
see more please visit: https://homeofpdf.com

Hands-On	Functional	Programming	with	TypeScript

	

	

Explore	functional	and	reactive	programming	to	create	robust	and	testable
TypeScript	applications

	

	

	

	

	

	

	

	

	

Remo	H.	Jansen

	

	

	

	

	

see more please visit: https://homeofpdf.com

	

	

BIRMINGHAM	-	MUMBAI

see more please visit: https://homeofpdf.com

Hands-On	Functional	Programming
with	TypeScript
Copyright	©	2019	Packt	Publishing	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations
embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing	or	its
dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book	by
the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Richa	Tripathi
Acquisition	Editor:	Denim	Pinto
Content	Development	Editor:	Anugraha	Arunagiri
Technical	Editor:	Ashi	Singh
Copy	Editor:	Safis	Editing
Project	Coordinator:	Ulhas	Kambali
Proofreader:	Safis	Editing
Indexer:	Rekha	Nair
Graphics:	Tom	Scaria
Production	Coordinator:	Saili	Kale

First	published:	January	2019

Production	reference:	1290119

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78883-143-7

www.packtpub.com

see more please visit: https://homeofpdf.com

http://www.packtpub.com

To	Lorraine,	for	being	my	sword	in	my	victories	and	my	shield	in	my	defeats.	Without	your	support,	I
wouldn't	be	where	I	am	and	I	wouldn't	be	the	person	I	am	today.	Thank	you!

–	Remo	H.	Jansen

see more please visit: https://homeofpdf.com

	

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

see more please visit: https://homeofpdf.com

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

see more please visit: https://homeofpdf.com

Packt.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.packt.
com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	customercare@packtpub.com	for	more	details.

At	www.packt.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

	

	

	

see more please visit: https://homeofpdf.com

http://www.packt.com
http://www.packt.com

Foreword
When	TypeScript	was	officially	announced	on	October	1,	2012,	the	only	docs
available	was	the	dense	official	language	specification.	It	was	not	easily
accessible	to	beginner	developers	as	there	was	significant	focus	on	syntax.
Additionally,	it	assumed	an	existing	intimate	knowledge	of	JavaScript.
Nevertheless,	it	was	complete	in	terms	of	TypeScript	features	at	the	time,	and
JavaScript	was	not	as	feature-rich	as	it	is	today.	So,	it	was	a	plausible	entry	point
into	TypeScript,	and	that	is	what	I	and	many	others	at	the	time	used	to	learn
TypeScript.

How	times	have	changed.	Over	time,	TypeScript	has	gained	a	number	of
features,	and	so	has	JavaScript.	Keeping	up	to	date	now	means	following
relevant	GitHub	issues	and	pull	requests	on	Microsoft/TypeScript	and	reading	up
on	the	understanding	offered	by	key	developers.	Remo	is	one	of	those	key
developers.	I	got	introduced	to	Remo	through	his	insightful	comments	on
TypeScript	issues	and	then	discovered	his	blog	(blog.wolksoftware.com).	Remo's
blog	has	been	a	great	help	in	dissecting	important	features	such	as	JavaScript
decorators	and	explaining	how	they	are	implemented	in	TypeScript.	I	find
myself	linking	fellow	developers	to	his	docs	instead	of	the	alternatives	due	to	the
high	quality	of	his	work.

Not	only	has	Remo	been	a	great	help	in	understanding	TypeScript	(and
JavaScript),	but	he	has	also	been	a	great	asset	to	the	TypeScript	library
ecosystem.	One	question	that	I	commonly	receive	from	developers	is	how	to	do
dependency	injection	in	TypeScript.	My	answer	is	always	a	direct	link	to	Remo's
extremely	useful	InversifyJS	library	(inversify.io).

One	of	the	key	concerns	that	uninformed	developers	have	had	about	TypeScript
is	"it	only	supports	object-oriented	programming."	That	is	simply	not	true.
TypeScript	supports	all	JavaScript	paradigms,	and	functional	programming	has
first-class	support.	In	fact,	it	provides	a	vital	piece	of	famous	functional
programming	languages	(compile-time	type	information)	for	JavaScript
developers.

see more please visit: https://homeofpdf.com

http://blog.wolksoftware.com
http://inversify.io

All	programming	tasks	can	be	considered	as	simple	(data	plus	data
transformation).	This	is	the	mental	model	encouraged	by	functional
programming	aficionados.	To	have	a	deep	understanding	of	functional	programs
as	a	data	transform	pipeline,	you	need	a	way	to	define	your	data	structures.	This
is	what	is	only	provided	by	TypeScript.	In	the	absence	of	TypeScript,	you	see
various	(somewhat	arbitrary)	syntax	elements	used	to	describe	the	data	structures
that	are	flowing	through	your	functional	programs.

So,	if	you	want	to	do	world-class	functional	programming	and	your
programming	environment	forces	you	(if	only	by	convenience)	to	use
JavaScript,	please	consider	TypeScript	and	know	that	you	are	not	alone.	Remo
H.	Jansen	is	here	to	help	you.

	

Basarat	Ali	Syed

Microsoft	MVP	and	one	of	the	leading	global	references	of	the	TypeScript
community.

see more please visit: https://homeofpdf.com

Contributors

see more please visit: https://homeofpdf.com

About	the	author
Remo	H.	Jansen	lives	in	Dublin,	Ireland,	where	he	works	as	the	managing
director	of	Wolk	Software	Limited	and	as	a	part-time	lecturer	at	CCT	College
Dublin.	Remo	is	a	Microsoft	MVP	and	an	active	member	of	the	TypeScript
community.	He	is	the	author	of	Learning	TypeScript	2.x,	organizes	the	Dublin
TypeScript	and	Dublin	OSS	meetups,	writes	a	blog,	and	maintains	some	open
source	projects	on	GitHub.	Remo	is	available	for	conference	talks,	independent
consulting,	and	corporate	training	services	opportunities.

Thanks	to	everyone	who	participated	in	this	book	for	your	support	and	hard	work:	my	friends,	Lorraine,
and	my	family,	for	your	support	and	patience,	and	to	the	TypeScript	teams	and	its	contributors	for	creating
what	has	become	my	favorite	programming	language.

	

	

	

see more please visit: https://homeofpdf.com

About	the	reviewers
Gaurav	Aroraa	has	an	M.Phil	in	computer	science.	He	is	a	Microsoft	MVP,	a
lifetime	member	of	Computer	Society	of	India	(CSI),	an	advisory	member	of
IndiaMentor,	certified	as	a	Scrum	trainer/coach,	XEN	for	ITIL-F,	and	APMG	for
PRINCE-F	and	PRINCE-P.	He	is	an	open	source	developer,	a	contributor	to
TechNet	Wiki,	and	the	founder	of	Ovatic	Systems	Private	Limited.	In	the	more
than	20	years	of	his	career,	he	has	mentored	thousands	of	students	and	industry
professionals.	You	can	tweet	Gaurav	using	his	Twitter	handle,	@g_arora.

To	my	wife,	Shuby	Arora,	and	my	angel	(daughter),	Aarchi	Arora,	who	permitted	me	to	steal	time	for	this
book	from	the	time	I	was	supposed	to	spend	with	them.	Thanks	to	the	entire	Packt	team,	especially	Ulhas
and	Anugraha	Arunagiri,	whose	coordination	and	communication	during	the	period	was	tremendous,	and
Denim	Pinto,	who	introduced	me	for	this	book.

	

Sergio	Pacheco	Jimenez	is	a	Software	engineer	residing	in	Seville,	Spain.	He	is
mainly	focused	on	.NET,	JavaScript	and	web	development.	For	the	last	few
years,	he	has	been	using	and	advocating	TypeScript.	Currently,	he	is	working	on
the	banking	industry.

	

see more please visit: https://homeofpdf.com

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

	

	

	

see more please visit: https://homeofpdf.com

http://authors.packtpub.com

Table	of	Contents
Title	Page

Copyright	and	Credits

Hands-On	Functional	Programming	with	TypeScript

Dedication

About	Packt

Why	subscribe?

Packt.com

Foreword

Contributors

About	the	author

About	the	reviewers

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Conventions	used

Get	in	touch

Reviews

1.	 Functional	Programming	Fundamentals

Is	TypeScript	a	functional	programming	language?

see more please visit: https://homeofpdf.com

The	benefits	of	functional	programming

Introducing	functional	programming

Pure	functions

side-effects

Referential	transparency

Stateless	versus	stateful

Declarative	versus	imperative	programming

Immutability

Functions	as	first-class	citizens

Lambda	expressions

Function	arity

Higher-order	functions

Laziness

Summary

2.	 Mastering	Functions

Function	types

Named	and	anonymous	functions

Function	declarations	and	function	expressions

Working	with	function	parameters

Trailing	commas	in	function	arguments

Functions	with	optional	parameters

Functions	with	default	parameters

Functions	with	rest	parameters

Function	overloading

Specialized	overloading	signature

Function	scope	and	hoisting

see more please visit: https://homeofpdf.com

Immediately-invoked	functions

Tag	functions	and	tagged	templates

Summary

3.	 Mastering	Asynchronous	Programming

Callbacks	and	higher-order	functions

Arrow	functions

Callback	hell

Promises

Covariant	checking	in	callback	parameters

Generators

Asynchronous	functions	–	async	and	await

Asynchronous	generators

Asynchronous	iteration	(for	await…of)

Delegating	to	another	generator	(yield*)

Summary

4.	 The	Runtime	&#x2013;	The	Event	Loop	and	the	this	Operator

The	environment

Understanding	the	event	loop

Frames

Stack

Queue

Heap

The	event	loop

The	this	operator

The	this	operator	in	the	global	context

The	this	operator	in	the	function	context

see more please visit: https://homeofpdf.com

The	call,	apply,	and	bind	methods

Summary

5.	 The	Runtime	&#x2013;	Closures	and	Prototypes

Prototypes

Instance	properties	versus	class	properties

Prototypal	inheritance

Prototype	chains	and	property	shadowing

Accessing	the	prototype	of	an	object

Closures

Static	variables	powered	by	closures

Private	members	powered	by	closures

Summary

6.	 Functional	Programming	Techniques

Composition	techniques

Composition

Partial	application

Currying

strictBindCallApply

Pipes

Other	techniques

Point-free	style

Recursion

Pattern	matching

Summary

7.	 Category	Theory

Category	theory

see more please visit: https://homeofpdf.com

Functors

Applicative

Maybe

Either

Monads

Summary

8.	 Immutability,	Optics,	and	Laziness

Immutability

Optics

Lenses

Prisms

Laziness

Summary

9.	 Functional-Reactive	Programming

Reactive	programming

Functional	programming	versus	functional-reactive	programming

The	benefits	of	functional-reactive	programming

Working	with	observables

The	observer	pattern

The	iterator	pattern

Creating	observables

Creating	observables	from	a	value

Creating	observables	from	arrays

Creating	observables	from	events

Creating	observables	from	callbacks

Creating	observables	from	promises

see more please visit: https://homeofpdf.com

Cold	and	hot	observables

Working	with	operators

Pipe

Max

Every

Find

Filter

Map

Reduce

Throttle

Merge

Zip

Summary

10.	 Real-World	Functional	Programming

Working	with	Ramda

Composition

Partial	application	and	currying

Lenses

Working	with	Immutable.js

Working	with	Immer

Working	with	Funfix

Summary

Functional	Programming	Learning	Road	Map

Beginner

Advanced	beginner

Intermediate

see more please visit: https://homeofpdf.com

Proficient

Expert

Summary

Directory	of	TypeScript	Functional	Programming	Libraries

Functional	programming

Category	theory

Laziness

Immutability

Optics	and	lenses

Functional-reactive	programming

Others

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

see more please visit: https://homeofpdf.com

Preface
Functional	programming	is	a	programming	paradigm	that	treats	computation	as
the	evaluation	of	mathematical	functions	and	avoids	changing-state	and	mutable
data.	The	origins	of	the	functional	programming	paradigm	can	be	traced	back	to
the	1930s	when	Alonzo	Church	introduced	Lambda	calculus.	Lambda	calculus
presents	a	theoretical	framework	for	describing	functions	and	their	evaluation,
and	is	a	mathematical	abstraction	rather	than	a	programming	language.	However,
Lambda	calculus	is	the	foundation	of	most	functional	programming	languages.

In	the	late	1950s,	Lisp,	one	of	the	first	functional	programming	languages,	was
developed	by	John	McCarthy.	Lisp	introduced	many	functional	programming
paradigm	features,	and	it	was	the	primary	influence	of	other	popular	functional
programming	languages,	such	as	Scheme	and	Clojure.

In	1973,	Robin	Milner	created	ML	at	the	University	of	Edinburgh.	ML
eventually	developed	into	several	alternative	languages,	the	most	common	of
which	are	now	OCaml	and	Standard	ML.	In	1977,	John	Backus	defined
functional	programs	in	a	way	that	allows	an	"algebra	of	programs"	and	follows
the	principle	of	compositionality.	In	1985,	Research	Software	Limited	released
Miranda,	and	the	interest	in	lazy	functional	programming	languages	grew.	After
a	couple	of	years,	more	than	a	dozen	non-strict,	purely	functional	programming
languages	existed.	In	1987,	at	the	conference	on	functional	programming
languages	and	computer	architecture	in	Portland,	Oregon,	there	was	a	strong
consensus	that	a	committee	should	be	formed	to	define	an	open	standard	for
such	languages;	Haskell	was	born.

The	1970s	and	1980s	were	years	of	significant	advancement	for	functional
programming.	However,	during	the	1990s	and	2000s,	functional	programming
lost	market	share	against	object-oriented	programming	languages,	such	as	Java
and	C#.

In	the	2010s,	the	adoption	of	JavaScript	grew	exponentially,	and	it	became	the
most	popular	programming	language.	The	Scheme	programming	language	is	one
of	the	main	influences	of	JavaScript	and,	as	a	result,	JavaScript	implements

see more please visit: https://homeofpdf.com

many	functional	programming	features,	such	as	support	for	higher-order
functions.	JavaScript	became	the	first	contact	with	functional	programming	for
many	young	developers.	However,	because	JavaScript	is	a	multi-paradigm
programming	language,	many	ignored	its	functional	programming	capabilities.
However,	in	recent	times,	thanks	to	the	arrival	of	technologies	highly	influenced
by	functional	programmings	principles,	such	as	React,	RxJS,	and	Redux,	there
has	been	a	significant	increase	in	interest	in	functional	programming	within	the
JavaScript	community.

As	the	popularity	of	JavaScript	grew,	the	complexity	of	JavaScript	applications
also	grew	exponentially.	Web	user	interfaces	became	much	more	sophisticated,
and	JavaScript	started	to	be	used	in	a	number	of	alternative	scenarios,	such	as
backend	applications.	The	TypeScript	programming	language	was	then
introduced	as	a	tool	that	allows	us	to	manage	the	new	levels	of	complexity.

TypeScript	aims	to	reduce	the	complexity	of	a	system	by	adding	a	static	type
system	to	JavaScript.	Static	type	systems	can	be	used	to	detect	errors	at
compilation	time	as	a	beneficial	form	of	in-code	documentation.	Static	type
systems	can	be	very	beneficial	in	functional	programming.	Most	object-oriented
programming	languages,	such	as	Java	and	C#,	are	slowly	adopting	functional
programming	features,	and	sophisticated	static	type	systems	are	something	that
is	many	times	associated	with	purely	functional	programming	languages,	such	as
Haskell.

This	book	is	not	going	to	encourage	you	to	stop	using	object-oriented
programming.	Instead,	we	are	going	to	try	to	think	about	both	the	functional
programming	and	the	object-oriented	programming	paradigms	as	two	different
solutions	to	the	same	problem:	managing	complexity:

"Object-oriented	programming	makes	code	understandable	by	encapsulating	moving	parts.	Functional
programming	makes	code	understandable	by	minimizing	moving	parts."

–	Michael	Feathers

The	popularity	of	distributed	systems	is	increasing	as	the	adoption	of	cloud
computing	continues	to	grow	and,	as	a	result,	functional	programming	is
expected	to	rise	in	popularity	over	the	next	decade	because	it	is	particularly	well
suited	for	concurrent	systems	and	distributed	systems.	Functional	programming
encourages	the	implementation	of	stateless	components,	which	can	be	scaled

see more please visit: https://homeofpdf.com

with	ease.	Since	the	complexity	of	distributed	systems	is	usually	high,	this	is	just
another	example	of	how	functional	programming	can	be	used	as	a	weapon
against	complexity.

Mastering	TypeScript	together	with	the	principles	and	techniques	of	both	object-
oriented	programming	and	functional	programming	can	provide	us	with	a	richer
toolset	to	fight	against	complexity	in	our	systems.	This	book	will	provide	you
with	knowledge	about	a	wide	range	of	functional	programming	principles,
patterns,	and	techniques	that	should	help	you	to	become	a	more	versatile
software	engineer	and	prepare	you	for	dealing	with	the	increasing	complexity	in
modern	web	applications.

see more please visit: https://homeofpdf.com

Who	this	book	is	for
If	you	are	a	developer	aiming	to	learn	functional	programming	for	the	very	first
time	and	improve	the	quality	of	your	applications,	then	this	book	is	for	you.	No
prior	knowledge	of	functional	programming	is	required.	However,	a	basic
understanding	of	JavaScript	and	TypeScript	is	recommended	to	make	the	most
out	of	this	book.

	

	

	

see more please visit: https://homeofpdf.com

What	this	book	covers
Chapter	1,	Functional	Programming	Fundamentals,	introduces	the	main
functional	programming	terms,	such	as	pure	functions.

Chapter	2,	Mastering	Functions,	takes	an	in-depth	look	at	the	main	building	block
in	a	functional	programming	application—functions.	The	chapter	also	explores
most	of	the	function-related	features	in	TypeScript.	We	will	learn	how	to	work
with	functions	in	many	different	scenarios	and	how	to	take	advantage	of	the
TypeScript	type	system	features	while	working	with	functions.

Chapter	3,	Mastering	Asynchronous	Programming,	takes	an	in-depth	look	at	the
main	asynchronous	programming	APIs	in	JavaScript	and	TypeScript,	including
callbacks,	promises,	generators,	and	asynchronous	functions.	These	APIs	are
relevant	in	functional	programming	because	they	can	be	used	to	implement	lazy
evaluation.

Chapter	4,	The	Runtime	–	The	Event	Loop	and	the	this	Operator,	is	the	first
chapter	of	two	that	are	dedicated	to	exploring	concepts	about	the	runtime	that	are
relevant	for	a	number	of	functional	programming	techniques.	For	example,	we
can	gain	a	much	better	understanding	of	recursion	if	we	understand	the	event
loop.

Chapter	5,	The	Runtime	–	Closures	and	Prototypes,	is	the	second	chapter
dedicated	to	exploring	concepts	about	the	runtime	that	are	relevant	to	a	number
of	functional	programming	techniques.	For	example,	understanding	closures	can
help	us	to	understand	how	some	higher-order	functions	work.

Chapter	6,	Functional	Programming	Techniques,	explores	the	main	functional
programming	techniques	and	patterns	in	detail.	We	will	explore	concepts	such	as
partial	function	application,	functional	composition,	and	currying.	This	chapter
also	explores	many	other	functional	programming	techniques	and	patterns,	such
as	point-free	style.

Chapter	7,	Category	Theory,	explores	category	theory.	You	will	learn	about	what
algebraic	data	types	are	and	what	the	relationships	between	them	are.	You	will

see more please visit: https://homeofpdf.com

then	learn	how	to	implement	some	of	the	main	algebraic	data	types,	including
functors	and	monads.

Chapter	8,	Immutability,	Optics,	and	Laziness,	explores	three	important	functional
programming	techniques.	You	will	learn	about	what	lazy	evaluation	is,	what	its
benefits	are,	and	how	to	implement	it.	You	will	also	learn	about	immutable	data
structures,	their	benefits,	and	how	to	implement	them.	Finally,	you	will	learn
about	functional	optics	and	how	they	can	help	with	immutable	data	structures.

Chapter	9,	Functional-Reactive	Programming,	explores	the	functional-reactive
programming	paradigm.	We	will	learn	about	what	observables	are	and	how	they
can	be	used	to	simplify	our	code.	We	will	also	learn	how	to	use	RxJS,	the
leading	reactive-programming	library	in	the	JavaScript	ecosystem.

Chapter	10,	Real-World	Functional	Programming,	explores	some	production-
ready	functional	programming	libraries,	such	as	Ramda	and	Funfix,	to	create
real-world	functional	programming	applications.\

Appendix	A,	Functional	Programming	Learning	Road	Map,	this	was	developed	for
Fantasyland	institute	of	learning	for	the	LambdaConf	conference.	It	is	used	to
track	our	level	of	knowledge	regarding	functional	programming.

Appendix	B,	Directory	of	TypeScript	Functional	Programming	Libraries,	In	this
appendix,	you	will	find	a	list	of	functional	programming	libraries	compatible
with	TypeScript	grouped.

see more please visit: https://homeofpdf.com

To	get	the	most	out	of	this	book
You	don't	need	any	additional	material	to	follow	this	book.	No	prior	knowledge
of	functional	programming	is	required.	However,	a	basic	understanding	of
JavaScript	and	TypeScript	is	recommended	to	make	the	most	use	of	this	book.

It	is	recommended	reading	the	chapters	in	order.	However,	if	you	are	new	to
functional	programming	and	already	have	advanced	knowledge	of	functions,
asynchronous	programming,	and	the	runtime,	you	could	maybe	skip	chapters
two	to	five.

You	can	refer	to	the	TypeScript	handbook	at	http://www.typescriptlang.org/docs/handb
ook/basic-types.html	if	you	have	some	experience	with	JavaScript,	but	TypeScript
is	new	to	you.	This	resource	might	be	especially	useful	if	TypeScript	is	your	first
statically	typed	programming	language.	Alternatively,	you	can	refer	to	the	book
Learning	TypeScript	2.x,	Second	Edition,	also	by	Remo	H.	Jansen	and	Packt
Publishing.

If	you	need	help	installing	Node.js,	you	can	refer	to	the	official	documentation	at
https://nodejs.org/en/download/package-manager.	If	you	need	help	installing	TypeScript,
you	can	refer	to	the	official	documentation	at	http://www.typescriptlang.org/docs/hand
book/typescript-in-5-minutes.html.

see more please visit: https://homeofpdf.com

http://www.typescriptlang.org/docs/handbook/basic-types.html
https://nodejs.org/en/download/package-manager/
http://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packt.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packt.com/support
and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packt.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Hands-On-Functional-Programming-with-Typescript.	In	case	there's	an	update	to
the	code,	it	will	be	updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

see more please visit: https://homeofpdf.com

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Functional-Programming-with-Typescript
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	https://www.packtpub.com/sites/default/f
iles/downloads/9781788831437_ColorImages.pdf.

see more please visit: https://homeofpdf.com

https://www.packtpub.com/sites/default/files/downloads/9781788831437_ColorImages.pdf

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image
file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

function	find<T>(arr:	T[],	filter:	(i:	T)	=>	boolean)	{

				return	arr.filter(filter);

}

find(heroes,	(h)	=>	h.name	===	"Spiderman");

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:	const	valueOfThis	=	{	name:	"Anakin",
surname:	"Skywalker"	};
const	greet	=	person.greet.bind(valueOfThis);
greet.call(valueOfThis,	"Mos	espa",	"Tatooine");
greet.apply(valueOfThis,	["Mos	espa",	"Tatooine"]);
//	Hi,	my	name	is	Remo	Jansen.	I'm	from	Mos	espa	Tatooine.

Any	command-line	input	or	output	is	written	as	follows:

npm	install	ramda	@types/ramda

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	on	screen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

see more please visit: https://homeofpdf.com

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	If	you	have	questions	about	any	aspect	of	this	book,	mention
the	book	title	in	the	subject	of	your	message	and	email	us	at
customercare@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packt.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packt.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in,	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

see more please visit: https://homeofpdf.com

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packt.com.

	

	

	

see more please visit: https://homeofpdf.com

http://www.packt.com/

Functional	Programming
Fundamentals
JavaScript	has	been	a	multi-paradigm	programming	language	since	its	inception
back	in	1995.	It	allows	us	to	take	advantage	of	an	object-oriented
programming	(OOP)	style	along	with	a	functional	programming	style.	The
same	can	be	said	of	TypeScript.	However,	for	functional	programming,
TypeScript	is	even	better	suited	than	JavaScript	because,	as	we	will	learn	in	this
chapter,	static	type	systems	and	type	inference	are	both	very	important	features
in	functional	programming	languages	such	as	the	ML	family	of	programming
languages,	for	example.

The	JavaScript	and	TypeScript	ecosystems	have	experienced	a	significant
increase	in	interest	in	functional	programming	over	the	last	few	years.	I	believe
that	this	increase	in	interest	can	be	attributed	to	the	success	of	React.	React	is	a
library	developed	by	Facebook	for	building	user	interfaces,	and	it	is	highly
influenced	by	some	core	functional	programming	concepts.

In	this	chapter,	we	will	focus	on	learning	some	of	the	most	basic	functional
programming	concepts	and	principles.

In	this	chapter,	you	will	learn	about	the	following:

The	main	characteristics	of	functional	programming
The	main	benefits	of	functional	programming
Pure	functions
side-effects
Immutability
Function	arity
Higher-order	functions
Laziness

see more please visit: https://homeofpdf.com

Is	TypeScript	a	functional
programming	language?
The	answer	to	this	question	is	yes,	but	only	in	part.	TypeScript	is	a	multi-
paradigm	programming	language	and,	as	a	result,	it	includes	many	influences
from	both	OOP	languages	and	functional	programming	paradigms.

However,	if	we	focus	on	TypeScript	as	a	functional	programming	language,	we
can	observe	that	it	is	not	a	purely	functional	programming	language	because,	for
example,	the	TypeScript	compiler	doesn't	force	our	code	to	be	free	of	side-
effects.

Not	being	a	purely	functional	programming	language	should	not	be	interpreted
as	something	negative.	TypeScript	provides	us	with	an	extensive	set	of	features
that	allow	us	to	take	advantage	of	some	of	the	best	features	of	the	world	of	OOP
languages	and	the	world	of	functional	programming	languages.	This	has	allowed
TypeScript-type	systems	to	attain	a	very	good	compromise	between	productivity
and	formality.

see more please visit: https://homeofpdf.com

The	benefits	of	functional
programming
Writing	TypeScript	code	using	a	functional	programming	style	has	many
benefits,	among	which	we	can	highlight	the	following:

Our	code	is	testable:	If	we	try	to	write	our	functions	as	pure	functions,	we
will	be	able	to	write	unit	tests	extremely	easily.	We	will	learn	more	about
pure	functions	later	in	this	chapter.
Our	code	is	easy	to	reason	about:	Functional	programming	can	seem	hard
to	understand	for	developers	with	a	lack	of	experience	in	functional
programming.	However,	when	an	application	is	implemented	correctly
using	the	functional	programming	paradigm,	the	results	are	very	small
functions	(often	one-line	functions)	and	very	declarative	APIs	that	can	be
reasoned	about	with	ease.	Also,	pure	functions	only	work	with	their
arguments,	which	means	that	when	we	want	to	understand	what	a	function
does,	we	only	need	to	examine	the	function	itself	and	we	don't	need	to	be
concerned	about	any	other	external	variables.
Concurrency:	Most	of	our	functions	are	stateless,	and	our	code	is	mostly
stateless.	We	push	state	out	of	the	core	of	our	application,	which	makes	our
applications	much	more	likely	to	be	able	to	support	many	concurrent
operations	and	it	will	be	more	scalable.	We	will	learn	more	about	stateless
code	later	in	this	chapter.
Simpler	caching:	Caching	strategies	to	cache	results	become	much	simpler
when	we	can	predict	the	output	of	a	function	given	its	arguments.

	

	

see more please visit: https://homeofpdf.com

Introducing	functional	programming
Functional	programming	(FP)	is	a	programming	paradigm	that	receives	its
name	from	the	way	we	build	applications	when	we	use	it.	In	a	programming
paradigm	such	as	OOP,	the	main	building	blocks	that	we	use	to	create	an
application	are	objects	(objects	are	declared	using	classes).	However,	in	FP,	we
use	functions	as	the	main	building	block	in	our	applications.

Each	new	programming	paradigm	introduces	a	series	of	concepts	and	ideas
associated	with	it.	Some	of	these	concepts	are	universal	and	are	also	of	interest
while	learning	a	different	programming	paradigm.	In	OOP,	we	have	concepts
such	as	inheritance,	encapsulation,	and	polymorphism.	In	functional
programming,	concepts	include	higher-order	functions,	function	partial
application,	immutability,	and	referential	transparency.	We	are	going	to	examine
some	of	these	concepts	in	this	chapter.

Michael	Feathers,	the	author	of	the	SOLID	acronym	and	many	other	well-
known	software	engineering	principles,	once	wrote	the	following:

"Object-oriented	programming	makes	code	understandable	by	encapsulating	moving	parts.	Functional
programming	makes	code	understandable	by	minimizing	moving	parts."

–	Michael	Feathers

The	preceding	quote	mentions	moving	parts.	We	should	understand	these
moving	parts	as	state	changes	(also	known	as	state	mutations).	In	OOP,	we	use
encapsulation	to	prevent	objects	from	being	aware	of	the	state	mutations	of	other
objects.	In	functional	programming,	we	try	to	avoid	dealing	with	state	mutations
instead	of	encapsulating	them.

FP	reduces	the	number	of	places	in	which	state	changes	take	place	within	an
application	and	tries	to	move	these	places	into	the	boundaries	of	the	application
to	try	to	keep	the	application's	core	stateless.

A	mutable	state	is	bad	because	it	makes	the	behavior	of	our	code	harder	to
predict.	Take	the	following	function,	for	example:

see more please visit: https://homeofpdf.com

function	isIndexPage()	{

		return	window.location.pathname	===	"/";

}

The	preceding	code	snippet	declared	a	function	named	isIndexPage.	This	function
can	be	used	to	check	whether	the	current	page	is	the	root	page	in	a	web
application	based	on	the	current	path.

The	path	is	some	data	that	changes	all	the	time,	so	we	can	consider	it	a	piece	of
state.	If	we	try	to	predict	the	result	of	invoking	the	isIndexPage,	we	will	need	to
know	the	current	state.	The	problem	is	that	we	could	wrongly	assume	that	the
state	has	not	changed	since	the	last	known	state.	We	can	solve	this	problem	by
transforming	the	preceding	function	into	what	is	known	in	FP	as	a	pure
function,	as	we	will	learn	in	the	following	section.

see more please visit: https://homeofpdf.com

Pure	functions
FP	introduces	a	number	of	concepts	and	principles	that	will	help	us	to	improve
the	predictability	of	our	code.	In	this	section,	we	are	going	to	learn	about	one	of
these	core	concepts—pure	functions.

A	function	can	be	considered	pure	when	it	returns	a	value	that	is	computed	using
only	the	arguments	passed	to	it.	Also,	a	pure	function	avoids	mutating	its
arguments	or	any	other	external	variables.	As	a	result,	a	pure	function	always
returns	the	same	value	given	the	same	arguments,	independently	of	when	it	is
invoked.

The	isIndexPage	function	declared	in	the	preceding	section	is	not	a	pure	function
because	it	accesses	the	pathname	variable,	which	has	not	been	passed	as	an
argument	to	the	function.	We	can	transform	the	preceding	function	into	a	pure
function	by	rewriting	it	as	follows:

function	isIndexPage(pathname:	string)	{

		return	pathname	===	"/";

}

Even	though	this	is	a	basic	example,	we	can	easily	perceive	that	the	newer
version	is	much	easier	to	predict.	Pure	functions	help	us	to	make	our	code	easier
to	understand,	maintain,	and	test.

Imagine	that	we	wanted	to	write	a	unit	test	for	the	impure	version	of	the
isIndexPage	function.	We	would	encounter	some	problems	when	trying	to	write	a
test	because	the	function	uses	the	window.location	object.	We	could	overcome	this
issue	by	using	a	mocking	framework,	but	it	would	add	a	lot	of	complexity	to	our
unit	tests	just	because	we	didn't	use	a	pure	function.

On	the	other	hand,	testing	the	pure	version	of	the	isIndexPage	function	would	be
straightforward,	as	follows:

function	shouldReturnTrueWhenPathIsIndex(){

				let	expected	=	true;

				let	result	=	isIndexPage("/");

				if	(expected	!==	result)	{

								throw	new	Error('Expected	${expected}	to	equals	${result}');

				}

see more please visit: https://homeofpdf.com

}

function	shouldReturnFalseWhenPathIsNotIndex()	{

				let	expected	=	false;

				let	result	=	isIndexPage("/someotherpage");

				if	(expected	!==	result)	{

								throw	new	Error('Expected	${expected}	to	equals	${result}');

				}

}

Now	that	we	understand	how	functional	programming	helps	us	to	write	better
code	by	avoiding	state	mutations,	we	can	learn	about	side-effects	and	referential
transparency.

see more please visit: https://homeofpdf.com

side-effects
In	the	preceding	section,	we	learned	that	a	pure	function	returns	a	value	that	can
be	computed	using	only	the	arguments	passed	to	it.	A	pure	function	also	avoids
mutating	its	arguments	or	any	other	external	variable	that	is	not	passed	to	the
function	as	an	argument.	In	FP	terminology,	it	is	common	to	say	that	a	pure
function	is	a	function	that	has	no	side-effects,	which	means	that,	when	we	invoke
a	pure	function,	we	can	expect	that	the	function	is	not	going	to	interfere	(through
a	state	mutation)	with	any	other	component	in	our	application.

Certain	programming	languages,	such	as	Haskell,	can	ensure	that	an	application
is	free	of	side-effects	using	their	type	system.	TypeScript	has	fantastic
interoperability	with	JavaScript,	but	the	downside	of	this,	compared	to	a	more
isolated	language	such	as	Haskell,	is	that	the	type	system	is	not	able	to	guarantee
that	our	application	is	free	from	side-effects.	However,	we	can	use	some	FP
techniques	to	improve	the	type	safety	of	our	TypeScript	applications.	Let's	take	a
look	at	an	example:	interface	User	{
ageInMonths:	number;
name:	string;
}

function	findUserAgeByName(users:	User[],	name:	string):	number	{
if	(users.length	==	0)	{
throw	new	Error("There	are	no	users!");
}
const	user	=	users.find(u	=>	u.name	===	name);
if	(!user)	{
throw	new	Error("User	not	found!");
}	else	{
return	user.ageInMonths;
}
}

The	preceding	function	returns	a	number.	The	code	compiles	without	issues.	The
problem	is	that	the	function	does	not	always	return	a	number.	As	a	result,	we	can

see more please visit: https://homeofpdf.com

consume	the	function	as	follows	and	our	code	will	compile	and	throw	an
exception	at	runtime:	const	users	=	[
{	ageInMonths:	1,	name:	"Remo"	},
{	ageInMonths:	2,	name:	"Leo"	}
];

//	The	variable	userAge1	is	as	number
const	userAge1	=	findUserAgeByName(users,	"Remo");	
console.log('Remo	is	${userAge1	/	12}	years	old!');

//	The	variable	userAge2	is	a	number	but	the	function	throws!
const	userAge2	=	findUserAgeByName([],	"Leo");	//	Error
console.log('Leo	is	${userAge2	/	12}	years	old!');

The	following	example	showcases	a	new	implementation	of	the	preceding
function.	This	time,	instead	of	returning	a	number,	we	will	explicitly	return	a
promise.	The	promise	forces	us	to	then	use	the	handler.	This	handler	is	only
executed	if	the	promise	is	fulfilled,	which	means	that	if	the	function	returns	an
error,	we	will	never	try	to	convert	the	age	to	years:	function
safeFindUserAgeByName(users:	User[],	name:	string):	Promise<number>	{
if	(users.length	==	0)	{
return	Promise.reject(new	Error("There	are	no	users!"));
}
const	user	=	users.find(u	=>	u.name	===	name);
if	(!user)	{
return	Promise.reject(new	Error("User	not	found!"));
}	else	{
return	Promise.resolve(user.ageInMonths);
}
}

safeFindUserAgeByName(users,	"Remo")
.then(userAge1	=>	console.log('Remo	is	${userAge1	/	12}	years	old!'));

safeFindUserAgeByName([],	"Leo")	//	Error
.then(userAge1	=>	console.log('Leo	is	${userAge1	/	12}	years	old!'));

see more please visit: https://homeofpdf.com

The	Promise	type	helps	us	to	prevent	errors	because	it	expresses	potential	errors	in
an	explicit	way.	In	programming	languages	such	as	Haskell,	this	is	the	default
behavior	of	the	type	system,	but,	in	programming	languages	such	as	TypeScript,
it	is	up	to	us	to	use	types	in	a	safer	way.

We	will	learn	more	about	Promises	in	Chapter	3,	Mastering	Asynchronous	Programming.	We
will	also	learn	more	about	how	we	can	use	a	number	of	libraries	to	reduce	the	chances	of
side-effects	in	our	TypeScript	applications	in	Chapter	8,	Category	Theory.
If	you	find	the	idea	of	your	JavaScript	applications	being	free	of	side-effects	attractive,	you
can	try	open-source	projects	such	as	https://github.com/bodil/eslint-config-cleanjs.	This	project	is	an
ESLint	configuration	that	aims	to	restrict	you	to	a	subset	of	JavaScript,	which	would	be	as
close	to	an	idealized	pure	functional	language	as	possible.	Unfortunately,	at	the	time	of
publication,	no	similar	tools	are	available	that	are	specifically	designed	for	TypeScript.

see more please visit: https://homeofpdf.com

https://github.com/bodil/eslint-config-cleanjs

let	result	=	isIndexPage("/");

let	result	=	true;

A	pure	function	is	a	referentially	transparent	expression.	An	expression	that	is
not	referentially	transparent	is	known	as	referentially	opaque.

see more please visit: https://homeofpdf.com

Stateless	versus	stateful
Pure	functions	and	referentially	transparent	expressions	are	stateless.	A	piece	of
code	is	stateless	when	its	outcomes	are	not	influenced	by	previous	events.	For
example,	the	results	of	the	isIndexPage	function	will	not	be	influenced	by	the
number	of	times	that	we	invoke	it,	or	by	the	moment	in	time	when	we	invoke	it.

The	opposite	of	stateless	code	is	stateful	code.	Stateless	code	is	very	difficult	to
test	and	becomes	a	problem	when	we	are	trying	to	implement	scalable	and
resilient	systems.	Resilient	systems	are	systems	that	can	handle	server	failures;
there	is	usually	more	than	one	instance	of	a	service,	and	if	one	of	them	crashes,
others	can	continue	handling	traffic.	Also,	new	instances	are	created
automatically	after	one	of	the	instances	has	crashed.	This	becomes	very	difficult
if	our	servers	are	stateful	because	we	need	to	save	the	current	state	before	a	crash
and	restore	the	state	before	we	spin	up	a	new	instance.	The	whole	process
becomes	much	simpler	when	we	design	our	servers	to	be	stateless.

With	the	arrival	of	the	cloud	computing	revolution,	these	kinds	of	system	have
become	more	common,	and	this	has	led	to	an	interest	in	functional	programming
languages	and	design	principles	because	functional	programming	encourages	us
to	write	stateless	code.	The	opposite	can	be	said	of	OOP	because	classes	are	the
main	construct	in	OOP	applications.	Classes	encapsulate	state	properties	that	are
then	modified	by	methods,	which	encourages	methods	to	be	stateful	and	not
pure.

see more please visit: https://homeofpdf.com

Declarative	versus	imperative
programming
The	advocates	of	the	FP	paradigm	often	use	declarative	programming	as	one	of
its	main	benefits.	Declarative	programming	is	not	necessarily	exclusive	to
functional	programming,	but	FP	certainly	encourages	or	facilitates	this
programming	style.	Before	we	take	a	look	at	some	examples,	we	are	going	to
define	declarative	programming	and	imperative	programming:

Imperative	programming	is	a	programming	paradigm	that	uses	statements
that	change	a	program's	state.	In	much	the	same	way	that	the	imperative
mood	in	natural	languages	expresses	commands,	an	imperative	program
consists	of	commands	for	the	computer	to	perform.	Imperative
programming	focuses	on	describing	how	a	program	operates.
Declarative	programming	is	a	programming	paradigm	that	expresses	the
logic	of	a	computation	without	describing	its	control	flow.	Many	languages
that	apply	this	style	attempt	to	minimize	or	eliminate	side-effects	by
describing	what	the	program	must	accomplish	in	terms	of	the	problem
domain,	rather	than	describing	how	to	accomplish	it	as	a	sequence	of	steps.

The	following	example	calculates	the	average	result	of	an	exam	given	a
collection	of	objects	that	contains	an	ID	and	a	result	for	a	list	of	students.	This
example	uses	an	imperative	programming	style	because,	as	we	can	see,	it	uses
control	flow	statements	(for).	The	example	is	also	clearly	imperative	because	it
mutates	a	state.	The	total	variable	is	declared	using	the	let	keyword	because	it	is
mutated	as	many	times	as	results	are	contained	in	the	results	array:

interface	Result	{

	id:	number;

	result:number;

}

const	results:	Result[]	=	[

	{	id:	1,	result:	64	},

	{	id:	2,	result:	87	},

	{	id:	3,	result:	89	}

];

function	avg(arr:	Result[])	{

	let	total	=	0;

	for	(var	i	=	0;	i	<	arr.length;	i++)	{

see more please visit: https://homeofpdf.com

	total	+=	arr[i].result;

	}

	return	total	/	arr.length;

}

const	resultsAvg	=	avg(results);

console.log(resultsAvg);

On	the	other	hand,	the	following	example	is	declarative	because	there	are	no
control	flow	statements	and	there	are	no	state	mutations:

interface	Result	{

				id:	number;

				result:number;

}

const	results:	Result[]	=	[

				{	id:	1,	result:	64	},

				{	id:	2,	result:	87	},

				{	id:	3,	result:	89	}

];

const	add	=	(a:	number,	b:	number)	=>	a	+	b;

const	division	=	(a:	number,	b:	number)	=>	a	/	b;

const	avg	=	(arr:	Result[])	=>

				division(arr.map(a	=>	a.result).reduce(add,	0),	arr.length)

const	resultsAvg	=	avg(results);

console.log(resultsAvg);

While	the	previous	example	is	declarative,	it	is	not	as	declarative	as	it	could	be.
The	following	example	takes	the	declarative	style	one	step	further	so	we	can	get
an	idea	of	how	a	piece	of	declarative	code	may	appear.	Don't	worry	if	you	don't
understand	everything	in	this	example	right	now.	We	will	be	able	to	understand
it	once	we	learn	more	about	functional	programming	techniques	later	in	this
book.	Note	how	the	program	is	now	defined	as	a	set	of	very	small	functions	that
don't	mutate	the	state	and	that	also	don't	use	control	flow	statements.	These
functions	are	reusable	because	they	are	independent	of	the	problem	that	we	are
trying	to	solve.	For	example,	the	avg	function	can	calculate	an	average,	but	it
doesn't	need	to	be	an	average	of	results:

const	add	=	(a:	number,	b:	number)	=>	a	+	b;

const	addMany	=	(...args:	number[])	=>	args.reduce(add,	0);

const	div	=	(a:	number,	b:	number)	=>	a	/	b;

const	mapProp	=	<T>(k:	keyof	T,	arr:	T[])	=>	arr.map(a	=>	a[k]);

const	avg	=	(arr:	number[])	=>	div(addMany(...arr),	arr.length);

interface	Result	{

				id:	number;

				result:number;

}

const	results:	Result[]	=	[

see more please visit: https://homeofpdf.com

				{	id:	1,	result:	64	},

				{	id:	2,	result:	87	},

				{	id:	3,	result:	89	}

];

const	resultsAvg	=	avg(mapProp("result",	results));

console.log(resultsAvg);

The	actual	code	that	is	specific	to	the	problem	that	we	are	trying	to	solve	is	very
small:

const	resultsAvg	=	avg(mapProp("result",	results));

This	code	is	not	reusable,	but	the	add,	addMany,	div,	mapProp,	and	avg	functions	are
reusable.	This	demonstrates	how	declarative	programming	can	lead	to	more
reusable	code	than	imperative	programming.

see more please visit: https://homeofpdf.com

Immutability
Immutability	refers	to	the	inability	to	change	the	value	of	a	variable	after	a	value
has	been	assigned	to	it.	Purely	functional	programming	languages	include
immutable	implementations	of	common	data	structures.	For	example,	when	we
add	an	element	to	an	array,	we	are	mutating	the	original	array.	However,	if	we
use	an	immutable	array	and	we	try	to	add	a	new	element	to	it,	the	original	array
will	not	be	mutated,	and	we	will	add	the	new	item	to	a	copy	of	it.

The	following	code	snippet	declares	a	class	named	ImmutableList	that	demonstrates
how	it	is	possible	to	implement	an	immutable	array:

class	ImmutableList<T>	{

				private	readonly	_list:	ReadonlyArray<T>;

				private	_deepCloneItem(item:	T)	{

								return	JSON.parse(JSON.stringify(item))	as	T;

				}

				public	constructor(initialValue?:	Array<T>)	{

								this._list	=	initialValue	||	[];

				}

				public	add(newItem:	T)	{

								const	clone	=	this._list.map(i	=>	this._deepCloneItem(i));

								const	newList	=	[...clone,	newItem];

								const	newInstance	=	new	ImmutableList<T>(newList);

								return	newInstance;

				}

				public	remove(

								item:	T,

								areEqual:	(a:	T,	b:	T)	=>	boolean	=	(a,	b)	=>	a	===	b

)	{

								const	newList	=	this._list.filter(i	=>	!areEqual(item,	i))

																												.map(i	=>	this._deepCloneItem(i));

								const	newInstance	=	new	ImmutableList<T>(newList);

								return	newInstance;

				}

				public	get(index:	number):	T	|	undefined	{

								const	item	=	this._list[index];

								return	item	?	this._deepCloneItem(item)	:	undefined;

				}

				public	find(filter:	(item:	T)	=>	boolean)	{

								const	item	=	this._list.find(filter);

								return	item	?	this._deepCloneItem(item)	:	undefined;

				}

}

Every	time	we	add	an	item	to,	or	remove	it	from,	the	immutable	array,	we	create
a	new	instance	of	the	immutable	array.	This	implementation	is	very	inefficient,
but	it	demonstrates	the	basic	idea.	We	are	going	to	create	a	quick	test	to
demonstrate	how	the	preceding	class	works.	We	are	going	to	use	some	data

see more please visit: https://homeofpdf.com

regarding	superheroes:

interface	Hero	{	

				name:	string;

				powers:	string[];

}

const	heroes	=	[

				{

								name:	"Spiderman",

								powers:	[

												"wall-crawling",

												"enhanced	strength",

												"enhanced	speed",

												"spider-Sense"

]

				},

				{

								name:	"Superman",

								powers:	[

												"flight",

												"superhuman	strength",

												"x-ray	vision",

												"super-speed"

]

				}

];

const	hulk	=	{

				name:	"Hulk",

				powers:	[

								"superhuman	strength",

								"superhuman	speed",

								"superhuman	Stamina",

								"superhuman	durability"

]

};

We	can	now	use	the	preceding	data	to	create	a	new	immutable	list	instance.
When	we	add	a	new	superhero	to	the	list,	a	new	immutable	list	is	created.	If	we
try	to	search	for	the	superhero	Hulk	in	the	two	immutable	lists,	we	will	observe
that	only	the	second	list	contains	it.	We	can	also	compare	both	lists	to	observe
that	they	are	two	different	objects,	demonstrated	as	follows:

const	myList	=	new	ImmutableList<Hero>(heroes);

const	myList2	=	myList.add(hulk);

const	result1	=	myList.find((h	=>	h.name	===	"Hulk"));	

const	result2	=	myList2.find((h	=>	h.name	===	"Hulk"));

const	areEqual	=	myList2	===	myList;

console.log(result1);	//	undefined

console.log(result2);	//	{	name:	"Hulk",	powers:	Array(4)	}

console.log(areEqual);	//	false

Creating	our	own	immutable	data	structures	is,	in	most	cases,	not	necessary.	In	a
real-world	application,	we	can	use	libraries	such	as	Immutable.js	to	enjoy

see more please visit: https://homeofpdf.com

immutable	data	structures.

see more please visit: https://homeofpdf.com

Functions	as	first-class	citizens
It	is	common	to	find	mentions	of	functions	as	first-class	citizens	in	the	FP
literature.	We	say	that	a	function	is	a	first-class	citizen	when	it	can	do	everything
that	a	variable	can	do,	which	means	that	functions	can	be	passed	to	other
functions	as	an	argument.	For	example,	the	following	function	takes	a	function
as	its	second	argument:	function	find<T>(arr:	T[],	filter:	(i:	T)	=>	boolean)	{
return	arr.filter(filter);
}

find(heroes,	(h)	=>	h.name	===	"Spiderman");

Or,	it	is	returned	by	another	function.	For	example,	the	following	function	takes
a	function	as	its	only	argument	and	returns	a	function:

function	find<T>(filter:	(i:	T)	=>	boolean)	{

				return	(arr:	T[])	=>	{

								return	arr.filter(filter);

				}

}

		

const	findSpiderman	=	find((h:	Hero)	=>	h.name	===	"Spiderman");

const	spiderman	=	findSpiderman(heroes);

Functions	can	also	be	assigned	to	variables.	For	example,	in	the	preceding	code
snippet,	we	assigned	the	function	returned	by	the	find	function	to	a	variable
named	findSpiderman:	const	findSpiderman	=	find((h:	Hero)	=>	h.name	===
"SPiderman");

Both	JavaScript	and	TypeScript	treat	functions	as	first-class	citizens.

see more please visit: https://homeofpdf.com

Lambda	expressions
Lambda	expressions	are	just	expressions	that	can	be	used	to	declare	anonymous
functions	(functions	without	a	name).	Before	the	ES6	specification,	the	only	way
to	assign	a	function	as	a	value	to	a	variable	was	to	use	a	function	expression:

const	log	=	function(arg:	any)	{	console.log(arg);	};

The	ES6	specification	introduced	the	arrow	function	syntax:

const	log	=	(arg:	any)	=>	console.log(arg);

Please	refer	to	Chapter	2,	Mastering	Functions,	Chapter	4,	The	Runtime	–	The	Event	Loop	and	the
this	Operator,	and	Chapter	5,	The	Runtime	–	Closures	and	Prototypes,	to	learn	more	about
arrow	functions	and	function	expressions.

see more please visit: https://homeofpdf.com

Function	arity
The	arity	of	a	function	is	the	number	of	arguments	that	the	function	takes.	A
unary	function	is	a	function	that	only	takes	a	single	argument:

function	isNull<T>(a:	T|null)	{

				return	(a	===	null);

}

Unary	functions	are	very	important	in	functional	programming	because	they
facilitate	utilization	of	the	function	composition	pattern.

We	will	learn	more	about	function	composition	patterns	later	in	Chapter	6,	Functional
Programming	Techniques.

A	binary	function	is	a	function	that	takes	two	arguments:

function	add(a:	number,	b:	number)	{

				return	a	+	b;

}

Functions	with	two	or	more	arguments	are	also	important	because	some	of	the
most	common	FP	patterns	and	techniques	(for	example,	partial	application	and
currying)	have	been	designed	to	transform	functions	that	allow	multiple
arguments	into	unary	functions.

There	are	also	functions	with	three	(ternary	functions)	or	more	arguments.
However,	functions	that	accept	a	variable	number	of	arguments,	known	as
variadic	functions,	are	particularly	interesting	in	functional	programming,	as
demonstrated	in	the	following	code	snippet:

function	addMany(...numbers:	number[])	{

				numbers.reduce((p,	c)	=>	p	+	c,	0);

}

see more please visit: https://homeofpdf.com

Higher-order	functions
A	higher-order	function	is	a	function	that	does	at	least	one	of	the	following:

Takes	one	or	more	functions	as	arguments
Returns	a	function	as	its	result

Higher-order	functions	are	some	of	the	most	powerful	tools	that	we	can	use	to
write	JavaScript	in	a	functional	programming	style.	Let's	look	at	some	examples.

The	following	code	snippet	declares	a	function	named	addDelay.	The	function
creates	a	new	function	that	waits	for	a	given	number	of	milliseconds	before
printing	a	message	in	the	console.	The	function	is	considered	a	higher-order
function	because	it	returns	a	function:

function	addDelay(msg:	string,	ms:	number)	{

				return	()	=>	{

								setTimeout(()	=>	{

												console.log(msg);

								},	ms);

				};

}

const	delayedSayHello	=	addDelay("Hello	world!",	500);

delayedSayHello();	//	Prints	"Hello	world!"	(after	500	ms)

The	following	code	snippet	declares	a	function	named	addDelay.	The	function
creates	a	new	function	that	adds	a	delay	in	milliseconds	to	the	execution	of
another	function	that	is	passed	as	an	argument.	The	function	is	considered	a
higher-order	function	because	it	takes	a	function	as	an	argument	and	returns	a
function:

function	addDelay(func:	()	=>	void,	ms:	number)	{

				return	()	=>	{

								setTimeout(()	=>	{

												func();

								},	ms);

				};

}

function	sayHello()	{

				console.log("Hello	world!");

}

const	delayedSayHello	=	addDelay(sayHello,	500);

delayedSayHello();	//	Prints	"Hello	world!"	(after	500	ms)

see more please visit: https://homeofpdf.com

Higher-order	functions	are	an	effective	technique	for	abstracting	a	solution	for	a
common	problem.	The	preceding	example	demonstrates	how	we	can	use	a
higher-order	function	(addDelay)	to	add	a	delay	to	another	function	(sayHello).	This
technique	allows	us	to	abstract	the	delay	functionality	and	keeps	the	sayHello
function,	or	other	functions,	agnostic	of	the	implementation	details	of	the	delay
functionality.

see more please visit: https://homeofpdf.com

Laziness
Many	functional	programming	languages	feature	lazy-evaluated	APIs.	The	idea
behind	lazy	evaluation	is	that	operations	are	not	computed	until	doing	so	can	no
longer	be	postponed.	The	following	example	declares	a	function	that	allows	us
to	find	an	element	in	an	array.	When	the	function	is	invoked,	we	don't	filter	the
array.	Instead,	we	declare	a	proxy	and	a	handler:

function	lazyFind<T>(arr:	T[],	filter:	(i:	T)	=>	boolean):	T	{

				let	hero:	T	|	null	=	null;

				

				const	proxy	=	new	Proxy(

								{},

								{

												get:	(obj,	prop)	=>	{

																console.log("Filtering...");

																if	(!hero)	{

																				hero	=	arr.find(filter)	||	null;

																}

																return	hero	?	(hero	as	any)[prop]	:	null;

												}

								}

);

				return	proxy	as	any;

}

It	is	only	later,	when	one	of	the	properties	in	the	result	is	accessed,	that	the	proxy
handler	is	invoked	and	filtering	takes	place:

const	heroes	=	[

				{

								name:	"Spiderman",

								powers:	[

												"wall-crawling",

												"enhanced	strength",

												"enhanced	speed",

												"spider-Sense"

]

				},

				{

								name:	"Superman",

								powers:	[

												"flight",

												"superhuman	strength",

												"x-ray	vision",

												"super-speed"

]

				}

];

see more please visit: https://homeofpdf.com

console.log("A");

const	spiderman	=	lazyFind(heroes,	(h)	=>	h.name	===	"Spiderman");

console.log("B");

console.log(spiderman.name);

console.log("C");

/*

				A

				B

				Filtering...

				Spiderman

				C

*/

If	we	examine	the	console	output,	we	will	be	able	to	see	that	the	Filtering...
message	is	not	logged	into	the	console	until	we	access	the	property	name	of	the
result	object.	The	preceding	implementation	is	a	very	rudimentary
implementation,	but	it	can	help	us	to	understand	how	lazy	evaluation	works.
Laziness	can	sometimes	improve	the	overall	performance	of	our	applications.

We	will	learn	more	about	function	composition	patterns	later	in	Chapter	9,	Functional-Reactive
Programming.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	explored	some	of	the	most	fundamental	principles	and
concepts	of	the	functional	programming	paradigm.

Over	the	next	four	chapters,	we	are	going	to	deviate	a	little	bit	from	functional
programming	because	we	are	going	to	take	an	extensive	look	at	functions,
asynchronous	programming,	and	certain	aspects	of	the	TypeScript/JavaScript
runtime,	such	as	closures	and	prototypes.	We	need	to	explore	these	topics	before
we	can	learn	more	about	the	implementation	of	functional	programming
techniques.	However,	if	you	are	already	very	confident	with	using	functions,
closures,	the	this	operator,	and	prototypes,	then	you	should	be	able	to	skip	the
next	four	chapters.

	

	

	

see more please visit: https://homeofpdf.com

Mastering	Functions
In	Chapter	1",	Functional	Programming	Fundamentals",	we	learned	about	some	of	the	most
fundamental	functional	programming	concepts.	Functions	are	one	of	the
fundamental	building	blocks	of	any	TypeScript	application,	and	they	are
powerful	enough	to	warrant	an	entire	chapter	being	dedicated	to	them	in	order	to
explore	their	potential.

In	this	chapter,	we	are	going	to	master	the	usage	of	functions.	The	chapter	starts
with	a	quick	recap	of	a	number	of	basic	concepts	and	then	moves	on	to	some	less
commonly	known	function	features	and	use	cases:

Function	types:

Function	declarations	and	function	expressions
Named	and	anonymous	functions

Working	with	parameters:

Functions	with	optional	parameters
Functions	with	default	parameters
Functions	with	rest	parameters
Function	overloading
Specialized	overloading	signature

Function	scope
Immediately-invoked	functions
Tag	functions	and	tagged	templates

	

	

see more please visit: https://homeofpdf.com

Function	types
We	already	know	that	it	is	possible	to	explicitly	declare	the	type	of	an	element	in
our	application	by	using	optional	type	annotations:

function	greetNamed(name:	string):	string	{

				return	'Hi!	${name}';

}

In	the	previous	function,	we	specified	the	type	of	parameter	name	(string)	and	its
return	type	(string).	Sometimes,	we	will	need	to	specify	the	types	of	the	function,
as	opposed	to	specifying	the	types	of	its	components	(arguments	or	returned
value).	Let's	look	at	an	example:

let	greetUnnamed:	(name:	string)	=>	string;

greetUnnamed	=	function(name:	string):	string	{

	return	'Hi!	${name}';

};

In	the	preceding	example,	we	have	declared	the	greetUnnamed	variable	and	its	type.
The	greetUnnamed	type	is	a	function	type	that	takes	a	string	variable	called	name	as
its	only	parameter	and	returns	a	string	after	being	invoked.	After	declaring	the
variable,	a	function,	whose	type	must	be	equal	to	the	variable	type,	is	assigned	to
it.

We	can	also	declare	the	greetUnnamed	type	and	assign	a	function	to	it	in	the	same
line,	rather	than	declaring	it	in	two	separate	lines,	as	we	did	in	the	previous
example:

let	greetUnnamed:	(name:	string)	=>	string	=	function(name:	string):	string	{

				return	'Hi!	${name}';

};

Just	like	in	the	previous	example,	the	preceding	code	snippet	also	declares	a
variable,	greetUnnamed,	and	its	type.	greetUnnamed	is	a	function	type	that	takes	a	string
variable	called	name	as	its	only	parameter	and	will	return	a	string	after	being
invoked.	We	will	assign	a	function	to	this	variable	in	the	same	line	in	which	it	is
declared.	The	type	of	the	assigned	function	must	match	the	variable	type.

In	the	preceding	example,	we	have	declared	the	type	of	the	greetUnnamed	variable	and	then

see more please visit: https://homeofpdf.com

assigned	a	function	as	its	value.	The	type	of	function	can	be	inferred	from	the	assigned
function	and,	for	this	reason,	it	is	unnecessary	to	add	a	redundant	type	annotation.	We	have
done	this	to	facilitate	your	understanding	of	this	section,	but	it	is	important	to	mention	that
adding	redundant	type	annotations	can	make	our	code	harder	to	read,	and	is	considered	a	bad
practice.

see more please visit: https://homeofpdf.com

Named	and	anonymous	functions
Just	as	in	JavaScript,	TypeScript	functions	can	be	created	either	as	a	named
function	or	as	an	anonymous	function,	which	allows	us	to	choose	the	most
appropriate	approach	for	an	application,	whether	we	are	building	a	list	of
functions	in	an	API	or	a	one-off	function	to	hand	over	to	another	function:

//	named	function

function	greet(name?:	string):	string	{

		if(name){

				return	"Hi!	"	+	name;

		}	else	{

				return	"Hi!";

		}

}

//	anonymous	function

let	greet	=	function(name?:	string):	string	{

		if	(name)	{

				return	"Hi!	"	+	name;

		}	else	{

				return	"Hi!";

		}

}

As	we	can	see	in	the	preceding	code	snippet,	in	TypeScript,	we	can	add	types	to
each	of	the	parameters	and	then	to	the	function	itself	to	add	a	return	type.
TypeScript	can	infer	the	return	type	by	looking	at	the	return	statements,	so	we	can
also	optionally	leave	this	off	in	many	cases.

There	is	an	alternative	syntax	for	functions	that	use	the	=>	operator	after	the	return
type	and	don't	use	the	function	keyword:

let	greet	=	(name:	string):	string	=>	{

				if(name){

						return	"Hi!	"	+	name;

				}

				else

				{

						return	"Hi";

				}

};

Now	that	we	have	learned	about	this	alternative	syntax,	we	can	return	to	the
previous	example	in	which	we	were	assigning	an	anonymous	function	to	the
greet	variable.	We	can	now	add	type	annotations	to	the	greet	variable	to	match	the

see more please visit: https://homeofpdf.com

anonymous	function	signature:

let	greet:	(name:	string)	=>	string	=	function(name:	string):	

string	{

				if	(name)	{

						return	"Hi!	"	+	name;

				}	else	{

						return	"Hi!";

				}

};

Keep	in	mind	that	the	arrow	function	(=>)	syntax	changes	the	way	the	this	operator	works
when	working	with	classes.	We	will	learn	more	about	this	in	upcoming	chapters.

The	previous	code	snippet	demonstrates	how	to	use	type	annotations	to	force	a
variable	to	be	a	function	with	a	specific	signature.	These	kinds	of	annotation	are
commonly	used	when	we	annotate	a	callback	(a	function	used	as	an	argument	of
another	function):

function	add(

				a:	number,

				b:	number,

				callback:	(result:	number)	=>	void

)	{

				callback(a	+	b);

}

In	the	preceding	example,	we	are	declaring	a	function	named	add	that	takes	two
numbers	and	a	callback	as	a	function.	The	type	annotations	will	force	the	callback
to	return	void	and	take	a	number	as	its	only	argument.

see more please visit: https://homeofpdf.com

Function	declarations	and	function
expressions
In	the	preceding	section,	we	introduced	the	possibility	of	declaring	functions
with	(a	named	function)	or	without	(an	unnamed	or	anonymous	function)
explicitly	indicating	their	name,	but	we	didn't	mention	that	we	were	also	using
two	different	types	of	function.

In	the	following	example,	the	named	function,	greetNamed,	is	a	function
declaration	while	greetUnnamed	is	a	function	expression.	For	the	time	being,
please	ignore	the	first	two	lines,	which	contain	two	console.log	statements:
console.log(greetNamed("John"));	//	OK
console.log(greetUnnamed("John"));	//	Error

function	greetNamed(name:	string):	string	{
return	'Hi!	${name}';
}

let	greetUnnamed	=	function(name:	string):	string	{
return	'Hi!	${name}';
};

We	might	think	that	the	preceding	functions	are	identical,	but	they	behave
differently.	The	JavaScript	interpreter	can	evaluate	a	function	declaration	as	it	is
being	parsed.	On	the	other	hand,	the	function	expression	is	part	of	an	assignment
and	will	not	be	evaluated	until	the	assignment	has	been	completed.

The	primary	cause	of	the	different	behavior	of	these	functions	is	a	process	known	as	variable
hoisting.	We	will	learn	more	about	the	variable	hoisting	process	in	the	Function	scope	and
hoisting	section	later	in	this	chapter.

Fortunately,	the	TypeScript	compiler	can	detect	this	error	and	throw	a
compilation-time	error.	However,	if	we	compile	the	preceding	TypeScript	code
snippet	into	JavaScript,	ignore	the	compilation	errors,	and	try	to	execute	it	in	a
web	browser,	we	will	observe	that	the	first	console.log	call	works.	This	is	the	case

see more please visit: https://homeofpdf.com

because	JavaScript	knows	about	the	declaration	function	and	can	parse	it	before
the	program	is	executed.

However,	the	second	alert	statement	will	throw	an	exception,	to	indicate	that
greetUnnamed	is	not	a	function.	The	exception	is	thrown	because	the	greetUnnamed
assignment	must	be	completed	before	the	function	can	be	evaluated.

see more please visit: https://homeofpdf.com

Working	with	function	parameters
In	this	section,	we	are	going	to	learn	how	to	work	with	function	parameters	in
multiple	scenarios,	including	optional	parameters,	default	parameters,	and	rest
parameters.

see more please visit: https://homeofpdf.com

Trailing	commas	in	function
arguments
Trailing	commas	are	commas	that	are	used	after	the	final	argument	of	a	function.
Using	a	comma	after	the	last	parameter	of	a	function	can	be	useful	because	it	is
very	common	to	forget	a	comma	when	we	modify	an	existing	function	by	adding
additional	parameters.

For	example,	the	following	function	only	takes	one	parameter	and	doesn't	use
trailing	commas:

function	greetWithoutTralingCommas(

				name:	string

):	string	{

				return	'Hi!	${name}';

}

Some	time	after	the	initial	implementation,	we	might	be	required	to	add	a
parameter	to	the	previous	function.	A	common	mistake	is	to	declare	the	new
parameter	and	forget	to	add	a	comma	after	the	first	parameter:

function	updatedGreetWithoutTralingCommas(

				name:	string

				surname:	string,	//	Error

):	string	{

				return	'Hi!	${name}	${surname}';

}

Using	a	trailing	comma	in	the	first	version	of	the	function	could	have	helped	us
to	prevent	this	common	mistake:

function	greetWithTralingCommas(

				name:	string,

):	string	{

				return	'Hi!	${name}';

}

Using	a	trailing	comma	eliminates	the	possibility	of	forgetting	the	comma	when
adding	a	new	argument:

function	updatedGreetWithTralingCommas(

				name:	string,

				surname:	string,

see more please visit: https://homeofpdf.com

):	string	{

				return	'Hi!	${name}	${surname}';

}

TypeScript	will	throw	an	error	if	we	forget	a	comma,	so	trailing	commas	are	not	needed	as
much	as	they	are	when	working	with	JavaScript.	Trailing	commas	are	optional,	but	using
them	is	considered	good	practice	by	many	JavaScript	and	TypeScript	engineers.

see more please visit: https://homeofpdf.com

Functions	with	optional	parameters
Unlike	JavaScript,	the	TypeScript	compiler	will	throw	an	error	if	we	attempt	to
invoke	a	function	without	providing	the	exact	number	and	types	of	parameters
that	its	signature	declares.	Let's	look	at	a	code	sample	to	demonstrate	it:

function	add(foo:	number,	bar:	number,	foobar:	number):	number	{

				return	foo	+	bar	+	foobar;

}

The	preceding	function	is	called	add	and	will	take	three	numbers	as	parameters,
named	foo,	bar,	and	foobar.	If	we	attempt	to	invoke	this	function	without	providing
exactly	three	numbers,	we	will	get	a	compilation	error	indicating	that	the
supplied	parameters	do	not	match	the	function's	signature:	add();	//	Error,
expected	3	arguments,	but	got	0.
add(2,	2);	//	Error,	expected	3	arguments,	but	got	2.
add(2,	2,	2);	//	OK,	returns	6

There	are	scenarios	in	which	we	might	want	to	be	able	to	call	the	function
without	providing	all	of	its	arguments.	TypeScript	features	optional	parameters
in	functions	to	help	us	to	increase	the	flexibility	of	our	functions	and	overcome
such	scenarios.

We	can	indicate	to	the	TypeScript	compiler	that	we	want	a	function's	parameter
to	be	optional	by	appending	the	character	?	to	its	name.	Let's	update	the	previous
function	to	transform	the	required	parameter,	foobar,	into	an	optional	parameter:
function	add(foo:	number,	bar:	number,	foobar?:	number):	number	{
let	result	=	foo	+	bar;
if	(foobar	!==	undefined)	{
result	+=	foobar;
}
return	result;
}

Note	how	we	have	changed	the	foobar	parameter	name	into	foobar?	and	are
checking	the	foobar	type	inside	the	function	to	identify	whether	the	parameter
was	supplied	as	an	argument	to	the	function.	After	implementing	these	changes,

see more please visit: https://homeofpdf.com

the	TypeScript	compiler	will	allow	us	to	invoke	the	function	without	errors	when
we	supply	two	or	three	arguments	to	it:	add();	//	Error,	expected	2-3	arguments,
but	got	0.
add(2,	2);	//	OK,	returns	4
add(2,	2,	2);	//	OK,	returns	6

It	is	important	to	note	that	the	optional	parameters	must	always	be	located	after
the	requisite	parameters	in	the	function's	parameter	list.

see more please visit: https://homeofpdf.com

Functions	with	default	parameters
When	a	function	has	some	optional	parameters,	we	must	check	whether	an
argument	has	been	passed	to	the	function	(just	like	we	did	in	the	previous
example)	to	prevent	potential	errors.

There	are	a	number	of	scenarios	in	which	it	would	be	more	useful	to	provide	a
default	value	for	a	parameter	when	it	is	not	supplied	than	to	make	it	an	optional
parameter.	Let's	rewrite	the	add	function	(from	the	previous	section)	using	the
inline	if	structure:

function	add(foo:	number,	bar:	number,	foobar?:	number):	number	{

				return	foo	+	bar	+	(foobar	!==	undefined	?	foobar	:	0);

}

There	is	nothing	wrong	with	the	preceding	function,	but	we	can	improve	its
readability	by	providing	a	default	value	for	the	foobar	parameter	instead	of	using
an	optional	parameter:

function	add(foo:	number,	bar:	number,	foobar:	number	=	0):	number	{

				return	foo	+	bar	+	foobar;

}

To	indicate	that	a	function	parameter	is	optional,	we	need	to	provide	a	default
value	using	the	=	operator	when	declaring	the	function's	signature.	After
compiling	the	preceding	examples,	the	TypeScript	compiler	will	generate	an	if
statement	in	the	JavaScript	output	to	set	a	default	value	for	the	foobar	parameter	if
it	is	not	passed	as	an	argument	to	the	function:

function	add(foo,	bar,	foobar)	{

				if	(foobar	===	void	0)	{	foobar	=	0;	}

				return	foo	+	bar	+	foobar;

}

This	is	great	because	the	TypeScript	compiler	generated	the	code	required	to
prevent	potential	runtime	errors	for	us.

The	void	0	parameter	is	used	by	the	TypeScript	compiler	to	check	whether	a	variable	is	equal
to	undefined.	While	most	developers	use	the	undefined	variable	to	perform	this	kind	of	check,
most	compilers	use	void	0	because	it	will	always	evaluate	as	undefined.	Checking	against
undefined	is	less	secure	because	its	value	could	have	been	modified,	as	demonstrated	by	the
following	code	snippet:

see more please visit: https://homeofpdf.com

function	test()	{

					var	undefined	=	2;	//	2

					console.log(undefined	===	2);	//	true

	}

Just	like	optional	parameters,	default	parameters	must	always	be	located	after	any
required	parameters	in	the	function's	parameter	list.

see more please visit: https://homeofpdf.com

Functions	with	rest	parameters
We	have	learned	how	to	use	optional	and	default	parameters	to	increase	the
number	of	ways	that	we	can	invoke	a	function.	Let's	return	to	the	previous
example	one	more	time:

function	add(foo:	number,	bar:	number,	foobar:	number	=	0):	number	{

				return	foo	+	bar	+	foobar;

}

We	have	learned	how	to	invoke	the	add	function	with	two	or	three	parameters,
but	what	if	we	wanted	to	allow	other	developers	to	pass	four	or	five	parameters
to	our	function?	We	would	have	to	add	two	extra	default	or	optional	parameters.
And	what	if	we	wanted	to	allow	them	to	pass	as	many	parameters	as	they	need?
The	solution	to	this	possible	scenario	is	the	use	of	rest	parameters.	The	rest
parameter	syntax	allows	us	to	represent	an	indefinite	number	of	arguments	as	an
array:

function	add(...foo:	number[]):	number	{

				let	result	=	0;

				for	(let	i	=	0;	i	<	foo.length;	i++)	{

								result	+=	foo[i];

				}

				return	result;

}

As	we	can	see	in	the	preceding	code	snippet,	we	have	replaced	the	function
parameters	foo,	bar,	and	foobar,	with	just	one	parameter	named	foo.	Note	that	the
name	of	the	parameter	foo	is	preceded	by	an	ellipsis	(a	set	of	three	periods—not
the	actual	ellipsis	character).	A	rest	parameter	must	be	of	an	array	type,	or	we
will	get	a	compilation	error.	We	can	now	invoke	the	add	function	with	as	many
parameters	as	we	need:

add();	//	0

add(2);	//	2

add(2,	2);	//	4

add(2,	2,	2);	//	6

add(2,	2,	2,	2);	//	8

add(2,	2,	2,	2,	2);	//	10

add(2,	2,	2,	2,	2,	2);	//	12

Although	there	is	no	specific	limit	in	the	theoretical	maximum	number	of

see more please visit: https://homeofpdf.com

arguments	that	a	function	can	take,	there	are,	of	course,	practical	limits.	These
limits	are	entirely	implementation-dependent	and,	most	likely,	will	also	depend
exactly	on	how	we	are	calling	the	function.

JavaScript	functions	have	a	built-in	object	called	the	arguments	object.	This	object
is	available	as	a	local	variable	named	arguments.	The	arguments	variable	contains
an	object	such	as	an	array,	which	includes	the	arguments	used	when	the	function
was	invoked.

The	arguments	object	exposes	some	of	the	methods	and	properties	provided	by	a	standard	array,
but	not	all	of	them.	Refer	to	the	complete	reference	at	https://developer.mozilla.org/en-US/docs/Web/JavaS
cript/Reference/Functions/arguments	to	learn	more	about	its	peculiarities.

If	we	examine	the	JavaScript	output,	we	will	notice	that	TypeScript	iterates	the
arguments	object	to	add	the	values	to	the	foo	variable:

function	add()	{

				var	foo	=	[];

				for	(var	_i	=	0;	_i	<	arguments.length;	_i++)	{

								foo[_i	-	0]	=	arguments[_i];

				}

				var	result	=	0;

				for	(var	i	=	0;	i	<	foo.length;	i++)	{

								result	+=	foo[i];

				}

				return	result;

}

We	can	argue	that	this	is	an	extra,	unnecessary	iteration	over	the	function's
parameters.	Even	though	it	is	hard	to	imagine	this	further	iteration	becoming	a
performance	issue,	if	you	think	that	this	could	be	a	problem	in	terms	of	the
performance	of	your	application,	you	may	want	to	consider	avoiding	the	use	of
rest	parameters	and	use	an	array	as	the	only	parameter	of	the	function	instead:

function	add(foo:	number[]):	number	{

				let	result	=	0;

				for	(let	i	=	0;	i	<	foo.length;	i++)	{

								result	+=	foo[i];

				}

				return	result;

}

The	preceding	function	takes	an	array	of	numbers	as	its	only	parameter.	The
invocation	API	will	be	a	little	bit	different	from	the	rest	parameters,	but	we	will
effectively	avoid	the	extra	iteration	over	the	function's	argument	list:

add();	//	Error,	expected	1	argument,	but	got	0.

see more please visit: https://homeofpdf.com

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments

add(2);	//	Error,	'2'	is	not	assignable	to	parameter	of	type	'number[]'.

add(2,	2);	//	Error,	expected	1	argument,	but	got	2.

add(2,	2,	2);	//	Error,	expected	1	argument,	but	got	3.

add([]);	//	returns	0

add([2]);	//	returns	2

add([2,	2]);	//	returns	4

add([2,	2,	2]);	//	returns	6

The	following	table	summarizes	the	parameter-related	features	that	we	have
explored	in	this	section:

Name Operator Description

Trailing
commas

,
Used	to	facilitate	adding	additional	parameters	to
an	existing	function	at	a	later	time.

Optional
parameters

?

Used	to	describe	optional	arguments.	When	the
argument	is	missed,	the	value	of	the	parameter	is
undefined.

Default
parameters

=

Used	to	describe	optional	arguments.	When	the
argument	is	missed,	the	value	of	the	parameter
takes	a	default	value.

Rest
parameters

...
Used	to	describe	functions	with	an	unknown
number	of	arguments.

	

In	the	following	section,	we	are	going	to	learn	about	function	overloading.

see more please visit: https://homeofpdf.com

Function	overloading
Function,	or	method,	overloading	is	the	ability	to	create	multiple	methods	with
the	same	name	and	a	different	number	of	parameters	or	types.	In	TypeScript,	we
can	overload	a	function	by	specifying	all	function	signatures	(known	as
overload	signatures)	of	a	function,	followed	by	a	signature	(known	as	the
implementation	signature).	Let's	look	at	an	example:

function	test(name:	string):	string;	//	overloaded	signature

function	test(age:	number):	string;	//	overloaded	signature

function	test(single:	boolean):	string;	//	overloaded	signature

function	test(value:	(string|number|boolean)):	string	{	//	implementation	signature

				switch	(typeof	value)	{

								case	"string":

												return	'My	name	is	${value}.';

								case	"number":

												return	'I'm	${value}	years	old.';

								case	"boolean":

												return	value	?	"I'm	single."	:	"I'm	not	single.";

								default:

												throw	new	Error("Invalid	Operation!");

				}

}

As	we	can	see	in	the	preceding	example,	we	have	overloaded	the	function	test
three	times	by	adding	a	signature	that	takes	a	string	as	its	only	parameter,	another
function	that	takes	a	number,	and	a	final	signature	that	takes	a	Boolean	as	its	unique
parameter.	It	is	important	to	note	that	all	function	signatures	must	be	compatible;
so,	if,	for	example,	one	of	the	signatures	tries	to	return	a	number	while	another
tries	to	return	a	string,	we	will	get	a	compilation	error:

function	test(name:	string):	string;

function	test(age:	number):	number;	//	Error

function	test(single:	boolean):	string;

function	test(value:	(string|number|boolean)):	string	{

				switch	(typeof	value)	{

								case	"string":

												return	'My	name	is	${value}.';

								case	"number":

												return	'I'm	${value}	years	old.';

								case	"boolean":

												return	value	?	"I'm	single."	:	"I'm	not	single.";

								default:

												throw	new	Error("Invalid	Operation!");

				}

}

Please	note	that	this	restriction	can	be	overcome	by	using	a	specialized	overloaded	signature,
as	we	will	learn	in	the	following	section.

see more please visit: https://homeofpdf.com

The	implementation	signature	must	be	compatible	with	all	the	overloaded
signatures,	always	be	the	last	in	the	list,	and	take	any	or	a	union	type	as	the	type
of	its	parameters.

Invoking	the	function	by	providing	arguments	that	don't	match	any	of	the	types
declared	by	the	overload	signatures	will	lead	to	a	compilation	error:

test("Remo");	//	returns	"My	name	is	Remo."

test(29);	//	returns	"I'm	29	years	old.";

test(false);	//	returns	"I'm	not	single.";

test({	custom:	"custom"	});	//	Error

see more please visit: https://homeofpdf.com

Specialized	overloading	signature
We	can	use	a	specialized	signature	to	create	multiple	methods	with	the	same
name	and	number	of	parameters,	but	a	different	return	type.	To	create	a
specialized	signature,	we	must	indicate	the	type	of	function	parameter	using	a
string.	The	string	literal	is	used	to	identify	which	of	the	function	overloads	is
invoked:	interface	Document	{
createElement(tagName:	"div"):	HTMLDivElement;	//	specialized
createElement(tagName:	"span"):	HTMLSpanElement;	//	specialized
createElement(tagName:	"canvas"):	HTMLCanvasElement;	//	specialized
createElement(tagName:	string):	HTMLElement;	//	non-specialized
}

In	the	preceding	example,	we	have	declared	three	specialized	overloaded
signatures	and	one	non-specialized	signature	for	the	function	named
createElement.

When	we	declare	a	specialized	signature	in	an	object,	it	must	be	assignable	to	at
least	one	non-specialized	signature	in	the	same	object.	This	can	be	observed	in
the	preceding	example,	as	the	createElement	property	belongs	to	a	type	that
contains	three	specialized	signatures,	all	of	which	are	assignable	to	the	non-
specialized	signature	in	the	type.

When	writing	overloaded	declarations,	we	must	list	the	non-specialized
signature	last.

see more please visit: https://homeofpdf.com

Function	scope	and	hoisting
Low-level	languages,	such	as	C,	have	low-level	memory	management	features.
In	programming	languages	with	a	higher	level	of	abstraction,	such	as	TypeScript,
values	are	allocated	when	variables	are	created,	and	automatically	cleared	from
memory	when	they	are	no	longer	used.	The	process	that	cleans	the	memory	is
known	as	garbage	collection	and	is	performed	by	the	JavaScript	runtime
garbage	collector.

The	garbage	collector	does	a	great	job,	but	it	is	a	mistake	to	assume	that	it	will
always	prevent	us	from	facing	a	memory	leak.	The	garbage	collector	will	clear	a
variable	from	the	memory	whenever	the	variable	is	out	of	scope.	It	is	important
to	understand	how	the	TypeScript	scope	works	in	order	for	us	to	understand	the
life	cycle	of	variables.

Some	programming	languages	use	the	structure	of	the	program	source	code	to
determine	what	variables	we	are	referring	to	(lexical	scoping),	while	others	use
the	runtime	state	of	the	program	stack	to	determine	what	variable	we	are
referring	to	(dynamic	scoping).	Most	modern	programming	languages	use
lexical	scoping	(including	TypeScript).	Lexical	scoping	tends	to	be	dramatically
easier	to	understand	for	both	humans	and	analysis	tools	than	dynamic	scoping.

While,	in	most	lexical-scoped	programming	languages,	variables	are	scoped	to	a
block	(a	section	of	code	delimited	by	curly	braces	{}),	in	TypeScript	(and
JavaScript)	variables	are	scoped	to	a	function,	as	demonstrated	by	the	following
code	snippet:

function	foo():	void	{

				if	(true)	{

								var	bar:	number	=	0;

				}

				console.log(bar);

}

foo();	//	0

The	preceding	function,	named	foo,	contains	an	if	structure.	We	have	declared	a
numeric	variable	named	bar	inside	the	if	statement,	and	later	we	have	attempted
to	show	the	value	of	the	bar	variable	using	the	log	function.

see more please visit: https://homeofpdf.com

We	might	think	that	the	preceding	code	sample	would	throw	an	error	in	the	fifth
line	because	the	bar	variable	should	be	out	of	scope	when	the	log	function	is
invoked.	However,	if	we	invoke	the	foo	function,	the	log	function	will	be	able	to
display	the	variable	bar	without	errors	because	all	variables	inside	a	function	will
be	within	the	scope	of	the	entire	function	body,	even	if	they	are	inside	another
block	of	code	(except	a	function	block).

The	following	diagram	displays	the	lexical	scope	at	the	function	level	(left),	and
the	lexical	scope	at	the	block	level	(right).	As	we	can	see,	there	is	only	one
function,	but	there	are	two	blocks:

The	preceding	code	snippet	might	seem	confusing,	but	it	is	easy	to	understand
once	we	know	that,	at	runtime,	all	the	variable	declarations	are	moved	to	the	top
of	a	function	before	the	function	is	executed.	This	behavior	is	known	as
hoisting.

TypeScript	is	compiled	to	JavaScript	and	then	executed—this	means	that	a	TypeScript
application	is	a	JavaScript	application	at	runtime	and,	for	this	reason,	when	we	refer	to	the
TypeScript	runtime,	we	are	talking	about	the	JavaScript	runtime.	We	will	learn	in	depth	about
the	runtime	in	Chapter	4,	The	Runtime	–	The	Event	Loop	and	The	this	Operator,	and	Chapter	5,	The
Runtime	–	Closures	and	Prototypes.

Before	the	preceding	code	snippet	is	executed,	the	runtime	will	move	the
declaration	of	the	bar	variable	to	the	top	of	our	function:

function	foo()	{

				var	bar;

see more please visit: https://homeofpdf.com

				if	(true)	{

								bar	=	0;

				}

				console.log(bar);

}

foo();	//	0

This	explains	why	it	is	possible	to	use	a	variable	before	it	is	declared.	Let's	look
at	an	example:

function	foo():	void	{

				bar	=	0;

				var	bar:	number;

				console.log(bar);

}

foo();	//	0

In	the	preceding	code	snippet,	we	have	declared	a	function,	foo,	and,	in	its	body,
we	have	assigned	the	value	0	to	a	variable	named	bar.	At	this	point,	the	variable
has	not	been	declared.	In	the	second	line,	we	are	declaring	the	bar	variable	and	its
type.	In	the	last	line,	we	are	displaying	the	value	of	the	bar	variable	using	the
alert	function.

Since	declaring	a	variable	anywhere	inside	a	function	(except	another	function)
is	equivalent	to	declaring	it	at	the	top	of	the	function,	the	foo	function	is
transformed	into	the	following	at	runtime:

function	foo():	void	{

				var	bar:	number;

				bar	=	0;

				console.log(bar);

}

foo();	//	0

Developers	with	a	background	in	programming	languages	with	block	scope,
such	as	Java	or	C#,	are	not	used	to	function	scope	and	it	is	one	of	the	most
criticized	characteristics	of	JavaScript.	The	people	in	charge	of	the	development
of	the	ECMAScript	6	specification	are	aware	of	this,	and,	as	a	result,	they	have
introduced	the	keywords	let	and	const.

The	let	keyword	allows	us	to	set	the	scope	of	a	variable	to	a	block	(if,	while,	for,
and	so	on)	rather	than	a	function.	We	can	update	the	first	example	in	this	section
to	showcase	how	the	let	keyword	works:

function	foo():	void	{

see more please visit: https://homeofpdf.com

				if	(true)	{

								let	bar:	number	=	0;

								bar	=	1;

				}

				console.log(bar);	//	Error

}

The	bar	variable	is	now	declared	using	the	let	keyword,	and,	as	a	result,	it	is	only
accessible	inside	the	if	block.	The	variable	is	not	hoisted	to	the	top	of	the	foo
function	and	cannot	be	accessed	by	the	alert	function	outside	the	if	statement.

While	variables	defined	with	const	follow	the	same	scope	rules	as	variables
declared	with	let,	they	can't	be	reassigned:

function	foo():	void	{

				if	(true)	{

								const	bar:	number	=	0;

								bar	=	1;	//	Error

				}

				alert(bar);	//	Error

}

If	we	attempt	to	compile	the	preceding	code	snippet,	we	will	get	an	error
because	the	bar	variable	is	not	accessible	outside	the	if	statement	(just	like	when
we	used	the	let	keyword),	and	a	new	error	occurs	when	we	try	to	assign	a	new
value	to	the	bar	variable.	The	second	error	is	caused	because	it	is	not	possible	to
assign	a	new	value	to	a	constant	variable	once	the	variable	has	already	been
initialized.

Variables	declared	with	the	const	keyword	cannot	be	reassigned,	but	are	not	immutable.	When
we	say	that	a	variable	is	immutable,	we	mean	that	it	cannot	be	modified.	We	will	learn	more
about	immutability	in	Chapter	9,	Functional-Reactive	Programming.

see more please visit: https://homeofpdf.com

Immediately-invoked	functions
An	immediately-invoked	function	expression	(IIFE)	is	a	design	pattern	that
produces	a	lexical	scope	using	function	scoping.	IIFE	can	be	used	to	avoid
variable	hoisting	from	within	blocks	or	to	prevent	us	from	polluting	the	global
scope,	for	example:

let	bar	=	0;	//	global

(function()	{

				let	foo:	number	=	0;	//	In	scope	of	this	function

				bar	=	1;	//	Access	global	scope

				console.log(bar);	//	1

				console.log(foo);	//	0

})();

console.log(bar);	//	1

console.log(foo);	//	Error

In	the	preceding	example,	we	have	wrapped	the	declaration	of	a	variable	(foo)
with	an	IIFE.	The	foo	variable	is	scoped	to	the	IIFE	function	and	is	not	available
in	the	global	scope,	which	explains	the	error	when	trying	to	access	it	on	the	last
line.

The	bar	variable	is	global.	Therefore,	it	can	be	accessed	from	within	and	from
outside	the	IIFE	function.

We	can	also	pass	a	variable	to	the	IIFE	to	have	better	control	over	the	creation	of
variables	outside	its	scope:

let	bar	=	0;	//	global

let	topScope	=	window;

(function(global:	any)	{

				let	foo:	number	=	0;	//	In	scope	of	this	function

				console.log(global.bar);	//	0

				global.bar	=	1;	//	Access	global	scope

				console.log(global.bar);	//	1

				console.log(foo);	//	0

})(topScope);

console.log(bar);	//	1

console.log(foo);	//	Error

Furthermore,	IIFE	can	help	us	to	simultaneously	allow	public	access	to	methods
while	retaining	privacy	for	variables	defined	within	the	function.	Let's	look	at	an

see more please visit: https://homeofpdf.com

example:

class	Counter	{

				private	_i:	number;

				public	constructor()	{

								this._i	=	0;

				}

				public	get():	number	{

								return	this._i;

				}

				public	set(val:	number):	void	{

								this._i	=	val;

				}

				public	increment():	void	{

								this._i++;

				}

}

let	counter	=	new	Counter();

console.log(counter.get());	//	0

counter.set(2);

console.log(counter.get());	//	2

counter.increment();

console.log(counter.get());	//	3

console.log(counter._i);	//	Error:	Property	'_i'	is	private

We	have	defined	a	class	named	Counter,	which	has	a	private	numerical	attribute
named	_i.	The	class	also	has	methods	to	get	and	set	the	value	of	the	_i	private
property.

By	convention,	TypeScript	and	JavaScript	developers	usually	name	private	variables	with
names	preceded	by	the	underscore	character	(_).

We	have	also	created	an	instance	of	the	Counter	class	and	invoked	the	methods
set,	get,	and	increment	to	observe	that	everything	is	working	as	expected.	If	we
attempt	to	access	the	_i	property	in	an	instance	of	Counter,	we	will	get	an	error
because	the	variable	is	private.

If	we	compile	the	preceding	TypeScript	code	(only	the	class	definition)	and
examine	the	JavaScript	code	generated,	we	will	see	the	following:

var	Counter	=	(function()	{

				function	Counter()	{

								this._i	=	0;

				}

				Counter.prototype.get	=	function()	{

								return	this._i;

				};

				Counter.prototype.set	=	function(val)	{

								this._i	=	val;

				};

see more please visit: https://homeofpdf.com

				Counter.prototype.increment	=	function()	{

								this._i++;

				};

				return	Counter;

})();

This	generated	JavaScript	code	will	work	perfectly	in	most	scenarios,	but	if	we
execute	it	in	a	browser	and	try	to	create	an	instance	of	Counter	and	access	its
property	_i,	we	will	not	get	any	errors	because	TypeScript	will	not	generate
runtime	private	properties	for	us.	Occasionally,	we	will	need	to	write	our	classes
in	such	a	way	that	some	properties	are	private	at	runtime,	for	example,	if	we
release	a	library	that	will	be	used	by	JavaScript	developers.

We	can	also	use	IIFE	to	simultaneously	allow	public	access	to	methods	while
retaining	privacy	for	variables	defined	within	the	function:

var	Counter	=	(function()	{

				var	_i:	number	=	0;

				function	Counter()	{

								//

				}

				Counter.prototype.get	=	function()	{

								return	_i;

				};

				Counter.prototype.set	=	function(val:	number)	{

								_i	=	val;

				};

				Counter.prototype.increment	=	function()	{

								_i++;

				};

				return	Counter;

})();

In	the	preceding	example,	everything	is	almost	identical	to	TypeScript's
generated	JavaScript,	except	that	the	variable	_i	is	now	an	object	in	the	Counter
closure	instead	of	a	property	of	the	Counter	class.

Closures	are	functions	that	refer	to	independent	(free)	variables.	In	other	words,	the	function
defined	in	the	closure	remembers	the	environment	(variables	in	the	scope)	in	which	it	was
created.	We	will	discover	more	about	closures	in	Chapter	5,	The	Runtime	–	Closures	and
Prototypes.

If	we	run	the	generated	JavaScript	output	in	a	browser	and	try	to	invoke	the	_i
property	directly,	we	will	notice	that	the	property	is	now	private	at	runtime:

let	counter	=	new	Counter();

console.log(counter.get());	//	0

counter.set(2);

see more please visit: https://homeofpdf.com

console.log(counter.get());	//	2

counter.increment();

console.log(counter.get());	//	3

console.log(counter._i);	//	undefined

In	some	cases,	we	will	need	to	have	precise	control	over	scope	and	closures,	and	our	code	will
end	up	looking	much	more	like	JavaScript.	If	we	write	our	application	components	(classes,
modules,	and	so	on)	to	be	consumed	by	other	TypeScript	components,	we	will	rarely	have	to
worry	about	implementing	runtime	private	properties.	We	will	look	in	depth	at	the	TypeScript
runtime	in	Chapter	4,	The	Runtime	–	The	Event	Loop	and	The	this	Operator,	and	Chapter	5,	The
Runtime	–	Closures	and	Prototypes.

see more please visit: https://homeofpdf.com

Tag	functions	and	tagged	templates
In	TypeScript,	we	can	use	template	strings	such	as	the	following:

let	name	=	"remo";

let	surname	=	"jansen";

let	html	=	'<h1>${name}	${surname}</h1>';

We	can	use	a	template	string	to	create	a	special	kind	of	function	known	as	a	tag
function.

We	can	use	a	tag	function	to	extend	or	modify	the	standard	behavior	of	template
strings.	When	we	apply	a	tag	function	to	a	template	string,	the	template	string
becomes	a	tagged	template.

We	are	going	to	implement	a	tag	function	named	htmlEscape.	To	use	a	tag	function,
we	must	use	the	name	of	the	function,	followed	by	a	template	string:

let	html	=	htmlEscape	'<h1>${name}	${surname}</h1>';

A	tag	template	must	return	a	string	and	take	the	following	arguments:

A	TemplateStringsArray,	which	contains	all	the	static	literals	in	the	template
string	(<h1>	and	</h1>	in	the	preceding	example),	is	passed	as	the	first
argument.

The	TemplateStringsArray	type	is	declared	by	the	lib.d.ts	file.	The	lib.d.ts	file	contains	the	type
declarations	of	the	native	JavaScript	and	browser	APIs.

A	rest	parameter	is	passed	as	the	second	parameter.	The	rest	parameter
contains	all	the	values	in	the	template	string	(name	and	surname	in	the
preceding	example).

The	signature	of	a	tag	function	appears	as	follows:

tag(literals:	TemplateStringsArray,	...placeholders:	any[]):	string;

Let's	implement	the	htmlEscape	tag	function:

function	htmlEscape(literals:	TemplateStringsArray,	...placeholders:	any[])	{

				let	result	=	"";

see more please visit: https://homeofpdf.com

				for	(let	i	=	0;	i	<	placeholders.length;	i++)	{

								result	+=	literals[i];

								result	+=	placeholders[i]

												.replace(/&/g,	"&")

												.replace(/"/g,	""")

												.replace(/"/g,	"'")

												.replace(/</g,	"<")

												.replace(/>/g,	">");

				}

				result	+=	literals[literals.length	-	1];

				return	result;

}

We	can	then	invoke	the	function	as	follows:

let	html	=	htmlEscape	'<h1>${name}	${surname}</h1>';

The	template	string	contains	values	and	literals.	The	htmlEscape	function	iterates
through	them	and	ensures	that	the	HTML	code	is	escaped	in	the	values	to	avoid
possible	code	injection	attacks.

The	main	benefit	of	using	a	tagged	function	is	that	it	allows	us	to	create	custom
template	string	processors.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	learned	a	lot	about	functions.	We	have	learned	about
different	kinds	of	functions,	such	as	named	and	anonymous	function,	and
function	declarations	and	function	expressions.	We	also	learned	how	to	declare
different	types	of	function	signatures	as	well	as	how	to	work	with	function
arguments	in	multiple	scenarios.

In	the	next	chapter,	we	are	going	to	learn	about	asynchronous	programming
techniques.	We	will	learn	why	functions	play	a	very	fundamental	role	in	the
TypeScript	and	JavaScript	asynchronous	programming	model.

	

	

	

see more please visit: https://homeofpdf.com

Mastering	Asynchronous
Programming
In	the	previous	chapter,	we	learned	how	to	work	with	functions.	In	this	chapter,
we	will	explore	how	we	can	use	functions,	together	with	some	native	APIs,	to
write	asynchronous	TypeScript	code.	We	will	focus	on	TypeScript's
asynchronous	programming	capabilities,	including	the	following	concepts:

Callbacks	and	higher-order	functions
Arrow	functions
Callback	hell
Promises
Generators
Asynchronous	functions	(async	and	await)

	

	

see more please visit: https://homeofpdf.com

Callbacks	and	higher-order	functions
In	TypeScript,	functions	can	be	passed	as	arguments	to	another	function.
Functions	can	also	be	returned	by	another	function.	A	function	passed	to	another
as	an	argument	is	known	as	a	callback.	A	function	that	accepts	functions	as
parameters	(callbacks)	or	returns	functions	is	known	as	a	higher-order
function.

Callback	are	usually	anonymous	functions.	They	can	be	declared	before	they	are
passed	to	the	higher-order	function,	as	demonstrated	by	the	following	example:
var	myCallback	=	function()	{	//	callback
console.log("foo");
}

function	bar(cb:	()	=>	void)	{	//	higher	order	function
console.log("bar");
cb();
}

bar(myCallback);	//	prints	"bar"	then	prints	"foo"

Callbacks	can	also	be	declared	inline,	at	the	same	point	in	which	they	are	passed
to	a	higher-order	function,	as	demonstrated	by	the	following	example:

bar(()	=>	{

		console.log("foo");

});	//	prints	"bar"	then	prints	"foo"

The	preceding	code	snippet	declares	an	anonymous	function	and	passes	it	to	a
function	named	bar.	The	anonymous	function	has	been	declared	using	an
alternative	syntax	known	as	an	arrow	function.	We	will	learn	more	about	arrow
functions	in	the	next	section.

see more please visit: https://homeofpdf.com

Arrow	functions
In	TypeScript,	we	can	declare	a	function	using	a	function	expression	or	an	arrow
function.	An	arrow	function	expression	has	a	shorter	syntax	than	a	function
expression	and	lexically	binds	the	value	of	the	this	operator.

The	this	operator	behaves	a	little	differently	in	TypeScript	and	JavaScript
compared	to	other	popular	programming	languages.	When	we	define	a	class	in
TypeScript,	we	can	use	the	this	operator	to	refer	to	the	class.	Let's	look	at	an
example:

class	Person	{

				private	_name:	string;

				constructor(name:	string)	{

								this._name	=	name;

				}

				public	greet()	{

								console.log('Hi!	My	name	is	${this._name}');

				}

}

let	person	=	new	Person("Remo");

person.greet();	//	"Hi!	My	name	is	Remo"

We	have	defined	a	class	named	Person	that	contains	a	property	of	the	string	type
called	name.	The	class	has	a	constructor	and	a	method	named	greet.	We	have
created	an	instance	named	person	and	invoked	the	greet	method,	which	internally
uses	the	this	operator	to	access	the	_name	property.	Inside	the	greet	method,	the	this
operator	points	to	the	object	that	encloses	the	greet	method	(the	class	instance).

We	must	be	careful	when	using	the	this	operator	because,	in	some	scenarios,	it
can	point	to	the	wrong	value.	Let's	add	an	extra	method	to	the	previous	example:

class	Person	{

				private	_name:	string;

				constructor(name:	string)	{

								this._name	=	name;

				}

				public	greet()	{

								alert('Hi!	My	name	is	${this._name}');

				}

				public	greetDelay(time:	number)	{

								setTimeout(function()	{

												alert('Hi!	My	name	is	${this._name}');	//	Error

see more please visit: https://homeofpdf.com

								},	time);

				}

}

let	person	=	new	Person("Remo");

person.greetDelay(1000);	//	Error

In	the	greetDelay	method,	we	perform	an	almost	identical	operation	to	the	one
performed	by	the	greet	method.	This	time,	the	function	takes	a	parameter	named
time,	which	is	used	to	delay	the	greet	message.

To	delay	a	message,	we	use	the	setTimeout	function	and	a	callback.	As	soon	as	we
define	an	anonymous	function	(the	callback),	the	this	keyword	changes	its	value
and	starts	pointing	to	the	anonymous	function,	which	explains	why	the
TypeScript	compiler	will	throw	an	error.

As	mentioned,	an	arrow	function	expression	lexically	binds	the	value	of	the	this
operator.	This	means	that	it	allows	us	to	add	a	function	without	altering	the	value
of	this	operator.	Let's	replace	the	function	expression	from	the	previous	example
with	an	arrow	function:	class	Person	{

private	_name:	string;

constructor(name:	string)	{
this._name	=	name;
}

public	greet()	{
alert('Hi!	My	name	is	${this._name}');
}

public	greetDelay(time:	number)	{
setTimeout(()	=>	{
alert('Hi!	My	name	is	${this._name}');	//	OK
},	time);
}

}

see more please visit: https://homeofpdf.com

let	person	=	new	Person("Remo");
person.greet();	//	"Hi!	My	name	is	Remo"
person.greetDelay(1000);	//	"Hi!	My	name	is	Remo"

By	using	an	arrow	function,	we	can	ensure	that	the	this	operator	still	points	to
the	Person	instance	and	not	to	the	setTimeout	callback.	If	we	execute	the	greetDelay
function,	the	name	property	will	be	displayed	as	expected.

The	following	piece	of	code	is	generated	by	the	TypeScript	compiler.	When
compiling	an	arrow	function,	the	TypeScript	compiler	will	generate	an	alias	for
the	this	operator	named	_this.	The	alias	is	used	to	ensure	that	the	this	operator
points	to	the	correct	object:	Person.prototype.greetDelay	=	function	(time)	{
var	_this	=	this;
setTimeout(function	()	{
alert("Hi!	My	name	is	"	+	_this._name);
},	time);
};

We	will	look	in	depth	at	the	this	operator	in	Chapter	4,	The	Runtime	–	The	Event	Loop	and	the
this	Operator.

see more please visit: https://homeofpdf.com

Callback	hell
We	have	learned	that	callbacks	and	higher-order	functions	are	two	powerful	and
flexible	JavaScript	and	TypeScript	features.	However,	the	use	of	callbacks	can
lead	to	a	maintainability	issue	known	as	callback	hell.

We	are	now	going	to	write	an	example	to	showcase	callback	hell.	We	are	going
to	write	three	functions	with	the	same	behavior.

The	first	function	is	named	doSomethingAsync.	The	function	takes	an	array	of
numbers	as	one	of	its	arguments	and	adds	a	new	number	to	it.	The	function	uses
setTimeout	to	simulate	some	I/O	operation,	such	as	reading	from	a	database,	and
Math.ramdom	to	simulate	a	potential	exception,	such	as	a	request	timeout:

function	doSomethingAsync(

				arr:	number[],

				success:	(arr:	number[])	=>	void,

				error:	(e:	Error)	=>	void

)	{

				setTimeout(()	=>	{

								try	{

												let	n	=	Math.ceil(Math.random()	*	100	+	1);

												if	(n	<	25)	{

																throw	new	Error("n	is	<	25");

												}

												success([...arr,	n]);

								}	catch	(e)	{

												error(e);

								}

				},	1000);

}

The	second	function	is	named	doSomethingElseAsync,	and	the	third	and	final	function
is	named	doSomethingMoreAsync.	We	are	going	to	skip	the	implementation	of	these
two	functions	in	the	following	code	snippet	because	both	functions	have	the
exact	same	implementation	that	we	used	in	the	doSomethingAsync	function:

function	doSomethingElseAsync(

				arr:	number[],

				success:	(arr:	number[])	=>	void,

				error:	(e:	Error)	=>	void

)	{

				//	...	Same	implementation	here...

}

function	doSomethingMoreAsync(

				arr:	number[],

see more please visit: https://homeofpdf.com

				success:	(arr:	number[])	=>	void,

				error:	(e:	Error)	=>	void

)	{

				//	Same	imlementation	here...

}

The	preceding	functions	simulate	an	asynchronous	operation	by	using	the
setTimeout	function.	Each	function	takes	a	success	callback,	which	is	invoked	if	the
operation	is	successful,	and	an	error	callback,	which	is	invoked	if	something
goes	wrong.

In	real-world	applications,	asynchronous	operations	usually	involve	some
interaction	with	hardware	(for	example,	the	filesystem,	network…).	These
interactions	are	known	as	input/output	(I/O)	operations.	I/O	operations	can	fail
for	many	different	reasons;	for	example,	we	get	an	error	when	we	try	to	interact
with	the	filesystem	to	save	a	new	file	and	there	is	not	enough	space	available	in
the	hard	disk.

The	preceding	functions	generate	a	random	number	and	throw	an	error	if	the
number	is	lower	than	25;	we	do	this	to	simulate	potential	I/O	errors.	They	then
add	the	random	number	to	an	array	that	is	passed	as	an	argument	to	each	of	the
functions.	If	no	errors	take	place,	the	result	of	the	final	function
(doSomethingMoreAsync)	should	be	an	array	with	three	random	numbers.

Now	that	the	three	functions	have	been	declared,	we	can	try	to	invoke	them	in
order.	We	are	going	to	use	callbacks	to	ensure	that	doSomethingMoreAsync	is	invoked
after	doSomethingElseAsync,	and	that	doSomethingElseAsync	is	invoked	after
doSomethingAsync:

doSomethingAsync([],	(arr1)	=>	{

				doSomethingElseAsync(arr1,	(arr2)	=>	{

								doSomethingMoreAsync(arr2,	(arr3)	=>	{

												console.log(

																'

																doSomethingAsync:	${arr3[0]}

																doSomethingElseAsync:	${arr3[1]}

																doSomethingMoreAsync:	${arr3[2]}

																'

);

								},	(e)	=>	console.log(e));

				},	(e)	=>	console.log(e));

},	(e)	=>	console.log(e));

The	preceding	example	used	a	few	nesting	callbacks.	These	kinds	of	nested
callbacks	are	known	as	callback	hell	because	they	can	lead	to	some
maintainability	issues,	as	follows:

see more please visit: https://homeofpdf.com

They	make	the	code	harder	to	follow	and	understand
They	make	the	code	harder	to	maintain	(refactor,	reuse,	and	so	on)
They	make	exception	handling	more	difficult

see more please visit: https://homeofpdf.com

Promises
After	seeing	how	the	use	of	callbacks	can	lead	to	some	maintainability	problems,
we	are	now	going	to	learn	about	promises	and	how	they	can	be	used	to	write
better	asynchronous	code.	The	core	idea	behind	promises	is	that	a	promise
represents	the	result	of	an	asynchronous	operation.	A	promise	must	be	in	one	of
the	following	three	states:

Pending:	The	initial	state	of	a	promise.
Fulfilled:	Also	known	as	resolved,	this	the	state	of	a	promise	representing	a
successful	operation.	The	terms	fulfilled	and	resolved	are	both	commonly
used	to	refer	to	this	state.
Rejected:	The	state	of	a	promise	representing	a	failed	operation.

Once	a	promise	is	fulfilled	or	rejected,	its	state	can	never	change	again.	Let's
look	at	the	basic	syntax	of	a	promise:

function	foo()	{

				return	new	Promise<string>((fulfill,	reject)	=>	{

								try	{

												//	do	something

												fulfill("SomeValue");

								}	catch	(e)	{

												reject(e);

								}

				});

}

foo().then((value)	=>	{

				console.log(value);

}).catch((e)	=>	{

				console.log(e);

});

Please	note	that	a	try…catch	statement	is	used	here	to	showcase	how	we	can	explicitly	fulfill	or
reject	a	promise.	The	try…catch	statement	is	not	needed	for	a	Promise	function	because,	when	an
error	is	thrown	within	a	promise,	the	promise	will	automatically	be	rejected.

The	preceding	code	snippet	declares	a	function	named	foo	that	returns	a	promise.
The	promise	contains	a	method	named	then,	which	accepts	a	callback	function	as
an	argument.	The	callback	function	is	invoked	when	the	promise	is	fulfilled.
Promises	also	provide	a	method	named	catch,	which	is	invoked	when	a	promise
is	rejected.

see more please visit: https://homeofpdf.com

Promises	will	not	be	recognized	by	the	TypeScript	compiler	if	we	are	targeting	ES5	because
the	Promise	API	is	part	of	ES6.	We	can	solve	this	by	enabling	the	es2015.promise	type	using	the	lib
option	in	the	tsconfig.json	file.	Note	that	enabling	this	option	will	disable	some	types	that	are
included	by	default	and	thereby	break	some	examples.	You	will	be	able	to	resolve	the	problems
by	including	the	dom	and	es5	types	as	well	by	using	the	lib	option	in	the	tsconfig.json	file:

"lib":	[

					"es2015.promise",

					"dom",

					"es5",

					"es2015.generator",	//	new

					"es2015.iterable"	//	new

]

We	are	now	going	to	rewrite	the	doSomethingAsync,	doSomethingElseAsync,	and
doSomethingMoreAsync	functions,	which	we	wrote	in	the	Callback	hell	section,	but
this	time,	we	are	going	to	use	promises	instead	of	callbacks:

function	doSomethingAsync(arr:	number[])	{

				return	new	Promise<number[]>((resolve,	reject)	=>	{

								setTimeout(()	=>	{

												try	{

																let	n	=	Math.ceil(Math.random()	*	100	+	1);

																if	(n	<	25)	{

																				throw	new	Error("n	is	<	25");

																}

																resolve([...arr,	n]);

												}	catch	(e)	{

																reject(e);

												}

								},	1000);

				});

}

Once	again,	we	are	going	to	skip	the	implementation	details	of	the
doSomethingElseAsync	and	doSomethingMoreAsync	functions	because	they	should	be
identical	to	the	implementation	of	the	doSomethingAsync	function:

function	doSomethingElseAsync(arr:	number[])	{

				//	Same	implementation	here...

}

function	doSomethingMoreAsync(arr:	number[])	{

				//	Same	implementation	here...

}

We	can	chain	the	promises	returned	by	each	of	the	preceding	functions	using	the
Promise	API:

doSomethingAsync([]).then((arr1)	=>	{

				doSomethingElseAsync(arr1).then((arr2)	=>	{

								doSomethingMoreAsync(arr2).then((arr3)	=>	{

												console.log(

																'

																doSomethingAsync:	${arr3[0]}

																doSomethingElseAsync:	${arr3[1]}

see more please visit: https://homeofpdf.com

																doSomethingMoreAsync:	${arr3[2]}

																'

);

								});

				});

}).catch((e)	=>	console.log(e));

The	preceding	code	snippet	is	a	little	better	than	the	one	used	in	the	callback
example,	because	we	only	needed	to	declare	one	instead	of	three	exception
handlers.	This	is	possible	because	errors	are	propagated	through	the	chain	of
promises.	However,	we	can	improve	the	code	even	more	because	the	Promise	API
allows	us	to	chain	promises	in	a	much	less	verbose	manner:

doSomethingAsync([])

				.then(doSomethingElseAsync)

				.then(doSomethingMoreAsync)

				.then((arr3)	=>	{

								console.log(

												'

												doSomethingAsync:	${arr3[0]}

												doSomethingElseAsync:	${arr3[1]}

												doSomethingMoreAsync:	${arr3[2]}

												'

);

				}).catch((e)	=>	console.log(e));

The	preceding	code	is	much	easier	to	read	and	follow	than	the	one	used	during
the	callback	examples,	but	this	is	not	the	only	reason	to	favor	promises	over
callbacks.	Using	promises	also	gives	us	better	control	over	the	execution	flow	of
operations.	Let's	look	at	a	couple	of	examples.

The	Promise	API	includes	a	method	named	all,	which	allows	us	to	execute	a	series
of	promises	in	parallel	and	get	all	the	results	of	each	of	the	promises	at	once:

Promise.all([

				new	Promise<number>((resolve)	=>	{

								setTimeout(()	=>	resolve(1),	1000);

				}),

				new	Promise<number>((resolve)	=>	{

								setTimeout(()	=>	resolve(2),	1000);

				}),

				new	Promise<number>((resolve)	=>	{

								setTimeout(()	=>	resolve(3),	1000);

				})

]).then((values)	=>	{

				console.log(values);	//	[1	,2,	3]

});

The	Promise	API	also	includes	a	method	named	race,	which	allows	us	to	execute	a
series	of	promises	in	parallel	and	obtain	the	result	of	the	first	promise	resolved:

Promise.race([

see more please visit: https://homeofpdf.com

				new	Promise<number>((resolve)	=>	{

								setTimeout(()	=>	resolve(1),	3000);

				}),

				new	Promise<number>((resolve)	=>	{

								setTimeout(()	=>	resolve(2),	2000);

				}),

				new	Promise<number>((resolve)	=>	{

								setTimeout(()	=>	resolve(3),	1000);

				})

]).then((fastest)	=>	{

				console.log(fastest);	//	3

});

We	can	use	many	different	types	of	asynchronous	flow	control	when	working
with	promises:

Concurrent:	The	tasks	are	executed	in	parallel	(as	in	the	Promise.all
example)
Race:	The	tasks	are	executed	in	parallel,	and	only	the	result	of	the	fastest
promise	is	returned
Series:	A	group	of	tasks	is	executed	in	sequence,	but	the	preceding	tasks	do
not	pass	arguments	to	the	next	task
Waterfall:	A	group	of	tasks	is	executed	in	sequence,	and	each	task	passes
arguments	to	the	next	task	(as	in	the	example)
Composite:	This	is	any	combination	of	the	previous	concurrent,	series,	and
waterfall	approaches

see more please visit: https://homeofpdf.com

Covariant	checking	in	callback
parameters
TypeScript	2.4	changed	the	way	the	type	system	behaves	internally	to	improve
error	detection	in	nested	callbacks	and	promises:

TypeScript's	checking	of	callback	parameters	is	now	covariant	in	relation	to
immediate	signature	checks.	Previously,	it	was	bivariant	and	occasionally
allowed	incorrect	types	through.
Basically,	this	means	that	callback	parameters	and	classes	that	contain
callbacks	are	checked	more	carefully,	so	Typescript	will	require	stricter
types	in	this	release.	This	is	particularly	true	of	promises	and	observables
due	to	the	way	in	which	their	APIs	are	specified.

In	TypeScript	versions	before	2.4,	the	following	example	was	considered	valid,
and	no	errors	were	thrown:

declare	function	someFunc(

				callback:	(

				nestedCallback:	(error:	number,	result:	any)	=>	void

)	=>	void

):	void;

someFunc(

				(

								nestedCallback:	(e:	number)	=>	void	//	Error

)	=>	{

								nestedCallback(1);

				}

);

In	TypeScript	versions	following	the	2.4	release,	we	will	need	to	add	the
complete	signature	of	nestedCallback	to	resolve	this	error:

someFunc(

				(

								nestedCallback:	(e:	number,	result:	any)	=>	void	//	OK

)	=>	{

								nestedCallback(1,	1);

				}

);

Thanks	to	the	internal	change	in	the	TypeScript	type	system,	the	following	error

see more please visit: https://homeofpdf.com

is	also	detected:

let	p:	Promise<number>	=	new	Promise((res,	rej)	=>	{

				res("error");	//	Error

});

Before	TypeScript	2.4,	the	preceding	promise	would	have	been	inferred	as
Promise<{}>	because	we	forgot	to	add	the	generic	argument,	<number>,	when	we
created	an	instance	of	the	Promise	class.	The	string	error	would	then	have	been
considered	a	valid	instance	of	{}.

The	preceding	is	a	clear	example	of	why	it	is	recommended	you	upgrade	TypeScript	regularly.
Each	new	version	of	TypeScript	introduces	new	features	able	to	detect	new	errors	for	us.

see more please visit: https://homeofpdf.com

Generators
If	we	invoke	a	function	in	TypeScript,	we	can	assume	that,	once	the	function
starts	running,	it	will	always	run	to	completion	before	any	other	code	can	run.
However,	one	type	of	function	known	as	a	generator	can	may	be	paused	in	the
middle	of	execution—once	or	many	times—and	resumed	later,	allowing	other
code	to	run	during	these	paused	periods.

A	generator	represents	a	sequence	of	values.	The	interface	of	a	generator	object
is	just	an	iterator.	An	iterator	implements	the	following	interface:

interface	Iterator<T>	{

		next(value?:	any):	IteratorResult<T>;

		return?(value?:	any):	IteratorResult<T>;

		throw?(e?:	any):	IteratorResult<T>;

}

The	next	function	can	be	invoked	until	it	runs	out	of	values.	We	can	define	a
generator	by	using	the	function	keyword,	followed	by	an	asterisk,	(*).	The	yield
keyword	is	used	to	stop	the	execution	of	the	function	and	return	a	value.	Let's
look	at	an	example:

function	*foo()	{

				yield	1;

				yield	2;

				yield	3;

				yield	4;

				return	5;

}

let	bar	=	foo();

bar.next();	//	Object	{value:	1,	done:	false}

bar.next();	//	Object	{value:	2,	done:	false}

bar.next();	//	Object	{value:	3,	done:	false}

bar.next();	//	Object	{value:	4,	done:	false}

bar.next();	//	Object	{value:	5,	done:	true}

bar.next();	//	Object	{	done:	true	}

Note	that	some	additional	types	are	required	by	generators	if	you	are	targeting	ES5.	You	will
need	to	add	es2015.generator	and	es2015.iterable,	and	enable	downlevelIteration	to	your	tsconfig.json
file:

"lib":	[

					"es2015.promise",

					"dom",

					"es5",

					"es2015.generator",	//	new

					"es2015.iterable"	//	new

]

see more please visit: https://homeofpdf.com

As	we	can	see,	the	preceding	iterator	has	five	steps.	The	first	time	we	call	the
next	method,	the	function	will	be	executed	until	it	reaches	the	first	yield
statement,	and	then	it	will	return	the	value	1	and	stop	the	execution	of	the
function	until	we	invoke	the	generator's	next	method	again.	As	we	can	see,	we
are	now	able	to	stop	the	function's	execution	at	a	given	point.	This	allows	us	to
write	infinite	loops	without	causing	a	stack	overflow	exception,	as	demonstrated
in	the	following	example:

function*	foo()	{

				let	i	=	1;

				while	(true)	{	//	Infinite	loop!

								yield	i++;

				}

}

let	bar	=	foo();

bar.next();	//	Object	{value:	1,	done:	false}

bar.next();	//	Object	{value:	2,	done:	false}

bar.next();	//	Object	{value:	3,	done:	false}

bar.next();	//	Object	{value:	4,	done:	false}

bar.next();	//	Object	{value:	5,	done:	false}

bar.next();	//	Object	{value:	6,	done:	false}

bar.next();	//	Object	{value:	7,	done:	false}

The	generator's	API	opens	up	possibilities	with	reference	to	synchronicity,	as	we
can	call	the	generator's	next	method	after	an	asynchronous	event	has	occurred.

see more please visit: https://homeofpdf.com

Asynchronous	functions	–	async	and
await
Asynchronous	functions	are	a	TypeScript	feature	that	arrived	with	the
TypeScript	1.6	release.	Developers	can	use	the	await	keyword	to	wait	for	an
asynchronous	operation	to	be	completed	without	blocking	the	normal	execution
of	the	program.

Using	asynchronous	functions	helps	to	increase	the	readability	of	a	piece	of	code
when	compared	with	the	use	of	promises	or	callbacks	but,	technically,	we	can
achieve	the	same	features	using	both	promises	and	asynchronous	functions.

Let's	take	a	look	at	a	basic	async/await	example:

let	p	=	Promise.resolve(3);

async	function	fn():	Promise<number>	{

				var	i	=	await	p;	//	3

				return	1	+	i;	//	4

}

fn().then((r)	=>	console.log(r));	//	4

The	preceding	code	snippet	declares	a	promise	named	p.	This	promise	represents
a	future	result.	As	we	can	see,	the	fn	function	is	preceded	by	the	async	keyword,
which	is	used	to	indicate	to	the	compiler	that	it	is	an	asynchronous	function.

Inside	the	function,	the	await	keyword	is	used	to	suspend	execution	until	the
promise	p	is	fulfilled	or	rejected.	As	we	can	see,	the	syntax	is	less	verbose	and
cleaner	than	it	would	have	been	had	we	used	the	Promise	API	or	callbacks.

An	asynchronous	function,	such	as	fn,	returns	a	promise	at	runtime.	This	should
explain	why	we	need	to	use	the	then	method	at	the	end	of	the	code	snippet.

The	following	code	snippet	showcases	how	we	can	declare	an	asynchronous
function	named	invokeTaskAsync.	The	asynchronous	function	uses	the	await
keyword	to	wait	for	the	result	of	the	doSomethingAsync,	doSomethingElseAsync,	and
doSomethingMoreAsync	functions	that	we	declared	during	the	promises	example:

see more please visit: https://homeofpdf.com

async	function	invokeTaskAsync()	{

				let	arr1	=	await	doSomethingAsync([]);

				let	arr2	=	await	doSomethingElseAsync(arr1);

				return	await	doSomethingMoreAsync(arr2);

}

The	invokeTaskAsync	function	is	asynchronous.	Therefore,	it	will	return	a	promise
at	runtime.	This	means	that	we	can	use	the	Promise	API	to	await	a	result	or	catch
potential	errors	respectively:

invokeTaskAsync().then((result)	=>	{

				console.log(

								'

								doSomethingAsync:	${result[0]}

								doSomethingElseAsync:	${result[1]}

								doSomethingMoreAsync:	${result[2]}

								'

);

}).catch((e)	=>	{

				console.log(e);

});

We	can	also	define	asynchronous	IIFE	as	a	convenient	way	to	use	the	async	and
await	keywords:

(async	()	=>	{

				try	{

								let	arr1	=	await	doSomethingAsync([]);

								let	arr2	=	await	doSomethingElseAsync(arr1);

								let	arr3	=	await	doSomethingMoreAsync(arr2);

								console.log(

												'

												doSomethingAsync:	${arr3[0]}

												doSomethingElseAsync:	${arr3[1]}

												doSomethingMoreAsync:	${arr3[2]}

												'

);

				}	catch	(e)	{

								console.log(e);

				}

})();

Using	an	async	IIFE	is	very	useful	because	it	is	very	common	to	not	be	able	to
use	the	await	keyword	outside	a	function,	for	example,	in	the	entry	point	of	an
application.	We	can	use	the	async	IIFE	to	overcome	this	limitation:

(async	()	=>	{

				await	someAsyncFunction();

})();

see more please visit: https://homeofpdf.com

Asynchronous	generators
We	have	already	learned	about	the	interface	implemented	by	all	iterators:

interface	Iterator<T>	{

		next(value?:	any):	IteratorResult<T>;

		return?(value?:	any):	IteratorResult<T>;

		throw?(e?:	any):	IteratorResult<T>;

}

However,	we	haven't	learned	yet	about	the	interface	implemented	by	all
asynchronous	iterators:

interface	AsyncIterator<T>	{

		next(value?:	any):	Promise<IteratorResult<T>>;

		return?(value?:	any):	Promise<IteratorResult<T>>;

		throw?(e?:	any):	Promise<IteratorResult<T>>;

}

An	asynchronous	iterator	returns	a	promise	every	time	we	invoke	the	next
method.	The	following	code	snippet	demonstrates	how	asynchronous	iterators
can	be	very	useful	when	used	in	conjunction	with	asynchronous	functions:

let	counter	=	0;

function	doSomethingAsync()	{

				return	new	Promise<number>((r)	=>	{

								setTimeout(()	=>	{

												counter	+=	1;

												r(counter);

								},	1000);

				});

}

async	function*	g1()	{

				yield	await	doSomethingAsync();

				yield	await	doSomethingAsync();

				yield	await	doSomethingAsync();

}

let	i:	AsyncIterableIterator<number>	=	g1();

i.next().then((n)	=>	console.log(n));	//	1

i.next().then((n)	=>	console.log(n));	//	2

i.next().then((n)	=>	console.log(n));	//	3

Some	additional	types	are	required	by	asynchronous	iterators	if	we	are	targeting	ES5.	You	will
need	to	add	esnext.asynciterable	and	enable	downlevelIteration	in	your	tsconfig.json	file.	We	are
also	going	to	need	to	enable	an	additional	setting	in	our	tsconfig.json	to	provide	full	support
for	iterables	in	for-of,	spread,	and	destructuring	when	targeting	ES5	or	ES3:

"lib":	[

see more please visit: https://homeofpdf.com

					"es2015.promise",

					"dom",

					"es5",

					"es2015.generator",

					"es2015.iterable",

					"esnext.asynciterable"	//	new

]

see more please visit: https://homeofpdf.com

function*	g1()	{
	yield	2;
	yield	3;
	yield	4;
}

async
function	func()	{
	for	await	(const	x	of	g1())	{
	console.log(x);
	}

}

(async	()	=>	{
	await	func();
})();

see more please visit: https://homeofpdf.com

function*	g1()	{
	yield	2;
	yield	3;
	yield	4;
}

function*	g2()	{
	yield	1;
	yield*	g1();
	yield	5;
}

var	iterator1	=	g2();

console.log(iterator1.next());	//	{value:	1,
done:	false}
console.log(iterator1.next());	//	{value:	2,	done:	false}

console.log(iterator1.next());	//	{value:	3,	done:	false}

console.log(iterator1.next());	//	{value:	4,	done:	false}

console.log(iterator1.next());	//	{value:	5,	done:	false}

console.log(iterator1.next());	//	{value:	undefined,	done:	true}

function*	g2()	{
	yield	1;
	yield*	[2,	3,	4];
	yield	5;
}

var	iterator	=	g2();

console.log(iterator.next());	//	{value:	1,
done:	false}
console.log(iterator.next());	//	{value:	2,	done:	false}

console.log(iterator.next());	//	{value:	3,	done:	false}

console.log(iterator.next());	//	{value:	4,	done:	false}

console.log(iterator.next());	//	{value:	5,	done:	false}

console.log(iterator.next());	//	{value:	undefined,	done:	true}

Please	note	that	the	preceding	example	requires	a	number	of	particular	settings
in	the	tsconfig.json	file.	Please	refer	to	the	preceding	notes	in	this	chapter	to
learn	more	about	the	required	settings.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	focused	on	the	use	of	callbacks,	promises,	and
generators	to	take	advantage	of	the	asynchronous	programming	capabilities	of
TypeScript.	In	the	next	chapter,	we	will	look	at	the	runtime	to	understand	how
the	event	loop	and	the	this	operator	work.	These	concepts	will	help	us	to
understand	some	of	the	implementations	of	functional	programming	techniques
that	we	will	explore	later	in	this	book.

	

	

	

see more please visit: https://homeofpdf.com

The	Runtime	–	The	Event
Loop	and	the	this	Operator
Over	the	next	two	chapters,	we	are	going	to	learn	about	some	concepts	that	are
closely	related	to	the	TypeScript	runtime.	TypeScript	is	only	used	at	design	time;
the	TypeScript	code	is	then	compiled	into	JavaScript	and	finally	executed	at
runtime.	The	JavaScript	runtime	oversees	the	execution	of	the	JavaScript	code.	It
is	essential	to	understand	that	we	will	never	execute	TypeScript	code	and	we	will
always	execute	JavaScript	code;	for	this	reason,	when	we	refer	to	the	TypeScript
runtime,	we	will,	in	fact,	be	talking	about	the	JavaScript	runtime.

Understanding	the	runtime	is	crucial	because	it	will	help	us	to	understand	the
implementation	of	a	number	of	functional	programming	techniques	that	we	will
explore	later	in	this	book.

In	this	chapter,	we	will	cover	the	following	topics:

The	environment
The	event	loop
The	this	operator

Let's	start	by	learning	about	the	environment.

see more please visit: https://homeofpdf.com

The	environment
The	runtime	environment	is	one	of	the	first	things	that	we	must	think	about
before	we	can	start	developing	a	TypeScript	application.	Once	we	have	compiled
our	TypeScript	code	into	JavaScript,	it	can	be	executed	in	many	different
environments.	While	most	of	those	environments	will	be	part	of	a	web	browser
such	as	Chrome,	Internet	Explorer,	or	Firefox,	we	might	also	want	to	be	able	to
run	our	code	on	the	server	side	or,	in	a	desktop	application,	in	environments	such
as	Node.js,	RingoJS,	or	Electron.

It	is	essential	to	keep	in	mind	that	there	are	some	variables	and	objects	available
at	runtime	that	are	environment-specific.	For	example,	we	could	create	a	library
and	access	the	document.layers	variable.	While	document	is	part	of	the	W3C
Document	Object	Model	(DOM)	standard,	the	layers	property	is	only	available
in	Internet	Explorer	and	is	not	part	of	the	W3C	DOM	standard.

The	W3C	defines	the	DOM	as:

The	Document	Object	Model	is	a	platform-	and	language-neutral	interface	that	will	allow	programs	and
scripts	to	dynamically	access	and	update	the	content,	structure,	and	style	of	documents.	The	document	can
be	further	processed,	and	the	results	of	that	processing	can	be	incorporated	back	into	the	presented	page.

Similarly,	we	can	also	access	a	set	of	objects	known	as	the	Browser	Object
Model	(BOM)	from	a	web	browser	runtime	environment.	The	BOM	consists	of
the	navigator,	history,	screen,	location,	and	document	objects,	which	are	properties	of
the	window	object.

We	need	to	keep	in	mind	that	the	DOM	is	only	available	in	web	browsers.	If	we
want	to	run	our	application	in	a	web	browser,	we	will	be	able	to	access	the	DOM
and	BOM.	However,	in	environments	such	as	Node.js	or	RingoJS,	these	APIs
will	not	be	available	since	they	are	standalone	JavaScript	environments
completely	independent	of	a	web	browser.	We	can	also	find	other	objects	in	the
server-side	environments	(such	as	process.stdin	in	Node.js)	that	will	not	be
available	if	we	attempt	to	execute	our	code	in	a	web	browser.

We	also	need	to	keep	in	mind	the	existence	of	multiple	versions	of	these
JavaScript	environments.	In	some	cases,	we	will	have	to	support	multiple

see more please visit: https://homeofpdf.com

browsers	and	various	versions	of	Node.js.	The	recommended	practice	when
dealing	with	this	problem	is	to	use	conditional	statements	that	check	for	the
availability	of	features:

if	(Promise	&&	typeof	Promise.all	===	"function")	{

				//	User	Promise.all	here...

}

This	is	executed	instead	of	checking	the	availability	of	an	environment	or
version:

if	(

				navigator.userAgent.toLowerCase().indexOf('chrome')	>	-1	&&

				navigator.vendor.toLowerCase().indexOf("google")	>	-1

)	{

				//	Use	Promise.all	here...

}

An	excellent	library	is	available	that	can	help	us	to	implement	feature	detection	when
developing	for	web	browsers.	The	library	is	called	Modernizr,	and	can	be	downloaded	at	http:
//modernizr.com/.

see more please visit: https://homeofpdf.com

http://modernizr.com/

Understanding	the	event	loop
The	TypeScript	runtime	(JavaScript)	has	a	concurrency	model	based	on	an	event
loop.	This	model	is	quite	different	from	the	model	in	other	languages,	such	as	C
or	Java.	Before	focusing	on	the	event	loop	itself,	we	must	first	understand	a
number	of	runtime	concepts.

What	follows	is	a	visual	representation	of	some	critical	runtime	concepts:
HEAP,	STACK,	QUEUE,	and	FRAME:	

We	will	now	look	at	the	role	of	each	of	these	runtime	concepts.

see more please visit: https://homeofpdf.com

Frames
A	frame	is	a	sequential	unit	of	work.	In	the	preceding	diagram,	frames	are
represented	by	the	blocks	inside	the	stack.

When	a	function	is	invoked	in	JavaScript,	the	runtime	creates	a	frame	in	the	stack.
The	frame	holds	that	function's	arguments	and	local	variables.	When	the
function	returns,	the	frame	is	removed	from	the	stack.	Let's	look	at	an	example:

function	foo(a:	number):	number	{

				const	localFooValue	=	12;

				return	localFooValue	+	a;

}

function	bar(b:	number):	number	{

				const	localBarValue	=	4;

				return	foo(localBarValue	*	b);

}

After	declaring	the	foo	and	bar	functions,	we	invoke	the	bar	function:

bar(21);

When	the	bar	function	is	executed,	the	runtime	will	create	a	new	frame
containing	the	arguments	of	bar	and	all	its	local	variables	(b	and	localBarValue).
The	frame	(represented	as	a	black	square	in	the	preceding	diagram)	is	then	added
to	the	top	of	the	stack.

Internally,	the	bar	function	invokes	the	foo	function.	When	foo	is	invoked,	a	new
frame	is	created	and	allocated	to	the	top	of	the	stack.	When	the	execution	of	foo
is	finished	(foo	has	returned),	the	top	frame	is	removed	from	the	stack.	When	the
execution	of	bar	is	also	completed,	it	is	removed	from	the	stack	as	well.

Now,	let's	imagine	what	would	happen	if	the	foo	function	invoked	the	bar
function:

function	foo(a:	number):	number	{

				const	localFooValue	=	12;

				return	bar(localFooValue	+	a);

}

function	bar(b:	number):	number	{

				const	localBarValue	=	4;

				return	foo(localBarValue	*	b);

see more please visit: https://homeofpdf.com

}

The	preceding	code	snippet	creates	a	never-ending	function	call	loop.	With	each
function	call,	a	new	frame	is	added	to	the	stack,	and	eventually	there	will	be	no
more	space	in	the	stack	and	an	error	will	be	thrown.	Most	software	engineers	are
familiar	with	this	error,	known	as	a	stack	overflow	error.

see more please visit: https://homeofpdf.com

Stack
The	stack	contains	sequential	steps	(frames).	A	stack	is	a	data	structure	that
represents	a	simple	Last-in-first-out	(LIFO)	collection	of	objects.	Therefore,
when	a	frame	is	added	to	the	stack,	it	is	always	added	to	the	top	of	the	stack.

Since	the	stack	is	a	LIFO	collection,	the	event	loop	processes	the	frames	stored	in
it	from	top	to	bottom.	The	dependencies	of	a	frame	are	added	to	the	top	of	it	in
the	stack	to	ensure	that	all	the	dependencies	of	each	of	the	frames	are	met.

	

	

	

see more please visit: https://homeofpdf.com

Queue
The	queue	contains	a	list	of	waiting	to	be	processed.	Each	is	associated	with	a
function.	When	the	stack	is	empty,	a	message	is	taken	out	of	the	queue	and
processed.	The	processing	consists	of	calling	the	associated	function	and	adding
the	frames	to	the	stack.	Message	processing	ends	when	the	stack	becomes	empty
again.

In	the	previous	runtime	diagram,	the	blocks	inside	the	queue	represent	the
messages.	The	messages	are	usually	generated	by	user	or	applications	events.
For	example,	when	the	user	clicks	in	an	element	with	an	event	handler,	a	new
message	is	added	to	the	queue.

	

	

	

see more please visit: https://homeofpdf.com

Heap
The	heap	is	a	memory	container	that	is	not	aware	of	the	order	of	the	items	stored
in	it.	The	heap	contains	all	the	variables	and	objects	currently	in	use.	It	may	also
contain	frames	that	are	currently	out	of	scope	but	have	not	yet	been	removed
from	the	memory	by	the	garbage	collector.

	

	

	

see more please visit: https://homeofpdf.com

The	event	loop
Concurrency	is	the	ability	to	execute	two	or	more	operations	simultaneously.
The	JavaScript	runtime	execution	takes	place	on	a	single	thread,	which	means
that	we	cannot	achieve	real	concurrency.

The	event	loop	follows	a	run-to-completion	approach,	which	means	that	it	will
process	a	message	from	beginning	to	end	before	any	other	message	is	processed.

As	we	saw	in	Chapter	3,	Mastering	Asynchronous	Programming,	we	can	use	the	yield	keyword
and	generators	to	pause	the	execution	of	a	function.

Every	time	a	function	is	invoked,	a	new	message	is	added	to	the	queue.	If	the
stack	is	empty,	the	function	is	processed	(the	frames	are	added	to	the	stack).

When	all	the	frames	have	been	added	to	the	stack,	the	stack	is	cleared	from	top
to	bottom.	At	the	end	of	the	process,	the	stack	is	empty,	and	the	next	message	is
processed.

Web	workers	can	perform	background	tasks	in	a	different	thread.	They	have	their	queue,	heap,
and	stack.

One	of	the	advantages	of	the	event	loop	is	that	the	execution	order	is	quite
predictable	and	easy	to	follow.	A	disadvantage	of	this	approach	is	that,	if	a
message	takes	too	long	to	complete,	the	application	becomes	unresponsive.	A
good	practice	to	follow	is	to	make	message	processing	short	and,	if	possible,
split	one	message	into	several	messages.

The	Node.js	runtime	features	a	non-blocking	I/O	model	in	combination	with	a	single-thread
event	loop	model,	which	means	that,	when	the	application	is	waiting	for	an	I/O	operation	to
finish,	it	can	still	process	other	things,	such	as	user	input.

see more please visit: https://homeofpdf.com

The	this	operator
In	JavaScript,	the	this	operator	behaves	a	little	differently	compared	to	other
languages.	The	value	of	the	this	operator	is	often	determined	by	the	way	a
function	is	invoked.	Its	value	cannot	be	set	by	assignment	during	execution,	and
it	may	be	different	each	time	a	function	is	invoked.

The	this	operator	also	has	some	differences	when	using	strict	and	non-strict	modes.
ECMAScript	5's	strict	mode	is	a	way	to	opt	into	a	restricted	variant	of	JavaScript.	You	can
learn	more	about	strict	mode	at	https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
.

see more please visit: https://homeofpdf.com

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

console.log(this	===	window);	//	true
this.a	=	37;

console.log(window.a);	//	37
console.log(window.document	===
this.document);	//	true
console.log(this.document	===	document);	//
true
console.log(window.document	===	document);	//	true

The	preceding	example	should	be	implemented	using	JavaScript.	The	preceding
code	will	fail	in	TypeScript	if	the	strict	compilation	flag	is	enabled	because	the
strict	flag	enables	the	noImplicitThis	flag,	which	prevents	us	from	using	the
this	operator	in	a	scope	in	which	its	value	is	not	clear,	such	as	a	global	scope.

see more please visit: https://homeofpdf.com

The	this	operator	in	the	function
context
The	value	of	this	inside	a	function	depends	on	how	the	function	is	invoked.	If	we
invoke	a	function	in	non-strict	mode,	the	value	of	this	within	the	function	will
point	to	the	global	object:

function	f1()	{

		return	this;

}

f1()	===	window;	//	true

The	preceding	example	should	be	implemented	using	JavaScript.	The	preceding	code	will	fail
in	TypeScript	when	the	strict	compilation	flag	is	enabled	because	it	also	enables	the
noImplicitThis	flag.

However,	if	we	invoke	a	function	in	strict	mode,	the	value	of	this	within	the
function's	body	will	be	undefined:

console.log(this);	//	global	(window)

function	f2()	{

		"use	strict";

		return	this;	//	undefined

}

console.log(f2());	//	undefined

console.log(this);	//	window

The	preceding	example	should	be	implemented	using	JavaScript.

However,	the	value	of	the	this	operator	inside	a	function	invoked	as	an	instance
method	points	to	the	instance.	In	other	words,	the	value	of	the	this	operator
within	a	function	that	is	part	of	a	class	(a	method)	points	to	the	class	instance:

const	person	=	{

		age:	37,

		getAge:	function()	{

				return	this.age;	//	this	points	to	the	instance	(person)

		}

};

console.log(person.getAge());	//	37

see more please visit: https://homeofpdf.com

The	preceding	example	should	be	implemented	using	JavaScript.

In	the	preceding	example,	we	have	used	object	literal	notation	to	define	an	object
named	person,	but	the	same	applies	when	declaring	objects	using	classes:

class	Person	{

		public	age:	number;

		public	constructor(age:	number)	{

				this.age	=	age;

		}

		public	getAge()	{

				return	this.age;	//	this	points	to	the	instance	(person)

		}

}

const	person	=	new	Person(37);

console.log(person.getAge());	//	37

The	preceding	example	should	be	implemented	using	TypeScript.

At	runtime,	classes	are	implemented	(using	what	are	known	as	prototypes)	as	a
prototype	chain.	Don't	worry	if	you	don't	know	much	about	prototypes	because
we	will	learn	more	about	them	in	the	next	chapter.	All	we	need	to	know	for	now
is	that	the	behavior	described	in	the	preceding	section	takes	place	when	working
with	prototypes:

function	Person(age)	{

				this.age	=	age;

}

Person.prototype.getAge	=	function	()	{

				return	this.age;	//	this	points	to	the	instance	(person)

};

var	person	=	new	Person(37);

console.log(person.getAge());	//	37

The	preceding	example	should	be	implemented	using	JavaScript.

When	a	function	is	used	as	a	constructor	(with	the	new	keyword),	the	this	operator
points	to	the	object	being	constructed:

function	Person()	{	//	function	used	as	a	constructor

		this.age	=	37;

}

const	person	=	new	Person();

console.log(person.age);	//	logs	37

The	preceding	example	should	be	implemented	using	JavaScript.

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

The	call,	apply,	and	bind	methods
All	functions	inherit	the	call,	apply,	and	bind	methods	from	Function.prototype.	We
can	use	these	methods	to	set	the	value	of	this.

The	call	and	apply	methods	are	almost	identical;	both	methods	allow	us	to	invoke
a	function	and	set	the	value	of	the	this	operator	within	the	function.	The	main
difference	between	call	and	apply	is	that,	while	apply	lets	us	invoke	the	function
with	arguments	as	an	array,	call	requires	that	function	parameters	be	listed
explicitly.

A	useful	mnemonic	is	A	(apply)	for	an	array	and	C	(call)	for	a	comma.

Let's	look	at	an	example.	We	will	start	by	declaring	a	class	named	Person.	This
class	has	two	properties	(name	and	surname)	and	one	method	(greet).	The	greet
method	uses	the	this	operator	to	access	the	name	and	surname	instance	properties:

class	Person	{

		public	name:	string;

		public	surname:	string;

		public	constructor(name:	string,	surname:	string)	{

				this.name	=	name;

				this.surname	=	surname;

		}

		public	greet(city:	string,	country:	string)	{

				//	we	use	the	this	operator	to	access	name	and	surname

				let	msg	=	`Hi,	my	name	is	${this.name}	${this.surname}.`;

				msg	+=	`I'm	from	${city}	(${country}).`;

				console.log(msg);

		}

}

After	declaring	the	Person	class,	we	will	create	an	instance:

const	person	=	new	Person("remo",	"Jansen");

If	we	invoke	the	greet	method,	it	will	work	as	expected:

person.greet("Seville",	"Spain");

see more please visit: https://homeofpdf.com

Alternatively,	we	can	invoke	the	method	using	the	call	and	apply	functions.	We
have	supplied	the	person	object	as	the	first	parameter	of	both	functions	because
we	want	the	this	operator	(inside	the	greet	method)	to	take	person	as	its	value:

person.greet.call(person,	"Seville",	"Spain");

person.greet.apply(person,	["Seville",	"Spain"]);

If	we	provide	a	different	value	to	be	used	as	the	value	of	this,	we	will	not	be	able
to	access	the	name	and	surname	properties	within	the	greet	function:

person.greet.call(null,	"Seville",	"Spain");

person.greet.apply(null,	["Seville",	"Spain"]);

The	two	preceding	examples	may	seem	useless	because	the	first	one	invoked	the
function	directly	and	the	second	one	caused	unexpected	behavior.	The	apply	and
call	methods	only	make	sense	when	we	want	the	this	operator	to	take	a	different
value	when	a	function	is	invoked:

const	valueOfThis	=	{	name	:	"Anakin",	surname	:	"Skywalker"	};

person.greet.call(valueOfThis,	"Mos	espa",	"Tatooine");

person.greet.apply(valueOfThis,	["Mos	espa",	"Tatooine"]);

The	bind	method	can	be	used	to	set	the	value	of	the	this	operator	(within	a
function),	regardless	of	how	it	is	invoked.

When	we	invoke	a	function's	bind	method,	it	returns	a	new	function	with	the
same	body	and	scope	as	the	original	function,	but	the	this	operator	(within	the
body	function)	is	permanently	bound	to	the	first	argument	of	bind,	regardless	of
how	the	function	is	being	used.

Let's	look	at	an	example.	We	will	start	by	creating	an	instance	of	the	Person	class
that	we	declared	in	the	previous	example:

const	person	=	new	Person("Remo",	"Jansen");

Then	we	can	use	bind	to	set	the	greet	function	as	a	new	function	with	the	same
scope	and	body:

const	greet	=	person.greet.bind(person);

	

	

see more please visit: https://homeofpdf.com

If	we	try	to	invoke	the	greet	function	using	bind	and	apply,	just	like	we	did	in	the
previous	example,	we	will	be	able	to	observe	that,	this	time,	the	this	operator
will	always	point	to	the	object	instance,	irrespective	of	how	the	function	is
invoked:

greet.call(person,	"Seville",	"Spain");

greet.apply(person,	["Seville",	"Spain"]);

//	Hi,	my	name	is	Remo	Jansen.	I'm	from	Seville	Spain.

greet.call(null,	"Seville",	"Spain");

greet.apply(null,	["Seville",	"Spain"]);

//	Hi,	my	name	is	Remo	Jansen.	I'm	from	Seville	Spain.

const	valueOfThis	=	{	name:	"Anakin",	surname:	"Skywalker"	};

greet.call(valueOfThis,	"Mos	espa",	"Tatooine");

greet.apply(valueOfThis,	["Mos	espa",	"Tatooine"]);

//	Hi,	my	name	is	Remo	Jansen.	I'm	from	Mos	espa	Tatooine.

Using	the	apply,	call,	and	bind	methods	is	not	recommended	unless	you	are	very	familiar	with
what	you	are	doing,	because	they	can	result	in	other	developers	encountering	complex	and
hard-to-debug	runtime	issues.

Once	we	bind	an	object	to	a	function	with	bind,	we	cannot	override	it:

const	valueOfThis	=	{	name:	"Anakin",	surname:	"Skywalker"	};

const	greet	=	person.greet.bind(valueOfThis);

greet.call(valueOfThis,	"Mos	espa",	"Tatooine");

greet.apply(valueOfThis,	["Mos	espa",	"Tatooine"]);

//	Hi,	my	name	is	Remo	Jansen.	I'm	from	Mos	espa	Tatooine.

The	use	of	bind,	apply,	and	call	is	discouraged	in	JavaScript	because	it	can	lead	to	confusion.
Modifying	the	default	behavior	of	the	this	operator	can	lead	to	unexpected	results.	Remember
to	use	these	methods	only	when	strictly	necessary	and	to	document	your	code	correctly	to
reduce	the	risk	caused	by	potential	maintainability	issues.	However,	TypeScript	3.2.0
introduces	a	new	compilation	flag,	known	as	strictBindCallApply,	that	makes	the	bind,	apply,	and
call	methods	safer.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	learned	some	fundamental	aspects	of	the	TypeScript	and
JavaScript	runtime.	We	have	learned	that	a	potential	differences	lies	in	the
execution	environments	of	web	browsers	and	platforms	such	as	Node.js.	We
have	also	learned	the	functions	are	processed	and	executed	by	the	event	loop	and
how	the	value	of	the	this	operator	can	change	in	different	contexts.

In	the	next	chapter,	we	will	learn	more	about	the	runtime,	and	we	will	explore
closures	and	prototypes.	We	will	then	be	fully	ready	to	delve	into	the
implementation	of	a	wide	variety	of	functional	programming	techniques.

	

	

	

see more please visit: https://homeofpdf.com

The	Runtime	–	Closures	and
Prototypes
In	the	previous	chapter,	we	learned	about	certain	aspects	of	the
TypeScript/JavaScript	runtime	that	will	help	us	to	understand	the	implementation
of	some	functional	programming	techniques	in	upcoming	chapters.	In	this
chapter,	we	are	going	to	explore	two	more	aspects	of	the	TypeScript/JavaScript
runtime:

Prototypes
Closures

After	exploring	these	two	concepts,	we	will	finally	be	ready	to	delve	into	the
implementation	and	application	of	the	main	functional	programming	techniques.

	

	

	

see more please visit: https://homeofpdf.com

Prototypes
When	we	compile	a	TypeScript	program,	all	classes	and	objects	become
JavaScript	objects.	Occasionally,	however,	we	may	encounter	an	unexpected
behavior	at	runtime	even	if	the	compilation	was	completed	without	errors.	To	be
able	to	identify	and	understand	the	cause	of	this	behavior,	we	need	a	good
understanding	of	the	JavaScript	runtime.	One	of	the	main	concepts	that	we	need
to	understand	is	how	classes	and	inheritance	work	at	runtime.

The	runtime	inheritance	system	uses	a	prototypal	inheritance	model.	In	a
prototypal	inheritance	model,	objects	inherit	from	objects,	and	there	are	no
classes	available.	However,	we	can	use	prototypes	to	simulate	classes.	Let's	see
how	this	works.

At	runtime,	objects	have	an	internal	property	called	prototype.	The	values	of	the
prototype	property	is	an	object	that	contains	some	properties	(data)	and	methods
(behavior).

In	TypeScript,	we	can	use	a	class-based	inheritance	system:

class	Person	{

				public	name:	string;

				public	surname:	string;

				public	age:	number	=	0;

				public	constructor(name:	string,	surname:	string)	{

								this.name	=	name;

								this.surname	=	surname;

				}

				public	greet()	{

								let	msg	=	'Hi!	my	name	is	${this.name}	${this.surname}';

								msg	+=	'I'm	${this.age}';

				}

}

We	have	defined	a	class	named	Person.	At	runtime,	this	class	is	declared	using
prototypes	instead	of	classes:

var	Person	=	(function()	{

				function	Person(name,	surname)	{

								this.age	=	0;

see more please visit: https://homeofpdf.com

								this.name	=	name;

								this.surname	=	surname;

				}

				Person.prototype.greet	=	function()	{

								let	msg	=	"Hi!	my	name	is	"	+	this.name	+

																				"	"	+	this.surname;

								msg	+=	"I'm	"	+	this.age;

				};

				return	Person;

})();

The	preceding	code	is	emitted	by	TypeScript	when	we	target	ES5.	The	class
keyword	is	supported	by	ES6	at	runtime,	but	it	is	only	syntactic	sugar.

Syntactic	sugar	is	syntax	within	a	programming	language	that	is	designed	to	make	things
easier	to	read	or	to	express.	This	means	that	the	class	keyword	is	just	a	helper	to	make	our
lives	as	software	engineers	easier;	internally,	prototypes	are	always	used.

The	TypeScript	compiler	wraps	the	object	definition	(we	will	not	refer	to	it	as	a
class	definition	because	technically,	it	is	not	a	class)	with	an	immediately-
invoked	function	expression	(IIFE).	Inside	the	IIFE,	we	can	find	a	function
named	Person.	If	we	examine	the	function	and	compare	it	with	the	TypeScript
class,	we	will	notice	that	it	takes	the	same	parameters	that	the	class	constructor
takes	in	the	TypeScript	class.	This	function	is	used	to	create	new	instances	of	the
Person	class.

After	the	constructor,	we	can	see	the	definition	of	the	greet	method.	As	we	can
see,	the	prototype	property	is	used	to	attach	the	greet	method	to	the	Person	class.

see more please visit: https://homeofpdf.com

Instance	properties	versus	class
properties
Because	JavaScript	is	a	dynamic	programming	language,	we	can	add	properties
and	methods	to	an	instance	of	an	object	at	runtime;	and	they	don't	need	to	be	part
of	the	object	(class)	itself:

const	name	=	"Remo";

const	surname	=	"Jansen";

function	Person(name,	surname)	{

						//	instance	properties

						this.name	=	name;

						this.surname	=	surname;

}

const	person1	=	new	Person(name,	surname);

person1.age	=	27;

We	have	defined	a	constructor	function	for	an	object	named	Person,	which	takes
two	variables	(name	and	surname)	as	arguments.	Then	we	have	created	an	instance
of	the	Person	object	and	added	a	new	property	named	age	to	it.	We	can	use	a	for…in
statement	to	check	the	properties	of	person1	at	runtime:

for(let	property	in	person1)	{

		console.log("property:	"	+	property	+	",	value:	'"	+

		person1[property]	+	"'");

}

The	following	will	be	displayed	in	the	console	output:

property:	name,	value:	'Remo'

property:	surname,	value:	'Jansen'

property:	age,	value:	27

property:	greet,	value:	'function	(city,	country)	{

				let	msg	=	"Hi,	my	name	is	"	+	this.name	+	"	"	+	this.surname;

				msg	+=	"\nI'm	from	"	+	city	+	"	"	+	country;

				console.log(msg);

}'

As	we	can	see,	age	has	been	added	as	a	property.	All	these	properties	are	instance
properties	because	they	hold	a	value	for	each	new	instance.	If,	for	example,	we
create	a	new	instance	of	Person,	both	instances	will	hold	their	own	values:

let	person2	=	new	Person("John",	"Wick");

see more please visit: https://homeofpdf.com

person2.name;	//	"John"

person1.name;	//	"Remo"

We	have	defined	these	instance	properties	using	the	this	operator	because,	when
a	function	is	used	as	a	constructor	(with	the	new	keyword),	the	this	operator	is
bound	to	the	object	instance	constructed.	The	preceding	also	explains	why	we
can	alternatively	define	instance	properties	through	the	object's	prototype:

Person.prototype.name	=	name;	//	instance	property

Person.prototype.surname	=	surname;	//	instance	property

We	can	also	declare	class	properties	and	methods	(also	known	as	static
properties).	The	main	difference	between	instance	properties	and	class	properties
is	that	the	value	of	class	properties	and	methods	are	shared	between	all	instances
of	an	object.	Class	properties	are	often	used	to	store	static	values:

function	MathHelper()	{

		//...

}

//	class	property

MathHelper.PI	=	3.14159265359;

Class	methods	are	also	often	used	as	utility	functions	that	perform	calculations
on	supplied	parameters	and	return	a	result:

function	MathHelper()	{

				//	...

}

//	class	property

MathHelper.PI	=	3.14159265359;

//	class	method

MathHelper.areaOfCircle	=	function(radius)	{

		return	radius	*	radius	*	MathHelper.PI;

}

Please	note	that	the	preceding	code	snippet	is	valid	in	JavaScript,	but	will	throw	a
compilation	error	in	TypeScript.

In	the	preceding	example,	we	accessed	a	class	attribute	(PI)	from	a	class	method
(areaOfCircle).	We	can	access	class	properties	from	instance	methods,	but	we
cannot	access	instance	properties	or	methods	from	class	properties	or	methods.
We	can	demonstrate	this	by	declaring	PI	as	an	instance	property	instead	of	a	class
property:

function	MathHelper()	{

		//	instance	property

		this.PI	=	3.14159265359;

see more please visit: https://homeofpdf.com

}

If	we	then	attempt	to	access	PI	from	a	class	method,	it	will	be	undefined:

//	class	method

MathHelper.areaOfCircle	=	function(radius)	{

		return	radius	*	radius	*	this.PI;	//	this.PI	is	undefined

}

MathHelper.areaOfCircle(5);	//	NaN

We	are	not	supposed	to	access	class	methods	or	properties	from	instance
methods,	but	there	is	a	way	to	do	it.	We	can	do	this	by	using	the	prototype's
constructor	property,	as	demonstrated	in	the	following	example:

function	MathHelper	()	{	/*	...	*/	}

//	class	property

MathHelper.PI	=	3.14159265359;

//	instance	method

MathHelper.prototype.areaOfCircle	=	function(radius)	{

	return	radius	*	radius	*	this.constructor.PI;

}

const	math	=	new	MathHelper	();

console.log(MathHelper.areaOfCircle(5));	//	78.53981633975

We	can	access	the	PI	class	property	from	the	areaOfCircle	instance	method	using
the	prototype's	constructor	property	because	this	property	returns	a	reference	to
the	object's	constructor.

Inside	areaOfCircle,	the	this	operator	returns	a	reference	to	the	object's	prototype:

this	===	MathHelper.prototype;	//	true

We	may	deduce	that	this.constructor	is	equal	to	MathHelper.prototype.constructor	and,
therefore,	MathHelper.prototype.constructor	is	equal	to	MathHelper.

In	TypeScript,	we	can	define	class	properties	using	the	static	keyword:

class	MathHelper	{

				//	class	property

				public	static	PI	=	3.14159265359;

				//	class	method

				public	static	areaOfCircle(radius:	number)	{

								return	radius	*	radius	*	MathHelper.PI;

				}

}

see more please visit: https://homeofpdf.com

Prototypal	inheritance
You	might	be	wondering	how	the	extends	keyword	works.	Let's	create	a	new
TypeScript	class,	which	inherits	from	the	Person	class,	to	understand	it:

class	SuperHero	extends	Person	{

				public	superpower:	string;

				public	constructor(

								name:	string,

								surname:	string,

								superpower:	string

)	{

								super(name,	surname);

								this.superpower	=	superpower;

				}

				public	userSuperPower()	{

								return	'I'm	using	my	${this.superpower}';

				}

}

The	preceding	class	is	named	SuperHero	and	extends	the	Person	class.	It	has	one
additional	attribute	(superpower)	and	method	(useSuperPower).

We	need	to	compile	the	previous	code	snippet	into	JavaScript	code	so	we	can
examine	how	inheritance	is	implemented	at	runtime.	The	compiler	will	generate
a	polyfill	function	named	__extends	which	is	meant	to	be	a	replacement	for	the
extends	keyword	compatible	with	the	older	versions	of	JavaScript:

var	__extends	=	this.__extends	||	function	(d,	b)	{

				for	(var	p	in	b)	if	(b.hasOwnProperty(p))	d[p]	=	b[p];

				function	__()	{	this.constructor	=	d;	}

				__.prototype	=	b.prototype;

				d.prototype	=	new	__();

};

Please	note	that	the	preceding	code	snippet	is	slightly	more	complicated	in	the	latest	version
of	TypeScript.	We	will	use	the	code	from	previous	versions	here	because	it	contains	fewer
conditions	and	is	easier	to	understand.

This	piece	of	code	is	generated	by	TypeScript.	Even	though	it	is	a	small	piece	of
code,	it	showcases	almost	every	concept	contained	in	this	chapter,	and
understanding	it	can	be	quite	challenging.

see more please visit: https://homeofpdf.com

Before	the	function	expression	is	evaluated	for	the	first	time,	the	this	operator
points	to	the	global	object,	which	does	not	contain	a	method	named	__extends.
This	means	that	the	__extends	variable	is	undefined.

When	the	function	expression	is	evaluated	for	the	first	time,	the	value	of	the
function	expression	(an	anonymous	function)	is	assigned	to	the	__extends	property
in	the	global	scope.

TypeScript	generates	the	function	expression	on	one	occasion	for	each
TypeScript	file	containing	the	extends	keyword.	However,	the	function	expression
is	only	evaluated	once	(when	the	__extends	variable	is	undefined).	This	behavior
is	implemented	by	the	conditional	statement	in	the	first	line:

var	__extends	=	this.__extends	||	function	(d,	b)	{	//	...

The	first	time	the	preceding	line	of	code	is	executed,	the	function	expression	is
evaluated.	The	value	of	the	function	expression	is	an	anonymous	function,	which
is	assigned	to	the	__extends	variable	in	the	global	scope.	Because	we	are	in	the
global	scope,	var	__extends	and	this.	__extends	refer	to	the	same	variable	at	this
point.

When	a	new	file	is	executed,	the	__extends	variable	is	already	available	in	the
global	scope,	and	the	function	expression	is	not	evaluated.	This	means	that	the
value	of	the	function	expression	is	only	assigned	to	the	__extends	variable	once,
even	if	the	snippet	is	executed	multiple	times.

Let's	focus	now	on	the	__extends	variable	(the	anonymous	function):

function	(d,	b)	{

				for	(var	p	in	b)	if	(b.hasOwnProperty(p))	d[p]	=	b[p];

				function	__()	{	this.constructor	=	d;	}

				__.prototype	=	b.prototype;

				d.prototype	=	new	__();

}

This	function	takes	two	arguments	named	d	and	b.	When	we	invoke	it,	we	should
pass	a	derived	object	constructor	(d)	and	a	base	object	constructor	(b).

The	first	line	inside	the	anonymous	function	iterates	each	class	property	and
method	from	the	base	class	and	creates	their	copy	in	the	derived	class:

for	(var	p	in	b)	if	(b.hasOwnProperty(p))	d[p]	=	b[p];

see more please visit: https://homeofpdf.com

When	we	use	a	for…in	statement	to	iterate	an	instance	of	an	object	to	a,	it	will	iterate	the
object's	instance	properties.	However,	if	we	use	a	for…in	statement	to	iterate	the	properties	of
an	object's	constructor,	the	statement	will	iterate	its	class	properties.	In	the	preceding
example,	the	for…in	statement	is	used	to	inherit	the	object's	class	properties	and	methods.	To
inherit	the	instance	properties,	we	will	copy	the	object's	prototype.

The	second	line	declares	a	new	constructor	function	named	__	and,	inside	it,	the
this	operator	is	used	to	access	its	prototype.

function	__()	{	this.constructor	=	d;	}

The	prototype	contains	a	special	property	named	constructor,	which	returns	a
reference	to	the	object's	constructor.	The	function	named	__	and	this.constructor
are	pointing	to	the	same	variable	at	this	point.	The	value	of	the	derived	object
constructor	(d)	is	then	assigned	to	the	__	constructor.

In	the	third	line,	the	value	of	the	prototype	object	from	the	base	object
constructor	is	assigned	to	the	prototype	of	the	__	object	constructor:

__.prototype	=	b.prototype;

In	the	last	line,	the	__	function	is	invoked	as	a	constructor	with	the	new	keyword,
and	the	result	is	assigned	to	the	derived	class	(d)	prototype.	By	performing	all
these	steps,	we	have	achieved	what	we	need	to	in	order	to	invoke	the	following:

var	instance	=	new	d():

Upon	doing	so,	we	will	get	an	object	that	contains	all	the	properties	from	both
the	derived	class	(d)	and	the	base	class	(b).	Furthermore,	any	instance	objects
constructed	by	the	derived	constructor	(d)	will	be	instances	of	the	derived	class,
while	inheriting	the	class	and	instance	properties	and	methods	from	the	base
class	(b).

We	can	see	the	function	in	action	by	examining	the	runtime	code	that	defines	the
SuperHero	class:

var	SuperHero	=	(function	(_super)	{

				__extends(SuperHero,	_super);

				function	SuperHero(name,	surname,	superpower)	{

								_super.call(this,	name,	surname);

								this.superpower	=	superpower;

				}

see more please visit: https://homeofpdf.com

				SuperHero.prototype.userSuperPower	=	function	()	{

								return	"I'm	using	my	"	+	superpower;

				};

				return	SuperHero;

})(Person);

We	can	see	an	IIFE	here	again.	This	time,	the	IIFE	takes	the	Person	object
constructor	as	the	argument.	Inside	the	function,	we	will	refer	to	this	argument
using	the	name	_super.	Inside	the	IIFE,	the	__extends	function	is	invoked	and	the
SuperHero	(derived	class)	and	_super	(base	class)	arguments	are	passed	to	it.

In	the	next	line,	we	can	find	the	declaration	of	the	SuperHero	object	constructor
and	the	useSuperPower	function.	We	can	use	SuperHero	as	an	argument	of	__extend
before	it	is	declared	because	function	declarations	are	hoisted	to	the	top	of	the
scope.

Function	expressions	are	not	hoisted.	When	we	assign	a	function	to	a	variable	in	a	function
expression,	the	variable	is	hoisted,	but	its	value	(the	function	itself)	is	not	hoisted.

Inside	the	SuperHero	constructor,	the	base	class	(Person)	constructor	is	invoked
using	the	call	method:

_super.call(this,	name,	surname);

As	we	discovered	in	the	previous	chapter,	we	can	use	call	to	set	the	value	of	the
this	operator	in	a	function	context.	In	this	case,	we	are	passing	the	this	operator,
which	points	to	the	instance	of	SuperHero	being	created:

function	Person(name,	surname)	{

				//	this	points	to	the	instance	of	SuperHero	being	created

				this.name	=	name;

				this.surname	=	surname;

}

see more please visit: https://homeofpdf.com

Prototype	chains	and	property
shadowing
When	we	try	to	access	a	property	or	a	method	of	an	object,	the	runtime	will
search	for	that	property	or	method	in	the	object's	own	properties	and	methods.	If
it	is	not	found,	the	runtime	will	continue	searching	through	the	object's	inherited
properties	by	navigating	the	entire	inheritance	tree.	Because	a	derived	object	is
linked	to	its	base	object	through	the	prototype	property,	we	refer	to	this
inheritance	tree	as	the	prototype	chain.

Let's	look	at	an	example.	We	will	declare	two	simple	TypeScript	classes,	named
Base	and	Derived:

class	Base	{

				public	method1()	{	return	1;	}

				public	method2()	{	return	2;	}

}

class	Derived	extends	Base	{

				public	method2()	{	return	3;	}

				public	method3()	{	return	4;	}

}

Now	we	will	examine	the	JavaScript	code	generated	by	TypeScript:

var	Base	=	(function	()	{

				function	Base()	{

				}

				Base.prototype.method1	=	function	()	{	return	1;	};

				Base.prototype.method2	=	function	()	{	return	2;	};

				return	Base;

})();

var	Derived	=	(function	(_super)	{

				__extends(Derived,	_super);

				function	Derived()	{

								_super.apply(this,	arguments);

				}

				Derived.prototype.method2	=	function	()	{	return	3;	};

				Derived.prototype.method3	=	function	()	{	return	4;	};

				return	Derived;

})(Base);

We	can	then	create	an	instance	of	the	Derived	class:

const	derived	=	new	Derived();

see more please visit: https://homeofpdf.com

The	new	operator	creates	an	object	instance	that	inherits	from	the	Base	class.

If	we	try	to	access	the	method	named	method1,	the	runtime	will	find	it	in	the
instance's	properties:

console.log(derived.method1());	//	1

The	instance	also	has	its	own	property	named	method2	(with	a	value	of	2),	but
there	is	also	an	inherited	property	named	method2	(with	a	value	of	3).	The	object's
property	(method2	with	a	value	of	3)	prevents	access	to	the	prototype	property
(method2	with	a	value	of	2).	This	is	known	as	property	shadowing:
console.log(derived.method2());	//	3

The	instance	does	not	have	its	own	property	named	method3,	but	it	does	have	a
property	named	method3	in	its	prototype	chain:

console.log(derived.method3());	//	4

Neither	the	instance	nor	the	objects	in	the	prototype	chain	(the	Base	class)	have	a
property	named	method4:

console.log(derived.method4());	//	error

see more please visit: https://homeofpdf.com

Accessing	the	prototype	of	an	object
Prototypes	can	be	accessed	in	three	different	ways:

Person.prototype

Object.getPrototypeOf(person)

person.__proto__

The	use	of	__proto__	is	controversial	and	has	been	discouraged	by	many	experienced	software
engineers.	It	was	never	originally	included	in	the	ECMAScript	language	specification,	but
modern	browsers	decided	to	implement	it	in	any	case.	Today,	the	__proto__	property	has	been
standardized	in	the	ECMAScript	6	language	specification	and	will	be	supported	in	future,	but
it	is	still	a	slow	operation	that	should	be	avoided	if	performance	is	a	concern.

	

	

	

see more please visit: https://homeofpdf.com

Closures
Closures	are	one	of	the	most	powerful	features	in	JavaScript	and	TypeScript,	but
they	are	also	one	of	the	most	misunderstood.	The	Mozilla	developer	network
defines	closures	as	follows:

Closures	are	functions	that	refer	to	independent	(free)	variables.	In	other	words,	the	function	defined	in	the
closure	'remembers'	the	environment	in	which	it	was	created.

We	understand	independent	(free)	variables	as	variables	that	persist	beyond	the
lexical	scope	from	which	they	were	created.	Let's	look	at	an	example:

function	makeArmy()	{

				const	shooters	=	[];

				for	(let	i	=	0;	i	<	10;	i++)	{

								const	shooter	=	()	=>	{	//	a	shooter	is	a	function

												console.log(i);	//	which	should	display	it's	number

								};

								shooters.push(shooter);

				}

				return	shooters;

}

Please	note	that	the	preceding	example	is	meant	to	be	a	JavaScript	example.

We	have	declared	a	function	named	makeArmy.	Inside	the	function,	we	have	created
an	array	of	functions	named	shooters.	Each	function	in	the	shooters	array	will
display	a	number,	the	value	of	which	was	set	from	the	variable	i	inside	a	for
statement.	We	will	now	invoke	the	makeArmy	function:

const	army	=	makeArmy();

The	army	variable	should	now	contain	the	array	of	the	function's	shooters.
However,	we	will	notice	a	problem	if	we	execute	the	following	piece	of	code:

army[0]();	//	10	(expected	0)

army[5]();	//	10	(expected	5)

The	preceding	code	snippet	does	not	work	as	expected	because	we	made	one	of
the	most	common	mistakes	related	to	closures.	When	we	declared	the	shooter
function	inside	the	makeArmy	function,	we	created	a	closure	without	being	aware	of
it.

see more please visit: https://homeofpdf.com

This	is	because	the	functions	assigned	to	shooter	are	closures.	A	closure	has
access	to	variables	in	the	environment	that	encloses	them	(the	makeArmy	function's
scope).	Ten	closure	functions	have	been	created,	but	each	one	shares	the	same
single	environment.	By	the	time	the	shooter	functions	are	executed,	the	loop	has
run	its	course	and	the	i	variable	(shared	by	all	the	closure	functions)	has	been
left	pointing	to	the	last	entry	(10).

One	solution,	in	this	case,	is	to	use	more	closures:

function	makeArmy()	{

				const	shooters	=	[];

				for	(let	i	=	0;	i	<	10;	i++)	{

								((index:	number)	=>	{

												const	shooter	=	()	=>	{

																console.log(index);

												};

												shooters.push(shooter);

								})(i);

				}

				return	shooters;

}

const	army	=	makeArmy();

army[0]();	//	0

army[5]();	//	5

Please	note	that	the	preceding	example	is	meant	to	be	a	TypeScript	example.

This	works	as	expected.	Rather	than	the	shooter	functions	sharing	a	single
environment,	the	immediately-invoked	function	creates	a	new	environment	for
each	one	in	which	i	refers	to	the	corresponding	value.

see more please visit: https://homeofpdf.com

Static	variables	powered	by	closures
In	the	previous	section,	we	learned	that,	when	a	variable	in	a	closure	context	can
be	shared	between	multiple	instances	of	a	class,	this	means	that	the	variable
behaves	like	a	static	variable.	We	will	now	see	how	we	can	create	variables	and
methods	that	behave	like	a	static	variable	using	closures.	Let's	start	by	declaring
a	TypeScript	class	named	Counter:

class	Counter	{

	private	static	_COUNTER	=	0;

	public	increment()	{

	this._changeBy(1);

	}

	public	decrement()	{

	this._changeBy(-1);

	}

	public	value()	{

	return	Counter._COUNTER;

	}

	private	_changeBy(val:	number)	{

	Counter._COUNTER	+=	val;

	}

}

Please	note	that	the	preceding	example	is	meant	to	be	a	TypeScript	example.

The	preceding	class	contains	a	static	member	named	_COUNTER.	The	TypeScript
compiler	transforms	it	into	the	following	code:

var	Counter	=	(function	()	{

				function	Counter()	{

				}

				Counter.prototype._changeBy	=	function	(val)	{

								Counter._COUNTER	+=	val;

				};

				Counter.prototype.increment	=	function	()	{

								this._changeBy(1);

				};

				Counter.prototype.decrement	=	function	()	{

								this._changeBy(-1);

see more please visit: https://homeofpdf.com

				};

				Counter.prototype.value	=	function	()	{

								return	Counter._COUNTER;

				};

				Counter._COUNTER	=	0;

				return	Counter;

})();

Please	note	that	the	preceding	code	snippet	is	the	compilation	output	generated	by	the
TypeScript	compiler.

As	we	can	observe,	the	static	variable	is	declared	by	the	TypeScript	compiler	as
a	class	property	(as	opposed	to	an	instance	property).	The	compiler	uses	a	class
property	because	class	properties	are	shared	across	all	instances	of	a	class.	The
problem	is	that	the	private	variable	is	not	private	at	runtime.

Alternatively,	we	could	write	some	JavaScript	(remember	that	all	valid
JavaScript	is	valid	TypeScript)	code	to	emulate	static	properties	using	closures:

var	Counter	=	(function()	{

				//	closure	context

				let	_COUNTER	=	0;

				function	changeBy(val:	number)	{

								_COUNTER	+=	val;

				}

				interface	Counter	{

								increment:	()	=>	void;

								decrement:	()	=>	void;

								value:	()	=>	number;

				}

				interface	CounterConstructor	{

								new():	Counter;

				}

				function	Counter()	{};

				//	closure	functions

				Counter.prototype.increment	=	function()	{

						changeBy(1);

				};

				Counter.prototype.decrement	=	function()	{

						changeBy(-1);

				};

				Counter.prototype.value	=	function()	{

						return	_COUNTER;

				};

see more please visit: https://homeofpdf.com

				return	(Counter	as	unknown)	as	CounterConstructor;

})();

Please	note	that	the	preceding	example	is	meant	to	be	a	TypeScript	example.

The	preceding	code	snippet	declares	a	class	named	Counter.	The	class	has	some
methods	used	to	increment,	decrement,	and	read	the	variable	named	_COUNTER.	The
_COUNTER	variable	itself	is	not	part	of	the	object	prototype.

All	the	instances	of	the	Counter	class	will	share	the	same	context,	which	means
that	the	context	(the	_COUNTER	variable	and	the	changeBy	function)	will	behave	as	a
singleton.

The	singleton	pattern	requires	an	object	to	be	declared	as	a	static	variable	to	avoid	the	need
to	create	its	instance	whenever	it	is	required.	The	object	instance	is,	therefore,	shared	by	all
the	components	in	the	application.	The	singleton	pattern	is	frequently	used	in	scenarios	where
it	is	not	beneficial,	thereby	introducing	unnecessary	restrictions	in	situations	where	a	unique
instance	of	a	class	is	not	required,	and	introduces	global	state	into	an	application.

So	now	we	know	that	it	is	possible	to	use	closures	to	emulate	static	variables:

let	counter1	=	new	Counter();

let	counter2	=	new	Counter();

console.log(counter1.value());	//	0

console.log(counter2.value());	//	0

counter1.increment();

counter1.increment();

console.log(counter1.value());	//	2

console.log(counter2.value());	//	2	(expected	0)

counter1.decrement();

console.log(counter1.value());	//	1

console.log(counter2.value());	//	1	(expected	0)

As	we	can	see,	the	preceding	example	doesn't	work	as	expected	because	both
instances	of	Counter	share	the	internal	counter.	We	will	learn	how	to	fix	this
problem	in	the	following	section.

see more please visit: https://homeofpdf.com

Private	members	powered	by	closures
In	the	previous	section,	we	learned	that	closures	can	access	variables	that	persist
beyond	the	lexical	scope	from	which	they	were	created.	These	variables	are	not
part	of	the	function's	prototype	or	body,	but	they	are	part	of	the	function's
context.

Because	there	is	no	way	we	can	directly	invoke	the	function's	context,	context
variables	and	methods	can	be	used	to	emulate	private	members.	The	main
advantage	of	using	closures	to	emulate	private	members	(instead	of	the
TypeScript	private	access	modifier)	is	that	closures	will	prevent	access	to	private
members	at	runtime.

TypeScript	avoids	emulating	private	properties	at	runtime	because	the	compiler
will	throw	an	error	at	compilation	time	if	we	attempt	to	access	a	private	member.
TypeScript	avoids	using	closures	to	emulate	private	members	so	as	to	improve
application	performance.	If	we	add	or	remove	an	access	modifier	to	or	from	one
of	our	classes,	the	resulting	JavaScript	code	will	not	change	at	all.	This	means
that	private	members	of	a	class	become	public	members	at	runtime.

However,	it	is	possible	to	use	closures	to	emulate	private	properties	at	runtime.
Let's	look	at	an	example:

function	makeCounter()	{

				//	closure	context

				let	_COUNTER	=	0;

				function	changeBy(val:	number)	{

								_COUNTER	+=	val;

				}

				class	Counter	{

								public	increment()	{

												changeBy(1);

								}

								public	decrement()	{

												changeBy(-1);

								}

								public	value()	{

												return	_COUNTER;

								}

see more please visit: https://homeofpdf.com

				}

				return	new	Counter();

}

Please	note	that	the	preceding	example	is	meant	to	be	a	TypeScript	example.

The	preceding	class	is	almost	identical	to	the	class	that	we	previously	declared	in
order	to	demonstrate	how	to	emulate	static	variables	at	runtime	using	closures.

This	time,	a	new	closure	context	is	created	every	time	we	invoke	the	makeCounter
function,	so	each	new	instance	of	Counter	will	remember	an	independent	context
(_COUNTER	and	changeBy):

let	counter1	=	makeCounter();

let	counter2	=	makeCounter();

console.log(counter1.value());	//	0

console.log(counter2.value());	//	0

counter1.increment();

counter1.increment();

console.log(counter1.value());	//	2

console.log(counter2.value());	//	0	(expected	0)

counter1.decrement();

console.log(counter1.value());	//	1

console.log(counter2.value());	//	0	(expected	0)

Since	the	context	cannot	be	accessed	directly,	we	can	say	that	the	_COUNTER
variable	and	the	changeBy	function	are	private	members	even	at	runtime:

console.log(counter1.counter);	//	Error

console.log(counter1.changeBy(2));	//	Error

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	acquired	a	better	understanding	of	the	runtime,	which
allows	us	to	not	only	resolve	runtime	issues	easily,	but	also	to	write	better
TypeScript	code.	An	in-depth	understanding	of	closures	and	prototypes	will
allow	us	to	understand	the	implementation	of	some	functional	programming
techniques	in	upcoming	chapters.

In	the	next	chapter,	we	will	learn	how	to	implement	a	number	of	fundamental
functional	programming	techniques.

	

	

	

see more please visit: https://homeofpdf.com

Functional	Programming	Techniques
After	learning	how	to	work	with	functions	in	detail,	mastering	asynchronous
programming,	and	going	through	the	main	characteristics	of	the	JavaScript
runtime,	we	are	now	fully	ready	to	focus	on	functional	programming.	In	this
chapter,	we	are	going	to	focus	on	the	most	fundamental	functional	programming
techniques	and	patterns.

We	are	going	to	try	to	avoid	using	external	libraries	and	we	are	going	to
implement	some	of	these	techniques	and	patterns	from	scratch.	This	will	be
slightly	more	tedious,	but	it	will	help	us	to	fully	understand	how	these
techniques	work	internally.	Please	note	that	some	of	these	implementations	have
been	simplified	and	do	not	cover	all	the	potential	edge	cases.	In	an	actual
production	system,	using	a	well-tested	functional	programming	library	is
recommended.

In	this	chapter,	we	are	going	to	learn	about	the	following	functional
programming	techniques	and	patterns:

Composition
Partial	application
Currying
Pipes
Point-free	style
Recursion
Pattern	matching

	

	

see more please visit: https://homeofpdf.com

Composition	techniques
In	this	section,	we	are	going	to	learn	about	some	functional	programming
techniques	that	are	very	closely	linked	to	function	composition.	We	are	going	to
learn	about	composition,	partial	application,	currying,	and	pipes.

see more please visit: https://homeofpdf.com

Composition
Functional	composition	is	a	technique	or	pattern	that	allows	us	to	combine
multiple	functions	to	create	a	more	complex	function.

The	following	code	snippet	declares	two	simple	functions:

const	trim	=	(s:	string)	=>	s.trim();

const	capitalize	=	(s:	string)	=>	s.toUpperCase();

That	two	simple	functions	declared	by	the	preceding	code	snippet	are	the
following:

A	function	used	to	trim	a	string
A	function	used	to	transform	a	piece	of	text	into	uppercase

We	can	create	a	function	that	performs	both	of	the	preceding	operations	by
composing	them	as	follows:

const	trimAndCapitalize	=	(s:	string)	=>	capitalize(trim(s));

trimAndCapitalize	is	a	function	that	invokes	the	trim	function	(using	s	as	its
argument)	and	passes	its	return	to	the	capitalize	function.	We	can	invoke	the
trimAndCapitalize	function	as	follows:

trimAndCapitalize("			hello	world			");	//	"HELLO	WORLD"

The	composition	of	two	functions,	f(x)	and	g(x),	is	defined	as	f(g(x)),	and	that	is
exactly	what	we	have	done	in	the	implementation	of	the	trimAndCapitalize
function.	However,	such	a	behavior	can	be	abstracted	using	a	higher-order
function:

const	compose	=	<T>(f:	(x:	T)	=>	T,	g:	(x:	T)	=>	T)	=>	(x:	T)	=>	f(g(x));

We	can	then	use	the	preceding	function	to	compose	two	given	functions:

const	trimAndCapitalize	=	compose(trim,	capitalize);

We	can	then	invoke	the	trimAndCapitalize	function	as	follows:

see more please visit: https://homeofpdf.com

trimAndCapitalize("			hello	world			");	//	"HELLO	WORLD"

One	important	thing	to	note	is	that	the	return	of	the	g	function	is	passed	as	the
argument	of	the	f	function.	This	means	that	f	can	only	take	one	argument	(it
must	be	a	unary	function).	The	type	of	the	only	argument	of	f	must	match	the
return	type	of	the	g	function.	These	limitations	can	be	expressed	in	a	more
correct	definition	of	the	compose	function:

const	compose	=	<T1,	T2,	T3>(f:	(x:	T2)	=>	T3,	g:	(x:	T1)	=>	T2)	=>	(x:	T1)	=>	f(g(x));

We	can	also	compose	in	functions	generated	with	the	compose	function:

const	composed1	=	compose(func1,	func2);

const	composed2	=	compose(func1,	func2);

const	composed3	=	compose(composed1,	composed2);

Please	note	that	the	entire	example	is	included	in	the	companion	source	code.

Or	we	can	declare	a	higher-order	function	to	compose	three	functions	in	a	single
call:

const	compose3	=	<T1,	T2,	T3,	T4>(

				f:	(x:	T3)	=>	T4,

				g:	(x:	T2)	=>	T3,

				h:	(x:	T1)	=>	T2

)	=>	(x:	T1)	=>	f(g(h(x)));

We	can	then	invoke	it	as	follows:

const	composed1	=	composeMany(func1,	func2,	func3);

We	can	also	create	a	helper	that	allows	us	to	compose	an	unlimited	number	of
functions:

const	composeMany	=	<T>(...functions:	Array<(arg:	T)	=>	T>)	=>

				(arg:	any)	=>

								functions.reduce((prev,	curr)	=>	{

												return	curr(prev);

								},	arg);

We	can	then	invoke	it	as	follows:

const	composed1	=	composeMany(func1,	func2,	func3,	func4);

const	composed2	=	composeMany(func1,	func2,	func3,	func4,	func5);

Functional	composition	is	an	extremely	powerful	technique,	but	it	can	be	hard	to
put	into	practice	in	certain	scenarios,	for	example,	when	our	functions	are	not

see more please visit: https://homeofpdf.com

unary	functions.	However,	there	are	other	techniques,	such	as	functional	partial
application,	that	can	help	in	those	scenarios,	as	we	will	see	in	the	following
section.

see more please visit: https://homeofpdf.com

Partial	application
Partial	application	is	a	functional	programming	technique	that	allows	us	to	pass
the	arguments	required	by	a	function	at	different	points	in	time.

This	technique	can	feel	like	a	weird	idea	at	first	glance,	because	most	software
engineers	are	used	to	the	idea	of	applying	or	invoking	a	function	at	a	unique
point	in	time	(complete	application),	as	opposed	to	applying	a	function	at
multiple	points	in	time	(partial	application).

The	following	code	snippet	implements	a	function	that	doesn't	support	partial
application	and	invokes	it	(providing	all	the	required	arguments)	at	a	single	point
in	time:

function	add(a:	number,	b:	number)	{

				return	a	+	b;

}

const	result	=	add(5,	5);	//	All	arguments	are	provided	at	the	same	time

console.log(result);	//	10

The	following	code	snippet	implements	the	preceding	function	using	a	higher-
order	function	to	allow	us	to	provide	the	required	arguments	at	different	points	in
time:

function	add(a:	number)	{

	return	(b:	number)	=>	{

	return	a	+	b;

	};

}

const	add5	=	add(5);	//	The	1st	argument	is	provided

const	result	=	add5(5);	//	The	2nd	argument	is	provided	later

console.log(result);	//	10

As	we	can	see	in	the	preceding	code	snippet,	the	first	and	second	arguments	are
provided	at	a	different	point	in	time.	However,	the	preceding	cannot	be
considered	an	example	of	functional	partial	application	because	the	two
functions	are	unary	functions	and	we	have	provided	one	argument	at	a	time.

We	can	also	write	a	function	that	allows	both	its	complete	and	partial
application:

see more please visit: https://homeofpdf.com

function	add(a:	number,	b?:	number)	{

				if	(b	!==	undefined)	{

								return	a	+	b;

				}	else	{

								return	(b2:	number)	=>	{

												return	a	+	b2;

								};

				}

}

const	result1	=	add(5,	5);	//	All	arguments	are

console.log(result1);	//	10

const	add5	=	add(5)	as	(b:	number)	=>	number;	//	The	1st	passed

const	result2	=	add5(5);	//	The	2nd	argument	is	passed	later

console.log(result2);	//	10

The	preceding	example	can	be	considered	an	example	of	partial	application
because	we	can	apply	a	function	with	all	its	arguments	(complete	application),	or
just	some	of	them	(partial	application).

Now	that	we	know	how	functional	partial	application	works,	let's	focus	on	why
it	is	useful.	In	the	preceding	section	on	function	composition,	we	learned	how	to
compose	two	functions,	named	trim	and	capitalize,	into	a	third	function,	named
trimAndCapitalize:

const	trim	=	(s:	string)	=>	s.trim();

const	capitalize	=	(s:	string)	=>	s.toUpperCase();

const	trimAndCapitalize	=	compose(trim,	capitalize);

Function	composition	works	very	well	with	unary	functions,	but	not	so	well	with
binary,	ternary,	or	variadic	functions.	We	are	going	to	declare	the	following
function	to	demonstrate	it:

const	replace	=	(s:	string,	f:	string,	r:	string)	=>	s.split(f).join(r);

The	preceding	function	can	be	used	to	replace	a	substring	in	a	given	string.
Unfortunately,	the	function	cannot	be	easily	used	with	the	compose	function
because	it	is	not	a	unary	function:

const	trimCapitalizeAndReplace	=	compose(trimAndCapitalize,	replace);	//	Error

However,	we	can	implement	the	function	in	a	way	that	allows	us	to	apply	the
function	partially:

const	replace	=	(f:	string,	r:	string)	=>	(s:	string)	=>	s.split(f).join(r);

We	can	then	use	the	compose	function	without	any	difficulties:

see more please visit: https://homeofpdf.com

const	trimCapitalizeAndReplace	=	compose(trimAndCapitalize,	replace("/",	"-"));

trimCapitalizeAndReplace("	13/feb/1989	");	//	"13-FEB-1989"

Thanks	to	our	knowledge	of	functional	partial	application,	we	can	easily	use	the
compose	function	without	having	to	worry	about	the	arity	of	the	functions.
However,	enabling	partial	application	requires	a	significant	amount	of	manual
boilerplate.	In	the	next	section,	we	will	learn	how	a	functional	programming
technique,	known	as	currying,	can	help	us	to	solve	this	problem.

see more please visit: https://homeofpdf.com

Currying
Currying	is	a	functional	programming	technique	that	allows	us	to	partially	apply
a	function	without	having	to	worry	about	the	way	in	which	we	implement	our
functions.	Currying	is	the	process	of	taking	a	function	that	takes	multiple
arguments	and	transforming	it	into	a	chain	of	unary	functions.	The	following
function	allows	us	to	transform	a	function,	fn,	which	takes	two	arguments,	a	and
b,	into	a	function	that	takes	one	argument,	a,	and	returns	another	function	that
takes	one	argument,	b:	function	curry2<T1,	T2,	T3>(fn:	(a:	T1,	b:	T2)	=>	T3)	{
return	(a:	T1)	=>	(b:	T2)	=>	fn(a,	b);
}

The	above	function	is	a	higher-order	function	that	allows	our	functions	to	be
partially	applied	while	keeping	their	implementation	agnostic	of	this	concern.

function	add(a:	number,	b:	number)	{

	return	a	+	b;

}

const	curriedAdd	=	curry2(add);

const	add5	=	curriedAdd(5);

const	addResult	=	add5(5);

console.log(addResult);	//	10

The	curry2	function	allows	us	to	transform	a	binary	function	into	two	unary
functions.	The	curry2	function	is	a	higher-order	function	and	can	be	used	with
any	binary	function.	For	example,	in	the	preceding	code	snippet,	we	passed	the
add	function	to	the	curry2	function,	but	the	following	example	passes	the	multiply
function	to	the	curry2	function	instead:	function	multiply(a:	number,	b:	number)	{
return	a	*	b;
}

const	curriedMultiply	=	curry2(multiply);
const	multiplyBy5	=	curriedMultiply(5);
const	multiplyResult	=	multiplyBy5(5);
console.log(multiplyResult);	//	25

In	the	preceding	section	on	functional	partial	application,	we	learned	how	to	use
partial	application	to	use	compose	with	functions	that	are	not	unary.	We	declared

see more please visit: https://homeofpdf.com

the	following	function	named	replace	and	then	passed	it	to	the	compose	function:

const	replace	=	(f:	string,	r:	string)	=>	(s:	string)	=>	s.split(f).join(r);

const	trimCapitalizeAndReplace	=	compose(

				trimAndCapitalize,

				replace("/",	"-")

);

We	can	declare	a	function	named	curry3,	which	transforms	a	ternary	function	into
a	chain	of	three	unary	functions:

function	curry3<T1,	T2,	T3,	T4>(fn:	(a:	T1,	b:	T2,	c:	T3)	=>	T4)	{

				return	(a:	T1)	=>	(b:	T2)	=>	(c:	T3)	=>	fn(a,	b,	c);

}

We	can	then	use	the	curry3	function	to	rewrite	the	replace	function	in	a	way	that	is
agnostic	of	the	functional	partial	application	implementation	details:

const	replace	=	(s:	string,	f:	string,	r:	string)	=>	s.split(f).join(r);

const	curriedReplace	=	curry3(replace);

const	trimCapitalizeAndReplace	=	compose(

				trimAndCapitalize,

				curriedReplace("/")("-")

);

Please	note	that	the	entire	example	is	included	in	the	companion	source	code.

see more please visit: https://homeofpdf.com

const	replace	=	(s:	string,	f:	string,	r:	string)	=>	s.split(f).join(r);
const
replaceForwardSlash	=	replace.bind(replace,	"/");
const
replaceForwardSlashWithDash	=
replaceForwardSlash.bind(replaceForwardSlash,	"-");

replaceForwardSlashWithDash("13/feb/1989");

const	compose	=	<T1,	T2,	T3>(f:	(x:	T2)	=>	T3,	g:	(x:	T1)	=>	T2)	=>	(x:	T1)
=>	f(g(x));
const	trim	=	(s:	string)	=>	s.trim();
const	capitalize	=	(s:
string)	=>	s.toUpperCase();
const	trimAndCapitalize	=	compose(trim,
capitalize);
const	replace	=	(s:	string,	f:	string,	r:	string)	=>	s.split(f).join(r);

const	replaceForwardSlashWithDash	=	replace.bind(replace,	"/",	"-");

const	trimCapitalizeAndReplace	=	compose(trimAndCapitalize,
replaceForwardSlashWithDash);
const	result	=	trimCapitalizeAndReplace("
13/feb/1989	");
console.log(result);	//	"13-FEB-1989"

The	strictBindCallApply	compilation	flag	ensures	that	the	return	as	a	result	of
invoking	the	bind	method	will	have	the	correct	type.	In	versions	of	TypeScript
prior	to	3.2,	the	return	of	the	bind	method	was	of	the	any	type.

see more please visit: https://homeofpdf.com

Pipes
A	pipe	is	a	function	or	operator	that	allows	us	to	pass	the	output	of	a	function	as
the	input	of	another.	JavaScript	and	TypeScript	don't	support	pipes	natively	(as
an	operator),	but	we	can	implement	our	pipes	using	the	following	function:

const	pipe	=	<T>(...fns:	Array<(arg:	T)	=>	T>)	=>

				(value:	T)	=>

								fns.reduce((acc,	fn)	=>	fn(acc),	value);

We	are	going	to	use	the	curry3,	trim,	capitalize,	and	replace	functions	that	we
declared	previously	in	this	chapter:

const	trim	=	(s:	string)	=>	s.trim();

const	capitalize	=	(s:	string)	=>	s.toUpperCase();

const	replace	=	curry3(

	(s:	string,	f:	string,	r:	string)	=>	s.split(f).join(r)

);

We	can	then	use	the	pipe	function	to	declare	a	new	function:

const	trimCapitalizeAndReplace	=	pipe(

				trim,

				capitalize,

				replace("/")("-")

);

trimCapitalizeAndReplace("	13/feb/1989	");	//	"13-FEB-1989"

The	pipe	function	ensures	that	the	output	of	the	trim	function	is	passed	to	the
capitalize	function.	The	return	of	the	capitalize	function	is	then	passed	to	the
replace	function,	which	has	already	been	applied	in	part.

There	is	an	official	proposal	to	add	a	new	operator	to	JavaScript	known	as	the
pipeline	operator	(|>).	This	operator	will	allow	us	to	use	pipes	natively	as
follows:

const	result	=	"	13/feb/1989	"

		|>	trim

		|>	capitalize

		|>	replace("/")("-");

Please	refer	to	the	pipeline	operator	proposal	(https://github.com/tc39/proposal-pipeline-operator)	to
learn	more.

see more please visit: https://homeofpdf.com

https://github.com/tc39/proposal-pipeline-operator

Please	note	that	the	entire	example	is	included	in	the	companion	source	code.

see more please visit: https://homeofpdf.com

Other	techniques
In	this	section,	we	are	going	to	take	a	look	at	other	functional	programming
techniques	that	are	not	directly	related	to		function	composition.

see more please visit: https://homeofpdf.com

Point-free	style
Point-free	style,	also	known	as	Tacit	programming,	is	a	programming	style	in
which	function	declarations	do	not	declare	the	arguments	(or	points)	on	which
they	operate.

The	following	code	snippet	declares	a	few	functions	that	are	used	to	determine
whether	a	person	is	eligible	to	vote	in	elections:

interface	Person	{

	age:	number;

	birthCountry:	string;

	naturalizationDate:	Date;

}

const	OUR_COUNTRY	=	"Ireland";

const	wasBornInCountry	=	(person:	Person)	=>	person.birthCountry	===	OUR_COUNTRY;

const	wasNaturalized	=	(person:	Person)	=>	Boolean(person.naturalizationDate);

const	isOver18	=	(person:	Person)	=>	person.age	>=	18;

const	isCitizen	=	(person:	Person)	=>	wasBornInCountry(person)	||	wasNaturalized(person);

const	isEligibleToVote	=	(person:	Person)	=>	isOver18(person)	&&	isCitizen(person);

isEligibleToVote({

				age:	27,

				birthCountry:	"Ireland",

				naturalizationDate:	new	Date(),

});

The	preceding	code	snippet	didn't	use	any	of	the	functional	programming
techniques	that	we	have	already	learned	in	this	chapter.	The	following	code
snippet	implements	an	alternative	solution	for	the	same	problem	using
techniques	such	as	partial	application.	This	code	snippet	declares	two	functions,
named	both	and	either,	that	can	be	used	to	determine	whether	a	variable	matches
the	requirements	specified	by	some	or	both	functions	provided	to	these
functions:

The	either	and	both	functions	are	simplified	implementations	of	some	real	algebraic	data	types.
We	will	learn	more	about	algebraic	data	types	and	category	theory	in	the	next	chapter.

const	either	=	<T1>(

	funcA:	(a:	T1)	=>	boolean,

	funcB:	(a:	T1)	=>	boolean

)	=>	(arg:	T1)	=>	funcA(arg)	||	funcB(arg);

const	both	=	<T1>(

	funcA:	(a:	T1)	=>	boolean,

	funcB:	(a:	T1)	=>	boolean

)	=>	(arg:	T1)	=>	funcA(arg)	&&	funcB(arg);

see more please visit: https://homeofpdf.com

interface	Person	{

	age:	number;

	birthCountry:	string;

	naturalizationDate:	Date;

}

const	OUR_COUNTRY	=	"Ireland";

const	wasBornInCountry	=	(person:	Person)	=>	person.birthCountry	===	OUR_COUNTRY;

const	wasNaturalized	=	(person:	Person)	=>	Boolean(person.naturalizationDate);

const	isOver18	=	(person:	Person)	=>	person.age	>=	18;

//	Point-free	style

const	isCitizen	=	either(wasBornInCountry,	wasNaturalized);

const	isEligibleToVote	=	both(isOver18,	isCitizen);

isEligibleToVote({

	age:	27,

	birthCountry:	"Ireland",

	naturalizationDate:	new	Date(),

});

As	we	can	see,	the	isCitizen	and	isElegibleToVote	functions	take	some	functions	as
arguments,	but	they	don't	mention	which	data	types	they	expect	as	arguments.
For	example,	instead	of	writing	the	following:

const	isCitizen	=	(person:	Person)	=>	wasBornInCountry(person)	||	wasNaturalized(person);

We	can	write	the	following:

const	isCitizen	=	either(wasBornInCountry,	wasNaturalized);

This	style,	in	which	we	avoid	referencing	function	arguments,	is	known	as	the
point-free	style,	and	it	has	a	number	of	advantages	over	the	more	conventional
function	declaration	style:

It	makes	programs	simpler	and	more	concise.	This	isn't	always	a	good
thing,	but	it	can	be.
It	makes	algorithms	easier	to	understand	by	focusing	only	on	the	functions
being	combined.	We	get	a	better	sense	of	what's	going	on	without	the	data
arguments	getting	in	the	way.
It	forces	us	to	think	more	about	how	data	is	used	than	about	which	data	is
being	used.
It	helps	us	think	about	our	functions	as	generic	building	blocks	that	can
work	with	different	kinds	of	data,	rather	than	thinking	about	them	as
operations	on	one	kind	of	data.

see more please visit: https://homeofpdf.com

Please	note	that	the	entire	example	is	included	in	the	companion	source	code.

see more please visit: https://homeofpdf.com

const	factorial	=	(n:	number):	number	=>	(n	===	0)	?	1	:	(n	*	factorial(n	-	1));

factorial(5);	//	120

In	general,	you	should	try	to	implement	functions	without	recursion.	Using
recursion	should	be	considered	carefully	because	the	JavaScript	runtime	is	not
very	efficient	at	handling	it	since,	in	a	recursive	function	call,	a	frame	is	added	to
the	stack	with	each	function	call.

see more please visit: https://homeofpdf.com

Pattern	matching
Pattern	matching	allows	you	to	match	a	value	(or	an	object)	against	some
patterns	to	select	a	branch	of	the	code.	In	functional	languages,	pattern	matching
can	be	used	to	match	on	standard	primitive	values	such	as	strings.	TypeScript
allows	us	to	implement	pattern	matching	using	literal	types	and	control	flow
analysis.

For	example,	we	can	define	three	types,	named	Circle,	Square,	and	Rectangle.	We
can	then	define	a	new	type,	named	Shape,	which	is	the	union	of	the	Circle,	Square,
and	Rectangle	types:

const	enum	ShapeKind	{

				circle	=	"circle",

				square	=	"square",

				rectangle	=	"rectangle",

}

type	Circle	=	{	kind:	ShapeKind.circle,	radius:	number	};

type	Square	=	{	kind:	ShapeKind.square,	size:	number	};

type	Rectangle	=	{	kind:	ShapeKind.rectangle,	w:	number,	h:	number	};

type	Shape	=	Circle	|	Square	|	Rectangle;

We	can	then	implement	functions	that	take	an	argument	of	the	Shape	type	and	use
pattern	matching	to	identify	whether	the	Shape	is	a	Circle,	a	Square,	or	a	Rectangle:

function	area(shape:	Shape)	{

				switch(shape.kind)	{

								case	ShapeKind.circle:

												return	shape.radius	**	2;

								case	ShapeKind.square:

												return	shape.size	**	2;

								case	ShapeKind.rectangle:

												return	shape.w	*	shape.h;

								default:

												throw	new	Error("Invalid	shape!");	

				}

}

Pattern	matching	was	impossible	in	versions	of	TypeScript	prior	to	2.0	because
control	flow	analysis	and	literal	types	were	not	available.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	learned	some	of	the	main	functional	programming
techniques	and	patterns,	including	functional	composition,	functional	partial
application,	and	currying.

In	the	next	chapter,	we	are	going	to	learn	about	category	theory.	We	will	learn
how	to	work	with	some	algebraic	data	types	and	how	they	can	help	make	our
TypeScript	applications	more	robust.

	

	

	

see more please visit: https://homeofpdf.com

Category	Theory
In	the	previous	chapter,	we	learned	about	functions,	asynchronous	programming,
and	the	runtime	and	functional	programming	principles	and	techniques,
including	pure	functions	and	functional	composition.

In	this	chapter,	we	are	going	to	focus	on	category	theory	and	algebraic	data
types.	We	are	going	to	learn	about	the	following	concepts:

Category	theory
Algebraic	data	types
Functors
Applicative
Maybe
Either
Monads

	

	

see more please visit: https://homeofpdf.com

Category	theory
Functional	programming	has	a	reputation	for	being	difficult	to	learn	and
understand	due	to	its	mathematical	background.	Functional	programming
languages	and	design	patterns	are	influenced	by	concepts	that	originated	in
different	mathematical	fields.	However,	we	can	highlight	category	theory	as
one	of	the	most	significant	influences.	We	can	think	about	category	theory	as	an
alternative	to	set	theory.	It	defines	the	theory	behind	a	series	of	data	structures	or
objects	known	as	algebraic	data	types.

	

There	are	many	algebraic	data	types,	and	understanding	all	the	properties	and
rules	that	they	must	implement	requires	a	significant	amount	of	time	and	effort.
The	following	diagram	illustrates	the	relationships	between	some	of	the	most
common	algebraic	data	types:

The	arrows	in	the	diagram	indicate	that	a	given	algebraic	data	type	must
implement	the	specification	of	some	other	algebraic	data	types.	For	example,	the
Monad	type	must	implement	the	specifications	of	the	Applicative	and	Chain
types.

The	open	source	project,	fantasy-land,	declares	a	specification	for	some	of	these
algebraic	data	types.	The	open	source	project,	ramda-fantasy,	implements	these
specifications	in	a	way	that	is	compatible	with	Ramda,	which	is	a	popular
functional	programming	library	that	we	will	explore	later	in	this	book.

see more please visit: https://homeofpdf.com

The	algebraic	data	type	specifications	can	be	implemented	in	many	ways.	For
example,	the	Functor	specification	can	be	implemented	by	a	Maybe	or	an	Either	data
type.	Both	types	implement	the	Functor	specification,	but	can	also	implement
other	specifications,	such	as	the	Monad	or	the	Applicative	specification.

The	following	table	describes	which	specifications	(listed	in	the	top	row)	are
implemented	by	one	of	the	algebraic	data	type	implementations	(left	row)	in	the
fantasy-ramda	project:

Name Setoid Semigroup Functor Applicative Monad Foldable

Either ✘ ✘
Future ✘ ✘ ✘
Identity ✘ ✘
IO ✘ ✘ ✘

Maybe

Reader ✘ ✘ ✘
Tuple ✘ ✘ ✘
State ✘ ✘ ✘

	

Understanding	the	field	of	category	theory	and	all	these	data	types	and
specifications	is	outside	the	scope	of	this	book.	However,	in	this	chapter,	we	are
going	to	learn	the	basics	regarding	two	of	the	most	common	algebraic	data
types:	Functors	and	Monads.

Please	refer	to	the	fantasy-land	project	at	https://github.com/fantasyland/fantasy-land	and	the	fantasy-
ramda	project	at	https://github.com/ramda/ramda-fantasy	to	learn	more	about	algebraic	data	types.

	

	

	

see more please visit: https://homeofpdf.com

https://github.com/fantasyland/fantasy-land
https://github.com/ramda/ramda-fantasy

Functors
The	Functor	type	has	two	main	characteristics:

It	holds	a	value
It	implements	a	method	named	map

The	following	code	snippet	declares	a	class	named	Container.	This	class	can	be
considered	a	Functor:

class	Container<T>	{

				private	_value:	T;

				public	constructor(val:	T)	{

								this._value	=	val;

				}

				public	map<TMap>(fn:	(val:	T)	=>	TMap)	{

								return	new	Container<TMap>(fn(this._value));

				}

}

We	can	use	the	container	as	follows:

const	double	=	(x:	number)	=>	x	+	x;

const	container	=	new	Container(3);

const	container2	=	container.map(double);

console.log(container2);	//	{	_value:	6	}

	

	

At	this	point,	you	may	think	that	the	Functor	type	is	not	very	useful	because	we
have	implemented	the	most	basic	version	possible.	The	next	two	sections
implement	two	Functors	known	as	Maybe	and	Either.	These	two	Functors	are	much
more	useful	and	will	demonstrate	that	Functors	are	a	powerful	tool.	However,
before	we	can	implement	the	Maybe	and	Either	types,	we	need	to	learn	about	the
Applicative	type.

see more please visit: https://homeofpdf.com

Applicative
An	Applicative	is	a	Functor	that	implements	a	method	named	of.	However,	an
Applicative	is	not	just	a	Functor	type;	it	is	also	an	Apply	type.	For	a	type	to	be	an
implementation	of	Apply,	it	must	implement	a	method	named	ap	that	takes	a
Functor	that	wraps	a	function	as	an	argument.

The	following	code	snippet	implements	an	Applicative	and,	as	a	result,	it	has	an
of,	a	map,	and	an	ap	method:

class	Container<T>	{

				public	static	of<TVal>(val:	TVal)	{

								return	new	Container(val);

				}

				private	_value!:	T;

				public	constructor(val:	T)	{

								this._value	=	val;

				}

				public	map<TMap>(fn:	(val:	T)	=>	TMap)	{

								return	new	Container<TMap>(fn(this._value));

				}

				public	ap<TMap>(c:	Container<(val:	T)	=>	TMap>)	{

								return	c.map(fn	=>	this.map(fn));

				}

}

We	can	use	the	Applicative	to	wrap	a	number	and	a	function	as	follows:

const	double	=	(x:	number)	=>	x	+	x;

const	numberContainer	=	Container.of(3);

const	functionContainer	=	Container.of(double);

We	can	use	the	map	method	to	map	the	value	wrapped	by	the	Functor	using	a
mapping	function:

numberContainer.map(double);	//	Returns	Container<number>	with	value	6

Alternatively,	we	can	use	the	ap	function	to	perform	the	same	operation	using	a
Functor	that	wraps	a	function	instead	of	a	function:

numberContainer.ap(functionContainer);	//	Container<number>	with	value	6

see more please visit: https://homeofpdf.com

Please	note	that	the	entire	example	is	included	in	the	companion	source	code.

see more please visit: https://homeofpdf.com

Maybe
The	following	Maybe	data	type	is	a	Functor	and	an	Applicative,	which	means	that	it
contains	a	value	and	implements	the	map	method.	The	main	difference	with	the
preceding	implementation	of	Functor	is	that	the	value	contained	is	optional:

class	MayBe<T>	{

				public	static	of<TVal>(val?:	TVal)	{

								return	new	MayBe(val);

				}

				private	_value!:	T;

				public	constructor(val?:	T)	{

								if	(val)	{

												this._value	=	val;

								}

				}

				public	isNothing()	{

								return	(this._value	===	null	||	this._value	===	undefined);

				}

				public	map<TMap>(fn:	(val:	T)	=>	TMap)	{

								if	(this.isNothing())	{

												return	new	MayBe<TMap>();

								}	else	{

												return	new	MayBe<TMap>(fn(this._value));

								}

				}

				public	ap<TMap>(c:	MayBe<(val:	T)	=>	TMap>)	{

								return	c.map(fn	=>	this.map(fn));

				}

}

As	we	can	see	in	the	preceding	implementation	of	the	map	method,	the	mapping
function	is	only	applied	if	the	Maybe	data	type	contains	a	value.

To	demonstrate	how	to	use	the	Maybe	type	and	why	it	is	useful,	we	are	going	to
declare	a	function	to	fetch	the	latest	TypeScript	news	from	www.reddit.com,	as
follows:

interface	New	{

				subreddit:	string;

				id:	string;

				title:	string;

				score:	number;

				over_18:	boolean;

see more please visit: https://homeofpdf.com

http://www.reddit.com

				url:	string;

				author:	string;

				ups:	number;

				num_comments:	number;

				created_utc:	number;

}

interface	Response	{

				kind:	string;

				data:	{

								modhash:	string;

								whitelist_status:	boolean|null;

								children:	Array<{	kind:	string,	data:	New	}>;

								after:	string|null;

								before:	string|null;

				};

}

async	function	fetchNews()	{

				return	new	Promise<MayBe<Response>>((resolve,	reject)	=>	{

								const	url	=	"https://www.reddit.com/r/typescript/new.json";

								fetch(url)

												.then((response)	=>	{

																return	response.json();

												}).then((json)	=>	{

																resolve(new	MayBe(json));

												}).catch(()	=>	{

																resolve(new	MayBe());

												});

				});

}

The	preceding	code	snippet	uses	the	fetch	API	to	send	an	HTTP	request.	This	is
an	asynchronous	operation,	which	explains	why	the	snippet	creates	a	Promise
instance.	When	the	operations	are	completed	successfully,	the	response	is
returned	as	a	Maybe	instance	that	contains	a	value.	When	the	operations	are
completed	unsuccessfully,	an	empty	Maybe	instance	is	returned.

The	following	code	snippet	demonstrates	how	we	can	use	the	fetchNews	function:

(async	()	=>	{

				const	maybeOfResponse	=	await	fetchNews();

				const	maybeOfNews	=	maybeOfResponse

								.map(r	=>	r.data)

								.map(d	=>	d.children)

								.map(children	=>	children.map(c	=>	c.data));

				maybeOfNews.map((news)	=>	{

								news.forEach((n)	=>	console.log(`${n.title}	-	${n.url}`));

								return	news;

				});

})();

The	preceding	code	snippet	uses	the	fetchNews	function	to	fetch	a	list	of	posts

see more please visit: https://homeofpdf.com

concerning	TypeScript	from	Reddit.	If	the	request	is	completed	successfully,	the
fetchNews	function	returns	the	HTTP	response	wrapped	in	a	MayBe	instance.	We
then	use	the	map	method	to	find	the	list	of	posts	within	the	response.	The	nice
thing	about	using	a	MayBe	instance	is	that	mapping	logic	is	only	executed	if	there
is	an	actual	response,	so	we	don't	need	to	worry	about	potential	null	or	undefined
errors.

	

Please	note	that	the	preceding	example	uses	some	browser	APIs,	which	means	that	we	need	to
add	dom	to	the	lib	field	in	our	tsconfig.json	file.	We	are	also	using	the	async	keyword,	which
requires	the	es6	in	lib.	This	will	prevent	compilation	errors	such	as	Cannot	find	name	fetch.

Please	note	that	the	entire	example	is	included	in	the	companion	source	code.

see more please visit: https://homeofpdf.com

Either
The	Either	algebraic	data	type	is	the	union	of	the	Just	and	Nothing	types:

type	Either<T1,	T2>	=	Just<T1>	|	Nothing<T2>;

The	just	type	is	a	Functor	used	to	represent	a	non-nullable	value:

class	Nothing<T>	{

				public	static	of<TVal>(val?:	TVal)	{

								return	new	Nothing(val);

				}

				private	_value:	T|undefined;

				public	constructor(val?:	T)	{

								this._value	=	val;

				}

				public	map<TMap>(fn:	(val:	T)	=>	TMap)	{

								if	(this._value	!==	undefined)	{

												return	new	Nothing<TMap>(fn(this._value));

								}	else	{

												return	new	Nothing<TMap>(this._value	as	any);

								}

				}

}

	

	

The	Nothing	type	represents	the	lack	of	a	value:

class	Just<T>	{

				public	static	of<TVal>(val:	TVal)	{

								return	new	Just(val);

				}

				private	_value:	T;

				public	constructor(val:	T)	{

								this._value	=	val;

				}

				public	map<TMap>(fn:	(val:	T)	=>	TMap)	{

								return	new	Just<TMap>(fn(this._value));

				}

see more please visit: https://homeofpdf.com

}

The	following	code	snippet	is	an	implementation	of	the	fetchNews	function	that	we
declared	in	the	preceding	section.	The	main	difference	this	time	is	that	we	will
return	an	instance	of	Just	if	the	HTTP	request	is	completed	successfully,	and	an
instance	of	Nothing	if	the	HTTP	request	is	not	completed	successfully:

interface	New	{

				subreddit:	string;

				id:	string;

				title:	string;

				score:	number;

				over_18:	boolean;

				url:	string;

				author:	string;

				ups:	number;

				num_comments:	number;

				created_utc:	number;

}

interface	Response	{

				kind:	string;

				data:	{

								modhash:	string;

								whitelist_status:	boolean|null;

								children:	Array<{	kind:	string,	data:	New	}>;

								after:	string|null;

								before:	string|null;

				};

}

async	function	fetchNews()	{

				return	new	Promise<Either<Response,	Error>>((resolve,	reject)	=>	{

								const	url	=	"https://www.reddit.com/r/typescript/new.json";

								fetch(url)

												.then((response)	=>	{

																return	response.json();

												}).then((json)	=>	{

																resolve(new	Just(json));

												}).catch((e)	=>	{

																resolve(new	Nothing(e));

												});

				});

}

If	we	try	to	use	map	on	an	Either	instance,	we	will	get	a	compilation	error:

(async	()	=>	{

				const	maybeOfResponse	=	await	fetchNews();

				maybeOfResponse.map(r	=>	r.message);

				//	Error:

				//	Cannot	invoke	an	expression	whose	type	lacks	a	call	signature.

				//	Type

				//	(<TMap>(fn:	(val:	Response)	=>	TMap)	=>	Just<TMap>)	|

see more please visit: https://homeofpdf.com

				//	(<TMap>(fn:	(val:	Error)	=>	TMap)	=>	Nothin<TMap>'

				//	has	no	compatible	call	signatures.

})();

We	can	use	a	type	guard	to	ensure	that	we	are	accessing	a	Nothing	instance	when	a
request	fails,	and	a	Just	instance	when	a	request	is	completed	without	errors:

(async	()	=>	{

				const	maybeOfResponse	=	await	fetchNews();

				if	(maybeOfResponse	instanceof	Nothing)	{

								maybeOfResponse

												.map(r	=>	r.message)

												.map(msg	=>	{

																console.log(`Error:	${msg}`);

																return	msg;

												});

				}	else	{

								const	maybeOfNews	=	maybeOfResponse.map(r	=>	r.data)

												.map(d	=>	d.children)

												.map(children	=>	children.map(c	=>	c.data));

								maybeOfNews.map((news)	=>	{

												news.forEach((n)	=>	console.log(`${n.title}	-	${n.url}`));

												return	news;

								});

				}

})();

The	good	thing	about	using	Either	is	that	the	compiler	forces	us	to	use	a	type
guard.	This	means	that	using	Either	can	lead	to	increased	type	safety	when
dealing	with	potential	failures	in	I/O	operations	such	as	HTTP	requests.

Please	note	that	the	entire	example	is	included	in	the	companion	source	code.

see more please visit: https://homeofpdf.com

Monads
We	are	going	to	finish	our	introduction	to	algebraic	data	types	by	learning	about
monads.	A	Monad	is	a	Functor,	but	it	also	implements	the	Applicative	and	Chain
specifications.

We	can	transform	the	previously	declared	Maybe	data	type	into	a	Monad	by	adding
two	extra	methods	named	join	and	chain:

class	MayBe<T>	{

				public	static	of<TVal>(val?:	TVal)	{

								return	new	MayBe(val);

				}

				private	_value!:	T;

				public	constructor(val?:	T)	{

								if	(val)	{

												this._value	=	val;

								}

				}

				public	isNothing()	{

								return	(this._value	===	null	||	this._value	===	undefined);

				}

				public	map<TMap>(fn:	(val:	T)	=>	TMap)	{

								if	(this.isNothing())	{

												return	new	MayBe<TMap>();

								}	else	{

												return	new	MayBe<TMap>(fn(this._value));

								}

				}

				public	ap<TMap>(c:	MayBe<(val:	T)	=>	TMap>)	{

								return	c.map(fn	=>	this.map(fn));

				}

				public	join()	{

								return	this.isNothing()	?	Nothing.of(this._value)	:	this._value;

				}

				public	chain<TMap>(fn:	(val:	T)	=>	TMap)	{

								return	this.map(fn).join();

				}

}

The	Maybe	data	type	was	already	a	Functor	and	an	Applicative,	but	now	it	is	also	a
Monad.	The	following	code	snippet	showcases	how	we	can	use	it:

see more please visit: https://homeofpdf.com

let	maybeOfNumber	=	MayBe.of(5);

maybeOfNumber.map((a)	=>	a	*	2);

//	MayBe	{	value:	10	}

maybeOfNumber.join();

//	5

maybeOfNumber.chain((a)	=>	a	*	2);

//	10

let	maybeOfMaybeOfNumber	=	MayBe.of(MayBe.of(5));

//	MayBe	{	value:	MayBe	{	value:	5	}	}

maybeOfMaybeOfNumber.map((a)	=>	a.map(v	=>	v	*	2));

//	MayBe	{	value:	MayBe	{	value:	10	}	}

maybeOfMaybeOfNumber.join();

//	MayBe	{	value:	5	}

maybeOfMaybeOfNumber.chain((a)	=>	a.map(v	=>	v	*	2));

//	MayBe	{	value:	10	}

The	preceding	code	snippet	demonstrates	how	the	join	and	chain	methods	work.
As	you	can	see,	they	are	very	useful	when	we	have	a	Functor	of	a	Functor,	and	we
want	to	access	the	contained	value.	The	chain	method	is	just	a	one-step	shortcut
for	the	two	operations,	join	and	map.

Please	note	that	the	entire	example	is	included	in	the	companion	source	code.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	learned	about	a	number	of	algebraic	data	types,
including	the	Functor,	Nothing,	Just,	Maybe,	Either,	and	Monad	data	types.	We	have
learned	how	these	types	can	help	us	to	ensure	that	certain	errors	are	handled
correctly	by	our	code.

In	the	next	chapter,	we	are	going	to	learn	about	other	functional	programming
constructs	known	as	Optics,	as	well	as	two	new	powerful	techniques:	lazy
evaluation	and	immutability.

	

	

	

see more please visit: https://homeofpdf.com

Immutability,	Optics,	and	Laziness
In	the	preceding	chapters,	we	learned	the	most	fundamental	functional
programming	techniques	and	patterns,	including	some	of	the	most	commonly
known	algebraic	data	types.

In	this	chapter,	we	are	going	to	learn	about	a	number	of	additional	functional
programming	techniques	and	patterns,	including	the	following:

Immutability
Optics
Lenses
Prims
Lazy	evaluation

Once	more,	we	will	try	to	build	everything	from	scratch,	trying	to	avoid	the	use
of	third-party	libraries.	Our	goal	is	to	take	a	look	at	the	internal	implementation
of	some	of	these	techniques	and	patterns	so	we	can	fully	understand	how	they
work.	Let's	get	started!

	

	

	

see more please visit: https://homeofpdf.com

Immutability
In	this	section,	we	are	going	to	learn	about	immutable	data	structures.	An
immutable	data	structure	is	an	object	that	doesn't	allow	us	to	change	its	value.
The	easiest	way	to	implement	an	immutable	data	structure	in	TypeScript	is	to	use
classes	and	the	readonly	keyword:

class	Person	{

				public	readonly	name:	string;

				public	readonly	age:	number;

				public	constructor(name:	string,	age:	number)	{

								this.name	=	name;

								this.age	=	age;

				}

}

const	person	=	new	Person("Remo",	29);

person.age	=	30;	//	Error

person.name	=	"Remo	Jansen";	//	Error

The	preceding	code	snippet	declares	a	class	named	Person.	The	class	has	two
public	properties,	named	name	and	age.	These	two	properties	have	been	flagged	as
readonly.	As	we	can	see	in	the	code	snippet,	when	we	try	to	update	the	values	of
the	class	properties,	a	compilation	error	is	thrown.

The	readonly	properties	can	make	our	code	more	secure	because	it	protects	us
from	state	mutations.	For	example,	if	we	pass	some	immutable	objects	to	a
function	as	its	arguments,	the	function	will	not	be	able	to	mutate	the	original
objects.	This	means	that	our	function	will	be	more	likely	to	be	a	pure	function.
However,	not	everything	is	good	about	immutable	objects.	Working	with
immutable	objects	can	sometimes	feel	very	tedious	and	verbose,	particularly
when	we	wish	to	generate	a	new	state.	Let's	take	a	look	at	an	example:

class	Street	{

				public	readonly	num:	number;

				public	readonly	name:	string;

				public	constructor(num:	number,	name:	string)	{

								this.num	=	num;

								this.name	=	name;

				}

see more please visit: https://homeofpdf.com

}

class	Address	{

				public	readonly	city:	string;

				public	readonly	street:	Street;

				public	constructor(city:	string,	street:	Street)	{

								this.city	=	city;

								this.street	=	street;

				}

}

class	Company	{

				public	readonly	name:	string;

				public	readonly	addresses:	Address[];

				public	constructor(name:	string,	addresses:	Address[])	{

								this.name	=	name;

								this.addresses	=	addresses;

				}

}

The	preceding	code	snippet	declares	three	classes	named	Street,	Address,	and
Company.	All	the	properties	in	the	three	classes	are	readonly,	which	means	that	the
classes	are	immutable.	We	can	create	a	new	instance	of	the	Company	class	as
follows:

const	company1	=	new	Company(

			"Facebook",

			[

							new	Address(

											"London",

											new	Street(1,	"rathbone	square")

),

							new	Address(

											"Dublin",

											new	Street(5,	"grand	canal	square")

)

]

);

When	we	say	that	an	object	is	immutable,	it	means	that	we	cannot	change	the
original	object,	but	it	doesn't	mean	that	we	don't	want	to	create	derivative
versions	of	it.	For	example,	if	we	try	to	create	a	new	version	of	a	Company	by
transforming	its	street	name	into	upper	case,	we	will	get	an	error,	as	shown	in	the
following	code	snippet:

company1.addresses	=	company1.addresses.map(a	=>	R.toUpper(a.street.name));	//	Error

However,	we	might	need	to	generate	a	new	version	with	an	uppercase	street

see more please visit: https://homeofpdf.com

name.	We	can	generate	an	updated	version	of	the	Company	instance	by	creating	a
new	Company	instance.	To	create	a	new	copy,	we	need	to	copy	all	the	properties
from	the	original	instance	into	a	new	instance	and	use	new	values	for	the
properties	that	we	wish	to	mutate:

const	company2	=	new	Company(

			company1.name,

			company1.addresses.map((a)	=>

							new	Address(

											a.city,

											new	Street(

															a.street.num,

															R.toUpper(a.street.name)

)

)

)

);

Immutable	data	structures	can	help	us	to	implement	pure	functions	and	make	our
code	free	of	side	effects.	Mutating	external	variables	is	one	of	the	most	common
causes	of	side	effects,	and	using	immutable	data	structures	can	help	us	to	prevent
such	a	mutation.

Please	note	that	you	can	refer	to	Chapter	1,	Functional	Programming	Fundamentals,	to	learn
more	about	side	effects.

However,	as	we	can	see	in	the	previous	code	snippet,	immutable	data	structures
also	have	a	negative	side:	they	can	lead	to	verbose	and	tedious	code.	The	good
news	is	that	the	minds	behind	the	functional	programming	paradigm	have	found
a	solution	to	this	problem	known	as	optics.	We	are	going	to	learn	about	optics	in
the	following	section.

see more please visit: https://homeofpdf.com

Optics
Optics	is	a	functional	programming	concept	that	can	help	us	to	reduce	the
amount	of	code	that	we	need	to	write	and	make	operations	more	readable.	The
benefits	of	using	optics	are	particularly	noticeable	when	we	are	working	with
immutable	data	structures.	All	optics	are	a	way	to	get	and	set	properties	in	an
object.	In	fact,	we	can	think	about	optics	as	an	alternative	to	getters	and	setters	in
object-oriented	programming.

Optics	can	be	categorized	into	two	main	groups—lenses	and	prisms.	As	we
learned	in	Chapter	7,	Category	Theory,	algebraic	data	types	can	be	defined	in
terms	of	sum	and	product	types.	A	lens	is	used	to	work	with	product	types	(for
example,	tuples	and	objects)	and	a	prism	is	used	to	work	with	sum	types	(for
example,	discriminated	unions).	During	the	remainder	of	this	section,	we	are
going	to	focus	on	the	use	of	lenses.

	

	

see more please visit: https://homeofpdf.com

Lenses
A	lens	is	just	a	pair	of	functions	that	allow	us	to	get	and	set	a	value	in	an	object.
The	interface	of	a	lens	could	be	declared	as	follows:

interface	Lens<T1,	T2>	{

				get(o:	T1):	T2;

				set(o:	T2,	v:	T1):	T1;

}

As	we	can	see	in	the	previous	code	snippet,	the	lens	generic	interface	declares
two	methods.	The	get	method	can	be	used	to	get	the	value	of	a	property	of	type
T2	in	an	object	of	type	T1.	The	set	method	can	be	used	for	the	value	of	a	property
with	type	T2	in	an	object	of	type	T1.	The	following	code	snippet	implements	the
Lens	interface:

const	streetLens:	Lens<Address,	Street>	=	{

				get:	(o:	Address)	=>	o.street,

				set:	(v:	Street,	o:	Address)	=>	new	Address(o.city,	v)

};

The	preceding	implementation	of	the	Lens	interface	is	named	streetLens	and	it
allows	us	to	set	the	value	of	a	property	with	the	Street	type	in	an	object	of	type
Object.	We	can	use	the	streetLens	object	to	get	the	Street	instance	in	an	Address
instance:

const	address	=	new	Address(

				"London",

				new	Street(1,	"rathbone	square")

);

const	street	=	streetLens.get(address);

We	can	also	use	the	Lens	implementation	to	set	the	Street	instance	in	the	Address
instance:

const	address2	=	streetLens.set(

				new	Street(

								address.street.num,

								R.toUpper(address.street.name)

),

				address

);

It	is	important	to	note	that	the	set	method	updates	the	Street	instance	and	returns

see more please visit: https://homeofpdf.com

a	new	Address	instance,	as	opposed	to	mutating	the	original	Address	instance.	Now
that	we	know	the	basics	of	how	lenses	work,	we	are	going	to	take	a	look	at	some
of	the	properties.

	

	

One	of	the	main	characteristics	of	lenses	is	that	they	can	be	composed.	As	we
learned	in	the	preceding	chapters,	function	composition	is	one	of	the	main
techniques	in	functional	programming,	and	lenses	are	just	functions,	so	they	can
be	composed	in	a	very	similar	way.	The	following	code	snippet	declares	a
higher-order	function	that	allows	us	to	compose	two	lenses:

function	composeLens<A,	B,	C>(

				ab:	Lens<A,	B>,

				bc:	Lens<B,	C>

):	Lens<A,	C>	{

				return	{

								get:	(a:	A)	=>	bc.get(ab.get(a)),

								set:	(c:	C,	a:	A)	=>	ab.set(bc.set(c,	ab.get(a)),	a)

				};

}

Now	that	we	have	declared	a	higher-order	function	that	allows	us	to	compose
lenses,	we	are	going	to	compose	two	lenses	named	streetLens	and	nameLens:

const	streetLens:	Lens<Address,	Street>	=	{

				get:	(o:	Address)	=>	o.street,

				set:	(v:	Street,	o:	Address)	=>	new	Address(o.city,	v)

};

const	nameLens:	Lens<Street,	string>	=	{

				get:	(o:	Street)	=>	o.name,

				set:	(v:	string,	o:	Street)	=>	new	Street(o.num,	v)

};

const	streetNameLens	=	composeLens(streetLens,	nameLens);

The	return	of	the	composeLens	function	creates	a	new	lens	named	streetName.	The
new	lens	can	be	used	to	get	the	name	of	a	Street	instance	within	an	Address
instance:

const	address	=	new	Address(

				"London",

				new	Street(1,	"rathbone	square")

);

const	streetName	=	streetNameLens.get(address);

see more please visit: https://homeofpdf.com

The	lens	can	also	be	used	to	create	a	new	Address	instance	with	an	updated	Street
name:

const	address2	=	streetNameLens.set(R.toUpper(address.street.name),	address);

	

Many	functional	programming	libraries	also	implement	a	function	that	allows	us
to	map	a	given	property	in	an	object	to	a	new	value	using	a	lens.	The	function	is
sometimes	named	over,	but	we	are	going	to	name	it	overLens	to	be	clearer:

function	overLens<S,	A>(

				lens:	Lens<S,	A>,

				func:	(a:	A)	=>	A,

				s:	S

):	S	{

				return	lens.set(func(lens.get(s)),	s)

}

The	preceding	function	takes	a	lens	as	its	first	argument,	a	mapping	function	as
its	second	argument,	and	an	object	as	its	third	argument.	The	function	uses	the
lens	to	focus	and	update	one	of	the	properties	of	the	objects	using	the	mapping
function:

const	address	=	new	Address(

				"London",

				new	Street(1,	"rathbone	square")

);

const	address2	=	overLens(streetNameLens,	R.toUpper,	address);

As	you	can	see,	generating	new	versions	of	immutable	objects	using	lenses	can
be	much	less	verbose	and	tedious	than	using	standard	property	accessors	and
class	constructors.	Now	that	we	know	the	basics	about	lenses,	we	are	going	to
implement	some	lenses	again.	The	previous	implementation	was	simplified	to
facilitate	understanding.	This	time	however,	we	are	going	to	implement	lenses	in
a	way	that	is	closer	to	the	implementation	of	some	popular	libraries	such	as
Ramda.

This	time,	we	are	going	to	declare	two	functions	that	are	used	as	a	getter	and	a
setter.	The	function	that	is	used	as	a	getter	is	going	to	implement	an	interface
named	Prop.	On	the	other	hand,	the	function	used	as	a	setter	is	going	to
implement	an	interface	named	Assoc.	The	signature	of	the	Prop	and	Assoc	interfaces
appears	as	follows:

see more please visit: https://homeofpdf.com

type	Prop<T,	K	extends	keyof	T>	=	(o:	T)	=>	T[K];

type	Assoc<T,	K	extends	keyof	T>	=	(v:	T[K],	o:	T)	=>	T;

	

The	following	code	snippet	declares	functions	that	implement	the	Prop	and	Assoc
interfaces.	Both	implementations	are	used	to	access	a	property	named	street	in	an
object	of	type	Address:

const	propStreet:	Prop<Address,	"street">	=	(o:	Address)	=>	o.street;

const	assocStreet:	Assoc<Address,	"street">	=	(v:	Address["street"],	o:	Address)	=>	{

				return	new	Address(o.city,	v);

};

One	of	the	main	differences	in	the	new	implementation	is	that	we	are	going	to
declare	a	higher-order	function	named	lens,	and	we	are	going	to	use	it	to	generate
a	lens	instance.	The	lens	function	takes	two	functions,	a	getter	and	a	setter,	which
implement	the	Prop	and	Assoc	interfaces	accordingly.	The	lens	function	then
returns	an	implementation	of	the	Lens	interface:

const	lens	=	<T1,	K	extends	keyof	T1>(

				getter:	Prop<T1,	K>,

				setter:	Assoc<T1,	K>,

):	Lens<T1,	T1[K]>	=>	{

				return	{

								get:	(obj:	T1)	=>	getter(obj),

								set:	(val:	T1[K],	obj:	T1)	=>	setter(val,	obj),

				};

}

At	this	point,	we	can	invoke	the	lens	function	using	the	getter	function,	propStreet,
and	the	setter	function,	assocStreet,	that	we	declared	previously:

const	streetLens	=	lens(propStreet,	assocStreet);

Another	significant	difference	is	that	the	new	implementation	uses	two	more
functions,	named	view	and	set,	as	the	getter	and	setter	respectively.	Both	the	view
and	set	functions	take	a	lens	instance:

const	view	=	<T1,	T2>(lens:	Lens<T1,	T2>,	obj:	T1)	=>	lens.get(obj);

const	set	=	<T1,	K	extends	keyof	T1>(

				lens:	Lens<T1,	T1[K]>,

				val:	T1[K],

				obj:	T1

)	=>	lens.set(val,	obj);

	

see more please visit: https://homeofpdf.com

The	preceding	functions	use	the	lens	get	and	set	methods	internally.	However,	we
will	use	the	view	and	set	functions	instead.	The	following	code	snippet
demonstrates	how	to	use	the	view	function	to	get	the	Street	instance	within	an
Address	instance:

const	address	=	new	Address(

				"London",

				new	Street(1,	"rathbone	square")

);

const	street	=	view(streetLens,	address);

The	following	code	snippet	demonstrates	how	to	use	the	set	function	to	set	the
value	of	the	Street	instance	within	an	Address	instance:

const	address2	=	set(

				streetLens,

				new	Street(

								address.street.num,

								R.toUpper(address.street.name)

),

				address

);

In	this	section,	we	have	learned	the	basics	regarding	lenses.	In	the	following
section,	we	are	going	to	learn	about	another	kind	of	functional	optic,	known	as
prisms.

see more please visit: https://homeofpdf.com

Prisms
Prisms	are	almost	identical	to	lenses.	We	can	think	about	a	prism	as	a	kind	of
lens	that	allows	us	to	get	and	set	an	optional	property	in	an	object.	The	most
significant	difference	between	lenses	and	prisms	is	that	prisms	can	work	with
optional	types.

The	following	code	snippet	declares	the	Prism	interface.	As	we	can	see,	the	Prism
interface	is	very	similar	to	the	Lens	interface.	However,	the	get	method	returns	an
optional	type,	Maybe<T>:

type	Maybe<T>	=	T	|	null;

interface	Prism<T1,	T2>	{

				get(o:	T1):	Maybe<T2>,

				set(a:	T2,	o:	T1):	T1;

}

Just	like	lenses,	prisms	can	be	composed.	The	following	code	snippet	declares	a
higher-order	function	that	allows	us	to	compose	two	prisms:

function	composePrism<A,	B,	C>(ab:	Prism<A,	B>,	bc:	Prism<B,	C>):	Prism<A,	C>	{

				return	{

								get:	(a:	A)	=>	{

												const	b	=	ab.get(a)

												return	b	==	null	?	null	:	bc.get(b)

								},

								set:	(c:	C,	a:	A)	=>	{

												const	b	=	ab.get(a)

												return	b	==	null	?	a	:	ab.set(bc.set(c,	b),	a)

								}

				}

}

The	preceding	function	takes	two	prisms,	ab	with	type	Prism<A,	B>,	and	bc	with
type	Prism<B,	C>,	and	returns	the	composition	of	both	prisms	with	type	Prism<A,	C>.

Prisms	also	allow	us	to	implement	a	function	that	allows	us	to	map	a	property
given	an	object	and	a	prism.	The	function	is	usually	named	over	in	real-world
libraries	but,	just	as	we	did	in	the	section	about	lenses,	we	are	going	to	name	it
overPrism	for	clarity:

function	overPrism<S,	A>(

				prism:	Prism<S,	A>,

				func:	(a:	A)	=>	A,

see more please visit: https://homeofpdf.com

				s:	S

):	S	{

				const	a	=	prism.get(s)

				return	a	?	prism.set(func(a),	s)	:	s

}

In	the	preceding	snippet,	we	have	declared	the	main	building	blocks	required	to
work	with	prisms,	including	the	Prism	interface	and	the	composePrism	and	overPrism
functions.	In	the	following	section,	we	are	going	to	demonstrate	how	to	use	a
prism	named	firstCharacterPrism	to	focus	on	the	first	character	of	an	optional	string.
The	code	snippet	also	declares	a	prism	to	access	the	street	property	in	an	Address
instance	and	the	name	property	in	a	Street	instance.

	

The	composePrism	is	then	used	to	compose	the	three	firstCharacterPrism,	streetPrism,
and	namePrism	prisms	into	a	new	prism	named	streetNameFirstCharater.	Finally,	the
overPrism	function	is	used	to	map	the	value	selected	by	streetNameFirstCharacter
using	the	R.toUpper	function.	The	result	is	a	new	instance	of	Address	that	contains	a
new	instance	of	Street	with	a	capitalized	name.	If	the	name	is	null,	the	new	Street
instance	will	contain	null	as	its	name:

const	firstCharacterPrism:	Prism<string,	string>	=	{

				get:	s	=>	s	?	s.substring(0,	1)	:	null,

				set:	(a,	s)	=>	s.length	?	a	+	s.substring(1)	:	""

}

const	streetPrism:	Prism<Address,	Street>	=	{

				get:	(o:	Address)	=>	o.street,

				set:	(v:	Street,	o:	Address)	=>	new	Address(o.city,	v)

};

const	namePrism:	Prism<Street,	string>	=	{

				get:	(o:	Street)	=>	o.name,

				set:	(v:	string,	o:	Street)	=>	new	Street(o.num,	v)

};

const	address	=	new	Address(

				"London",

				new	Street(1,	"rathbone	square")

);

const	streetNameFirstCharacterPrism	=	composePrism(

				composePrism(streetPrism,	namePrism),

				firstCharacterPrism

);

const	address2	=	overPrism(streetNameFirstCharacterPrism,	R.toUpper,	address);

Prisms	are	also	useful	when	we	want	to	work	with	other	kinds	of	optional	types,
such	as	discriminated	unions	like	the	Either	type:

see more please visit: https://homeofpdf.com

type	Either<T1,	T2>	=	T1	|	T2;

type	Domicile	=	Either<

				{	type:	"office",	address:	Address	},

				{	type:	"personal",	address:	string	}

>;

const	addressPrism:	Prism<Domicile,	Address>	=	{

				get:	d	=>	d.type	===	"office"	?	d.address	:	null,

				set:	(address,	d)	=>	d.type	===	"office"	?	{	type:	"office",	address	}	:	d

}

The	preceding	code	snippet	declares	an	optional	type	named	Either	and	a	type
named	Domicile,	which	uses	the	Either	type	to	declare	the	union	of	two	types.	The
code	snippet	also	declares	a	prism	named	addressPrism	that	allows	us	to	get	or	set
the	property	address	in	an	object	of	type	Domicile.	The	property	address	can	either
be	a	string	or	an	Address	instance,	and	the	addressPrism	can	handle	both	cases,	as
demonstrated	by	the	following	code	snippet:

const	address	=	new	Address(

				"London",

				new	Street(1,	"rathbone	square")

);

const	domicile1:	Domicile	=	{	type:	"office",	address:	address	};

const	domicile2:	Domicile	=	{	type:	"personal",	address:	"23	high	street"	};

const	address1	=	addressPrism.get(domicile1);

const	address2	=	addressPrism.get(domicile2);

At	this	point,	we	should	understand	the	main	characteristics	of	both	lenses	and
prisms.	In	this	chapter,	we	have	created	our	own	implementations	of	lenses	and
prisms	because	our	main	goal	was	to	understand	how	they	work.	However,	using
a	custom	implementation	is	not	recommended	for	professional	software
development	projects.	In	Chapter	10,	Real-World	Functional	Programming,	we
will	learn	how	to	use	production-ready	optics	with	Ramda.

In	the	following	section,	we	are	going	to	learn	about	lazy	evaluation.

see more please visit: https://homeofpdf.com

Laziness
Lazy	evaluation	is	a	technique	or	pattern	that	delays	the	evaluation	of	an
expression	until	its	value	is	needed.	We	are	going	to	take	a	look	at	an	example
that	doesn't	use	lazy	evaluation	first	so	that	we	can	compare	it	with	one	that	uses
lazy	evaluation	later.

	

	

The	following	code	snippet	declares	an	interface	named	Dog	and	an	array	of	Dog
that	contains	ten	items.	The	Dog	instances	have	two	properties,	named	size	and
name.	The	code	snippet	also	declares	two	functions,	named	isLarge	and	isOld.	The
isLarge	function	is	used	to	find	the	Dog	instances,	with	their	size	being	equal	to	"L".
The	isOld	function	is	used	to	find	the	Dog	instances	with	an	age	greater	than	5:

interface	Dog	{

			size:	"L"	|	"S";

			age:	number;

			name:	string;

}

const	dogs:	Dog[]	=	[

			{	size:	"S",	age:	4,	name:	"Alice"	},

			{	size:	"L",	age:	2,	name:	"Bob",	},

			{	size:	"S",	age:	7,	name:	"Carol"	},

			{	size:	"L",	age:	6,	name:	"Dan"	},

			{	size:	"L",	age:	2,	name:	"Eve"	},

			{	size:	"S",	age:	2,	name:	"Frank"	},

			{	size:	"S",	age:	1,	name:	"Grant"	},

			{	size:	"S",	age:	9,	name:	"Hans"	},

			{	size:	"L",	age:	8,	name:	"Inga"	},

			{	size:	"L",	age:	4,	name:	"Julia"	}

];

const	isLarge	=	(dog:	Dog)	=>	dog.size	===	"L";

const	isOld	=	(dog:	Dog)	=>	dog.age	>	5;

dogs.filter(isLarge).find(isOld);	//	Dan

The	preceding	code	snippet	uses	the	array	methods,	filter	and	find.	The	filter
method	iterates	all	the	elements	in	the	dogs	array.	The	result	of	filtering	all	the	Dog
instances	using	the	isLarge	function	is	a	new	array	with	five	elements	(all	the
elements	with	a	size	equal	to	"L").	We	then	use	the	find	method	to	search	a	Dog
instance	in	the	new	array	using	the	isOld	function.	The	find	method	iterates	two

see more please visit: https://homeofpdf.com

items	before	the	first	item	with	an	age	greater	than	5	is	found.	The	final	result	is
that	we	need	to	iterate	12	items	before	we	can	find	an	item	that	matches	both	the
isLarge	and	isOld	constraints.

Lazy	evaluation	is	a	technique	that	delays	the	execution	of	some	operations	until
they	can	no	longer	be	delayed.	Lazy	evaluation	can	sometimes	lead	to
performance	gains.

	

The	following	code	snippet	implements	a	function	named	filter	and	a	function
named	find.	Both	functions	are	the	equivalent	of	the	array	filter	and	find	methods
respectively.	However,	the	filter	function	uses	a	generator	(function*)	and	the	find
function	uses	a	for	...	of	statement,	which	is	used	to	iterate	the	items	returned	by
the	iterator	created	by	the	preceding	generator:

const	filter	=	<T>(f:	(item:	T)	=>	boolean)	=>	{

			return	function*	(arr:	T[])	{

							for	(const	item	of	arr)	{

											if	(f(item))	{

															yield	item;

											}

							}

			};

};

const	find	=	<T>(f:	(item:	T)	=>	boolean)	=>(arr:	IterableIterator<T>)	=>	{

			for	(const	item	of	arr)	{

							if	(f(item))	{

											return	item;

							}

			}

};

Please	remember	that	using	iterators	requires	the	compilation	setting	downlevelIteration	to	be
true	in	the	tsconfig.json	file.	Please	refer	to	Chapter	3,	Mastering	Asynchronous	Programming,	if
you	need	additional	help	with	generators.

The	code	snippet	uses	the	compose	function	from	Ramda	to	compose	the	return	of
find(isOld)	and	filter(isLarge).	The	result	is	a	new	function	named	findLargeOldDog.
We	can	use	this	function	to	find	the	Dog	instances	in	the	dogs	array	that	matches
both	the	isLarge	and	isOld	constraints:

const	findLargeOldDog	=	R.compose(find(isOld),	filter(isLarge));

findLargeOldDog(dogs);

	

see more please visit: https://homeofpdf.com

	

The	result	of	this	function	is	identical	to	the	result	of	the	example	that	didn't	use
lazy	evaluation.	However,	this	example	only	iterates	four	items	instead	of
twelve.	This	is	the	case	because	when	we	execute	the	filter	function,	filtering
doesn't	take	place.	We	delay	its	evaluation	by	returning	an	iterator.	The
evaluation	is	delayed	until	the	iterator's	next	method	is	invoked	by	the	for	...	of
statement.	The	find	function	iterates	one	item	at	a	time	and	invokes	both	the	isOld
and	isLarge	functions,	one	item	at	a	time.	When	the	iterator	returns	the	fourth
item,	it	matches	both	the	isLarge	and	isOld	constraints	and	no	more	items	need	to
be	iterated.	The	lazy	evaluated	version	is	therefore	much	more	efficient.

In	the	preceding	example,	we	have	used	generators	and	iterators	to	implement
lazy	evaluation,	but	this	is	not	the	only	way	to	implement	lazy	evaluation.	Lazy
evaluation	can	be	implemented	using	several	JavaScript	APIs,	such	as	proxies	or
promises.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	learned	how	we	can	leverage	functional	programming
techniques,	such	as	lazy	evaluation	and	immutability,	to	prevent	some	potential
issues.	We	have	also	learned	how	to	use	optics	to	be	able	to	work	with
immutable	objects	in	a	less	verbose	and	tedious	way.

In	the	next	chapter,	we	are	going	to	learn	about	Functional	Reactive
Programming	(FRP).	We	will	learn	what	reactive	programming	is	and	how	it	is
connected	to	functional	programming.

	

	

	

see more please visit: https://homeofpdf.com

Functional-Reactive	Programming
In	the	previous	chapters,	we	learned	about	the	functional	programming
paradigm.	We	explored	the	main	functional	programming	concepts,	techniques,
and	patterns.	In	this	chapter,	we	are	going	to	learn	about	the	functional-reactive
programming	paradigm,	including	the	following	topics:

Reactive	programming
Functional-reactive	programming
Streams
Observables
The	observer	pattern
The	iterator	pattern
Operators

We	are	going	to	learn	what	functional-reactive	programming	is	and	how	it	can
help	us	to	develop	applications	that	are	easier	to	extend	and	maintain.

	

	

	

see more please visit: https://homeofpdf.com

Reactive	programming
In	this	section,	we	are	going	to	learn	what	the	main	differences	are	between
functional	programming	and	reactive	programming	as	well	as	what	principal
benefits	of	reactive	programming.

see more please visit: https://homeofpdf.com

Functional	programming	versus
functional-reactive	programming
Functional	programming	and	reactive	programming	should	be	considered	as	two
different	paradigms.	Functional	programming	focuses	on	the	interpretation	of
functions	as	mathematical	functions—stateless	and	without	side	effects.	On	the
other	hand,	reactive	programming	focuses	on	the	propagation	of	changes	as
streams	of	events.	The	term	functional-reactive	programming	is	used	to	refer	to	a
superset	of	reactive	programming.	Functional-reactive	programming	tries	to	take
advantage	of	both	the	functional	and	reactive	programming	paradigms.	For
example,	in	functional-reactive	programming,	the	event	streams	can	be
composed,	we	are	encouraged	to	avoid	external	state	mutations,	and	many	of	the
functional	programming	principles	are	still	relevant.

	

	

	

see more please visit: https://homeofpdf.com

The	benefits	of	functional-reactive
programming
Functional-reactive	programming	is	highly	influenced	by	the	functional
programming	principles	and,	as	a	result,	many	of	the	benefits	of	functional
programming	are	also	shared	by	functional-reactive	programming.	Functional-
reactive	applications	are	easier	to	reason	about	because	they	tend	to	avoid	state
mutations	and	side	effects	and	promote	a	declarative	style.	They	are	particularly
well	suited	for	event-based	architectures	and	concurrent	systems.	Functional-
reactive	programming	is	also	considered	by	many	developers	a	programming
style	that	tends	to	be	scalable	because	it	follows	the	principle	of	composability.

	

	

	

see more please visit: https://homeofpdf.com

Working	with	observables
Reactive	programming	requires	us	to	change	the	way	that	we	think	about	events
in	an	application.	Reactive	programming	requires	us	to	think	about	events	as	a
stream	of	values.	For	example,	a	mouse	click	event	can	be	represented	as	a
stream	of	data.	Every	click	event	generates	a	new	value	in	the	data	stream.	In
reactive	programming,	we	can	use	the	stream	of	data	to	query	and	manipulate
the	values	in	the	stream.

We	are	going	to	use	the	Reactive	Extensions	Library	for	JavaScript	(RxJS).
RxJS	provides	us	with	an	implementation	of	the	observable	pattern,	as	well	as
many	operators	and	utilities	that	allow	us	to	manipulate	the	observables.	RxJS
also	includes	helpers	that	allow	us	to	create	observables	given	different	data
types.

We	can	install	RxJS	using	npm:	npm	install	rxjs

The	observable	pattern	is	also	known	as	the	observable	sequence	pattern,
which	is	the	result	of	putting	two	other	popular	patterns	together:	the	observer
and	the	iterator	patterns.	In	this	section,	we	are	going	to	learn	more	about	these
patterns	so	that	we	can	have	a	better	understanding	of	what	observables	are	and
how	they	work	internally.

see more please visit: https://homeofpdf.com

The	observer	pattern
In	an	implementation	of	the	observer	pattern,	we	can	have	many	known	listener
entities	that	subscribe	to	messages.	The	following	code	snippet	contains	a	very
basic	implementation	of	a	listener	in	the	observer	pattern:

class	Listener<T>	{

				public	update:	(message:	T)	=>	void;

				public	constructor(fn:	(message:	T)	=>	void)	{

								this.update	=	fn;

				}

}

A	Listener	has	a	method	named	update,	which	is	invoked	when	a	second	entity
known	as	the	Producer	generates	a	new	message.	A	Producer	instance	manages	a
number	of	Listener	instances.	A	message	can	be	generated	with	the	notify	method.
The	message	is	then	passed	to	all	the	subscribed	listeners.	The	following	code
snippet	contains	a	very	basic	implementation	of	a	producer	in	the	observer
pattern:

class	Producer<T>	{

				private	_listeners:	Listener<T>[]	=	[];

				public	add(listener:	Listener<T>)	{

								this._listeners.push(listener);

				}

				public	remove(listener:	Listener<T>)	{

								this._listeners	=	this._listeners.filter(

												l	=>	l	!==	listener

);

				}

				public	notify(message:	T)	{

								this._listeners.forEach(

												l	=>	l.update(message)

);

				}

}

The	following	code	snippet	declares	a	couple	of	Listener	instances	and	a	Producer
instance.	It	then	subscribes	both	listeners	to	the	Producer	messages	using	the	add
method.	Later,	we	use	the	notify	method	in	Producer	to	send	a	message.	The

see more please visit: https://homeofpdf.com

message	will	be	received	by	all	the	subscribed	listeners.	In	this	case,	both
listeners	will	receive	the	message:

const	listerner1	=	new	Listener(

				(msg:	string)	=>	console.log(`Listener	1:	${msg}`)

);

const	listerner2	=	new	Listener(

				(msg:	string)	=>	console.log(`Listener	2:	${msg}`)

);

const	notify	=	new	Producer<string>();

notify.add(listerner1);

notify.add(listerner2);

notify.notify("Hello	World!");

Now	that	we	have	learned	how	to	implement	the	observer	pattern,	we	are	going
to	focus	on	the	second	pattern	used	by	the	observable	sequence	pattern—the
iterator	pattern.

see more please visit: https://homeofpdf.com

The	iterator	pattern
To	understand	how	the	observable	sequence	pattern	works,	we	also	need	to
understand	the	iterator	pattern.	The	following	code	snippet	uses	a	generator	to
create	an	iterator	that	iterates	the	multiples	of	a	given	number	in	an	array.	Only
the	elements	in	the	array	that	are	multiples	of	a	given	number	are	iterated:

function*	iterateOnMultiples(arr:	number[],	divisor:	number)	{

				for	(let	item	of	arr)	{

								if	(item	%	divisor	===	0)	{

												yield	item;

								}

				}

}

To	get	an	instance	of	the	iterator,	we	only	need	to	invoke	the	function	and	pass
an	array	and	a	number	as	its	arguments.	The	function	returns	an	iterator	that	will
return	the	numbers	in	the	array	that	are	multiples	of	the	given	number:	3.	We	can
invoke	the	iterator's	next	method	to	get	the	next	element.	Each	element	has	a
property	named	done	and	a	property	named	value.	The	done	property	can	be	used	to
check	whether	there	are	more	items	to	be	iterated.	The	value	property	can	be	used
to	access	the	value	of	the	current	item:

const	iterator1	=	iterateOnMultiples([1,	2,	3,	4,	5,	6,	7,	8,	9,	10],	3);

const	iteratorResult1	=	iterator1.next();

console.log(iteratorResult1.value);

if	(iteratorResult1.done	===	false)	{

				const	iteratorResult2	=	iterator1.next();

				console.log(iteratorResult2.value);

}

We	can	also	iterate	all	the	items	in	an	iterator	using	a	for...of	statement,	as
opposed	to	accessing	the	done	property	by	hand:

const	iterator2	=	iterateOnMultiples([1,	2,	3,	4,	5,	6,	7,	8,	9,	10],	3);

for	(let	value	of	iterator2)	{

				console.log(value);

}

The	observer	and	the	iterator	pattern	can	be	very	useful	in	many	different

see more please visit: https://homeofpdf.com

scenarios.	We	can	combine	these	two	patterns	in	a	pattern	known	as	the
observable	sequence,	or	simply	observable.	An	observable	allows	us	to	iterate
and	be	notified	about	changes	in	a	sequence.	Now	that	we	understand	what	is	an
observable	is,	we	are	going	to	learn	how	we	can	create	instances	of	observables
with	RxJS.

see more please visit: https://homeofpdf.com

Creating	observables
Observables	are	streams	of	data,	and	this	explains	why	it	is	easy	to	imagine	that
we	can	represent	an	event	such	as	an	onClick	event	using	an	observable.	However,
the	use	cases	for	observables	are	much	more	diverse	than	that.	In	this	section,	we
are	going	to	explore	how	to	create	an	observable	given	different	types.

	

	

	

see more please visit: https://homeofpdf.com

Creating	observables	from	a	value
We	can	create	an	observable	given	a	value	using	the	of	function.	In	the	old
versions	of	RxJS,	the	function	of	was	a	static	method	of	the	Observable	class,
which	was	available	as	Observable.of.	This	should	remind	us	to	use	the	of	method
of	the	Applicative	type	in	category	theory	because	observables	take	some
inspiration	from	category	theory.	However,	in	RxJS	6.0,	the	of	method	is
available	as	a	standalone	factory	function:

import	{	of	}	from	"rxjs";

const	observable	=	of(1);

const	subscription	=	observable.subscribe(

				(value)	=>	console.log(value),

				(error:	any)	=>	console.log(error),

				()	=>	console.log("Done!")

);

subscription.unsubscribe();

The	preceding	code	snippet	declares	an	observable	with	one	unique	value	using
the	of	function.	The	code	snippet	also	showcases	how	we	can	subscribe	to	an
observable	using	the	subscribe	method.	The	subscribe	method	takes	three	function
arguments:

Item	handler:	Invoked	once	for	each	item	in	the	sequence.
Error	handler:	Invoked	if	there	is	an	error	in	the	sequence.	This	argument
is	optional.
Done	handler:	Invoked	when	there	are	no	more	items	in	the	sequence.	This
argument	is	optional.

The	following	diagram	is	known	as	a	marble	diagram,	and	is	used	to	represent
observables	in	a	visual	manner.	The	arrow	represents	the	time	and	the	circles	are
values.	In	this	case,	we	have	only	one	value:

As	we	can	see,	the	circle	also	has	a	small	vertical	line	in	the	middle.	This	line	is

see more please visit: https://homeofpdf.com

used	to	represent	the	last	element	in	an	observable.	In	this	case,	the	item	handler
in	the	subscription	will	only	be	invoked	once.

see more please visit: https://homeofpdf.com

Creating	observables	from	arrays
We	can	create	an	observable	given	an	existing	array	using	the	from	function:

import	{	from	}	from	"rxjs";

const	observable	=	from([10,	20,	30]);

const	subscription	=	observable.subscribe(

				(value)	=>	console.log(value),

				(error:	any)	=>	console.log(error),

				()	=>	console.log("Done!")

);

subscription.unsubscribe();

The	preceding	code	snippet	declares	an	observable	with	three	values	using	the
from	function.	The	code	snippet	also	showcases	how	we	can	subscribe	once	more.

The	following	marble	diagram	represents	the	preceding	example	in	a	visual
manner.	The	generated	observable	has	three	values	(10,	20,	and	30)	and	30	is	the
last	element	in	the	observable:

We	can	alternatively	use	the	interval	function	to	generate	an	array	with	a	given
number	of	elements:

import	{	interval	}	from	"rxjs";

const	observable	=	interval(10);

const	subscription	=	observable.subscribe(

				(value)	=>	console.log(value),

				(error:	any)	=>	console.log(error),

				()	=>	console.log("Done!")

);

subscription.unsubscribe();

The	preceding	code	snippet	declares	an	observable	with	ten	values	using	the
interval	function.	The	code	snippet	also	showcases	how	we	can	subscribe	once
more.	In	this	case,	the	item	handler	in	the	subscription	will	be	invoked	ten	times.

see more please visit: https://homeofpdf.com

The	following	marble	diagram	represents	the	preceding	example	in	a	visual
manner.	The	generating	observable	has	ten	values,	and	9	is	the	last	item
contained	by	it:

In	this	case,	the	item	handler	in	the	subscription	will	be	invoked	ten	times.

see more please visit: https://homeofpdf.com

Creating	observables	from	events
It	is	also	possible	to	create	an	observable	using	an	event	as	the	source	of	the
items	in	the	stream.	We	can	do	this	using	the	fromEvent	function:

import	{	fromEvent	}	from	"rxjs";

const	observable	=	fromEvent(document,	"click");

const	subscription	=	observable.subscribe(

				(value)	=>	console.log(value)

);

subscription.unsubscribe();

In	this	case,	the	item	handler	in	the	subscription	will	be	invoked	as	many	times
as	the	click	event	takes	place.

Please	note	that	the	preceding	example	can	only	be	executed	in	a	web	browser.	To	execute	the
preceding	code	in	a	web	browser,	you	will	need	to	use	a	module	bundler,	such	as	Webpack.	We
will	not	cover	this	topic,	since	it	is	beyond	the	scope	of	this	book.

see more please visit: https://homeofpdf.com

Creating	observables	from	callbacks
It	is	also	possible	to	create	an	observable	that	will	iterate	the	arguments	of	a
callback	using	the	bindCallback	function:

import	{	bindCallback	}	from	"rxjs";

import	fetch	from	"node-fetch";

function	getJSON(url:	string,	cb:	(response:	unknown|null)	=>	void)	{

				fetch(url)

								.then(response	=>	response.json())

								.then(json	=>	cb(json))

								.catch(_	=>	cb(null));

}

const	uri	=	"https://jsonplaceholder.typicode.com/todos/1";

const	observableFactory	=	bindCallback(getJSON);

const	observable	=	observableFactory(uri);

const	subscription	=	observable.subscribe(

				(value)	=>	console.log(value)

);

subscription.unsubscribe();

The	preceding	example	uses	the	node-fetch	module	because	the	fetch	function	is
not	available	in	Node.js.	You	can	install	the	node-fetch	module	using	the
following	npm	command:

npm	install	node-fetch	@types/node-fetch

The	getJSON	function	takes	a	URL	and	a	callback	as	its	arguments.	When	we	pass
it	to	the	bindCallback	function,	a	new	function	is	returned.	The	new	function	takes
a	URL	as	its	only	argument	and	returns	an	observable	instead	of	taking	a
callback.

In	Node.js,	callbacks	follow	a	well-defined	pattern.	The	Node.js	callbacks	take
two	arguments,	error	and	result,	and	don't	throw	exceptions.	We	must	use	the
error	argument	to	check	whether	something	went	wrong	instead	of	a	try/catch
statement.	RxJS	also	defines	a	function	named	bindNodeCallback	that	allows	us	to
work	with	the	callbacks:

import	{	bindNodeCallback	}	from	"rxjs";

import	*	as	fs	from	"fs";

const	observableFactory	=	bindNodeCallback(fs.readFile);

see more please visit: https://homeofpdf.com

const	observable	=	observableFactory("./roadNames.txt");

const	subscription	=	observable.subscribe(

				(value)	=>	console.log(value.toString())

);

subscription.unsubscribe();

The	helpers,	bindCallback	and	bindNodeCallback,	have	very	similar	behavior,	but	the
second	has	been	specially	designed	to	work	with	Node.js	callbacks.

see more please visit: https://homeofpdf.com

import	{	bindCallback	}	from	"rxjs";
import	fetch	from	"node-fetch";

const	uri	=	"https://jsonplaceholder.typicode.com/todos/1";
const
observable	=	from(fetch(uri)).pipe(map(x	=>	x.json()));

const
subscription	=	observable.subscribe(
	(value)	=>
console.log(value.toString())
);

subscription.unsubscribe();

The	generated	observable	will	contain	the	result	of	the	promise	as	its	only	item.

see more please visit: https://homeofpdf.com

Cold	and	hot	observables
The	official	RxJS	documentation	explores	the	differences	between	cold	and	hot
observables	as	follows:

"Cold	observables	start	running	upon	subscription,	that	is,	the	observable	sequence	only	starts	pushing
values	to	the	observers	when	Subscribe	is	called.	Values	are	also	not	shared	among	subscribers.	This	is
different	from	hot	observables,	such	as	mouse	move	events	or	stock	tickers,	which	are	already	producing
values	even	before	a	subscription	is	active.	When	an	observer	subscribes	to	a	hot	observable	sequence,	it
will	get	all	values	in	the	stream	that	are	emitted	after	it	subscribes.	The	hot	observable	sequence	is	shared
among	all	subscribers,	and	each	subscriber	is	pushed	the	next	value	in	the	sequence."

It	is	important	to	understand	these	differences	if	we	want	to	have	control	over
the	execution	flow	of	our	components.	The	key	point	to	remember	is	that	cold
observables	are	lazily	evaluated.

see more please visit: https://homeofpdf.com

Working	with	operators
In	this	section,	we	are	going	to	learn	how	to	use	some	functions	known	as
operators,	which	allow	us	to	manipulate	observables	in	many	different	ways.

see more please visit: https://homeofpdf.com

Pipe
In	RxJS,	observables	have	a	method	named	pipe,	which	is	very	similar	to	the	pipe
operator	in	functional	programming.	When	we	pipe	two	functions,	we	generate	a
new	function	that	passes	the	return	of	the	first	function	as	arguments	to	the
second	function	in	the	pipe.

The	idea	is	very	similar	in	reactive	programming.	When	we	pipe	an	observable
through	an	operator,	we	generate	a	new	observable.	The	new	observable	passes
each	of	the	items	in	the	original	observable	to	an	operator	that	transforms	them
into	the	items	in	the	new	sequence.

We	are	not	going	to	include	a	code	example	here,	because	we	are	going	to	use
the	pipe	method	multiple	times	during	the	remaining	part	of	this	chapter.

see more please visit: https://homeofpdf.com

Max
The	max	operator	function	can	be	used	to	find	the	biggest	value	in	an	observable.
We	must	apply	the	max	operator	using	the	pipe	method:	import	{	from	}	from
"rxjs";
import	{	max	}	from	"rxjs/operators";

const	observable	=	from<number>([2,	30,	22,	5,	60,	1]);

observable.pipe(max());

const	subscription	=	observable.subscribe(
(value)	=>	console.log(value)
);

subscription.unsubscribe();

The	following	marble	diagram	showcases	the	initial	sequence	and	the	result
sequence	after	applying	the	max	operator:	

The	result	sequence	contains	only	one	value	(the	biggest	value	in	the	original
sequence).

see more please visit: https://homeofpdf.com

Every
The	every	operator	function	can	be	used	to	test	whether	all	the	values	in	an
observable	adhere	to	a	given	requirement:	import	{	from	}	from	"rxjs";
import	{	every	}	from	"rxjs/operators";

const	observable	=	from<number>([1,2,	3,	4,	5]);

observable.pipe(every(x	=>	x	<	10));

const	subscription	=	observable.subscribe(
(value)	=>	console.log(value)
);

subscription.unsubscribe();

The	preceding	code	snippet	uses	the	every	operator	to	test	that	all	the	values	in	an
observable	are	lower	than	ten.	The	following	marble	diagram	showcases	the
initial	sequence	and	the	result	sequence	after	applying	the	every	operator:	

The	result	sequence	contains	only	one	value	(true	or	false).

	

see more please visit: https://homeofpdf.com

Find
The	find	operator	function	can	be	used	to	find	the	first	value	in	an	observable	that
adheres	to	a	given	constraint:	import	{	from	}	from	"rxjs";
import	{	find	}	from	"rxjs/operators";

const	observable	=	from<number>([2,	30,	22,	5,	60,	1]);

observable.pipe(find(x	=>	x	>	10));

const	subscription	=	observable.subscribe(
(value)	=>	console.log(value)
);

subscription.unsubscribe();

The	preceding	code	snippet	uses	the	find	operator	to	find	the	first	value	in	an
observable	greater	than	ten.	The	following	marble	diagram	showcases	the	initial
sequence	and	the	result	sequence	after	applying	the	find	operator:	

The	result	sequence	contains	only	one	value	(the	first	value	in	the	stream	that
matches	the	given	constraint).

see more please visit: https://homeofpdf.com

Filter
The	filter	operator	function	can	be	used	to	find	the	values	in	an	observable	that
adhere	to	a	given	constraint:	import	{	from	}	from	"rxjs";
import	{	filter	}	from	"rxjs/operators";

const	observable	=	from<number>([2,	30,	22,	5,	60,	1]);

observable.pipe(filter(x	=>	x	>	10));

const	subscription	=	observable.subscribe(
(value)	=>	console.log(value)
);

subscription.unsubscribe();

The	preceding	code	snippet	uses	the	filter	operator	to	find	the	values	in	an
observable	greater	than	ten.	The	following	marble	diagram	showcases	the	initial
sequence	and	the	result	sequence	after	applying	the	filter	operator:	

The	result	sequence	contains	only	some	values	(the	values	in	the	stream	that
match	the	given	constraint).

see more please visit: https://homeofpdf.com

Map
The	map	operator	function	can	be	used	to	transform	the	values	in	an	observable
into	derived	values:	import	{	from	}	from	"rxjs";
import	{	map	}	from	"rxjs/operators";

const	observable	=	from<number>([1,	2,	3]);

observable.pipe(map(x	=>	10	*	x));

const	subscription	=	observable.subscribe(
(value)	=>	console.log(value)
);

subscription.unsubscribe();

The	preceding	code	snippet	uses	the	map	operator	to	transform	the	values	in	an
observable	into	new	values	(the	original	value	multiplied	by	ten).	The	following
marble	diagram	showcases	the	initial	sequence	and	the	result	sequence	after
applying	the	map	operator:	

The	result	sequence	contains	a	new	mapped	value	for	each	value	in	the	original
sequence.

see more please visit: https://homeofpdf.com

Reduce
The	reduce	operator	function	can	be	used	to	transform	all	the	values	in	an
observable	into	one	single	value:	import	{	from	}	from	"rxjs";
import	{	reduce	}	from	"rxjs/operators";

const	observable	=	from<number>([1,	2,	3,	3,	4,	5]);

observable.pipe(reduce((x,	y)	=>	x	+	y));

const	subscription	=	observable.subscribe(
(value)	=>	console.log(value)
);

subscription.unsubscribe();

The	preceding	code	snippet	uses	the	reduce	operator	to	transform	the	values	in	an
observable	into	a	new	single	value	(the	total	of	all	the	values).	The	function	that
transforms	multiple	values	into	one	single	value	is	known	as	an	accumulator.
The	following	marble	diagram	showcases	the	initial	sequence	and	the	result
sequence	after	applying	the	reduce	operator:	

The	result	sequence	contains	only	one	value	(the	result	of	the	accumulator).

see more please visit: https://homeofpdf.com

Throttle
The	throttle	operator	function	can	be	used	to	reduce	the	number	of	values	that
are	added	to	an	observable:	import	{	fromEvent,	interval	}	from	"rxjs";
import	{	throttle,	mapTo,	scan	}	from	"rxjs/operators";

const	observable	=	fromEvent(document,	"click")
.pipe(mapTo(1))
.pipe(throttle(x	=>	interval(100)))
.pipe(scan((acc,	one)	=>	acc	+	one,	0));

const	subscription	=	observable.subscribe(
(value)	=>	console.log(value)
);

subscription.unsubscribe();

The	preceding	code	snippet	creates	an	observable	for	click	events.	Every	click
will	add	an	item	to	the	sequence.	The	example	also	uses	the	pipe	method	and	the
mapTo	function	to	map	all	the	click	events	to	the	numeric	value	1.	It	is	then	when
we	use	the	throttle	operator	to	reduce	the	number	of	values	that	are	added	to	the
sequence.	If	two	or	more	click	events	take	place	within	a	time	interval	lower
than	the	one	declared	by	the	interval,	only	the	first	value	will	be	added	to	the
sequence.

Please	note	that	the	preceding	example	can	only	be	executed	in	a	web	browser.	To	execute	the
preceding	code	in	a	web	browser,	you	will	need	to	use	a	module	bundler	such	as	Webpack.	We
will	not	cover	this	topic	because	it	is	beyond	the	scope	of	this	book.

The	following	marble	diagram	showcases	the	initial	sequence	and	the	result
sequence	after	applying	the	reduce	operator:	

see more please visit: https://homeofpdf.com

The	result	sequence	only	contains	some	values	because	the	values	that	take	place
too	close	in	time	are	ignored.

	

	

see more please visit: https://homeofpdf.com

Merge
The	merge	operator	function	can	be	used	to	merge	the	values	of	two	observables
into	value	pairs:

import	{	from	}	from	"rxjs";

import	{	merge	}	from	"rxjs/operators";

const	observableA	=	from<number>([20,	40,	60,	80,	100]);

const	observableB	=	from<number>([1,	1]);

const	observableC	=	observableA.pipe(merge<number,	number>(observableB));

const	subscription	=	observableC.subscribe(

				(value)	=>	console.log(value)

);

subscription.unsubscribe();

The	preceding	code	snippet	uses	the	merge	operator	to	combine	the	values	of	two
observables	into	a	new	observable.	The	values	are	ordered	chronologically.	The
following	marble	diagram	showcases	the	initial	sequences	and	the	result
sequence	after	applying	the	merge	operator:	

The	result	sequence	contains	the	values	of	both	observables	ordered	in	the	same
sequence	as	they	took	place	in	time.

see more please visit: https://homeofpdf.com

Zip
The	zip	operator	function	can	be	used	to	merge	the	values	of	two	observables
into	value	pairs:	import	{	from	}	from	"rxjs";
import	{	zip	}	from	"rxjs/operators";

const	observableA	=	from<number>([1,	2,	3,	3,	4,	5]);
const	observableB	=	from<string>(["A",	"B",	"C",	"D"]);

const	observableC	=	observableA.pipe(zip<number,	string>(observableB));

const	subscription	=	observableC.subscribe(
(value)	=>	console.log(value)
);

subscription.unsubscribe();

The	preceding	code	snippet	uses	the	zip	operator	to	combine	the	values	of	two
observables	into	a	new	observable.	The	values	in	the	new	observable	are	value
pairs	that	contain	a	value	from	the	first	observable	and	a	value	from	the	second
observable	and	are	grouped	by	their	index	in	the	sequence.	The	following	marble
diagram	showcases	the	initial	sequences	and	the	result	sequence	after	applying
the	zip	operator:	

The	result	sequence	contains	the	values	of	both	observables	merged	into	single
value	pairs.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	learned	about	the	functional-reactive	programming
paradigm.	We	have	learned	that	many	of	the	functional	programming	ideas,	such
as	pure	functions	and	function	composition,	can	be	applied	to	reactive
programming.	We	also	learned	what	observables	are	and	how	we	can	create
them	and	work	with	them.

In	the	next	chapter,	we	are	going	to	learn	about	some	production-ready
functional	programming	libraries,	such	as	Ramda	and	Immutable.js.

	

	

	

see more please visit: https://homeofpdf.com

Real-World	Functional	Programming
In	the	preceding	chapter	of	this	book,	we	have	learned	about	functional
programming	and	functional	reactive	programming.	We	tried	to	avoid	using
external	libraries,	because	our	main	goal	was	to	understand	the	techniques,
patterns,	and	principles	of	the	functional	programming	and	functional-reactive
programming	paradigms.

In	this	chapter,	we	are	going	to	learn	about	the	following	topics:

Composing	with	Ramda
Currying	and	partial	application	with	Ramda
Lenses	with	Ramda
Working	with	Immutable.js
Working	with	Immer
Working	with	Funfix

We	are	going	to	revisit	once	more	some	of	the	main	concepts	that	we	have
explored	throughout	this	book.	However,	this	time,	our	focus	will	not	be	to
understand	these	concepts	(it	is	assumed	that	we	already	do).	Instead,	we	are
going	to	focus	on	the	usage	of	some	production-ready	functional	programming
libraries,	such	as	Ramda	or	Immutable.js.

	

	

see more please visit: https://homeofpdf.com

Working	with	Ramda
Ramda	is	an	open	source	functional	programming	library	that	which	includes
many	utility	functions	that	can	help	us	to	put	some	of	the	main	functional
programming	techniques	into	practice.	Ramda	can	be	compared	to	other
libraries,	such	as	Lodash	or	Underscore.	However,	the	Ramda	API	is	much	more
influenced	by	the	functional	programming	principle	than	these	other	libraries.
For	example,	Ramda	has	been	designed	in	a	way	that	makes	composability	and
immutability	two	of	the	main	characteristics	of	its	components.

We	can	install	Ramda	using	the	following	npm	command:

npm	install	ramda	@types/ramda

In	the	following	sections,	we	are	going	to	learn	how	to	use	Ramda	to	implement
function	compositions	and	lenses.

see more please visit: https://homeofpdf.com

Composition
In	the	previous	chapters,	we	declared	a	higher-order	function	named	compose,
which	allows	us	to	compose	two	functions:

const	compose	=	<T>(f:	(x:	T)	=>	T,	g:	(x:	T)	=>	T)	=>	(x:	T)	=>	f(g(x));

The	compose	function	allowed	us	to	demonstrate	how	function	composition	works,
but	it	had	some	limitations.	For	example,	the	compose	function	only	takes	one
generic	type,	parameter	T,	which	means	that	we	can	only	compose	two	unary
functions,	f	and	g,	that	take	one	argument	of	type	T:

const	trim	=	(s:	string)	=>	s.trim();

const	capitalize	=	(s:	string)	=>	s.toUpperCase();

const	trimAndCapitalize	=	compose(trim,	capitalize);

const	result	=	trimAndCapitalize("	hello	world	");

console.log(result);	//	"HELLO	WORLD"

	

	

In	a	real-world	application,	we	may	need	to	compose	two	functions	f	and	g	that
take	an	argument	of	two	different	types	T1	and	T2.	The	following	code	snippet
uses	the	compose	function	from	Ramda	instead	of	the	one	that	we	declared
previously:

import	R	from	"ramda";

const	trim	=	(s:	string)	=>	s.trim();

const	capitalize	=	(s:	string)	=>	s.toUpperCase();

const	trimAndCapitalize	=	R.compose(trim,	capitalize);

const	result	=	trimAndCapitalize("	hello	world	");

console.log(result);	//	"HELLO	WORLD"

The	compose	function	from	Ramda	is	a	much	better	alternative	for	real-world
applications	because	it	has	been	used	in	hundreds	of	projects	and	tested	with
thousands	of	functions.

see more please visit: https://homeofpdf.com

function	curry3<T1,	T2,	T3,	T4>(fn:	(a:	T1,	b:	T2,	c:	T3)	=>	T4)	{
	return
(a:	T1)	=>	(b:	T2)	=>	(c:	T3)	=>	fn(a,	b,	c);
}

const	trim	=	(s:
string)	=>	s.trim();
const	capitalize	=	(s:	string)	=>	s.toUpperCase();

const	trimAndCapitalize	=	R.compose(trim,	capitalize);
const	replace
=	(s:	string,	f:	string,	r:	string)	=>	s.split(f).join(r);

const
curriedReplace	=	curry3(replace);

const	trimCapitalizeAndReplace	=
compose(
	trimAndCapitalize,
	curriedReplace("/")("-")
);

const	result	=	trimCapitalizeAndReplace("	13/feb/1989	");

console.log(result);	//	"13-FEB-1989"

import	R	from	"ramda";

const	trim	=	(s:	string)	=>	s.trim();
const
capitalize	=	(s:	string)	=>	s.toUpperCase();
const	replace	=	(s:	string,	f:
string,	r:	string)	=>	s.split(f).join(r);

const	trimCapitalizeAndReplace
=	R.compose(
	R.compose(trim,	capitalize),
	R.curry(replace)("/")("-")

);

const	result	=	trimCapitalizeAndReplace("	13/feb/1989	");

console.log(result);	//	"13-FEB-1989"

The	preceding	code	snippet	declares	three	functions	in	a	way	that	is	completely
agnostic	of	Ramda.	We	then	use	the	Ramda	utility	functions,	compose	and	curry,
to	generate	a	new	function	named	trimCapitalizeAndReplace.

see more please visit: https://homeofpdf.com

Lenses
We	learned	about	lenses	in	some	of	the	previous	chapters.	In	one	of	the	last
examples,	we	implemented	lenses	in	a	way	that	is	very	close	to	the
implementation	provided	by	Ramda.

We	implemented	a	higher-order	function	named	lens	that	can	be	used	to	create	a
Lens	implementation.	The	lens	function	takes	two	functions	that	must	implement
the	Prop	and	Assoc	interfaces:

interface	Lens<T1,	T2>	{

				get(o:	T1):	T2;

				set(o:	T2,	v:	T1):	T1;

}

type	Prop<T,	K	extends	keyof	T>	=	(o:	T)	=>	T[K];

type	Assoc<T,	K	extends	keyof	T>	=	(v:	T[K],	o:	T)	=>	T;

const	lens	=	<T1,	K	extends	keyof	T1>(

				getter:	Prop<T1,	K>,

				setter:	Assoc<T1,	K>,

):	Lens<T1,	T1[K]>	=>	{

				return	{

								get:	(obj:	T1)	=>	getter(obj),

								set:	(val:	T1[K],	obj:	T1)	=>	setter(val,	obj),

				};

}

const	view	=	<T1,	T2>(lens:	Lens<T1,	T2>,	obj:	T1)	=>	lens.get(obj);

const	set	=	<T1,	K	extends	keyof	T1>(

				lens:	Lens<T1,	T1[K]>,

				val:	T1[K],

				obj:	T1

)	=>	lens.set(val,	obj);

We	can	then	create	a	Lens	implementation	passing	the	Assoc	and	Prop
implementations	to	the	Lens	function:

class	Street	{

				public	readonly	num:	number;

				public	readonly	name:	string;

				public	constructor(num:	number,	name:	string)	{

								this.num	=	num;

								this.name	=	name;

				}

}

see more please visit: https://homeofpdf.com

class	Address	{

				public	readonly	city:	string;

				public	readonly	street:	Street;

				public	constructor(city:	string,	street:	Street)	{

								this.city	=	city;

								this.street	=	street;

				}

}

const	propStreet:	Prop<Address,	"street">	=	(o:	Address)	=>	o.street;

const	assocStreet:	Assoc<Address,	"street">	=	(v:	Address["street"],	o:	Address)	=>	{

				return	new	Address(o.city,	v);

};

const	streetLens	=	lens(propStreet,	assocStreet);

Once	we	have	a	Lens	instance,	we	can	use	the	set	and	view	functions	to	read	and	set
the	value	of	a	property	in	an	immutable	object:

const	address	=	new	Address(

				"London",

				new	Street(1,	"rathbone	square")

);

const	street	=	view(streetLens,	address);

const	address2	=	set(

				streetLens,

				new	Street(

								address.street.num,

								R.toUpper(address.street.name)

),

				address

);

Now	that	we	know	the	basics	about	Ramda,	we	can	implement	the	preceding
code	snippet	once	more	using	some	of	its	utility	functions.	Ramda	includes	the
following	utility	functions,	among	others:

The	prop	function	allows	us	to	declare	a	property	getter.	It	expects	the	name
of	a	property	as	an	argument.
The	assoc	function	allows	us	to	declare	a	property	setter.	It	expects	the	name
of	a	property	as	an	argument.
The	lens	function	allows	us	to	declare	a	lens	instance.	It	expects	a	property
getter	(prop)	and	setter	(assoc)	as	arguments.
The	lensProp	function	allows	us	to	declare	a	lens	instance.	It	expects	the
name	of	a	property	as	an	argument.

see more please visit: https://homeofpdf.com

The	view	function	allows	us	to	get	the	value	of	a	property	in	an	object.	It
expects	a	lens	instance	and	an	object	as	arguments.
The	set	function	allows	us	to	set	the	value	of	a	property	in	an	object.	It
expects	a	lens	instance,	a	new	value,	and	an	object	as	arguments.

	

	

In	the	following	code	snippet,	we	use	the	lensProp,	view,	and	set	functions:

import	R	from	"ramda";

class	Street	{

				public	readonly	num:	number;

				public	readonly	name:	string;

				public	constructor(num:	number,	name:	string)	{

								this.num	=	num;

								this.name	=	name;

				}

}

class	Address	{

				public	readonly	city:	string;

				public	readonly	street:	Street;

				public	constructor(city:	string,	street:	Street)	{

								this.city	=	city;

								this.street	=	street;

				}

}

const	streetLens	=	R.lensProp("street");

const	address	=	new	Address(

				"London",

				new	Street(1,	"rathbone	square")

);

const	street	=	R.view<Address,	Street>(streetLens,	address);

const	address2	=	R.set<Address,	Street>(

				streetLens,

				new	Street(

								address.street.num,

								R.toUpper(address.street.name)

),

				address

);

Use	of	the	prop	and	assoc	functions	are	not	required	in	most	cases	thanks	to	the

see more please visit: https://homeofpdf.com

lensProp	instead	of	the	lens	function.

	

see more please visit: https://homeofpdf.com

Working	with	Immutable.js
In	the	preceding	chapters,	we	also	learned	about	immutability	and	the	benefits	of
using	immutable	data	objects.	We	learned	that	we	can	use	the	readonly	keyword	to
declare	immutable	objects:

class	Street	{

				public	readonly	num:	number;

				public	readonly	name:	string;

				public	constructor(num:	number,	name:	string)	{

								this.num	=	num;

								this.name	=	name;

				}

}

class	Address	{

				public	readonly	city:	string;

				public	readonly	street:	Street;

				public	constructor(city:	string,	street:	Street)	{

								this.city	=	city;

								this.street	=	street;

				}

}

We	also	learned	that	working	with	immutable	objects	can	sometimes	be	very
verbose	and	tedious	and	that	lenses	can	help	us	to	overcome	these	difficulties.
We	are	now	going	to	learn	about	a	library	that	can	help	us	to	declare	immutable
objects.	The	library	is	known	as	Immutable.js,	and	it	also	includes	an	API
similar	tot	he	lenses	API.	We	can	install	Immutable.js	using	the	following
command:

npm	install	immutable

We	can	define	type-safe	immutable	classes	with	Immutable.js,	using	the	Record
type	as	follows:

import	{	Record	}	from	"immutable";

interface	StreetInterface	{

				num:	number;

				name:	string;

}

see more please visit: https://homeofpdf.com

const	StreetRecord	=	Record({

				num:	0,

				name:	""

});

class	Street	extends	StreetRecord	implements	StreetInterface	{

				constructor(props:	StreetInterface)	{

								super(props);

				}

}

We	are	going	to	define	one	more	immutable	class	named	Address.	The	Address	class
contains	an	instance	of	the	Street	class:

interface	AddressInterface	{

				city:	string;

				street:	Street;

}

const	AddressRecord	=	Record({

				city:	"",

				street:	new	Street({

								num:	0,

								name:	""

				})

});

class	Address	extends	AddressRecord	implements	AddressInterface	{

				constructor(props:	AddressInterface)	{

								super(props);

				}

}

To	create	an	instance	of	an	immutable	class,	we	need	to	pass	all	the	required
properties	as	a	plain	object:

const	address	=	new	Address({

				city:	"Lonson",

				street:	new	Street({

								num:	1,

								name:	"rathbone	square"

				})

});

	

When	we	declare	an	immutable	class	with	Immutable.js,	the	class	inherits	some
methods	that	behave	like	a	lens.	We	can	use	the	get	method	to	get	the	value	of	a
property	and	the	set	method	to	create	a	new	immutable	instance	using	an	updated
value:

const	street	=	address.get("street");

const	street2	=	street.set("name",	"Rathbone	square");

const	address2	=	address.set("street",	street2);

see more please visit: https://homeofpdf.com

console.log(

				address.toJS(),

				address2.toJS()

);

Declaring	an	immutable	class	with	Immutable.js	is	more	tedious	than	declaring
them	with	the	readonly	access	modifier,	but	we	get	lenses	as	a	built-in	feature	in
exchange	for	our	effort.

see more please visit: https://homeofpdf.com

Working	with	Immer
We	are	going	to	take	a	look	at	another	popular	immutability	library.	The	library
is	known	as	Immer,	and	it	can	be	installed	using	the	following	npm	command:

npm	install	immer

Immer	allows	us	to	define	immutable	classes	using	the	readonly	access	modifier.
This	means	that	we	can	also	create	instances	of	our	classes	using	a	standard	class
constructor:

import	produce	from	"immer";

class	Street	{

				public	readonly	num:	number;

				public	readonly	name:	string;

				public	constructor(num:	number,	name:	string)	{

								this.num	=	num;

								this.name	=	name;

				}

}

class	Address	{

				public	readonly	city:	string;

				public	readonly	street:	Street;

				public	constructor(city:	string,	street:	Street)	{

								this.city	=	city;

								this.street	=	street;

				}

}

const	address	=	new	Address(

				"London",

				new	Street(1,	"rathbone	square")

);

Immer	can	generate	a	new	version	of	an	immutable	object	using	a	method
named	produce.	The	produce	function	takes	the	current	version	of	an	immutable
object	as	its	first	argument.	The	second	argument	is	a	callback	function	that	takes
one	argument	known	as	the	draft	state.	The	draft	state	is	a	mutable	version	of	the
initial	version	and,	within	the	callback	function,	we	can	mutate	it	as	much	as	we
want:

see more please visit: https://homeofpdf.com

const	address2	=	produce(address,	draftAddress	=>	{

				draftAddress.street.name	=	"Rathbone	square";

});

The	produce	function	returns	a	new	immutable	object	without	mutating	the
original	object.	The	Immer	API	can	be	considered	superior	to	the	Immutable.js
API,	because	it	imposes	fewer	constraints	in	our	class	declarations	and
constructors.	Immer	is	not	based	on	lenses	and	allows	us	to	work	with
immutable	objects	using	an	innovative	approach	that	utilizes	proxies	internally.

see more please visit: https://homeofpdf.com

Working	with	Funfix
Funfix	is	a	collection	of	functional	programming	utility	functions.	Funfix	can	be
compared	with	Ramda.	Just	like	Ramda,	Funfix	can	be	used	to	compose
functions	or	partially	apply	functions.	However,	in	this	section,	we	are	going	to
focus	on	the	usage	of	some	of	the	Funfix	features	that	are	related	to	some	of	the
data	types	that	we	previously	explored	in	Chapter	7,	Category	Theory.

We	are	going	to	start	by	installing	Funfix:

npm	install	funfix	@types/funfix

The	examples	that	we	are	going	to	implement	in	this	section	are	going	to	require
a	couple	of	additional	npm	modules.	We	are	going	to	use	node-fetch	to	send	HTTP
requests	from	a	Node.js	application.	We	are	also	going	to	use	some	of	the
Node.js	core	modules,	which	means	that	we	are	going	to	need	the	type
definitions	for	Node.js	as	well:

npm	install	node-fetch	@type/node-fetch	@types/node

In	our	first	Funfix	example,	we	are	going	to	define	a	monad	named	argsIO	using
the	IO.of	factory	method.	As	we	learned	in	the	previous	chapters,	a	monad	is	a
functor,	and	a	functor	is	a	container.	In	this	case,	the	container	contains	a
function	that	performs	an	I/O	operation:	reading	the	command-line	arguments
(process.argv).	The	IO	type	is	used	to	store	a	function	that	describes	some
computation	with	side	effects,	such	as	reading	some	data	from	a	file	or	mutating
the	elements	in	the	Document	Object	Model	(DOM).	Describing	actions	in	this
way	allows	for	IO	instances	to	be	composed	and	passed	around,	while	keeping
functions	pure	and	maintaining	referential	transparency.

We	are	also	going	to	declare	two	functions	named	readFile	and	stdoutWrite.	Both
of	these	functions	return	a	monad	instance,	and	both	monads	contain	I/O
operations.	The	first	one	reads	a	file	from	the	filesystem,	and	the	second	one
prints	some	information	in	the	standard	output:

import	*	as	R	from	"ramda";

import	*	as	fs	from	"fs";

import	{	IO	}	from	"funfix";

see more please visit: https://homeofpdf.com

const	argsIO	=	IO.of(()	=>	R.tail(R.tail(process.argv))[0]);

const	readFile	=	(filename:	string)	=>	IO.of(()	=>	fs.readFileSync(filename,	"utf8"));

const	stdoutWrite	=	(data:	string)	=>	IO.of(()	=>	process.stdout.write(data));

const	loudCat	=	argsIO.chain(readFile)

					.map(R.toUpper)

					.chain(stdoutWrite);

try	{

			loudCat.run();

}	catch(e)	{

			console.log(e);

}

The	preceding	code	snippet	also	declares	a	monad	named	loudCat	using	the	chain
method	to	pass	the	command	line	arguments	to	the	file	reading	operation	and	the
map	method	to	transform	the	file	contents	into	upper	case.	Finally,	it	uses	the	chain
method	one	last	time	to	pass	the	uppercase	text	to	the	standard	output.

	

	

	

One	of	the	main	characteristics	of	monads	in	Funfix	is	that	they	are	lazily
evaluated,	and	all	of	the	preceding	operations	don't	take	place	until	we	invoke
the	run	method.	If	everything	goes	well,	we	can	pass	the	name	of	a	file	using	the
command-line	interface:

node	example.js	test.txt	

The	uppercase	contents	of	the	file	should	be	displayed	on	the	standard	output.
The	following	example	uses	the	node-fetch	module	to	send	an	HTTP	request.	The
function	that	performs	the	HTTP	request	is	contained	by	a	monad.	This	time,	the
monad	is	not	created	by	the	IO.of	factory	function	because	it	is	created	with	the
IO.async	factory	function	instead.	We	use	the	IO.async	factory	function	because	it	is
required	by	Funfix	when	an	asynchronous	operation	is	wrapped	by	a	monad.	The
example	also	uses	the	Either	type,	which	is	another	Functor	and	monad.	It	can	be
used	to	wrap	a	value	that	can	be	of	two	possible	values:

import	{	IO,	Success,	Failure,	Either,	Left,	Right	}	from	"funfix";

import	fetch	from	"node-fetch";

interface	Todo	{

				userId:	number;

see more please visit: https://homeofpdf.com

				id:	number;

				title:	string;

				completed:	boolean;

}

const	getTodos	=	IO.async<Either<Error,	Todo[]>>((ec,	cb)	=>	{

			fetch(

							"https://jsonplaceholder.typicode.com/todos"

).then(response	=>	{

							return	response.json().then(

											(json:	Todo[])	=>	cb(Success(Right(json)))

)

			})

			.catch(err	=>	cb(Failure(Left(err))));

});

const	logTodos	=	getTodos.map((either)	=>	{

			return	either.map(todos	=>	todos.map(t	=>	console.log(t.title)));

});

logTodos.run();

	

	

The	error-handling	logic	is	very	simple	because	the	map	method	of	the	Either	type
only	maps	the	values	when	the	type	of	its	value	is	not	an	error.	Just	as	before,	the
entire	logic	is	lazily	evaluated	and	nothing	really	happens	until	we	invoke	the	run
method	in	the	logTodos	monad.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	learned	how	to	use	some	real-world	functional
programming	libraries,	including	Ramda,	Fundix,	Immer,	and	Immutable.js.
Throughout	this	book,	we	have	learned	about	the	main	characteristics,
principles,	patterns,	and	principles	of	the	functional	programming	and
functional-reactive	programming	paradigm.	These	concepts	provide	you	with	a
set	of	powerful	tools	that	will	help	you	to	useapplications	that	are	easier	to
reason	about,	more	testable,	and	easier	to	maintain.

I	hope	that	you	enjoy	this	book	and	that	you	are	eager	to	continue	your
functional	programming-learning	journey.	In	the	appendices,	you	will	find	a
guide	that	can	be	used	to	discover	new	functional	libraries	and	additional
functional	programming	concepts	that	you	can	explore	on	your	own	if	you	wish
to	learn	more.

	

	

	

see more please visit: https://homeofpdf.com

Functional	Programming	Learning
Road	Map
The	following	guide	can	be	used	to	track	our	level	of	knowledge	regarding
functional	programming.	This	guide	was	developed	for	the	Fantasyland	institute
of	learning	for	the	LambdaConf	conference.	It	was	designed	for	statically-typed
functional	programming	languages	that	implement	category	theory.

Languages	such	as	Haskell	support	category	theory	natively,	but,	as	we	learned	previously,
we	can	take	advantage	of	category	theory	in	TypeScript	by	implementing	it	or	using	some
third-party	libraries.	Not	all	the	items	in	the	list	are	100%	applicable	to	TypeScript	due	to
language	differences,	but	most	of	them	are	100%	applicable.

	

	

	

see more please visit: https://homeofpdf.com

Beginner
To	reach	the	beginner	level,	you	will	need	to	master	the	following	concepts	and
skills:

CONCEPTS SKILLS

Immutable	data
Second-order
functions
Constructoring	and
destructuring
Function	composition
First-class	functions
and	lambdas

Use	second-order	functions	(map,	filter,
fold)	on	immutable	data	structures
Destructure	values	to	access	their
components
Use	data	types	to	represent	optionality
Read	basic	type	signatures
Pass	lambdas	to	second-order	functions

	

	

	

see more please visit: https://homeofpdf.com

Advanced	beginner
To	reach	the	advanced	beginner	level,	you	will	need	to	master	the	following
concepts	and	skills:

CONCEPTS SKILLS

Algebraic	data	types
Pattern	matching
Parametric	polymorphism
General	recursion
Type	classes,	instances,
and	laws
Lower-order	abstractions
(equal,	semigroup,	monoid,
and	so	on)
Referential	transparency
and	totality
Higher-order	functions
Partial	application,
currying,	and	point-free
style

Solve	problems	without	nulls,	exceptions,	or
type	casts
Process	and	transform	recursive	data
structures	using	recursion
Able	to	use	functional	programming	in	the
small
Write	basic	monadic	code	for	a	concrete
monad
Create	type	class	instances	for	custom	data
types
Model	a	business	domain	with	abstract	data
types	(ADTs)
Write	functions	that	take	and	return	functions
Reliably	identify	and	isolate	pure	code	from
impure	code
Avoid	introducing	unnecessary	lambdas	and
named	parameters

	

	

see more please visit: https://homeofpdf.com

Intermediate
To	reach	the	intermediate	level,	you	will	need	to	master	the	following	concepts
and	skills:

CONCEPTS SKILLS

Generalized	algebraic
data	type
Higher-kinded	types
Rank-N	types
Folds	and	unfolds
Higher-order	abstractions
(category,	functor,
monad)
Basic	optics
Implement	efficient
persistent	data	structures
Existential	types
Embedded	DSLs	using
combinators

Able	to	implement	large	functional
programming	applications
Test	code	using	generators	and
properties
Write	imperative	code	in	a	purely
functional	way	through	monads
Use	popular	purely	functional	libraries
to	solve	business	problems
Separate	decision	from	effects
Write	a	simple	custom	lawful	monad
Write	production	medium-sized
projects
Use	lenses	and	prisms	to	manipulate
data
Simplify	types	by	hiding	irrelevant
data	with	existential

	

	

see more please visit: https://homeofpdf.com

Proficient
To	reach	the	proficient	level,	you	will	need	to	master	the	following	concepts	and
skills:

CONCEPTS SKILLS

Codata
(Co)recursion	schemes
Advanced	optics
Dual	abstractions	(comonad)
Monad	transformers
Free	monads	and	extensible
effects
Functional	architecture
Advanced	functors
(exponential,	profunctors,
contravariant)
Embedded	domain-specific
languages	(DSLs)	using
generalized	algebraic
datatypes	(GADTs)
Advanced	monads
(continuation,	logic)
Type	families,	functional
dependencies	(FDs)

Design	a	minimally	powerful
monad	transformer	stack
Write	concurrent	and	streaming
programs
Use	purely	functional	mocking	in
tests.
Use	type	classes	to	modularly
model	different	effects
Recognize	type	patterns	and
abstract	over	them
Use	functional	libraries	in	novel
ways
Use	optics	to	manipulate	state
Write	custom	lawful	monad
transformers
Use	free	monads/extensible	effects
to	separate	concerns
Encode	invariants	at	the	type	level.
Effectively	use	FDs/type	families
to	create	safer	code

	

	

see more please visit: https://homeofpdf.com

Expert
To	reach	the	expert	level,	you	will	need	to	master	the	following	concepts	and
skills:

CONCEPTS SKILLS

High	performance
Kind
polymorphism
Generic
programming
Type-level
programming
Dependent-types,
singleton	types
Category	theory
Graph	reduction
Higher-order
abstract	syntax
Compiler	design
for	functional
languages
Profunctor	optics

Design	a	generic,	lawful	library	with	broad
appeal
Prove	properties	manually	using	equational
reasoning
Design	and	implement	a	new	functional
programming	language
Create	novel	abstractions	with	laws
Write	distributed	systems	with	certain
guarantees
Use	proof	systems	to	formally	prove
properties	of	code
Create	libraries	that	do	not	permit	invalid
states.
Use	dependent	typing	to	prove	more
properties	at	compile	time
Understand	deep	relationships	between
different	concepts
Profile,	debug,	and	optimize	purely	functional
code	with	minimal	sacrifices

	

	

	

see more please visit: https://homeofpdf.com

Summary
This	guide	should	be	a	good	resource	to	guide	you	in	your	future	functional-
programming	learning	efforts.	In	this	book,	we	started	without	any	previous
knowledge	of	functional	programming,	and	we	have	reached	the	intermediate
level.	Becoming	an	expert	on	functional	programming	will	take	some	time,	but
at	this	point,	we	know	enough	about	it	to	take	advantage	of	its	capabilities	and
enjoy	its	main	benefits.

	

	

	

see more please visit: https://homeofpdf.com

Directory	of	TypeScript	Functional
Programming	Libraries
In	this	appendix,	you	will	find	a	list	of	functional	programming	libraries
compatible	with	TypeScript	grouped	according	to	the	following	categories:

Functional	programming:	General-purpose	functional	programming
utilities,	including	the	compose	function
Category	theory:	Libraries	that	provide	implementations	of	algebraic	data
types
Laziness:	Libraries	that	provide	utilities	for	the	implementation	of	lazy
evaluation
Immutability:	Libraries	that	provide	utilities	for	the	implementation	of
immutable	data	structures
Optics:	Libraries	that	provide	implementations	of	functional	optics	and
lenses.
Functional-reactive	programming:	General-purpose,	functional-reactive
programming	utilities,	such	as	observables
Others:	Libraries	that	do	not	focus	on	functional	programming,	but	that	are
highly	influenced	by	its	principles

	

	

see more please visit: https://homeofpdf.com

Functional	programming
The	following	libraries	allow	us	to	take	advantage	of	immutability	in	TypeScript:

Library Description Link

Ramda A	practical	pure	functional	library	for
JavaScript	programmers.

https://github.com/ramd

a/ramda

fp-ts
Pure	functional	programming	utilities
for	TypeScript	applications.

https://github.com/gcan

ti/fp-ts

Underscore
A	collection	of	helper	functions	that
includes	some	functional
programming	helpers.

https://github.com/jash

kenas/underscore

Lodash
A	collection	of	helper	functions	that
includes	some	functional
programming	helpers.

https://github.com/loda

sh/lodash

wu.js
Higher-order	functions	for	ES6
iterators.

https://github.com/fitz

gen/wu.js/

	

	

see more please visit: https://homeofpdf.com

https://github.com/ramda/ramda
https://github.com/gcanti/fp-ts
https://github.com/jashkenas/underscore
https://github.com/lodash/lodash
https://github.com/fitzgen/wu.js/

Category	theory
The	following	libraries	allow	us	to	take	advantage	of	immutability	in	TypeScript:

Library Description Link

Ramda-
fantasy

Algebraic	data	types	compatible	with
the	Fantasyland	specification	for	easy
integration	with	Ramda.js.

https://github.com/ramda/r

amda-fantasy

io-ts
TypeScript-compatible,	runtime-type
system	for	IO	decoding/encoding.

https://github.com/gcanti/

io-ts

Funfix
Funfix	is	a	library	of	type	classes	and
data	types	for	functional	programming
in	JavaScript,	TypeScript,	and	Flow.

https://github.com/funfix/

funfix

	

	

	

see more please visit: https://homeofpdf.com

https://github.com/ramda/ramda-fantasy
https://github.com/gcanti/io-ts
https://github.com/funfix/funfix

Laziness
The	following	libraries	allow	us	to	take	advantage	of	immutability	in	TypeScript:

Library Description Link

Lazy.js

Lazy.js	is	a	functional	utility
library	for	JavaScript,	similar
to	Underscore	and	Lodash,	but
with	a	lazy	engine	under	the
hood	that	strives	to	do	as	little
work	as	possible,	while	being
as	flexible	as	possible.

https://github.com/dtao/lazy.j

s/

Transducers-
js

A	high-performance
transducers	implementation	for
JavaScript.

https://github.com/cognitect-l

abs/transducers-js

	

	

see more please visit: https://homeofpdf.com

https://github.com/dtao/lazy.js/
https://github.com/cognitect-labs/transducers-js

Immutability
The	following	libraries	allow	us	to	take	advantage	of	immutability	in	TypeScript:

Library Description Link

Immutable.js

Immutable	persistent	data	collections
for	Javascript	that	increase	efficiency
and	simplicity.

https://github.com/facebo

ok/immutable-js

Immer

Immer	is	a	tiny	package	that	allows
you	to	work	with	immutable	state	in
a	more	convenient	way.	It	is	based	on
the	copy-on-write	mechanism.

https://github.com/mwests

trate/immer

	

	

see more please visit: https://homeofpdf.com

https://github.com/facebook/immutable-js
https://github.com/mweststrate/immer

Optics	and	lenses
The	following	libraries	allow	us	to	take	advantage	of	immutability	in	TypeScript:

Library Description Link

monocle-ts
Functional	optics:	A	(partial)	porting	of
Scala	monocle	to	TypeScript.

https://github.co

m/gcanti/monocle-

ts

lens.ts
A	TypeScript	Lens	implementation	with
property	proxy.

https://github.co

m/utatti/lens.ts

Lenses

A	small	functional	lens	library	for
TypeScript	with	the	goal	of	being	small,
with	zero	dependencies,	and	strong,	precise
types.	It	is	inspired	by	Aether,	for	F#.

https://github.co

m/atomicobject/le

nses

Lenticular.ts
An	implementation	of	functional	lenses	in
JavaScript/TypeScript.

https://github.co

m/tomasdeml/lenti

cular.ts

	

	

	

see more please visit: https://homeofpdf.com

https://github.com/gcanti/monocle-ts
https://github.com/utatti/lens.ts
https://github.com/atomicobject/lenses
https://github.com/tomasdeml/lenticular.ts

Functional-reactive	programming
The	following	libraries	allow	us	to	take	advantage	of	reactive	programming	in
TypeScript:

Library Description Link

RxJS A	reactive	programming	library	for
JavaScript.

https://github.com/Reac

tiveX/rxjs

Xstream An	intuitive,	small,	and	fast	functional
reactive	stream	library	for	JavaScript.

https://github.com/x-st

ream/xstream

Bacon.js
A	small	functional	reactive	programming
lib	for	JavaScript.

https://github.com/baco

njs/bacon.js/

see more please visit: https://homeofpdf.com

https://github.com/ReactiveX/rxjs
https://github.com/x-stream/xstream
https://github.com/baconjs/bacon.js/

Others
The	following	libraries	allow	us	to	take	advantage	of	immutability	in	TypeScript:

Library Description Link

React
A	library	for	the	development	of	user
interfaces	that	is	highly	influenced	by
functional	programming	principles.

https://github.com/f

acebook/react

Redux
Redux	is	a	state	container	for	JavaScript
apps,	and	is	highly	influenced	by	functional
programming	principles.

https://github.com/r

eduxjs/redux

Cycle.js

A	library	for	the	development	of	user
interfaces	that	is	highly	influenced	by
functional-reactive	programming.

https://github.com/c

yclejs/cyclejs

Mobx
A	library	for	the	development	of	user
interfaces	that	is	highly	influenced	by
functional-reactive	programming.

https://github.com/m

obxjs/mobx

	

	

see more please visit: https://homeofpdf.com

https://github.com/facebook/react
https://github.com/reduxjs/redux
https://github.com/cyclejs/cyclejs
https://github.com/mobxjs/mobx

Summary
This	appendix	provides	you	with	a	quick	reference	of	some	popular	functional
programming	and	functional-reactive	programming	libraries.	These	libraries,
together	with	the	techniques	and	principles	that	we	have	learned	previously	in
this	book,	should	provide	you	with	everything	you	need	to	create	a	number	of
real-world	functional	programming	applications.

	

	

	

see more please visit: https://homeofpdf.com

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:	

Hands-On	TypeScript	for	C#	and	.NET	Core	Developers
Francesco	Abbruzzese

ISBN:	9781789130287

Organize,	test,	and	package	large	TypeScript	code	base
Add	TypeScript	to	projects	using	TypeScript	declaration	files
Perform	DOM	manipulation	with	TypeScript
Develop	Angular	projects	with	the	Visual	Studio	Angular	project	template
Define	and	use	inheritance,	abstract	classes,	and	methods
Leverage	TypeScript-type	compatibility	rules
Use	WebPack	to	bundle	JavaScript	and	other	resources	such	as	CSS	to
improve	performance
Build	custom	directives	and	attributes,	and	learn	about	animations

TypeScript	3.0	Quick	Start	Guide
Patrick	Desjardins

see more please visit: https://homeofpdf.com

https://www.packtpub.com/application-development/hands-typescript-c-and-net-core-developers
https://www.packtpub.com/application-development/typescript-30-quick-start-guide

ISBN:	9781789345575

Set	up	the	environment	quickly	to	get	started	with	TypeScript
Configure	TypeScript	with	essential	configurations	that	run	along	your	code
Structure	the	code	using	Types	and	Interfaces	to	create	objects
Demonstrate	how	to	create	object-oriented	code	with	TypeScript
Abstract	code	with	generics	to	make	the	code	more	reusable
Transform	the	actual	JavaScript	code	to	be	compatible	with	TypeScript

see more please visit: https://homeofpdf.com

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	

	

	

see more please visit: https://homeofpdf.com

	Title Page
	Copyright and Credits
	Hands-On Functional Programming with TypeScript

	Dedication
	About Packt
	Why subscribe?
	Packt.com

	Foreword
	Contributors
	About the author
	About the reviewers
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Functional Programming Fundamentals
	Is TypeScript a functional programming language?
	The benefits of functional programming
	Introducing functional programming
	Pure functions
	side-effects
	Referential transparency
	Stateless versus stateful
	Declarative versus imperative programming
	Immutability
	Functions as first-class citizens
	Lambda expressions
	Function arity
	Higher-order functions
	Laziness
	Summary

	Mastering Functions
	Function types
	Named and anonymous functions
	Function declarations and function expressions

	Working with function parameters
	Trailing commas in function arguments
	Functions with optional parameters
	Functions with default parameters
	Functions with rest parameters
	Function overloading
	Specialized overloading signature

	Function scope and hoisting
	Immediately-invoked functions
	Tag functions and tagged templates
	Summary

	Mastering Asynchronous Programming
	Callbacks and higher-order functions
	Arrow functions

	Callback hell
	Promises
	Covariant checking in callback parameters

	Generators
	Asynchronous functions – async and await
	Asynchronous generators
	Asynchronous iteration (for await…of)
	Delegating to another generator (yield*)

	Summary

	The Runtime &#x2013; The Event Loop and the this Operator
	The environment
	Understanding the event loop
	Frames
	Stack
	Queue
	Heap
	The event loop

	The this operator
	The this operator in the global context
	The this operator in the function context
	The call, apply, and bind methods

	Summary

	The Runtime &#x2013; Closures and Prototypes
	Prototypes
	Instance properties versus class properties
	Prototypal inheritance
	Prototype chains and property shadowing
	Accessing the prototype of an object

	Closures
	Static variables powered by closures
	Private members powered by closures

	Summary

	Functional Programming Techniques
	Composition techniques
	Composition
	Partial application
	Currying
	strictBindCallApply
	Pipes

	Other techniques
	Point-free style
	Recursion
	Pattern matching

	Summary

	Category Theory
	Category theory
	Functors
	Applicative
	Maybe
	Either
	Monads

	Summary

	Immutability, Optics, and Laziness
	Immutability
	Optics
	Lenses
	Prisms

	Laziness
	Summary

	Functional-Reactive Programming
	Reactive programming
	Functional programming versus functional-reactive programming
	The benefits of functional-reactive programming

	Working with observables
	The observer pattern
	The iterator pattern
	Creating observables
	Creating observables from a value
	Creating observables from arrays
	Creating observables from events
	Creating observables from callbacks
	Creating observables from promises

	Cold and hot observables

	Working with operators
	Pipe
	Max
	Every
	Find
	Filter
	Map
	Reduce
	Throttle
	Merge
	Zip

	Summary

	Real-World Functional Programming
	Working with Ramda
	Composition
	Partial application and currying
	Lenses

	Working with Immutable.js
	Working with Immer
	Working with Funfix
	Summary

	Functional Programming Learning Road Map
	Beginner
	Advanced beginner
	Intermediate
	Proficient
	Expert
	Summary

	Directory of TypeScript Functional Programming Libraries
	Functional programming
	Category theory
	Laziness
	Immutability
	Optics and lenses
	Functional-reactive programming
	Others
	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

