
see more please visit: https://homeofbook.com

A	Practical	Guide	to	Wireshark	Network	Analysis
	

	

Copyright©Alasdair	Gilchrist	2015

	

see more please visit: https://homeofbook.com

	

	

	

see more please visit: https://homeofbook.com

Wireshark	–	Practical	Analysis	and	Forensics
	

	

What	is	Wireshark?

	

Wireshark	is	an	open	source,	network	protocol	analyzer	for	Linux	and	Windows.	It	has
many	features	as	standard	such	as	deep	inspection	of	hundreds	of	protocols,	live	capture
and	offline	analysis.	Wireshark	has	an	intuitive	GUI	frontend	plus	many	inbuilt	sorting
and	filtering	options	making	it	very	simple	to	use	even	for	beginners.	Tshark	is	the
terminal	version	of	Wireshark	which	is	very	similar	to	Tcpdump.

	

How	does	it	work?

	

Wireshark	works	simply	by	placing	the	network	card	on	the	machine	on	which	it	is
running	into	what	is	called	promiscuous	mode.	In	this	more	of	operation	the	network	card
will	accept	any	network	information	not	just	information	specifically	addressed	to	itself,
which	is	the	normal	mode	of	operation.

In	a	hub	network,	which	is	rare	these	days,	this	will	be	sufficient	as	all	network	traffic	will
be	send	out	every	port	on	the	hub	thereby	ensuring	that	the	Wireshark	network	card	would
receive	all	traffic	traversing	the	network.	Today’s	modern	networks	are	not	hubs	though,
they	are	switches,	which	means	only	traffic	destined	for	a	host	station	known	to	be
connected	on	a	port	is	send	out	that	port.	This	greatly	reduces	unnecessary	traffic	on	the
network.	Unfortunately,	this	means	that	Wireshark	will	not	receive	all	the	traffic	on	the
network	as	it	will	only	see	traffic	exiting	the	switch,	which	is	destined	for	its	own	directly
connected	network	card.

	

Port	Mirroring

	

The	solution	to	the	switched	network	dilemma	is	to	use	a	technique	on	the	switch	to
mirror	traffic	from	all	the	ports	on	the	switch	out	the	port	connecting	the	Wireshark
network	card.	By	doing	this	Wireshark	will	then	see	all	the	network	traffic.

	

Downloading	Wireshark

	

Wireshark	is	available	for	free	download	here:

	

https://www.wireshark.org/download.html

see more please visit: https://homeofbook.com

https://www.wireshark.org/download.html

	

The	latest	stable	version	at	time	of	writing	(May	2015)	is	1.12.4

	

There	is	also	a	video	introduction	to	Wireshark	here:

	

https://www.wireshark.org/video/wireshark/introduction-to-wireshark/

	

Getting	Started

	

The	first	thing	to	do	before	starting	to	capture	packets	on	a	network,	is	to	make	sure	you
have	permission,	running	Wireshark	on	your	company	network	without	permission	is	not
a	good	idea.	However	if	you	have	permission	then,	first	select	one	or	more	of	the	interface
cards	on	the	machine	running	Wireshark	to	be	the	capturing	interface.	This	is	done	from
the	Wireshark	applications	front	page	(Start)	or	from	Capture	Options	directly	below	Start.
Clicking	on	the	default	Capture	Options	will	give	you	this	screen:

	

	

Select	the	interface	and	a	capture	filter	if	required.	It	is	best	to	enter	a	capture	filter
because	if	you	do	not	you	will	capture	absolutely	everything	on	the	wire	which	is	going	to
be	overwhelming.	Wireshark	is	very	flexible	and	there	are	many	inbuilt	filters	available,
by	clicking	on	the	Capture	Filter	button	you	will	see	many	filters	that	can	be	customized
to	suit	your	purposes.	For	example	you	can	select	a	protocol	to	be	captures	such	as	TCP	or
UDP,	traffic	from	a	given	machine’s	IP	address	or	MAC	address,	ignore	broadcasts,	or	a
combination	of	all	three.

	

Capturing	Packets

	

Once	the	network	interface	has	been	configured	and	optionally	a	filter	applied	click	start
and	the	packets	will	soon	start	to	be	listed.	Click	on	the	stop	capture	button	on	the	ribbon
at	the	top	when	you	wish	to	terminate	the	capture.

	

see more please visit: https://homeofbook.com

https://www.wireshark.org/video/wireshark/introduction-to-wireshark/

Color	Coding

	

Wireshark	color-codes	the	packets	on	the	screen	so	that	you	can	easily	differentiate
between	protocols	and	even	different	streams.	By	default	green	is	TCP,	light	blue	UDP,
and	black	is	packets	with	problems	such	as	out	of	order.

	

Filtering	Output

	

Once	you	have	captured	your	traffic	you	can	refine	what	is	displayed	using	the	filter
option	at	the	top	of	the	page.	Filtering	will	limited	what	is	displayed	and	is	very	handy	for
isolating	traffic	of	interest.	For	example	in	the	image	below	a	filter	has	been	applied	to
limit	the	displayed	traffic	to	be	only	traffic	from	or	to	host	192.168.5.217

	

	

	

Using	Wireshark	Sample	Source	Files

	

If	you	have	no	traffic	on	a	network	or	you	do	not	have	permission	to	capture	traffic	you
can	alternatively	learn	how	to	use	Wireshark	using	the	many	sample	capture	files	on	the
Wireshark	Wiki	page.

	

However,	in	the	examples	that	follow,	we	are	going	to	show	you	how	to	analyze	some
sample	captured	files	that	really	show	what	you	can	do	with	Wireshark	once	you	start	to
apply	forensic	analysis.

	

The	sample	files	that	we	are	going	to	use	in	the	following	forensic	analysis	tutorials	you
can	find	here:

	

	

	

see more please visit: https://homeofbook.com

	

	

	

	

	

	

	

	

	

	

	

	

A	-	Ping.pcap

	

1.												What	type	of	ICMP	traffic	is	shown	in	this	capture?

	

	

The	type	of	ICMP	traffic	in	the	traffic	scan	is	ICMP	echo	ping	requests	(type	8)	and	echo
ping	replies	(type	0)	this	can	be	determined	by	analyzing	the	ping.pcap	with	Wireshark	or
a	similar	protocol	analyser,	as	shown	above.

In	the	main	information	panel,	we	can	see	that	the	protocol	on	view	is	ICMP	(Internet
Control	Message	Protocol)	and	the	information	section	shows	the	message	types	to	be
echo	request	and	replies	between	192.168.5.208	and	192.168.5.217	though	they	are
carrying	non-standard	ICMP	payload.

	

see more please visit: https://homeofbook.com

	

2.	What	is	the	number	of	the	first	frame	that	indicates	that	something	funny

might	be	going	on?

	

	

The	first	indication	that	something	might	not	be	all	it	seems	is	at	frame	number	13.	Prior
to	this	point	the	ping	requests,	both	request	and	replies	were	a	uniform	size	of	98	bytes.
From	Frame	13	onwards	the	echo	request	and	reply	packets	no	longer	followed	any
uniformed	pattern,	in	some	cases	the	replies	were	much	larger	than	the	requests,	for
example	the	response	to	echo	request	13,	takes	14	–	16	packets	to	deliver.	This	was	an
indication	that	something	more	than	standard	ping	test	data	is	being	carried	within	the
payload	of	the	ICMP	packets.	Also	from	the	pcap	file,	we	can	see	in	Wireshark	that	the
identifier	and	sequence	changes	in	frame	13,	which	is	also	indicative	of	a	covert	channel
being	established.

	

3.	What	is	the	application	layer	protocol	that	is	hidden	within	the	ICMP	traffic?

	

	

see more please visit: https://homeofbook.com

The	application	layer	protocol	that	is	hidden	within	the	ICMP	payload	and	being	tunneled
through	ICMP	echo	request/replies	is	SSH.	This	can	be	seen	from	frames	15	onwards
when	the	client	is	negotiating	security	protocols	with	the	Linux	server.

	

4.	What	tool	most	likely	generated	this	‘malicious’	traffic?

	

	

The	most	likely	tool	used	to	generate	this	type	of	tunneled	traffic	over	ICMP	is	Ping
Tunnel,	which	establishes	a	covert	connection	between	two	remote	computers	(a	client
and	proxy),	using	ICMP	echo	requests	and	reply	packets	to	establish	a	covert	channel
between	a	client,	a	proxy	and	a	destination	machine.

Ptunnel	accomplished	this	by	using	its	own	packet	format	shown	below:

	

Magic
No

Dest	IP Port State Ack Length Sequence Rsv Data
….

	

The	Magic	number	is	used	to	identify	this	packet	as	a	pTunnel	packet.	The	reason	they
have	this	identifier	is	to	differentiate	them	from	normal	ping	(ICMP	echo	request/replies)
packets.	Therefore,	to	identify	the	pTunnel	covert	channel	we	need	to	be	able	to	find	this
magic	number	within	the	payload	of	our	ping	trace.

The	well-known	signature	for	pTunnel	according	to	Snort	IDS	and	Cisco	is	Hex	d5	20	08
80.	By	filtering	for	hex	values	for	Hex	values	of	d5	20	06	80	in	Wireshark	we	can	see	that
frames	13	onwards	have	this	pTunnel	signature	in	the	payload	indicating	that	this	is	indeed
a	pTunnel	channel.

	

see more please visit: https://homeofbook.com

	

5.	What	is	the	‘true’	destination	of	the	ICMP	traffic	generated	from	192.168.5.208?

	

If	we	consider	the	pTunnel	packet	header:

	

	

Magic
No

Dest	IP Port State Ack Length Sequence Rsv Data
….

	

We	can	see	that	the	tunnel	destination	IP	follows	the	magic	number	of	d5	20	08	80,
therefore	we	need	to	look	for	the	hex	numbers	directly	following	the	magic	number	in	our
trace.

	

	

	

	

The	true	destination	for	the	traffic	tunneled	over	ICMP	is	found	in	frame	13.	This	where
the	tunnel	is	established,	and	the	true	destination	IP	address	follows	the	pTunnel	magic

see more please visit: https://homeofbook.com

number	(magic	number	d5	20	08	80).	Therefore,	if	we	look	for	a	packet	with	HEX	value
of	d5	20	08	80	the	first	packet	we	find	is	in	frame	13	and	following	the	magic	number	is
the	IP	address	of	the	true	destination	(the	tunnel	end-point)	which	is	ac	10	0f	8a.	This
converts	via	a	hex	to	decimal	convertor	to	172.16.15.138

	

	

6.	What	is	the	session	identifier	for	each	packet?	(answer	in	hex,	2	bytes)

	

The	session	identifier	for	each	packet	is	dependent	on	the	protocol	flows,	initially	prior	to
the	tunnel	being	established	the	session	identifier	was	determined	by	the	BE	identifier
value	in	the	ICMP	packet	or	it	can	be	seen	in	the	Wireshark	frame,	as	id=0x0754.
However	at	frame	13,	as	the	covert	pTunnel	channel	is	established	the	identifier	changes
to	id=0xe59c,	which	is	shown	in	the	screenshot	below.

	

	

	

	

B	-	Scan.pcap

	

1.	What	tool	is	generating	this	traffic?

	

This	is	the	output	from	a	network	discovery	scanner,	which	can	step	through	every	address
in	a	network/subnet	in	sequence	to	discover	hosts	within	that	network	range.	The	tool	can
discover	what	hosts	are	present	and	on	what	addresses.

	

see more please visit: https://homeofbook.com

	

	

This	particular	tool	appears	to	be	Nmap	as	it	sends	reset/ack	back	to	the	host	to	prevent	the
three-way	handshake	completing	this	is	a	typical	network	signature	for	Nmap.	To	confirm
this	you	can	string	search	for	Nmap	within	Wireshark	and	Nmap	is	revealed	in	frame
42699	and	42700.

	

	

	

2.	What	is	the	frame	that	indicates	the	something	strange	might	be	going	on?

	

The	first	indicate	of	unusual	behaviour	is	the	obvious	ping	request	scans	starting	from
10.20.0.110	to	hosts	on	the	192.168.10.0	subnet	starting	at	frame	8.

see more please visit: https://homeofbook.com

	

	

	

3.	What	does	this	frame	constitute	the	beginning	of?	(What	type	of	Scan?)

This	scanning	behaviour,	of	stepping	through	a	subnet	in	sequence	is	the	typical	signature
of	a	Network	discovery	scan.	Nmap	is	a	network-scanning	tool	that	is	used	to	discover
hosts	on	a	network	or	subnet.	Nmap	can	use	many	different	scanning	techniques	but	in	the
initial	scan	shown	it	is	the	beginning	of	a	simple	ICMP	ping	request/reply	scan	to	discover
what	IP	addresses	have	active	hosts	listening	and	responding.

	

4.	The	‘miscreant’	then	runs	two	scans	beginning	just	after	six	minutes	and	24

minutes	into	the	trace,	however,	these	traces	weren’t	to	his/her	liking	as	they

were	too	slow.	On	the	following	scans,	a	switch	was	removed	from	the

command	to	improve	the	speed,	what	was	this	switch	(just	the	letters,	case-sensitive)?

	

We	cannot	answer	this	question	by	just	tracing	through	the	scan.pcap	file	in	Wireshark,
there	is	just	too	much	noise	–	normal	network	traffic	-	and	simultaneous	Nmap	scans
running	for	us	to	isolate	and	identify	individual	Nmap	traffic.

Therefore,	what	we	have	to	do	is	try	to	filter	and	isolate	individual	Nmap	scans	by
applying	display	filters	to	Wireshark.

	

The	display	filters	that	we	will	apply	in	sequence	will	conform	to	specific	and	commonly
used	Nmap	scan	criteria.	Unfortunately,	there	are	many	Nmap	configurations	possible	but
if	we	start	with	the	most	commonly	applied	scan	switches,	we	should	be	able	to	identify
which	ones	were	used	due	to	the	6	minute	and	24	-	minute	information	that	we	have.	This
is	our	starting	point.

	

In	order	to	do	this	however	we	must	understand	the	common	Nmap	configurations	used

see more please visit: https://homeofbook.com

when	scanning	a	network.

	

Nmap	–sT	(this	is	the	TCP	connect	or	Vanilla	scan,	which	established	a	full	three-way
handshake)

	

The	display	filter	we	use	in	Wireshark	is	(ip.dst	==	10.0.20.110	and	ip.proto	==	6	and
tcp.flags	==	18)

	

	

By	scanning	through	the	files,	till	we	reach	the	24	minute	reference,	we	discover	that	a
Nmap	scan	forced	a	SYN,	ACK	response	from	the	scanned	host	in	response	to	a	SYNC
from	the	Nmap	host,	which	indeed	start	just	after	24	minutes,	as	can	be	seen	in	the
timestamps	above.

	

The	next	Nmap	scan	to	look	for	is	the	SYNC	stealth	scan,	-sS,	and	we	can	filter	the	pcap
file	in	Wireshark	using	this	filter:

ip.proto	==	6	and	tcp.flags	==	2

	

see more please visit: https://homeofbook.com

	

Another	Nmap	switch	we	could	try	is	Nmap	–sP,	using	a	Wireshark	filter	of

Ip.proto	==	1

	

This	is	the	ICMP	echo	request	scan,	which	we	saw	earlier	at	the	very	beginning	of	the
pcap	trace.	However	it	runs	at	14	seconds	to	1	minute,	before	restarting	at	4	minutes	and
running	to	11	minutes,	so	that	again	is	not	the	scan	we	are	looking	for.

	

Another	common	Nmap	switch	config	is	–sU,	which	uses	UDP	as	the	scanning	protocol.

	

	

What	we	can	see	in	the	filtered	–sU	traffic	is	that	the	scan	starts	at	4	minutes	and	runs	till
it	is	stopped	and	the	–sU	switch	removed	at	10	min,	43	seconds.

	

see more please visit: https://homeofbook.com

However	if	we	are	looking	for	a	switch	being	removed	after	the	24	min	scan	starts	to	run,
and	performance	is	judged	to	be	poor,	then	we	have	to	look	past	the	24	min	threshold.

	

What	we	do	find	though	is	that	at	27	minutes	a	new	scan	starts	using	the	Nmap	–sS	stealth
switch.	Prior	to	the	27	minute	the	Nmap	scan	is	using	a	SYNC	sent	to	the	hosts	and	the
host	port	if	closed	returns	a	RST,	ACK	as	shown	below,	should	a	port	be	open,	then	the
host	returns	a	SYN,	ACK.

	

A	Closed	Port:

	

	

An	Open	Port:

	

	

	

This	is	typical	of	the	Nmap	–sT	full	handshake	TCP	connection	scan,	which	started	at	24
minutes.

	

However,	at	27	minutes	we	see	this;

	

	

see more please visit: https://homeofbook.com

	

	

The	thing	to	note	here	is	the	difference	in	the	timestamp,	there	is	a	noticeable	gap	between
packets	being	sent	between	frame	40042	and	40043,	which	could	indicate	a	change	of
criteria.	Furthermore,	when	we	follow	the	stream	we	get	this:

	

	

For	example,	a	SYNC	is	sent	but	if	the	port	is	closed	the	packet	is	dropped,	there	is	no
RST,	ACK	returned	and	this	speed	things	up	considerably.

	

	

	

5.	What	switch	was	added	to	the	final	scan	(case-sensitive)?

	

The	final	switch	applied	was	Nmap	–sS	at	27	minutes	and	47	seconds,	as	shown	below.

Therefore	the	last	scan	that	is	done	is	to	remove	the	switch	for	client	reply	of	RST,	ACK	
(-sT),	which	is	part	of	the	Nmap	–sT	full	connection	scan	at	frame	40043	at	27	minutes
and	47	seconds.

	

However,	there	is	also	a	case	for	an	xmas	scan	as	one	is	detected	starting	just	as	the	trace
ends	as	shown	below:

	

see more please visit: https://homeofbook.com

	

However,	there	is	insufficient	data	to	consider	this	a	genuine	scan	as	the	pcap	ends	at	30
mins	just	as	this	scan	starts.	The	evidence	for	this	being	an	Nmap	xmas	lies	in	the	fact	that
the	TCP	flags	were	set	for	FIN,	PSH	&	URG	which	is	a	classic	fingerprint	for	the	Nmap
xmas	scan.

	

	

	

	

C	–	Malicious.pcap

	

1.	What	was	the	complete	URI	of	the	original	web	request	that	led	to	the	client

being	compromised?

	

The	first	thing	we	have	to	do	is	get	some	clue	where	to	start	looking	here	for	suspicious
activity.	We	can	do	this	using	an	IDS	that	can	take	a	pcap	file	as	an	input	and	analyse	the
file	just	as	if	it	was	reading	the	packets	from	the	wire.	Or,	we	can	use	Wireshark	to	filter
out	and	display	any	requested	downloads.	For	example	if	we	run	the	filter:
(ip.src==10.20.0.165)	&&	(http.request.method==GET)	&&	(ip.dst==10.20.0.111)	we
should	be	able	to	see	what	files	have	been	downloaded.

	

see more please visit: https://homeofbook.com

	

The	result	is	that	we	have	at	frame	4647	the	URL	http://10.20.0.111:8080/banking.htm	and
this	gives	us	a	starting	point	for	our	analysis.

	

2.	What	file	type	was	requested	in	the	final	web	request	to	the	malicious	server?

	

The	final	request	was	for	a	gif	file	gif89a	as	can	be	seen	when	we	follow	the	TCP
sequence	stream	(tcp.stream	eq	102)	between	10.20.0.165	and	10.20.0.111	starting	at	the
initial	compromise	URL	at	frame	4647.

	

	

3.	What	is	the	sha1	hash	of	the	afore-mentioned	file?

	

	

see more please visit: https://homeofbook.com

http://10.20.0.111:8080/banking.htm

There	is	no	information	on	the	SHA1	hash	for	this	file	–	GIF89a	–	but	we	can	reconstruct
it	using	the	data	in	the	pcap.

The	sha1	hash	of	the	file	gif89a	can	be	calculated	by	using	the	data	in	the	packet:

GIF89a………….!…….,………..D..;

then	convert	it	to	binary	and	save	it	as	banking.gif	and	using	an	online	tools	-	an	online
checksum	calculator	-	we	can	calculate	the	SHA1	value	by	using	an	online	SHA1
convertor,	such	as	Online	MD5	:

	

	

	

Therefore	the	SHA1	of	the	file	GIF68a	is	:

	

EA7DF583983133B62712B5E73BFFBCD45CC53736

	

	

	

	

4.	What	is	the	number	of	the	first	frame	that	indicates	that	the	client	has	been

compromised?

	

If	we	take	our	starting	point	as	being	frame	4647	the	time	of	the	compromise,	then	we	can
look	to	see	what	developed	after	that	point.

The	first	frame	that	shows	a	malicious	payload	is	frame	4722	as	10.20.0.165	(client)	it	is
connecting	to	destination	port	4444	on	10.20.0.111,	which	is	a	well-known	port	for
Metasploit	and	Trojans	using	an	HTTP	reverse	connection	exploit,	which	will	open	up	a
backdoor	into	10.20.0.165.

see more please visit: https://homeofbook.com

	

	

Port	4444	is	not	necessarily	a	security	risk	but	you	will	often	see	it	blocked	for	outbound
traffic	on	firewalls	for	precisely	this	reason,	that	malware	is	commonly	configured	to	use
it	in	reverse	connection	exploits.

	

5.	At	one	point,	the	malicious	server	sends	a	malicious	file	to	the	client.	What

type	of	file	is	it?

	

If	we	consider	the	pcap	scan	starting	at	frame	4726	and	using	Wireshark	TCP	stream	to
filter	the	packets.

	

	

We	can	see	that	the	malicious	code	was	sent	just	after	the	start	point	of	the	compromise	at
frame	4726,	immediately	after	the	TCP	three-way	handshake,	which	had	been	initiated	by
the	client	10.20.0.165.	Furthermore,	the	client	initiates	the	file-transfer	that	immediately
follows	the	successful	connection,	with	a	“Get	banking.htm”	request	and	the	file	is	sent	by
the	server	10.20.0.111	to	the	client	10.20.0.165.	What	is	notable	is	the	remark	in	the

see more please visit: https://homeofbook.com

details	of	the	stream	content	taken	from	the	data	payload	in	frame	4726	that	alerts	us	to	the
fact	that	a	script	is	executable:

	

‘This	program	cannot	be	run	in	DOS	mode’.

	

The	next	thing	we	can	do	now	is	to	export	all	objects	that	have	been	downloaded	by	going
to	Wireshark	->	file	->	export	objects	->	http.	This	will	provide	us	with	a	list	of	all	objects
downloaded	using	HTTP.	We	can	then	look	at	the	banking	files	that	have	been
downloaded	and	processed	and	check	them	against	an	anti-virus	or	run	sha1	hash	checks
on	them.	Alternatively,	we	can	export	our	Wireshark	tcp-stream	to	a	pcap	file	and	then
analyse	that	file.

	

The	steps	we	need	to	take	are:

	

												In	Wireshark	Go	to	frame	4722	–	Analyse	–	Follow	tcp	stream
												Then	when	tcp-stream	104	is	displayed,	go	to	File,	Export	specified	packets
												Save	the	exported	packets	to	a	file	called	analysis.pcap

	

At	this	stage,	a	file	analysis.pcap	will	contain	only	the	packets	from	the	tcp-stream
relevant	to	the	malicious	file	download.

	

The	next	stage	is	to	verify	if	the	file	is	malicious	and	we	can	do	this	by	running	the	file
through	an	online	anti-virus	software	application	such	as	VirusTotal.

	

see more please visit: https://homeofbook.com

	

However,	using	the	directly	exported	files	from	the	objects	download	from	Wireshark,	the
file	banking.htm%3fUOjiXfyAbAISuH	gave	us	similar	results.

	

	

	

The	follow	further	details	were	available	through	the	details	tab:

	

see more please visit: https://homeofbook.com

	

Therefore,	after	our	analysis	we	can	confidently	say	that	the	type	of	file	downloaded	was	a
windows	executable	or	DLL	file	by	the	name	of	Banking.htm,	which	is	known	malware.

	

6.	What	is	the	sha1	hash	of	the	malicious	file?

	

The	sha1	hash	for	the	malicious	file	banking.htm	which	we	exported	earlier	from
Wireshark	is:

	

	

E184AC3FF41B2DA046E1BCC546E9DF7939C997BD

	

If	we	now	do	an	internet	search	for	files	with	this	SHA1	hash	we	are	directed	to:

	

https://malwr.com/analysis/OGIxMzhiODRjNjk5NDhkNThkNjNiNzU0NTUwNTUxNDM/

	

The	Malware	site	has	this	information:

	

FILE	NAME banking.htm.8B5A693B.html

FILE	SIZE 12612	bytes

FILE	TYPE HTML	document,	ASCII	text,	with	very	long	lines

see more please visit: https://homeofbook.com

https://malwr.com/analysis/OGIxMzhiODRjNjk5NDhkNThkNjNiNzU0NTUwNTUxNDM/

MD5 a576776febc36992086fe9a7d2662836

SHA1 e184ac3ff41b2da046e1bcc546e9df7939c997bd

	

The	Malware	site	also	identifies	as	having	these	signatures:
									Identified	as	malware	by	at	least	one	Anti-virus	on	Virus	Total	as	being
malicious
									Steal	private	information	from	local	internet	browsers
									Installs	itself	for	autorun	at	Windows	startup

	

7.	What	vulnerable	software	is	exploited?

	

The	vulnerable	software	exploited	is	the	agent	in	the	browser	Mozilla	4.0	which	we	can
see	in	frame	4650	with	the	data	showing	user-agent	mozilla	4.0	in	Internet	Explorer	6.0.

	

	

As	we	saw	with	the	earlier	Anti-Virus	and	Malware	analysis	the	vulnerabilities	lie	with
SHELLCODE	and	POLICY	PE	EXE	or	DLL	Windows	file	downloads.

	

	

	

8.	Can	you	give	the	corresponding	CVE	security	bulletin	that	covers	the

vulnerability	here	that	was	exploited	(answer	in	form	of	CVE-$year-$number).

	

The	CVE	security	bulletin	for	this	exploit	was	a	well	know	Internet	Explorer	5	exploit
known	as	CVE-2010-0249	and	is	also	known	as	EXP/CVE-2010-0247.A.3,
JS/Kryptik.AFR	Trojan	amongst	other	names	by	online	virus	scanner	VirusTotal.	Other

see more please visit: https://homeofbook.com

anti-virus	products	also	consider	it	to	be	based	on	the	CVE-2010-0247	exploit.

	

	

	

	

	

9.	From	the	capture,	it	is	clear	that	the	attacker	gets	a	certain	form	of	access	(i.e.

the	interface),	what	(type	of)	access	does	the	attacker	“get”	on	the	client?

	

JS/Exploit.CVE-2010-0249.F	is	viewed	as	a	malicious	Trojan	that	can	change	the	settings
of	the	important	files	and	registry	on	the	host	computer.	Users	may	encounter	several
unfamiliar	things	when	they	start	up	their	system.	The	trojan	will	run	automatically	in	the
background	taking	advantage	of	its	auto-start	feature	and	It	will	eat	up	the	system
resources	and	slow	down	the	PC	performance.	The	Exploit.CVE-2010-0249.F	will	help
hackers	to	record	the	web	searching	history	and	collect	privacy	data	such	as	private
information,	account	details,	and	even	your	email	or	account	password.	Those	records	will
be	used	for	further	marketing	purpose	by	third	party.

Additionally	the	CVE-2010-0249	exploit	can	create	backdoors	and	reverse	connections	to
allow	remote	control	of	the	computer	for	instance	by	using	VNC	and	other	remote	client
software.

	

	

	

	

	

	

A-portscan.cap

													

For	this	first	challenge,	You	have	been	provided	with	a	PCAP	file	that	contains

transactions	from	two	hosts.	One	of	the	hosts	is	performing	a	port	scan	against

another.	Your	goal	is	to	determine	the	open	ports	on	the	server.	(You	should	list

each	port	in	numerical	order	and	indicate	the	default	protocol	that	usually	uses

that	port,	if	any)

see more please visit: https://homeofbook.com

	

By	using	Wireshark	we	can	configure	the	display	filter	tcp.flags.syn	==	1	and	tcp.flags.ack
==	1	against	the	pcap	file	to	filter	only	those	host	ports	that	returned	an	open	indication	by
sending	a	sync/ack	return	as	part	of	the	TCP	three	way	handshake.	This	would	eliminate
all	the	closed	ports	and	list	all	the	open	responsive	ports:

	

	

In	the	Wireshark	display	above	we	can	see	the	replies	from	the	scanned	machine
192.168.223.172	to	the	machine	doing	the	scanning	192.168.223.171,	however	as	we	have
our	display	filter	set	to

Tcp.flags.sync	==	1	and	tcp.flags.ack	==	1,	we	are	only	seeing	those	packets	that	are
returning	SYNC,	ACK	as	part	of	the	three	way	handshake	that	indicates	a	port	is	open,
listening	and	available	to	complete	the	connection.

	

However	to	display	the	port	numbers	in	their	own	column	and	resolve	the	service	we	need
to	add	two	new	columns	to	Wireshark	default	setup.	We	do	this	by	going	to	Edit	->
Preferences	->	Column.

	

Then	add	new	column,	and	add	Field	types;	src-port	(unresolved)	for	the	port	number	and
src-port	(resolved)	to	obtain	and	display	the	service.

	

Consequently,	we	can	determine	all	the	open	ports	on	192.168.223.172	by	listing	the	open
port	numbers	and	services	that	replied	with	a	SYN/ACK.	Additionally	we	can	sort	the
columns	in	ascending	or	descending	order	by	right	clicking	on	the	column	header,	and
choosing	options	from	a	drop	up	box	–	as	shown	below.

	

see more please visit: https://homeofbook.com

	

	

However	to	arrange	and	export	the	data	from	the	columns	for	reporting	etc,	we	can	export
the	Wireshark	data	into	Excel	via	a	CSV	file.

To	do	this	we	have	to	do	the	following:

	

												Go	to	File	->	Export	Packet	Dissections	->	Save	as	CSV
												Name	the	file	and	save	as	.CSV	extension
												Open	Excel	and	select	->	Open	File
												Open	the	CSV	file	and	Excel	will	prompt	you	to	continue	as	it	is	not	in

Excel	format,	select,	Ok
												Excel	will	pop	up	the	Text	Import	Wizard,	Select	defaults,	and	press	next
												In	Text	Import	Wizard	step	2	–	select	comma	as	the	delimiter,	you	will	see	a

screen	like	this:

	

see more please visit: https://homeofbook.com

	

												Press	Finish
												The	formatted	data	will	appear	in	an	Excel	spreadsheet	which	you	can	then

manipulate	to	create	a	table	like	the	one	below.

	

The	full	list	of	open	ports	and	their	corresponding	services	are	listed	below,	not	all	ports
have	a	dedicated	service.

	

Service Src	Port

ftp 21

ssh 22

telnet 23

smtp 25

domain 53

http 80

sunrpc 111

netbios-
ssn 139

microsoft-
ds 445

exec 512

login 513

shell 514

rmiregistry 1099

ingreslock 1524

nfs 2049

scientia-

see more please visit: https://homeofbook.com

ssdb 2121

mysql 3306

distcc 3632

postgresql 5432

rfb 5900

x11 6000

ircu 6667

ircs-u 6697

8009 8009

8180 8180

msgsrvr 8787

43607 43607

52878 52878

56166 56166

59563 59563

	

	

	

	

	

	

	

A-deep.cap

													

For	your	final	challenge,	you’ve	been	giving	a	capture	file	and	you	need	to	find	a

password	hidden	inside	a	text	file	somewhere	within	the	capture.	(you	might

see more please visit: https://homeofbook.com

have	to	perform	a	few	more	steps	in	between,	to	get	the	text	file	?)

	

In	this	pcap	trace,	we	can	see	straight	away	that	this	is	an	802.11	protocol	(wireless
network)	traffic	scan.

	

Furthermore,	within	the	packet	details	we	can	see	that	it	is	using	WEP	encryption	and	in
order	to	decipher	the	payload	details	we	will	need	to	crack	the	WEP	key.

This	fortunately	is	relatively	straightforward	as	WEP	is	a	weak	form	of	encryption	that	can
be	relatively	easily	cracked.	Therefore,	by	using	Aircrack-ng	we	can	open	up	Aircrack-ng
gui	and	use	the	deep.cap	file	as	the	input.	This	results	with	Aircrack-ng	quickly	returning
the	WEP	key	as	being:

see more please visit: https://homeofbook.com

28:E6:6B:E9:D3:B6:20:95:DD:E9:2F:BE:37

We	can	now	use	this	WEP	key	in	Wireshark	to	decrypt	the	deep.cap	802.11	packets
payload	by	entering	this	WEP	key	in	the	802.11	preferences	–	profile	–	802.11	section	and
this	will	allow	Wireshark	to	decrypt	and	display	the	payload	in	clear	text.

Once	we	have	decrypted	the	packet	payloads	within	the	deep.cap	trace	we	see	information
displayed	such	as	User	Joe	and	Jgaa’s	Fan	Club	FTP	Service	in	frames	31	and	29
respectively,	and	this	shows	us	that	the	WEP	key	is	now	working	and	decrypting	the
packets.

see more please visit: https://homeofbook.com

Now	that	we	have	successfully	cracked	the	WEP	encryption,	the	next	stage	is	to	find	the
password	file,	and	we	can	do	this	by	scanning	through	the	trace	until	we	reach	frame	152
where	we	see	a	file	name	Flag4.zip.

In	order	to	clear	away	a	lot	of	the	noise	we	can	adjust	Wireshark	to	only	display	TCP
streams	and	then	we	can	clearly	see	our	FTP	conversation	as	well	as	some	email
especially	one	IMF	message	at	frame	105840.

see more please visit: https://homeofbook.com

This	message	is	from	Metalman@carolinacon8.com.	We	can	decrypt	the	IMF	message	by
clicking	on	the	Wireshark	decrypt	WEP	tab	at	the	bottom	of	the	data	display.	Moreover,
what	we	see	is:

An	email	from	metalman	to	crashman,	subject	Yo	…,

Is	this	right?

dGhlIHBhc3N3b3JkIGlzIGJvc3Rvbk1BMTk3Nwo=

We	now	want	to	examine	that	string	of	characters	so	we	highlight	the	string	in	Wireshark.

Then	the	packet	can	be	exported	using	File	->	‘export	selected	packet	bytes’	and	we	save
it	as	the	default	raw	data,	calling	it	‘password’.

see more please visit: https://homeofbook.com

mailto:Metalman@carolinacon8.com

If	we	then	open	the	file	password,	we	will	have	the	data	string	available	to	manipulate.
And	the	first	thing	we	want	to	do	is	to	convert	it	from	Base64	to	Ascii	in	a	decoder	and
when	we	do	we	get	returned:

“the	password	is	bostonMA1977”

So	we	now	know	the	password	for	the	Flag4.zip	file	and	that	reveals	a	file	Flag4.txt

And	within	Flag4.txt		will	be	the	password.

To	do	that	we	have	to	find	the	actual	zip	file	flag4.zip	and	extract	it	from	the	pcap	file.	We
do	this	by	looking	first	for	the	flag4.zip	file	and	we	can	see	from	our	decrypted	WEP
Wireshark	file	that	it	is	found	in	frame	159.

see more please visit: https://homeofbook.com

We	scroll	down	and	select	the	data	from	the	TCP	packet,	as	shown	above	and	then	go	to
file	->	export	specific	packets	Bytes.	Then	we	save	the	raw	output	to	a	file	named
something	like	password.zip	on	the	desktop.	We	then	have	a	captured	flag4.zip	file	called
password.zip,	which	we	can	now	open	using	Winzip,	and	we	are	prompted	for	a	password.

	

	

	

see more please visit: https://homeofbook.com

We	enter	the	previous	discovered	password	‘	bostonMA1977	‘,	and	we	find	the	flag.txt
file,	opening	it	we	discover	the	real	password:

bostonmarathon2012

	

	

	

	

	

	

see more please visit: https://homeofbook.com

