the asset index
structure.For every asset the R object has a
number asset id.

☐ Many techniques take an asset’s id and
recover the asset for you. To
unequivocallygettoanassetincodethen,atthatpoint,utilizethetechniquesthattheResourcesobject
provides.

☐ Conditional assets permit you to give
assets that suit the current gadget– area,
screen goal thus on.
☐ Conditional assets work by applying
qualifiers to the names of the registries that
hold the asset files.

☐ Android Studio gives an improved visible
of restrictive assets that bunches all minor
departure from an asset document in a similar
hierarchical envelope.This doesn’t compare
to the document structure, however it is
simpler.

☐ You can utilize the New, Resource File
order to make contingent resources.
☐ The Layout Editor allows you to choose

see more please visit: https://homeofbook.com

which district asset is utilized so you can
work straightforwardly with the confined
layout. ☐ If you need to restrict your
application then, at that point, utilize the
Android Studio Translation Editor.

Chapter
12 Bitmap
Graphics
Android illustrations is a gigantic subject, yet
you need to begin some place. In this section
we look a straightforward 2D bitmap designs,
which is regularly all you really want, and
find the essential standards of Android
graphics.

Android Graphics
Graphics support in Android is broad – from
the basic showcase of pictures and 2D

see more please visit: https://homeofbook.com

illustrations through liveliness and on to full
3D delivering. To cover everything needs a
different book, and surprisingly then there
would be themes left immaculate. This part is
a prologue to the base you really want to be
aware of 2D bitmap designs in Android. It
isn’t all you really want to know to take care
of business, however it is sufficient to kick
you off on numerous normal straightforward
illustrations undertakings. With this
establishing you’ll likewise be in a situation
to search out a portion of the extra data you
want to do the more uncommon things.
The critical distinction between this record of
Android illustrations and the normal
methodology you find in different reports is
that it focuses on the standards just as the
how-to. Before the finish of this section you
ought to have a reasonable thought of what
the distinctive Android illustrations classes
are everything about.

The Bitmap

see more please visit: https://homeofbook.com

You could say that the bitmap is the
establishment of any utilization of Android
designs. The explanation is that regardless of
how a realistic is determined or made, it is a
bitmap that is in the end made and shown on
the screen.

There are numerous methods of making or
acquiring a bitmap.We have effectively
perceived how a bitmap document,.jpg,gif
or.png can be remembered for the
drawable/asset registry and showed in an
ImageView control.Inmanycasesabitmapcan
beacquiredbyloadingafile,
readinginacollectionofbytes,oreventakinga
photowiththeAndroid camera.
In this case we will essentially make a
Bitmap directly:
val b = Bitmap.createBitmap(500, 500, Bitmap.Config.ARGB_8888) A
bitmap is basically a square shape of pixels.
Every pixel can be set to a given tone
however precisely what tone relies upon the
sort of the pixel. The main two

boundaries give the width and the tallness in
pixels. The third boundary indicates the kind

see more please visit: https://homeofbook.com

of pixel you need to utilize. This is the place
where things can get convoluted. The detail
ARGB_8888 implies make a pixel with four
channels ARGB - Alpha, Red, Green,Blue,
and assign eight pieces of capacity to each
channel. As four eights are 32 this is 32-bit
designs. The alpha channel allows you to set
an opacity.

There are various pixel designs you can
choose, and there is consistently a
compromise between the goal and the
measure of room a bitmap possesses.
Notwithstanding, ARGB_8888 is an
extremely normal choice.

Now you have a bitmap how would you be
able to manage it? The appropriate response
is truly a lot!
Most of the strategies for the Bitmap object
are worried about things that change the
whole picture. For example:

b.eraseColor(Color.RED)

sets every one of the pixels to the
predetermined shading, red for this situation.

see more please visit: https://homeofbook.com

Using
the setPixel and getPixel techniques you can
get to any pixel you need to

and perform practically any illustrations
activity you want to.You can likewise work
with the pixel information at the piece level.

The ImageView
Control
How would you be able to see a Bitmap that
you have recently made? The basic answer is
to utilize an ImageView control.Thisisn’ta
popular approach,however,because it isn’t as
flexible as alternatives such as overriding the
onDraw event handler. All things considered,
the ImageView control is extremely simple to
utilize and adequate for some tasks.
Start another venture and spot an ImageView
into the UI, tolerating the defaults. The
Layout Editor wont let you place a void
ImageView on the plan surface so select any

see more please visit: https://homeofbook.com

drawable as an impermanent filler. As an
exhibition of how you can utilize the
ImageView to show a Bitmap, change the
onCreate occasion controller to read:
supersede fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

val b = Bitmap.createBitmap(500, 500, Bitmap.Config.ARGB_8888)
b.eraseColor(Color.RED)
imageView.setImageBitmap(b)

}

If you run the program you will see a
genuinely enormous red square seem where
the ImageView control has been placed:

Notice the ImageView control has been
consequently resized to show the Bitmap.
The ImageView control has a scope of
techniques similar
to setImageBitmap that makes it helpful for

see more please visit: https://homeofbook.com

showing a scope of various sorts of graphic.

Canvas
You can simply utilize a Bitmap and work
with individual pixels, however this is
definitely not an extremely“undeniable level”
method for making designs.What we really
want are some bigger scope strategies that
draw helpful things like lines, square shapes,
circles thus on.
The Bitmap object doesn’t have this kind of
strategy, however the Canvas object does and
you can utilize it to draw on any Bitmap. That
is you make a Canvas object, partner it with a
Bitmap, and you can utilize the Canvas item’s
techniques to draw on the Bitmap. There are
bunches of various Canvas drawing
strategies, and surprisingly an office to
change the essential direction framework to
anything you want to utilize, yet we need to
begin some place so a basic model first.

You can make a Canvas and join it to a

see more please visit: https://homeofbook.com

bitmap in one operation:
val c = Canvas(b)

Now when you utilize the drawing techniques
for the Canvas they draw on the Bitmap b.
There are many events when a control or item
gives a Canvas object joined to a Bitmap all
prepared for you to draw on.

It is likewise essential to realize that, at first,
the direction arrangement of the Canvas
object is set to pixels as controlled by the
Bitmap. That is, assuming the Bitmap is
width by stature pixels, the default coordinate
framework runs from 0,0 at the upper left-
hand corner to width,height at the base right.

Using Canvas can be just about as basic as
calling a technique like drawLine to define a
boundary between two focuses. The main
slight confusion is that you need to utilize the
Paint object to indicate how the line will be
drawn. Overall Paint controls how any line or
region is drawn by the Canvas methods.

A common Paint object is something like:

see more please visit: https://homeofbook.com

val paint = Paint()
paint.setAntiAlias(true)
paint.STROKEWidth=6f
paint.color=Color.BLUE
paint.Style=Paint.Style.STROKE

After creating the Paint object we set
AntiAlias to true, i.e turn it on. This creates a
higher quality but slightly slower
rendering.Next we set the width of the line to
6 pixels, color to blue, and sets it as a stroke,
i.e. a line rather than an area fill. If you are
puzzled by the 6F in the setStrokeWidth it is
worth saying that this is how you specify a
float constant.

Once made you can utilize a Paint object as
regularly as it is required and you can change
it and reuse it. You can likewise utilize a
current Paint object to make another Paint
object which you then modify.

A First Graphic
Now we have a Paint object we can draw a
line:
c.drawLine(0f, 0f, 500f, 500f, paint)

see more please visit: https://homeofbook.com

This draws a line from 0,0 to 500,500 and as
the Bitmap is 500 by 500 pixels

this draws a diagonal line across the entire
bitmap. Again the numeric values all end in f
because the method needs float values, for
reasons that will become clearlater:

All you need to do now is get to know the
diverse drawing techniques gave.Here we
utilize a couple of the most common.
First we really want to set the Paint object we
made before to a FILL style so we draw
strong squares of shading and not simply
outlines:
paint.Style=Paint.Style.FILL

To draw a yellow circle all we want is:
paint.color=Color.YELLOW c.drawCircle(400f,
200f, 50f, paint)

The initial two boundaries give the place of
the middle and the third is the circle’s radius.
To draw a green rectangle:
paint.color=Color.GREEN
c.drawRect(20f, 300f, 180f, 400f, paint)

see more please visit: https://homeofbook.com

The initial two boundaries give the upper left-
hand corner and the following two the base
right-hand corner.
Finally we should add some text:
paint.color=Color.BLACK
paint.textSize=50f
c.drawText(“Hello Graphics”,0,14,90f,80f,paint)

The Paint object has various properties that
let you set the text style and style. In this
model we basically set the text size. The
drawText strategy takes a string, the
beginning and end places of characters in the
string that will be shown,and the directions of
the beginning location.
If you put this all together and run it you get
this very tasteful graphic:

The total code to make this is:
abrogate fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)
val b = Bitmap.createBitmap(500, 500, Bitmap.Config.ARGB_8888)
b.eraseColor(Color.RED)

see more please visit: https://homeofbook.com

val c = Canvas(b)

val paint = Paint()
paint.setAntiAlias(true)
paint.strokeWidth=6f
paint.color=Color.BLUE
paint.Style=Paint.Style.STROKE
c.drawLine(0f, 0f, 500f, 500f, paint)
paint.style=Paint.Style.FILL
paint.color=Color.YELLOW c.drawCircle(400f,
200f, 50f, paint)

paint.color=Color.GREEN
c.drawRect(20f, 300f, 180f, 400f, paint)

paint.color=Color.BLACK
paint.textSize=50f
c.d rawText(“Hello Graphics”,0,14,90f,80f,paint)
imageView.setImageBitmap(b)

}

You can utilize this to evaluate other Canvas
illustrations methods. It merits bringing up
that there is a bunch of drawBitmap
techniques that you can use to draw a current
Bitmap onto the Bitmap related with the
Canvas. This may appear to be something
peculiar to do, yet it is perhaps the most
helpful drawing operation since you can
utilize it to carry out basic sprite animation.

Transformations

see more please visit: https://homeofbook.com

Now we come to one of the more modern
choices that Canvas offers. Prior to anything
is drawn, the directions you supply are
followed up on by a change framework.
Naturally this is set to the personality grid
which leaves the directions as they were.
Nonetheless, the accompanying strategies
change the change matrix:

☐ rotate(float degrees)
turn about the beginning through degrees
☐ rotate(float degrees, float px, float py)
pivot about the point px,py through degrees
☐ scale(float sx, float sy)
scale about the beginning by sx and sy
☐ scale(float sx, float sy, float px, float
py) scale about the point px,py by sx
and sy
☐ skew(float sx, float
sy) slant by sx and sy
☐ translate(float dx, float
dy) interpret by dx and
dy
There are likewise a few properties and
techniques that let you work
straightforwardly with the change matrix:

see more please visit: https://homeofbook.com

☐ matrix
set or get the change matrix
☐ concat(Matrix matrix)
increase the change grid by the lattice
provided
If you definitely know how networks and
change frameworks work then this will be
appear to be very direct. If not, there are a
great deal of traps holding on to entangle you.
The fundamental one, that inconveniences
pretty much everybody right away, is that the
request where you do things matters. An
interpretation followed by a turn isn’t exactly
the same thing as a pivot followed by an
interpretation. Attempt it on the off chance
that you don’t trust me. Another is that these
changes change the direction framework and
influence nothing you have effectively drawn.
They possibly change what happens when
you draw something later the change has
been applied.
For instance, we can pivot the text in the past
example:
paint.color=Color.GREEN
c.drawRect(20f, 300f, 180f, 400f, paint) c.rotate(15f)
paint.color=Color.BLACK
paint.textSize=50f
c.drawText(“Hello Graphics”,0,14,90f,80f,paint)

see more please visit: https://homeofbook.com

In this case there is a 15 degree rotation after
the rectangle has been drawn
and before the text is drawn. The result is that
the rectangle stays where it
was but the text is rotated:

After the turn all that you draw will be at 15
degrees.
Notice that the rotation is about the origin,
i.e. 0,0 the top left-hand corner. If you want
to rotate about a different point, usually the
center of some object, you need to use
rotate(d,x,y).
For instance to turn the square shape about its
middle you would use: c.rotate(45f,100f,350f)
paint.color=Color.GREEN
c.drawRect(20f, 300f, 180f, 400f, paint)

where 100,350 is the center of the rectangle:

see more please visit: https://homeofbook.com

You can likewise see that the text is presently
in an alternate position and not just pivoted
about the beginning. This is on the grounds
that the 15 degree pivot is added to the 45
degree turn around the focal point of the
square shape. To keep your changes isolated
and non-communicating you need to make
sure to return the change framework to the
personality later you have transformed it to
something else.

How would you hinder the lattice to the
character? You could use:
c.matrix= Matrix()

as Matrix() makes a personality framework of
course, or you could just use: c.matrix= null

in light of the fact that setting it to invalid
makes the grid be reset. In any case,
expecting to roll out an improvement to the
change framework and afterward reestablish
the first is such a typical activity that Canvas

see more please visit: https://homeofbook.com

supports:

c.save()

which saves the current grid and:
c.r estore()

which reestablishes the current
lattice. For example:

c.s ave()
c.rotate(45f,100f,350f)
paint.color=Color.GREEN
c.drawRect(20f, 300f, 180f, 400f, paint)

c.restore()
c.rotate(15f)
paint.color=Color.BLAC
K paint.textSize=50f
c.drawText(“Hello Graphics”,0,14,90f,80f,paint)

With the save before the first pivot, the
reestablish before the second decouples the
two transformations.

A Logical Approach
to Transforms
One way to deal with monitoring changes is
to draw everything focused on the beginning,

see more please visit: https://homeofbook.com

and afterward decipher, scale and turn it to its
last position. For instance, to draw the
rectangle:
c.drawRect(20f, 300f, 180f, 400f, paint)

pivoted through 45 degrees you would
initially draw a unit square fixated on the
origin:

c.drawRect(- 0.5f, - 0.5f, 0.5f, 0.5f, paint)

then you would then scale it to its ideal size:
c.scale(160f,100f)

and turn it:
c.rotate(45f)

Finally you would move it to its right
location:
c.t ranslate(100f, 350f)

If you evaluate these means, you will find
that you don’t get what you anticipate.The
explanation is that we have been changing the
article: draw a square, scale the square, pivot
it and move it to the ideal location. However,
the Canvas changes don’t change graphical
items yet the

direction framework. You can promptly see
that this implies you should draw the square
last later you have played out all of the
transformations. Indeed this is the rule:

see more please visit: https://homeofbook.com

☐ do all that you would have done to the
mathematical shape in the converse request
while changing the direction system. So the
right change grouping is:

c.save()
c.translate(100f,
350f) c.rotate(45f)
c.scale(160f,100f)
c.drawRect(- 0.5f, - 0.5f, 0.5f, 0.5f, paint) c.restore()

Notice that when you do a scale this applies
to any strokeWidth you may set i.e. twofold
the scale and a strokeWidth of 1 turns into a
powerful strokeWidth of 2.
You can generally work out the change
arrangement you want by
considering the graphical item, working out
the changes expected to transform it to what
you need and applying them in the opposite
order. Some software engineers take to this
thought and think it is awesome and best way
to do sensible precise illustrations. Some
embrace it a tad, and others draw things
where they are required in the size and
direction needed.

see more please visit: https://homeofbook.com

Setting Your Own
Coordinates
When you initially connect a Canvas to a
Bitmap the direction framework is as far as
the quantity of pixels in the Bitmap.
Frequently, nonetheless, you need to work
with an alternate direction framework. For
instance, you should work with the beginning
in the center and the x and y coordinate going
from - 1 to +1.

You can set any direction framework you
want to work with utilizing reasonable
transformations.

If your direction framework runs from xmin
to xmax and from ymin to ymax you can
apply it to the material using:

c.scale(width/(xmax-xmin),height/(ymax
ymin)) c.translate(- xmin,- ymin)

where width and tallness are the size in pixels
of the bitmap.

see more please visit: https://homeofbook.com

Using this detailing the y coordinate
increments down the screen, as did the first
pixel coordinates.

If you need the y direction to increment up
the screen then, at that point, utilize the
transformation:
c.scale(width/(xmax-xmin),- stature/(ymax
ymin)) c.translate(- xmin,- ymax)

and notice the change to ymax in the second
line.
So,for example, if you wanted to drawa graph
using coordinates between 0,0 in the bottom
left corner and 10,10 in the top right, i.e. y
increasing up the screen,youwoulduse:
c.save()

val xmax=10f
val xmin=0f val
ymax=10f val
ymin=0f val
width=500f
val height=500f

c.scale(width/(xmax-xmin), - tallness/(ymaxymin)) c.translate(- xmin, -
ymax)
paint.setStrokeWidth(.4f)

c.drawLine(0F, 0F, 10F, 0F, paint) c.drawLine(0F, 0F, 0F, 10F, paint)
c.drawLine(0F, 0F, 10F, 10F, paint)

c.restore()

see more please visit: https://homeofbook.com

This draws tomahawks and a 45 degree line:

Notice that when you change the direction
framework any remaining estimations change
too. Henceforth the stroke width must be set
to 0.4 as it is presently not as far as pixels.

Simple Animation
To wrap this section up we will invigorate a
ball ricocheting around a Canvas, or a Bitmap
depending your perspective. This may appear
to be an odd subject to end on, particularly
since we won’t do the occupation in the
manner that most Android developers would
go with regards to it. Indeed Androidhasa
range of different animation facilities– View
animation, Value animation and so on.
Nonetheless, not a solitary one of them shows
the essential way that unique designs work

see more please visit: https://homeofbook.com

and before you continue on to learn more
complex methods of making activity it is a
smart thought to discover how things work at
the most minimal level.
This model shows you something liveliness,
yet additionally about the issues of making
dynamic illustrations of any sort in the
Android UI. One admonition– don’t accept
this is everything to be aware of Android
movement or that this is the most ideal way
to do things.
To quicken something in the easiest and most
direct manner you should simply draw the
shape, change the shape, eradicate the old
realistic, and draw it again.
In many frameworks this is generally
accomplished at the least conceivable level
by utilizing a clock to call an update work
which deletes the shape, does the update to
the shape and afterward draws it at its new
area. You can adopt this strategy in Android,
yet for different reasons it isn’t the status quo
normally done. It must be conceded that there
are some slight challenges, yet beating them
isn’t hard and is very instructive.

see more please visit: https://homeofbook.com

To perceive how everything functions we
should simply skip a “ball” around the screen.
This is pretty much the“hi world” of basic 2D
sprite-based graphics.
So start another Android Studio venture and
spot an ImageView on the plan surface. This
is the main UI component we need.
We want a bunch of items and qualities that
are available from various strategies and that
have a lifetime as old as application. The
easiest method of accomplishing this is to set
up private properties:
private val b = Bitmap.createBitmap(width, height,

Bitmap.Config.ARGB_8888) private val c: Canvas=Canvas(b) private val
paint: Paint = Paint()

First we make a bitmap and partner it with a
Canvas. The Paint object is made to try not to
need to make an occasion each time we
update the graphics.
Notice that different pieces of the program
will have to get to width, tallness of the play
area:
private val width = 800 private
val stature = 800

We are additionally going to require
properties to record the ball’s position, its

see more please visit: https://homeofbook.com

range and speed. For effortlessness we should
simply utilize the default pixel directions of
the Bitmap:
private var x = 463f
private var y = 743f
private var vx = 1f private
var vy = 1f private var r =
30f

Now we have these factors characterized we
can continue on with the OnCreate capacity
and set up the shade of the play region and
the Paint object used to draw the ball:
c.drawColor(Color.WHITE)

paint.setAntiAlias(false)
paint.Style = Paint.Style.FILL

You might be wondering why AntiAlias is set
to false, i.e. turned off. The reason is that its
dithering algorithm makes it hard to remove a
graphic by redrawing it in the background
color. Try changing false to true in the final
programtoseewhattheproblemis.
We likewise need to set the bitmap we are
attracting on to the display:
imageView.setImageBitmap(b)

Now we are on the whole prepared to begin
drawing the animation.

see more please visit: https://homeofbook.com

Timer and Threads
Now we come to the inward operations of the
animation.
We really want a Timer object that runs a
capacity each so many milliseconds: val clock =
Timer()

The clock object has a scope of timetable
capacities which run a capacity, really a
strategy in a TimerTask object, at various
occasions. The one we want is:
timer.schedule(TimerTask,delay,repeat)

which pursues the TimerTask postpone
milliseconds and each recurrent milliseconds
later that. The timings aren’t exact and it
could take longer than indicated for the
TimerTask to be run.

The simplest way to createthe TimerTask is
to use anobject expression. You can’tuse a
lambda because the TimerTask is an object
with a constructor and some additional
methods i.e. itisn’t a SAM:

timer.schedule(object : TimerTask() {
abrogate fun run() { update()
}

see more please visit: https://homeofbook.com

}
, 0, 10)

Thiscreates anew TimerTask andoverrides its
runmethod. The run method is called when
the Timer is triggered. All it does is to call
the new function update, which we have yet
to write, that does the update to the ball's
position etc. The final two parameters specify
a 0 millisecond delay in triggering the first
call and then10 milliseconds as the repeat
period. That is, update will be called every 10
milliseconds or so. If the processor is busy
doing something
elseitcouldbemorethan10millisecondsbetweenrepeats.
The update work is reasonably easy:

fun update() {
paint.color=Color.WHITE
c.drawCircle(x, y, r, paint) x = x +
vx
y = y + vy
if (x + r >=
width) vx =
vx if (x - r <=
0) vx = - vx
if (y + r >=
tallness) vy =
vy if (y - r <=
0) vy = - vy
paint.color=Color.RED
c.drawCircle(x, y, r, paint)
imageView.invalidate(

see more please visit: https://homeofbook.com

)

}

First it sets the shading to white and draws
the ball, a circle. This deletes the ball at its
old position, recollect the foundation is white.
Next it refreshes the situation by adding the
speeds toward every path. To ensure that the
ball skips we test to check whether it has
arrived at a limit and assuming it has its
speed is switched. At last, the shading is set
to red and the ball is drawn at the new
position.
If the function was to stop at this point then
everything compiles and runs, but you won't
see the ball move. The reason is simply that
the UI is drawn once at when the program is
initially run and then only when it is
necessary becausethe user hasinteracted
withitortheorientationhas changed,etc.As a
result the bitmap displayed by the ImageView
object would be changed every 10
milliseconds, but it would not be redisplayed.
To make the UI update we want to call the
ImageView’s negate strategy which
essentially tells the UI to redraw it.
Notwithstanding, assuming you put this in

see more please visit: https://homeofbook.com

toward the finish of the update work you get
a blunder message something like:

android.view.ViewRootImpl$CalledFromWrongThreadException:
Only the first string that made a view chain of
importance can contact its views.

The justification behind this is that the Timer
object utilizes another string to run
the TimerTask. This is regularly what you
need to occur, however for this situation it is
an issue. It is an issue that regularly happens
in making a complex Android application and
something you must figure out how to adapt
with.
If you are new to stringing, this clarification
may help.
When you run an Activity it is alloted a
solitary string or execution. A string is a unit
of execution and it is the thing that submits to
your guidelines. In a total framework there
are many strings of execution – some running
and some suspended. The working framework
picks which strings get to run such that
endeavors to make them all appear to be
making progress. The single string that the

see more please visit: https://homeofbook.com

Activity gets is for the most part called the UI
string since its occupation is simply to deal
with the UI.It reacts to occasions from the
Activity
like OnCreate and from the client like a
Button click. At the point when the UI string
reacts to an occasion it submits to the
occasion controller and afterward returns to
sitting tight for the following occasion. This is
the sense wherein each Android application
is essentially an assortment of occasion
controllers that the UI string executes when
the comparing occasion occurs. The large
issue is that the UI occasion is truly just
cheerful when it sits around aimlessly. Then it
just waits for an event and processes it at
once. This makes the client think your
application is extremely responsive on the
grounds that snaps and other information are
followed up on without a moment’s delay. If
you give the UI thread a long task to do, for
example you write a lot of processing into an
event handler, then it isn't just waiting for the
user to do something, and the user starts to
think that your app is slow and sluggish. At
the super the UI string can be kept 100%

see more please visit: https://homeofbook.com

occupied with accomplishing something and
afterward the whole UI appears to freeze up.

In short the UI string ought not be utilized for
serious calculation or anything that takes in
excess of a couple of milliseconds. The
method for accomplishing this is to utilize
different strings. This is a principle subject of
Android Programming: Structuring Complex
Apps.

The UI string makes the UI and to keep away
from issues of
synchronization just the UI string can
interface with the UI. That is, just the UI
string can get to the UI. This is a genuinely
normal way to deal with executing a UI and
not in the slightest degree extraordinary to
Android.

So what happens is that the Timer attempts to
run its TimerTask and this thus runs the
update work, however utilizing the string the
Timer runs on rather than the UI string. All is
well until the last guidance of update, which
endeavors to utilize a technique that has a

see more please visit: https://homeofbook.com

place with an ImageView article and this it
can’t do on the grounds that it isn’t the UI
string.Thus the mistake message.
At this point numerous Android developers
surrender and attempt something else
altogether.A portion of these methodologies
do enjoy benefits,see the Handler class for
instance for a decent other option. In any
case, the Android system gives a technique to
simply such a situation: runOnUiThread(Runnable)

This is a strategy for the Activity item and
you can utilize it from any string that
approaches the Activity article’s techniques
to run a capacity on the UI string. If the
thread using it happens to be the UI thread
then no harm done, the function is just called.
On the off chance that it isn’t the UI string
then the call will be conceded until the UI
string is accessible and afterward the capacity
will be run. As consistently the capacity
shouldn’t keep the UI string occupied for a
really long time or
the UI will become languid or even freeze
completely.
The Runnable is an Interface that has a
solitary run strategy that is the capacity that is

see more please visit: https://homeofbook.com

executed on the UI string– this implies it is a
SAM (Single Abstract Method) and we can
utilize a lambda to improve the code:

runOnUiThread { update() }

This guarantees that update is run on the UI
string. Assembling this all gives:

timer.schedule(object : TimerTask() {
abrogate fun run() {
runOnUiThread { update() } }
}

, 0, 10)

This resembles a wreck of settling and wavy
supports, yet you ought to have the option to
follow the logic.
Now when you run the program you will see
the red ball bob gradually and easily around
the screen.How great the movement is
depends what you

run it on. On the emulator is can be slow and
sporadic; on a genuine gadget it ought to be
fine:

see more please visit: https://homeofbook.com

Animation complete
with a path to show how the ball moves

Now you know no less than one method for
permitting a non-UI string collaborate with
the UI. There are such countless ways of
executing activity that this is only one of
many beginning stages, yet with a
comprehension of this one the others will
appear to be more straightforward.To utilize
this methodology,the design of this showing
project could be improved. For instance, the
ball definitely should be a Ball class total
with its position and speed properties and its
update strategy. This way you gain the
advantages of article direction and you can
enliven loads of balls around the screen with
almost no extra effort.

see more please visit: https://homeofbook.com

Listing
The total posting of the activity program is:
import android.os.Bundle

import
android.support.design.widget.Snackbar import
android.support.v7.app.AppCompatActivity import
android.view.Menu
import android.view.MenuItem
import
kotlinx.android.synthetic.main.activity_main.* import
android.graphics.Bitmap
import
android.graphics.Canvas
import android.graphics.Color import
android.graphics.Paint
import
kotlinx.android.synthetic.main.content_main.* import java.util.*

class MainActivity : AppCompatActivity() {
private val width = 800 private val tallness = 800

private var x = 463f private var y = 743f private var vx = 1f private var vy =
1f private var r = 30f

private val paint: Paint = Paint()
private val b = Bitmap.createBitmap(width, height,
Bitmap.Config.ARGB_8888) private val c: Canvas = Canvas(b)

abrogate fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

c.drawColor(Color.WHITE)
paint.setAntiAlias(false)
paint.Style = Paint.Style.FILL imageView.setImageBitmap(b)

see more please visit: https://homeofbook.com

val clock = Timer()
timer.schedule(object : TimerTask() {

supersede fun run() {
runOnUiThread { update() }
}
}
, 0, 10)

} imageView.invalidate(
)

fun update() {
paint.color = Color.WHITE c.drawCircle(x, y, r, paint) x = x + vx
y = y + vy
if (x + r >= width) vx = vx if (x - r <= 0) vx = - vx if (y + r >= stature) vy =
vy if (y - r <= 0) vy = - vy paint.color = Color.RED c.drawCircle(x, y, r,
paint)

}

There is such a long way to go regarding
designs it is hard to choose things you want
to know. To discover more with regards to
how the standard UI functions you want to
investigate the OnDraw occasion and how to
make your own View object that render
designs. You really want to look into
Android’s vector illustrations utilizing shapes
and way. You really want to be familiar with
the various kinds of liveliness that are
accessible and in the end you really want to
learn
about OpenGL and its help for equipment
sped up 2D and 3D graphics.

see more please visit: https://homeofbook.com

Summary
☐ The subject of Android designs is colossal
and there is in every case more than one
method for moving toward any errand. This
section is a first gander at what you may call
UI-based graphics.

☐ The Bitmap is the essential designs object.
It comprises of a square shape of pixels that
can be set to any color.
☐ The ImageView is a broadly useful UI part
that can be utilized to show a scope of
designs objects including a Bitmap.
☐ You can draw on a Bitmap utilizing a
Canvas object which has an enormous
number of various drawing methods.
☐ The tone and drawing style utilized by
numerous individuals of the Canvas
techniques is dictated by the properties of a
Paint object. ☐ The Canvas object
additionally upholds changes which can be
utilized to alter where a realistic is drawn, its
size, pivot, etc.
☐ Transformations can be utilized to

see more please visit: https://homeofbook.com

normalize the drawing of illustrations objects
at the origin.

☐ Transformations can likewise be utilized
to change the default pixel coordinate
framework to anything you need to use.

☐ Simple movement is conceivable utilizing
only a Bitmap, Canvas and an ImageView.
☐ Only the UI string can adjust the UI.
☐ The Android Timer can be utilized to
enliven 2D illustrations, however you have
guarantee that it runs the code on the UI
string using the runOnUIThread method.

Chapter 13
LifeCycleOfAnActivity
One of the things that you need to become
acclimated to when programming for a
versatile stage is that your application can be
closed down and restarted absent much by
way of caution. This is the kind of thing that

see more please visit: https://homeofbook.com

frequently makes amateurs and developers
from different stages commit errors.You need
to figure out how to adapt to this beginning
stop presence and that, for an Android
application, it is an intense life simply
attempting to remain alive.
I as of late experienced an Android
application, made by a huge notable
organization, that requested that I fill in a
structure. I was going to press the Submit
button when I unintentionally shifted the
telephone and the screen auto-rotated.
When I looked again there was a clear
structure! I needed to begin once again and,
being a
developer,Icouldn'tresisttestingtoseeifthedata
vanishedfromtheform when I rotated the
phone a second time–it did! The
programmers fromthis high-profile company
had no idea about creating an Android app
beyond the basics.
Don’t fall into a similar snare. Look into
application lifetime, state and continuing
information. It might seem like an exhausting
subject yet it is imperative to the working of a
UI.

see more please visit: https://homeofbook.com

Lifetime and State
Mostprogrammersareusedto theidea
thattheirapplication willbestarted by the user,
used and then terminated by the user. If the
application is restartedthenitisusually uptothe
usertoloadwhatevercontexttheyneed by way
of documents, etc. Sometimes an application
has to automatically retain state information
from run to run. For example, a game might
keep track of which level a player had
reached and the cumulative score, but this is
about as complicated as things get.
For an application running on a cell phone
things are altogether different. The actual
idea of the gadget implies that any
application could be hindered at any second
by an approaching call or the client settling
on a telephone decision. Somewhat this need
to make applications“interruptible” has been
taken up by cell phone working frameworks
as a more broad rule. Android, for instance,
will stop your application running since it
needs the memory or needs to save battery

see more please visit: https://homeofbook.com

life. It even ends and restarts your application
assuming a media reconfiguration is required.

For instance, as we found in a past section, in
the event that the client changes the direction
of the gadget then your application is ended
and restarted. This isn’t exactly a restart
without any preparation in light of the fact
that the framework saves and reestablishes
some state data naturally, yet precisely how
this works is something we need to find out.
The bottom lineis that when youprogram
under Android–and mostother mobile
operating systems–you have to care about the
life cycle of your app andyou have to take
steps to ensure thatits stateis preserved so it
canseem to the user that nothing at all has
happened– even though your app has
effectively been hit on the head and disposed
of beforebeing dragged back to
continuefromwhereitwas.
Being an Android application is a risky
reality and not in any way like a Windows or
a Linux application which can act as though
they have the machine all to themselves.

see more please visit: https://homeofbook.com

The Life Cycle of an
App
The various states that an Android application
can be in and the changes between them can
appear to be convoluted– that is on the
grounds that they are. Assuming you are as
yet suspecting as far as a work area
application that beginnings, runs and is ended
by the client, this degree of intricacy can
appear to be superfluous– and maybe it is.
However, these are the principles that we
need to play by.
The Activity class has a bunch of
overrideable occasion overseers for every one
of six expresses an Activity can be in. These
work two by two, organizing the periods of
the Activity:

☐ onCreate and onDestroy section the whole
existence of the
Activity in memory and can be viewed as at
the furthest level. This pair is considered

see more please visit: https://homeofbook.com

when the application is stacked into memory
or dumped from memory and section the
whole lifetime of an Activity. At the point
when it is first stacked the onCreate is set off
and when the application is discarded
onDestroy is set off. You unmistakably need
to utilize these two to set up and obliterate
any assets which are required for the whole
lifetime of the application. In any case, if
your application is taken out by the
framework it will call onDestroy not long
prior to emptying the Activity and onCreate
when it reloads it. This implies that onCreate
might be called when you want to reestablish
the condition of the Activity so the client
doesn’t see any interruption.

☐ onStart and onStop section any period that
the application is visible. It could be that the
Activity is behind, say, a modular exchange
box. The Activity is noticeable however not
interfacing with the client. This pair of
occasions can be set off different occasions
during the whole lifetime of the app.
Simple applications can generally overlook
the onStart and onStop occasions in light of

see more please visit: https://homeofbook.com

the fact that the Activity is as yet in memory
and doesn’t lose any assets or state.

The fundamental utilization of onStart and
onStop is to offer the application a chance to
screen any progressions that may influence it
while not interfacing with the client.To
befuddle the issue much more there is
likewise an onRestart occasion which
happens before the onStart occasion yet
provided that this isn’t whenever the Activity
first has terminated the onStart - that is this is
a genuine restart.

☐ onResume and onPause section the period
that the Activity is in the frontal area and
connecting with the user.
Again this pair of occasions can happen on
numerous occasions during the whole
lifetime. The onResume occasion happens
when the Activity gets back to the closer
view and going about its standard business.
The onPause occasion happens when the
client switches away to another application
for example.

see more please visit: https://homeofbook.com

The Simple
Approach
At this point you reserve each privilege to be
mistaken for such countless changes of status
and reacting to every one. The most
compelling thing to stress over is the finished
restart of your application which triggers an
onDestroy and an onCreate. This is the one in
particular that annihilates the present status of
the application,the others are essentially
openings for your application to decrease the
heap on the framework, or to save some
client information for good measure. As the
onDestroy is generally a chance to tidy up
assets to keep away from releases, most basic
applications truly just need to deal with the
onCreate event.
It is enticing to believe that this beginning
and halting is very much like a work area
application being ended and afterward the
client choosing to utilize it once more, so that
it’s fine for the application to get going as

see more please visit: https://homeofbook.com

though it was being run interestingly. On
account of an Android application this isn’t
what the client expects by any means. Your
application can be ended by the framework
without the client knowing at least something
about it. At the point when the client attempts
to recapture admittance to an application they
will by and large anticipate that it should
carry on from where they left it. It may be a
complete restart as far as you are concerned,
but the user just switched to another app for a
few minutes and expects to find yours as they
left it.
What this implies is that you can’t think
about onCreate as though it was the
constructor for your application.At the point
when onCreate is terminated it very well may
be whenever your program first has at any
point run or it very well may be a restart for
certain things that you made on a past start
still in presence. For straightforward
applications you can frequently basically
make everything again as though it was the
initial time your application had run, and
sometimes you really want to test the
savedInstanceState to check whether you are

see more please visit: https://homeofbook.com

in reality restarting. Notice likewise that
regularly these occasions additionally will
more often than not happen in successions.
For instance, an application that has recently
gotten the onPause occasion is probably
going to proceed to get the onDestroy
occasion on the grounds that the framework
will eliminate it to let loose memory.It is a
slip-up to attempt to contemplate groupings
of events

and ask which one ought to do a specific
introduction or tidy up. Simply contemplate
the express that your application is moving
into and place the vital code into that
occasion handler.

Lifecycle Explorer
There is no more excellent method for feeling
alright with the lifecycle and its occasions
than to compose a short demo program that
shows you when they occur.
Start another Android Basic Activity project,

see more please visit: https://homeofbook.com

tolerating all defaults, call it Lifecycle and
afterward acknowledge every one of the
defaults to begin rapidly. In the Layout Editor
eliminate the“Hi World” string and spot a
TextView on the plan surface. Next resize it
so it fills the vast majority of the space and
eliminate its default text passage, ensure it is
obliged and has a huge wiggle room around
it:

The code we want is genuinely simple, the
main stunt is to make sure to call every one of
the framework gave occasion overseers that
you have superseded.Assuming you don’t do
this the application just ends when you run it.
The OnCreate occasion overseer actually
needs to develop the UI, however presently
we get a reference to the Java object
addressing the TextView into a worldwide
variable so the occasion controllers can get to

see more please visit: https://homeofbook.com

it:
supersede fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

textView.append(“Create\n”)

The remainder of the program essentially
abrogates every one of the occasion overseers
thus, calls the first occasion controller and
afterward adds an instant message to
textView:
abrogate fun onStart() { super.onStart()

textView.append(“Start\n”)
}

abrogate fun onPause() { super.onPause() textView.append(“Pause\n”)
}

abrogate fun onResume() { super.onResume()
textView.append(“Resume\n”)
}

abrogate fun onStop() { super.onStop() textView.append(“Stop\n”)
}

supersede fun onRestart() { super.onRestart() textView.append(“Restart\n”)
}

abrogate fun onDestroy() { super.onDestroy()
textView.append(“Destroy\n”)
}

An extremely straightforward and drawn-out
kind of program.

see more please visit: https://homeofbook.com

Trying It Out
If you currently run this program you can
utilize it to discover when the existence cycle
occasions occur. You may be amazed to
discover that when you previously run the
program you get:

530

If you consider it briefly, this isn ’t
nonsensical as the application is being
stacked, becoming apparent and in the
forefront, and henceforth the proper
occasions are terminated in turn.
Beginners regularly accept that the existence
cycle occasions some way or another
supersede one another. That is, assuming an
onCreate has been terminated then this is the
huge occasion in the Activity’s life thus the

see more please visit: https://homeofbook.com

others will not occur. This isn’t true and you
want to ensure that you put activities into the
occasion overseers that truly are fitting to the
existence cycle state. For instance, assuming
you put something in the onResume occasion
controller ensure you understand that it will
be terminated when the application initially
fires up just as when it simply being resumed.
If you attempt different things, such as
squeezing the Home key and choosing
another application, then, at that point, you
will see other occasion arrangements,
obviously just when you continue the
Lifecycle app.
For example, pressing the Home key, then
showing the task managerby long pressing
the Homekey and reselecting your app results
in: Pause, Stop as the app is removed from
the foregroundand then Restart,Start,
Resumeas the appis loaded, becomes
visibleand then resumes theforeground and
interacts with the user.
You can give different activities a shot yet
there is one thing you should test– changing
the direction. If you are using the emulator
then press CtrlF11. At the point when the

see more please visit: https://homeofbook.com

screen direction transforms you will see that
the TextView has been cleared and
Create,Start,Resume have been added.
This is because when you change orientation
the app is completely stopped and then
completely restarted, i.e. it is as if the app
was being run from scratchforthefirsttime.
This assertion is practically obvious– yet not
quite.

Retaining State – the
Bundle
When you change direction your application
is halted and restarted.At the point when this
happens the TextView is reset to its default
state when the application loads. This
depiction of what’s going on is maybe what
you may anticipate. Be that as it may, this
isn’t the finished story.

The framework attempts to assist you with
the issue of having your application halted

see more please visit: https://homeofbook.com

abruptly and restarted. It will naturally hold
the province of UI components that can be
changed by the client, and it consequently
reestablishes them when the application
begins. So on a basic level you can at first
overlook the issue of an application restart on
the grounds that the framework reestablishes
your UI. This is the explanation that some
Android developers accept that everything
is“typical” and there is no compelling reason
to study the lifecycle of an application. This
is valid from the outset, yet later your
application will advance past what the
framework gives by default.

Automatically saving and reestablishing the
UI ’s state is the thing that the
savedInstanceState boundary in the onCreate
occasion controller is all about:
abrogate fun onCreate(savedInstanceState: Bundle?) {

A Bundle is a bunch of key/esteem sets which
is utilized to save the qualities put away in UI
components when the application is halted by
the framework. It stores id/esteem sets and
when the application is restarted the Bundle
is utilized to introduce the qualities in the

see more please visit: https://homeofbook.com

relating UI components. Notice that assuming
the client stops your application by
eliminating it from the new applications list
then the savedInstanceState is obliterated,the
application truly begins once again once
more,and the onCreate isn’t passed a Bundle
to reestablish the UI. At the end of the day,
savedInstanceState possibly reestablishes the
UI when the application has been halted by
the system.
It is likewise worth seeing that the reestablish
will work to an elective format stacked due to
a setup change.For instance,it will reestablish
state to a scene variant of a format just as the
first representation rendition. The only thing
that is in any way important is that the current
design has View objects with the right ids.
Atthis pointyou are probably wondering why
the TextView object wasn't restoredby
thesystemwhenthedevice was rotated?
Thesimpleanswer is
thataTextViewobjectisn'tintendedforuserinteraction–
itissupposedto just be used to show static text
labels and so the system doesn't save and
restore it.
You can see the programmed save and

see more please visit: https://homeofbook.com

reestablish in real life assuming you add an
EditText input field on the plan surface of the
Lifecycle Explorer. Presently assuming you
enter some message into the EditText field it
will be held on the off chance that you pivot
the gadget. Notwithstanding, assuming you
press and hold the Home key,eliminate the
application and afterward start it once more
you will see that the EditText field is clear
again:

The text in the EditText field at
the lower part of the screen is protected
during a screen rotation.

☐ The overall standard is that any UI
component that can be altered by the client is
naturally saved and reestablished. Any
progressions that your code makes or that the
client makes in complex UI parts are lost
except if you find ways to protect them.

see more please visit: https://homeofbook.com

Saving Additional UI
Data
The framework will save and reestablish the
condition of the UI components that the client
can change, however it won’t store any that
your code changes. It additionally doesn’t
consequently save and reestablish whatever
other information that the client or your code
might have produced that isn’t inside the UI.
In these cases you need to keep in touch with
some code that saves the qualities and
reestablishes them. There are loads of
methods of saving the condition of an
application as it is begun and halted by the
framework. One of the least complex is to
utilize the Bundle object that the framework
uses.
The framework fires the onSaveInstanceState
occasion when it is going to add information
to the Bundle and save it. To save some extra
information you should simply abrogate the
default occasion overseer. For instance,

see more please visit: https://homeofbook.com

assume you need to save and reestablish the
information in the TextView in the Lifecycle
Explorer. First you need to save the data:
supersede fun onSaveInstanceState(outState: Bundle?) {
super.onSaveInstanceState(outState)

outState?.putCharSequence(“myText”,textView.text)
}

Notice that we save the text content of the
textView object as the worth and utilize the
key“myText”. Much of the time it would be
smarter to make a string consistent for the
key. The key can be any identifier you want
to utilize, yet it includes to be exceptional
inside the Bundle as it is utilized to recover
the information you have put away in the
Bundle.
Now to recover the information and spot it
into the TextView we want to change the
onCreate occasion handler:
supersede fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

textView.append(“Create\n”)
if (savedInstanceState != null){
textView.text=savedInstanceState.getCharSequenc
e(“myText”)
}

see more please visit: https://homeofbook.com

This gets going in the typical manner
however presently we verify whether
savedInstanceState has any
information.Assuming that it does we recover
the put away text utilizing the key“myText”.

There is zero excuse not to utilize the
onCreate occasion overseer along these lines,
however the framework likewise fires an
onResetoreInstanceState occasion when it is
going to play out its own“programmed”
reestablish of the UI for you. You can
abrogate this occasion controller to keep the
code that reestablishes the application’s state
kept out of the onCreate occasion handler.

For instance, you could have written:
supersede fun onRestoreInstanceState(savedInstanceState: Bundle?) { if
(savedInstanceState != invalid) {
textView.text =
savedInstanceState.getCharSequence(“myText”)

}
super.onRestoreInstanceState(savedInstanceState)

}

Do make sure to call the
super.onRestoreInstanceState assuming you
need the framework to reestablish the

see more please visit: https://homeofbook.com

remainder of the UI in the standard manner.
There are put and get techniques for a scope
of standard

information types. All simple types, byte,
integer and so on, are supported, as are
strings, arrays and other simple data
structures. You can likewise make your own
classes that can be put away in a Bundle by
executing the Parcelable interface. Notice you
can save subjective information, and not only
information for the design. You can likewise
make your own Bundle occurrence and utilize
it for information stockpiling, diligence and
for moving information to different pieces of
a program. There are numerous standard
classes the Bundle doesn’t uphold. In these
cases you need to make your own courses of
action to save information to storage.

Often all you really want to do to ensure that
your application keeps up with its state
between framework restarts is to utilize the
savedInstanceState Bundle object.This
methodology likewise diminishes a large part
of the reasonableness of lifecycle the board to

see more please visit: https://homeofbook.com

carrying out the onSaveInstanceState and
onRestoreInstanceState occasion controllers.
This is such a ton easier than stressing over
all of the diverse life cycle events. As an
activity, you would now be able to return to
the iCalc model in Chapter 3 and make its
presentation and current worth continue
through a screen rotate.

Complex UI
Elements
One of the snares sitting tight for you is the
issue of precisely what is naturally saved and
reestablished.For instance,toward the
beginning of this part we had the narrative of
the application that lost the client’s structure
information when it was rotated.
Given what we presently know about the
auto-saving and reclamation of client
modifiable UI components, you may be
considering how this could occur? The
appropriate response is that the developers of

see more please visit: https://homeofbook.com

the application had presumably become used
to the programmed perseverance of UI state
and didn’t try to make sure that turn had no
impact. It had an impact in light of the fact
that the structure was being downloaded from
a site and showed in a WebView control. A
WebView control is persevered by the
framework, however it reloads the page when
it is reestablished. This implies that on a
revolution the structure was reloaded as
unfilled and the client’s information was lost.

☐ You generally need to make sure that
things fill in as you anticipate. Continuously
test what befalls your UI on a rotation.

Advanced State
Management
For fulfillment it is actually important that
there are a lot more ways to deal with
keeping up with state. Later you should find
how to store bunches of client information

see more please visit: https://homeofbook.com

locally for longer term determination, and
this is frequently enough to carry out state the
board however an arrangement change.
There are additionally further developed state
the executives issues when you come to
utilize Fragments,the subject of Android
Programming: Mastering Fragments and
Dialogs.For this situation you can utilize
retainedInstance to ask the framework not to
obliterate a whole Fragment. This implies
that every one of the information put away in
the Fragment is held despite the fact that the
Activity might be eliminated from memory.
This makes it conceivable to utilize a
Fragment as a store of state.
A definitive in getting sure that things going
as you need is to deal with the arrangement
change yourself. You can do this by rolling
out an
improvement to the show. Assuming you do
this then it is dependent upon you to roll out
the improvements required when the
onConfigurationChanged occasion
happens.You could,for instance,select to
quicken buttons and other UI objects into
new positions or simply disregard the need to

see more please visit: https://homeofbook.com

reconfigure altogether.
This is completely exceptional and for most
applications you can get by utilizing only the
onSaveInstanceState and
onRestoreInstanceState occasion handlers.

Summary
☐ Android, in the same way as other
versatile OSs, will eliminate your application
from memory and restart it as it needs to.

☐ The client won’t know that your
application has been annihilated and
reproduced and will anticipate that it should
proceed from where they left off.

☐ The framework signals changes in state to
your Activity through a confounded
arrangement of occasions. You really want to
see how these work to make your Activity
continue effectively later the different
degrees of suspension.

☐ onCreate ought not be viewed as

see more please visit: https://homeofbook.com

the“constructor” for your application since it
is considered when the application is
reestablished just as when it is run for the
first time.

☐ The framework will store the condition of
any client modifiable UI parts and reestablish
it when the Activity resumes.
☐ The information is put away in an
extraordinary example of a Bundle, a bunch
of key/esteem sets, called savedInstanceState.

☐ The framework makes you when it is
about aware of save and reestablish
information from savedInstanceState by
terminating the onSaveInstanceState and
onRestoreInstanceState occasion handlers.

☐ You can supersede both of these occasion
controllers to save and reestablish additional
information in the savedInstanceState
Bundle.

☐ For some straightforward applications you
can for the most part disregard the lifecycle
occasions and focus on utilizing the

see more please visit: https://homeofbook.com

onSaveInstanceState
and onRestoreInstanceState occasion
overseers to persevere data.

☐ You should consistently make sure that UI
and different components are endured
through a suspension of your application.
You can test utilizing a turn design change.

☐ There are other further developed methods
of saving state which you should find later
on. You can’t utilize a Bundle for everything.

Chapter
14
Spinners
Working with Android Studio makes
assembling the UI simple with an intelligent
manager, the Layout Editor, yet you actually
need to discover how to deal with the things
it isn’t exactly so great at.In the following

see more please visit: https://homeofbook.com

two parts of our investigation of Android we
take a gander at spinners and pickers, the
subsequent stage up from buttons and text
controls.

Spinners are what are alluded to as drop-
down records or something almost identical
in other UIs. They permit the client to pick
from a rundown of potential things. Pickers,
which are the subject of Chapter 15,
additionally permit the client to pick a thing,
yet for this situation the things are all the
more barely characterized– a date, a period or
a number.

The Spinner and the
Layout Editor
☐ The spinner presents a bunch of options in
contrast to the client and allows them to
choose one.

Putting a Spinner into your undertaking is

see more please visit: https://homeofbook.com

pretty much as simple as utilizing the
instrument Palette in the Layout
Editor,however you can’t move away without
some code to make everything work.
Specifically, you want to characterize the
rundown of things that the Spinner will show
when the client actuates it.
At the point when you place a Spinner on the
plan surface all you get is a clear control with
a non-working dropdown icon:

Right now the Layout Editor just offers
insignificant help for setting up the Spinner
for certain information to show. The easiest
kind of thing to show the client is a rundown
of text things, and you may well think that the
most immediate method of doing this is to
utilize a String cluster. It is, yet things are
somewhat more convoluted than this. They
are basic, nonetheless,on the off chance that
you make an asset to

determine the String exhibit on the grounds

see more please visit: https://homeofbook.com

that for this situation the framework will do
all things required to stack the data.

Setting the substance of the Spinner utilizing
a String cluster in code is a decent method for
perceiving how the Spinner functions, and
this is our main thing next, yet it isn’t the way
it normally happens.
Androidprovidesacomprehensivesystemofresources–
strings,imagesand lots of XML files. The idea
is that you can produce customized versions
of you application just by changing the
resource files, i.e. without having to
modifyyourcode.Fordetailedinformationonusing
resourcesreferbackto Chapter11.
For the situation of a Spinner you could set
up an asset that was a String cluster that gave
the rundown of things to be shown. To make
a variant of your application for an unfamiliar
market you could get the rundown meant
make an asset in the new language.
Resources are a good thought and you should
utilize them for generally fixed strings and
fixed information overall. Up until this point,
the models have would in general stay away
from assets to simplify everything, except for

see more please visit: https://homeofbook.com

a Spinner you want to know how to code up a
String cluster asset and use it.
Android Studio ends up being beneficial asset
support however in certain spaces it is
deficient. For instance, in an ideal world the
framework would assist you with making a
String or String exhibit asset, however right
now it just gives assistance to straightforward
string esteems. It will assist you with making
a String asset, yet offers no help for a String
cluster, for which we must choose between
limited options however work with the XML
file.
Find the record strings.xml in the res/values
catalog and open the document
strings.xml.Add to this the String cluster
definition: <string-exhibit name=“country”>

<item>Canada</item>
<item>Mexico</item>
<item>USA</item>

</string-array>

The significance of the XML is self-evident
and this is the benefit of an intelligible
markup language.

If you have explored resources using the

see more please visit: https://homeofbook.com

Resource window which appears when you
select the three dots option in the Attributes
window you might
worrythatthisnewresource,i.e.SpinnerList,
doesn'tappear.Italsodoesn't appear in the
Resource editor that you can select while
editing the XML file.

The explanation is that, as of now,Android
Studio doesn ’t uphold the task, altering or
formation of String exhibits other than
physically. Nonetheless, utilizing the new
asset is genuinely simple. The id of the asset
is @array/nation and this must be composed
into the passages property in the Attributes
window as the Resource picker doesn’t
uphold exhibits at the moment:

If you enter the id effectively you will see the
principal thing show up in the Spinner inside
the proofreader. At the point when you run
the application you will see each of the
passages when you drop down the list:

see more please visit: https://homeofbook.com

For straightforward arrangements of choices
that can be indicated at configuration time
this is all you want to be aware of how to
stack a rundown of things into a Spinner.
Practically speaking, notwithstanding, a
Spinner ordinarily must be stacked with a
rundown at runtime and afterward you want
to be aware of the ArrayAdapter.

Introducing the
ArrayAdapter
For the situation of UI gadgets that show
arrangements of things, Android has a
considerably more broad component to adapt
to the distinctive kind of things you could
show. Gadgets that show arrangements of
things by and large work with an illustration
of an“connector”.For additional on

see more please visit: https://homeofbook.com

connectors overall see Chapter 15.
A connector fundamentally takes a rundown
of items and converts them into something
that can be shown in the gadget. By and
large, you can make custom Adapters to do
shrewd things with arrangements of objects
of your own so they show properly. As a rule,
in any case, you can get by with simply
utilizing the gave worked in adapters.

For the situation of the spinner the most
regular decision is the ArrayAdapter. This
takes a variety of objects of any kind and
makes them reasonable for show by calling
their toString() technique.However long the
toString() strategy produces what you need to
find in the Spinner then everything ought to
work.
For the situation of a variety of Strings
calling the toString() technique on each
cluster component may seem like pointless
excess, yet it is the value we pay to fabricate
instruments that can adapt to more muddled
situations.

So the game plan is to make a String exhibit

see more please visit: https://homeofbook.com

with the things we need to show, utilize this
to introduce an ArrayAdapter article, and
afterward connect the ArrayAdapter to the
Spinner.
Creating the cluster is easy:
val country = arrayOf(“Canada”, “Mexico”, “USA”)

The ArrayAdapter constructor can appear to
be convoluted. It appears to be considerably
more confounded in light of the fact that
ArrayAdapter utilizes generics to permit you
to determine the kind of every component in
the array. If you haven’t utilized generics
previously,all you really want to know is
that,as a general rule, generics are a method
of making helpful classes, frequently
assortments of items that can be of a sort you
indicate.You realize you are working with a
conventional when you need to indicate the
sort it is to work with utilizing <type>.
So instead of creating a special array Adapter
for each type of array, an IntArrayAdapter, a
StringArrayAdapter and so on, you simply
have to specify the type as <int> or <String>
when you use the generic ArrayAdapter type.
For instance, to make an ArrayAdapter for a
variety of Strings you would use: val

see more please visit: https://homeofbook.com

stringArrayAdapter=ArrayAdapter<String>(constructor parameters) The
example is something similar for every one of
the constructors and for various exhibit types.
There are many ArrayAdapter constructors,
yet they all need some fundamental data.
They need to know the current setting,
typically this, and the format to be utilized to
show the rundown and the variety of
information items.
The main troublesome one is the design to be
utilized to show the rundown. This sounds
like a ton of difficult work until you find that
the framework gives some essential standard
designs that you can only use. For our
situation the format is:
andRoid.R.layout.simple_spinner_dropdown_item

Notice that this is really a whole number that
decides the design asset to utilize and nothing
more confounded. Assembling it all gives:
val stringArrayAdapter=ArrayAdapter<String>(

this,
andRoid.R.layout.simple_spinner_dropdown _item, country)

If you are considering what nation is, recall
that we characterized a String cluster called
country earlier.
The last advance is to indicate the

see more please visit: https://homeofbook.com

ArrayAdapter to use in the Spinner.
We can utilize its connector property:
spinner.adapter=stringArrayAdapter

You might have done the occupation in one
line and the onCreate occasion
handler:
supersede fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)
val country = arrayOf(“Canada”, “Mexico”, “USA”)
spinner.adapter=ArrayAdapter<String>(
this,
andRoid.R.layout.simple_spinner_dropd own_item, country)
}

If you run the program you will see a similar
drop-down list we created utilizing only the
Layout Editor.

Handling the
Selection
The following inquiry is, how would you find
that the client has made a selection?
The straightforward answer is that we need to
attach to the Spinner’s occasions and the
OnItemSelectedListener is the interface that

see more please visit: https://homeofbook.com

has the onNothingSelected and
onItemSelected occasion controllers. As the
interface characterizes two occasion
controllers it’s anything but a SAM thus we
need to utilize an object.
If you enter the accompanying line:
val onSpinner=object:AdapterView.OnItemSelectedListener{

You would then be able to utilize the right
snap Generate, Override Methods choice to
make a stub:
val onSpinner=object:AdapterView.OnItemSelectedListener{ supersede fun

onNothingSelected(p0: AdapterView<*>?) {
TODO(“not implemented”)
}
abrogate fun onItemSelected(p0: AdapterView<*>?,
p1: View?, p2: Int, p3: Long) { TODO(“not implemented”)
}

}

It additionally adds an import for
AdapterView.
You can see without a moment’s delay that
you need to carry out two occasion handlers:

☐ onItemSelected– set off when the client
chooses an item

☐ onNothingSelected– set off when the
Spinner has no things or the client deselects

see more please visit: https://homeofbook.com

everything items
You may be astounded to see two events of
<*> in the produced code. The two occasions
are conventional and, as currently clarified,
they can work with a scope of various kinds.
The <*> is a sort projection which basically
permits any sort to be utilized. For instance
List<*> is a rundown of any sort. Obviously,
the real kind isn’t known until runtime thus
every component of the List is treated as an
Any sort and it’s dependent upon you to
project it to something more explicit. Kotlin
adds checks to ensure your projects are safe.
Let’s gander at the onItemSelected occasion
overseer in more detail: supersede fun onItemSelected(p0:

AdapterView<*>?,
p1: View?,
p2: Int, p3:
Long)

What is this p0:AdapterView that has
abruptly showed up? As clarified in before
sections,each of the apparent parts of the UI
compare to View objects of some sort. An
AdapterView is the View object that
compares to one of the showed things in the
Spinner. You could, for instance, utilize the

see more please visit: https://homeofbook.com

AdapterView passed to the occasion
controller to alter the presence of the showed
item.
The p1:View boundary is only the offspring
of the AdapterView that was really
clicked.Note that a thing can be made out of
more than one View item. Finally the p2:int
boundary and the p3:long give the place of
the view that was clicked in the connector
and the column id of the thing that was
selected.
You can populate a Spinner from an
information base. For this situation the
column id gives the data set line number,
which isn’t really as old as position in the
Spinner. For a basic ArrayAdapter the
position and id are something similar. Much
of the time the main boundary you will be
keen on is the int position which gives you
the thing the client chose. For instance, place
a TextView on the plan surface and change
the
onItemSelected occasion overseer to read:
abrogate fun onItemSelected(p0: AdapterView<*>?,

p1: View?, p2:
Int, p3: Long)

see more please visit: https://homeofbook.com

{

textView.text=p2.toString()
}

All that happens is that the position boundary
is shown in the TextView. Finally to
associate the occasion dealing with object to
the Spinner we really want to add it utilizing
its onItemSelectListener property:
spinner.onItemSelectedListener=onSpinner

Obviously you could characterize the
occasion taking care of protest and allocate it
in one guidance. Assembling this gives the
new onCreate:

abrogate fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

val country = arrayOf(“Canada”, “Mexico”, “USA”)
spinner.adapter=ArrayAdapter<String>(
this,
andRoid.R.layout.simple_spinner_dropdo wn_item, country)

spinner.onItemSelectedListener =
object:AdapterView.OnItemSelectedListener { supersede fun
onNothingSelected(p0:
AdapterView<*>?) {

}

abrogate fun onItemSelected(p0: AdapterView<*>?, p1: View?, p2: Int, p3:
Long) {

textView.text = p2.toString() }

see more please visit: https://homeofbook.com

}

If you currently run the program you will see
something like:

The position showed relates to the component
in the exhibit that has been chosen, counting
from zero of course.
Most of the time is it enough to have the list
number of the chose thing, however the
AdapterView object has a couple of
techniques that empower you to get the
chosen thing. To audit the chose thing you
could utilize the situation to record the first
ArrayAdapter, or even the first String array,

however these aren ’t for the most part
accessible to the occasion controller.So to
recover the thing you would utilize the
getItemAtPosition technique.For instance, to
show the nation name you would adjust the
setText call to:

see more please visit: https://homeofbook.com

textView.text = p0?.getItemAtPosition(p2).toString() Notice that
the chose thing is returned as an article type
and you need to project it before you can do
anything with it.

There are different strategies that can be
utilized to recover data or control the chose
component, yet for most basic applications
the itemAtPosition property is all you truly
need.

Creating an
ArrayAdapter from
a Resource
To make an ArrayAdapter from an asset you
want to utilize a static technique for the
ArrayAdapter class, createFromResource.
This simply needs you to determine the
specific situation, the asset id, and the
Spinner design. You should simply to
supplant the formation of

see more please visit: https://homeofbook.com

stringArrayAdapter:
spinner.adapter=ArrayAdapter.createFromResource(

this,
R.array.country
,
andRoid.R.layout.simple_spinner_dropdown_ item)

With this change everything functions as in
the past, however presently to change the
things that show up in the Spinner you
essentially alter the XML file.
You could likewise utilize the assets object to
recover the String exhibit and afterward
continue as though the String cluster had
been characterized in code: val
country=resources.getStringArray(R.array.country)

Changing The List
There are bunches of further developed things
that you can do with Spinners, yet these
aren’t experienced that regularly and
principally happen when attempting to
construct a custom client experience. The one
thing that does occur often is the need to
dynamically change the list of items. There

see more please visit: https://homeofbook.com

are many slight variations on this, but
essentially what you do is change the String
array and then call the adapter's
notifyDataSetChange method. For example,
if you want to change Mexico, i.e. element
one, to Greenlandyouwoulduse:
country[1]=“Greenland”
(spinner.adapter as ArrayAdapter<String>).notifyDataSetChanged()

You need to expressly give the connector
property a role as it is excessively intricate
for the compiler to infer.

The ArrayAdapter likewise has add, clear,
eliminate and embed techniques which can be
utilized to change the basic information,
however for this to work the item holding the
information must be modifiable.
You can’t adjust a String cluster thusly. What
you want rather is an ArrayList.
If you change the presentation of country to:
val country= mutableListOf(“Canada”, “Mexico”, “USA”)

you can add“Greenland” to the furthest limit
of the things using: (spinner.adapter as

ArrayAdapter<String>).add(“Greenland”) Notice that for this
situation the ArrayAdapter constructor
utilized changes from one that acknowledges

see more please visit: https://homeofbook.com

a cluster to one that acknowledges a List of
objects.
You can generally discover what number of
things there are utilizing the count property.
How do you modify a list of items that are
created using a resource? This is a tricky
question because the ArrayAdapter creates a
String array to hold the data which means you
can't use the methods that modify a list. There
are various methods of fixing this, however
the most straightforward is to build your own
List from the asset directly:
val country= mutableListOf(

*resources.getStringArray(R.array.country))
spinner.adapter=ArrayAdapter<String>(
this,
andRoid.R.layout.simple_spinner_dropd own_item, country)

With this form of the ArrayAdapter you can
by and by utilize the add, and different
techniques,to adjust the rundown of
things.Notice the utilization of the Kotlin
spread administrator to unload the String
cluster into individual Strings so
mutableListOf works correctly.

see more please visit: https://homeofbook.com

Summary
☐ Spinners are a method of introducing a
rundown of choices for the client to choose
from.

☐ Spinners can be mind boggling as far as
their format and what they show, however the
most straightforward model is to work with a
variety of Strings.

☐ The variety of Strings can be made in the
code or inside an asset file.
☐ The variety of Strings must be changed
over into an ArrayAdapter object to be
utilized with the Spinner.
☐ The ArrayAdapter gives a View object to
every thing showed in the Spinner.

☐ There are two different ways (at any rate)
to stack a String exhibit asset into an
ArrayAdapter – utilizing its
createFromResource or by stacking the asset
as String exhibit and afterward continuing as
before.

see more please visit: https://homeofbook.com

☐ Loading the String cluster enjoys the
benefit that you can transform it into a List,
which can be altered in code by adding or
erasing components. You can’t change the
length of a String array.

☐ To discover what the client has chosen
basically utilize the onItemSelected occasion
handler.
☐ To recover the thing that the client has
chosen utilize the
getItemAtPosition(position) method.

Chapter 15
Pickers
Android right now upholds three Pickers for
dates, times and general numbers and they are
significant ways of getting client input.
Notwithstanding, they have experienced such
countless amendments that they need
straightforward documentation or rules how
to utilize them. We should clear up the

see more please visit: https://homeofbook.com

confusion.

Working with
Pickers
☐ A picker is a“dial” that you can use to
choose one of a foreordained arrangement of
values.
In this sense it is a ton like the Spinner
shrouded in the past part, however one that
has a confined arrangement of choices.
There are two methods for utilizing a Picker,
as a gadget, or as a discourse box. You will
track down the TimePicker and the
DatePicker, prepared to put on the plan
surface, in the Date&Time part of the Palette.
The NumberPicker, notwithstanding, is a lot
of lower down, in the Advanced section:

see more please visit: https://homeofbook.com

Although now and again you likely will need
to make a Dialog box and should utilize a
perplexing DialogFragment to wrap the
Dialog and deal with its lifecycle, and there
are numerous circumstances where utilizing
the crude gadget will do the work alright. For
additional on DialogFragment see:

Android Programming: Mastering Fragments
and Dialogs.

TimePicker
The TimePicker is an extremely simple
method for beginning. Assuming you make
another Android project, called
TimeAndDate and acknowledge each of the
defaults you can put a TimePicker,recorded
top of the Date and Time segment of the
Palette,on the plan surface very much like
some other gadget, and measure and find it as
required. In its default setup it shows in the
Layout Editor utilizing the style
android:timePickerStyle and has a simple

see more please visit: https://homeofbook.com

clock face and an info region that can be
utilized to establish the point in time by
hauling the hands on the clock face:

Pickers are mind boggling gadgets that have
numerous parts, every one of which can
change appearance relying upon how they are
styled and which adaptation of Android you
are focusing on. While you can choose from a
scope of topics, they don’t all work with all
SDK/APIs and they may to be eliminated
sooner or later. For instance, before API 14
this subject was used:

API 14 took on the Holo topic and the picker
looked like this:

see more please visit: https://homeofbook.com

What follows is the thing that you get
assuming you just acknowledge the defaults.
Notwithstanding, it is critical to understand
that precisely what the client sees relies upon
the form of Android they are utilizing. For
example your up-to-date app running on the
latest Android might look like the clock
TimePicker but it you run it on a pre-
Lollipop API such as Jelly Bean (API 18)
then you will see the Holo-themed version as
above. To help more seasoned forms then it is
vital to make sure to test utilizing them. To
utilize something that appears as though the
Holo-themed form on all adaptations then
you should simply track down
timePickerMode in the Attributes window
and utilize the drop down rundown to choose
spinner or clock contingent upon the sort you
need.
For simple in reverse similarity use similarity
library v7 appcompat, which is remembered
for your undertakings consequently by
Android Studio, and stick with the
AppCompat topics.

see more please visit: https://homeofbook.com

TimePicker in Code
To interface with the TimePicker you should
simply use the get/set techniques for Hour
and Minute. You can likewise
programatically change the 12 hour/24 hour
mode.Notice that the time is constantly
returned in 24-hour structure regardless the
gadget’s mode is.
Although the currentMinute and currentHour
properties are expostulated, the choices which
do the very same thing, moment and hour,
don’t deal with prior renditions of Android.
So for the second it appears to be desirable
over utilize the censured techniques and
overlook the alerts. For instance to set the
TimePicker you would use:
timePicker.setIs24HourView(true
) timePicker.currentMinute=10
timePicker.currentHour=13

The possibly task remaining is sorting out
some way to find when the client has chosen
a time.
You could give a button which the client
needs to snap to affirm the new time. For
instance, place a Button and a TextView on

see more please visit: https://homeofbook.com

the plan surface and add the accompanying
Button click occasion handler:
button.setOnClickListener { view - >

textView.text= timePicker.currentHour.toString() + “:” +
timePicker.currentMinute.toString() }

This gives a way to the client set the time:

In many cases the troublesome aspect in
utilizing a Picker isn ’t setting it up or getting
the information from it, yet in handling that
information into a structure in which your
program can utilize it. For this situation we
basically convert the time into a somewhat
organized string
representation.

Updating the Time

see more please visit: https://homeofbook.com

What about getting an update each time the
client changes the TimePicker? This requires
an
OnTimeChanged occasion which
occasion controller for an

can be carried out with an
OnTimeChangedListener interface as a
lambda.
You can figure that when the time is changed
by the client, the onTimeChanged strategy is
called and the TimePicker that set off the
occasion is passed as view, and its hour and
moment setting as hourOfDay and moment,
and everything necessary is to set the
occasion overseer utilizing the
setOnTimeChangedListener method.
For instance, to move the new an ideal
opportunity to the TextView utilized in the
past model you would use:
timePicker.setOnTimeChangedListener { timePicker, h, m - >

textView.text=h.toString() + “:” + m.toString()

}

Now assuming you run the program you will
see the TextView change each time the client

see more please visit: https://homeofbook.com

adjusts the TimePicker by whatever method.
The full program, including the code for the
button and the occasion controller is shown
below:

supersede fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

timePicker.setIs24HourView(true) timePicker.currentMinute = 10
timePicker.currentHour = 13

button.setOnClickListener { view - >
textView.text =
timePicker.currentHour.toString() + “:”

+ timePicker.currentMinute.toString(}

timePicker.setOnTimeChangedListener { timePicker, h, m
- > textView.text = h.toString() + “:” + m.toString()

}
}

DatePicker
There are two date gadgets in the current
Android framework, DatePicker and
Calendar view. The DatePicker has been
being used since API 1 however Calendar
view was just presented in API 11. The

see more please visit: https://homeofbook.com

fundamental contrast between the two is the
way that they look. As they work similarly
and the DatePicker is more adaptable this is
the gadget we will utilize. Likewise whenever
you have encountered the manner in which
TimePicker works there is very little to add to
cover its date counterpart. To see the
DatePicker in real life essentially start
another task called Date and acknowledge the
defaults as a whole. Place a DatePicker on the
plan surface at the upper left-hand corner.
The DatePicker went through similar changes
with the presentation of Material Design as
did the TimePicker. However long you utilize
the most recent API and the default design it
will show in a schedule format:

As is the situation with the TimePicker,
assuming you run your application on a more
seasoned pre-Lollipop variant of Android
then you will see the Holo-themed spinner
version:

see more please visit: https://homeofbook.com

You can opt to display the Holo spinner
version in all Android versions by setting the
datePickerMode to spinner.As an alternative
you can also opt to also show a full Calendar
in spinner mode by setting
CalendarViewShown to true. The
spinnerShown property can also be set to
false to remove the spinners:

As well as playing with the manner in which
the DatePicker looks, you can likewise set
and get each of the pieces of a date using:
☐ DayOfMonth
☐ Month
☐ Year
You can likewise set and get greatest and

see more please visit: https://homeofbook.com

least dates that the gadget will
show utilizing properties.
When it comes to interfacing with the gadget
you can set up a button to permit the client to
mark the calendar similarly as with the
TimePicker or you can utilize the
OnDateChanged occasion to follow the
worth.Doing this follows similar strides
concerning the OnTimeChanged occasion
however with a little contrast - there was
no setOnDateChangedListener technique in
early forms of Android.Rather there is an init
technique which can be utilized to mark the
calendar and the occasion controller. Anyway
as the last boundary of init is SAM you can
utilize a lambda and you can put the lambda
outside of the capacity call enclosures i.e.
init(y,n,d){event handler}

For instance, on the off chance that you add a
TextView to the lower part of the plan
surface and the accompanying code for the
occasion overseer then you can see the date
change each time the client makes a change:
datePicker.init(2018, 4, 6)
{ datePicker, y, m, d - >
textView.text = m.toString() +“/” + d.toString() + “/” + y.toString() }

which sets the year, month and day and the

see more please visit: https://homeofbook.com

occasion
controller. Assuming you run the application
you will see:

This tells you without a moment ’s delay,
May is chosen and the date is 4/6/2018, that
the months are numbered beginning with Jan
at zero not 1. The arrangement is to add one
to the month number.

Number Picker
You may be stressed that the NumberPicker
will be inconvenience when you notice that it
is in the Advanced part of the tool kit range!
Truly it is extremely simple to utilize, you
should simply choose it and spot it on the
plan surface. To give it a shot beginning
another venture called Number and

see more please visit: https://homeofbook.com

acknowledge the defaults in general.
Assuming you disapprove of the delivering of
the NumberPicker just disregard the mistakes
and construct the undertaking. The mistakes
should then go away.
If you run the app then you will see the
NumberPicker styled for the latest API which
in this case looks very odd because there is
nothing loaded into thespinner:

The justification for this is that the
NumberPicker is somewhat more muddled
than different Pickers in that it permits you to
set what the spinner displays.
There are two particular manners by which
you can set the reach that is shown, as a
couple of max/min esteems, or as the
qualities put away in an array.
For instance, assuming you simply need the
NumberPicker to show 0 to 9 you may use:
numberPicker.maxValue = 9
numberPicker.minValue = 0

see more please visit: https://homeofbook.com

If you don ’t need the number spinner to fold
over you can use: numberPicker.wrapSelectorWheel=false

If you want to give the user the choice of 0,
10, 20 and so on up to 90 you first have to
initialize a string array of the correct size for
these values. For this situation, the distinction
among MaxValue and MinValue properties
in addition to 1 gives the quantity of
components in the list.

To make the cluster we want to utilize the
Array constructor with a lambda that instates
it:

val values=Array(10,{i-> (i*10).toString()})

Once we have the variety of qualities to show
it tends to be relegated to the Picker utilizing
its setDisplayedValues method:

numberPicker.maxValue=9 numberPicker.minValue=0
numberPicker.displayedValues=values

see more please visit: https://homeofbook.com

You might have seen that the exhibit used to
determine the qualities is a String cluster.
This means the NumberPicker, regardless of
its name, can permit the client to pick from a
rundown of discretionary strings that you can
set.

For example:

val values=arrayOf(“mike”,”sue”,”harry”)
numberPicker.maxValue=2 numberPicker.minValue=0
numberPicker.displayedValues=values

produces:

see more please visit: https://homeofbook.com

When it comes to recovering the information
you can utilize the getValue strategy,which
consistently returns a number. This is either
the record in the String cluster, or the genuine
worth assuming you are not utilizing a String
exhibit, of the thing the client picked.

If you need to get a live update of the worth
the client chooses you can utilize the
OnValueChange occasion.The occasion
handler:
public void onValueChange(

NumberPicker picker,
int
oldVa
l, int
newV
al)

furnishes you with the NumberPicker object
that the occasion happened on as picker and
the list of the old and new qualities. The main
issue is getting the qualities from the String
cluster that was utilized at first. This is likely
not open from the occasion controller and
may not exist any more drawn out. The
arrangement is to utilize the NumberPicker’s
getDisplayedValues, which returns a String

see more please visit: https://homeofbook.com

exhibit of qualities as of now stacked in the
NumberPicker.

For instance to move the worth to a TextView

numberPicker.setOnValueChangedListener { numberPicker, old, new
- >
val values =numberPicker.displayedValues textView.text=values[new]
}

This uses the picker to get the variety of
showed values, which it then, at that point,
moves to the TextView utilizing the newVal
as an index. Truth be told given that qualities
is as of now characterized and liable to be
open to the lambda through conclusion we
could write:
numberPicker.setOnValueChangedListener { numberPicker, old, new
- >

textView.text=values[new] }
Notice anyway that this would come up short
assuming the rundown of things in the
NumberPicker had changed.

Now when you run the program the
TextView is refreshed when any progressions
are made:

see more please visit: https://homeofbook.com

That’s pretty much everything to
fundamental utilization of the NumberPicker.

Multi-Digit Input
If you want to create a multi-digit input –for
hundreds, tens, units, say–then simply use
three NumberPickers. This is more interesting
than it initially shows up to powerfully follow
the current worth across more than one
NumberPicker. For instance, to construct a
three-digit input you first need to put three
NumberPickers on the plan surface with ids
numberPicker1, numberPicker2 and
numberPicker3.Place
numberPicker1onthefarleft, then
numberPicker 2 and thennumberPicker3.
Additionally add a TextView some place

see more please visit: https://homeofbook.com

convenient:

You could instate every one of the
NumberPickers thusly, however it is
enlightening to utilize a variety of
NumberPickers to do the job:
val nps=arrayOf(numberPicker1,numberPicker2,numberPicker3) Note
that you can make a variety of object of any
sort utilizing arrayOf. Now we have a variety
of NumberPicker objects we can introduce
them all similarly, yet first we want the
variety of values:
val values=Array(10,{i->i.toString()})

As we are utilizing 0 to 9 this should be
possible as a list without utilizing an exhibit,
yet this makes the model more broad.
Presently we have the variety of qualities we
can instate the NumberPickers:
for(I in nps.indices){

nps[i].maxValue=values.size-1
nps[i].minValue=0
nps[i].displayedValues=values

see more please visit: https://homeofbook.com

nps[i].setOnValueChangedListener(onValueCh

anged)
}

Notice that a similar occasion overseer is
utilized for all of the
NumberPickers. Sometimes this is the
method for getting things done, in others it is
smarter to have an occasion overseer for each
widget.

The following little issue is the manner by
which to refresh the worth showed in a
TextView when one of the NumberPickers
changes its worth. Again the easiest answer
for a model is to get the qualities from every
one of the NumberPickers utilizing a for
loop:
val onValueChanged= {picker:NumberPicker,old:Int,new:Int-> var

temp=““
for(i in nps.indices){
temp+=values[nps[i].value]
}
textView.text=temp

}

For this situation we don’t utilize any of the
occasion technique’s boundaries we just
utilize the qualities exhibit which is

see more please visit: https://homeofbook.com

accessible because of conclusion and query
the qualities that each NumberPicker is as of
now set to.

If you run the program, you ought to have the
option to adjust what is shown in the
TextView in a reasonable three-digit place

esteem way: The total
program is:
import android.os.Bundle
import
android.support.design.widget.Snackbar import
android.support.v7.app.AppCompatActivity import android.view.Menu
import
android.view.MenuItem import
android.widget.NumberPicker

import
kotlinx.android.synthetic.main.activity_main.* import
kotlinx.android.synthetic.main.content_main.*

class MainActivity : AppCompatActivity() {
supersede fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

val values=Array(10,{i->i.toString()})
val nps=arrayOf(numberPicker1,numberPicker2,numberPicker3)

see more please visit: https://homeofbook.com

val onValueChanged= {picker:NumberPicker,old:Int,new:Int-> var temp=““
for(i in

nps.indices){
temp+=values
[nps[i].value]

}
textView.text=temp
}
for(I in
nps.indices){
nps[i].maxValue=values.size-1
nps[i].minValue=0
nps[i].displayedValues=values
nps[i].setOnValueChangedListener(onValueChanged)
}

There is considerably more to say about the
Pickers and how to modify them, yet the
strategies clarified here are the most well-
known, and customization by and large just
includes the utilization of genuinely clear
properties and methods.
The greatest exclusion here is the utilization
of the Pickers inside a DialogFragment. This
is a major theme that is shrouded in Android
Programming: Mastering Fragments and
Dialogs.

Summary

see more please visit: https://homeofbook.com

☐ TimePicker, DatePicker and
NumberPicker give simple to utilize methods
of getting client input without utilizing an on-
screen keyboard.

☐ Pickers are generally presented as
exchange boxes or discourse parts. This is a
decent method for utilizing them, however
they are additionally helpful in the event that
you don’t utilize a dialog.

☐ With the presentation of Material Design
with Android Lollipop, the appearance of the
Pickers has changed.For simple in reverse
similarity use similarity library
v7,appcompat,which is remembered for your
activities naturally by Android Studio, and
stick with the AppCompat themes.

☐ If you stay with these defaults your
application will utilize Material Design on
Lollipop and later, yet the Holo subject for
prior renditions of Android. Assuming that
you stray from AppCompat topics things tend
not to work.

see more please visit: https://homeofbook.com

☐ It is conceivable and exceptionally simple
to supplant the Material Design with the Holo
look on all forms of Android. Essentially set
the timePickerMode or potentially
datePickerMode properties to spinner. The
NumberPicker consistently shows as a
spinner.

☐ Use the OnXChangedListener occasion
overseer to react to client input.
☐ The DatePicker in spinner structure can
likewise show a schedule utilizing the
CalendarViewShown property.

Chapter
16
ListVie
w
ListView is presumably the most regularly
utilized UI part in an Android application. It

see more please visit: https://homeofbook.com

is easy to utilize, however you really want to
will grasps with the possibility of
an“connector”, and getting what is happening
pays dividends.
For a scope of reasons, one of the most
widely recognized things you really want to
do in an Android UI is to show a rundown of
things that the client can choose from. We
have as of now checked out the essential
Picker, however the ListView is a more broad
classification of“picker”. If you know about
work area advancement then you likely
consider records that the client can choose
from as being like a drop-down list. Android
and versatile gadgets frequently need more
than simply a little list. Because of the
restricted screen size, it is generally expected
the situation that the client must be shown an
outline of many various things. At the point
when the client chooses a thing they are then
given more subtleties of the thing, generally
called a subtleties view.
Displaying records and different assortments
of information is normal that Android has an
instrument that makes it more straightforward
once you see how it all works.

see more please visit: https://homeofbook.com

The key thought is that to show an
assortment, every thing in the assortment has
some way or another to be changed over to a
suitable View object.It is the View object that
the compartment shows for every thing of
information in the collection.

Understanding the
Adapter
Displaying an assortment of things has
various similitudes regardless the assortment
of things are, for sure holder is utilized. The
compartment has different places that are
noticeable on the screen for showing things.
For instance, a ListView has level openings,
one for each thing, and a GridView has a 2D
matrix of spaces. Every compartment
acknowledges a View article and shows it in
a space. For instance, you could give the
ListView TextView articles and it would
basically show text in every one of its slots.
You may be asking why not simply supply a

see more please visit: https://homeofbook.com

bunch of Strings to the ListView and let it
work out how to show the Strings as text?
Things could be coordinated along these lines
and it would be easier, however provided that
you needed to

show Strings. To show a rundown of pictures,
say, then, at that point, you would require a
ListView that got pictures thus on.
It is considerably more adaptable to give the
holder a bunch of arranged View objects
since then the compartment basically needs to
show the View object without playing out
any conversions.
All holders that get from the AdapterView
class utilize connectors to supply what they
show as far as View objects. Just as the
ListView and GridView, they incorporate the
Spinner, Gallery and StackView. We have as
of now took a gander at the utilization of the
Spinner and its related connector, so this time
it is the turn of a further developed UI
component– the ListView and its adapter.
This approach also has the advantage that you
can provide the container with a View object
that is a complete layout, i.e. it could itself be

see more please visit: https://homeofbook.com

a container with lots of View objects to
display. For example, you could supply a
ListView with a View object that contains an
image, and a TextView to create a
multimedia list of pictures and text.
Obviously the compartment isn’t doing the
transformation from the information object to
the View object – you must do it. This is the
place where the connector comes in. The
ListView and the GridView compartments
both utilize the ListAdapter class as their
fundamental adapter.

Extending the
ListAdapter Class
Overall you need to take the ListAdapter
class and extend it to make your own custom
Adapter which produces a custom View
object for the holder to use in every one of its
spaces. The compartment requests the View
object to be utilized to show thing I or
utilizing whatever ordering suits the specific

see more please visit: https://homeofbook.com

holder. The Adapter returns the View object
and the holder shows it– without stressing
what it is for sure it compares to. This may
sound muddled, yet it ends up being
extremely straightforward in practice.
However, to make things significantly less
complex there is additionally an
ArrayAdapter which allows you to show a
solitary text thing for every component of a
variety of discretionary items. How can this
possibly work if the object in the array can be
anything? The first thing to point out is that
ArrayAdapter is a generic class and can
accept an array of any type as long as you
specify it when you create the ArrayAdapter
instance. The second highlight note is that
Array connector calls every thing’s toString
technique to get some text to show in the
holder, which is exceptionally basic yet in
addition extremely prohibitive. Truth be told,
it is very simple to alter what the
ArrayAdapter presentations, and this makes it
more flexible than you may expect and thus
certainly worth getting to know.

Before continuing a speedy outline is helpful:

see more please visit: https://homeofbook.com

☐ Containers like ListView and GridView
show View objects in a specific plan– as an
upward rundown or as a 2D framework in
these two cases respectively.

☐ An Adapter changes over the information
that will be shown in each space into a
reasonable View object.
☐ For complex information and showcases
you really want to make a custom Adapter.
☐ In many cases the ArrayAdapter, a
predefined custom Adapter for changing
Arrays over to TextView objects, can be
used.
☐ The ArrayAdapter, at its generally
essential, can supply TextView objects to a
holder from a variety of any kind basically by
calling the item’s toString methods.

Using the
ArrayAdapter
Rather then, at that point, beginning with a

see more please visit: https://homeofbook.com

model that is totally broad, it merits taking a
gander at how the ArrayAdapter is utilized
related to a ListView.
Start another Android Studio project called
ListViewExample dependent on a Basic
Activity and acknowledge every one of the
defaults. For a basic model all we will do is
show a rundown of names in a ListView.
First delete the usual“Hello World” textView.
In the Layout Editor scroll down the Palette
until you can see the Containers and place a
ListView on the design surface. At the
moment the listView isn’t always
automatically assigned an id. If this is the
case type listView into the id in the Attributes
window. If you do this then a dummy content
will be generated for you:

You will see that, for the sake of allowing

see more please visit: https://homeofbook.com

you to work with the layout, the Layout
Editor shows you the ListView filled with
some two-item text objects.

Our Adapter is going to be simpler than this
dummy display with just a single line of text.
If you run the program at this early stage you
won’t see anything in the ListView– it will be
blank. The text that you see in the Layout
Editor is just to help you visualize the UI –
there is no Adapter associated with the
ListView and hence when you run it there is
nothing to display.
Our next task is to create an ArrayAdapter
object to supply the ListView with something
to display. First, however, we need a String
array to hold the text we are going to display.
For simplicity we might as well add the code
to the onCreate method.
To create a simple String array we can use:

val myStringArray = arrayOf(“A”, “B”, “C”)

Feel free to think up something more creative
than A, B, C. In the real world the Strings
would probably be read from a file or a
database, etc. Now we can create the

see more please visit: https://homeofbook.com

ArrayAdapter.To do this the constructor
needs

the context, usually this, and a layout to use
to display each String and the String array:

val myAdapter= ArrayAdapter<String>(
this,
andRoid.R.layout.simple_list _item_1, myStringArray)

Notice the way that the type of the array is
specified as <String>. If you are not familiar
with generics then you need to look up how it
all works. Also notice the use of the standard
supplied layout simple_list_item1. You can
create your own layouts and we will see how
this is done in a moment.
Finally we need to associate the adapter with
the ListView:
listView.setAdapter(myAdapter)

The complete onCreate method is:
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)

setContentView(R.layout.activity_main)
setSupportActionBar(toolbar)

val myStringArray = arrayOf(“A”, “B”,
“C”) val myAdapter =
ArrayAdapter<String>(

this,

see more please visit: https://homeofbook.com

andRoid.R.layout.simple_list _item_1, myStringArray)

listView.setAdapter(myAdapter)
}

You will also have to remember to add
import statements for each of the classes
used– ListView and ArrayAdapter– easily
done with Alt+Enter. If you now run the
program you will see a neat list with each
array element displayed on a line:

So far this doesn ’t look impressive but the
ListView gives you some basic facilities. For
example, if you increase the number of
elements in the array: var myStringArray =

arrayOf(“A”, “B”, “C”, “D”, “E”, “F”, “G”, “H”, “I”, “J”) you will
discover that you can automatically scroll
through the list using the usual flick gesture.

Working with the

see more please visit: https://homeofbook.com

Data
The whole point of showing the user a list of
items is so that they can interact with it.You
can manipulate the data on display in various
ways and handle events when the user selects
an item.

Get Selection

Perhaps the most important thing is to deal
with the user selecting an item. The usual
way of doing this is to write a handler for the
OnItemClickListener, which passes four
parameters:

onItemClick(AdapterView parent,View view,int position, long id)

The AdapterView is the complete View
displayed by the container, the View is the
View object the user selected, the position is
the position in

the collection, and the id is the item’s id
number in the container. For an ArrayAdapter
the id is the same as the array index.

see more please visit: https://homeofbook.com

You can use this event to find out what the
user has selected and modify it. For example
the event handler:
listView.setOnItemClickListener({parent, view,

position, id -> (view as
TextView).text=“selected”

})

sets each item the user selects to“selected”.

It is important to know that changing what
the View object displays doesn’t change the
data stored in the associated data structure.
That is, in this case setting a row to“selected”
doesn’t change the entry in the String array.
You can also set the selection in code using:
listView.setSelection(position)

where position is the zero-based position of
the item in the list, and you can scroll to show
any item using:
listView.smoothScrollToPosition(position)

A subtle point worth mentioning is that you
can’t make use of the View object that is
passed to the event handler to display the
selection in another part of the layout. A
View object can only be in the layout
hierarchy once. In most cases this isn’t a

see more please visit: https://homeofbook.com

problem because you can usually manually
clone the View object. For example, in this
case the View object is a TextView and so
you can create a new TextView and set its
Text property to be the same as the one in the
list:
val w = TextView(applicationContext)
w.text = (view as
TextView).text

This can be more of a nuisance if the View
object is more complex.

Changing the Data

One of the slightly confusing things about
using adapters is the relationship between
what is displayed and what is in the
underlying data structure. You can change the
data, but if you want to see the change in the
container you have to use an adapter notify
method to tell the adapter that the data has
changed.
For example, if you change an element of the
array:
myStringArray[0]=“newdata”

then nothing will show until you use:

see more please visit: https://homeofbook.com

(listView.adapter as ArrayAdapter<String>).notifyDataSetChanged()

Notice that you have to cast the ListAdapter
in adapter to an
ArrayAdapter<String> to call the notify
method.

There is a second way to change the data
using the ArrayAdapter itself. This provides a
number of methods to add, insert, clear,
remove and even sort the

data in the adapter. The big problem is that if
you use any of these then the underlying data
structure associated with the adapter has to
support them. For example, the add method
adds an object onto the end of the data
structure but, with the program as currently
set up, if you try: myAdapter.add(“new data”)

the result will be a runtime crash. The reason
is that in an array has a fixed size and the add
method tries to add the item to the end of the
array, which isn’t possible.
If you want to add items to the end of an
array-like data structure, you need to use a
List and not just a simple array– we met this
idea before in Chapter 14 in connection with

see more please visit: https://homeofbook.com

Spinners. A List can increase and decrease its
size. For example we can create a List from
our existing String array: val
myList=mutableListOf(*myStringArray)

and you can associate this new List with the
adapter instead of the String array:
val myAdapter = ArrayAdapter<String>(

this,
andRoid.R.layout.simple_list_ite m_1, myList)

Following this you can use:
myAdapter.add(“new data”)

and you will see the new data at the end of
the displayed list. You may have to scroll to
see it.

As long as you are using a List you are safe
to use all of the adapter data modifying
methods:

add(item)
addAll(item1,item2,item3...)
clear() //remove all
data
insert(item,position)
remove(item)

You can also make use of:
count() // number of elements

getItem(position) // get item

see more please visit: https://homeofbook.com

getItemId(position) //get item id
getPosition(item)

A Custom Layout
So far we have just made use of the system
provided layout for the row. It is very easy to
create your own layout file and set it so that it
is used to render each row, but you need to
keep in mind that the only data that will be
displayed that is different on each row is
derived from the item’s toString method.

The simplest custom layout has to have just a
single TextView widget which is used for
each line. In fact this is so simple it has no
advantage over the system supplied layout so
this is really just to show how things work.

Use Android Studio to create a new layout in
the standard layout directory and call it
mylayout.xml. Use the Layout Editor or text
editor to create a layout with just a single
TextView object. Create a new layout and
accept any layout type for the initial file. You

see more please visit: https://homeofbook.com

can then place a TextView on the design
surface.You won’t be able to delete the
layout,however,as the editor will not allow
you to do it. Instead you need to switch to
Text view and edit the file to remove the
layout:
<?xml version=“1.0” encoding=“utf-8”?>

<TextView
xmlns:android="http://schemas.android.com/apk/res/android"
android:text="TextView"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:id="@+id/textView" />

Notice that you need the xmlns attribute to
make sure that the android namespace is
defined.
To use the layout you simply provide its
resource id in the ArrayAdapter constructor:
val myAdapter = ArrayAdapter<String>(

this,
R.layout.mylay
out, myStringArray)

If you tRy this you won ’t see any huge
difference between this and when you use the
system layout
android.R.layout.simple_list_item_1.
The next level up is to use a layout that has

see more please visit: https://homeofbook.com

more than just a single TextView in it. The
only complication in this case is that you
have to provide not only the id of the layout
but the id of the TextView in the layout that
you want to use for the data. For example,
create a layout with a horizontal
LinearLayout and place a CheckBox, and two
TextViews. The simplest way to do this is to
place the LinearLayout in the default
ConstraintLayout and use the Layout Editor
to design the layout. Then start a new layout
resource and copy and

past the LinearLayout XML tag and all it
contains as the base layout in the new file:
<?xml version=“1.0” encoding=“utf-8”?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width=“368dp”
android:layout_height=“wrap_cont ent”
android:descendantFocusability=“blocksDescendants”
android:orientation=“horizontal”
tools:layout_editor_absoluteX=“0dp” tools:layout_editor_absoluteY=“25
dp”>

<CheckBox
android:id=“@+id/checkBox2” android:layout_width=“wrap_content”
android:layout_height=“wrap_content” android:layout_weight=“1”
android:text=“CheckBox” />

see more please visit: https://homeofbook.com

<TextView
android:id=“@+id/textView”
android:layout_width=“wrap_content”
android:layout_height=“wrap_content” android:layout_weight=“1”
android:text=“TextView” />
android:text=“TextView” />

<TextView
android:id=“@+id/textView2”
android:layout_width=“wrap_content”
android:layout_height=“wrap_content” android:layout_weight=“1”

</LinearLayout>

You can use
this layout by creating the ArrayAdapter
with: val myAdapter = ArrayAdapter<String>(
this,

R.layout.mylay out,
R.id.textView 2,
myStringArray)

assuming that the TextView you want the
data to appear in is textView2. The resulting
ListView example is a little more impressive
than the previous example

see more please visit: https://homeofbook.com

Notice that each of the View objects in the
layout gives rise to a distinct instance per
line. That is, your layout may only have had
one CheckBox but the ListView has one per
line. This means that when the user selects
the line you can retrieve the setting of the
CheckBox, say. It also means that a ListView
can generate several View objects very
quickly and this can be a drain on the system.
There are a few things that you need to know
if you are going to successfully handle
onItemClick events. The first is that your
layout can’t have any focusable or clickable
Views. If it does then the event isn’t raised
and the handler just isn’t called. The solution
is to stop any View object in the container
from being focusable by adding:

android:descendantFocusability= “blocksDescendants” to the
LinearLayout, or use the Property window to
set it to blocksDescendants:

see more please visit: https://homeofbook.com

With this change the event
handler should be called, but now you need to
keep in mind that the View object passed as
view in:
listView.setOnItemClickListener({ parent, view, position, id ->

is the complete View object for the row and
not just the TextView. That is, in the case of
the example above it would be the
LinearLayout plus all of its children.
If you are going to work with the View
object, you have to access the objects it
contains and you can do this is in the usual
way.
For example:
listView.setOnItemClickListener({ parent, view, position,

id->
view.findViewById<TextView>(R.id.textVi ew).text=“Selected”

})

Notice that you can use findViewById in the
View that is returned.

see more please visit: https://homeofbook.com

A Custom
ArrayAdapter
If you only want to display a String in each
row you can use the standard ArrayAdapter
and the object’s toString method.You can
even customize the object’s toString method
to display something different from the
default, but it is still just a String.
If you have an array of general objects and
want to display multiple items from each
object, or items which are not Strings, then
you need to create a custom ArrayAdapter.
This isn’t difficult, although there are one or
two more advanced points to take note of.
For this first example, let’s keep it as simple
as possible. First we need some objects to
hold the data we are going to display– a
record type, say, with a field for name and
one for number in stock. You could also add
a photo of the item, but in the spirit of
keeping it simple a String and int are enough.
If you know other languages you might be

see more please visit: https://homeofbook.com

thinking that we need a struct or something
similar. In Java or Kotlin there are no structs.
If you want to create a record you create an
object with the necessary properties.
However Kotlin supports data classes which
are designed for the task and in many ways
are a superior “record” type to what you find
in other language.
Start a new project called CustomList and
accept all the defaults. Remove the default
text and add a ListView.
In Java it is a rule that every new class you
create has to be in a separate folder. You can
follow this convention in Kotlin but it is often
easier to add utility classes to the file you are
working in. You can always separate them at
a later date.

We are going to create a data class complete
with properties that we can use to store data:

data class MyData (var myTitle:String, var myNum:Int)

The new class has two public fields, myTitle
and myNum, and a primary constructor
allowing us to initialize these fields.
For example, in the onCreate method you can

see more please visit: https://homeofbook.com

add:

val myDataArray=arrayOf(
MyData(“item1”, 10),
MyData(“item2”, 20),
MyData(“item3”, 30)

)

You might need to add more data than this to
try out the ListView properly but this at least
gets us started.

Now we have some data to display we need
to add the custom adapter. Once again we can
create a new class called MyAdapter in the
same file. MyAdapter has to inherit from
ArrayAdapter:

class MyAdaptor(val mycontext: Context?,
val resource: Int,
val objects: Array<out MyData>?) :

ArrayAdapter<MyData>(mycontext, resource, objects) { This looks
complicated but it is the code you get using
Alt+Enter on the partially declared class. The
<out MyData> is the compiler protecting you

from an unlikely problem but it is still worth
playing by its rules. Notice also that we have
to change the generated context parameter to

see more please visit: https://homeofbook.com

mycontext to avoid a name clash.

Notice that we want the generic
ArrayAdapter to work with MyData objects.
Most of the methods of ArrayAdapter will
work perfectly well with arrays of arbitrary
objects.
The primary constructor that we have just
defined will also automatically create read
only properties for each of the parameters
that start val.This is another of Kotlin’s
simplifications and we don’t need to define a
more elaborate constructor.
Notice that with this constructor our adapter
is used in the same way as in the previous
example, that is we supply context, resource
id, and the array of data. These values are
also passed on to the constructor of the super
class i.e. ArrayAdaptor.
We now reach the key part of the
customization, overriding the adapter’s
getView method. This is the core of the
functionality of the adapter. Each time the
ListView needs to display a new row, it calls
the adapter’s getView method and expects to
get back a View object that it can display as

see more please visit: https://homeofbook.com

the row.

To override the method you can use Android
Studio to generate some code. Right-click in
the adapter class and select Generate,
Override method and then select getView.
The generated code isn’t particularly helpful,
but at least it gets the method signature
correct:

override fun getView(position: Int,
convertView: View?,
parent: ViewGroup?): View { return

super.getView(position, convertView, parent)
}

It really doesn ’t matter how getView
generates the View object it is going to
return, but the most common way of doing
the job is to inflate a layout file. To give the
inflater something to work with, right-click
on the res/layout folder and select
New,Layout file. Call the file mylayout,
change the LinearLayout to horizontal, and
add two TextViews with ids, title and
number.Feel free to change the layout to
make things look pretty - it won’t change the
code you need to write:

see more please visit: https://homeofbook.com

<?xml version=“1.0” encoding=“utf-8”?>
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/andr oid"
xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width=“368dp”
android:layout_height=“wrap_c ontent”
android:descendantFocusability=“blocksDescendants”
android:orientation=“horizontal”
tools:layout_editor_absoluteX=“0 dp”
tools:layout_editor_absoluteY= “25dp”
layout_height=“wrap_content” layout_width=“match_parent”>

<TextView android:id=“@+id/title”
android:layout_height=“wrap_content” android:layout_weight=“1”
android:layout_width=“wrap_content” android:text=“TextView” />

<TextView
android:id=“@+id/number”
android:layout_height=“wrap_content”
android:layout_weight=“1”
android:layout_width=“wrap_content”
android:text=“TextView” />

</LinearLayout>

Our first task is to get an inflater and inflate
the layout file:

val inflater=(mycontext as
Activity).layoutInflater val
row=inflater.inflate(resource, parent,false)

Notice that we make use of the resource id
we stored when the constructor ran and we
use the parent View object passed in to the
getView method. The only purpose the parent

see more please visit: https://homeofbook.com

View object serves is to allow the system to
lay out the resource in a known container.
The final false parameter tells the inflater not
to add the resource generated object to the
parent – this is a job for the ListView.
Before this happens we have to put the data
into the View object. To do this we need to
find the two TextView objects that we placed
into the layout and this is just a matter of
using the familiar findViewById pattern: val
title=row.findViewById<TextView
>(R.id.title) val
number=row.findViewById<TextView>(R.id.numbe
r)

Once you have the View objects you need to
change, you can use the position parameter to
get the data from the array of objects that was
set by the constructor:
title.text= objects?.get(position)?.myTitle number.text=
objects?.get(position)?.myNum.toString()

All we need to do now is return the row View
object:

return row
}

The complete myAdapter class is:
class MyAdaptor(val mycontext: Context?,
val resource: Int,
val objects: Array<out MyData>?) :
ArrayAdapter<MyData>(mycontext, resource, objects) { override fun
getView(position: Int,

see more please visit: https://homeofbook.com

convertView: View?, parent:

ViewGroup?): View { val inflater=(mycontext as
Activity).layoutInflater val
row=inflater.inflate(resourc e,parent,false) val
title=row.findViewById<TextVi ew>(R.id.title) val
number=row.findViewById<TextView>(R.id.number) title.text=
objects?.get(position)?.myTitle number.text=
objects?.get(position)?.myNum.toString() return row
}

}

Now all we have to do is write some code
that makes use of the new class and this is
exactly the same as the code that made use of
the standard ListView:
val myAdapter=MyAdaptor(this,R.layout.mylayout,myDataArray)
listView.adapter=myAdapter

Don’t forget to put a ListView component on
the main layout:

If you run the program you will now see a list
consisting of two TextViews, each with
something different to display on each line. In
a real app you probably wouldn’t create a
new class for two text items, overriding the
toString method would be easier,but the
principles are the same no matter what the

see more please visit: https://homeofbook.com

multiple View objects created by the adapter
are.

Reuse, Caching and
General Layouts
We have a working custom adapter class but
there are some things we can do to make it
better. The first relates to efficiency. If you
recall, it was pointed out that a big list of
objects could result in the creation of a lot of
View objects.In practice,however,we really
only need the number of View objects that
correspond to rows actually being displayed
on the screen.

To avoid having to dispose of and create new
View objects all the time, the ListView gives
you the opportunity to recycle the View
objects you have already created. This is what
the convertView parameter in the getView
method is all about. If it is null you have to
inflate and create a new View object. If it is

see more please visit: https://homeofbook.com

non-null then it is a View object ready to be
used and you don’t have to create a new one.

Modifying the previous example to make use
of convertView is easy:

val row:View
if(convertView==null){
val inflater=(mycontext as Activity).layoutInflater
row=inflater.inflate(resource,pare
nt,false)
}else{

} row=convertView

Notice that this is null safe as the compiler
checks that row gets a value one way or
another.

This is a speed-up worth making and saves
having to create lots of View objects and
dispose of them. However, we are still
looking up the child View objects every time
we want to change the data:
val
title=row.findViewById<TextView
>(R.id.title) val
number=row.findViewById<TextView>(R.id.numbe
r)

This is also very wasteful and can be avoided
with the application of the ViewHolder
pattern. All we have to do is save the

see more please visit: https://homeofbook.com

references to the children in an object,and
store this in the parent View’s tag property.
Then the next time we see the parent View
we don’t have to find the children we are
looking for - they are stored in the parent’s
tag as a ViewHolder object.
First we need to create a ViewHolder data
class:
data class ViewHolder(var title:TextView,var number:TextView)

Notice that this has fields capable of holding
references to our two TextView objects. The
logic of the getView method is now to also
create and store a ViewHolder object if we
are not recycling a View object:
val row: View
if (convertView == null) {

val inflater = (mycontext as
Activity).layoutInflater row =
inflater.inflate(resource,
parent, false)
val viewHolder =ViewHolder (

row.findViewById<TextVi
ew>(R.id.title),
row.findViewById<TextView>(R.id.number
)) row.tag=viewHolder

}

Notice that we have stored the references to
the TextViews in the viewHolder and stored
this in the row’s Tag field– this is what tag

see more please visit: https://homeofbook.com

fields are generally used for.
If we do have a recycled View object, we
need to get the viewHolder object:

} else {
row = convertView
}

Finally, no matter where the viewHolder
object came from, we just use it: (row.tag as
ViewHolder).title.text =
objects?.get(position)?.myTitle (row.tag as

ViewHolder).number.text =
objects?.get(position)?.myNum.toString()
return row
}

With this change we have avoided creating a
View object each time and we have avoided
having to look up the child objects each time,
a very useful saving in time and resources.

Finally there is one last embellishment to
apply. At the moment the layout for the row
has to have the ids of the TextView objects
set to title and number. It is much better to let
the user set these in the constructor:
class MyAdaptor(val mycontext: Context?,

val resource: Int,
val resTitle:Int, val

see more please visit: https://homeofbook.com

resNumber:Int,
val objects: Array<out MyData>?) :

ArrayAdapter<MyData>(mycontext, resource, objects) { This
constructor has two extra parameters used to
specify the id numbers of the two ViewText
objects in the layout. These are automatically
created properties of the class.
Finally we need to change the getView
method to use the two new private variables:

val viewHolder =ViewHolder (
row.findViewById<TextView>(res Title),
row.findViewById<TextView>(re sNumber))

With these changes the adapter can be used
as:
val myAdapter = MyAdaptor(this,

R.layout.mylayou
t, R.id.title,
R.id.number,
myDataArray)

and the user is free to use any ids for the
layout as long are there are two TextViews.
There are aspects of the ListView that
haven’t been covered. In particular, what do
you do if your data structure isn’t an array?
The ArrayAdapter can handle Lists by simply
overriding the appropriate

see more please visit: https://homeofbook.com

constructor.Anything more complex and you
will have to create a custom Adapter. In most
cases, however, this isn’t necessary because
most data structures can be mapped onto an
array.
There are a range of formatting topics not
covered,the header and separator for
example, but these are relatively easy. More
complicated are the multi- selection options
and any custom list displays such as a list
with multiple columns or pop-out detail
windows.

Custom Adapter
Putting together all the code introduced so far
gives:
class MyAdaptor(
val mycontext: Context?,
val resource: Int,
val resTitle: Int, val
resNumber: Int,
val objects: Array<out MyData>?):

ArrayAdapter<MyData>(mycontext, resource, objects){ override fun
getView(
position: Int,
convertView: View?,
parent: ViewGroup?): View { val

see more please visit: https://homeofbook.com

row: View
if (convertView == null) { val inflater = (mycontext as
Activity).layoutInflater row =
inflater.inflate(resource,
parent, false)
val viewHolder = ViewHolder(
row.findViewById<TextView >(resTitle),
row.findViewById<TextVie w>(resNumber))
row.tag = viewHolder

} else {
row = convertView
}

(row.tag as ViewHolder).title.text = objects?.get(position)?.myTitle (row.tag
as ViewHolder).number.text =
objects?.get(position)?.myNum.toString()
return row
}
}

data class ViewHolder(var title: TextView, var number: TextView)

Summary
☐ Containers like ListView work together
with an adapter to display data. ☐ The
adapter accepts a data structure– usually an
array or a list– and converts any data item
into a View object that represents the data. ☐
You can handle a selection event to find out
what the user has selected.
☐ The View object can be complex with an

see more please visit: https://homeofbook.com

outer container and any number of child
objects.
☐ The basic ArrayAdapter uses each object’s
toString method to provide the data to display
in a ViewText object.

☐ If you want to display something other
than the result of calling toString, you need to
implement a custom ArrayAdapter. To do
this you have to override the inherited
getView method.

☐ The ListView is clever enough to provide
you with View objects to recycle– although
you don’t have to if you don’t want to. ☐
The ViewHolder pattern can make your use
of nested View objects more efficient.

Chapter 17
Android The Kotlin
Way

see more please visit: https://homeofbook.com

After seeing Kotlin at work making your
Android code shorter and, more importantly,
clearer, it is time to gather the ideas together.
This chapter is a collection of the ways Kotlin
makes Android easier in comparison with
Java. If you are not a Java programmer many
of these differences will not seem impressive.
This chapter is at the end of the book because
it can serve as a reminder to a Java
programmer learning Android what a
difference Kotlin makes. It could also be read
first by a fairly experienced Android
programmer wanting to know what their
Android Java idioms look like in Kotlin.
If you want a good grounding in Kotlin I can
do no better than recommend my own
Programmer’s Guide To Kotlin ISBN 978-
1871962536.This chapter is more about how
Kotlin affects your approach to Android
programming than a general Kotlin tutorial.

What You No
Longer Have To

see more please visit: https://homeofbook.com

Type
☐ Semicolons, type specifiers and new
The first joy of Kotlin is that you no longer
have to type a semicolon to mark the end of
each line. You can type a semicolon if you
want to and Android Studio doesn’t mark it
as an error, but it does suggest that you might
want to remove it:

578

In Kotlin the end of a line is the end of a line
and you don’t need a special additional
symbol to mark it. However, if you include
more than one statement on a line, you do
need to indicate where each one ends by
placing a semicolon between them.

If you are a long time Java programmer you
might well find it difficult to stop typing
semicolons– eventually you will.

see more please visit: https://homeofbook.com

The second obvious simplification is that in
most cases you no longer have to specify a
type when it is obvious.
For example in place of:
String myString=new String();

you can now write
var myString=String()

Java beginners have long been confused by
the need to write String… new String and
now we don’t have to. If you do need to
specify a type you do it as a trailing qualifier:
var myString:String=String()

This example also highlights the third
simplification – you no longer write new in
front of a constructor. After all new signified
that the function call was a constructor, but
what is and what is not a constructor is fairly
obvious from the class declarations.

var & val
Of course, one new thing is that you have to
use either var or val when you declare a
variable.

see more please visit: https://homeofbook.com

If you write:
var myVariable=1

then you will get a true variable that you can
read and
write. If you use:
val myVariable=1

then you get a read-only variable which you
cannot use on the left of an assignment.

In most cases you should use var for simple
types and val for objects. A more general
principle,however,is to always use val unless
you are forced to use var by the nature of the
algorithm.Notice that all val promises is that
you cannot assign to the variable– you can
modify the properties of any object that it
references.This is read-only rather than
immutable.

No More get & set
Kotlin classes have properties that come
complete with get and set mutator
functions.Properties declared using var have
default getters and setters and those declared

see more please visit: https://homeofbook.com

using val have only a getter i.e.val properties are

readonly.

All properties are accessed via getter and
setter functions and, unlike in Java, you don’t
have to explicitly create them– the compiler
will do the job for you.

It will also automatically put get or set in
front of the property ’s name so that you can
use Java properties implemented in this way
without having to modify property names. In
Java you might have a setText and a getText
method.You can still use these in Kotlin:

var
myString=view.getText()
view.setText()=myString

But in many cases you can simply write:

var
myString=view.text()
view.text=myString

In other words, the mutator methods have
been converted into properties with the same
name, but with a lower case first letter.

see more please visit: https://homeofbook.com

Kotlin can also deal with Booleans that are
named starting with is. For example, instead
of:
button.isShown()

you can write:
button.isShown

In most cases, when you see a set or get you
can simply use the equivalent property, but
not always. There are many odd problems
that can crop up to stop the transformation
from getters/setters to properties. Consider
the well known and used:

setOnClickListener

If this was converted to onClickListener this
would confuse the issue with the
OnClickListener interface.In this case you
have to use the setOnClickListener method
but as it accepts a SAM– an interface that
defines a Single Abstract Method it can be
written using a lambda:

button.setOnClickListener { view -> instructions}

At the moment the best advice is to try to use
any get/set methods as properties and see

see more please visit: https://homeofbook.com

what Android Studio supplies as an auto-
complete. The range and quality of auto-
complete features is likely to improve as
Kotlin support is developed.

View Objects As
Properties
In Java finding a View object uses the
findViewById method, and this is still needed
in Kotlin in many cases. It is even easier to
use in Kotlin because it is implemented as a
generic extension function and you can avoid
having to cast to the correct type:
val button = findViewById<Button>(R.id.my_button)

However, if you are using Kotlin to work
with the XML file it automatically converts
all of the string labels on the ids to Activity
properties and then makes them reference the
objects that the inflater creates. You can then
specify which layout files you want to create
properties for using:

see more please visit: https://homeofbook.com

import kotlinx.android.synthetic.main. layout.* As you enter the
id of a View object defined in the XML file
Android

Studio will ask if you want to import the
“synthetic” definition it has created.

So.to import properties for all of the View
created by the two standard XML files
main.activity_main.xml and
main.content_main.xml you would use:
import
kotlinx.android.synthetic.main.activity_main.* import
kotlinx.android.synthetic.main.content_main.*

What this means is that you can simply use
variables with the same name as the id string
assigned to the View object so, for example,
instead of having to use findViewById for the
R.id.my_button object you can simply use the
button property as if you had executed:
val button = findViewById<Button>(R.id.my_button)

Event Handlers
With the whole of Chapter 4 about event
handling, only a brief summary is given here.

see more please visit: https://homeofbook.com

In Java event handlers are methods that
belong to event listener objects often defined
using an interface. In many cases there is a
single event handler defined in a single
interface and this is a SAM– Single Abstract
Event.
For example the View.OnClickListener
interface is defined as:

public interface OnClickListener { void
onClick(View var1);
}

and you need to create an object which
implements this interface to pass to the
setOnClickListener method. The Kotlin
compiler accepts a lambda expression, an
anonymous local function or a function
reference of the correct type and compiles it
to an object that implements the interface
with

the function.Notice that the
setOnClickListener is passed an object and
not a lambda or a function.
For example:

see more please visit: https://homeofbook.com

button.setOnClickListener {view -> button.text=”Clicked”} Using a
lambda is the most common way of creating
an instance of the event listener object for a
SAM.

There are instances where the event listener
object isn’t a SAM . It might not even be
defined as an interface. Some event listeners
are defined as classes with a mix of virtual
and implemented methods. The implemented
methods are often utility functions that allow
you to do things such as cancel event
handling or modify it in some way. Even
when event listeners are interfaces, they can
define multiple related event handlers and so
do not qualify as a SAM.

For example, in Chapter 10 we meet the
ActionMode.Callback which is an interface
with four event handling methods defined. In
this case the simplest solution is to use a local
object that implements the interface: val
mycallback=object : ActionMode.Callback { override fun

onActionItemClicked(
mode: ActionMode?, item: MenuItem?): Boolean { TODO(“not
implemented”)
}

see more please visit: https://homeofbook.com

override fun onCreateActionMode(
mode: ActionMode?, menu: Menu?): Boolean { TODO(“not implemented”)
}

override fun onPrepareActionMode(
mode: ActionMode?, menu: Menu?): Boolean { TODO(“not implemented”)
}
override fun onDestroyActionMode(mode:
ActionMode?) {
TODO(“not implemented”)
}

}

The same approach works if the event listener
is defined as a class with

some implemented methods and some virtual
methods. Simply create an object that
implements the class and all of the virtual
methods.

Data
Kotlin essentially reuses Java’s data types
including arrays and strings, but it augments
them and has its own approach to them.
However, essentially a Kotlin array is a Java
array and a Kotlin String is a Java String.
You create an array using:
var a=arrayOf(1,2,3)

see more please visit: https://homeofbook.com

which creates an array of three
integers. For larger arrays you can
use:
var array=Array(size, initializer)

where size gives the number of elements and
initializer is a lambda expression that used to
initialize the array.For example:
var a = Array(1000, { i -> i * 2 })

If you want the equivalent of an ArrayList in
Java use List or MutableList. Kotlin’s Strings
are much like Java’s but it is worth knowing
that they support templating.For example:
var s = “Name $name and Address $address”

will insert the values of the variables– name
and address– into the string. Although Kotlin
doesn’t have a record or structure type, it
does have data classes.If you create a class
with a primary constructor something like:
class MyPersonClass{

var name:String=““
var age:Int=0

}

then you get a class with two properties
initialized as
specified. If you also add the modifier “data”
in front:

see more please visit: https://homeofbook.com

data class MyPersonClass{ var
name:String=““
var age:Int=0

}

you also get some auto-generated methods
including, equals, copy, hashcode, toString
and componentN. The componentN methods
are particularly useful as they provide
destructuring:

var myDataObject=MyDataClass(“Mickey”,89)
var (myName,myAge) = myDataObject

which unpacks the properties in to the
separate variables.
A special case of destructuring is the spread
operator *. If you have a function that accepts
a variable number of arguments you can pass
it an array using;

val a=arrayOf(1,2,3)
val list =asList(*a)

Null Safety
Perhaps one of the most subtle features of
Kotlin you have to get to know and use is its

see more please visit: https://homeofbook.com

null safety.
References can be either non-nullable or
nullable.
If you declare a variable in the usual way you
get a non-nullable: var myVariable:sometype= something

and you cannot set the variable to null
because:
myVariable=null

throws a compiler error.
The compiler tracks operations that could
generate a null, and flags any operation that
could possibly set a non-nullable variable to
null. For example, if a function could return a
null you cannot assign it to a nonnullable.
This often occurs if you are trying to use a
Java function which, of course,doesn’t
support non-nullable types.
If you need a nullable reference then you
have to explicitly declare it using ?
as in:
var myVariable:sometype?=something

Now myVariable can be set to null:
myVariable=null

and this works without a compiler error or
warning.

Kotlin tracks your use of nullables and makes

see more please visit: https://homeofbook.com

sure you don’t assign a nullable to a
nonnullable without checking that it isn’t
null.If you do use a nullable without checking
that it is safe,the compiler will warn you and
refuse to compile the program.
There are various operators that make life
easier if you are working with nullable types.

The protected call administrator ?. will
possibly get to a property assuming the item
is non-invalid. For example:
var myVariable=myObject.myProperty

won’t arrange assuming myObject is a
nullable. Utilizing the protected call operator:
var myVariable:Int?=myObject?.myProperty

takes care of business and myVariable is set
either to the worth of the property or to
invalid on the off chance that myObject is
invalid. Notice that myVariable must be
nullable for everything to fall into place. To
play out an activity assuming something is
non-invalid you can utilize the let method:
a?.let {a=a+1}

the square of code in the wavy sections is
possibly executed in the event that an is non-
null.

see more please visit: https://homeofbook.com

Finally there is the safe cast as?

which will return null if the
cast isn't possible. So:
variable as? type

will assess to invalid assuming the cast to
type isn’t possible.

Java Types and Null
When working with Kotlin then you can keep
nulls under control. All the variables you use
can be non-nullable and the only cost of this
is that you have to initialize them when they
are declared or soon after. In principle, it is
very difficult of a null to occur in pure Kotlin,
but when you are working with Android you
cannot avoid interworking with Java and null
is a possible value for any Java variable. Not
only this but the type being used by a Java
method that you have to call may not be a
Kotlin type at all. In this case Android Studio
studio shows them as T! meaning they could

see more please visit: https://homeofbook.com

be referenced by a nonnull or nullable
variable, i.e. a T or a T?

Similarly, Java assortments can be treated as
impermanent or permanent and can be
nullable or non-nullable. The IDE shows
these as (Mutable) Collection <T>!. At long
last a Java exhibit is displayed as Array<(out)
T>! implying that it very well may be a
variety of a sub-kind of T nullable or non-
nullable.
Given that Java types are nullable you have
two options in dealing with this. You can set
the sort to a Kotlin non-nullable of the same
kind, or you can save the nullable kind and
check for nulls. For instance, the
savedInstance Bundle passed into the
onCreate technique is a Java object thus it is a
nullable:
supersede fun onCreate(savedInstanceState: Bundle?)

If you attempt to utilize one of its strategies
in the typical manner then you will see the
accompanying message:

see more please visit: https://homeofbook.com

Changing to the protected strategy call:
var value= savedInstanceState?.get(“mykey”)

makes the mistake message disappear,
however presently esteem is

gathered to be a nullable. For this situation
esteem is Any?. Notice that if either get is
invalid or “mykey” doesn’t exist esteem is set
to null.

At this point any invalid qualities are not
causing an issue. Anyway assuming we cast
the worth to a non-nullable sort things can go
wrong: var value= savedInstanceState?.get(“mykey”) as Int

Now esteem is a non-nullable Int and keeping
in mind that this aggregates it will cause a run
time exemption assuming the outcome is to
attempt to allocate an invalid to a none
nullable.The compiler adds a declaration that
the worth is non-invalid to secure you and
assuming it is you will see a runtime
exemption that incorporates the message:
Caused by: kotlin.TypeCastException: invalid can’t be cast to non-invalid

sort kotlin.Int Alternatively you could project to a
nullable type:
var value= savedInstanceState?.get(“mykey”) as Int?

Now esteem is a nullable Int and it both

see more please visit: https://homeofbook.com

accumulates and runs without a special case
regardless of whether the outcome is invalid.
Obviously assuming you currently attempt to
utilize esteem you actually have the issue that
it very well may be invalid yet presently the
compiler prompts you to manage this:

The compiler won ’t say anything negative on
the off chance that you check for an invalid
prior to attempting to use
value:
var value= savedInstanceState?.get(“mykey”) as Int?
if(value!=null)value=value+1

A shorthand method of checking is to utilize
the let method:
value?.let{value=value+1}

which possibly assesses the articulation
assuming the variable is non-null. The issue
is by all accounts that once you have an
invalid in the framework it is hard to get it
out and you need to test and respond to it in
all of the code where it makes a difference.
The main option is to supplant it with a non-
invalid outcome that acts effectively. You can
do this in Kotlin utilizing the amusingly

see more please visit: https://homeofbook.com

named Elvis administrator ?:. For example:
value?:0

is zero assuming worth is invalid.As a general
rule, assuming you have a worth that will fill
in for an invalid then you ought to kill the
invalid when possible.

For instance, for this situation we can utilize
the Elvis administrator to make esteem a non-
nullable type:
var value= (savedInstanceState?.get(“mykey”)?:0) as Int

Now esteem is a non-nullable Int and
assuming that Java returns an invalid for
savedInstance or the consequence of get then
it has a worth of zero. In many cases it is
ideal to eliminate the invalid at its first
appearance. So for instance, we can make
savedInstanceState safe:

val safeSavedInstanceState=savedInstanceState?:Bundle()

If savedInstanceState is invalid
safeSavedInstanceState is a recently started
up Bundle.This likewise permits you to
utilize cluster access instead of the get.
Notice anyway that this doesn’t dispose of
the invalid issue as:

var value= safeSavedInstanceState[“mykey”] as Int

see more please visit: https://homeofbook.com

value=value+1

will gather, however you will produce a
runtime special case assuming mykey isn’t in
the Bundle as this then, at that point, returns
an invalid. So you actually need to make sure
that outcome isn’t null:

var value= (safeSavedInstanceState[“mykey”]?:0) as Int

Nulls are a typical reason for runtime
accidents and it merits investing energy
working out what ought to occur assuming
something you depend

on in code is invalid. Kotlin doesn’t tackle
the invalid issue, however it gives you the
instruments to settle it.

Kotlin Aims to Help
There are a lot more ways that Kotlin, the
compiler and the module to Android Studio,
attempt to make life more straightforward.
There are beyond any reasonable amount to
cover exhaustively and you can expect both

see more please visit: https://homeofbook.com

code finishing and code provoking to
improve as Kotlin support in Android Studio
is improved.
Notice that Android Studio Takes us past
unadulterated Kotlin in the scope of offices it
gives. Take, for instance, the programmed
restricting of properties of the Activity to the
ids appointed to parts in the XML records.
This isn’t important for the Kotlin language,
however it is a lot of a piece of Android
programming with Kotlin.
In many cases you should see that the
messages and prompts that are given by
Android Studio give you enough direction to
work out what choices are on offer and what
the answers for issues really are. Always set
aside effort to peruse the prompts and
messages as the appropriate response is
regularly gazing you in the face.
If you might want to find out about Kotlin,
then, at that point, I prescribe my book:
Programmer’s Guide To Kotlin ISBN:978-
1871962536

see more please visit: https://homeofbook.com

Summary
☐ Kotlin is completely viable with Java and
gives numerous
rearrangements to utilizing the Android Java
libraries.

☐ If you are a Java software engineer there
are numerous thing you need to escape the
propensity for composing – particularly
semicolons.

☐ In Kotlin there are no fields, just
properties complete with get and set
techniques. These guide to Java fields with
get and set methods.
☐ The Kotlin module changes over the ids
alloted in the XML format document to
properties of the Activity.
☐ Event overseers are not difficult to make
utilizing either lambdas or objects.
☐ Data classes are an extremely simple
method for making“record” like information
structures.
☐ Kotlin acquaints apparatuses with

see more please visit: https://homeofbook.com

assistance you oversee nulls from an
unadulterated Kotlin program.
☐ When Kotlin connects with Java code then
nulls are an unavoidable truth and you need
to manage the likelihood that a nullable kind
is for sure null.

Index
2D sprite
..
235
activity
bar..177,
180
Activity...17,
20, 33, 165
activity_main.xml...27
adapter...259
AdapterView..282

see more please visit: https://homeofbook.com

Add New
Resource..206
addView..168,
171, 173 arrangement tool
...
142 all
attributes..104,
105 alpha
channel..224
Alt+Enter
..166
Android
graphics..
223 android
namespace..
288 Android
Studio...19,
310 Android Studio welcome

see more please visit: https://homeofbook.com

screen..
Android
Timer..
242 android:onClick
..
188
animation..
234 mysterious
function..89,
92, 304
AntiAlias...226,
235
AppCompat..267
AppCompatActivity..181
Array..
ArrayAdapter...257-
259, 262, 284, 288 arrayOf
..306

see more please visit: https://homeofbook.com

as?...
308 Aspect Ratio
Constraint..157
Attributes..42,
161 Attributes
window....................24-25, 42-
44, 52, 61, 75, 100, 108-110,
117, 130-132, 139, 153, 161-
162, 174, 205-209, 256-257,
267, 283
autocompletion...
auto-
sizing...154
Autoconnect..57,
136 autogenerated id
...174
in reverse
compatibility...267

see more please visit: https://homeofbook.com

Barrier...158
gauge
alignment...66
pattern
constraint...66
Basic
Activity...
181
bias..143
Bitmap...
223-225
blocksDescendants...
290
blueprint..56
Bounce ball
example...235
breakpoint...93
Bundle...35,

see more please visit: https://homeofbook.com

249
Button..
56, 99
Calculator App
..73
Callback
object..
200
Canvas...166,
225, 226 Canvas methods
...
226
cast..45,
46, 260, 262 chain
icon..146
chains..
156
CheckBox...

see more please visit: https://homeofbook.com

109 kid
object..173
class...302,
304, 306 clear
constraint...
138
clipping...122
cutting properties
...122
closure..86,
91-93
Color...
212 Component
Tree...19,
25, 65, 81, 125, 136, 159, 180
componentN..306
contingent
resources...214,

see more please visit: https://homeofbook.com

221
Constraint..
161 imperative lines
...139
ConstraintLayout...................................40,
115-116, 124, 133-135, 144, 161
consumed
...108
container
..
281
content_main.xml...19,
20, 27
ContextMenuInfo...
198 Convert to
ConstraintLayout
...
136 convertView

see more please visit: https://homeofbook.com

..
295 coordinate
system...226,
233
count..263
createFromResource
...262
Custom Locale
app...
CustomList...291
information
class...292,
306
DatePicker..269
default margin
..139
erase
constraint...138

see more please visit: https://homeofbook.com

thickness free
pixel...118
plan
surface...22,
41, 56
destructuring...................................
Device In Editor
..68
Dimension...212
dp (thickness autonomous
pixels)...118
drawable
folder..209
Drawables...209,
221 drawBitmap
..229
Eclipse
IDE..

see more please visit: https://homeofbook.com

11 Edit
Translations..219
EditorInfo..109
EditText
control..106
Elvis
operator...310
Emulator..28
occasion
handler..35,
44, 48, 83, 304 occasion
listener
...304
Events in
Java..
83 exception
..86
findItem..187

see more please visit: https://homeofbook.com

findViewById..176,
291, 294, 304 Fragment
...124
FrameLayout...116,
122, 124, 133 capacity
reference
operator..88,
304
generics...258,
260, 282, 284
getChildAt..
getChildCount
...173
getter...
302
gettype...213
gone..153
Google Play

see more please visit: https://homeofbook.com

..11
gravity...121,
133
GridLayout..
116
GridView...281
group...152,
179
guideline...151,
158 Guidelines
tool..151
Hardware Keyboard Present
option
...
105
HAXM..29
height..118,
128 Holo

see more please visit: https://homeofbook.com

theme...
266 even
bias..143
ic_menu_add...
102 iCalc
example...73,
251 id
property..173,
212 IDE – Integrated
Development
Environment...11
ImageButton..99
ImageView control
...224
IME (Input Method Editor)
...105
immutable...302,
308 import

see more please visit: https://homeofbook.com

statements...46,
74, 166 Include Kotlin
support...16
Infer
Constraints...57,
136, 140
inflater...172,
176, 187, 293
inheritance..45
inputType
property..106
introducing Android
Studio..
interface..83,
85
item...179,
180
item.getMenuInfo()...

see more please visit: https://homeofbook.com

198
ItemId...189
Java..13,
94 Java unknown class
...95
java folder
...20
Java
lambdas...
Java or Kotlin
...12
Java
String..306
Java
Types...308
Kotlin
...301
Kotlin String

see more please visit: https://homeofbook.com

...306
lambda..89,
90, 103 Landscape option
..68
layout
...208
Layout containers
...133
Layout
Editor....................................18,
21, 62, 116, 162, 174, 246, 255,
283
layout_height..118,
154 layout_margin
properties..133
layout_weight...126
layout_width...118,
154

see more please visit: https://homeofbook.com

LayoutInflater...172
LayoutParams..169-
171, 176
let...307,
309 life
cycle...
244 life cycle
events..248,
251 Lifecycle
example...246,
250 lifetime
...
243
LinearLayout...116,
124-125, 133, 145, 168, 169
ListAdapter
..
28 2

see more please visit: https://homeofbook.com

ListView...281-
283 ListView
example...283,
290 Local
functions...92
locale..215-
216, 219
localization..215,
218-219 long
click..
195
MainActivity..20,
34-35
manifest...34,
252 Manual
Constraints...141
Margin
Offsets..131

see more please visit: https://homeofbook.com

margins
..120
Match Constraints
...
154-155
match_parent...118
matrix
..231
MeasuredHeight
..128
MeasuredWidth...128
menu...177,
179, 208 menu asset file
...177
Menu
Tree..178
menu_main.xml
...185

see more please visit: https://homeofbook.com

MenuInflater...177
MenuItem..179
187
MenuSample...181
methods...42
mutable..308
mutator..302,
303 myAdapter
...
294
settled LinearLayouts
..
124 nesting
...
New, Resource
File..215-
217, 221 non-
nullable..86,

see more please visit: https://homeofbook.com

307
notifyDataSetChange...
262
nullable...86,
307
NumberPicker...
272 NumberPicker
example..
272
object..85
object
instantiation...1
onClick
..44
OnClickListener...84
onConfigurationChanged
...
252

see more please visit: https://homeofbook.com

onContextItemSelected..
198
onCreate..27,
35, 245, 248, 250
onCreateContextMenu
..
195
onCreateOptionsMenu...
187
OnDateChanged...
271 onDestroy
..224-
245 onEditorAction
...
108
onPrepareOptionsMenu...
189
onResetoreInstanceState..

see more please visit: https://homeofbook.com

250
onRestart..
245
onResume...
248 onResume and
onPause...
245
onSaveInstanceState...
250 onStart and
onStop..
244 OnTimeChanged
..
268
opacity...224
orientation
..67
bundle
level...88

see more please visit: https://homeofbook.com

Packed...146,
149
padding,...
133
Paint...
226
Palette..22,
39, 255 Parcelable
interface..
251 enduring
data..243
pixel-based
units..118
positioning...39
Project
window...19,
71
properties..

see more please visit: https://homeofbook.com

pt
(point)...119
qualifier...221,
302
R
object...36,
213, 221
R.id..173
R.layout.activity_main
..36
RadioButton
...111
RadioGroup.....................................
RelativeLayout..116,
128, 133
removeView...175
removeViewAt
..175

see more please visit: https://homeofbook.com

goal, issue
of...67
resource..262
asset (res)
folder..20,
36 Resource editor
..256
asset
id..
288 Asset
window...100,
102, 256
resources...205,
256, 262 Resources object
..221
Run
...41
Runnable...

see more please visit: https://homeofbook.com

238
runOnUIThread..238,
242
SAM...83,
87-88, 238, 304
save...231
savedInstanceState..249
screen sizes
..67
semicolons...
301
setContentView..27,
36, 166
setOnClickListener...84
setter
..302
showAsAction...183
signature

see more please visit: https://homeofbook.com

..43
Single Abstract
Method..83,
238 estimating a
component..153
sliders...144
Spinner..255,
282 Spread
Inside..146
spread administrator
*...306
sprite-based
graphics..235
src (source)
property...99,
102
state...243,
249 String

see more please visit: https://homeofbook.com

array...284
String cluster
resource..256
string
resources..207
stroke
..226
super.onRestoreInstanceState..
251
Switches..99,
110, 113
TableLayout
...116
tag fields
..296
templating...306
Text
Field..99,

see more please visit: https://homeofbook.com

105
TextView...24,
41, 78, 99, 288
this..258
thread..
threading...237
three-spot
icon..182-
183, 256
TimePicker..266,
267 Timer
object..236
TimerTask..236
Toggle
Button...99,
110, 113
Toolbar...177,
180-182 top-

see more please visit: https://homeofbook.com

level...
toString()
..258
following
qualifier..
302
transform..232
change
matrix..229
change
sequence...
232 Translation
Editor...219,
221 Translation
Tools..219
type..
type
projection..260

see more please visit: https://homeofbook.com

type
qualifier..
302 type specifiers
...
301
UI
...
165 UI
thread...33
fix order, Ctrl-
Z,...38
units...
118
val..302
values..208,
211
var...302
vertical

see more please visit: https://homeofbook.com

bias..
143
View..20,
36, 48, 115, 165 View
hierarchy..
171 View
objects...282
ViewGroup.......................................
168, 173, 175
ViewHolder..296
Visual Basic
...13
Widgets...39
width...118,
128
wrap_content..118,
154, 157
XML...37,

see more please visit: https://homeofbook.com

178 xmlns
attribute...
288
@..
@+..173
@+id..
179
*...306

see more please visit: https://homeofbook.com

	Beginning

