
see more please visit: https://homeofbook.com

Kotlin for Android Developers
Learn Kotlin the easy way while developing an
Android App

Antonio Leiva

This book is for sale at http://leanpub.com/kotlin-for-android-developers

This version was published on 2018-04-05

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2015 - 2018 Antonio Leiva

see more please visit: https://homeofbook.com

http://leanpub.com/kotlin-for-android-developers
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Antonio Leiva by spreading the word about this book on Twitter!

The suggested hashtag for this book is #kotlinandroiddev.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

#kotlinandroiddev

see more please visit: https://homeofbook.com

http://twitter.com
https://twitter.com/search?q=%23kotlinandroiddev
https://twitter.com/search?q=%23kotlinandroiddev

This book is dedicated to all the loyal readers of antonioleiva.com, who made me
believe that writing about Android development was a powerful tool to help others
learn about it. I felt that this book was a necessary step forward.

Special mention goes to Luis Herrero, who designed the excellent cover of this book,
and to Gautier Mechling for helping me so much by reviewing this book. It is thanks
to him that these pages are not full of typos and mistakes.

And, of course, this is specially dedicated to you.With your support and your help, this
book is growing and becoming a reference. So any suggestions to improve the quality
of this book will be welcomed. Feel free to write anytime to contact@antonioleiva.com.

see more please visit: https://homeofbook.com

http://antonioleiva.com/
https://twitter.com/luishj
http://twitter.com/Nilhcem
mailto:contact@antonioleiva.com

Contents

I. About this book . 1
What is “Kotlin for Android Developers” about 1

II. Is this book for you? . 3

III. About the author . 4

1 Introduction . 5
1.1 What is Kotlin? . 5
1.2 What do we get with Kotlin? . 7

2 Getting ready . 11
2.1 Android Studio . 11
2.2 Install Kotlin plugin . 12

3 Creating a new project . 13
3.1 Create a new project in Android Studio 13
3.2 Convert MainActivity to Kotlin code 14
3.3 Configure Kotlin in project . 14
3.4 Include some other useful configuration 16
3.5 Test that everything works . 17

4 Classes and functions . 19
4.1 How to declare a class . 19
4.2 Class inheritance . 20
4.3 Functions . 20
4.4 Constructor and functions parameters 21

see more please visit: https://homeofbook.com

CONTENTS

5 Writing your first class . 24
5.1 Creating the layout . 24
5.2 The Recycler Adapter . 25

6 Variables and properties . 29
6.1 Basic types . 29
6.2 Variables . 31
6.3 Properties . 32

7 Anko and Extension Functions . 34
7.1 What is Anko? . 34
7.2 Start using Anko . 34
7.3 Extension functions . 35

8 Retrieving data from API . 37
8.1 Performing a request . 37
8.2 Performing the request out of the main thread 38

9 Data Classes . 40
9.1 Extra functions . 40
9.2 Copying a data class . 40
9.3 Mapping an object into variables . 41

10 Parsing data . 43
10.1 Converting JSON to data classes . 43
10.2 Shaping the domain layer . 45
10.3 Drawing the data in the UI . 48

11 Operator overloading . 50
11.1 Operators tables . 50
11.2 An example . 52
11.3 Operators in extension functions . 53

12 Making the forecast list clickable . 54

13 Lambdas . 60
13.1 Simplifying setOnClickListener() 60

see more please visit: https://homeofbook.com

CONTENTS

13.2 Click listener for ForecastListAdapter 62
13.3 Extending the language . 62

14 Visibility Modifiers . 65
14.1 Modifiers . 65
14.2 Constructors . 66
14.3 Reviewing our code . 66

15 Kotlin Android Extensions . 68
15.1 How to use Kotlin Android Extensions 68
15.2 Kotlin Android Extensions in 1.1.4 75
15.3 Refactoring our code . 77

16 Application Singleton and Delegated Properties 82
16.1 Application Singleton . 82
16.2 Delegated Properties . 83
16.3 Standard Delegates . 84
16.4 How to create a custom delegate . 88
16.5 Reimplementing the App Singleton 89

17 Creating an SQLiteOpenHelper . 91
17.1 ManagedSqliteOpenHelper . 91
17.2 Tables definition . 92
17.3 Implementing SqliteOpenHelper . 93
17.4 Dependency injection . 97

18 Collections and functional operations 99
18.1 Aggregate operations . 100
18.2 Filtering operations . 103
18.3 Mapping operations . 105
18.4 Elements operations . 106
18.5 Generation operations . 109
18.6 Ordering operations . 110

19 Saving and requesting data from the database 112
19.1 Creating database model classes . 112

see more please visit: https://homeofbook.com

CONTENTS

19.2 Writing and requesting data . 114

20 Null safety in Kotlin . 122
20.1 How Null types work . 122
20.2 Nullity and Java libraries . 124

21 Creating the business logic to data access 126

22. Flow control and ranges . 132
22.1 If Expression . 132
22.2 When expression . 133
22.3 For loops . 135
22.4 While and do/while loops . 135
22.5 Ranges . 136

23 Creating a Detail Activity . 138
23.1 Preparing the request . 138
23.2 Providing a new activity . 142
23.3 Start an activity: reified functions 147

24 Interfaces and Delegation . 149
24.1 Interfaces . 149
24.2 Delegation . 150
24.3 Implementing an example in our App 151

25 Generics . 159
25.1 Basics . 159
25.2 Variance . 161
25.3 Generics examples . 163

26 Settings Screen . 167
26.1 Creating the settings activity . 167
26.2 Accessing Shared Preferences . 169
26.3 Generic preference delegate . 172

27 A first walk into coroutines . 175
27.1 Understanding how coroutines work 175

see more please visit: https://homeofbook.com

CONTENTS

27.2 Using Anko for coroutines . 177
27.3 Using coroutines in our example . 179

28 Testing your App . 182
28.1 Unit testing . 182
28.2 Mocking closed classes . 187
28.3 Instrumentation tests . 189

29 Extra concepts . 194
29.1 Nested classes . 194
29.2 Enum classes . 195
29.3 Sealed classes . 196
29.4 Exceptions . 196

30 Java interoperability . 198
30.1 Package-level functions . 198
30.2 Extension functions . 199
30.3 Function overloads . 199
30.4 Instance and static fields . 200
30.5 Data classes . 201
30.6 Sealed classes . 202
30.7 Inline functions and reified types 203

31 Conclusion . 205

see more please visit: https://homeofbook.com

I. About this book
Hey! Thanks so much for your interest in this book, I am thrilled that you decided to
become a Kotlin for Android expert.

Many things have happened since I started writing “Kotlin for Android Developers”
in mid-2015. At that point, Kotlin was still in an early access edition. However, I
felt so much power in the language, that I decided to explain everything that I was
learning in a book.

Since then, the language has kept growing to the point that Google announced that
they would start supporting Kotlin as an official language to develop Android apps.

These were amazing news. But it was even more amazing that both Google and
JetBrains suggested this book to Android developers who want to learn the language.

As you may know, this is a lean publication. This book grew and progressed thanks
to the readers’ comments. So I can only thank you for helping me bring this dream
to life.

What is “Kotlin for Android Developers” about

Throughout this book, I create an Android app from the ground up using Kotlin
as the primary language. The idea is to learn the language by example, instead of
following a regular reference book structure. I will be stopping to explain the most
useful concepts and ideas about Kotlin, comparing them to Java 6. This way, you can
see what the differences are and which parts of the language can help you speed up
your work.

This book is notmeant to be a language reference, but a tool for Android developers to
learn Kotlin and be able to continue with their projects by themselves. The examples
are meant to overcome the most recurring problems we have to face in our daily lives
as app developers, by making use of Kotlin’s expressiveness and some other exciting

see more please visit: https://homeofbook.com

I. About this book 2

tools and libraries. However, this text covers most of the features of Kotlin, so by the
end of the reading, you will have an in-depth knowledge of the language.

The content is very practical, so I recommend that you follow the examples and the
code in front of a computer and try everything it suggests. You could, however, take
one first read to get a broad idea and then dive into practice.

Even though this book now finished, I will review it from time to time to keep it up
to date with new Kotlin versions. So feel free to write and tell me what you think
about the book, or what could be improved. I want this book to be the perfect tool
for Android developers, and as such, help and ideas will be welcomed.

If you are reading a printed copy and want to receive the latest updates, please feel
free to email me at contact@antonioleiva.com with a proof of purchase, and I will
give you access to the digital copy. That way, you will keep receiving the updates.
Do the same if you got it from any bookstores (Kindle, Kobo…) and you want to get
access to the PDF version.

Thanks for becoming part of this exciting project!

see more please visit: https://homeofbook.com

II. Is this book for you?
This book is written to be useful to Android developers who are interested in learning
the Kotlin language.

This book is for you if you are in some of the following situations:

• You have some basic knowledge of Android Development and the Android
SDK, as well as the Java language.

• You want to learn how to develop Android apps using Kotlin by following an
example.

• You need a guide on how to solve many of the common challenges Android
developers face every day, by using a cleaner and more expressive language.

On the other hand, this book may not be for you. These are the topics that you will
not find in it:

• The content of these pages is not a Kotlin Bible. I shall explain all language
basics, and even more complicated ideas when they come out during the
process, just when we need them. So you will learn by example and not the
other way round.

• I will not explain how to develop an Android app. You do not need a
deep understanding of the platform, but at least some basics, such as some
knowledge of Android Studio, Gradle, Java programming and Android SDK.
You may even learn some new Android things in the process!

• The book is not a guide to functional programming. Of course, I am showing
what you need, as Java 6 is not functional at all, but I will not dive deep into
the programming paradigm.

see more please visit: https://homeofbook.com

III. About the author
Antonio Leiva is an Android Engineer who spends time learning about new ways
to get the most out of Android and then writes about it. He writes a blog at
antonioleiva.com1, focused on helping other Android developers learn Kotlin.

He also leads intensive live workshops, where the attendants put all the content from
this book into practice. In 10 hours, people steps from no Kotlin knowledge to being
able to create their apps from scratch.

Antonio started as a consultant in CRM technologies, but after some time, looking for
his real passion, he discovered the Android platform. After getting some experience,
he started a new adventure at a mobile company, where he led several projects for
well-known companies in Spain.

He currently works as an Android Engineer at Plex2, where he also plays an essential
role in the design and UX of the Android applications.

You can findAntonio on Twitter as@lime_cl3 orGoogle+ as +AntonioLeivaGordillo4.

1http://antonioleiva.com
2http://plex.tv
3https://twitter.com/lime_cl
4http://plus.google.com/+AntonioLeivaGordillo‘

see more please visit: https://homeofbook.com

http://antonioleiva.com/
http://plex.tv/
https://twitter.com/lime_cl
http://plus.google.com/+AntonioLeivaGordillo%60
http://antonioleiva.com/
http://plex.tv/
https://twitter.com/lime_cl
http://plus.google.com/+AntonioLeivaGordillo%60

1 Introduction
Things are changing for good for Android Developers. In Google I/O 2017, the
Android team announced that Kotlin was becoming an official language to develop
Android apps.

This means that, while it is still possible to develop Android apps using Java, from
now on Kotlin is fully supported, and Google is making sure that every new Android
feature, the framework, the IDE and all their libraries work seamlessly with the new
language.

Google listened to the community, who was asking for years that Kotlin became a
first-party language. So you can now take advantage of all the features of a modern
language while developing for Android.

Throughout this book, I will show you how, so I hope that I can help you understand
the various ways that Kotlin can take you one step ahead and make your code much
better.

However, before diving into the features of the language, let me tell you just a little
bit of background.

1.1 What is Kotlin?

Kotlin is language developed by JetBrains5, a company known for building the IntelliJ
IDEA, a powerful IDE for Java development. Android Studio, the official Android
IDE, is based on IntelliJ. It was initially implemented to run on the Java Virtual
Machine.

JetBrains designed Kotlin with Java developers in mind, and with IntelliJ as its
primary development IDE. These two factors are breaking points that made Android
developers quickly adopt the language:

5https://www.jetbrains.com/

see more please visit: https://homeofbook.com

https://www.jetbrains.com/
https://www.jetbrains.com/

1 Introduction 6

• Kotlin is very intuitive and easy to learn for Java developers. Most parts
of the language are very similar to what we already know, and the differences
can be mastered in no time.

• We have total integration with our daily IDE for free. Android Studio
can understand, compile and run Kotlin code. Moreover, the support for this
language comes from the company who develops the IDE, so we Android
developers are first-class citizens.

However, this is only related to how the language integrates with our tools. What
are the advantages of the language when compared to Java 6?

• ** It is more expressive**: this is one of its main points. You can write more
with much less code.

• ** It is safer**: Kotlin is null safe, which means that we deal with possible null
situations at compile time, to prevent execution time exceptions. We need to
specify that an object can be null explicitly, and then check its nullity before
using it. You can save much time debugging null pointer exceptions and fixing
nullity bugs.

• ** It is functional**: Kotlin is fundamentally an object-oriented language, not a
pure functional language. However, like many other modern languages, it uses
many concepts from functional programming, such as lambda expressions, to
solve some problems more naturally. Another nice feature is the way it deals
with collections.

• It makes use of extension functions: This means we can extend any class
with new features even if we do not have access to the source code.

• ** It is highly interoperable**: You can continue using most libraries and
code written in Java because the interoperability between both languages is
excellent. It is even possible to create mixed projects, with both Kotlin and
Java files coexisting.

However, this is only the tip of the iceberg: - Since Kotlin 1.1, the final version of
Kotlin JS6 was released. This new variant allows you to develop web apps using

6https://kotlinlang.org/docs/reference/js-overview.html

see more please visit: https://homeofbook.com

https://kotlinlang.org/docs/reference/js-overview.html
https://kotlinlang.org/docs/reference/js-overview.html

1 Introduction 7

Kotlin. - Since Kotlin 1.2, you can also createmultiplatform projects7. With it, you can
share code between JVM and Javascript. - As an experimental feature, the JetBrains
team has also released Kotlin/Native8, a project that finally takes Kotlin out of the
JVM. In the future, we will be able to implement the server, the web and the Android
and iOS Apps using Kotlin for most of the code base. Also, you can try it today. -
Gradle is adding support to use Kotlin Script (a simplified version of Kotlin) to write
Gradle files instead of Groovy. The project is quickly approaching its 1.0 release.

So you can see that the future of Kotlin is pretty promising. Learning Kotlin can
become the language of reference in many other platforms, and sharing code among
all them is undoubtedly a high selling point.

1.2 What do we get with Kotlin?

Without diving too deep into the Kotlin language (we will learn everything about it
throughout this book), these are some interesting features we miss in Java:

Expressiveness

With Kotlin, it is much easier to avoid boilerplate because the language covers the
most common patterns by default. For instance, in Java, if we want to create a data
class, we need to write (or at least generate) this code:

1 public class Artist {

2 private long id;

3 private String name;

4 private String url;

5 private String mbid;

6

7 public long getId() {

8 return id;

9 }

10

11 public void setId(long id) {

7https://kotlinlang.org/docs/reference/whatsnew12.html#multiplatform-projects-experimental
8https://kotlinlang.org/docs/reference/native-overview.html

see more please visit: https://homeofbook.com

https://kotlinlang.org/docs/reference/whatsnew12.html#multiplatform-projects-experimental
https://kotlinlang.org/docs/reference/native-overview.html
https://kotlinlang.org/docs/reference/whatsnew12.html#multiplatform-projects-experimental
https://kotlinlang.org/docs/reference/native-overview.html

1 Introduction 8

12 this.id = id;

13 }

14

15 public String getName() {

16 return name;

17 }

18

19 public void setName(String name) {

20 this.name = name;

21 }

22

23 public String getUrl() {

24 return url;

25 }

26

27 public void setUrl(String url) {

28 this.url = url;

29 }

30

31 public String getMbid() {

32 return mbid;

33 }

34

35 public void setMbid(String mbid) {

36 this.mbid = mbid;

37 }

38

39 @Override public String toString() {

40 return "Artist{" +

41 "id=" + id +

42 ", name='" + name + '\'' +

43 ", url='" + url + '\'' +

44 ", mbid='" + mbid + '\'' +

45 '}';

46 }

47 }

With Kotlin, you just need to make use of a data class:

see more please visit: https://homeofbook.com

1 Introduction 9

1 data class Artist(

2 var id: Long,

3 var name: String,

4 var url: String,

5 var mbid: String)

This data class auto-generates all the fields and property accessors, as well as some
useful methods such as toString(). You also get equals() and hashCode() for free,
which are very verbose and can be dangerous if they are incorrectly implemented.

Null Safety

When we use Java, a significant amount of our code is defensive. We need to check
once and another whether something is null before using it to prevent unexpected
NullPointerException. Kotlin, like many other modern languages, is null-safe because
the type explicitly defines whether an object can be null by using the safe call
operator (written ?).

We can do things like this:

1 // This does not compile. Artist cannot be null

2 var notNullArtist: Artist = null

3

4 // Artist can be null

5 var artist: Artist? = null

6

7 // Will not compile, artist could be null and we need to deal with that

8 artist.print()

9

10 // Will print only if artist != null

11 artist?.print()

12

13 // Smart cast. We don not need to use safe call operator if we previously

14 // checked nullity

15 if (artist != null) {

16 artist.print()

17 }

18

19 // Only use it when we are sure it is not null. It throws an exception otherwise.

see more please visit: https://homeofbook.com

1 Introduction 10

20 artist!!.print()

21

22 // Use Elvis operator to give an alternative in case the object is null.

23 val name = artist?.name ?: "empty"

Extension functions

Thanks to extension functions, you can add new functions to any class. It is a cleaner
substitute for the common utility classes we all have in our projects. You could, for
instance, add a new method to fragments to show a toast:

1 fun Fragment.toast(message: CharSequence, duration: Int = Toast.LENGTH_SHORT) {

2 Toast.makeText(getActivity(), message, duration).show()

3 }

And then use it like this:

1 fragment.toast("Hello world!")

Functional support (Lambdas)

What if, instead of having to declare an anonymous class every time we need to
implement a click listener, we could just define what we want to do? We can indeed
do it. This (and many other interesting things) is what we get thanks to lambdas:

1 view.setOnClickListener { toast("Hello world!") }

This set of features is only a small selection of what Kotlin can do to simplify your
code. Now that you know some of the many great features of the language, you may
decide that this is not for you. If you continue, we will start writing some code right
away in the next chapter.

see more please visit: https://homeofbook.com

2 Getting ready
Now that you know some little examples of what you may do with Kotlin, I am sure
you want to start to put it into practice as soon as possible. Don’t worry; these first
chapters will help you configure your development environment so that you can start
writing some code immediately.

2.1 Android Studio

The first thing you need is to install Android Studio. As you may know, Android
Studio is the official Android IDE, which was presented to the public in 2013 as a
preview and finally released in 2014.

Android Studio is implemented as a plugin for IntelliJ IDEA9, a Java IDE created by
Jetbrains10, the company which is also behind Kotlin. So, as you can see, everything
is tightly connected.

The adoption of Android Studio was a significant step forward for Android devel-
opers. First, because we left the buggy Eclipse behind and moved to a set of tools
specially designed for Java developers, which gives us a whole interaction with
the language. We enjoy fantastic features such as fast and impressively smart code
completion, and powerful analyzing and refactoring tools among others.

And second, Gradle11 became the official build system for Android, which means a
whole bunch of new possibilities relating to versioning, building, and deployment.
Two of the most exciting functions are build types and flavors, which let you create
infinite versions of the app (or even different apps) in a straightforward way while
using the same code base.

If you are still using Eclipse, I am afraid you need to switch to Android Studio if
you want to follow this book. The Kotlin team is creating a plugin for Eclipse, but it

9https://www.jetbrains.com/idea
10https://www.jetbrains.com
11https://gradle.org/

see more please visit: https://homeofbook.com

https://www.jetbrains.com/idea
https://www.jetbrains.com/
https://gradle.org/
https://www.jetbrains.com/idea
https://www.jetbrains.com/
https://gradle.org/

2 Getting ready 12

may be far behind the one for Android Studio, and the integration is probably less
smooth. You will also discover what you are missing as soon you start using it.

I am not covering the use of Android Studio or Gradle because this is not the focus
of the book. But if this is the first time you use these tools, I am sure that you will be
able to follow the content and learn the basics in the meanwhile.

Download Android Studio from the official page12 if you do not have it already.

2.2 Install Kotlin plugin

Since IntelliJ 15 was released, the Kotlin plugin is bundled with the IDE. For Android
Studio, it depends on the version you are using.

If you have Android Studio 3.0 or above, you already have everything you need. If
your Android Studio is 2.3 or below, you need to install the Kotlin plugin manually.

So go to the plugins section inside Android Studio Preferences, and install the Kotlin
plugin. Use the search tool if you cannot find it.

Now our environment is ready to understand the language, compile it and execute
it just as seamlessly as if we were using Java.

12https://developer.android.com/sdk/index.html

see more please visit: https://homeofbook.com

https://developer.android.com/sdk/index.html
https://developer.android.com/sdk/index.html

3 Creating a new project
So now it is time to start creating our App. I want to keep the explanation simple on
purpose, because Android Studio wizard changes from time to time and these lines
can become deprecated pretty soon.

Our app consists of a simple weather app, such as the one used in Google’s Beginners
Course from Udacity13. We will be paying attention to different things, but the idea
of the app is the same because it includes many of the things you find in a regular
app. If you are starting with Android development, I recommend you this course.

3.1 Create a new project in Android Studio

Again, there is a small difference depending on the Android Studio version you are
using.

For Android Studio 3, the steps are pretty straightforward. Previous versions require
a little more work, but it is far from complicated too. Even if you are already using
new versions of Android Studio, I recommend you to take a look to the whole process,
because it is what you would need to do if you want to start using Kotlin on a Java
project.

First of all, open Android Studio and choose Create New Project. The first step is
to decide a name for your app; you can use the name you want: WeatherApp for
instance. Then the wizard asks for a Company Domain. As you are not releasing the
app, this field is not very important either, but if you own a domain, you can use that
one. Also, choose the location where you want to save the project.

In Android Studio 3, at this point, you find a checkbox that enables Kotlin support.
So select it if that is your case.

13https://www.udacity.com/course/android-development-for-beginners--ud837

see more please visit: https://homeofbook.com

https://www.udacity.com/course/android-development-for-beginners--ud837
https://www.udacity.com/course/android-development-for-beginners--ud837
https://www.udacity.com/course/android-development-for-beginners--ud837

3 Creating a new project 14

For the next step, the wizard asks for the minimum API version. I selected API 15
for the sample app, but Kotlin does not have any restrictions regarding the minimum
API. Skip any other platform different to Phone and Tablet for now.

Finally, we are required to choose an activity template. Select Empty Activity. This
template generates little code, and it is easier for us to add new logic.

Keep the name of the activities or layouts in the next screen. We will change them
later if we need to. Press Finish and let Android Studio do its work.

With Android Studio 3 you are done, skip to point 3.4. The next two steps are only
required if you had to install the plugin manually.

3.2 Convert MainActivity to Kotlin code

An interesting feature that the Kotlin plugin includes is the ability to convert from
Java to Kotlin code. As an automated process, it is not perfect, but it may help a lot
during your first days until you start getting used to the Kotlin language.

So we are using this in our MainActivity.java class. Open the file and select Code
-> Convert Java File to Kotlin File. Take a look at the differences, so that you
start becoming familiar with the language.

You can also copy any Java code into a Kotlin file, and the plugin also converts it.

3.3 Configure Kotlin in project

The Kotlin plugin also includes a tool that configures the Gradle files for us.

Just go to Tools -> Project -> Configure Kotlin in Project. Choose the latest
Kotlin version, and press OK.

Review the changes. There should be something like this:

see more please visit: https://homeofbook.com

3 Creating a new project 15

build.gradle

1 buildscript {

2 ext.kotlin_version = '1.2.31'

3 repositories {

4 jcenter()

5 }

6 dependencies {

7 classpath 'com.android.tools.build:gradle:3.1.0'

8 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"

9 }

10 }

11

12 allprojects {

13 repositories {

14 jcenter()

15 }

16 }

As you can see, it is creating a variable that saves the current Kotlin version. We
need that version number in several places, for instance in the new dependency to
the Kotlin plugin.

It will be useful again in the module build.gradle, where the configuration has also
added a dependency to the Kotlin standard library. Go check it now:

app/build.gradle

1 apply plugin: 'com.android.application'

2 apply plugin: 'kotlin-android'

3

4 android {

5 ...

6 }

7

8 dependencies {

9 implementation "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"

10 }

see more please visit: https://homeofbook.com

3 Creating a new project 16

3.4 Include some other useful configuration

There are some other extra libraries that we will be using, so take the chance to add
them to the build.gradle.

An important one is Anko, a library that uses the power of Kotlin to simplify some
tasks in Android. We will use more modules of Anko later on, but for now, it is
enough to add anko-common. This library is split into several smaller ones so that we
include in the project only the parts we require.

Let’s go to the main one first, and update the buildscript by adding two new variables
for the support libraries as well as Anko library (you can also check the latest version
here14). This way, it is easier to modify all the versions in a row, as well as adding
new libraries that use the same version without having to change it everywhere:

build.gradle

1 buildscript {

2 ext.support_version = '27.1.0'

3 ext.kotlin_version = '1.2.31'

4 ext.anko_version = '0.10.4'

5 repositories {

6 jcenter()

7 }

8 dependencies {

9 classpath 'com.android.tools.build:gradle:3.1.0'

10 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"

11 }

12 }

13

14 allprojects {

15 repositories {

16 jcenter()

17 google()

18 }

19 }

If you are using Android Studio 2.3, you also need to add the Google repository as
you can see above. Android Studio 3 does it for you.

14https://github.com/Kotlin/anko/releases

see more please visit: https://homeofbook.com

https://github.com/Kotlin/anko/releases
https://github.com/Kotlin/anko/releases
https://github.com/Kotlin/anko/releases

3 Creating a new project 17

Let’s then add theAnko library dependency to the module file, update theAppCom-
pat to use our variable, and apply the Kotlin Android Extensions plugin:

app/build.gradle

1 apply plugin: 'com.android.application'

2 apply plugin: 'kotlin-android'

3 apply plugin: 'kotlin-android-extensions'

4

5 android {

6 ...

7 }

8

9 dependencies {

10 implementation "com.android.support:appcompat-v7:$support_version"

11 implementation "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"

12 implementation "org.jetbrains.anko:anko-common:$anko_version"

13 }

With these changes, we should be ready to start.

3.5 Test that everything works

We are going to add some code to check that Kotlin Android Extensions are fully
functional. I am not explainingmuch about it yet, but I want to be sure this is working
for you.

First, go to activity_main.xml and set an id for the TextView:

activity_main.xml

1 <TextView

2 android:id="@+id/message"

3 android:text="@string/hello_world"

4 android:layout_width="wrap_content"

5 android:layout_height="wrap_content"/>

At onCreate, try to write the id you previously chose (message in this example) for
the TextView:

see more please visit: https://homeofbook.com

3 Creating a new project 18

MainActivity.kt

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3 setContentView(R.layout.activity_main)

4 message.text = "Hello Kotlin!"

5 }

Do you see the magic? You could access the view without finding it or using third-
party libraries.Kotlin Android Extensions is a plugin that comes included in the main
Kotlin one, and that is its primary purpose. Be patient; I shall show you how to use
it properly soon.

You will also see that a synthetic import was added automatically to the activity, but
we are not covering it yet:

MainActivity.kt

1 import kotlinx.android.synthetic.main.activity_main.*

Thanks to Kotlin interoperability with Java, we can use setters and getters methods
from Java libraries as a property in Kotlin. We will talk about properties later too,
but just notice that we can use message.text instead of message.setText for free.
The compiler uses the real Java methods, so there is no performance overhead when
using it.

Now run the app and check that everything is working fine. Review that the message
TextView is showing the new content. If you have any doubts or want to revise some
code, take a look at Kotlin for Android Developers repository15. I created a branch
for each chapter when the new content involves modifications in code, so be sure to
review it to check all the changes.

Next chapters cover some of the new things you could see in the converted
MainActivity. Once you understand the slight differences between Java and Kotlin,
you will be able to write new code by yourself without any hassle.

15https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-3

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-3
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-3

4 Classes and functions
Classes in Kotlin follow a straightforward structure. However, there are some slight
differences from Java that you want to know before we continue. You can use
try.kotlinlang.org16 to test this and some other simple examples without the need
for a real project.

You could also use the REPL that comes bundled with the Kotlin plugin. You can find
it in Tools -> Kotlin -> Kotlin REPL.

4.1 How to declare a class

If you want to declare a class, you just need to use the keyword class:

1 class MainActivity {

2

3 }

Classes have a unique default constructor. We will see that we can create extra
constructors for some exceptional cases, but keep in mind that most situations only
require a single constructor. Parameters are written just after the name. Braces are
not required if the class is empty:

1 class Person(name: String, surname: String)

Where is the body of the constructor then? You can declare an init block:

16http://try.kotlinlang.org/

see more please visit: https://homeofbook.com

http://try.kotlinlang.org/
http://try.kotlinlang.org/

4 Classes and functions 20

1 class Person(name: String, surname: String) {

2 init {

3 ...

4 }

5 }

4.2 Class inheritance

By default, a class always extends from Any (similar to Java Object), but we can
extend any other classes. Classes are closed by default (final), so we can only extend
a class if it is explicitly declared as open or abstract:

1 open class Animal(name: String)

2 class Person(firstName: String, lastName: String) : Animal(firstName)

Note that when using the single constructor structure, we need to specify the
parameters we are using for the parent constructor. That is equivalent to calling
super() in Java.

4.3 Functions

Functions (our methods in Java) are declared by using the fun keyword:

1 fun onCreate(savedInstanceState: Bundle?) {

2 }

Functions in Kotlin always return a value. If you skip the return value, the function
is indeed returning Unit.

Unit is similar to void in Java, though this is, in fact, an object. You can, of course,
specify any type as a return value:

see more please visit: https://homeofbook.com

4 Classes and functions 21

1 fun add(x: Int, y: Int): Int {

2 return x + y

3 }

Tip: Semicolons are not necessary
As you can see in the example above, I am not using semicolons at the end
of the sentences. While you can use them, semicolons are not necessary,
and it is a good practice to avoid them (the IDE warns you if you write
them). When you get used, you will find that it saves you loads of time.

However, if the result can be calculated using a single expression, you can get rid of
brackets and use equal:

1 fun add(x: Int, y: Int) : Int = x + y

4.4 Constructor and functions parameters

Parameters in Kotlin are a bit different from Java. As you can see, we first write the
name of the parameter and then its type.

1 fun add(x: Int, y: Int) : Int {

2 return x + y

3 }

A handy thing about parameters is that we can make them optional by specifying
a default value. Here is an example of a function you could create in an activity,
which uses a toast to show a message:

1 fun toast(message: String, length: Int = Toast.LENGTH_SHORT) {

2 Toast.makeText(this, message, length).show()

3 }

As you can see, the second parameter (length) specifies a default value, which allows
you to write or omit the second value. This feature prevents the need for function
overloading:

see more please visit: https://homeofbook.com

4 Classes and functions 22

1 toast("Hello")

2 toast("Hello", Toast.LENGTH_LONG)

The previous function would be equivalent to the next code in Java:

1 void toast(String message){

2 toast(message, Toast.LENGTH_SHORT);

3 }

4

5 void toast(String message, int length){

6 Toast.makeText(this, message, length).show();

7 }

And this can be as complex as you want. Check this other example:

1 fun niceToast(message: String,

2 tag: String = MainActivity::class.java.simpleName,

3 length: Int = Toast.LENGTH_SHORT) {

4 Toast.makeText(this, "[$tag] $message", length).show()

5 }

I added a third parameter that includes a tag which defaults to the class name. The
number of overloads we would need in Java grows exponentially. You can now write
these calls:

1 niceToast("Hello")

2 niceToast("Hello", "MyTag")

3 niceToast("Hello", "MyTag", Toast.LENGTH_SHORT)

There is even another option, because you can use named arguments, which means
you can write the name of the argument preceding the value to specify which one
you want:

1 niceToast(message = "Hello", length = Toast.LENGTH_SHORT)

see more please visit: https://homeofbook.com

4 Classes and functions 23

Tip: String templates
You can use template expressions directly in your strings, which simplifies
writing complex strings based on static and variable parts. In the previous
example, I used "[$className] $message".

As you can see, anytime you want to add an expression, just write the $
symbol. If the expression is a bit more complex, you can add a couple of
brackets: "Your name is ${user.name}".

see more please visit: https://homeofbook.com

5 Writing your first class
We already have our MainActivity.kt class. This activity will render a list of daily
forecasts for the next seven days, so the layout requires some changes.

5.1 Creating the layout

The main view that will render the forecast list will be a RecyclerView, so a new
dependency is required. Modify the build.gradle file:

app/build.gradle
1 dependencies {

2 compile fileTree(dir: 'libs', include: ['*.jar'])

3 compile "com.android.support:appcompat-v7:$support_version"

4 compile "com.android.support:recyclerview-v7:$support_version"

5 ...

6 }

Now, in activity_main.xml :

activity_main.xml
1 <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 android:layout_width="match_parent"

3 android:layout_height="match_parent">

4

5 <android.support.v7.widget.RecyclerView

6 android:id="@+id/forecast_list"

7 android:layout_width="match_parent"

8 android:layout_height="match_parent"/>

9

10 </FrameLayout>

In MainActivity.kt, remove the line we added to test that everything worked (it will
be showing an error now). We will continue using the good old findViewById() for
the time being:

see more please visit: https://homeofbook.com

5 Writing your first class 25

MainActivity.kt

1 val forecastList = findViewById(R.id.forecast_list) as RecyclerView

2 forecastList.layoutManager = LinearLayoutManager(this)

As you can see, we define the variable and cast it to RecyclerView. It is a bit different
from Java; we are reviewing these differences in the next chapter. A LayoutManager

is also specified, using the property naming instead of the setter. A list is enough for
this layout, so let’s make use of a LinearLayoutManager.

Object instantiation
Object instantiation presents some differences from Java too. You might
have realized I omitted the “new” keyword. The constructor call is still
there, but we save four precious characters. LinearLayoutManager(this)
creates an instance of the object.

5.2 The Recycler Adapter

We need an adapter for the recycler too. I talked about RecyclerView on my blog17

some time ago, so it may help you if you are not used to it.

The views used for RecyclerView adapter will be just TextViews for now, and
a simple list of texts that we will create manually. Add a new Kotlin file called
ForecastListAdapter.kt, and include this code:

17http://antonioleiva.com/recyclerview/

see more please visit: https://homeofbook.com

http://antonioleiva.com/recyclerview/
http://antonioleiva.com/recyclerview/

5 Writing your first class 26

ForecastListAdapter.kt

1 class ForecastListAdapter(val items: List<String>) :

2 RecyclerView.Adapter<ForecastListAdapter.ViewHolder>() {

3

4 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):

5 ViewHolder {

6 return ViewHolder(TextView(parent.context))

7 }

8

9 override fun onBindViewHolder(holder: ViewHolder, position: Int) {

10 holder.textView.text = items[position]

11 }

12

13 override fun getItemCount(): Int = items.size

14

15 class ViewHolder(val textView: TextView) : RecyclerView.ViewHolder(textView)

16 }

Again, we can access the context and the text as properties. You can keep doing it as
usual (using getters and setters), but you will get a warning from the compiler. This
check can be disabled if you prefer to keep using the Java way. However, once you
get used to properties, you will never look back.

Default visibility is public

Unless a visibility modifier is applied, classes, functions or properties are
public by default. You can write it, but the compiler will show a warning,
as it is not required.

If you check the previous code, you may find there are warnings for a couple of
things. The first one is recommending to set the items argument to private, as it is
being used only inside the class.

1 class ForecastListAdapter(private val items: List<String>)

The other is recommending to write single-lined functions using an expression body.
Let’s follow the recommendations here too:

see more please visit: https://homeofbook.com

5 Writing your first class 27

1 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int) =

2 ViewHolder(TextView(parent.context))

So the complete resulting code is:

ForecastListAdapter.kt
1 class ForecastListAdapter(private val items: List<String>)

2 : RecyclerView.Adapter<ForecastListAdapter.ViewHolder>() {

3

4 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int) =

5 ViewHolder(TextView(parent.context))

6

7 override fun onBindViewHolder(holder: ViewHolder, position: Int) {

8 holder.textView.text = items[position]

9 }

10

11 override fun getItemCount(): Int = items.size

12

13 class ViewHolder(val textView: TextView) : RecyclerView.ViewHolder(textView)

14 }

Back to the MainActivity, let’s create the list of strings and then an instance of the
adapter:

MainActivity.kt
1 private val items = listOf(

2 "Mon 6/23 - Sunny - 31/17",

3 "Tue 6/24 - Foggy - 21/8",

4 "Wed 6/25 - Cloudy - 22/17",

5 "Thurs 6/26 - Rainy - 18/11",

6 "Fri 6/27 - Foggy - 21/10",

7 "Sat 6/28 - TRAPPED IN WEATHERSTATION - 23/18",

8 "Sun 6/29 - Sunny - 20/7"

9)

10

11 override fun onCreate(savedInstanceState: Bundle?) {

12 ...

13 val forecastList = findViewById<RecyclerView>(R.id.forecast_list)

14 forecastList.layoutManager = LinearLayoutManager(this)

15 forecastList.adapter = ForecastListAdapter(items)

16 }

see more please visit: https://homeofbook.com

5 Writing your first class 28

List creation
Though I will talk about collections later in this book, I just want to explain
for now that you can create constant lists (called immutable, we will see
this concept soon) by using the helper function listOf. It receives a vararg
of items of any type and infers the type of the result.

There are many other alternative functions, such as setOf, mutableListOf
or hashSetOf, among others.

I have also moved some classes to new packages to achieve a better project structure,
so check the corresponding branch18 if you want to follow the same organization.

We examined numerous new ideas in such a small amount of code, so let’s cover them
in the next chapter. We must stop here to learn some crucial concepts regarding basic
types, variables, and properties.

18https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-5

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-5
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-5

6 Variables and properties
In Kotlin, everything is an object. There are no primitive types as the ones we can
use in Java. That is helpful because we have a uniform way to deal with all the
available types.

6.1 Basic types

Of course, basic types such as integers, floats, characters or booleans still exist, but
they all act like an object. The name of the basic types and the way they work are
very similar to Java, but there are some differences you might take into account:

• There are no automatic conversions among numeric types. For instance, you
cannot assign an Int to a Double variable. An explicit conversion must be
done, using one of the many functions available:

1 val i: Int = 7

2 val d: Double = i.toDouble()

• Characters (Char) cannot directly be used as numbers. We can, however,
convert them to a number when we need it:

1 val c: Char = 'c'

2 val i: Int = c.toInt()

• Bitwise arithmetical operations are a bit different. In Android, we use bitwise
or quite often for flags, so I will stick to “and” and “or “ as an example:

see more please visit: https://homeofbook.com

6 Variables and properties 30

1 // Java

2 int bitwiseOr = FLAG1 | FLAG2;

3 int bitwiseAnd = FLAG1 & FLAG2;

1 // Kotlin

2 val bitwiseOr = FLAG1 or FLAG2

3 val bitwiseAnd = FLAG1 and FLAG2

There are many other bitwise operations, such as shl, shs, ushr, xor
or inv. You can take a look at the official Kotlin reference19 for more
information.

• Literals can give information about its type. It is not a requirement, but a
common practice in Kotlin is to omit variable types (we will see it soon), so
we can give some clues to the compiler to let it infer the type from the literal:

1 val i = 12 // An Int

2 val iHex = 0x0f // An Int from hexadecimal literal

3 val l = 3L // A Long

4 val d = 3.5 // A Double

5 val f = 3.5F // A Float

• A String can be accessed as an array and can be iterated:

1 val s = "Example"

2 val c = s[2] // This is the Char 'a'

19http://kotlinlang.org/docs/reference/basic-types.html#operations

see more please visit: https://homeofbook.com

http://kotlinlang.org/docs/reference/basic-types.html#operations
http://kotlinlang.org/docs/reference/basic-types.html#operations

6 Variables and properties 31

1 // Iterate over String

2 val s = "Example"

3 for (c in s) {

4 print(c)

5 }

6.2 Variables

Variables in Kotlin can be easily defined as mutable (var) or immutable (val). The
idea is very similar to using final in Java variables. However,immutability is a
fundamental concept in Kotlin (and many other modern languages).

An immutable object is an object whose state cannot change after instantiation. If
you need a modified version, you need to create a new object. Immutability makes
software more robust and predictable. In Java, most objects are mutable, which
means that any part of the code which has access to it can modify it, affecting the
rest of the application.

Immutable objects are also thread-safe by definition. As the value is constant, you do
not need to implement any particular synchronized mechanism, because all threads
always get the same object.

So the way we think about coding changes a bit in Kotlin if we want to make use
of immutability. The key concept: just use val as much as possible. There are
situations (especially in Android, where the constructor is called by the system for
several classes) where immutability becomes hard to implement, but most of the time
it will be possible.

Another thing mentioned before is that we can usually avoid specifying object types,
the compiler infers them from the value, which makes the code cleaner and faster to
modify. We already have some examples from the section above.

1 val s = "Example" // A String

2 val i = 23 // An Int

3 val actionBar = supportActionBar // An ActionBar in an Activity context

However, a type needs to be specified if we want to use a more generic type:

see more please visit: https://homeofbook.com

6 Variables and properties 32

1 val a: Any = 23

2 val c: Context = activity

6.3 Properties

Properties are the equivalent of fields in Java, but much more powerful. Properties
do the work of a field plus a getter plus a setter. Let’s see an example to compare
the difference. The following snippet shows the code required in Java to access and
modify a field safely:

1 public class Person {

2

3 private String name;

4

5 public String getName() {

6 return name;

7 }

8

9 public void setName(String name) {

10 this.name = name;

11 }

12 }

13

14 ...

15

16 Person person = new Person();

17 person.setName("name");

18 String name = person.getName();

In Kotlin, you only need a property to achieve the same behavior:

see more please visit: https://homeofbook.com

6 Variables and properties 33

1 class Person {

2

3 var name: String = ""

4

5 }

6

7 ...

8

9 val person = Person()

10 person.name = "name"

11 val name = person.name

If nothing is specified, the property uses the default getter and setter. It can, of course,
be modified to run whatever custom behavior you need, without having to change
the existing code:

1 class Person {

2

3 var name: String = ""

4 get() = field.toUpperCase()

5 set(value) {

6 field = "Name: $value"

7 }

8

9 }

If the property needs access to its value in a custom getter or setter (as in this case), it
requires the creation of a backing field. It can be accessed by using field, a reserved
word, and it is automatically created when the compiler finds that it is required. Take
into account that if we used the property directly, we would be using the setter and
getter, and not doing a direct assignment. You can only use the backing field inside
the accessors of the property.

As mentioned in some previous chapters, when dealing with code written in Java,
Kotlin allows using the property syntax where a getter, and optionally a setter, are
defined in Java. The compiler just links to the original getters and setters, so there
are no performance penalties when using these mapped properties.

see more please visit: https://homeofbook.com

7 Anko and Extension Functions
The Kotlin team has developed some great tools to make Android development more
accessible. In this chapter, I talk you about them and how you can start using them.

7.1 What is Anko?

Anko20 is a robust library developed by JetBrains. Its primary purpose is the
generation of UI layouts by using code instead of XML. This feature is interesting; try
it out if you have the chance, but I will not be using it in this project. To me (probably
due to years of experience writing user interfaces) using XML is more comfortable,
but you might think differently.

However, this is not the only feature we can get from this library. Anko includes
many helpful functions and properties that avoid lots of boilerplate. There are several
examples covered in this book, but you will quickly see which kind of problems this
library solves.

Since Anko is a library written specifically for Android, understanding what it does
behind the scenes is a good exercise. You can navigate at any moment to Anko’s
source code using ctrl + click (Windows or Linux) or cmd + click (Mac). Anko’s
implementation is an excellent example to learn useful ways to get the most out of
Kotlin language.

7.2 Start using Anko

Before going any further, let’s use Anko to improve a couple of things. As you will
see, anytime you use something from Anko, it includes an import with the name
of the property or function to the file. Anko uses extension functions to add new

20https://github.com/JetBrains/anko

see more please visit: https://homeofbook.com

https://github.com/JetBrains/anko
https://github.com/JetBrains/anko

7 Anko and Extension Functions 35

features to the Android framework, and the import links to them. We will see right
below what an extension function is and how to write it.

In MainActivity::onCreate, an Anko extension function can be used instead of
findViewById to find the RecyclerView. Since API 26, it is not necessary anymore,
as findViewById is now generic, but it will serve us as an example:

activities/MainActivity.kt

1 val forecastList: RecyclerView = find(R.id.forecast_list)

Take a look at the imports, and see that the function find was added there:

1 import org.jetbrains.anko.find

This is all we can use from the library for now, but Anko can help us simplify, among
others, the instantiation of intents, the navigation between activities, the creation
of fragments, database access, or building alerts. We will find several showcase
examples while we implement the app.

7.3 Extension functions

An extension function is a function that adds a new behavior to a class, even if we do
not have access to the source code of that class. It is a way to extend classes which lack
some useful functions. In Java, we usually implement them in utility classes which
include a set of static methods. The advantage of using extension functions in Kotlin
is that we don’t need to pass the object as an argument. The extension function acts
as part of the class, and we can implement it using this and all its public methods.

For instance, we can create a toast function that could be used by any Context

objects and those whose type extends Context, such as Activity or Service:

see more please visit: https://homeofbook.com

7 Anko and Extension Functions 36

1 fun Context.toast(message: CharSequence, duration: Int = Toast.LENGTH_SHORT) {

2 Toast.makeText(this, message, duration).show()

3 }

Now you can use this extension inside an activity, for instance:

1 toast("Hello world!")

2 toast("Hello world!", Toast.LENGTH_LONG)

Of course, Anko already includes its own toast extension function, very similar to
this one. The library provides functions for both CharSequence and resources, and
different names for short and long toasts:

1 toast("Hello world!")

2 longToast(R.string.hello_world)

Extensions can also be properties. So you can create extension properties in a very
similar way. Thanks to this code below, you could add an extra property to ViewGroup
to get a list of its child views:

1 val ViewGroup.childViews: List<View>

2 get() = (0 until childCount).map { getChildAt(it) }

Do not pay much attention to the implementation yet, as we still need to cover some
of the concepts here.

Extension functions do not modify the original class. You may find a static import
added to the file where you used it. You can declare extension functions anywhere,
so a common practice is to create files that hold a set of related functions.

Extension functions are the magic behind many Anko features. From now on, you
can create your magic too.

This chapter has little changes; you can find the source code here21.

21https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-7

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-7
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-7

8 Retrieving data from API
8.1 Performing a request

Our current placeholder texts are an excellent place to start getting an idea of what
wewant to achieve, but now it is time to request some real data, which will be used to
populate the RecyclerView. We are going to make use of the OpenWeatherMap22 API
to retrieve data and some regular classes for the request. As Kotlin interoperability
is extremely powerful, you could use any library you want, such as Retrofit23, for
server requests. However, as we are just performing a simple API request, we can
achieve our goal much easier without adding another third-party library.

Besides, as you will see, Kotlin provides some extension functions that will make
requests much simpler. First, we are going to create a new Request class:

data/Request.kt

1 class Request(private val url: String) {

2

3 fun run() {

4 val forecastJsonStr = URL(url).readText()

5 Log.d(javaClass.simpleName, forecastJsonStr)

6 }

7

8 }

The constructor receives a URL. Then the run function reads the result and outputs
the JSON in the Logcat.

The implementation is straightforward when using readText, an extension func-
tion from the Kotlin standard library. This method is not recommended for large
responses, but it is good enough in our case.

22http://openweathermap.org/
23https://github.com/square/retrofit

see more please visit: https://homeofbook.com

http://openweathermap.org/
https://github.com/square/retrofit
http://openweathermap.org/
https://github.com/square/retrofit

8 Retrieving data from API 38

If you compare this code to the one you would need in Java, you will see that we
have saved a considerable amount of overhead just by using the standard library. An
HttpURLConnection, a BufferedReader and an iteration over the result would have
been necessary to get the same result, apart from having to manage the status of the
connection and the reader. Obviously, that is what the function is doing behind the
scenes, but we have it for free.

In order to be able to perform the request, the app must use the Internet permission.
So it must be added to the AndroidManifest.xml:

AndroidManifest.xml

1 <uses-permission android:name="android.permission.INTERNET" />

8.2 Performing the request out of the main
thread

As you may know, HTTP requests are not allowed in the main thread, or the app will
throw an exception. This limitation prevents from blocking the UI thread, which is
a bad practice. The standard solution for Android is to use an AsyncTask. However,
these classes are ugly and difficult to implement without any side effects. AsyncTasks
are dangerous if not used carefully because by the time it reaches postExecute, the
system could have destroyed the activity, and the task will crash.

Anko provides a very easy DSL to deal with asynchrony, which fits most basic needs.
It provides a doAsync function that executes its code in another thread, with the
option to return to the main thread by calling uiThread. Executing the request in a
secondary thread is as easy as this:

see more please visit: https://homeofbook.com

8 Retrieving data from API 39

activities/MainActivity.kt

1 val url = "http://api.openweathermap.org/data/2.5/forecast/daily?" +

2 "APPID=15646a06818f61f7b8d7823ca833e1ce&zip=94043&mode=json&units=met\

3 ric&cnt=7"

4

5 doAsync() {

6 Request(url).run()

7 uiThread { longToast("Request performed") }

8 }

You can get the url from the repository branch24 for this lesson.

A beautiful thing about uiThread is that it has a different implementation depending
on the caller object. When an Activity uses it, the uiThread code is not executed
if activity.isFinishing() returns true, and it will not crash if the activity is no
longer valid.

You also can use your own executor:

1 val executor = Executors.newScheduledThreadPool(4)

2 doAsync(executor) {

3 // Some task

4 }

doAsync returns a java Future, in case you want to work with futures. If you need it
to return a Future with a result, you can use doAsyncResult.

It is simple and more straightforward to read than AsyncTasks. For now, I am just
sending a static URL to the request, to test that we receive the content properly and
that we can draw it in the activity. I will cover the JSON parsing and conversion to
app data classes soon, but before we continue, it is essential to learn what a data class
is.

You can run the app and check that you can see the JSON in the log and the toast
when the request finishes.

24https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-8

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-8
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-8

9 Data Classes
Data classes are a powerful kind of classes that avoid the boilerplate we need in
Java to create POJO: classes which are used to keep state but are elementary in the
operations they do. They usually only provide plain getters and setters to access to
their fields. Defining a new data class is very easy:

1 data class Forecast(val date: Date, val temperature: Float, val details: String)

9.1 Extra functions

Along with a data class, we get a handful of new functions for free, apart from the
properties we already talked about (which prevent us from writing the accessors):

• equals(): it compares the properties from both objects to ensure they are
identical.

• hashCode(): we get a hash code for free, also calculated from the values of the
properties.

• copy(): you can copy an object, modifying the properties you need. We will
see an example later.

• A set of numbered functions that are used to map an object into variables. I
will also explain this soon.

9.2 Copying a data class

If we use immutability, as talked some chapters ago, we find that if wewant to change
the state of an object, a new instance of the class is required, with one or more of its
properties modified. This task can be slightly repetitive and far from clean. However,
data classes include the copy()method, which makes the process easy and intuitive.

For instance, if we need to modify the temperature of a Forecast, we can just do:

see more please visit: https://homeofbook.com

9 Data Classes 41

1 val f1 = Forecast(Date(), 27.5f, "Shiny day")

2 val f2 = f1.copy(temperature = 30f)

This way, we copy the first forecast and modify only the temperature property
without changing the state of the original object.

Be careful with immutability when using
Java classes
If you decide to work with immutability, be aware that Java classes were
not designed with this in mind, and there are still some circumstances
where you are able to modify the state. In the previous example, you could
always access the Date object and change its value. The easy (and unsafe)
option is to remember the rules of not modifying the state of an object,
but copying it when necessary.

Another option is to wrap these classes. You could create an
ImmutableDate class which wraps a Date and does not allow to modify
its state. It is up to you to decide which solution you take. In this book,
I am not very strict with immutability. So I will not create wrappers for
every potentially dangerous class.

9.3 Mapping an object into variables

This process is known as declaration destructuring, and consists of mapping each
property inside an object into a variable. That is the reason why the componentX

functions are automatically created. An example with the previous Forecast class:

1 val f1 = Forecast(Date(), 27.5f, "Shiny day")

2 val (date, temperature, details) = f1

This multi-declaration is compiled down to the following code:

see more please visit: https://homeofbook.com

9 Data Classes 42

1 val date = f1.component1()

2 val temperature = f1.component2()

3 val details = f1.component3()

The logic behind this feature is powerful and can help simplify the code in many
situations. For instance, Map class has some extension functions implemented that
allow recovering its keys and values in an iteration:

1 for ((key, value) in map) {

2 Log.d("map", "key:$key, value:$value")

3 }

see more please visit: https://homeofbook.com

10 Parsing data
Now that we know how to create data classes, we are ready to start parsing data.
In the data package, create a new file called ResponseClasses.kt. If you open in a
browser the URL we used in chapter 8, you can see the structure of the JSON file. It
consists of an object which contains a city, and a list of forecast predictions. The city
has an id, a name, its coordinates and the country where it belongs. Each forecast
comes with a good set of information such as the date, different temperatures, and a
weather object with the description and an id for an icon, for instance.

10.1 Converting JSON to data classes

In our current UI, we are not going to use all this data. However, we will parse
everything down to classes, in case it is of some use in the future. These are the data
classes we need:

data/ResponseClasses.kt

1 data class ForecastResult(val city: City, val list: List<Forecast>)

2

3 data class City(val id: Long, val name: String, val coord: Coordinates,

4 val country: String, val population: Int)

5

6 data class Coordinates(val lon: Float, val lat: Float)

7

8 data class Forecast(val dt: Long, val temp: Temperature, val pressure: Float,

9 val humidity: Int, val weather: List<Weather>,

10 val speed: Float, val deg: Int, val clouds: Int,

11 val rain: Float)

12

13 data class Temperature(val day: Float, val min: Float, val max: Float,

14 val night: Float, val eve: Float, val morn: Float)

15

16 data class Weather(val id: Long, val main: String, val description: String,

17 val icon: String)

see more please visit: https://homeofbook.com

10 Parsing data 44

As we are using Gson25 to parse the JSON to our classes, the properties must have
the same name as the ones in the JSON or specify a serialized name. A good practice
explained in most software architectures is to use different models for the different
layers in our app to decouple them from each other. So I prefer to simplify the
declaration of these classes because I will convert them before being used in the
rest of the app. The names of the properties used in this class are the same as the
names in the JSON response.

Now, the Request class needs some modifications to return the parsed result. It also
receives only the zipcode of the city instead of the complete URL so that it becomes
more readable. For now, the static URL is declared in a companion object.

Companion objects
Kotlin allows declaring objects to define static behaviors. In Kotlin, we
cannot create static properties or functions, but we need to rely on
objects. However, these objects make some well-known patterns such as
Singleton very easy to implement.

If we need some static properties, constants or functions in a class, we
can use a companion object. This object is shared among all instances
of the class, the same as a static field or method would do in Java. Use
the reserved word const for your compile-time constants. They are more
efficient and friendly to use from Java code.

Check the resulting code:

25https://github.com/google/gson

see more please visit: https://homeofbook.com

https://github.com/google/gson
https://github.com/google/gson

10 Parsing data 45

data/ForecastRequest.kt

1 class ForecastRequest(private val zipCode: String) {

2

3 companion object {

4 private const val APP_ID = "15646a06818f61f7b8d7823ca833e1ce"

5 private const val URL = "http://api.openweathermap.org/data/2.5/" +

6 "forecast/daily?mode=json&units=metric&cnt=7"

7 private const val COMPLETE_URL = "$URL&APPID=$APP_ID&zip="

8 }

9

10 fun execute(): ForecastResult {

11 val forecastJsonStr = URL(COMPLETE_URL + zipCode).readText()

12 return Gson().fromJson(forecastJsonStr, ForecastResult::class.java)

13 }

14 }

Remember you need to add the Gson library to build.gradle dependencies:

app/build.gradle

1 compile "com.google.code.gson:gson:2.8.1"

10.2 Shaping the domain layer

Now let’s create a new package representing the domain layer. It contains some
Commands in charge of performing the use cases of the app.

Firstly, a definition of a Command is required. There is a generic declaration in the
following example. We will talk about this topic in next chapters.

domain/commands/Command.kt

1 public interface Command<out T> {

2 fun execute(): T

3 }

see more please visit: https://homeofbook.com

10 Parsing data 46

These commands execute an operation and return an object of the class specified
in its generic type. Remember that every function in Kotlin returns a value. By
default, if nothing is specified, it returns an object of the Unit class. So if we want
our Command to return nothing, we can specify Unit as its type.

Interfaces in Kotlin are more potent than Java (before Java 8) because they can
contain code. However, for now, we do not need that feature.

The first command needs to request the forecast to the API and convert it to domain
classes. This is the definition of the domain classes:

domain/model/DomainClasses.kt

1 data class ForecastList(val city: String, val country: String,

2 val dailyForecast:List<Forecast>)

3

4 data class Forecast(val date: String, val description: String, val high: Int,

5 val low: Int)

These classes will probably need to be reviewed in the future when we add more
features. For now, the data they keep is enough.

Classes must be mapped from the data to the domain model, so the next task will be
to create a DataMapper:

domain/mappers/ForecastDataMapper.kt

1 class ForecastDataMapper {

2

3 fun convertFromDataModel(forecast: ForecastResult): ForecastList =

4 ForecastList(forecast.city.name, forecast.city.country,

5 convertForecastListToDomain(forecast.list))

6

7 private fun convertForecastListToDomain(list: List<Forecast>)

8 : List<ModelForecast> {

9 return list.mapIndexed { i, forecast ->

10 val dt = Calendar.getInstance().timeInMillis +

11 TimeUnit.DAYS.toMillis(i.toLong())

12 convertForecastItemToDomain(forecast.copy(dt = dt))

13 }

14 }

see more please visit: https://homeofbook.com

10 Parsing data 47

15

16 private fun convertForecastItemToDomain(forecast: Forecast): ModelForecast {

17 return ModelForecast(convertDate(forecast.dt),

18 forecast.weather[0].description, forecast.temp.max.toInt(),

19 forecast.temp.min.toInt())

20 }

21

22 private fun convertDate(date: Long): String {

23 val df = DateFormat.getDateInstance(DateFormat.MEDIUM, Locale.getDefault())

24 return df.format(date)

25 }

26 }

As we are using two classes with the same name, give a specific name to one of them
so that we can avoid writing the complete package:

1 import com.antonioleiva.weatherapp.domain.model.Forecast as ModelForecast

Another interesting point about this code is the way to convert the forecast list from
the data to the domain model:

1 return list.mapIndexed { i, forecast -> ... }

We can loop over the collection that easily and return a new list with the converted
items. Kotlin provides a good set of functional operations over lists, which apply
an operation for all the items in a list and transform them in any way. Collection
operations are one of the most powerful features in Kotlin for developers used to Java
7. We shall take a look at all the different transformations very soon. It is important
to know they exist because it makes it easier to find places where these functions can
save much time and boilerplate.

You may have noticed too that I am not using the date, but generating a new one.
That is because the request returns a date that is difficult to convert correctly to
current date while not having issues with timezone. As we know that the first day
we receive is today, we can iterate and build the proper dates this way.

And now, everything is ready to write the command:

see more please visit: https://homeofbook.com

10 Parsing data 48

domain/commands/RequestForecastCommand.kt

1 class RequestForecastCommand(private val zipCode: String) :

2 Command<ForecastList> {

3 override fun execute(): ForecastList {

4 val forecastRequest = ForecastRequest(zipCode)

5 return ForecastDataMapper().convertFromDataModel(

6 forecastRequest.execute())

7 }

8 }

10.3 Drawing the data in the UI

MainActivity code changes a little, because nowwe have real data to fill the adapter.
The asynchronous call needs to be rewritten:

ui/activities/MainActivity.kt

1 doAsync() {

2 val result = RequestForecastCommand("94043").execute()

3 uiThread {

4 forecastList.adapter = ForecastListAdapter(result)

5 }

6 }

The adapter requires some modifications too:

ui/adapters/ForecastListAdapter.kt

1 class ForecastListAdapter(private val weekForecast: ForecastList) :

2 RecyclerView.Adapter<ForecastListAdapter.ViewHolder>() {

3

4 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):

5 ViewHolder? {

6 return ViewHolder(TextView(parent.getContext()))

7 }

8

9 override fun onBindViewHolder(holder: ViewHolder,

10 position: Int) {

see more please visit: https://homeofbook.com

10 Parsing data 49

11 with(weekForecast.dailyForecast[position]) {

12 holder.textView.text = "$date - $description - $high/$low"

13 }

14 }

15

16 override fun getItemCount(): Int = weekForecast.dailyForecast.size

17

18 class ViewHolder(val textView: TextView) : RecyclerView.ViewHolder(textView)

19 }

with function
with is a useful function included in the standard Kotlin library. It receives
an object and an extension function as parameters and makes the object
execute the function. That way, all the code that we define inside the
brackets acts as an extension function for the object provided in the first
parameter, and we can use all its public functions and properties, as well
as this. The with function is helpful to simplify code when we do several
operations over the same object.

There is some new code in this chapter, so feel free to check it out on the repository26.

26https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-10

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-10
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-10

11 Operator overloading
Kotlin has a fixed number of symbolic operators we can use in any class. These
symbols map to a function, which is the one that provides the logic that the operator
uses. Overloading these operators may increment the readability and simplicity of
your code.

To notify the compiler that you want to overload an operator, you must annotate the
functions with the operator modifier.

11.1 Operators tables

Here you can see a set of tables that include an operator and its corresponding
function. A function with that name must be implemented to enable the possibility
of using the operator in a specific class.

Unary operations

+a a.unaryPlus()
-a a.unaryMinus()
!a a.not()
a++ a.inc()
a– a.dec()

Binary operations

see more please visit: https://homeofbook.com

11 Operator overloading 51

a + b a.plus(b)
a - b a.minus(b)
a * b a.times(b)
a / b a.div(b)
a % b a.mod(b)
a..b a.rangeTo(b)
a in b b.contains(a)
a !in b !b.contains(a)
a += b a.plusAssign(b)
a -= b a.minusAssign(b)
a *= b a.timesAssign(b)
a /= b a.divAssign(b)
a %= b a.modAssign(b)

Array-like operations

a[i] a.get(i)
a[i, j] a.get(i, j)
a[i_1, …, i_n] a.get(i_1, …, i_n)
a[i] = b a.set(i, b)
a[i, j] = b a.set(i, j, b)
a[i_1, …, i_n] = b a.set(i_1, …, i_n, b)

Equals operation

a == b a?.equals(b) ?: b === null
a != b !(a?.equals(b) ?: b === null)

The equals operations are a bit different, because they use a more complex trans-
lation to make a proper equals checking, and because they expect an exact function
specification and not just a specific name. The function must be implemented exactly
like this:

1 operator fun equals(other: Any?): Boolean

Operators === and !== do identity checks (they are == and != in Java respectively)
and cannot be overloaded.

see more please visit: https://homeofbook.com

11 Operator overloading 52

Function invocation

a(i) a.invoke(i)
a(i, j) a.invoke(i, j)
a(i_1, …, i_n) a.invoke(i_1, …, i_n)

11.2 An example

As you can imagine, Kotlin lists have the array-like operations implemented in the
standard library, so we can access the items of the list the same way we would do
in Java arrays. But it goes beyond: in mutable lists, you can also assign a value to a
position by using the same operator:

1 val x = myList[2]

2 myList[2] = 4

If you remember, we have a data class called ForecastList, which consists of a list
with some extra info. It would be interesting to access its items directly instead of
having to request its internal list to get an item. On an unrelated note, I am also going
to implement a size property, which simplifies the current adapter a little more:

domain/model/DomainClasses.kt

1 data class ForecastList(val city: String, val country: String,

2 private val dailyForecast: List<Forecast>) {

3

4 val size: Int

5 get() = dailyForecast.size

6

7 operator fun get(position: Int): Forecast = dailyForecast[position]

8 }

It makes our onBindViewHolder a bit simpler:

see more please visit: https://homeofbook.com

11 Operator overloading 53

ui/adapters/ForecastListAdapter.kt

1 override fun onBindViewHolder(holder: ViewHolder, position: Int) {

2 with(weekForecast[position]) {

3 holder.textView.text = "$date - $description - $high/$low"

4 }

5 }

As well as the getItemCount() function:

ui/adapters/ForecastListAdapter.kt

1 override fun getItemCount(): Int = weekForecast.size

11.3 Operators in extension functions

Apart from using extension functions for our classes, we can also extend existing
classes to provide new operations to third-party libraries. For instance, we could
access to ViewGroup views the same way we do with lists:

1 operator fun ViewGroup.get(position: Int): View

2 = getChildAt(position)

Now it is really simple to get a view from a ViewGroup by its position:

1 val container: ViewGroup = find(R.id.container)

2 val view = container[2]

Take a look at the branch for this chapter27, and then you can go on with the next
one.

27https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-11

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-11
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-11

12 Making the forecast list
clickable
Current items layout needs some work to be ready for a real app. The first thing is
to create a proper XML that can fit our basic needs. We want to show an icon, date,
description and high and low temperatures. So let’s create a layout called item_-

forecast.xml:

layout/item_forecast.xml

1 <?xml version="1.0" encoding="utf-8"?>

2 <LinearLayout

3 xmlns:android="http://schemas.android.com/apk/res/android"

4 xmlns:tools="http://schemas.android.com/tools"

5 android:layout_width="match_parent"

6 android:layout_height="match_parent"

7 android:padding="@dimen/spacing_xlarge"

8 android:background="?attr/selectableItemBackground"

9 android:gravity="center_vertical"

10 android:orientation="horizontal">

11

12 <ImageView

13 android:id="@+id/icon"

14 android:layout_width="48dp"

15 android:layout_height="48dp"

16 tools:src="@mipmap/ic_launcher"/>

17

18 <LinearLayout

19 android:layout_width="0dp"

20 android:layout_height="wrap_content"

21 android:layout_weight="1"

22 android:layout_marginLeft="@dimen/spacing_xlarge"

23 android:layout_marginRight="@dimen/spacing_xlarge"

24 android:orientation="vertical">

25

26 <TextView

see more please visit: https://homeofbook.com

12 Making the forecast list clickable 55

27 android:id="@+id/date"

28 android:layout_width="match_parent"

29 android:layout_height="wrap_content"

30 android:textAppearance="@style/TextAppearance.AppCompat.Medium"

31 tools:text="May 14, 2015"/>

32

33 <TextView

34 android:id="@+id/description"

35 android:layout_width="match_parent"

36 android:layout_height="wrap_content"

37 android:textAppearance="@style/TextAppearance.AppCompat.Caption"

38 tools:text="Light Rain"/>

39

40 </LinearLayout>

41

42 <LinearLayout

43 android:layout_width="wrap_content"

44 android:layout_height="wrap_content"

45 android:gravity="center_horizontal"

46 android:orientation="vertical">

47

48 <TextView

49 android:id="@+id/maxTemperature"

50 android:layout_width="wrap_content"

51 android:layout_height="wrap_content"

52 android:textAppearance="@style/TextAppearance.AppCompat.Medium"

53 tools:text="30"/>

54

55 <TextView

56 android:id="@+id/minTemperature"

57 android:layout_width="wrap_content"

58 android:layout_height="wrap_content"

59 android:textAppearance="@style/TextAppearance.AppCompat.Caption"

60 tools:text="15"/>

61

62 </LinearLayout>

63

64 </LinearLayout>

The domain model and data mapper must generate the complete icon url, so that we
can load it:

see more please visit: https://homeofbook.com

12 Making the forecast list clickable 56

model/DomainClasses.kt

1 data class Forecast(val date: String, val description: String,

2 val high: Int, val low: Int, val iconUrl: String)

In ForecastDataMapper:

domain/mappers/ForecastDataMapper.kt

1 private fun convertForecastItemToDomain(forecast: Forecast): ModelForecast {

2 return ModelForecast(convertDate(forecast.dt),

3 forecast.weather[0].description, forecast.temp.max.toInt(),

4 forecast.temp.min.toInt(), generateIconUrl(forecast.weather[0].icon))

5 }

6

7 private fun generateIconUrl(iconCode: String): String

8 = "http://openweathermap.org/img/w/$iconCode.png"

The icon code we got from the first request is used to compose the complete URL
for the icon image. The simplest way to load an image is by making use of an image
loader library. Picasso28 is an excellent option. You must add it to build.gradle

dependencies:

app/build.gradle

1 compile "com.squareup.picasso:picasso:2.5.2"

The adapter needs a big rework too. A click listener will be necessary, so let’s define
it:

28http://square.github.io/picasso/

see more please visit: https://homeofbook.com

http://square.github.io/picasso/
http://square.github.io/picasso/

12 Making the forecast list clickable 57

ui/adapters/ForecastListAdapter.kt

1 interface OnItemClickListener {

2 operator fun invoke(forecast: Forecast)

3 }

If you remember from the last lesson, you can omit the invokemethod when calling
it. So let’s use it as a way of simplification. The listener can be called in two ways:

1 itemClick.invoke(forecast)

2 itemClick(forecast)

The ViewHolder will now be responsible of binding the forecast to the new view:

ui/adapters/ForecastListAdapter.kt

1 class ViewHolder(view: View, private val itemClick: OnItemClickListener)

2 : RecyclerView.ViewHolder(view) {

3

4 private val iconView = view.find<ImageView>(R.id.icon)

5 private val dateView = view.find<TextView>(R.id.date)

6 private val descriptionView =

7 view.find<TextView>(R.id.description)

8 private val maxTemperatureView =

9 view.find<TextView>(R.id.maxTemperature)

10 private val minTemperatureView =

11 view.find<TextView>(R.id.minTemperature)

12

13 fun bindForecast(forecast: Forecast) {

14 with(forecast) {

15 Picasso.with(itemView.ctx).load(iconUrl).into(iconView)

16 dateView.text = date

17 descriptionView.text = description

18 maxTemperatureView.text = "$high"

19 minTemperatureView.text = "$low"

20 itemView.setOnClickListener { itemClick(this) }

21 }

22 }

23 }

The constructor of the adapter now receives the itemClick. The methods for creation
and binding are simpler:

see more please visit: https://homeofbook.com

12 Making the forecast list clickable 58

ui/adapters/ForecastListAdapter.kt

1 public class ForecastListAdapter(private val weekForecast: ForecastList,

2 private val itemClick: ForecastListAdapter.OnItemClickListener) :

3 RecyclerView.Adapter<ForecastListAdapter.ViewHolder>() {

4

5 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int):

6 ViewHolder {

7 val view = LayoutInflater.from(parent.ctx)

8 .inflate(R.layout.item_forecast, parent, false)

9

10 return ViewHolder(view, itemClick)

11 }

12

13 override fun onBindViewHolder(holder: ViewHolder, position: Int) {

14 holder.bindForecast(weekForecast[position])

15 }

16 ...

17 }

If you use this code, parent.ctx will not compile. Anko provides many extension
functions to make Android coding simpler. It, for instance, includes a ctx property
for activities and fragments, among others, which returns the context, but it lacks
the same property for views. So we are going to create a new file called ViewExten-

sions.kt inside ui.utils, and add this extension property:

1 val View.ctx: Context

2 get() = context

From now on, any view can make use of it. It is not necessary at all, because you
can use context synthetic property, but I think it gives some consistency if we are
planning to use ctx in the other classes. Besides, it is another example of how to use
extension properties.

Finally, the MainActivity call to setAdapter results into this:

see more please visit: https://homeofbook.com

12 Making the forecast list clickable 59

ui/activities/MainActivity.kt

1 forecastList.adapter = ForecastListAdapter(result,

2 object : ForecastListAdapter.OnItemClickListener{

3 override fun invoke(forecast: Forecast) {

4 toast(forecast.date)

5 }

6 })

As you can see, to implement an anonymous class we, in fact, create an object that
implements the interface we created. That is because we are not making use of the
power of functional programming, but you will learn how to convert this code into
something cleaner in the next chapter.

Try the new changes from the repository29.

29https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-12

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-12
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-12

13 Lambdas
A lambda expression is a simple way to define an anonymous function. Lambdas
are very useful because they prevent us from having to write the specification of the
function in an abstract class or interface, and then the implementation of the class.

In Kotlin, lambdas are first class citizens, which means that a function behaves as
a type: it can be passed as an argument to another function, can be returned by a
function, saved into a variable or a property, etc.

13.1 Simplifying setOnClickListener()

Let’s see how this works using a typical example in Android: the click listenermethod
from a View. If we want to implement a click listener behavior in Java, we first need
to write the OnClickListener interface:

1 public interface OnClickListener {

2 void onClick(View v);

3 }

And then we write an anonymous class that implements this interface:

1 view.setOnClickListener(new OnClickListener() {

2 @Override

3 public void onClick(View v) {

4 Toast.makeText(v.getContext(), "Click", Toast.LENGTH_SHORT).show();

5 }

6 });

This would be the transformation of the code into Kotlin (using toast function from
Anko):

see more please visit: https://homeofbook.com

13 Lambdas 61

1 view.setOnClickListener(object : OnClickListener {

2 override fun onClick(v: View) {

3 toast("Click")

4 }

5 })

Luckily, Kotlin allows some optimizations over Java libraries, and lambdas can
substitute any function that receives an interface with a single function. It works
as if we had defined setOnclickListener() like this:

1 fun setOnClickListener(listener: (View) -> Unit)

To define a lambda expression, specify the function input arguments to the left of
the arrow (surrounded by parentheses), and the return type to the right. In this case,
we get a View and return Unit (nothing). So with this in mind, we can simplify the
previous code a little:

1 view.setOnClickListener({ view -> toast("Click")})

Nice difference! While defining a function, we must use braces and specify the
argument values to the left of the arrow and the body of the function to the right.
We can even get rid of the left part if the input values are not used:

1 view.setOnClickListener({ toast("Click") })

If the last argument of a function is also a function, we can move it out of the
parentheses:

1 view.setOnClickListener() { toast("Click") }

And, finally, if the function is the only parameter, we can get rid of the parentheses:

1 view.setOnClickListener { toast("Click") }

More than five times smaller than the original code in Java, and much easier to
understand what is doing.

see more please visit: https://homeofbook.com

13 Lambdas 62

13.2 Click listener for ForecastListAdapter

In the previous chapter, I wrote the click listener the hard way on purpose to have
a good context to develop this one. But now it is time to put what you learnt into
practice. We are removing the listener interface from the ForecastListAdapter and
using a lambda instead:

ui/adapters/ForecastListAdapter.kt

1 public class ForecastListAdapter(private val weekForecast: ForecastList,

2 private val itemClick: (Forecast) -> Unit)

The function will receive a forecast and return nothing. The same change can be
done to the ViewHolder:

ui/adapters/ForecastListAdapter.kt

1 class ViewHolder(view: View, private val itemClick: (Forecast) -> Unit)

The rest of the code remains unmodified. Just a last change to MainActivity:

ui/activities/MainActivity.kt

1 val adapter = ForecastListAdapter(result) { forecast -> toast(forecast.date) }

We can simplify the last line even more. In lambdas with only one argument, we
can make use of the it reference, which prevents us from defining the left part of the
function specifically. So we can do:

1 val adapter = ForecastListAdapter(result) { toast(it.date) }

13.3 Extending the language

Thanks to these transformations, we can create our builders and code blocks. We
have already been using some interesting functions such as with. Though the one
included in the standard library is a little more complex, a simpler implementation
would be:

see more please visit: https://homeofbook.com

13 Lambdas 63

1 inline fun <T> with(t: T, body: T.() -> Unit) { t.body() }

This function gets an object of type T and a lambda that behaves as an extension
function. The implementation takes the object and lets it execute the function. As
the second parameter of the function is another function, it can be brought out of the
parentheses, so we can create a block of code where we can use this and the public
properties and functions of the object directly:

1 with(forecast) {

2 Picasso.with(itemView.ctx).load(iconUrl).into(iconView)

3 dateView.text = date

4 descriptionView.text = description

5 maxTemperatureView.text = "$high"

6 minTemperatureView.text = "$low"

7 itemView.setOnClickListener { itemClick(this) }

8 }

Inline functions
Inline functions are a bit different from regular functions. An inline
function is substituted by its code during compilation, instead of doing
the real call to a function. That reduces memory allocations and runtime
overhead in some situations. For instance, if we have a function as an
argument, a regular function internally creates an object that contains
that function. On the other hand, inline functions substitute the code of
the function in the place where it is called, so it does not require an internal
object for that.

Another example: we could create blocks of code that only run if the version is
Lollipop or newer:

see more please visit: https://homeofbook.com

13 Lambdas 64

1 inline fun supportsLollipop(code: () -> Unit) {

2 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {

3 code()

4 }

5 }

The body of the function checks the version and executes the code if it meets the
requirements. Now we could do:

1 supportsLollipop {

2 window.setStatusBarColor(Color.BLACK)

3 }

For instance, Anko is also based on this idea to implement the DSL for Android
layouts. You can also check an example from Kotlin reference, a showcase of a DSL
to generate HTML30 from code.

The changes from this chapter are in its corresponding branch31.

30http://kotlinlang.org/docs/reference/type-safe-builders.html
31https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-13

see more please visit: https://homeofbook.com

http://kotlinlang.org/docs/reference/type-safe-builders.html
http://kotlinlang.org/docs/reference/type-safe-builders.html
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-13
http://kotlinlang.org/docs/reference/type-safe-builders.html
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-13

14 Visibility Modifiers
Modifiers are a bit different in Kotlin from how we use them in Java. The default
modifier in this language is public, which saves a lot of time and characters. Here it
is the long explanation: how do visibility modifiers work in Kotlin?

14.1 Modifiers

private

The private modifier is the most restrictive we can use. It indicates it is visible in
its file. So if we declare a class as private, we are not able to use it outside the file
where it was defined.

On the other hand, if we use private inside a class, the access is restricted to that
class. Even classes that extend it cannot use it.

So first level classes, objects, interfaces… (known as package members) declared as
private are only visible inside the file where they are declared, while everything
defined inside a class or interface is only visible by that class or interface.

protected

This modifier only applies to members of a class or an interface. A package member
cannot be protected. Inside a member, it works the same way as in Java: it can be
used by the member itself and the members that extend it (for instance, a class and
its subclasses).

internal

An internal member is visible inside the whole module if it is a package member. If it
is a member of another scope, it depends on the visibility of the scope. For instance, if

see more please visit: https://homeofbook.com

14 Visibility Modifiers 66

we write a private class, the access to an internal function is limited to the visibility
of the class.

We can use internal classes from any other class in the same module, but not from
another module.

What is a module?
According to Jetbrains definition, a module is a discrete unit of func-
tionality which you can compile, run, test and debug independently. It
refers to the Android Studio modules we can create to split our project
into different blocks. In Eclipse, these modules would refer to the projects
inside a workspace.

public

As you may guess, this is the less restrictive modifier. ** It is the default modifier**,
and a member declared as public is visible anywhere, only restricted by its scope. A
public member defined in a private class will not be visible outside the scope where
the class is visible.

14.2 Constructors

By default, all constructors are public, whichmeans they can be used from any scope
where their class is visible. If we want to restrict the visibility of a constructor, we
can apply modifiers to it with this specific syntax:

1 class C private constructor(a: Int) { ... }

14.3 Reviewing our code

We already made use of the public default modifier, and latest versions of the Kotlin
plugin also detect when an argument can be private. For instance, in RequestFore-

castCommand, we made the zipCode property private.

see more please visit: https://homeofbook.com

14 Visibility Modifiers 67

1 class RequestForecastCommand(private val zipCode: String)

Besides, in Kotlin we do not need to specify the return type of a function if the
compiler can infer it. An example of how we can get rid of the returning types:

1 data class ForecastList(...) {

2 operator fun get(position: Int) = dailyForecast[position]

3 }

The typical situations where we can get rid of the return type are when we assign
the value to a function or a property using equals (=) instead of writing a code block.

The rest of the modifications are pretty straightforward. You can review them in the
repository32.

32https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-14

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-14
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-14
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-14

15 Kotlin Android Extensions
Kotlin Android Extensions is another plugin that the Kotlin team has developed
to make Android development simpler. The plugin automatically creates a set of
properties that give direct access to all the views in the XML. This way we do not
need to explicitly find all the views in the layout before starting using them.

The names of the properties are taken from the ids of the views, so wemust be careful
when choosing those names because they now become a relevant part of our base
code. The plugin also infers the type of these properties from the XML, so there is no
need to do any extra castings.

Kotlin Android Extensions is that it does not require adding libraries to our project.
The plugin generates the code it needs to work only when it is required.

How does it work under the hood? These properties delegate to functions that request
the view, and a caching function that prevents from doing a findViewById every time
a property is used. Be aware that this caching mechanism only works if the receiver
is an Activity or a Fragment. It skips the cache if it is inside an extension function
because the plugin is not able to add the necessary code.

15.1 How to use Kotlin Android Extensions

Let’s see how easy it is. Though the plugin is part of the regular one (it does not
require to install a new one), if you want to use it you have to add an extra apply in
the Android module:

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 69

app/build.gradle

1 apply plugin: 'com.android.application'

2 apply plugin: 'kotlin-android'

3 apply plugin: 'kotlin-android-extensions'

If you remember, we already did that at the beginning of the book.

Recovering views from the XML

From this moment, recovering a view is as easy as using the view id you defined
in the XML directly into your activity. Imagine you have an XML like this one:

1 <FrameLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent">

5

6 <TextView

7 android:id="@+id/welcomeMessage"

8 android:layout_width="wrap_content"

9 android:layout_height="wrap_content"

10 android:layout_gravity="center"

11 android:text="Hello World!"/>

12

13 </FrameLayout>

As you can see, the TextView has welcomeMessage id. In the MainActivity you now
could write:

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 70

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3 setContentView(R.layout.activity_main)

4

5 welcomeMessage.text = "Hello Kotlin!"

6 }

To use it, you require a special import (the one I write below), but the IDE can write
the import for you:

1 import kotlinx.android.synthetic.main.activity_main.*

The new Android Studio activity templates now include nested layouts, by using the
include tag. It is important to know that you must add a synthetic import for each
XML you use:

1 import kotlinx.android.synthetic.main.activity_main.*

2 import kotlinx.android.synthetic.main.content_main.*

As I mentioned above, the generated code includes a view cache. So if you ask for the
view again, this does not require another findViewById. Let’s see what it is doing
behind the scenes.

The magic behind Kotlin Android Extensions

When you start working with Kotlin, it is helpful to understand the bytecode
generatedwhen you use a new feature. This practice helps you understand the hidden
costs of your decisions.

There is an action below Tools –> Kotlin, called Show Kotlin Bytecode . If you click
here, you can see the bytecode generated when the class file you opened is compiled.

The bytecode is not helpful for most humans, but there is another option here:
Decompile.

This section shows a Java representation of the bytecode generated by Kotlin. That
way, you can compare the Java equivalent to the Kotlin code you wrote.

I am going to use this on the previous sample activity, and see the code generated by
Kotlin Android Extensions.

The interesting part is this one:

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 71

1 ...

2 public View _$_findCachedViewById(int var1) {

3 if(this._$_findViewCache == null) {

4 this._$_findViewCache = new HashMap();

5 }

6

7 View var2 = (View)this._$_findViewCache.get(Integer.valueOf(var1));

8 if(var2 == null) {

9 var2 = this.findViewById(var1);

10 this._$_findViewCache.put(Integer.valueOf(var1), var2);

11 }

12

13 return var2;

14 }

15

16 public void _$_clearFindViewByIdCache() {

17 if(this._$_findViewCache != null) {

18 this._$_findViewCache.clear();

19 }

20

21 }

Here it is the view cache we were talking about. When a view is requested, it tries to
find it in the cache. If it is not there, it uses findViewById and adds it to the cache.
Pretty simple indeed.

Besides, it adds a function to clear the cache: clearFindViewByIdCache(). You can
use it for instance if you rebuild the view, as the old views are not valid anymore.
Then this line:

1 welcomeMessage.text = "Hello Kotlin!"

is converted into this:

1 ((TextView)this._$_findCachedViewById(id.welcomeMessage))

2 .setText((CharSequence)"Hello Kotlin!");

So the properties are not real, the plugin is not generating a property per view. It
replaces the code during compilation to access the view cache, cast it to the proper
type and call the method.

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 72

Kotlin Android Extensions on fragments

Fragments can also use this plugin. The problem with fragments is that the view
can be recreated while the fragment instance keeps alive. What happens then? This
means that the views inside the cache would no longer be valid.

Let’s see the code it generates if we use a fragment. I am creating this simple
fragment, that uses the same XML I wrote above:

1 class Fragment : Fragment() {

2

3 override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?,

4 savedInstanceState: Bundle?): View? {

5 return inflater.inflate(R.layout.fragment, container, false)

6 }

7

8 override fun onViewCreated(view: View?, savedInstanceState: Bundle?) {

9 super.onViewCreated(view, savedInstanceState)

10 welcomeMessage.text = "Hello Kotlin!"

11 }

12 }

In onViewCreated, I change the text of the TextView. What about the generated
bytecode? Everything is the same as in the activity, with this slight difference:

1 // $FF: synthetic method

2 public void onDestroyView() {

3 super.onDestroyView();

4 this._$_clearFindViewByIdCache();

5 }

When the view is destroyed, this method calls clearFindViewByIdCache, so we are
safe here.

Kotlin Android extensions on a Custom View

It will work very similarly on a custom view. Imagine we have a view like this:

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 73

1 <merge xmlns:android="http://schemas.android.com/apk/res/android"

2 android:orientation="vertical"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent">

5

6 <ImageView

7 android:id="@+id/itemImage"

8 android:layout_width="match_parent"

9 android:layout_height="200dp"/>

10

11 <TextView

12 android:id="@+id/itemTitle"

13 android:layout_width="match_parent"

14 android:layout_height="wrap_content"/>

15

16 </merge>

I am creating a straightforward custom view and generating the constructors with
the new intent that uses @JvmOverloads annotation. When a class extends a View

or a subclass of it, you can press Alt + Enter, where you find the option to create a
constructor like this:

1 class CustomView @JvmOverloads constructor(

2 context: Context, attrs: AttributeSet? = null, defStyleAttr: Int = 0

3) : LinearLayout(context, attrs, defStyleAttr) {

4

5 init {

6 LayoutInflater.from(context).inflate(R.layout.view_custom, this, true)

7 itemTitle.text = "Hello Kotlin!"

8 }

9 }

At the end of the book, I will tell you more about these annotations and how to use
them to improve the interoperability with Java code.

In the example above, I am modifying the text of itemTitle. The generated code
should be trying to find the view from the cache. It does not make sense to copy all
the same decompiled code again, but you can see this in the line that modifies the
text:

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 74

1 ((TextView)this._$_findCachedViewById(id.itemTitle))

2 .setText((CharSequence)"Hello Kotlin!");

We are only calling findViewById first time in custom views too.

Recovering views from another view

The last alternative Kotlin Android Extensions provide is to use the properties
directly from another view. I am using a layout very similar to the one in the previous
section. Imagine that this is inflated in an adapter for instance. You can also access
the subviews directly, just by using this plugin:

1 val itemView = ...

2 itemView.itemImage.setImageResource(R.drawable.image)

3 itemView.itemTitle.text = "My Text"

The plugin also helps you fill the import. Check that this one is different:

1 import kotlinx.android.synthetic.main.view_item.view.*

There are a couple of things you need to know about this:

• In compilation time, you can reference any views from any other views. This
means you could be referencing a view that is not a direct child of that one.
Of course, this crashes in execution time when it tries to recover a view that
does not exist.

• In this case, views are not cached, as opposed to Activities and Fragments.

Why is this? Here the plugin does not have a place to generate the required code for
the cache. If you again review the code that is generated by the plugin when calling
a property from a view, you will see this:

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 75

1 ((TextView)itemView.findViewById(id.itemTitle)).setText((CharSequence)"My Text");

As you can see, there is no call to a cache. Be careful if your view is complex and
you are using this in an adapter. It might impact the performance.

Alternatively, if you are using Kotlin 1.1.4 or newer, you have another option.

15.2 Kotlin Android Extensions in 1.1.4

From this version of Kotlin, the Android Extensions have incorporated some new
exciting features: caches in any classes, and a new annotation called @Parcelize.
There is also a way to customize the generated cache.

At the moment of writing these lines, these features are still experimental, so you
need to enable them by adding this to the build.gradle:

1 androidExtensions {

2 experimental = true

3 }

This experimental flag means that the API is not final, so it can change in the future.

View cache on a ViewHolder (or any custom classes)

You can now build a cache on any classes in a simple way. The only requisite is that
your class implements the LayoutContainer interface. This interface provides the
view that the plugin uses to find the subviews. Imagine we have a ViewHolder that
is holding a view with the layout described in the previous examples. The required
code is:

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 76

1 class ViewHolder(override val containerView: View)

2 : RecyclerView.ViewHolder(containerView), LayoutContainer {

3

4 fun bind(title: String) {

5 itemTitle.text = "Hello Kotlin!"

6 }

7 }

The containerView is the one that we are overriding from the LayoutContainer

interface, and that is all you need. From now on, you can access the views directly,
no need of prepending itemView to get access to the subviews.

Again, if you check the code generation, you will see that it is taking the view from
the cache:

1 ((TextView)this._$_findCachedViewById(id.itemTitle))

2 .setText((CharSequence)"Hello Kotlin!");

I have used it here on a ViewHolder, but you can see this is generic enough to be used
in any classes.

Kotlin Android Extensions to implement Parcelable

With the new @Parcelize annotation, you can effortlessly implement Parcelable.
Simply write the annotation, and the plugin does all the hard work:

1 @Parcelize

2 class Model(val title: String, val amount: Int) : Parcelable

Then, as you may know, you can add the object to an intent:

1 val intent = Intent(this, DetailActivity::class.java)

2 intent.putExtra(DetailActivity.EXTRA, model)

3 startActivity(intent)

And recover the object from the intent where you need it (in this case, in the target
activity):

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 77

1 val model: Model = intent.getParcelableExtra(EXTRA)

Customize the cache build

The last new feature included in this experimental set is a new annotation called
@ContainerOptions. This one allows you to customize the way the cache is built, or
even prevent a class from creating it.

By default, it uses a Hashmap, as we saw before. This behavior can be changed to use
a SparseArray from the Android framework, which may be more efficient under
certain situations. Finally, if for some reason you want to disable the cache for a
specific class, you also have that option.

Here it is an example of how to change the cache implementation:

1 @ContainerOptions(CacheImplementation.SPARSE_ARRAY)

2 class MainActivity : AppCompatActivity() {

3 ...

4 }

Currently, the existing options are these:

1 public enum class CacheImplementation {

2 SPARSE_ARRAY,

3 HASH_MAP,

4 NO_CACHE;

5

6 ...

7 }

Now you know all the features that the Kotlin Android Extensions plugin provides.
Now, let’s use some of these features in our code.

15.3 Refactoring our code

The modifications we are doing to our sample app to start using Kotlin Android
Extensions are fairly simple.

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 78

Let’s start with MainActivity. We are currently only using a forecast_list view,
which is an instance of a RecyclerView. Let’s clean up this code.

As said before, we use the id to access the views, so I am changing the id of the
RecyclerView so that it does not use underscores, but a more appropriate name for
a Kotlin variable. The XML now looks like this:

layout/activity_main.xml

1 <FrameLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent">

5

6 <android.support.v7.widget.RecyclerView

7 android:id="@+id/forecastList"

8 android:layout_width="match_parent"

9 android:layout_height="match_parent"/>

10

11 </FrameLayout>

And now we can just get rid of the find line. Start writing the id of the view, and the
autocomplete should help you add the import. Otherwise, you will need to add this:

ui/activities/MainActivity.kt

1 import kotlinx.android.synthetic.main.activity_main.*

This is the resulting code:

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 79

ui/activities/MainActivity.kt

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3 setContentView(R.layout.activity_main)

4

5 forecastList.layoutManager = LinearLayoutManager(this)

6 ...

7 }

There is not much improvement because this layout only had one view. But the
ForecastListAdapter can also benefit from the use of this plugin. Here, we can use
the mechanism to bind the properties into a view, which will help us to remove all
the find code inside the ViewHolder.

This is the synthetic import you will need for item_forecast:

ui/adapters/ForecastListAdapter.kt

1 import kotlinx.android.synthetic.main.item_forecast.view.*

Now we can find the views from itemView property inside the ViewHolder. As I
mentioned before, you can use those properties over any other views, but it will
crash if the view does not contain the requested sub-views.

There is no need to declare properties for the views anymore, you can use them
directly:

ui/adapters/ForecastListAdapter.kt

1 class ViewHolder(view: View, val itemClick: (Forecast) -> Unit) :

2 RecyclerView.ViewHolder(view) {

3

4 fun bindForecast(forecast: Forecast) {

5 with(forecast) {

6 Picasso.with(itemView.ctx).load(iconUrl).into(itemView.icon)

7 itemView.date.text = date

8 itemView.description.text = description

9 itemView.maxTemperature.text = "$high"

10 itemView.minTemperature.text = "$low"

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 80

11 itemView.setOnItemClickListener { itemClick(this) }

12 }

13 }

14 }

Our layout is pretty simple, and it will not affect performance. In any case, remember
what we talked in the section above: this is not caching the views, which implies that
each call to the bind function is doing findViewById under the hood for all its views.

To solve it, you can use the new features in Kotlin 1.1.4. First, enable the experimental
flag in the build.gradle:

app/build.gradle

1 androidExtensions {

2 experimental = true

3 }

Now update the ViewHolder. You will not need to access the views through the
itemView anymore, as now the views behave as ViewHolder properties. Check that
the import is different too:

ui/adapters/ForecastListAdapter.kt

1 import kotlinx.android.synthetic.main.item_forecast.*

2

3 class ForecastListAdapter(private val weekForecast: ForecastList,

4 private val itemClick: (Forecast) -> Unit) :

5 RecyclerView.Adapter<ForecastListAdapter.ViewHolder>() {

6

7 ...

8

9 class ViewHolder(override val containerView: View,

10 private val itemClick: (Forecast) -> Unit)

11 : RecyclerView.ViewHolder(containerView), LayoutContainer {

12

13 fun bindForecast(forecast: Forecast) {

14 with(forecast) {

15 Picasso.with(itemView.ctx).load(iconUrl).into(icon)

16 dateText.text = date

see more please visit: https://homeofbook.com

15 Kotlin Android Extensions 81

17 descriptionText.text = description

18 maxTemperature.text = "${high}º"

19 minTemperature.text = "${low}º"

20 itemView.setOnClickListener { itemClick(this) }

21 }

22 }

23 }

24 }

I did a change in the XML too, so that the names of the views are different from the
properties in Forecast. Otherwise you will have issues to refer to them:

layout/item_forecast.xml

1 <TextView

2 android:id="@+id/dateText"

3 android:layout_width="match_parent"

4 android:layout_height="wrap_content"

5 android:textAppearance="@style/TextAppearance.AppCompat.Medium"

6 tools:text="May 14, 2015"/>

7

8 <TextView

9 android:id="@+id/descriptionText"

10 android:layout_width="match_parent"

11 android:layout_height="wrap_content"

12 android:textAppearance="@style/TextAppearance.AppCompat.Caption"

13 tools:text="Light Rain"/>

Our app is now using Kotlin Android Extensions to find the views. Run it and check
that everything is working as expected.

Kotlin Android Extensions plugin helps us reduce some more boilerplate and
minimize the code required to access our views. Check the latest changes in the
repository33.

33https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-15

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-15
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-15
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-15

16 Application Singleton and
Delegated Properties
We are implementing a database soon and if we want to keep our code simple and
our app in independent layers (instead of everything added to our activity), we need
to have easier access to the application context.

16.1 Application Singleton

The simplest way is to create a singleton the way we would do in Java:

ui/App.kt

1 class App : Application() {

2

3 companion object {

4 private var instance: Application? = null

5 fun instance() = instance!!

6 }

7

8 override fun onCreate() {

9 super.onCreate()

10 instance = this

11 }

12 }

Remember you need to add this App class to the AndroidManifest.xml in order to be
used as the application instance:

see more please visit: https://homeofbook.com

16 Application Singleton and Delegated Properties 83

AndroidManifest.xml

1 <application

2 android:allowBackup="true"

3 android:icon="@mipmap/ic_launcher"

4 android:label="@string/app_name"

5 android:theme="@style/AppTheme"

6 android:name=".ui.App">

7 ...

8 </application>

The problem with Android is that we do not have control over many class construc-
tors. For instance, we cannot initialize a non-nullable property, because its valuemust
be declared in the constructor. So we need a nullable variable and then a function
that returns a non-nullable value. We know we always have an App instance, and
that the first code that executes is application onCreate, so we are safe by assuming
instance() function can always return a non-nullable App instance.

However, this solution seems strange. We need to define a property (which already
has a getter and a setter) and then a function to return that property. Do we have
another way to get a similar result? Yes, we can delegate the value of a property to
another class.

16.2 Delegated Properties

There are some typical behaviors wemay need in a property that would be interesting
to be reused, such as lazy values or observable properties. Instead of having to declare
the same code over and over again, Kotlin provides a way to delegate the code that a
property needs to another class. These members are known as delegated properties.

When we use get or set from a property, the delegate calls to its corresponding
getValue and setValue, which can decide if, when and how the value is set or
returned.

The structure of a property delegate is:

see more please visit: https://homeofbook.com

16 Application Singleton and Delegated Properties 84

1 class Delegate<T> {

2 operator fun getValue(thisRef: Any?, property: KProperty<*>): T {

3 return ...

4 }

5

6 operator fun setValue(thisRef: Any?, property: KProperty<*>, value: T) {

7 ...

8 }

9 }

The T is the type of the property that is delegating its behavior. The getValue function
receives a reference to the class and the metadata of the property. The setValue

function also receives the assigned value. If the property is immutable (val), it only
requires the getValue function.

The snippet below is an example of how the property delegate is assigned:

1 class Example {

2 var p: String by Delegate()

3 }

It uses by reserved word to specify the delegation.

16.3 Standard Delegates

You can find a set of delegates included in the Kotlin standard library. These are
the most common circumstances where a delegate may be useful, but we could also
create our own.

Lazy

It takes a lambda that runs after the first call to getValue, so the initialization of the
property is delayed up to that moment. Subsequent calls return the same value. This
delegate is very interesting for things that are not always used or require some other
parts to be ready before this one can be declared. We can save memory and skip the
initialization until the property is required.

see more please visit: https://homeofbook.com

16 Application Singleton and Delegated Properties 85

1 class App : Application() {

2 val database: SQLiteOpenHelper by lazy {

3 MyDatabaseHelper(applicationContext)

4 }

5

6 override fun onCreate() {

7 super.onCreate()

8 val db = database.writableDatabase

9 }

10 }

In this example, the database does not initialize until it is called first time in onCreate.
At that moment, we are sure the application context exists and is ready to be used.
The lazy operation is thread-safe.

You can also use lazy(LazyThreadSafetyMode.NONE) { ... } if you are not worried
about multi-threading and want to get some extra performance.

Observable

This delegate helps us detect changes on any property we need to observe. It executes
the declared lambda expression every time the set function is called. So after the new
value is assigned, we receive the delegated property, the old value, and the new one.

1 class ViewModel(val db: MyDatabase) {

2

3 var myProperty by Delegates.observable("") {

4 _, _, new ->

5 db.saveChanges(this, new)

6 }

7

8 }

This example represents some ViewModel class which is aware of myProperty

changes and saves them to the database every time a new value is assigned.

see more please visit: https://homeofbook.com

16 Application Singleton and Delegated Properties 86

Underscores for unused parameters
Since Kotlin 1.1, you can use underscores to avoid giving a name to a
lambda argument that you are not using. This simplification helps both
the compiler and the reader. The compiler can prevent saving memory for
the ignored input arguments, and the reader does not need to parse which
parameters are being used and discard the ones that are not.

Vetoable

This delegate is similar to observable, with the difference that it runs before the value
is assigned, and lets you decide whether the value must be saved or not. It can be
used to check some conditions before saving a value.

1 var positiveNumber = Delegates.vetoable(0) {

2 _, _, new ->

3 new >= 0

4 }

The former delegate only allows saving the new value if it is a positive number. Inside
lambdas, the latest line represents the return value. You cannot use the return word
because it will not compile.

lateinit

Sometimes we need something else to initialize a property, but we lack the necessary
state available in the constructor, or we are even not able to retrieve it at that point.
This second case happens now and then in Android: in activities, fragments, services
or broadcast receivers for example. However, a non-abstract property needs a value
before the constructor finishes executing.We cannot just wait until wewant to assign
a value to the property. We have at least a couple of options.

The first one is to use a nullable type and set it to null until we have the real value.
With this solution, we then need to check everywhere throughout the code whether
the property is null or not. If we are sure that the property will not be null the first
time we use it, this may make us write some unnecessary code.

see more please visit: https://homeofbook.com

16 Application Singleton and Delegated Properties 87

The second alternative is lateinit, which can be used to identify that the property
should have a non-nullable value, but we are delaying the assignment. If the value is
requested before it is assigned, it will throw an exception that identifies the accessed
property.

lateinit is not exactly a delegate, but a property modifier, and that is why it must
be written before the property.

This modifier is helpful in the App singleton example:

1 class App : Application() {

2

3 companion object {

4 lateinit var instance: App

5 }

6

7 override fun onCreate() {

8 super.onCreate()

9 instance = this

10 }

11 }

lateinit is also indispensable when working with a dependency injector such as
Dagger, and very useful for tests too.

Values from a map

Another way to delegate the values of a property is to get them from a map, using
the name of the property as the key of the map. This delegate lets create an instance
of an object from a dynamic map. If we are using immutable properties, the map
can be immutable too. For mutable properties, the class requires a MutableMap as
constructor parameter instead.

Imagine a configuration class we load from a JSON, and assign those keys and values
to amap.We could create an instance of a class by passing thismap to the constructor:

see more please visit: https://homeofbook.com

16 Application Singleton and Delegated Properties 88

1 class Configuration(map: Map<String, Any?>) {

2 val width: Int by map

3 val height: Int by map

4 val dp: Int by map

5 val deviceName: String by map

6 }

As a reference, here it is how we could create the map that this class would require:

1 val conf = Configuration(mapOf(

2 "width" to 1080,

3 "height" to 720,

4 "dp" to 240,

5 "deviceName" to "mydevice"

6))

16.4 How to create a custom delegate

Let’s say we want, for instance, to create a non-nullable delegate that can be only
assigned once. The second time it is assigned, it will throw an exception.

To define a delegate class, you only need to write a couple of operator functions:
getValue and setValue. They have a very specific set of arguments that look like
this:

ui/utils/DelegatesExt.kt

1 class NotNullSingleValueVar<T> {

2

3 operator fun getValue(thisRef: Any?, property: KProperty<*>): T {

4 return ...

5 }

6

7 operator fun setValue(thisRef: Any?, property: KProperty<*>, value: T) {

8 ...

9 }

10 }

see more please visit: https://homeofbook.com

16 Application Singleton and Delegated Properties 89

This delegate can work with any non-nullable type. It receives a reference of an
object of any type, and use T as the type of the getter and the setter. Now we need to
implement the methods:

• The getter returns a value if it is assigned; otherwise, it throws an exception.
• The setter assigns the value if it is still null; otherwise, it throws an exception.

ui/utils/DelegatesExt.kt
1 class NotNullSingleValueVar<T> {

2

3 private var value: T? = null

4

5 operator fun getValue(thisRef: Any?, property: KProperty<*>): T =

6 value ?: throw IllegalStateException("${property.name} " +

7 "not initialized")

8 }

9

10 operator fun setValue(thisRef: Any?, property: KProperty<*>, value: T) {

11 this.value = if (this.value == null) value

12 else throw IllegalStateException("${property.name} already initialized")

13 }

14 }

Now let’s create an object with a function that provides your new delegate:

ui/utils/DelegatesExt.kt
1 object DelegatesExt {

2 fun <T> notNullSingleValue() = NotNullSingleValueVar<T>()

3 }

This last part is not necessary, but it can help you aggregate all the delegates you
implement.

16.5 Reimplementing the App Singleton

Delegates can help us in this situation. We know that our singleton is not going to be
null, but we cannot use the constructor to assign the property. So we can make use
of a lateinit delegate:

see more please visit: https://homeofbook.com

16 Application Singleton and Delegated Properties 90

ui/App.kt

1 class App : Application() {

2

3 companion object {

4 lateinit var instance: App

5 }

6

7 override fun onCreate() {

8 super.onCreate()

9 instance = this

10 }

11 }

The problemwith this solution is that we could change the value of this instance from
anywhere in the app because a var property is required if we want to use lateinit.
That is easy to solve by using a private set:

1 companion object {

2 lateinit var instance: App

3 private set

4 }

Now, the value of the instance can only be modified inside the App class.

But we will make use of our custom delegate instead:

ui/App.kt

1 companion object {

2 var instance: App by DelegatesExt.notNullSingleValue()

3 }

Though, in this case, lateinit is probably the simplest option, I wanted to show you
how to create a custom property delegate and use it in your code.

Take a look at the specific branch of this chapter34 if you have any doubts.

34https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-16

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-16
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-16

17 Creating an
SQLiteOpenHelper
As you may know, Android uses SQLite as a database management system. SQLite
is a database embedded into the app, and it is lightweight. That is why it is a good
option for mobile apps.

However, the API to work with databases in Android is somewhat raw. You will see
you need to write many SQL sentences and map your objects into ContentValues
or from Cursors. Thankfully, by using a mix of Kotlin and Anko, we are simplifying
this task a lot.

Of course, there are many libraries to work with databases in Android, and all of
them work in Kotlin thanks to its interoperability. However, it is possible you can
avoid using complicated frameworks if the database is simple, as we are going to see
in a minute.

17.1 ManagedSqliteOpenHelper

Anko provides a powerful SqliteOpenHelper which simplifies things a lot. When
we use a regular SqliteOpenHelper, we need to call getReadableDatabase() or
getWritableDatabase(), and then we can perform our queries over the object we
get. After that, we should not forget to call close(). With a ManagedSqliteOpen-

Helper we just do:

1 forecastDbHelper.use {

2 ...

3 }

Inside the lambda, we can use SqliteDatabase functions directly. How does it work?
Take a look at the implementation of Anko functions; you can learn a good deal of
Kotlin from them:

see more please visit: https://homeofbook.com

17 Creating an SQLiteOpenHelper 92

1 public fun <T> use(f: SQLiteDatabase.() -> T): T {

2 try {

3 return openDatabase().f()

4 } finally {

5 closeDatabase()

6 }

7 }

First, use receives a function and uses it as an extension function for SQLiteDatabase.
Thanks to extensions, we can use this inside the braces, and this is referring to the
SQLiteDatabase object. This extension function can return a value, so we could do
something like this:

1 val result = forecastDbHelper.use {

2 val queriedObject = ...

3 queriedObject

4 }

Keep in mind that, inside a function, the last line represents the returned value. As
T does not have any restrictions, we can return any value. Even Unit if we do not
want to return anything.

By using a try-finally, the use function makes sure that the database is closed no
matter the extended function succeeds or crashes.

Besides, we have a lot of other handy extension functions over SqliteDatabase

that we will use later. For now, let’s define the database tables and implement the
SqliteOpenHelper.

17.2 Tables definition

Let’s create a couple of objects that represent our tables. These objects will be helpful
to avoid misspelling table or column names and repetition. We need two tables: one
that saves the info of the city, and the other one the forecast for individual days. This
second table has a foreign key to the first one.

CityForecastTable first provides the name of the table and then the set of columns
it needs: an id (which is the zip code of the city), the name of the city and the country.

see more please visit: https://homeofbook.com

17 Creating an SQLiteOpenHelper 93

data/db/Tables.kt

1 object CityForecastTable {

2 const val NAME = "CityForecast"

3 const val ID = "_id"

4 const val CITY = "city"

5 const val COUNTRY = "country"

6 }

DayForecast has some more info, so it requires the set of columns you can see
below. The last column, cityId, keeps the id of the CityForecastwhere this forecast
belongs.

data/db/Tables.kt

1 object DayForecastTable {

2 const val NAME = "DayForecast"

3 const val ID = "_id"

4 const val DATE = "date"

5 const val DESCRIPTION = "description"

6 const val HIGH = "high"

7 const val LOW = "low"

8 const val ICON_URL = "iconUrl"

9 const val CITY_ID = "cityId"

10 }

17.3 Implementing SqliteOpenHelper

If you remember, Anko is divided into several libraries to be more lightweight.
We already added anko-common, but we also need anko-sqlite if we want to use
database features:

see more please visit: https://homeofbook.com

17 Creating an SQLiteOpenHelper 94

app/build.gradle

1 dependencies {

2 ...

3 compile "org.jetbrains.anko:anko-sqlite:$anko_version"

4 }

Our SqliteOpenHelper will basically manage the creation and upgrade of our
database, and will provide the SqliteDatabase so that we can work with it. The
queries will be extracted to another class:

data/db/ForecastDbHelper.kt

1 class ForecastDbHelper() : ManagedSQLiteOpenHelper(App.instance,

2 ForecastDbHelper.DB_NAME, null, ForecastDbHelper.DB_VERSION) {

3 ...

4 }

We are using the App.instance we created in the previous chapter, as well as a
database name and version. Define these values in the companion object, along with
the helper instance:

data/db/ForecastDbHelper.kt

1 companion object {

2 const val DB_NAME = "forecast.db"

3 const val DB_VERSION = 1

4 val instance by lazy { ForecastDbHelper() }

5 }

The instance property uses a lazy delegate, which means the object is not created
until its first use. That way, if the database is never employed, we avoid creating
unnecessary objects. The regular lazy delegate is blocking in order to prevent the
creation of several instances from different threads. This situation can only happen
if two threads try to access the instance at the same time, which is difficult but it
could happen depending on the type of app you are implementing.

see more please visit: https://homeofbook.com

17 Creating an SQLiteOpenHelper 95

In order to create the database schema, we are required to provide an implementation
of the onCreate function. When no libraries are used, tables creation is done by
writing a raw CREATE TABLE query where we define all the columns and their types.
However, Anko provides a simple extension function that receives the name of the
table and a set of Pair objects that identify the name and the type of the column:

data/db/ForecastDbHelper.kt

1 db.createTable(CityForecastTable.NAME, true,

2 Pair(CityForecastTable.ID, INTEGER + PRIMARY_KEY),

3 Pair(CityForecastTable.CITY, TEXT),

4 Pair(CityForecastTable.COUNTRY, TEXT))

• The first parameter is the name of the table.
• The second parameter, when set to true, checks if the table does not exist
before trying to create it.

• The third parameter is a vararg of Pairs. The vararg type also exists in Java,
and it is a way to pass a variable number of arguments of the same type to a
function. The function then receives an array with the objects.

Column types are using a special Anko class called SqlType, which can be used
together with SqlTypeModifiers, such as PRIMARY_KEY. The + operation is overloaded
the same way we saw in chapter 11. This plus function properly concatenates both
values returning a new special SqlType:

1 fun SqlType.plus(m: SqlTypeModifier) : SqlType {

2 return SqlTypeImpl(name, if (modifier == null) m.toString()

3 else "$modifier $m")

4 }

As you can see, it can also concatenate several modifiers.

Coming back to our code, we can do it better. Kotlin standard library includes a
function called to which, once more, shows the ability of Kotlin to let us model the
language to our needs. It acts as an extension function for the first object and receives
another object as a parameter, returning a Pair object with them.

see more please visit: https://homeofbook.com

17 Creating an SQLiteOpenHelper 96

1 infix fun <A, B> A.to(that: B): Pair<A, B> = Pair(this, that)

Functions with one parameter that use the infix modifier can be used inline, so the
result is quite clean:

1 val pair = object1 to object2

And this, applied to the creation of our tables:

1 db.createTable(CityForecastTable.NAME, true,

2 CityForecastTable.ID to INTEGER + PRIMARY_KEY,

3 CityForecastTable.CITY to TEXT,

4 CityForecastTable.COUNTRY to TEXT)

This is how the complete method looks:

data/db/ForecastDbHelper.kt

1 override fun onCreate(db: SQLiteDatabase) {

2 db.createTable(CityForecastTable.NAME, true,

3 CityForecastTable.ID to INTEGER + PRIMARY_KEY,

4 CityForecastTable.CITY to TEXT,

5 CityForecastTable.COUNTRY to TEXT)

6

7 db.createTable(DayForecastTable.NAME, true,

8 DayForecastTable.ID to INTEGER + PRIMARY_KEY + AUTOINCREMENT,

9 DayForecastTable.DATE to INTEGER,

10 DayForecastTable.DESCRIPTION to TEXT,

11 DayForecastTable.HIGH to INTEGER,

12 DayForecastTable.LOW to INTEGER,

13 DayForecastTable.ICON_URL to TEXT,

14 DayForecastTable.CITY_ID to INTEGER)

15 }

We have a similar function to drop a table. onUpgrade just deletes the tables so
that they are recreated. We are using our database just as a cache, so it is the
easiest and safest way to be sure the tables are rebuilt as expected. If we had
stored persistent data, we would need to improve onUpgrade code by doing the
corresponding migration depending on the database version.

see more please visit: https://homeofbook.com

17 Creating an SQLiteOpenHelper 97

1 override fun onUpgrade(db: SQLiteDatabase, oldVersion: Int, newVersion: Int) {

2 db.dropTable(CityForecastTable.NAME, true)

3 db.dropTable(DayForecastTable.NAME, true)

4 onCreate(db)

5 }

17.4 Dependency injection

Although I am trying not to add much complexity to the code regarding architec-
tures, clean testable code or good practices, I thought it would be a good idea to show
another way to simplify our code using Kotlin. If you want to know a little more
about topics like dependency inversion or injection, you can check my set of articles
about dependency injection in Android using Dagger35. The first article covers a light
explanation of these terms.

To put it simply, if we want to have classes that are independent one from another,
way more testable, and write code that is easy to extend and maintain, we need to
make use of dependency inversion. Instead of instantiating the collaborators inside
the class, we provide them (usually via constructor) and instantiate them somewhere
else. That way, we can substitute them by other objects that, for instance, implement
the same interface, or make use of mocks in tests.

However, now those dependencies must be provided from somewhere, so the
dependency injection consists of providing the collaborators required by the classes.
Developers usually delegate this task to a dependency injector. Dagger36 is probably
the most famous dependency injector for Android. It is, of course, an excellent
alternative when we need some complexity to provide those dependencies.

But a simpler alternative is to make use of default values in constructors. We can
provide the dependency by assigning a default value to constructor arguments, and
then provide a different instance if we need it in other situations. For example, in our
ForecastDbHelper we can provide the context in a smarter way:

35http://antonioleiva.com/dependency-injection-android-dagger-part-1/
36https://google.github.io/dagger/

see more please visit: https://homeofbook.com

http://antonioleiva.com/dependency-injection-android-dagger-part-1/
https://google.github.io/dagger/
http://antonioleiva.com/dependency-injection-android-dagger-part-1/
https://google.github.io/dagger/

17 Creating an SQLiteOpenHelper 98

1 class ForecastDbHelper(ctx: Context = App.instance) :

2 ManagedSQLiteOpenHelper(ctx, ForecastDbHelper.DB_NAME, null,

3 ForecastDbHelper.DB_VERSION) {

4 ...

5 }

Now we have two ways to create this class:

1 val dbHelper1 = ForecastDbHelper() // It will use App.instance

2 val dbHelper2 = ForecastDbHelper(mockedContext) // For tests, for example

I will be using this mechanism here and there, so I did not want to continue without
explaining the motivation. We already have created the tables, so it is time to
start adding and requesting data from them. But before that, I want to talk about
collections and functional operations. Remember to check the repository37 to find
the latest changes.

37https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-17

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-17
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-17

18 Collections and functional
operations
We have been using collections before in this project, but now it is time to show how
powerful they are in combination with functional operations. The good part about
functional programming is that instead of explaining how we do things, we just say
what we want to do. For instance, if we want to filter a list, instead of creating a
list, iterating over the original one and add the items to the new if they satisfy a
condition, we simply use a filter function and specify which filter we want to use.
That way, we can say a lot more using less code.

Although we can use Java collections, Kotlin provides a good set of native interfaces
you will want to use:

• Iterable: The parent class. Any classes that inherit from this interface represent
a sequence of elements we can iterate over.

• MutableIterable: Iterables that support removing items during iteration.
• Collection: This class represents a generic collection of elements. We get
access to functions that return the size of the collection, whether the collection
is empty, contains an item or a set of items. All the methods for this kind of
collections are only meant to request data because collections are immutable.

• MutableCollection: a Collection that supports adding and removing ele-
ments. It provides extra functions such as add, remove or clear among others.

• List: Probably the most popular collection type. It represents a generic ordered
collection of elements. As it is ordered, we can request an item by its position,
using the get function.

• MutableList: a List that supports adding and removing elements.
• Set: an unordered collection of elements that ignores duplicate elements.
• MutableSet: a Set that supports adding and removing elements.
• Map: a collection of key-value pairs. The keys in a map are unique, which
means we cannot have two pairs with the same key in a map.

see more please visit: https://homeofbook.com

18 Collections and functional operations 100

• MutableMap: a Map that supports adding and removing elements.

These collections can apply a set of functional operations. I want to show you a little
definition and an example of several operations. It is useful to knowwhat the options
are. That way it is easier to identify where these functions can be used.

18.1 Aggregate operations

any

Returns true if at least one element matches the given predicate.

1 val list = listOf(1, 2, 3, 4, 5, 6)

2 assertTrue(list.any { it % 2 == 0 })

3 assertFalse(list.any { it > 10 })

all

Returns true if all the elements match the given predicate.

1 assertTrue(list.all { it < 10 })

2 assertFalse(list.all { it % 2 == 0 })

count

Returns the number of elements matching the given predicate.

1 assertEquals(3, list.count { it % 2 == 0 })

fold

Accumulates the value starting with an initial value and applying an operation from
the first to the last element in a collection.

see more please visit: https://homeofbook.com

18 Collections and functional operations 101

1 assertEquals(25, list.fold(4) { total, next -> total + next })

foldRight

Same as fold, but it goes from the last element to first.

1 assertEquals(25, list.foldRight(4) { total, next -> total + next })

forEach

Performs the given operation to each element.

1 list.forEach { println(it) }

forEachIndexed

Same as forEach, though we also get the index of the element.

1 list.forEachIndexed { index, value

2 -> println("position $index contains a $value") }

max

Returns the largest element or null if there are no elements.

1 assertEquals(6, list.max())

maxBy

Returns the first element yielding the largest value of the given function or null if
there are no elements.

see more please visit: https://homeofbook.com

18 Collections and functional operations 102

1 // The element whose negative is greater

2 assertEquals(1, list.maxBy { -it })

min

Returns the smallest element or null if there are no elements.

1 assertEquals(1, list.min())

minBy

Returns the first element yielding the smallest value of the given function or null if
there are no elements.

1 // The element whose negative is smaller

2 assertEquals(6, list.minBy { -it })

none

Returns true if no elements match the given predicate.

1 // No elements are divisible by 7

2 assertTrue(list.none { it % 7 == 0 })

reduce

Same as fold, but it does not use an initial value. It accumulates the value applying
an operation from the first to the last element in a collection.

1 assertEquals(21, list.reduce { total, next -> total + next })

reduceRight

Same as reduce, but it goes from the last element to first.

see more please visit: https://homeofbook.com

18 Collections and functional operations 103

1 assertEquals(21, list.reduceRight { total, next -> total + next })

sumBy

Returns the sum of all values produced by the transform function from the elements
in the collection.

1 assertEquals(3, list.sumBy { it % 2 })

18.2 Filtering operations

drop

Returns a list containing all elements except first n elements.

1 assertEquals(listOf(5, 6), list.drop(4))

dropWhile

Returns a list containing all elements except first elements that satisfy the given
predicate.

1 assertEquals(listOf(3, 4, 5, 6), list.dropWhile { it < 3 })

dropLastWhile

Returns a list containing all elements except last elements that satisfy the given
predicate.

1 assertEquals(listOf(1, 2, 3, 4), list.dropLastWhile { it > 4 })

filter

Returns a list containing all elements matching the given predicate.

see more please visit: https://homeofbook.com

18 Collections and functional operations 104

1 assertEquals(listOf(2, 4, 6), list.filter { it % 2 == 0 })

filterNot

Returns a list containing all elements not matching the given predicate.

1 assertEquals(listOf(1, 3, 5), list.filterNot { it % 2 == 0 })

filterNotNull

Returns a list containing all elements that are not null.

1 val listWithNull = listOf(1, null, 2, 3, null, 4)

2 assertEquals(listOf(1, 2, 3, 4), listWithNull.filterNotNull())

slice

Returns a list containing elements at specified indices.

1 assertEquals(listOf(2, 4, 5), list.slice(listOf(1, 3, 4)))

take

Returns a list containing first n elements.

1 assertEquals(listOf(1, 2), list.take(2))

takeLast

Returns a list containing last n elements.

see more please visit: https://homeofbook.com

18 Collections and functional operations 105

1 assertEquals(listOf(5, 6), list.takeLast(2))

takeWhile

Returns a list containing first elements satisfying the given predicate.

1 assertEquals(listOf(1, 2), list.takeWhile { it < 3 })

18.3 Mapping operations

flatMap

Iterates over the elements creating a new collection for each one, and finally flattens
all the collections into a unique list containing all the elements.

1 assertEquals(listOf(1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7),

2 list.flatMap { listOf(it, it + 1) })

groupBy

Returns a map of the elements in original collection grouped by the result of given
function

1 assertEquals(mapOf("odd" to listOf(1, 3, 5), "even" to listOf(2, 4, 6)),

2 list.groupBy { if (it % 2 == 0) "even" else "odd" })

map

Returns a list containing the results of applying the given transform function to each
element of the original collection.

see more please visit: https://homeofbook.com

18 Collections and functional operations 106

1 assertEquals(listOf(2, 4, 6, 8, 10, 12), list.map { it * 2 })

mapIndexed

Returns a list containing the results of applying the given transform function to each
element and its index of the original collection.

1 assertEquals(listOf (0, 2, 6, 12, 20, 30), list.mapIndexed { index, it

2 -> index * it })

mapNotNull

Returns a list containing the results of applying the given transform function to each
non-null element of the original collection.

1 assertEquals(listOf(2, 4, 6, 8), listWithNull.mapNotNull { it * 2 })

18.4 Elements operations

contains

Returns true if the element is found in the collection.

1 assertTrue(list.contains(2))

elementAt

Returns an element at the given index or throws an IndexOutOfBoundsException if
the index is out of bounds of this collection.

1 assertEquals(2, list.elementAt(1))

elementAtOrElse

Returns an element at the given index or the result of calling the default function if
the index is out of bounds of this collection.

see more please visit: https://homeofbook.com

18 Collections and functional operations 107

1 assertEquals(20, list.elementAtOrElse(10, { 2 * it }))

elementAtOrNull

Returns an element at the given index or null if the index is out of bounds of this
collection.

1 assertNull(list.elementAtOrNull(10))

first

Returns the first element matching the given predicate. It will throw a NoSuchEle-

mentException if no elements are found.

1 assertEquals(2, list.first { it % 2 == 0 })

firstOrNull

Returns the first element matching the given predicate, or null if no element was
found.

1 assertNull(list.firstOrNull { it % 7 == 0 })

indexOf

Returns the first index of the element, or -1 if the collection does not contain the
element.

1 assertEquals(3, list.indexOf(4))

indexOfFirst

Returns index of the first element matching the given predicate, or -1 if the collection
does not contain such element.

see more please visit: https://homeofbook.com

18 Collections and functional operations 108

1 assertEquals(1, list.indexOfFirst { it % 2 == 0 })

indexOfLast

Returns index of the last element matching the given predicate, or -1 if the collection
does not contain such element.

1 assertEquals(5, list.indexOfLast { it % 2 == 0 })

last

Returns the last element matching the given predicate. It throws a NoSuchElementEx-
ception if no elements are found.

1 assertEquals(6, list.last { it % 2 == 0 })

lastIndexOf

Returns the last index of the element, or -1 if the collection does not contain the
element.

1 val listRepeated = listOf(2, 2, 3, 4, 5, 5, 6)

2 assertEquals(5, listRepeated.lastIndexOf(5))

lastOrNull

Returns the last element matching the given predicate, or null if no such element
was found.

1 val list = listOf(1, 2, 3, 4, 5, 6)

2 assertNull(list.lastOrNull { it % 7 == 0 })

single

Returns the single element matching the given predicate, or throws an exception if
there is no or more than one matching element.

see more please visit: https://homeofbook.com

18 Collections and functional operations 109

1 assertEquals(5, list.single { it % 5 == 0 })

singleOrNull

Returns the single element matching the given predicate, or null if the element was
not found or more than one element was found.

1 assertNull(list.singleOrNull { it % 7 == 0 })

18.5 Generation operations

merge

Returns a list of values built from elements of both collections with same indexes
using the provided transform function. The list has the length of the shortest
collection.

1 val list = listOf(1, 2, 3, 4, 5, 6)

2 val listRepeated = listOf(2, 2, 3, 4, 5, 5, 6)

3 assertEquals(listOf(3, 4, 6, 8, 10, 11), list.merge(listRepeated) { it1, it2 ->

4 it1 + it2 })

partition

Splits original collection into a pair of collections, where the first collection contains
elements for which the predicate returned true, while the second collection contains
elements for which the predicate returned false.

1 assertEquals(Pair(listOf(2, 4, 6), listOf(1, 3, 5)),

2 list.partition { it % 2 == 0 })

plus

Returns a list containing all elements of the original collection and then all elements
of the given collection. Because of the name of the function, we can use the ‘+’
operator with it.

see more please visit: https://homeofbook.com

18 Collections and functional operations 110

1 assertEquals(listOf(1, 2, 3, 4, 5, 6, 7, 8), list + listOf(7, 8))

zip

Returns a list of pairs built from the elements of both collections with the same
indexes. The list has the length of the shortest collection.

1 assertEquals(listOf(Pair(1, 7), Pair(2, 8)), list.zip(listOf(7, 8)))

unzip

Generates a Pair of Lists from a List of Pairs

1 assertEquals(Pair(listOf(5, 6), listOf(7, 8)), listOf(Pair(5, 7), Pair(6, 8)).unzip())

18.6 Ordering operations

reverse

Returns a list with elements in reversed order.

1 val unsortedList = listOf(3, 2, 7, 5)

2 assertEquals(listOf(5, 7, 2, 3), unsortedList.reverse())

sort

Returns a sorted list of all elements.

1 assertEquals(listOf(2, 3, 5, 7), unsortedList.sort())

sortBy

Returns a list of all elements, sorted by the specified comparator.

see more please visit: https://homeofbook.com

18 Collections and functional operations 111

1 assertEquals(listOf(3, 7, 2, 5), unsortedList.sortBy { it % 3 })

sortDescending

Returns a sorted list of all elements, in descending order.

1 assertEquals(listOf(7, 5, 3, 2), unsortedList.sortDescending())

sortDescendingBy

Returns a sorted list of all elements, in descending order by the results of the specified
order function.

1 assertEquals(listOf(2, 5, 7, 3), unsortedList.sortDescendingBy { it % 3 })

see more please visit: https://homeofbook.com

19 Saving and requesting data
from the database
A previous chapter covered the creation of an SQLiteOpenHelper, but now we need
a way to use it to persist our data into the database and recover it when necessary.
Another class, called ForecastDb, is making use of it.

19.1 Creating database model classes

First, we are going to create the model classes for the database. Do you remember
the map delegates we saw? We are using them to map those fields directly to the
database and vice-versa.

Let’s take a look at the CityForecast class first:

data/db/DbClasses.kt

1 class CityForecast(val map: MutableMap<String, Any?>,

2 val dailyForecast: List<DayForecast>) {

3 var _id: Long by map

4 var city: String by map

5 var country: String by map

6

7 constructor(id: Long, city: String, country: String,

8 dailyForecast: List<DayForecast>)

9 : this(HashMap(), dailyForecast) {

10 this._id = id

11 this.city = city

12 this.country = country

13 }

14 }

The default constructor is getting a map, presumably filled with the values of the
properties, and a dailyForecast. Thanks to the delegates, the values are mapped to

see more please visit: https://homeofbook.com

19 Saving and requesting data from the database 113

the corresponding properties based on the name of the key. If we want to make the
mapping work correctly, the names of the properties must be the same as the names
of the columns in the database. We will see why later.

Besides, a second constructor is necessary. This is because we are mapping classes
from the domain back to the database. So instead of using amap, extracting the values
from the properties is more convenient. We pass an empty map, but again, thanks to
the delegate, when we set a value to a property, it automatically adds a new value
to the map. That way, we have our map ready to be added to the database. After
writing some extra code, you will see that it works like magic.

Now we need a second class, DayForecast, which corresponds to the second table.
This one has one property per column, and also uses a secondary constructor. The
only difference is that we are not assigning an id because this one is auto-generated
by SQLite.

data/db/DbClasses.kt

1 class DayForecast(var map: MutableMap<String, Any?>) {

2 var _id: Long by map

3 var date: Long by map

4 var description: String by map

5 var high: Int by map

6 var low: Int by map

7 var iconUrl: String by map

8 var cityId: Long by map

9

10 constructor(date: Long, description: String, high: Int, low: Int,

11 iconUrl: String, cityId: Long) : this(HashMap()) {

12 this.date = date

13 this.description = description

14 this.high = high

15 this.low = low

16 this.iconUrl = iconUrl

17 this.cityId = cityId

18 }

19 }

These classes helps us map the data between objects and SQLite tables, in both
directions.

see more please visit: https://homeofbook.com

19 Saving and requesting data from the database 114

19.2 Writing and requesting data

The SqliteOpenHelper is just the tool, the channel between object-oriented and SQL
worlds. We are using it in a new class, to request data already saved in the database,
and to save fresh data. The definition of the class is using a ForecastDbHelper and
a DataMapper that converts classes from database to domain models. I am still using
default values as an easy way of dependency injection:

data/db/ForecastDb.kt

1 class ForecastDb(

2 private val forecastDbHelper: ForecastDbHelper = ForecastDbHelper.instance,

3 private val dataMapper: DbDataMapper = DbDataMapper()) {

4 ...

5 }

Both functions will call use(), the function we saw in the previous chapter. The value
that the lambda returns will be used as the result of our function. So let’s define a
function that requests a forecast based on a zip code and a date:

data/db/ForecastDb.kt

1 fun requestForecastByZipCode(zipCode: Long, date: Long) = forecastDbHelper.use {

2

3 }

Not much to explain here: we return the result of the use function as the result of
our function.

Requesting a forecast

The first request that needs to be done is the daily forecast, because we need the list to
create the city object. Anko provides a simple request builder, so let’s take advantage
of it:

see more please visit: https://homeofbook.com

19 Saving and requesting data from the database 115

data/db/ForecastDb.kt

1 val dailyRequest = "${DayForecastTable.CITY_ID} = ? " +

2 "AND ${DayForecastTable.DATE} >= ?"

3

4 val dailyForecast = select(DayForecastTable.NAME)

5 .whereSimple(dailyRequest, zipCode.toString(), date.toString())

6 .parseList { DayForecast(HashMap(it)) }

The first line, dailyRequest, is the where part of the query. This is the first parameter
the whereSimple function needs, and it is very similar to what wewould do in regular
use of the helper. There is another function called simply where, which takes some
tags and values and match them. I do not find it very useful because I think it adds
more boilerplate, though it has the advantage of parsing the values to the Strings
we need. The following snippet shows how it would look with it:

data/db/ForecastDb.kt

1 val dailyRequest = "${DayForecastTable.CITY_ID} = {id}" +

2 "AND ${DayForecastTable.DATE} >= {date}"

3

4 val dailyForecast = select(DayForecastTable.NAME)

5 .where(dailyRequest, "id" to zipCode, "date" to date)

6 .parseList { DayForecast(HashMap(it)) }

You can choose your preferred one. The select function is simple, it just asks for the
name of the table. The parsemethods are where the magic happens. In this case, we
are using the function parseList, which assumes we are requesting a list of items.
It uses a RowParser or MapRowParser to convert the cursor into a list of object. The
difference between both is that the RowParser relies on the order of the columns,
while the MapRowParser uses the name of the column as the key of the map.

These two overloads conflict between them, so we cannot directly use the simplifi-
cation that prevents from the need of creating an object explicitly. T This conflict
can be solved by implementing an extension function. I am creating a function that
receives a lambda and returns a MapRowParser. The parser will use that lambda to
create the object:

see more please visit: https://homeofbook.com

19 Saving and requesting data from the database 116

extensions/DatabaseExtensions.kt

1 fun <T : Any> SelectQueryBuilder.parseList(

2 parser: (Map<String, Any?>) -> T): List<T> =

3 parseList(object : MapRowParser<T> {

4 override fun parseRow(columns: Map<String, Any?>): T = parser(columns)

5 })

If you do not fully understand it yet, you can come back once we dive deep into
generics. The previous function helps simplify the parseList request to:

1 parseList { DayForecast(HashMap(it)) }

The immutable map that the parser receives is converted into a mutable map (we
need it to be mutable in our database model) by using the corresponding constructor
from the HashMap. This HashMap is used by the constructor of DayForecast.

So, to understand what is happening behind the scenes, the request returns a Cursor.
parseList iterates over it and gets the rows from the Cursor until it reaches the last
one. For each row, it creates a map with the columns as keys and assigns the value
to the corresponding key. The map is then returned to the parser.

If there are no results for the request, parseList returns an empty list.

Next step will request the city in a similar way:

data/db/ForecastDb.kt

1 val city = select(CityForecastTable.NAME)

2 .whereSimple("${CityForecastTable.ID} = ?", zipCode.toString())

3 .parseOpt { CityForecast(HashMap(it), dailyForecast) }

The difference here: we are using parseOpt instead. This function returns a nullable
object. The result can be null or a single object, depending on whether the request
finds something in the database or not. There is another function called parseSingle,
which does essentially the same but returns a non-nullable object. So if it does not
find a row in the database, it throws an exception. In our case, the first time we query
a city, it will not be there, so using parseOpt is safer. I also created a handy function
to prevent the need for object creation:

see more please visit: https://homeofbook.com

19 Saving and requesting data from the database 117

extensions/DatabaseExtensions.kt

1 fun <T : Any> SelectQueryBuilder.parseOpt(

2 parser: (Map<String, Any?>) -> T): T? =

3 parseOpt(object : MapRowParser<T> {

4 override fun parseRow(columns: Map<String, Any?>): T = parser(columns)

5 })

Finally, if the returned city is not null, we convert it to a domain object and return it,
using the dataMapper. Otherwise, we just return null. As you may remember, last
line inside a lambda represents what the lambda returns. So it will return an object
from the type CityForecast?:

data/db/ForecastDb.kt

1 if (city != null) dataMapper.convertToDomain(city) else null

DataMapper function is easy:

data/db/DbDataMapper.kt

1 fun convertToDomain(forecast: CityForecast) = with(forecast) {

2 val daily = dailyForecast.map { convertDayToDomain(it) }

3 ForecastList(_id, city, country, daily)

4 }

5

6 private fun convertDayToDomain(dayForecast: DayForecast) = with(dayForecast) {

7 Forecast(date, description, high, low, iconUrl)

8 }

So this is how the complete function looks like:

see more please visit: https://homeofbook.com

19 Saving and requesting data from the database 118

data/db/ForecastDb.kt
1 fun requestForecastByZipCode(zipCode: Long, date: Long) = forecastDbHelper.use {

2

3 val dailyRequest = "${DayForecastTable.CITY_ID} = ? AND " +

4 "${DayForecastTable.DATE} >= ?"

5 val dailyForecast = select(DayForecastTable.NAME)

6 .whereSimple(dailyRequest, zipCode.toString(), date.toString())

7 .parseList { DayForecast(HashMap(it)) }

8

9 val city = select(CityForecastTable.NAME)

10 .whereSimple("${CityForecastTable.ID} = ?", zipCode.toString())

11 .parseOpt { CityForecast(HashMap(it), dailyForecast) }

12

13 if (city != null) dataMapper.convertToDomain(city) else null

14 }

Another interesting functionality from Anko I am not showing here is that you can
make use of a classParser() instead of the MapRowParser we are using, which uses
reflection to fill a class based on the names of the columns. I prefer the other way
because we do not need reflection and have more control over the transformations,
but it can be of use for you at some point.

Saving a forecast

The saveForecast function clears the data from the database so that we save fresh
data, converts the domain forecast model to database model, and inserts each daily
forecast and the city forecast. The structure is similar to the previous one: it returns
the value from the use function from the database helper. In this case, we do not
need a result, so it will return Unit.

data/db/ForecastDb.kt
1 fun saveForecast(forecast: ForecastList) = forecastDbHelper.use {

2 ...

3 }

First, we clear both tables. Anko does not provide any beautiful way to do it, so we
are creating an extension function for SQLiteDatabase that executes the proper SQL
query for us:

see more please visit: https://homeofbook.com

19 Saving and requesting data from the database 119

extensions/DatabaseExtensions.kt
1 fun SQLiteDatabase.clear(tableName: String) {

2 execSQL("delete from $tableName")

3 }

The function is applied to both tables:

data/db/ForecastDb.kt
1 clear(CityForecastTable.NAME)

2 clear(DayForecastTable.NAME)

Now it is time to convert the data, and use the result to execute the insert queries.
The with function may help us:

data/db/ForecastDb.kt
1 with(dataMapper.convertFromDomain(forecast)) {

2 ...

3 }

The conversion from the domain model is straightforward too:

data/db/DbDataMapper.kt
1 fun convertFromDomain(forecast: ForecastList) = with(forecast) {

2 val daily = dailyForecast.map { convertDayFromDomain(id, it) }

3 CityForecast(id, city, country, daily)

4 }

5

6 private fun convertDayFromDomain(cityId: Long, forecast: Forecast) =

7 with(forecast) {

8 DayForecast(date, description, high, low, iconUrl, cityId)

9 }

Inside the block, we can use dailyForecast and mapwithout the need of referring to
a variable, just like if we were inside the class. We are using another Anko function
for the insertion, which asks for a table name and a vararg of Pair<String, Any>.
The function will convert the vararg to the ContentValues object the Android SDK
needs. So our task consists of transforming the map into a vararg array. We are
creating another extension function for Map to do that:

see more please visit: https://homeofbook.com

19 Saving and requesting data from the database 120

extensions/CollectionExtensions.kt

1 fun <K, V : Any> MutableMap<K, V?>.toVarargArray():

2 Array<out Pair<K, V>> = map({ Pair(it.key, it.value!!) }).toTypedArray()

It works over a Mapwith nullable values (this was a condition from the map delegate)
and converts it to an Array with non-nullable values (select function requisite) of
pairs. Another complex one you do not need to understand yet. I will be covering
nullity soon.

So, with this new function we can do:

data/db/ForecastDb.kt

1 insert(CityForecastTable.NAME, *map.toVarargArray())

It inserts a new row in the CityForecast table. The ‘*’ used before the result of
toVarargArray indicates that the array is decomposed to a vararg parameter. This
is done automatically in Java, but we need to make it explicit in Kotlin.

And the same for each daily forecast:

data/db/ForecastDb.kt

1 dailyForecast.forEach { insert(DayForecastTable.NAME, *it.map.toVarargArray()) }

So, with the use of maps, we have been able to convert classes to database registers
and vice-versa in an effortless way. Once we have these extension functions ready,
we can use them for other projects, so it is a well-paid effort.

The complete code of this function:

see more please visit: https://homeofbook.com

19 Saving and requesting data from the database 121

data/db/ForecastDb.kt

1 fun saveForecast(forecast: ForecastList) = forecastDbHelper.use {

2

3 clear(CityForecastTable.NAME)

4 clear(DayForecastTable.NAME)

5

6 with(dataMapper.convertFromDomain(forecast)) {

7 insert(CityForecastTable.NAME, *map.toVarargArray())

8 dailyForecast forEach {

9 insert(DayForecastTable.NAME, *it.map.toVarargArray())

10 }

11 }

12 }

Much new codewas involved in this chapter, so you can take a look at the repository38

to review it.
38https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-19

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-19
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-19

20 Null safety in Kotlin
Null-safety is one of the most exciting features in Kotlin when you come from Java
7. However, as you have seen during this book, it is so implicit in the language we
hardly had to worry about it until the previous chapter.

Being null considered the billion-dollar mistake by its creator39, it is true that we
sometimes need to define whether a variable contains a value or not. In Java, though
annotations and IDEs are helping a lot these days, we can still do something like:

1 Forecast forecast = null;

2 forecast.toString();

This code compiles correctly (you may get a warning from the IDE), and when it
runs, it naturally throws a NullPointerException. This is unsafe, and even if you
think that you could be able to have everything under control, as the code grows
you will start losing track of the things that could be null. So we end up with lots of
NullPointerExceptions or lots of nullity checks (probably a mix of both).

20.1 How Null types work

Mostmodern languages solve this issue in someway. Kotlin, the same as other similar
languages such as Swift, make use of question marks to identify nullable types.
That way, if a variable can be null, the compiler forces to deal with it in some way.

As everything is an object in Kotlin (even Java primitive types), everything can be
null. So, of course, we can have a nullable integer:

1 val a: Int? = null

You cannot work directly with a nullable type without doing some checks before.
This code does not compile:

39https://en.wikipedia.org/wiki/Tony_Hoare

see more please visit: https://homeofbook.com

https://en.wikipedia.org/wiki/Tony_Hoare
https://en.wikipedia.org/wiki/Tony_Hoare

20 Null safety in Kotlin 123

1 val a: Int? = null

2 a.toLong()

That variable could be null and the compiler is aware of that, so until the nullity is
checked, you cannot use it.

Here it is when another feature of the Kotlin compiler comes into action: the smart
cast. If we check the nullity of an object, from thatmoment the object is automatically
cast to its non-nullable type. Let’s see an example:

1 val a: Int? = null

2 ...

3 if (a != null) {

4 a.toLong()

5 }

Inside the if, a becomes Int instead of Int?, so we can use it without checking
nullity anymore or doing any castings. The code outside the if context, of course,
has to deal with it.

This smart cast only works if a variable cannot be concurrently modified because
otherwise the value could have been changed from another thread, and the previous
check would be false at that moment. The compiler supports smart casting for val
properties or local (val or var) variables.

This can sound like much work. Do we have to fill all our code with nullity checks?
Of course not. First, because most of the time you will not need null objects. Null
references are more unused that one could think, you will realize when you start
figuring out whether a variable should be null or not. But Kotlin also has some
operators to do this task easier. We can, for instance, simplify the previous code
to:

1 val a: Int? = null

2 ...

3 a?.toLong()

Here we are using the safe call operator (?.). The previous line is only executed if
the variable is not null. Otherwise, it does nothing. Also, we can even provide an
alternative for the null case using the Elvis operator (?:):

see more please visit: https://homeofbook.com

20 Null safety in Kotlin 124

1 val a: Int? = null

2 ...

3 val myLong = a?.toLong() ?: 0L

Since throw and return are also expressions in Kotlin, they can be used in the right
side of the Elvis operator:

1 val myLong = a?.toLong() ?: return false

1 val myLong = a?.toLong() ?: throw IllegalStateException()

However, there may be situations when we know for sure we are dealing with a
non-nullable variable, but the type is nullable. We can force the compiler to deal
with nullable types skipping the restriction by using the !! operator:

1 val a: Int? = null

2 a!!.toLong()

The previous code compiles, but it will crash. So we must make sure we only use it
in a reduced number of situations. Usually, we can choose alternative solutions. A
code full of !! is a smell, because it brings back the possible exceptions we are trying
to avoid with nullable types.

20.2 Nullity and Java libraries

Ok, so the previous explanation works perfectly well with Kotlin code. But what
happens with Java libraries in general, and Android SDK in particular? In Java, every
object can be null by definition. So we would have to deal with a lot potentially null
variables which in real life are never null. This means our code could end up with
hundreds of !! operators, which is not a good idea at all.

When you are dealing with the Android SDK, you will probably see that some
arguments are marked with a single ‘!’ when a Java method is used. For instance,
something that gets an Object in Java is represented as Any! in Kotlin. This special

see more please visit: https://homeofbook.com

20 Null safety in Kotlin 125

operator represents that it is up to the developer to decide whether that variable
should be null or not.

Luckily, latest versions of the Android framework and the support library are starting
using the @Nullable and @NonNull annotations to identify the parameters that can
be null or the functions that can return null, and the Kotlin compiler can detect that
and choose the appropriate translation into Kotlin language.

Said that, if we are for instance overriding onCreate for an Activity, we need to
mark savedInstanceState as nullable:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 }

Otherwise it will show an error. We cannot use this implementation:

1 override fun onCreate(savedInstanceState: Bundle) {

2 }

This is great because an activity can receive a null bundle, and we get the right
implementation for free. However, there are parts of the SDK that are missing
annotations yet. So when in doubt, you can just use a nullable object and deal with
the possible null. Remember, if you use !! it is because you are sure that the object
cannot be null, so you can declare it as non-nullable directly.

see more please visit: https://homeofbook.com

21 Creating the business logic
to data access
After implementing the access to the server and a way to interact with the database,
it is time to put things together. The logical steps would be:

1. Request the required data from the database
2. Check if there is data for the corresponding week
3. If it finds the required data, it is returned so that the UI can render it
4. Otherwise, it requests the data to the server
5. The result is saved in the database and returned so that the UI can render it

Our commands should not need to deal with all this logic. The source of the data
is an implementation detail that could easily require a logic modification, so adding
some extra code that abstracts the commands from the access to the data sounds like
a good idea. In our implementation, it will iterate over a list of sources until it finds
a proper result.

So let’s start by specifying the interface any data source that wants to be used by our
provider should implement:

1 interface ForecastDataSource {

2 fun requestForecastByZipCode(zipCode: Long, date: Long): ForecastList?

3 }

The provider requires a function that receives a zip code and a date, and it should
return a weekly forecast from that day.

see more please visit: https://homeofbook.com

21 Creating the business logic to data access 127

domain/datasource/ForecastProvider.kt

1 class ForecastProvider(private val sources: List<ForecastDataSource> =

2 ForecastProvider.SOURCES) {

3

4 companion object {

5 const val DAY_IN_MILLIS = 1000 * 60 * 60 * 24

6 val SOURCES = listOf(ForecastDb(), ForecastServer())

7 }

8 ...

9 }

The forecast provider receives a list of sources, that once again can be specified
through the constructor (for test purposes for instance), but I am defaulting it to
a SOURCES list defined in the companion object. It will use a database source and a
server source. The order is essential, because it will iterate over the sources, and the
search will be stopped when any of the sources returns a valid result. The logical
order is to search first locally (in the database) and then through the API.

So the main method looks like this:

domain/datasource/ForecastProvider.kt

1 fun requestByZipCode(zipCode: Long, days: Int): ForecastList

2 = sources.firstResult { requestSource(it, days, zipCode) }

It gets the first result that is not null. When searching through the list of functional
operators explained in chapter 18, I could not find one that did exactly what I was
looking for. So, as we have access to Kotlin sources, I just copied first function and
modified it to behave as expected:

see more please visit: https://homeofbook.com

21 Creating the business logic to data access 128

extensions/CollectionsExtensions.kt

1 inline fun <T, R : Any> Iterable<T>.firstResult(predicate: (T) -> R?): R {

2 for (element in this) {

3 val result = predicate(element)

4 if (result != null) return result

5 }

6 throw NoSuchElementException("No element matching predicate was found.")

7 }

The function receives a predicate which gets an object of type T and returns a value
of type R?. The generic type specifies that the predicate can return null, but our
firstResult function cannot. That is the reason why it returns a value of type R.

How does it work? It iterates and executes the predicate over the elements in the
Iterable collection. When the result of the predicate is not null, this result is
returned.

If we wanted to include the case where all the sources can return null, we could
have derived from firstOrNull function instead. The difference would consist of
returning null instead of throwing an exception in the last line. But I am not dealing
with those details in this code.

In our example T = ForecastDataSource and R = ForecastList. But remember the
function specified in ForecastDataSource returned a ForecastList?, which equals
R?, so everything matches perfectly. The function requestSource just makes the
previous function look more readable:

domain/datasource/ForecastProvider.kt

1 fun requestSource(source: ForecastDataSource, days: Int, zipCode: Long):

2 ForecastList? {

3 val res = source.requestForecastByZipCode(zipCode, todayTimeSpan())

4 return if (res != null && res.size() >= days) res else null

5 }

The request is executed and only returns a value if the result is not null and the
number of days matches the parameter. Otherwise, the source does not have enough
up-to-date data to return a successful result.

see more please visit: https://homeofbook.com

21 Creating the business logic to data access 129

The function todayTimeSpan() calculates the time in milliseconds for the current
day, eliminating the “time” offset, and keeping only the day. Some of the sources (in
our case the database) may need it. The server defaults to today unless we specify it,
so it will be ignored there.

domain/datasource/ForecastProvider.kt

1 private fun todayTimeSpan() = System.currentTimeMillis() /

2 DAY_IN_MILLIS * DAY_IN_MILLIS

The complete code of this class would be:

domain/datasource/ForecastProvider.kt

1 class ForecastProvider(private val sources: List<ForecastDataSource> =

2 ForecastProvider.SOURCES) {

3

4 companion object {

5 const val DAY_IN_MILLIS = 1000 * 60 * 60 * 24;

6 val SOURCES = listOf(ForecastDb(), ForecastServer())

7 }

8

9 fun requestByZipCode(zipCode: Long, days: Int): ForecastList

10 = sources.firstResult { requestSource(it, days, zipCode) }

11

12 private fun requestSource(source: RepositorySource, days: Int,

13 zipCode: Long): ForecastList? {

14 val res = source.requestForecastByZipCode(zipCode, todayTimeSpan())

15 return if (res != null && res.size >= days) res else null

16 }

17

18 private fun todayTimeSpan() = System.currentTimeMillis() /

19 DAY_IN_MILLIS * DAY_IN_MILLIS

20 }

We already defined ForecastDb. It just now needs to implement ForecastData-
Source:

see more please visit: https://homeofbook.com

21 Creating the business logic to data access 130

data/db/ForecastDb.kt

1 class ForecastDb(private val forecastDbHelper: ForecastDbHelper =

2 ForecastDbHelper.instance,

3 private val dataMapper: DbDataMapper = DbDataMapper())

4 : ForecastDataSource {

5

6 override fun requestForecastByZipCode(zipCode: Long, date: Long) =

7 forecastDbHelper.use {

8 ...

9 }

10 ...

11 }

We have not implemented ForecastServer yet, but it is straightforward. It makes
use of a ForecastDb to save the response once it is received from the server. That
way, we can keep it cached into the database for future requests.

data/server/ForecastServer.kt

1 class ForecastServer(

2 private val dataMapper: ServerDataMapper = ServerDataMapper(),

3 private val forecastDb: ForecastDb = ForecastDb())

4 : ForecastDataSource {

5

6 override fun requestForecastByZipCode(zipCode: Long, date: Long):

7 ForecastList? {

8 val result = ForecastByZipCodeRequest(zipCode).execute()

9 val converted = dataMapper.convertToDomain(zipCode, result)

10 forecastDb.saveForecast(converted)

11 return forecastDb.requestForecastByZipCode(zipCode, date)

12 }

13

14 }

It also makes use of a data mapper, the first one we created, though I modified the
name of somemethods to make it similar to the data mapper we used for the database
model. You can take a look at the provider to see the details.

The overridden function makes the request to the server, converts the result to
domain objects and saves them into the database. It finally returns the values from

see more please visit: https://homeofbook.com

21 Creating the business logic to data access 131

the database, because we need the row ids that were self-generated by the insert
query.

With these last steps, the provider is already implemented. Now we need to
start using it. The ForecastCommand no longer should interact directly with server
requests, nor convert the data to the domain model.

domain/commands/RequestForecastCommand.kt

1 class RequestForecastCommand(private val zipCode: Long,

2 private val forecastProvider: ForecastProvider = ForecastProvider()) :

3 Command<ForecastList> {

4

5 companion object {

6 const val DAYS = 7

7 }

8

9 override fun execute(): ForecastList =

10 forecastProvider.requestByZipCode(zipCode, DAYS)

11 }

The rest of code modifications consist of some renames and changes in package
structure here and there. Take a look at the corresponding branch at Kotlin for
Android Developers repository40.

40https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-21

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-21
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-21
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-21

22. Flow control and ranges
I have been using some conditional expressions in our code, so you are not new to
some of the concepts of this chapter. But now it is time to explain them inmore depth.
Though in Kotlin we usually need fewer mechanisms to control the flow of the code
that we would typically use in an entirely procedural programming language (some
of them even practically disappear), they are still useful. There are also new powerful
ideas that solve some particular problems much easier.

22.1 If Expression

Almost everything in Kotlin is an expression, which means it returns a value. If
conditions are not an exception, so though we can use if as we are used to doing:

1 if (x > 0) {

2 toast("x is greater than 0")

3 } else if (x == 0) {

4 toast("x equals 0")

5 } else {

6 toast("x is smaller than 0")

7 }

We can also assign its result to a variable. We have used it like that several times in
our code:

1 val res = if (x != null && x.size() >= days) x else null

This also implies that we do not need a ternary operation similar to the Java one
because we can solve it easily with:

see more please visit: https://homeofbook.com

22. Flow control and ranges 133

1 val z = if (condition) x else y

So the if expression always returns a value. If one of the branches returns Unit,
the whole expression returns Unit, which can be ignored, and it will behave like a
regular Java if condition in that case.

22.2 When expression

When expressions are similar to switch/case in Java, but far more powerful. This
expression tries to match its argument against all possible branches sequentially
until it finds one that is satisfied. It then applies the right side of the expression. The
difference with a switch/case in Java is that the argument can be literally anything,
and the conditions for the branches too.

For the default option, we can add an else branch that will be executed if none of
the previous conditions are satisfied. The code executed when a condition is satisfied
can be a block too:

1 when (x) {

2 1 -> println("x == 1")

3 2 -> println("x == 2")

4 else -> {

5 println("I'm a block")

6 println("x is neither 1 nor 2")

7 }

8 }

As it is an expression, it can return a result too. Take into consideration that when it
is used as an expression, it must cover all the possible cases or implement the else
branch. It will not compile otherwise:

see more please visit: https://homeofbook.com

22. Flow control and ranges 134

1 val result = when (x) {

2 0, 1 -> "binary"

3 else -> "error"

4 }

As you can see, the condition can be a set of values separated by commas. However,
it can be many more things. We could, for instance, check the type of the argument
and make decisions based on this:

1 when(view) {

2 is TextView -> view.text = "I'm a TextView"

3 is EditText -> toast("EditText value: ${view.getText()}")

4 is ViewGroup -> toast("Number of children: ${view.getChildCount()} ")

5 else -> view.visibility = View.GONE

6 }

The argument is automatically converted in the right part of the condition, so you
do not need to do any explicit casting.

It is possible to check whether the argument is inside a range (I will explain ranges
later in this chapter), or even inside a collection:

1 val cost = when(x) {

2 in 1..10 -> "cheap"

3 in 10..100 -> "regular"

4 in 100..1000 -> "expensive"

5 in specialValues -> "special value!"

6 else -> "not rated"

7 }

Alternatively, you could also get rid of the argument and do any crazy checks you
may need. It could easily substitute an if / else chain:

see more please visit: https://homeofbook.com

22. Flow control and ranges 135

1 val res = when {

2 x in 1..10 -> "cheap"

3 s.contains("hello") -> "it's a welcome!"

4 v is ViewGroup -> "child count: ${v.getChildCount()}"

5 else -> ""

6 }

22.3 For loops

Though you will not use them too much if you make use of functional operators in
collections, for loops can be useful in some situations, so they are still available. It
works with anything that provides an iterator:

1 for (item in collection) {

2 print(item)

3 }

If wewant to achieve the regular iteration over indices, we can also do it using ranges:

1 for (index in 0..viewGroup.getChildCount() - 1) {

2 val view = viewGroup.getChildAt(index)

3 view.visibility = View.VISIBLE

4 }

When iterating over an array or a list, we can make uses of existing properties that
return a set of indices, so the previous artifact is not necessary:

1 for (i in array.indices)

2 print(array[i])

22.4 While and do/while loops

You can keep using while loops too, though they are not very common in Kotlin
either. There are usually simpler and more visual ways to resolve this problem. A
couple of examples:

see more please visit: https://homeofbook.com

22. Flow control and ranges 136

1 while (x > 0) {

2 x--

3 }

4

5 do {

6 val y = retrieveData()

7 } while (y != null) // y is visible here!

22.5 Ranges

It is challenging to explain flow control without talking about ranges. But their scope
is broader. Range expressions make use of an operator in the form of “..” that is
defined implementing a rangeTo function.

Ranges help simplify our code in many creative ways. For instance we can convert
this:

1 if (i >= 0 && i <= 10)

2 println(i)

Into this:

1 if (i in 0..10)

2 println(i)

Kotlin defines ranges for any types that can be compared, but for numerical types
the compiler optimizes it by converting it to simpler analog code in Java, to avoid the
extra overhead. The numerical ranges are also iterable, and the loops are optimized
too by converting them to the same bytecode a for with indices would use in Java:

1 for (i in 0..10)

2 println(i)

Ranges are incremental by default, so something like:

see more please visit: https://homeofbook.com

22. Flow control and ranges 137

1 for (i in 10..0)

2 println(i)

Would do nothing. You can, however, use the function downTo:

1 for (i in 10 downTo 0)

2 println(i)

We can define a spacing different from 1 among the values in a range by using step:

1 for (i in 1..4 step 2) println(i)

2

3 for (i in 4 downTo 1 step 2) println(i)

If you want to create an open range (which excludes the last item), you can use the
function until:

1 for (i in 0 until 4) println(i)

This previous line prints from 0 to 3, but skips the last value. This means that 0 until

4 == 0..3. For iterations over lists, it could be easier to understand if we use for (i

in 0 until list.size) instead of for (i in 0..list.size - 1).

As mentioned before, there are really creative ways to use ranges. For instance, an
easy way to get the list of Views inside a ViewGroup would be:

1 val views = (0 until viewGroup.childCount).map { viewGroup.getChildAt(it) }

The mix of ranges and functional operators prevents from having to use an explicit
loop to iterate over the collection and the creation of an explicit list where we add
the views. You can do everything on a single line.

If you want to know more about how to implement ranges and see more examples
and useful information, you can go to Kotlin reference41.

41https://kotlinlang.org/docs/reference/ranges.html

see more please visit: https://homeofbook.com

https://kotlinlang.org/docs/reference/ranges.html
https://kotlinlang.org/docs/reference/ranges.html

23 Creating a Detail Activity
When we click on an item from the home screen, we would expect to navigate to
a detail activity and see some extra info about the forecast for that day. We are
currently showing a toast after an item click, but it is time to change that.

23.1 Preparing the request

As we need to know which item we are going to show in the detail activity, logic
tells we need to send the id of the forecast to the detail. So the domain model needs
a new id property:

domain/model/DomainClasses.kt

1 data class Forecast(val id: Long, val date: Long, val description: String,

2 val high: Int, val low: Int, val iconUrl: String)

The ForecastProvider also needs a new function, which returns the requested
forecast by id. The DetailActivitywill use it to recover the forecast based on the id
it will receive. As all the requests always iterate over the sources and return the first
non-null result, we can extract that behaviour to another function:

domain/datasource/ForecastProvider.kt

1 private fun <T : Any> requestToSources(f: (ForecastDataSource) -> T?): T

2 = sources.firstResult { f(it) }

The function is generified using a non-nullable type. It will receive a function which
uses a ForecastDataSource to return a nullable object of the generic type, and will
finally return a non-nullable object. We can rewrite the previous request and write
the new one this way:

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 139

domain/datasource/ForecastProvider.kt

1 fun requestByZipCode(zipCode: Long, days: Int): ForecastList = requestToSources {

2 val res = it.requestForecastByZipCode(zipCode, todayTimeSpan())

3 if (res != null && res.size() >= days) res else null

4 }

5

6 fun requestForecast(id: Long): Forecast = requestToSources {

7 it.requestDayForecast(id)

8 }

Now the data sources need to implement the new function:

domain/datasource/ForecastDataSource.kt

1 fun requestDayForecast(id: Long): Forecast?

The ForecastDb will always have the required value already cached from previous
requests, so we can get it from there this way:

data/db/ForecastDb.kt

1 override fun requestDayForecast(id: Long): Forecast? = forecastDbHelper.use {

2 val forecast = select(DayForecastTable.NAME).byId(id).

3 parseOpt { DayForecast(HashMap(it)) }

4

5 if (forecast != null) dataMapper.convertDayToDomain(forecast) else null

6 }

The select query is very similar to the previous one. I created another utility
function called byId, because a request by id is so common that a function like that
simplifies the process and is easier to read. The implementation of the function is
quite simple:

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 140

extensions/DatabaseExtensions.kt

1 fun SelectQueryBuilder.byId(id: Long)

2 = whereSimple("_id = ?", id.toString())

It makes use of the whereSimple function and implements the search over the _id

field. This function is quite generic, but as you can see, you could create as many
extension functions as you need based on the structure of your database, and hugely
simplify the readability of your code. The DbDataMapper has some slight changes not
worth mentioning. You can check them in the repository.

On the other hand, the ForecastServer is never used, because the info is always
cached in the database. We could implement it to defend our code from uncommon
edge cases, but we are not doing it in this case, so it will just throw an exception if
the function is called:

data/server/ForecastServer.kt

1 override fun requestDayForecast(id: Long)

2 = throw UnsupportedOperationException()

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 141

try and throw are expressions
In Kotlin, almost everything is an expression, which means it returns
a value. This is really important for functional programming, and par-
ticularly useful when dealing with edge cases with try-catch or when
throwing exceptions. For instance, the example above shows how we can
assign an exception to the result even if they are not of the same type,
instead of having to create a full block of code. This is very useful too
when we want to throw an exception in one of when branches:

1 val x = when(y) {

2 in 0..10 -> 1

3 in 11..20 -> 2

4 else -> throw Exception("Invalid")

5 }

The same happens with try-catch, we can assign a value depending on
the result of the try:

1 val x = try { doSomething() } catch { null }

The last thing we need to be able to perform the request from the new activity is to
create a command. The code is really simple:

domain/commands/RequestDayForecastCommand.kt

1 class RequestDayForecastCommand(

2 val id: Long,

3 private val forecastProvider: ForecastProvider = ForecastProvider()) :

4 Command<Forecast> {

5

6 override fun execute() = forecastProvider.requestForecast(id)

7 }

The request returns a Forecast result that is used by the activity to draw its UI.

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 142

23.2 Providing a new activity

We are now prepared to create the DetailActivity.

In Android Studio 2.3 and below, you can select the packagewhere youwant to create
the activity, right click and select New -> Kotlin Activity.

For Android Studio 3.0, the wizard already allows selecting the language. Choose New
-> Activity and the type of activity you want to create. There is a Source Language

drop-down at the end of the screen that you can use to change the language to Kotlin.

Our detail activity receives a couple of parameters from the main one: the forecast id
and the name of the city. The first one is used to request the data from the database,
and the name of the city fills the toolbar. Sowe first need a couple of names to identify
the parameters in the bundle:

ui/activities/DetailActivity.kt

1 public class DetailActivity : AppCompatActivity() {

2

3 companion object {

4 const val ID = "DetailActivity:id"

5 const val CITY_NAME = "DetailActivity:cityName"

6 }

7 ...

8 }

In onCreate function, the first step is to set the content view. The UI will be really
simple, but more than enough for this app example:

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 143

layout/activity_detail.xml

1 <LinearLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 xmlns:tools="http://schemas.android.com/tools"

4 android:layout_width="match_parent"

5 android:layout_height="match_parent"

6 android:orientation="vertical"

7 android:paddingBottom="@dimen/activity_vertical_margin"

8 android:paddingLeft="@dimen/activity_horizontal_margin"

9 android:paddingRight="@dimen/activity_horizontal_margin"

10 android:paddingTop="@dimen/activity_vertical_margin">

11

12 <LinearLayout

13 android:layout_width="match_parent"

14 android:layout_height="wrap_content"

15 android:orientation="horizontal"

16 android:gravity="center_vertical"

17 tools:ignore="UseCompoundDrawables">

18

19 <ImageView

20 android:id="@+id/icon"

21 android:layout_width="64dp"

22 android:layout_height="64dp"

23 tools:src="@mipmap/ic_launcher"

24 tools:ignore="ContentDescription"/>

25

26 <TextView

27 android:id="@+id/weatherDescription"

28 android:layout_width="wrap_content"

29 android:layout_height="wrap_content"

30 android:layout_margin="@dimen/spacing_xlarge"

31 android:textAppearance="@style/TextAppearance.AppCompat.Display1"

32 tools:text="Few clouds"/>

33

34 </LinearLayout>

35

36 <LinearLayout

37 android:layout_width="match_parent"

38 android:layout_height="wrap_content">

39

40 <TextView

41 android:id="@+id/maxTemperature"

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 144

42 android:layout_width="0dp"

43 android:layout_height="wrap_content"

44 android:layout_weight="1"

45 android:layout_margin="@dimen/spacing_xlarge"

46 android:gravity="center_horizontal"

47 android:textAppearance="@style/TextAppearance.AppCompat.Display3"

48 tools:text="30"/>

49

50 <TextView

51 android:id="@+id/minTemperature"

52 android:layout_width="0dp"

53 android:layout_height="wrap_content"

54 android:layout_weight="1"

55 android:layout_margin="@dimen/spacing_xlarge"

56 android:gravity="center_horizontal"

57 android:textAppearance="@style/TextAppearance.AppCompat.Display3"

58 tools:text="10"/>

59

60 </LinearLayout>

61

62 </LinearLayout>

Then assign it from onCreate code. Use the city name to fill the toolbar title. The
methods for intent and title are automatically mapped to a property:

ui/activities/DetailActivity.kt

1 setContentView(R.layout.activity_detail)

2 title = intent.getStringExtra(CITY_NAME)

The other part in onCreate implements the call to the command. It is very similar to
the call we previously did:

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 145

ui/activities/DetailActivity.kt

1 doAsync {

2 val result = RequestDayForecastCommand(intent.getLongExtra(ID, -1)).execute()

3 uiThread { bindForecast(result) }

4 }

When the result is recovered from the database, the bindForecast function is called
in the UI thread. I am using Kotlin Android Extensions plugin again in this activity,
to get the properties from the XML without using findViewById:

ui/activities/DetailActivity.kt

1 import kotlinx.android.synthetic.main.activity_detail.*

2

3 ...

4

5 private fun bindForecast(forecast: Forecast) = with(forecast) {

6 Picasso.with(ctx).load(iconUrl).into(icon)

7 supportActionBar?.subtitle = date.toDateString(DateFormat.FULL)

8 weatherDescription.text = description

9 bindWeather(high to maxTemperature, low to minTemperature)

10 }

There are some interesting things here. For instance, I am creating another extension
function able to convert a Long object into a visual date string. Remember we were
using it in the adapter too, so it is a good moment to extract it into a function:

extensions/ExtensionUtils.kt

1 fun Long.toDateString(dateFormat: Int = DateFormat.MEDIUM): String {

2 val df = DateFormat.getDateInstance(dateFormat, Locale.getDefault())

3 return df.format(this)

4 }

It gets a date format (or use the default DateFormat.MEDIUM) and converts the Long
into a String that is understandable by the user.

Another interesting function is bindWeather. It gets a vararg of pairs of Int and
TextView, and assigns a text and a text color to the TextViews based on the
temperature.

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 146

ui/activities/DetailActivity.kt
1 private fun bindWeather(vararg views: Pair<Int, TextView>) = views.forEach {

2 it.second.text = "${it.first}"

3 it.second.textColor = color(when (it.first) {

4 in -50..0 -> android.R.color.holo_red_dark

5 in 0..15 -> android.R.color.holo_orange_dark

6 else -> android.R.color.holo_green_dark

7 })

8 }

For each pair, it assigns the text that shows the temperature and a color based on the
value of the temperature: red for low temperatures, orange for mild ones and green
for the rest. The values are random, but it is a good illustration of what we can do
with a when expression, how clean and short the code becomes.

color is an extension function I miss from Anko, which simplifies the way to
get a color from resources, similar to the dimen one we have used in some other
places. At the time of writing this lines, current support library relies on the class
ContextCompat to get a color in a compatible way for all Android versions:

extensions/ContextExtensions.kt
1 public fun Context.color(res: Int): Int = ContextCompat.getColor(this, res)

I was missing a property representation for textColor. The thing is TextView lacks
getTextColor()method, so it is not automatically parsed. A definition could be this
one:

extensions/ViewExtensions.kt
1 var TextView.textColor: Int

2 get() = currentTextColor

3 set(v) = setTextColor(v)

There is an implementation in another Anko package (it returns an exception in get,
it could be an alternative), the one related to the creation of views using a DSL. If
you are implementing your views using regular XML, I recommend not to add this
library if you are using one or two functions. That library is big, and you will waste
a good part of method count.

The AndroidManifest also needs to be aware that a new activity exists:

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 147

AndroidManifest.xml

1 <activity

2 android:name=".ui.activities.DetailActivity"

3 android:parentActivityName=".ui.activities.MainActivity" >

4 <meta-data

5 android:name="android.support.PARENT_ACTIVITY"

6 android:value="com.antonioleiva.weatherapp.ui.activities.MainActivity" />

7 </activity>

23.3 Start an activity: reified functions

The final step consists of starting the detail activity from the main activity. We can
rewrite the adapter instantiation this way:

1 val adapter = ForecastListAdapter(result) {

2 val intent = Intent(MainActivity@this, javaClass<DetailActivity>())

3 intent.putExtra(DetailActivity.ID, it.id)

4 intent.putExtra(DetailActivity.CITY_NAME, result.city)

5 startActivity(intent)

6 }

But this is too verbose. As usual, Anko provides a much simpler way to start an
activity by using a reified function:

ui/activities/MainActivity.kt

1 val adapter = ForecastListAdapter(result) {

2 startActivity<DetailActivity>(DetailActivity.ID to it.id,

3 DetailActivity.CITY_NAME to result.city)

4 }

What is the magic behind reified functions? As you may know, when we create a
generic method in Java, there is no way to get the class from the generic type. A
popular workaround is to pass the class as a parameter. In Kotlin, an inline function
can be reified, which means we can get and use the class of the generic type inside
the function. In this case, we can create the intent inside the function, by calling
T::class.javaClass. A simpler version of what Anko does would be the next (I am
only using String extras in this example):

see more please visit: https://homeofbook.com

23 Creating a Detail Activity 148

1 public inline fun <reified T: Activity> Context.startActivity(

2 vararg params: Pair<String, String>) {

3

4 val intent = Intent(this, T::class.java)

5 params.forEach { intent.putExtra(it.first, it.second) }

6 startActivity(intent)

7 }

The real implementation is a bit more complicated because it uses a long and a boring
when expression to add the extras depending on the type, but it does not add much
useful knowledge to the concept.

Reified functions are, once more, a syntactic sugar that simplifies the code and
improves its comprehension. In this case, it creates an intent by getting the javaClass
from the generic type, iterates over params and adds them to the intent, and starts the
activity using the intent. The reified type is limited to be an Activity descendant.

The rest of little details are covered in the repository42. We now have a simple (but
complete) master-detail App implemented in Kotlin without using a single line of
Java.

42https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-23

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-23
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-23

24 Interfaces and Delegation
24.1 Interfaces

Interfaces in Kotlin are more powerful than in Java 7. If you have worked with Java
8, similarities are much closer there. In Kotlin, we can use interfaces the same way
as in Java. Imagine we have some animals, and some of them can fly. This is the
interface we could have for flying animals:

1 interface FlyingAnimal {

2 fun fly()

3 }

Both birds and bats can fly by moving their wings. So let’s create a couple of classes
for them:

1 class Bird : FlyingAnimal {

2 val wings: Wings = Wings()

3 override fun fly() = wings.move()

4 }

5

6 class Bat : FlyingAnimal {

7 val wings: Wings = Wings()

8 override fun fly() = wings.move()

9 }

When a couple of classes extend from an interface, it is very typical they both share
the same implementation. However, Java 7 interfaces can only define the behavior,
but not implement it.

Kotlin interfaces, on the other hand, can implement functions. The only difference
from a class is that they are stateless, so the properties that need a backing field need
to be overridden by the class. The class is in charge of saving the state of interface
properties.

We can make the interface implement the fly function:

see more please visit: https://homeofbook.com

24 Interfaces and Delegation 150

1 interface FlyingAnimal {

2 val wings: Wings

3 fun fly() = wings.move()

4 }

As mentioned, classes need to override the property:

1 class Bird : FlyingAnimal {

2 override val wings: Wings = Wings()

3 }

4

5 class Bat : FlyingAnimal {

6 override val wings: Wings = Wings()

7 }

And now both birds and bats can fly:

1 val bird = Bird()

2 val bat = Bat()

3

4 bird.fly()

5 bat.fly()

24.2 Delegation

The delegation43 is a handy pattern that can be used to extract responsibilities from a
class. The delegation pattern is supported natively by Kotlin, so it prevents the need
of calling the delegate. The delegator just needs to specify which instance implements
the interface.

In our previous example, we can specify how the animal flies through the constructor,
instead of implementing it. For instance, a flying animal that uses wings to fly can
be implemented this way:

43https://en.wikipedia.org/wiki/Delegation_pattern

see more please visit: https://homeofbook.com

https://en.wikipedia.org/wiki/Delegation_pattern
https://en.wikipedia.org/wiki/Delegation_pattern

24 Interfaces and Delegation 151

1 interface CanFly {

2 fun fly()

3 }

4

5 class Bird(f: CanFly) : CanFly by f

We can indicate that a bird can fly by using the interface, but the way the bird uses
to fly is defined by a delegate that comes through the constructor, so we can have
different birds with different flying methods. The way an animal with wings flies is
defined in another class:

1 class AnimalWithWings : CanFly {

2 val wings: Wings = Wings()

3 override fun fly() = wings.move()

4 }

An animal with wings moves its wings to be able to fly. So now we can create a bird
that flies using wings:

1 val birdWithWings = Bird(AnimalWithWings())

2 birdWithWings.fly()

But now wings can be used with other animals that are not birds. If we assume that
bats always use wings, we could instantiate the object directly where we specify the
delegation:

1 class Bat : CanFly by AnimalWithWings()

2 ...

3 val bat = Bat()

4 bat.fly()

24.3 Implementing an example in our App

Interfaces can be used to extract common code from classes which have some similar
behavior. For instance, we can create an interface that deals with the toolbar of the

see more please visit: https://homeofbook.com

24 Interfaces and Delegation 152

app. Both MainActivity and DetailActivity share similar code that deals with the
toolbar.

But first, some changes need to be done to start using a toolbar included in the layout
instead of the standard ActionBar. The first thing will be extending a NoActionBar

theme. That way, the toolbar is not included automatically:

values/styles.xml

1 <style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">

2 <item name="colorPrimary">#ff212121</item>

3 <item name="colorPrimaryDark">@android:color/black</item>

4 </style>

We are using a light theme. Next, let’s create a toolbar layout that we can include
later in some other layouts:

layout/toolbar.xml

1 <android.support.v7.widget.Toolbar

2 xmlns:app="http://schemas.android.com/apk/res-auto"

3 xmlns:android="http://schemas.android.com/apk/res/android"

4 android:id="@+id/toolbar"

5 android:layout_width="match_parent"

6 android:layout_height="?attr/actionBarSize"

7 android:background="?attr/colorPrimary"

8 android:theme="@style/ThemeOverlay.AppCompat.Dark.ActionBar"

9 app:popupTheme="@style/ThemeOverlay.AppCompat.Light"/>

The toolbar specifies its background, a dark theme for itself and a light theme for the
popups it generates (the overflow menu for instance). We get then the same theme
we already had: a light theme with dark Action Bar.

Next step will be modifying the MainActivity layout to include the toolbar:

see more please visit: https://homeofbook.com

24 Interfaces and Delegation 153

layout/activity_main.xml

1 <FrameLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent">

5

6 <android.support.v7.widget.RecyclerView

7 android:id="@+id/forecastList"

8 android:layout_width="match_parent"

9 android:layout_height="match_parent"

10 android:clipToPadding="false"

11 android:paddingTop="?attr/actionBarSize"/>

12

13 <include layout="@layout/toolbar"/>

14

15 </FrameLayout>

Now that we have added the toolbar to the layout, we can start using it. We are
creating an interface that will let us:

• Change the title
• Specify whether it shows the up navigation action or not
• Animate the toolbar when scrolling
• Assign the same menu to all activities and an event for the actions

So let’s define the ToolbarManager:

ui/activities/ToolbarManager.kt

1 interface ToolbarManager {

2 val toolbar: Toolbar

3 ...

4 }

It needs a toolbar property. Interfaces are stateless, so the property can be defined, but
no value can be assigned. Classes that implement it require overriding the property.

On the other hand, we can implement stateless properties without the need of being
overridden. That is, properties that can work without using a backing field. An
example would be a property which deals with the toolbar title:

see more please visit: https://homeofbook.com

24 Interfaces and Delegation 154

ui/activities/ToolbarManager.kt

1 var toolbarTitle: String

2 get() = toolbar.title.toString()

3 set(value) {

4 toolbar.title = value

5 }

As the property just uses the toolbar, it does not need to save additional state.

We are now creating a new function that initializes the toolbar, by inflating a menu
and setting a listener:

ui/activities/ToolbarManager.kt

1 fun initToolbar() {

2 toolbar.inflateMenu(R.menu.menu_main)

3 toolbar.setOnMenuItemClickListener {

4 when (it.itemId) {

5 R.id.action_settings -> App.instance.toast("Settings")

6 else -> App.instance.toast("Unknown option")

7 }

8 true

9 }

10 }

We can also add a function that enables the navigation icon in the toolbar, sets an
arrow icon and a listener that will be fired when the icon is pressed:

ui/activities/ToolbarManager.kt

1 fun enableHomeAsUp(up: () -> Unit) {

2 toolbar.navigationIcon = createUpDrawable()

3 toolbar.setNavigationOnClickListener { up() }

4 }

5

6 private fun createUpDrawable() =

7 DrawerArrowDrawable(toolbar.ctx).apply { progress = 1f }

see more please visit: https://homeofbook.com

24 Interfaces and Delegation 155

The function receives the listener, creates the up drawable by using the DrawerAr-
rowDrawable44 on its final state (when the arrow is already showing) and assigns
the listener to the toolbar.

Finally, the interface provides a function that allows the toolbar to be attached to a
scroll, and animates the toolbar depending on the direction of the scroll. The toolbar
will be hidden while we are scrolling down and displayed again when scrolling up:

ui/activities/ToolbarManager.kt

1 fun attachToScroll(recyclerView: RecyclerView) {

2 recyclerView.addOnScrollListener(object : RecyclerView.OnScrollListener() {

3 override fun onScrolled(recyclerView: RecyclerView?, dx: Int, dy: Int) {

4 if (dy > 0) toolbar.slideExit() else toolbar.slideEnter()

5 }

6 })

7 }

Let’s create a couple of extension functions that animate the views in and out of the
screen. They check if the animation has not been previously performed. That way it
prevents the view from being animated every time the scroll varies:

extensions/ViewExtensions.kt

1 fun View.slideExit() {

2 if (translationY == 0f) animate().translationY(-height.toFloat())

3 }

4

5 fun View.slideEnter() {

6 if (translationY < 0f) animate().translationY(0f)

7 }

After implementing the toolbar manager, it is time to use it in the MainActivity,
which now must implement the interface:

44https://developer.android.com/reference/android/support/v7/graphics/drawable/DrawerArrowDrawable.html

see more please visit: https://homeofbook.com

https://developer.android.com/reference/android/support/v7/graphics/drawable/DrawerArrowDrawable.html
https://developer.android.com/reference/android/support/v7/graphics/drawable/DrawerArrowDrawable.html
https://developer.android.com/reference/android/support/v7/graphics/drawable/DrawerArrowDrawable.html

24 Interfaces and Delegation 156

ui/activities/MainActivity.kt

1 class MainActivity : AppCompatActivity(), ToolbarManager {

2 ...

3 }

We first specify the toolbar property.We can implement a lazy find so that the toolbar
will be already inflated by the time we use it:

ui/activities/MainActivity.kt

1 override val toolbar by lazy { find<Toolbar>(R.id.toolbar) }

MainActivitywill initialize the toolbar, attach to the RecyclerView scroll andmodify
the toolbar title:

ui/activities/MainActivity.kt

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3 setContentView(R.layout.activity_main)

4 initToolbar()

5

6 forecastList.layoutManager = LinearLayoutManager(this)

7 attachToScroll(forecastList)

8

9 doAsync {

10 val result = RequestForecastCommand(94043).execute()

11 uiThread {

12 val adapter = ForecastListAdapter(result) {

13 startActivity<DetailActivity>(DetailActivity.ID to it.id,

14 DetailActivity.CITY_NAME to result.city)

15 }

16 forecastList.adapter = adapter

17 toolbarTitle = "${result.city} (${result.country})"

18 }

19 }

20 }

DetailActivity also needs some layout modifications:

see more please visit: https://homeofbook.com

24 Interfaces and Delegation 157

layout/activity_detail.xml

1 <LinearLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 xmlns:tools="http://schemas.android.com/tools"

4 android:layout_width="match_parent"

5 android:layout_height="match_parent"

6 android:orientation="vertical">

7

8 <include layout="@layout/toolbar"/>

9

10 <LinearLayout

11 android:layout_width="match_parent"

12 android:layout_height="wrap_content"

13 android:orientation="horizontal"

14 android:gravity="center_vertical"

15 android:paddingTop="@dimen/activity_vertical_margin"

16 android:paddingLeft="@dimen/activity_horizontal_margin"

17 android:paddingRight="@dimen/activity_horizontal_margin"

18 tools:ignore="UseCompoundDrawables">

19

20 </LinearLayout>

21

22 </LinearLayout>

The toolbar property is specified the same way. DetailActivity will initialize the
toolbar too, set the title and enable the up navigation icon:

ui/activities/DetailActivity.kt

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState);

3 setContentView(R.layout.activity_detail)

4

5 initToolbar()

6 toolbarTitle = intent.getStringExtra(CITY_NAME)

7 enableHomeAsUp { onBackPressed() }

8 ...

9 }

see more please visit: https://homeofbook.com

24 Interfaces and Delegation 158

Interfaces can help us extract common code from classes that share similar behaviors.
It can be used as an alternative to composition, which keeps our code better organized
and easier to reuse.

Think where interfaces can help you write better code, and check the new one in the
branch of this chapter45.

45https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-24

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-24
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-24

25 Generics
Generic programming consists of writing algorithms without the need of specifying
the exact type the code is going to use. That way, we can create functions or types
that only differ in the set of types they use, improving code reusability. These units
of code are known as generics, and they exist in many languages, including Java and
Kotlin.

In Kotlin, generics are even more important, because the high presence of regular
and extension functions increments the number of times that generics are of some
use for us. Though we have been using them blindly throughout the book, generics
are usually one of the trickiest parts of any language, so I am trying to explain it in
the simplest possible way so that main ideas are clear enough.

25.1 Basics

For instance, we can create a class which specifies a generic type:

1 class TypedClass<T>(parameter: T) {

2 val value: T = parameter

3 }

This class now can be instantiated using any type, and the parameter will use the
type in the definition. We could do:

1 val t1 = TypedClass<String>("Hello World!")

2 val t2 = TypedClass<Int>(25)

But Kotlin is all about simplicity and boilerplate reduction, so if the compiler can
infer the type of the parameter, we do not even need to specify it:

see more please visit: https://homeofbook.com

25 Generics 160

1 val t1 = TypedClass("Hello World!")

2 val t2 = TypedClass(25)

3 val t3 = TypedClass<String?>(null)

As the third object is receiving a null reference, the type still needs to be specified
because the compiler cannot infer it.

We can go beyond and, as in Java, reduce the types that can be used in a generic class
by setting it in the definition. For instance, if we want to restrict the previous class
to non-nullable types, we do:

1 class TypedClass<T : Any>(parameter: T) {

2 val value: T = parameter

3 }

If you compile previous code, you will see that t3 now throws an error. Nullable
types are not allowed anymore. But restrictions can be obviously more strict. What
if we want to accept only classes that extend Context? Easy:

1 class TypedClass<T : Context>(parameter: T) {

2 val value: T = parameter

3 }

4

5 val t1 = TypedClass(activity)

6 val t2 = TypedClass(context)

7 val t3 = TypedClass(service)

Now every class which extends Context can be used as the type of our class. The rest
of types are not allowed.

Of course, types are also allowed in functions. We can build generic functions quite
easily:

1 fun <T> typedFunction(item: T): List<T> {

2 ...

3 }

see more please visit: https://homeofbook.com

25 Generics 161

25.2 Variance

This is really one of the trickiest parts to understand. In Java, there is a problemwhen
we use generic types. Logic says that List<String> should be able to be casted to
List<Object> because it is less restrictive. But take a look at this example:

1 List<String> strList = new ArrayList<>();

2 List<Object> objList = strList;

3 objList.add(5);

4 String str = objList.get(0);

If the Java compiler allowed us to do this, we could add an Integer to an Object

list, and this would crash at some point. That is why wildcards were added to the
language. Wildcards increase flexibility while limiting this problem.

If we add ‘? extends Object’ we are using covariance, which means that we can
deal with any object that uses a type that is more restrictive than Object, but we
can only do get operations safely. If we want to copy a collection of Strings into a
collection of Objects, we should be allowed, right?

Then, if we have:

1 List<String> strList = ...;

2 List<Object> objList = ...;

3 objList.addAll(strList);

This is possible because the definition of addAll() in Collection interface is
something like:

1 List<String>

2 interface Collection<E> ... {

3 void addAll(Collection<? extends E> items);

4 }

Otherwise, without the wildcard, we would not be allowed to use a String list with
this method. The opposite, of course, would fail. We cannot use addAll() to add a list

see more please visit: https://homeofbook.com

25 Generics 162

of Objects to a list of Strings. As we are only getting the items from the collection
we use in that method, it is a perfect example of covariance.

On the other hand, we can find contravariance, which is just the opposite situation.
Following with the Collection example, if we want to add items to a Collection

we are passing as a parameter, we could add objects with a more restrictive type into
a more generic collection. For instance, we could add Strings to an Object list:

1 void copyStrings(Collection<? super String> to, Collection<String> from) {

2 to.addAll(from);

3 }

The only restrictionwe have to add Strings to another collection is that the collection
accepts Objects that are Strings or parent classes.

But wildcards have some limitations. Wildcards define use-site variance, which
means we need to declare them where we use them. This implies adding boilerplate
every time we declare a more generic variable.

Let’s see an example. Using a class similar to the one we had before:

1 public class TypedClass<T> {

2 public T doSomething(){

3 ...

4 }

5 }

This code will not compile:

1 TypedClass<String> t1 = new TypedClass<>();

2 TypedClass<Object> t2 = t1;

Though it really does not make sense, because we could still keep calling all the
methods of the class, and nothing would break. We need to specify that the type can
have a more flexible definition.

see more please visit: https://homeofbook.com

25 Generics 163

1 TypedClass<String> t1 = new TypedClass<>();

2 TypedClass<? extends String> t2 = t1;

The use of wildcards, in this case, makes things more difficult to understand, and
adds some extra boilerplate.

On the other hand, Kotlin deals with it more naturally by using declaration-site
variance. In Kotlin, we specify that we can deal with less restrictive situations when
defining the class or interface, and then we can use it blindly everywhere.

So let’s see how it looks. Instead of long wildcards, Kotlin uses out for covariance
and in for contravariance. In this case, as our class is producing objects that can be
saved into less restrictive variables, we are using covariance. We can define this in
the class declaration directly:

1 class TypedClass<out T>() {

2 fun doSomething(): T {

3 ...

4 }

5 }

And that is all we need. Now, the same example that would not compile in Java is
perfectly possible in Kotlin:

1 val t1 = TypedClass<String>()

2 val t2: TypedClass<Any> = t1

If you were already used to these concepts, I am sure you can use in and out in Kotlin
without any hassle. Otherwise, it requires a little practice and a good understanding
of these concepts.

25.3 Generics examples

After the theory, let’s move to some practical functions that will make our lives
easier. Instead of reinventing the wheel, I am using three functions that are included
in Kotlin standard library. These functions let us do remarkable things with just a
generic implementation. They can inspire you to create your own functions.

see more please visit: https://homeofbook.com

25 Generics 164

let

let is a simple function that can be called by any object. It receives a function that
takes the object as a parameter and returns the value that this function returns. It is
handy to deal with nullable objects, for instance. Here it is the definition:

1 inline fun <T, R> T.let(f: (T) -> R): R = f(this)

It uses two generic types: T and R. The first type is defined by the calling object, and
it is also the type that the lambda receives as the input argument. The second one is
the result of the function.

How can we use it? You may remember that, when we were retrieving data from a
data source, the result could be null. We then returned a result mapped to the domain
model if it was not null, or just a null reference otherwise:

data/db/ForecastDb.kt

1 if (forecast != null) dataMapper.convertDayToDomain(forecast) else null

This can be improved. We should not need to deal with nullable types that way. We
can avoid it by using let:

data/db/ForecastDb.kt

1 forecast?.let { dataMapper.convertDayToDomain(it) }

let function is only executed if forecast is not null thanks to ‘?.’ operator. It returns
null otherwise. Just what we were trying to achieve.

with

We have talked a lot about this function during the book. with receives an object
and a lambda that behaves as an extension function. So we can use this inside the
lambda to refer to the object. It also returns an object defined in the last line of the
function.

see more please visit: https://homeofbook.com

25 Generics 165

1 inline fun <T, R> with(receiver: T, f: T.() -> R): R = receiver.f()

Generics work the same way here: T stands for the receiver type and R for the
result. As you can see, the lambda is defined as an extension function by using this
declaration: f: T.() -> R. That is why we can then call receiver.f().

We have several examples throughout the app:

data/db/DbDataMapper.kt

1 fun convertFromDomain(forecast: ForecastList) = with(forecast) {

2 val daily = dailyForecast.map { convertDayFromDomain(id, it) }

3 CityForecast(id, city, country, daily)

4 }

apply

It may look very similar to with function, but the idea is a bit different. apply can be
used to avoid the creation of builders, because the object that calls the function can
initialize itself the way it needs, and the apply function returns the same object:

1 inline fun <T> T.apply(f: T.() -> Unit): T { f(); return this }

We only need one generic type here, because the object that calls the function is also
the returned value. A nice simple example would be:

1 val textView = TextView(context).apply {

2 text = "Hello"

3 hint = "Hint"

4 textColor = android.R.color.white

5 }

It creates a TextView, modifies some properties, and assigns it to a variable. Every-
thing in a simple, readable and compact syntax. Let’s use it in our current code. In
ToolbarManager, we were doing this to create the navigation drawable:

see more please visit: https://homeofbook.com

25 Generics 166

1 private fun createUpDrawable() = with(DrawerArrowDrawable(toolbar.ctx)) {

2 progress = 1f

3 this

4 }

Using with and returning this is clearly something that can be done easier by using
apply:

ui/activities/ToolbarManager.kt

1 private fun createUpDrawable() = DrawerArrowDrawable(toolbar.ctx).apply {

2 progress = 1f

3 }

You can review some more little improvements in Kotlin for Android Developers
repository46.

46https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-25

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-25
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-25

26 Settings Screen
Until now, we have been using a default city to implement the app, but it is time add
the ability to select another city. The app needs a settings section where the user can
change the city.

We are going to stick to the zip code to identify the city. A real app would probably
need more information because a zip code by itself does not identify a city in the
whole world. But we at least will show a city around the world that uses the zip code
we are defining in settings. This is a good chance to explain a different way to deal
with preferences.

26.1 Creating the settings activity

A new activity will be opened when the settings option is selected in the overflow
menu in the toolbar. So the first thing we need is a new SettingsActivity:

ui/activities/SettingsActivity.kt

1 class SettingsActivity : AppCompatActivity() {

2

3 override fun onCreate(savedInstanceState: Bundle?) {

4 super.onCreate(savedInstanceState)

5 setContentView(R.layout.activity_settings)

6 setSupportActionBar(toolbar)

7 supportActionBar?.setDisplayHomeAsUpEnabled(true)

8 }

9

10 override fun onOptionsItemSelected(item: MenuItem) = when (item.itemId) {

11 android.R.id.home -> {

12 onBackPressed()

13 true

14 }

15 else -> false

16 }

17 }

see more please visit: https://homeofbook.com

26 Settings Screen 168

We will save the preference when the user gets out of the screen activity, so we are
going to deal with the Up action the same way as the Back one, by redirecting the
action to onBackPressed. Now, let’s create the XML layout. A simple EditText is
enough for the preference:

layout/activity_settings.xml

1 <FrameLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent">

5

6 <include layout="@layout/toolbar"/>

7

8 <LinearLayout

9 android:orientation="vertical"

10 android:layout_width="match_parent"

11 android:layout_height="match_parent"

12 android:layout_marginTop="?attr/actionBarSize"

13 android:padding="@dimen/spacing_xlarge">

14

15 <TextView

16 android:layout_width="wrap_content"

17 android:layout_height="wrap_content"

18 android:text="@string/city_zipcode"/>

19

20 <EditText

21 android:id="@+id/cityCode"

22 android:layout_width="match_parent"

23 android:layout_height="wrap_content"

24 android:hint="@string/city_zipcode"

25 android:inputType="number"/>

26

27 </LinearLayout>

28

29 </FrameLayout>

And then declare the activity in the AndroidManifest.xml:

see more please visit: https://homeofbook.com

26 Settings Screen 169

AndroidManifest.xml

1 <activity

2 android:name=".ui.activities.SettingsActivity"

3 android:label="@string/settings"/>

26.2 Accessing Shared Preferences

You probably know what Android Shared Preferences47 are. They consist of a set
of keys and values that can be easily saved and restored by using the Android
framework. These preferences are integrated with some parts of the SDK to make
some tasks easier. Besides, since Android 6.0 (Marshmallow), shared preferences can
be automatically cloud-saved, so when a user restores the app in a new device, these
preferences are automatically recovered too.

Thanks to the use of property delegation, we can deal with preferences cleverly. We
can create a delegate that queries the preference when get is called and saves it when
we call to set.

As we want to save the zip code, which is a Long value, let’s create a delegate for Long
properties. In DelegatesExtensions.kt, implement a new LongPreference class:

extensions/DelegatesExtensions.kt

1 class LongPreference(

2 private val context: Context,

3 private val name: String, val default: Long) {

4

5 private val prefs by lazy {

6 context.getSharedPreferences("default", Context.MODE_PRIVATE)

7 }

8

9 operator fun getValue(thisRef: Any?, property: KProperty<*>): Long =

10 prefs.getLong(name, default)

11

12 operator fun setValue(thisRef: Any?, property: KProperty<*>, value: Long) {

13 prefs.edit().putLong(name, value).apply()

47http://developer.android.com/training/basics/data-storage/shared-preferences.html

see more please visit: https://homeofbook.com

http://developer.android.com/training/basics/data-storage/shared-preferences.html
http://developer.android.com/training/basics/data-storage/shared-preferences.html

26 Settings Screen 170

14 }

15 }

First, we create a lazy access to preferences. That way, if we do not use the property,
this delegate never requests the SharedPreferences object.

When get is called, its implementation uses the preferences instance to retrieve a long
property with the name that was specified in the delegate declaration, and defaulting
to the default value if the property is not found. When a value is set, it requests a
preferences editor that saves the value using the name of the property.

We can then define the new delegate in the DelegatesExt object, so that it is easier
to access when required:

extensions/DelegatesExtensions.kt

1 object DelegatesExt {

2

3 fun longPreference(context: Context, name: String, default: Long) =

4 LongPreference(context, name, default)

5 }

In SettingsActivity, we can now define a property to deal with the zip code
preference. I am also creating a couple of constants which keep the name and the
default value of the property. That way they can be used in other sections of the
App.

ui/activities/SettingsActivity.kt

1 companion object {

2 const val ZIP_CODE = "zipCode"

3 const val DEFAULT_ZIP = 94043L

4 }

5

6 private var zipCode: Long

7 by DelegatesExt.longPreference(this, ZIP_CODE, DEFAULT_ZIP)

Now it is easy to work with this preference. In onCreate, we get the value of the
property and assign it to the EditText:

see more please visit: https://homeofbook.com

26 Settings Screen 171

ui/activities/SettingsActivity.kt

1 override fun onCreate(savedInstanceState: Bundle?) {

2 ...

3 cityCode.setText(zipCode.toString())

4 }

We cannot use the self-generated property text because EditText returns an
Editable in getText, so the property defaults to that value. If we try to assign a
String, the compiler will complain. Using setText() will be enough.

Nowwe have everything we need to implement onBackPressed. Here, the new value
of the property is saved:

ui/activities/SettingsActivity.kt

1 override fun onBackPressed() {

2 super.onBackPressed()

3 zipCode = cityCode.text.toString().toLong()

4 }

The MainActivity requires some little changes. First, it also needs a zipCode

property.

ui/activities/MainActivity.kt

1 private val zipCode: Long by DelegatesExt.longPreference(this,

2 SettingsActivity.ZIP_CODE, SettingsActivity.DEFAULT_ZIP)

Moreover, I am moving the forecast load to onResume so that every time the activity
is resumed, it refreshes the data, just in case the zip code changed. Of course, there
are more efficient ways to do this, by checking whether the zip code changed before
requesting the forecast again, for instance. But I want to keep this example simple,
and the local database already keeps the requested info, so this solution is not that
bad:

see more please visit: https://homeofbook.com

26 Settings Screen 172

ui/activities/MainActivity.kt

1 override fun onResume() {

2 super.onResume()

3 loadForecast()

4 }

5

6 private fun loadForecast() = doAsync {

7 val result = RequestForecastCommand(zipCode).execute()

8 uiThread {

9 val adapter = ForecastListAdapter(result) {

10 startActivity<DetailActivity>(DetailActivity.ID to it.id,

11 DetailActivity.CITY_NAME to result.city)

12 }

13 forecastList.adapter = adapter

14 toolbarTitle = "${result.city} (${result.country})"

15 }

16 }

The RequestForecastCommand is now using the zipCode property instead of the
previously fixed value.

There is just one more thing we must do: start the settings activity when the user
clicks on the overflow action. In ToolbarManager, the initToolbar function requires
a small change:

ui/activities/ToolbarManager.kt

1 when (it.itemId) {

2 R.id.action_settings -> toolbar.ctx.startActivity<SettingsActivity>()

3 else -> App.instance.toast("Unknown option")

4 }

26.3 Generic preference delegate

Now that we are generics experts, why not extending LongPreference to be used
with any type that Shared Preferences support? Let’s create a new Preference

delegate:

see more please visit: https://homeofbook.com

26 Settings Screen 173

extensions/DelegatesExtensions.kt
1 class Preference<T>(private val context: Context, private val name: String,

2 private val default: T) {

3

4 private val prefs by lazy {

5 context.getSharedPreferences("default", Context.MODE_PRIVATE)

6 }

7

8 operator fun getValue(thisRef: Any?, property: KProperty<*>): T =

9 findPreference(name, default)

10

11 operator fun setValue(thisRef: Any?, property: KProperty<*>, value: T) {

12 putPreference(name, value)

13 }

14 ...

15 }

This preference is very similar to what we had before. We just substituted the Long
references with a generic type T, and called to a couple of functions that do the
hard work. These functions are very simple, though a bit repetitive. They check the
type and use the specific method from preferences. For instance, the findPreference
function looks like this:

extensions/DelegatesExtensions.kt
1 private fun findPreference(name: String, default: T): T = with(prefs) {

2 val res: Any = when (default) {

3 is Long -> getLong(name, default)

4 is String -> getString(name, default)

5 is Int -> getInt(name, default)

6 is Boolean -> getBoolean(name, default)

7 is Float -> getFloat(name, default)

8 else -> throw IllegalArgumentException(

9 "This type can't be saved into Preferences")

10 }

11

12 res as T

13 }

And basically the same for putPreference function, but using the preferences editor
and saving the result of when at the end, by calling apply():

see more please visit: https://homeofbook.com

26 Settings Screen 174

extensions/DelegatesExtensions.kt

1 private fun putPreference(name: String, value: T) = with(prefs.edit()) {

2 when (value) {

3 is Long -> putLong(name, value)

4 is String -> putString(name, value)

5 is Int -> putInt(name, value)

6 is Boolean -> putBoolean(name, value)

7 is Float -> putFloat(name, value)

8 else -> throw IllegalArgumentException("This type can be saved into Preferenc\

9 es")

10 }.apply()

11 }

Now update DelegatesExt object and you are done:

extensions/DelegatesExtensions.kt

1 object DelegatesExt {

2 ...

3 fun <T> preference(context: Context, name: String, default: T)

4 = Preference(context, name, default)

5 }

After this chapter, the user can now access the settings screen and modify the zip
code. That way, when they return to the main screen, the forecast is automatically
refreshed with the new information. Check the rest of small tweaks in the reposi-
tory48.

48https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-26

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-26
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-26
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-26

27 A first walk into coroutines
Coroutines were the most significant introduction to Kotlin 1.1. They are great
because of how powerful they are, and the community is still finding out how to
take the most out of them.

To put it simply, coroutines are a way to write asynchronous code sequentially.
Instead of messing around with callbacks, you can write your lines of code one
after the other. Some of them can suspend the execution and wait until the result
is available.

If you were a former C# developer, async/await is the closest concept. However,
coroutines in Kotlin are more powerful, because instead of being a specific imple-
mentation of the idea, they are a language feature that developers can implement in
different ways to solve specific problems.

You can write your solution, or use one of the several options that the Kotlin team
and other independent developers have built.

You need to understand that coroutines are an experimental feature in Kotlin 1.1. The
Kotlin team uses this category for features that they want to release early but might
change in the future. In the case of coroutines, they plan to support the current API,
but you might want to migrate to the new definition. As we will see later, you need
to opt in for this feature. Otherwise, the IDE shows a warning when you use it.

But this also means that you should take this chapter as an example of what you can
do, not a rule of thumb. Things may change in the next few months.

27.1 Understanding how coroutines work

My goal here is that you can get some basic concepts and use one of the existing
libraries, not to build your implementations. But I think it is important to understand
some of the internals so that you do not blindly use what you are given.

see more please visit: https://homeofbook.com

27 A first walk into coroutines 176

Coroutines are based on the idea of suspending functions: functions that can stop the
execution when they are called and make it continue once it has finished running
their background task.

Suspending functions are marked with the reserved word suspend, and can only be
called inside other suspending functions or a coroutine.

Thus, you cannot call a suspending function everywhere. There needs to be a
surrounding function that builds the coroutine and provides the required context.
Something like this:

1 fun <T> async(block: suspend () -> T)

I am not explaining how to implement the above function. It is a complicated process
that is out of the scope of this book, and for most cases, there are solutions already
implemented for you. If you are interested in building your own, you can read the
specification written in coroutines Github49. What you need to know is that the
function can have whatever name you want to give it and that it has at least a
suspending block as a parameter.

Then you could implement a suspending function and call it inside that block:

1 suspend fun mySuspendingFun(x: Int) : Result {

2 ...

3 }

4

5 async {

6 val res = mySuspendingFun(20)

7 print(res)

8 }

Are coroutines threads then? Not exactly. They work similarly, but are much more
lightweight and efficient. You can have millions of coroutines running on a few
threads, which opens a world of possibilities.

There are three ways you can make use of the coroutines feature:

49https://github.com/Kotlin/kotlin-coroutines/blob/master/kotlin-coroutines-informal.md

see more please visit: https://homeofbook.com

https://github.com/Kotlin/kotlin-coroutines/blob/master/kotlin-coroutines-informal.md
https://github.com/Kotlin/kotlin-coroutines/blob/master/kotlin-coroutines-informal.md

27 A first walk into coroutines 177

• Raw implementation: it means building your way to use coroutines. This is
quite complex and usually not required at all.

• Low-level implementations: Kotlin provides a set of libraries that you can find
in kotlinx.coroutines50 repository, which solves some of the hardest parts and
provides a specific implementation for different scenarios. There is one for
Android51, for instance.

• Higher-level implementations: if you want to have a solution that provides
everything you need to start using coroutines right away, there are several
libraries out there that do all the hard work for you, and the list keeps growing.
I am going to stick to Anko, which provides a solution that works well on
Android, and you are already familiar with the library.

27.2 Using Anko for coroutines

Since 0.10 version, Anko provides a couple of ways to use coroutines in Android.

The first one is very similar to what we saw in the example above, and also similar
to what other libraries do.

First, you need to create an async block where suspension functions can run:

1 async(UI) {

2 ...

3 }

The UI argument is the execution context for the async block.

Then you can create blocks that are executed in a background thread and return the
result to the UI thread. Those blocks are defined using the bg function:

50https://github.com/Kotlin/kotlinx.coroutines
51https://github.com/Kotlin/kotlinx.coroutines/tree/master/ui/kotlinx-coroutines-android

see more please visit: https://homeofbook.com

https://github.com/Kotlin/kotlinx.coroutines
https://github.com/Kotlin/kotlinx.coroutines/tree/master/ui/kotlinx-coroutines-android
https://github.com/Kotlin/kotlinx.coroutines/tree/master/ui/kotlinx-coroutines-android
https://github.com/Kotlin/kotlinx.coroutines
https://github.com/Kotlin/kotlinx.coroutines/tree/master/ui/kotlinx-coroutines-android

27 A first walk into coroutines 178

1 async(UI) {

2 val r1: Deferred<Result> = bg { fetchResult1() }

3 val r2: Deferred<Result> = bg { fetchResult2() }

4 updateUI(r1.await(), r2.await())

5 }

bg returns a Deferred object, which suspends the coroutine when the function
await() is called, just until it returns the result. Wewill see this option in the example
below.

As you know, as Kotlin compiler can infer the type of the variables, this could be
simpler:

1 async(UI) {

2 val r1 = bg { fetchResult1() }

3 val r2 = bg { fetchResult2() }

4 updateUI(r1.await(), r2.await())

5 }

The second alternative is to make use of the integration with listeners that is provided
on specific sub-libraries, depending on which listener you are going to use. For
instance, on anko-sdk15-coroutines, there exists an onClick listener whose lambda
is indeed a coroutine. So you can start using suspending functions right away inside
the listener block:

1 textView.onClick {

2 val r1 = bg { fetchResult1() }

3 val r2 = bg { fetchResult2() }

4 updateUI(r1.await(), r2.await())

5 }

As you can see, the result is very similar to the previous one. You are just saving
some code.

To use it, you will need to add some of these dependencies, depending on the listeners
you want to use:

see more please visit: https://homeofbook.com

27 A first walk into coroutines 179

1 compile "org.jetbrains.anko:anko-sdk15-coroutines:$anko_version"

2 compile "org.jetbrains.anko:anko-appcompat-v7-coroutines:$anko_version"

3 compile "org.jetbrains.anko:anko-design-coroutines:$anko_version"

27.3 Using coroutines in our example

Our current example does not have many complex requests, and there is not much
value in using coroutines instead of doAsync, but I want to show you how to
configure your project to start using them. It is pretty straightforward.

First, add the dependency to the build.gradle:

app/build.gradle

1 compile "org.jetbrains.anko:anko-coroutines:$anko_version"

Next, if you remember, I told you that you need to opt in for the feature. Otherwise,
it will show a warning. To do that, simply add to the modulebuild.gradle:

app/build.gradle

1 kotlin {

2 experimental {

3 coroutines "enable"

4 }

5 }

Now you are ready to start using coroutines. Let’s go first to the detail activity.

You can change this code:

1 doAsync {

2 val result = RequestDayForecastCommand(intent.getLongExtra(ID, -1)).execute()

3 uiThread { bindForecast(result) }

4 }

with this one:

see more please visit: https://homeofbook.com

27 A first walk into coroutines 180

ui/activities/DetailActivity.kt

1 async(UI) {

2 val result = bg { RequestDayForecastCommand(intent.getLongExtra(ID, -1))

3 .execute() }

4 bindForecast(result.await())

5 }

The forecast is requested in a background thread thanks to the bg function, which
returns a deferred result. That result is awaited in the bindForecast call until it is
ready to be returned.

Though there is a problem here. Coroutines have a problem: they are keeping a
reference to DetailActivity, leaking it if the request never finishes for instance.

No worries, because Anko has a solution. You can create a weak reference to your
activity, and use that one instead:

1 val ref = asReference()

2 val id = intent.getLongExtra(ID, -1)

3

4 async(UI) {

5 val result = bg { RequestDayForecastCommand(id).execute() }

6 ref().bindForecast(result.await())

7 }

This reference allows calling the activity when it is available and cancels the
coroutine in case the activity has been killed. Be careful to ensure that all calls to
activity methods or properties are done via this ref object.

But this can get a little complicated if the coroutine interacts several times with
the activity. In MainActivity, for instance, this solution becomes a little more
convoluted:

see more please visit: https://homeofbook.com

27 A first walk into coroutines 181

1 private fun loadForecast() {

2

3 val ref = asReference()

4 val localZipCode = zipCode

5

6 async(UI) {

7 val result = bg { RequestForecastCommand(localZipCode).execute() }

8 val weekForecast = result.await()

9 ref().updateUI(weekForecast)

10 }

11 }

You cannot use ref() inside the bg block because the code inside that block is not a
suspension context, so you need to save the zipCode into another local variable.

I honestly think that leaking the activity for 1-2 seconds is not that bad, and probably
will not be worth the boilerplate. In fact, we were already leaking it with the previous
solution. So if you can ensure that your background process is not taking forever (for
instance, by setting a timeout to your server requests), you are safe by not using
asReference().

This way, the changes to MainActivity would be simpler:

ui/activities/MainActivity.kt

1 private fun loadForecast() = async(UI) {

2 val result = bg { RequestForecastCommand(zipCode).execute() }

3 updateUI(result.await())

4 }

So with all this, you now have your asynchronous code written synchronously very
easily. As I said at the beginning, this code is quite simple, but imagine convoluted
cases where the result of one background operation is used by the next one, or when
you need to iterate over a list and execute a request per item. All this can be written
as regular synchronous code, which is much easier to read and maintain.

Bye bye, callback hell. Check new changes in chapter-2752 branch.

52https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-27

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-27
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-27

28 Testing your App
We are reaching the end of this trip. You already learned most Kotlin features
throughout this book, but you are probably wondering if you can test your Android
Apps using Kotlin exclusively. The answer is: of course!

In Android, we have a couple of different tests: unit and instrumentation tests. This
book is not meant to teach you how to write tests; there are entire books dedicated to
that matter. My goal in this chapter is to explain how to prepare your environment
to be able to write some tests and show you that Kotlin also works fine for testing.

28.1 Unit testing

I will not get into discussions about what unit testing means. There are many
definitions out there with some slight differences. A general idea could be that unit
tests are the tests that validate an individual unit of source code. What a ‘unit’
involves is left to the reader. For the sake of simplicity, I am defining a unit test
as a test that does not need a device to run. The IDE can run the tests and show a
result that identifies which tests succeeded and which ones failed.

Unit testing is usually done using the JUnit library. So let’s add the dependency to
the build.gradle. As this dependency is only used when running tests, we can use
testImplementation instead of implementation. This way, the library is left out for
regular compilations, reducing the size of the APK:

app/build.gradle

1 dependencies {

2 ...

3 testImplementation "junit:junit:4.12"

4 }

see more please visit: https://homeofbook.com

28 Testing your App 183

Now sync Gradle to get the library included in your project. In old versions of
Android Studio, you may need to choose which kind of tests you want to run. Go to
the ‘Build Variants’ tab (you probably have it on the left side of the IDE) and click on
‘Test Artifact’ dropdown. You should choose ‘Unit Tests’ there. New Android Studio
versions can have both kinds of tests enabled at the same time, so this step is not
required.

Another thing you need to do is create a new folder. Below src, you already probably
have androidTest and main. Create another one called test, and a folder called java
below. So now you should have a src/test/java folder colored in green. This is a
good indication that the IDE detected that we are in ‘Unit Test’ mode and that this
folder contains test files.

Let’s write a simple test to check everything works properly. Create a new Kotlin
class called SimpleTest using the proper package (com.antonioleiva.weatherapp in
my case, but you need to use the main package of your app). Once you have created
the new file, write this simple test:

test/SimpleTest.kt

1 import org.junit.Test

2 import kotlin.test.assertTrue

3

4 class SimpleTest {

5 @Test

6 fun `unit testing works`() {

7 assertTrue(true)

8 }

9 }

Use the @Test annotation to identify the function as a test. Be sure to use org.unit.Test.
Then add a simple assertion. It only checks that true is true, which should succeed.

Did you see how I wrote the name of the function? If you use backquotes, you
can provide a readable name for your tests. When tests run in Android Studio, the
summary shows texts that are much easier to read.

You will see that these names show an error. It is because this format is not available
for Android code, so it is not available for instrumentation tests. But you can use

see more please visit: https://homeofbook.com

28 Testing your App 184

them without issues in unit tests, so you can disable the inspection just for tests and
use it safely.

To execute the tests, right click on the new java folder you created below test, and
choose ‘Run All Tests’. When the compilation finishes, it will run the test, and you
will see a summary showing the result. You should notice that your test passed.

Now it is time to create some real tests. Everything that deals with the Android
framework probably needs an instrumentation test or some extra libraries such as
Robolectric53. Because of that, in these examples, I am testing things that do not use
anything from the framework. For instance, I will test the extension function that
creates a date String from a Long.

Create a new file called ExtensionTests, and add this tests:

test/ExtensionsTest.kt
1 class ExtensionsTest {

2 @Test

3 fun `"longToDateString" returns valid value`() {

4 assertEquals("Oct 19, 2015", 1445275635000L.toDateString())

5 }

6

7 @Test

8 fun `"longToDateString" with full format returns valid value`() {

9 assertEquals("Monday, October 19, 2015",

10 1445275635000L.toDateString(DateFormat.FULL))

11 }

12 }

These tests check that a Long instance is properly converted to a String. The first
one tests the default behavior (which uses DateFormat.MEDIUM), while the second
one specifies a different format. Run the tests and see that all of them pass. I also
recommend you to change something and see how it crashes.

If you are used to testing your apps in Java, you will see there is not much difference
here. I have covered a simple example, but from here you can create more complex
tests to validate other parts of the app. For instance, we could write some tests for
ForecastProvider. We can use Mockito library to mock some other classes and be
able to test the provider independently:

53http://robolectric.org/

see more please visit: https://homeofbook.com

http://robolectric.org/
http://robolectric.org/

28 Testing your App 185

build.gradle

1 buildscript {

2 ...

3 ext.mockito_version = '2.16.0'

4 }

app/build.gradle

1 dependencies {

2 ...

3 testImplementation "junit:junit:4.12"

4 testImplementation "org.mockito:mockito-core:$mockito_version"

5 }

Now create a ForecastProviderTest. We are going to test that a ForecastProvider
with a DataSource that returns something will get a result that is not null. So first
we need to mock a ForecastDataSource:

test/domain/datasource/ForecastProviderTest.kt

1 val ds = mock(ForecastDataSource::class.java)

2 `when`(ds.requestDayForecast(0)).then {

3 Forecast(0, 0, "desc", 20, 0, "url")

4 }

As you see, we need backquotes for when function, because when is a reserved word
in Kotlin. So we need to escape it if we find some Java code that uses it.

An alternative would be to rename the import:

1 import org.mockito.Mockito.`when` as whenever

2

3 ...

4

5 whenever(ds.requestDayForecast(0)).then { ... }

It is up to you; I will use the backquotes in this case.

Now we create a provider with this data source, and check that the result of the call
to that method is not null:

see more please visit: https://homeofbook.com

28 Testing your App 186

1 val provider = ForecastProvider(listOf(ds))

2 assertNotNull(provider.requestForecast(0))

This is the complete test function:

test/domain/datasource/ForecastProviderTest.kt

1 @Test fun `data source returns a value`() {

2 val ds = mock(ForecastDataSource::class.java)

3 `when`(ds.requestDayForecast(0)).then {

4 Forecast(0, 0, "desc", 20, 0, "url")

5 }

6

7 val provider = ForecastProvider(listOf(ds))

8 assertNotNull(provider.requestForecast(0))

9 }

If you run this, you will see that it crashes. Thanks to this test, we are detecting we
have something wrong in our code. The test is failing because ForecastProvider is
initializing SOURCES inside its companion object before it is used. We can add some
sources to the ForecastProvider through the constructor, and this static list would
never be used, so it should be lazy loaded:

domain/datasource/ForecastProvider.kt

1 companion object {

2 val DAY_IN_MILLIS = 1000 * 60 * 60 * 24

3 val SOURCES by lazy { listOf(ForecastDb(), ForecastServer()) }

4 }

If you now run again, you will see it is now passing all the tests.

We can also test, for instance, that when a source returns null, it will iterate over the
next source to get a result:

see more please visit: https://homeofbook.com

28 Testing your App 187

test/domain/datasource/ForecastProviderTest.kt

1 @Test fun `empty database returns server value`() {

2 val db = mock(ForecastDataSource::class.java)

3

4 val server = mock(ForecastDataSource::class.java)

5 `when`(server.requestForecastByZipCode(

6 any(Long::class.java), any(Long::class.java)))

7 .then {

8 ForecastList(0, "city", "country", listOf())

9 }

10

11 val provider = ForecastProvider(listOf(db, server))

12

13 assertNotNull(provider.requestByZipCode(0, 0))

14 }

As you see, the simple dependency inversion we solved by using default values for
arguments is enough to let us implement some simple unit tests. There are many
more things we could test about this provider, but this example is enough to show
that we can use the basic unit testing tools.

28.2 Mocking closed classes

In Kotlin, everything is closed by default, so you may find yourself in trouble when
you want to mock a class. Mockito cannot mock closed (final) classes.

So imagine we want to test RequestDayForecastCommand, and check that when its
execute() method is called, the provider is also called. We could do this:

see more please visit: https://homeofbook.com

28 Testing your App 188

test/domain/commands/RequestDayForecastCommandTest.kt

1 class RequestDayForecastCommandTest {

2

3 @Test

4 fun `provider is called when command is executed`() {

5 val forecastProvider = mock(ForecastProvider::class.java)

6 val command = RequestDayForecastCommand(2, forecastProvider)

7

8 command.execute()

9

10 verify(forecastProvider).requestForecast(2)

11 }

12 }

If you run this test, you will find that it fails:

1 Mockito cannot mock/spy because :

2 - final class

You have two options to overcome this situation:

• Use the open reserved word, which would allow Mockito to mock your class,
but also any other class to extend this one (which was probably closed for a
reason).

• Extract an interface, and mock the interface. This one is a cleaner solution, but
also slightly redundant if you are not using that interface for anything else.

There is, however, a third alternative: an experimental feature in Mockito 2. This
feature allows you to mock final classes and avoid those extra artifacts. It might be
that by the time you read these lines, the feature is not experimental anymore. But
if it still is, you need to add an extra library to opt in for the feature:

see more please visit: https://homeofbook.com

28 Testing your App 189

app/build.gradle

1 testImplementation "org.mockito:mockito-inline:$mockito_version"

Even if it is experimental, it works pretty well, so feel safe to use it.

Now you can rerun your test, and see how it magically passes.

28.3 Instrumentation tests

Instrumentation tests are a bit different. They are typically used to test UI interac-
tions, where we need an Application instance to be running by the time the tests are
executed. To do this, we need to deploy the app and run the tests on a device.

This type of tests reside in the androidTest folder, andwemust change ‘Test Artifact’
to ‘Android Instrumentation Tests’ in ‘Build Variants’ panel on old Android Studio
versions. The official library to implement instrumentation tests is Espresso54, which
helps us easily navigate through our App by writing Actions, and filter and check
results using ViewMatchers and Matchers.

The configuration is a bit harder than the previous one. We need a bunch of extra
libraries and Gradle configuration. The good thing is that Kotlin does not add any
extra overhead, so if you already know how to configure Espresso, it should be easy
for you.

First, specify the test runner in defaultConfig:

app/build.gradle

1 defaultConfig {

2 ...

3 testInstrumentationRunner "android.support.test.runner.AndroidJUnitRunner"

4 }

Once you have configured the runner, it is time to add the rest of the dependencies,
this time using androidTestImplementation. That way, these libraries are only
added when we compile to run the instrumentation tests:

54https://google.github.io/android-testing-support-library/

see more please visit: https://homeofbook.com

https://google.github.io/android-testing-support-library/
https://google.github.io/android-testing-support-library/

28 Testing your App 190

build.gradle

1 buildscript {

2 ...

3 ext.test_support_version = '1.0.1'

4 ext.espresso_version = '3.0.1'

5 }

app/build.gradle

1 dependencies {

2 ...

3 androidTestImplementation "com.android.support:support-annotations:$support_versi\

4 on"

5 androidTestImplementation "com.android.support.test:runner:$test_support_version"

6 androidTestImplementation "com.android.support.test:rules:$test_support_version"

7 androidTestImplementation "com.android.support.test.espresso:espresso-core:$espre\

8 sso_version"

9 androidTestImplementation("com.android.support.test.espresso:espresso-contrib:$es\

10 presso_version") {

11 exclude group: 'com.android.support', module: 'appcompat-v7'

12 exclude group: 'com.android.support', module: 'support-v4'

13 exclude group: 'com.android.support', module: 'design'

14 exclude group: 'com.android.support', module: 'recyclerview-v7'

15 }

I do not want to spend much time talking about this, but here it is a brief explanation
of why you need these libraries:

• runner: It is the test runner, the one we specified in defaultConfig.
• rules: Includes some rules that help tests inflate and launch the activities. We
will use a rule in our examples.

• espresso-core: the basic features of Espresso, the library that makes instru-
ment tests easier.

• espresso-contrib: it adds some extra features, such as RecyclerView testing
support. We have to exclude some of its dependencies, because we already
have them in the project, and tests crash otherwise.

see more please visit: https://homeofbook.com

28 Testing your App 191

Let’s now create a simple example. The test will click on the first row of the forecast
list, and check that it can find a view with the id R.id.weatherDescription. This
view is in the DetailActivity, which implies that we successfully navigated to the
detail after clicking on a view inside the RecyclerView.

1 class SimpleInstrumentationTest {

2

3 @get:Rule

4 val activityRule = ActivityTestRule(MainActivity::class.java)

5

6 ...

7 }

We need to create an activity rule, which instantiates the activity that the test will
use. In Java, you would annotate the field using @Rule. However, as you know, fields
and properties are not the same, so if you use just that, the execution will fail because
the access to the field inside the property is not public. What you need to do is to
annotate the getter. Kotlin allows doing that by specifying get or set before the name
of the rule. In this case, write @get:Rule.

After that, we are ready to create our first test:

1 @Test fun itemClickNavigatesToDetail() {

2 onView(withId(R.id.forecastList)).perform(

3 RecyclerViewActions

4 .actionOnItemAtPosition<RecyclerView.ViewHolder>(0, click()))

5 onView(withId(R.id.weatherDescription))

6 .check(matches(isAssignableFrom(TextView::class.java)))

7 }

As these tests run on a device, we cannot use the same naming format we used for
unit tests. Otherwise, it will crash.

The function is annotated with @Test, the same way we did with unit tests. We can
start using Espresso in the body of the test. It first performs a click over the first
position of the recycler. Then, it checks that it can find a view with a specific id and
that it is an instance of TextView.

To run the test, you can do the same you did for unit tests: right click on the java
folder below androidTest, and choose ‘RunAll Tests’. Now, in ‘Target device’, choose

see more please visit: https://homeofbook.com

28 Testing your App 192

the target you prefer. Click ‘OK’ and then run. You should see how the app starts on
your device, and the test clicks on the first position, opens the detail activity and
closes the App again.

Nowwe are going to do a more difficult one. The test will open the overflow from the
Toolbar, click on Settings action, change the city code and check that the Toolbar
title has changed to the corresponding one.

1 @Test fun modifyZipCodeChangesToolbarTitle() {

2 openActionBarOverflowOrOptionsMenu(activityRule.activity)

3 onView(withText(R.string.settings)).perform(click())

4 onView(withId(R.id.cityCode)).perform(replaceText("94301"))

5 pressBack()

6 onView(isAssignableFrom(Toolbar::class.java))

7 .check(matches(

8 withToolbarTitle(`is`("Palo Alto (US)"))))

9 }

What the test exactly does is:

• It first opens the overflow by using openActionBarOverflowOrOptionsMenu.
• It then finds a view with the Settings text and performs a click on it.
• After that, the settings activity opens, so it looks for the EditText and replaces
the old city code with a new one.

• It presses the back button, which saves the new value in the preferences, and
closes the activity.

• As onResume is executed in MainActivity, the request is performed again. This
retrieves the forecast of the new city.

• The last line checks the Toolbar title and sees whether it matches with the
proper value.

There is not a default matcher to check Toolbar title, but Espresso is easy to extend,
so we can create a new matcher which implements the check:

see more please visit: https://homeofbook.com

28 Testing your App 193

1 private fun withToolbarTitle(textMatcher: Matcher<CharSequence>): Matcher<Any> =

2 object : BoundedMatcher<Any, Toolbar>(Toolbar::class.java) {

3

4 override fun matchesSafely(toolbar: Toolbar): Boolean =

5 textMatcher.matches(toolbar.title)

6

7 override fun describeTo(description: Description) {

8 description.appendText("with toolbar title: ")

9 textMatcher.describeTo(description)

10 }

11 }

The matchesSafely function is the place where the check happens, while the
describeTo function adds some information about the matcher.

This chapter has been especially interesting because we have seen how Kotlin is
entirely compatible with both unit and integration tests and can interoperate with
the testing libraries. Take a look at the code55 and run the tests by yourself.

55https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-28

see more please visit: https://homeofbook.com

https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-28
https://github.com/antoniolg/Kotlin-for-Android-Developers/tree/chapter-28

29 Extra concepts
Throughout this book, we have talked about the most important concepts of the
Kotlin language. But we did not use some of them when implementing the app, and
I would not want to let them out of these pages. In this chapter, I will review some
unrelated features that you could be helpful for you when you develop your next
Android app using Kotlin.

29.1 Nested classes

As in Java, we can define classes inside other classes. By default, an inner class will
not be able to access the members of the outer class (it would behave as a static class
in Java):

1 class Outer {

2 private val bar: Int = 1

3 class Nested {

4 fun foo() = 2

5 }

6 }

7

8 val demo = Outer.Nested().foo() // == 2

This is what we used for instance for the ViewHolder inside the ForecastLis-

tAdapter. If we want to access to the members of the outer class, we need to declare
it as an inner class:

see more please visit: https://homeofbook.com

29 Extra concepts 195

1 class Outer {

2 private val bar: Int = 1

3 inner class Inner {

4 fun foo() = bar

5 }

6 }

7

8 val demo = Outer().Inner().foo() // == 1

29.2 Enum classes

Kotlin also provides a way to implement enum:

1 enum class Day {

2 SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

3 THURSDAY, FRIDAY, SATURDAY

4 }

Enums can have parameters, which are declared in the constructor:

1 enum class Icon(val res: Int) {

2 UP(R.drawable.ic_up),

3 SEARCH(R.drawable.ic_search),

4 CAST(R.drawable.ic_cast)

5 }

6

7 val searchIconRes = Icon.SEARCH.res

Enums can be requested by the String that matches the name, and we can also get
an Array that includes all the values of an Enum, so that we can iterate over them.

1 val search: Icon = Icon.valueOf("SEARCH")

2 val iconList: Array<Icon> = Icon.values

Besides, each Enum constant has functions to obtain its name and the position in the
declaration:

see more please visit: https://homeofbook.com

29 Extra concepts 196

1 val searchName: String = Icon.SEARCH.name

2 val searchPosition: Int = Icon.SEARCH.ordinal

Enums implement Comparable based on the ordinal, so it is easy to compare them.

29.3 Sealed classes

Sealed classes are used to represent restricted class hierarchies, which means that the
number of classes that extend a sealed class is restricted. It is similar to an Enum in
the sense that the compiler is aware of the number of subtypes a sealed class has. The
difference is that enum instances are unique, while sealed classes can have multiple
instances which can contain different states.

We could implement, for instance, something similar to the Option class: a type that
prevents the use of null by returning a Some class when the object contains a value
or the None instance when it is empty:

1 sealed class Option<out T>

2 object None : Option<Nothing>()

3 data class Just<out T>(val value: T) : Option<T>()

The good thing about sealed classes is that when they are used in a when expression,
we can check all the options and will not need to add the else clause. Also, if at some
point we add a new subclass, the compiler will warn us about the places where we
should be dealing with it.

1 val result = when (option) {

2 None -> "Empty"

3 is Just -> "Contains a value"

4 }

29.4 Exceptions

In Kotlin, all exceptions implement Throwable, have a message and are unchecked.
Consequently, we are not required to use try/catch on any of them. That is not

see more please visit: https://homeofbook.com

29 Extra concepts 197

the case in Java, where methods that throw IOException, for instance, need to be
surrounded by a try/catch block. Time has shown that checked exceptions were
not a good idea. People like Bruce Eckel56, Rod Waldhoff57 or Anders Hejlsberg58 can
give you a better perspective on it.

The way to throw an exception is very similar to Java:

1 throw MyException("Exception message")

And try expression is identical too:

1 try {

2 // some code

3 }

4 catch (e: SomeException) {

5 // handler

6 }

7 finally {

8 // optional finally block

9 }

Both throw and try are expressions in Kotlin, which allows to assign them to a
variable. This is useful when dealing with edge cases:

1 val s = when(x){

2 is Int -> "Int instance"

3 is String -> "String instance"

4 else -> throw UnsupportedOperationException("Not valid type")

5 }

or

1 val s = try { x as String } catch(e: ClassCastException) { null }

56http://www.mindview.net/Etc/Discussions/CheckedExceptions
57http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
58http://www.artima.com/intv/handcuffs.html

see more please visit: https://homeofbook.com

http://www.mindview.net/Etc/Discussions/CheckedExceptions
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
http://www.artima.com/intv/handcuffs.html
http://www.mindview.net/Etc/Discussions/CheckedExceptions
http://radio-weblogs.com/0122027/stories/2003/04/01/JavasCheckedExceptionsWereAMistake.html
http://www.artima.com/intv/handcuffs.html

30 Java interoperability
So far, we have been talking about creating an app from scratch. However, you
probably find yourself in a situation where you already have an App written in Java
with thousands of lines of code, and you cannot convert all your code. I will cover
this topic here.

One of the great wonders of Kotlin is that it is entirely interoperable with Java.
Therefore, although all your application code is written Java, you can create a class in
Kotlin and use it from Java without any issues. Calling Kotlin from Java code cannot
be easier. This potentially gives you two advantages:

• You can use Kotlin in a Java project: In any project, you have already started,
you can decide to start writing new code in Kotlin. You can then call it from
Java code.

• If you do not know how to do something in Kotlin, you can write that part in
Java. You may be wondering if there is a case where Kotlin is not enough to
do something on Android. In theory, everything can be done, but the fact is
that it does not matter. If you cannot do it in Kotlin, then implement that part
in Java.

Let’s see how this compatibility works, and how Kotlin code looks when used from
Java.

30.1 Package-level functions

In Kotlin, functions do not need to be inside a class, but this is not the case in Java.
How can we call a function then? Imagine that we have a file called utils.kt that
looks like this:

see more please visit: https://homeofbook.com

30 Java interoperability 199

1 fun logD(message: String) {

2 Log.d("", message)

3 }

4

5 fun logE(message: String) {

6 Log.e("", message)

7 }

In Java we can access them through a class that will be called UtilsKt, with some
static methods:

1 UtilsKt.logD("Debug");

2 UtilsKt.logE("Error");

30.2 Extension functions

We have been using extension functions a lot throughout this book. However, how
do they look in Java? If you have the following function:

1 fun ViewGroup.inflate(resId: Int, attachToRoot: Boolean = false): View {

2 return LayoutInflater.from(context).inflate(resId, this, attachToRoot)

3 }

This is applied to a ViewGroup. It receives a layout and inflates it using the parent
view. What would we get if we want to use it in Java? This is the result:

1 View v = UtilsKt.inflate(parent, R.layout.view_item, false);

As you can see, the object that applies this function (the receiver) is added as
an argument to the function. Besides, the optional argument becomes mandatory,
because in Java we cannot use default values.

30.3 Function overloads

If you want to generate the corresponding overloads in Java, you can use @JvmOver-
loads annotation for that function. In the previous example, you would not need to
specify false for the second argument in Java:

see more please visit: https://homeofbook.com

30 Java interoperability 200

1 @JvmOverloads

2 fun ViewGroup.inflate(resId: Int, attachToRoot: Boolean = false): View {

3 return LayoutInflater.from(context).inflate(resId, this, attachToRoot)

4 }

5

6 View v = UtilsKt.inflate(parent, R.layout.view_item);

If you prefer to specify the name of the class when calling Kotlin from Java, you
can use an annotation to modify it. In the utils.kt file, add this above the package
sentence:

1 @file:JvmName("AndroidUtils")

And now the class in Java will be named:

1 AndroidUtils.logD("Debug");

2 AndroidUtils.logE("Error");

3 View v = AndroidUtils.inflate(parent, R.layout.view_item, false);

30.4 Instance and static fields

In Java, we use fields to store the state. They can be instance fields, which means that
each object can store a different value, or static (all instances of a class share them). If
we try to find an equivalent of this in Kotlin, it would be properties and companion
objects. If we have a class like this:

1 class App : Application() {

2

3 val appHelper = AppHelper()

4

5 companion object {

6 lateinit var instance: App

7 }

8

9 override fun onCreate() {

10 super.onCreate()

11 instance = this

12 }

13

14 }

see more please visit: https://homeofbook.com

30 Java interoperability 201

How does this work in Java? You can simply access the companion object properties
as static fields, by using getters and setters:

1 AppHelper helper = App.instance.getAppHelper();

As a val, it only generates the getter in Java. If it were var, we would also have
a setter. The access to instance has worked automatically because it uses the
lateinit annotation, which also exposes the field that Kotlin uses to store the state.
But imagine we create a constant:

1 companion object {

2 lateinit var instance: App

3 val CONSTANT = 27

4 }

You find that you cannot use it directly. You are forced to access through a Companion
internal class:

1 KotlinClass.Companion.getCONSTANT()

This previous snippet does not look particularly readable. To expose the field in Java
the same way a static field would look, you need a new annotation:

1 @JvmField val CONSTANT = 27

And now you can use it from Java code:

1 int c = App.CONSTANT;

If you have functions in a companion object, they are converted to static methods
using the @JvmStatic annotation. There are several ways to define constants that,
when we use Kotlin from Java, generate different bytecode. If you remember, we
used const val before, and those properties are accessible without using a getter.

30.5 Data classes

Some features are clear, but some others are more difficult to know how they may
behave in Java. So let’s take a look at those features that Kotlin has, but Java does
not. One example is data classes. Let’s say we have a data class like this:

see more please visit: https://homeofbook.com

30 Java interoperability 202

1 data class MediaItem(val id: Int, val title: String, val url: String)

We can create instances of this class:

1 MediaItem mediaItem = new MediaItem(1, "Title", "https://antonioleiva.com");

But are we missing something? First, let’s check if equals works as expected:

1 MediaItem mediaItem = new MediaItem(1, "Title", "https://antonioleiva.com");

2 MediaItem mediaItem2 = new MediaItem(1, "Title", "https://antonioleiva.com");

3

4 if (mediaItem.equals(mediaItem2)) {

5 Toast.makeText(this, "Items are equals", Toast.LENGTH_SHORT).show();

6 }

Of course, it shows the Toast. The bytecode the class generates has everything it
needs to compare two items and, if the state is the same, then the items are also
the same. However, other things are more difficult to replicate. Remember the copy
feature data classes have? The method is there, but you can only use it passing all
arguments:

1 mediaItem.copy(1, "Title2", "http://google.com");

So it is not better than just using the constructor. Also, we lose destructuring, as the
Java language does not have a way to express that.

30.6 Sealed classes

Another feature that may come to your mind is sealed classes. How do they work
when used from Java? Let’s try it:

see more please visit: https://homeofbook.com

30 Java interoperability 203

1 sealed class Filter {

2 object None : Filter()

3 data class ByType(val type: Type) : Filter()

4 data class ByFormat(val format: Format) : Filter()

5 }

We have a Filter class that represents a filter that can be applied to items. Of course,
in Java we cannot do:

1 public void filter(Filter filter) {

2 switch (filter) {

3 ...

4 }

5 }

switch in Java only accepts a small number of types, and for Java, sealed classes are
regular classes. So the best you can do is:

1 if (filter instanceof Filter.None) {

2 Log.d(TAG, "Nothing to filter");

3 } else if (filter instanceof Filter.ByType) {

4 Filter.ByType type = (Filter.ByType) filter;

5 Log.d(TAG, "Type is: " + type.getType().toString());

6 } else if (filter instanceof Filter.ByFormat) {

7 Filter.ByFormat format = ((Filter.ByFormat) filter);

8 Log.d(TAG, "Format is: " + format.getFormat());

9 }

We cannot make use of any of the extra features from Java.

30.7 Inline functions and reified types

As you may remember, in Kotlin you can make generic functions use reified types.
That way, you can use the generic type inside the function.

When we saw them, I mentioned that they need to use the reserved word inline,
which is used to substitute the calls to the function by the body of the function when
compiling. Can we use that from Java?

Let’s start with the inline functions, which are easier to test. If we have a toast

function that receives the message as a lambda:

see more please visit: https://homeofbook.com

30 Java interoperability 204

1 inline fun Context.toast(message: () -> CharSequence) {

2 Toast.makeText(this, message(), Toast.LENGTH_SHORT).show()

3 }

We can use it without issues like this from Java:

1 ExtensionsKt.toast(this, () -> "Hello World");

So inline functions work, but there is an interesting thing here. When used from
Kotlin, the decompiled code looks like this:

1 Toast.makeText(this, "Hello", 0).show();

The function is being inlined as expected. What happens when used from Java?

1 ExtensionsKt.toast(this, DetailActivity$$Lambda$0.$instance);

So, though you can use inline functions from Java, they are actually not inlined. It
is calling the function and creating an object for the lambda. That is something to
take into account.

Now, what happens to reified types? This is a function that navigates to the activity
specified in the generic type:

1 inline fun <reified T : Activity> Context.startActivity() {

2 startActivity(Intent(this, T::class.java))

3 }

Then, if you try to call this function from Java, you will see that this method appears
to be private, so we cannot use it. Reified functions are not are not available from
Java code.

So now you understand better how all new Kotlin features behave when used from
Java. You see that using the code we write in Kotlin from Java is effortless. Most of
them can still be used, though certainly, we cannot take advantage of some Kotlin
features from Java.

see more please visit: https://homeofbook.com

31 Conclusion
Thanks for reading this book. Throughout this pages, we have learned Kotlin by
implementing an Android app as an example. The weather app was an excellent
example to play with the essential features most apps need: a master/detail UI,
communication with an API, database storage, shared preferences…

The good thing about this method is that you have learned the most important Kotlin
concepts while using them. In my opinion, it is easier to absorb new knowledge
when you put it into action. It was my primary goal, because reference books are
usually a helpful tool to solve some specific doubts, but they are hard to read from
the beginning to the very end. Besides, as the examples are usually out of context, it
is difficult to understand which kind of problems those features solve.

That was, in fact, the other goal of the book: to show you real problems we face in
Android and how they can be solved using Kotlin. Any Android developer struggles
with many questions when dealing with asynchrony, databases, or has to implement
verbose listeners or activity navigations. By using a real app as an example, we have
answered many of these questions while learning the new language features.

I hope I achieved these goals, and I wish that you not only learned Kotlin but also
enjoyed reading this book. Now that Google has adopted Kotlin, I am convinced
that learning the language is the way to go: you will enjoy developing apps and get
prepared for this new skill that is becoming a need in many Android job positions
these days.

This book is finished, but it does not mean that it is dead. I will keep updating it to
the latest versions of Kotlin, reviewing and improving it based on your comments
and suggestions. Feel free to write me about it at any moment and tell me what you
think, the errors you find, concepts that are not clear enough or whatever concern
you may have.

It has been a fantastic journey during the months I have been writing this book. I
have learned a lot too, so thanks again for helping ‘Kotlin for Android Developers’
to become a reality.

see more please visit: https://homeofbook.com

31 Conclusion 206

Best,

Antonio Leiva

• Site: antonioleiva.com59

• Email: contact@antonioleiva.com60

• Twitter: @lime_cl61

• Google+: +AntonioLeivaGordillo62

59http://antonioleiva.com
60mailto:contact@antonioleiva.com
61http://twitter.com/lime_cl
62http://plus.google.com/+AntonioLeivaGordillo

see more please visit: https://homeofbook.com

http://antonioleiva.com/
mailto:contact@antonioleiva.com
http://twitter.com/lime_cl
http://plus.google.com/+AntonioLeivaGordillo
http://antonioleiva.com/
mailto:contact@antonioleiva.com
http://twitter.com/lime_cl
http://plus.google.com/+AntonioLeivaGordillo

	Table of Contents
	I. About this book
	What is ``Kotlin for Android Developers'' about

	II. Is this book for you?
	III. About the author
	1 Introduction
	1.1 What is Kotlin?
	1.2 What do we get with Kotlin?

	2 Getting ready
	2.1 Android Studio
	2.2 Install Kotlin plugin

	3 Creating a new project
	3.1 Create a new project in Android Studio
	3.2 Convert MainActivity to Kotlin code
	3.3 Configure Kotlin in project
	3.4 Include some other useful configuration
	3.5 Test that everything works

	4 Classes and functions
	4.1 How to declare a class
	4.2 Class inheritance
	4.3 Functions
	4.4 Constructor and functions parameters

	5 Writing your first class
	5.1 Creating the layout
	5.2 The Recycler Adapter

	6 Variables and properties
	6.1 Basic types
	6.2 Variables
	6.3 Properties

	7 Anko and Extension Functions
	7.1 What is Anko?
	7.2 Start using Anko
	7.3 Extension functions

	8 Retrieving data from API
	8.1 Performing a request
	8.2 Performing the request out of the main thread

	9 Data Classes
	9.1 Extra functions
	9.2 Copying a data class
	9.3 Mapping an object into variables

	10 Parsing data
	10.1 Converting JSON to data classes
	10.2 Shaping the domain layer
	10.3 Drawing the data in the UI

	11 Operator overloading
	11.1 Operators tables
	11.2 An example
	11.3 Operators in extension functions

	12 Making the forecast list clickable
	13 Lambdas
	13.1 Simplifying setOnClickListener()
	13.2 Click listener for ForecastListAdapter
	13.3 Extending the language

	14 Visibility Modifiers
	14.1 Modifiers
	14.2 Constructors
	14.3 Reviewing our code

	15 Kotlin Android Extensions
	15.1 How to use Kotlin Android Extensions
	15.2 Kotlin Android Extensions in 1.1.4
	15.3 Refactoring our code

	16 Application Singleton and Delegated Properties
	16.1 Application Singleton
	16.2 Delegated Properties
	16.3 Standard Delegates
	16.4 How to create a custom delegate
	16.5 Reimplementing the App Singleton

	17 Creating an SQLiteOpenHelper
	17.1 ManagedSqliteOpenHelper
	17.2 Tables definition
	17.3 Implementing SqliteOpenHelper
	17.4 Dependency injection

	18 Collections and functional operations
	18.1 Aggregate operations
	18.2 Filtering operations
	18.3 Mapping operations
	18.4 Elements operations
	18.5 Generation operations
	18.6 Ordering operations

	19 Saving and requesting data from the database
	19.1 Creating database model classes
	19.2 Writing and requesting data

	20 Null safety in Kotlin
	20.1 How Null types work
	20.2 Nullity and Java libraries

	21 Creating the business logic to data access
	22. Flow control and ranges
	22.1 If Expression
	22.2 When expression
	22.3 For loops
	22.4 While and do/while loops
	22.5 Ranges

	23 Creating a Detail Activity
	23.1 Preparing the request
	23.2 Providing a new activity
	23.3 Start an activity: reified functions

	24 Interfaces and Delegation
	24.1 Interfaces
	24.2 Delegation
	24.3 Implementing an example in our App

	25 Generics
	25.1 Basics
	25.2 Variance
	25.3 Generics examples

	26 Settings Screen
	26.1 Creating the settings activity
	26.2 Accessing Shared Preferences
	26.3 Generic preference delegate

	27 A first walk into coroutines
	27.1 Understanding how coroutines work
	27.2 Using Anko for coroutines
	27.3 Using coroutines in our example

	28 Testing your App
	28.1 Unit testing
	28.2 Mocking closed classes
	28.3 Instrumentation tests

	29 Extra concepts
	29.1 Nested classes
	29.2 Enum classes
	29.3 Sealed classes
	29.4 Exceptions

	30 Java interoperability
	30.1 Package-level functions
	30.2 Extension functions
	30.3 Function overloads
	30.4 Instance and static fields
	30.5 Data classes
	30.6 Sealed classes
	30.7 Inline functions and reified types

	31 Conclusion

