

see more please visit: https://homeofbook.com

 2

By
Chris Rose

Foreword by Daniel Jebaraj

see more please visit: https://homeofbook.com

 3

Copyright © 2014 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: Peter Shaw

Copy Editors: Suzanne Kattau and Courtney Wright

Acquisitions Coordinator: Jessica Rightmer, senior marketing strategist, Syncfusion, Inc.

Proofreader: Graham High, content producer, Syncfusion, Inc.

I

see more please visit: https://homeofbook.com

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

The Story behind the Succinctly Series of Books ... 8

About the Author ..10

Chapter 1 Introduction ...11

Chapter 2 Creating a CUDA Project ..12

Downloading the Tools ...12

Visual Studio 2012 Express ...12

CUDA Toolkit ...12

Device Query ...13

Creating a CUDA Project ..14

Text Highlighting ...21

Timeout Detection and Recovery ...22

Chapter 3 Architecture ..28

Kernels, Launch Configurations, and dim3 ...29

Kernels ..29

Restrictions on Kernels ..29

Launching a Kernel ..30

Threads, Blocks, the Grid, and Warps ..31

Threads ...31

Thread Blocks ..32

Grid ..32

Warps ..33

Device Memories ..33

Registers ...35

see more please visit: https://homeofbook.com

 5

Shared Memory ...36

Caches ..36

Local Memory ..37

Constant Memory ..37

Texture Memory ...39

Global Memory ..40

Memories Summary ...40

Chapter 4 First Kernels ..42

Adding Two Integers ..42

Function Qualifiers ...43

CUDA API Memory Functions and cudaError_t ...44

Copying Data to and from the GPU ..45

Vector Addition Kernel ...46

Recursive Device Functions ...50

Chapter 5 Porting from C++ ..52

C++ Host Version ...52

CUDA Version ..55

Tips and Tricks ...60

Chapter 6 Shared Memory ...62

Static and Dynamic Allocation ..62

Statically Allocated Shared Memory...62

Dynamically Allocated Shared Memory ..63

Using Dynamic Shared Memory as Multiple Data ..64

CUDA Cache Config ..64

Parallel Pitfalls and Race Conditions ..65

Read-Modify-Write ...67

see more please visit: https://homeofbook.com

 6

Block-Wide Barrier ...70

Atomic Instructions ..71

Shared Memory Banks and Conflicts ..72

Access Patterns ...74

Chapter 7 Blocking with Shared Memory ...77

Shared Memory Nearest Neighbor ...77

Chapter 8 NVIDIA Visual Profiler (NVVP) ..80

Starting the Profiler ...80

General Layout ..81

Occupancy ...83

Register Count ...85

Shared Memory Usage ..86

Unguided Analysis ..86

Kernel Performance Limiter ...87

Kernel Latency ...88

Kernel Compute ...89

Kernel Memory ..90

Memory Access Pattern ...91

Divergent Execution ...93

Other Tools ..93

Details Tab ..93

Metrics and Events ..94

Chapter 9 Nsight ..96

Generating Profiling Reports ..96

Debugging ..98

CUDA Info Window ..99

see more please visit: https://homeofbook.com

 7

Warp Watch Window ... 100

Chapter 10 CUDA Libraries ... 103

Libraries: Brief Description ... 103

CUDA Random Number Generation Library (CURAND) .. 104

Host and Device APIs .. 104

Thrust ... 110

Basic Vector Manipulations .. 110

Sorting with Thrust ... 112

Transformations, Reductions, and Stream Compaction ... 114

Conclusion .. 118

More Information ... 119

see more please visit: https://homeofbook.com

 8

 The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

see more please visit: https://homeofbook.com

 9

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

see more please visit: https://homeofbook.com

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 10

About the Author

Christopher Rose is an Australian software engineer. His background is mainly in data mining
and charting software for medical research. He has also developed desktop and mobile apps
and a series of programming videos for an educational channel on YouTube. He is a musician
and can often be found accompanying silent films at the Majestic Theatre in Pomona,
Queensland.

see more please visit: https://homeofbook.com

 11

Chapter 1 Introduction

CUDA stands for Compute Unified Device Architecture. It is a suite of technologies for
programming NVIDIA graphics cards and computer hardware. CUDA C is an extension to C or
C++; there are also extensions to other languages like FORTRAN, Python, and C#. CUDA is
the official GPGPU architecture developed by NVIDIA. It is a mature architecture and has been
actively developed since 2007. It is regularly updated and there is an abundance of
documentation and libraries available.

GPGPU stands for general-purpose computing on graphics processing units. General purpose
programming refers to any programming task that performs computations rather than standard
graphics processing (CUDA is also excellent at graphics processing). Because graphics cards
were originally intended to process graphics, there are very good reasons to want to harness
their processing power for solving other problems. The most obvious reason is that they are
extremely powerful processing units and they can take a lot of the workload off the CPU. The
GPU often performs processing simultaneously with the CPU and is very efficient at certain
types of computation—much more efficient than the CPU.

Parallel programming has become increasingly important in recent years and will continue to
increase in importance in the coming years. The core clock speed of a CPU cannot increase
indefinitely and we have almost reached the limit in this technology as it stands today. To
increase the core clock speed of a CPU beyond the 3.5 GHz to 4.0 GHz range becomes
increasingly expensive to power and keep cool. The alternative to increasing the clock speed of
the processor is simply to include more than one processor in the same system. This alternative
is exactly the idea behind graphics cards. They contain many hundreds (even thousands) of
low-powered compute cores. Most graphics cards (at least the ones we will be programming)
are called massively parallel devices. They work best when there are hundreds or thousands of
active threads, as opposed to a CPU which is designed to execute perhaps four or five
simultaneous threads. CUDA is all about harnessing the power of thousands of concurrent
threads, splitting large problems up, and turning them inside out. It is about efficiently using
graphics hardware instead of just leaving the GPU idle while the CPU struggles through
problems with its handful of threads.

Studying CUDA gives us particular insight into how NVIDIA’s hardware works. This is of great
benefit to programmers who use these devices for graphics processing. The view of the
hardware from the perspective of CUDA tends to be at a much lower level than that of a
programmer who uses the GPUs to only produce graphics. CUDA gives us insight into the
structure and workings of these devices outside the verbose and often convoluted syntax of
modern graphics APIs.

This book is aimed at readers who wish to explore GPGPU with NVIDIA hardware using CUDA.
This book is intended for folks with at least some background knowledge of C++ since all of the
code examples will be using this language. I will be using the Visual Studio Express 2012
integrated development environment (IDE) but the examples should be easy to follow with the
2010 or 2013 versions of Visual Studio. Chapter 9 focuses on Nsight which is only applicable to
Visual Studio Professional editions, but the Express edition of Visual Studio will suffice for all the
other chapters.

see more please visit: https://homeofbook.com

 12

Chapter 2 Creating a CUDA Project

Downloading the Tools

Visual Studio 2012 Express

Before starting any CUDA project, you need to ensure that you have a suitable IDE installed
(this step can be skipped if you already have Visual Studio Express or Professional installed).
Download and install Visual Studio 2012 Express. The code examples and screenshots in this
book are all based on this IDE unless otherwise specified. The steps for creating a CUDA
project for Visual Studio 2010 and 2013 are almost identical, and these IDEs should also be
usable without any changes in my instructions. Visual Studio 2012 Express is available for
download from the Microsoft website here, and Visual Studio 2013 Express is available for
download here.

CUDA Toolkit

Before downloading and installing the CUDA toolkit, you should make sure your hardware is
CUDA-enabled. CUDA is specific to systems running with NVIDIA graphics hardware. AMD
graphics cards, Intel, or any other graphics hardware will not execute CUDA programs. In
addition, only relatively modern NVIDIA graphics cards are CUDA-enabled. The GeForce 8
series cards from 2006 were the first generation of CUDA-enabled hardware. You can check if
your hardware is on the following list of CUDA-enabled devices on the NVIDIA developer
website here.

Once you are certain your hardware is CUDA-enabled, download and install the latest CUDA
toolkit. You may like to register as an NVIDIA developer to receive news about the latest CUDA
releases and CUDA-related events, and to get early access to upcoming CUDA releases. The
toolkit is available from the NVIDIA developer website here.

Be sure to download the version of the toolkit that is appropriate for the environment in which
you will be developing. The CUDA toolkit requires a download of around 1 GB in size so the
download may take some time. The version I will be using is the Windows Desktop version for
64-bits. We will not be programming any 64-bit specific code, so the 32-bit version would also
be fine. The toolkit comes with many code samples, developer drivers for the graphics card, as
well as the libraries required to code CUDA. Be sure to install Visual Studio before installing the
CUDA toolkit as it adds the CUDA features to the IDE.

Run the downloaded file in a manner suitable for the platform on which you have downloaded it
and be sure to follow any instructions given to install the toolkit correctly.

Once you install the CUDA toolkit, I encourage you explore the installed folder. We will refer to
this install folder and its libraries and headers many times while programming CUDA. If you do
not change the install path during installation, the default folder that the toolkit installs to is as
follows:

see more please visit: https://homeofbook.com

http://www.microsoft.com/en-us/download/details.aspx?id=34673
http://www.visualstudio.com/products/visual-studio-express-vs
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-downloads

 13

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v6.5

Where the C: is the main system drive and v6.5 is the version of the toolkit you installed.

Device Query

Before we begin a CUDA project, it is probably a good idea to get to know the hardware against
which you will be programming. CUDA is low level; it is designed with very specific hardware in
mind. Throughout the course of this book, many references are made to specific capabilities
and metrics of the CUDA devices we will be programming. The CUDA toolkit installs a samples
package containing a multitude of examples—one of which is called Device Query. This is a
very handy application which prints interesting information about your installed hardware to a
console window. Depending on the version of the CUDA toolkit you download, the
DeviceQuery.exe program may be located in several different places. It is included as part of
the CUDA samples, and you can find it by clicking the Samples icon in the NVIDIA program
group and locating DeviceQuery.

The application can also be downloaded and installed separately from the NVIDIA website here.

Figure 2.1: Device Query Output

see more please visit: https://homeofbook.com

http://docs.nvidia.com/cuda/cuda-samples/index.html#device-query

 14

Tip: You may find that when you run deviceQuery.exe, it opens and closes too quickly to

read. Open the folder containing the deviceQuery.exe file in Windows Explorer. Hold down

Shift and right-click a blank space in the folder. You should see an option to Open

command window here in the context menu. Clicking this will open a command window in

which you can type “deviceQuery.exe” to run the program, and the window will not close

automatically.

Figure 2.1 is the output from Device Query for the device I used throughout this book.
References to various metrics such as the maximum number of threads per streaming
multiprocessor (SM) can be found for your hardware by examining the output from Device
Query. Where I refer to a particular value from Device Query in the text, you should look up the
values for your own hardware. If you open Device Query as described previously, you might
want to keep it open and minimized while working through this book for reference.

Creating a CUDA Project

CUDA is initialized the first time a CUDA runtime function is called. The CUDA runtime is a
collection of basic functions for memory management and other things. To call a CUDA runtime
function, the project needs to include CUDA.h and link to the CUDA Runtime Library,

CUDART.lib.

To create our first project, open a new solution in Visual Studio 2012 Express, choose C++ as
the language, and use an empty project. Once the project is created, right-click on the project's
name in the Solution Explorer and click Build Customizations as per Figure 2.2. If you are
using Visual Studio 2013, the Build Customizations option is under the submenu labeled Build
Dependencies.

see more please visit: https://homeofbook.com

 15

Figure 2.2: Build Customizations

This will open the Build Customizations window. Select the check box beside CUDA x.x
(.targets, .props) as shown in Figure 2.3. Selecting this build customization will cause Visual
Studio to use the CUDA toolset for files with a .cu extension, which are CUDA source files.
CUDA kernels (functions designed for the GPU) are written in .cu files, but .cu files can contain
regular C++ as well. Once you have selected the CUDA x.x(.targets, .props) build
customization, click OK to save your changes.

Figure 2.3: CUDA 5.5 (.targets, .props)

see more please visit: https://homeofbook.com

 16

Next, we can add a CUDA source file to our project. Right-click on the project in the Solution
Explorer, click Add, and then click New Item in the context menu as per Figure 2.4.

Figure 2.4: Adding a Code File

Click C++ File (.cpp) and name your file. I have called mine Main.cu as shown in Figure 2.5.

The important thing is to give the file a .cu extension instead of the default .cpp. Because of the
build customization setting, this code file will be sent to the NVIDIA CUDA C Compiler
(NVCC).The NVCC compiler will compile all of the CUDA code and return the remaining C++
code to the Microsoft C++ compiler.

see more please visit: https://homeofbook.com

 17

Figure 2.5: Adding a .cu File

Next, we need to ensure that Visual Studio is aware of the directory where the CUDA header
files are located; this will likely be the same on your machine as it is on mine (depending on
whether or not you changed the directory during installation). If you are using Visual Studio
Professional, the paths may already be set up but it is always a good idea to check. Open the
properties of the project by clicking Project in the menu bar and selecting Project Name
Properties (where Project Name is the name of your project). Click VC++ Directories in the left
panel and click the expand arrow beside the Include Directories entry in the right-hand panel.
Click Edit in the menu that appears; this will allow you to specify paths which Visual Studio
should search for headers, included with triangle braces (< and >). See Figure 2.6 for reference.

Figure 2.6: Properties for Including Directories

see more please visit: https://homeofbook.com

 18

In the Include Directories dialog box, click the New Folder icon and locate the CUDA toolkit
include folder on your computer. It will most likely be in a location similar to C:\Program
Files\NVIDIA GPU Computing Toolkit\CUDA\v5.5\include as shown in Figure 2.7. When you
click Select Folder, you will be presented with the box in Figure 2.8. Click OK once you have
selected your folder.

Figure 2.7: CUDA Toolkit include Directory

Figure 2.8: Click OK

Once this path is added, the CUDA include directory will be searched with the other standard
include paths when Visual Studio locates headers included with the right-angle brackets (< and
>).

see more please visit: https://homeofbook.com

 19

Next, we need to specify where the CUDA library files are (that’s the static link “lib” libraries).
You may not need to specify where the CUDA library folder is located, depending on whether or
not the CUDA installer automatically registered the folder where the CUDA libraries are
installed. Unless you have specified a different directory when installing the CUDA toolkit, the
library files will most likely be located in a place similar to the headers. Select Library
Directories, click the drop-down arrow on the right, and click Edit as per Figure 2.9.

Figure 2.9: Properties for Library Directories

Figure 2.10: CUDA Library Directory

There are two library directories; one is for 32-bit projects and the other is for 64-bit projects.
Select the one that is appropriate for your present solution platform. Remember, the CUDA
version number and exact path may be different on your machine from the following examples.

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.5\lib\Win32

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v5.5\lib\x64

Once the library directory is added, we need to link to the CUDA runtime library: a file called
CUDART.lib. Expand the Linker, and then select Input from the left panel of the Project

Properties page. Type $(CUDAToolkitLibDir)\CUDART.lib; into the Additional

Dependencies box. You can add the CUDART dependency to the beginning or to the end of
the list but be careful not to delete all of the standard Windows library dependencies.
Remember to click Apply to save these changes, and then click OK to close the box as per
Figure 2.10. Later, when we link to other libraries, the steps are the same. For instance, to link
to the curand.lib library, you would add $(CUDAToolkitLibDir)\CURAND.lib; to the

additional dependencies.

see more please visit: https://homeofbook.com

 20

Tip: You can actually just supply the name of the library if the path is already known to

Visual Studio. For example, you can type CUDART.lib; instead of the longer

$(CUDAToolkitLibDir)\CUDART.lib.

Figure 2.10: CUDA Runtime Library

Now that we have added the include path and the runtime library, we are ready to write some
CUDA code. Initially, we can test that the Include directory and the link to CUDART.lib are
working by writing the source code in Listing 2.1 into the .cu file we previously added to our
project.

#include <iostream>
#include <cuda.h> // Main CUDA header
using namespace std;
int main() {
cout<<"Hello CUDA!"<<endl;
return 0;
}

Listing 2.1: Basic CUDA Program

Debug your project by pressing F5 or clicking Start Debugging in the Debug menu. Listing 2.1
does not do anything with CUDA, but if the project builds correctly, it is a good indication that
everything is installed properly. The program will print the text “Hello CUDA!” to the screen.

see more please visit: https://homeofbook.com

 21

Note: Each version of CUDA is designed to work with one or more specific versions of

Visual Studio. Your platform toolset (Visual Studio version) may not be supported by

CUDA. You can change the platform toolset in the project’s properties but only if you

have other versions of Visual Studio installed. The platform toolset can be specified in the

Configuration Properties | General page of the project properties. In the Platform option, you

can see the versions of Visual Studio you have installed. To use other platform toolsets,

you need to install different versions of Visual Studio. The code in this text was built with

Visual Studio 2012 and the version of the platform toolset I used was v110.

Text Highlighting

It is very handy to have Visual Studio recognize that the .cu files are actually C++ source code
files. This way, we get all the benefits of code highlighting and IntelliSense while we program.
By default, Visual Studio Express is not aware that the code in these files is basically just C++
with a few CUDA extensions. Open the Visual Studio properties pages by clicking Tools and
then selecting Options from the menu.

Figure 2.11: Syntax highlighting for .cu files

To enable C++ syntax highlighting and IntelliSense code suggestions for .cu files, click Text
Editor and then File Extension in the panel on the left (see Figure 2.11). In the right panel,
type “CU” into the Extension box. Select Microsoft Visual C++ from the Editor drop-down list,
and then click Apply. These changes will be saved for future projects. Whenever a .cu file is
added to a project, Visual Studio will always use C++ colors and IntelliSense.

see more please visit: https://homeofbook.com

 22

You may notice that most of the CUDA keywords are underlined in red as if they were errors.
Visual Studio treats the .cu files as regular C++ but does not understand the CUDA keywords.
The CUDA keywords are understood by NVCC without any declaration. There are headers you
can include that define the keywords and help Visual Studio recognize them in the same
manner as regular code. The only necessary header for general CUDA C programming is the
CUDA.h header. The following headers shown in Listing 2.2 may also be included (all are
located in the same folder as cuda.h) as well as the #defines shown; this will enable kernel

highlighting and prevent Visual Studio from underlining CUDA keywords as errors.

#define __cplusplus
#define __CUDACC__

#include <iostream>
#include <cuda.h>
#include <device_launch_parameters.h>
#include <cuda_runtime.h>
#include <device_functions.h>

Listing 2.2: Suggested Headers and Defines

Note: Programs can be built with or without these additional headers but Visual Studio

reports all undefined symbols as errors. When a program has legitimate errors and fails

to compile, the CUDA symbol errors can number in the hundreds. This makes it very

difficult to know which errors reported by Visual Studio are real errors and which are

undefined CUDA symbols. For this reason, it is usually better to include the headers in

Listing 2.2 (or whatever headers define the keywords in your code) even though they are

optional.

Timeout Detection and Recovery

Before we can compute intensive algorithms with the graphics card, we need to make sure the
system will not assume the device has stalled. Usually during graphics processing, the device
will compute a frame of graphics very quickly and respond to the operating system within 1/60 of
a second (if it is running application at 60 frames per second). When using the device for
general-purpose programming, we often expect computations to last for longer periods of time.
A CUDA kernel may execute in a fraction of a second but, depending on the complexity of the
computation, it might be expected to compute over a period of weeks.

The trouble is, when the device does not respond within two seconds, the operating system will
assume the device has stalled while computing graphics. The operating system will reset the
graphics driver, returning the user back to Windows or worse. At best, this will result in the
user's screen turning off, the program crashing, and then the screen turning back on. But it can
also result in the system resetting without safely shutting down any running applications.

see more please visit: https://homeofbook.com

 23

We can change the amount of time the operating system allows the device by setting the
TdrLevel and TdrDelay keys in the Windows Registry. The “Tdr” stands for timeout detection

recovery. These registry keys are used to set the amount of time Windows will wait for the
device to respond before it assumes it has stalled. They can also be used to turn off timeout
detection altogether.

The program RegEdit.exe is used to alter the Windows Registry keys. To run RegEdit.exe,
press and hold the Windows key and press R to open the Run dialog (the Windows key is in the
lower left corner of your keyboard; it has an image of the Windows logo on it). Type “regedit” in
the Open box as per Figure 2.12, and click OK. You may be prompted with the User Account
Control box; if you are, click Yes to allow Registry Editor to make changes to the system. If you
do not have administration rights to the system, you will need to contact your administrator
before proceeding.

Figure 2.12: Windows Run Dialog

Warning: Be careful when using the RegEdit.exe program. The Windows Registry contains
many keys that are important to the operation of the system. Save a backup of your registry
before making changes by using the File > Export option or create a system restore point.

see more please visit: https://homeofbook.com

 24

Figure 2.13: Registry Editor

When you open the Registry Editor application, you'll see a display similar to a regular file-
browsing window as shown in Figure 2.13. We need to ensure two keys, TdrLevel and

TdrDelay, exist in the graphics driver’s registry settings and have values suitable for our use.

The path to reach the graphics driver’s keys can be found at

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\GraphicsDrivers

Click the HKEY_LOCAL_MACHINE folder in the left-hand panel, and then click the System
sub-folder and continue in this manner until you find the GraphicsDrivers subfolder. Your
screen should look similar to Figure 2.14.

see more please visit: https://homeofbook.com

 25

Figure 2.14: GraphicsDrivers Subfolder

You may have different keys in the GraphicsDrivers subfolder and you may already have the
TdrLevel and TdrDelay keys. If these keys already exist, you can skip the next step (where we

will create them) and jump to Figure 2.17 where we modify the keys.

Figure 2.15: Adding a New Key

see more please visit: https://homeofbook.com

 26

To add a new key to the registry, right-click the GraphicsDrivers folder in the left panel, click
New and then select DWORD (32-bit) Value from the context menu. This will add a new key to
the registry, which is a 32-bit integer. The key will initially be called New Value #1 or something
similar. Rename the key TdrLevel by right-clicking it and selecting Rename from the context

menu as per Figure 2.16.

Figure 2.16: Renaming a Variable

Add another 32-bit integer key called TdrDelay using the same steps. Once the keys are
added, you can edit their values by right-clicking their name and selecting Modify from the
context menu as per Figure 2.17.

Figure 2.17: Modifying a Value

If the keys already exist, then all you need to do is modify the values. When you select Modify
as shown in Figure 2.17, you will be presented with the Edit DWORD dialog (see Figure 2.18).
You can then type a new value for the key in the Value data text box, selecting either
hexadecimal or decimal as your base using the Base options.

Figure 2.18: Editing a Value

see more please visit: https://homeofbook.com

 27

For a complete description of all the settings for the TDR keys, visit the MSDN Dev Center at
http://msdn.microsoft.com/en-us/library/windows/hardware/ff569918%28v=vs.85%29.aspx.

The TdrLevel key can be set to any of four values; we are only concerned with two of these:

 0—Detection disabled. This is the most convenient for CUDA programming; it means
that the system will never detect a timeout and reset the driver.

 3—Recover on timeout. This is the default setting. The driver will reset if it takes longer
to respond than the number of seconds specified in the TdrDelay key.

By default, the settings are 3 and 2 for TdrLevel and TdrDelay, respectively. This means that

Windows will give the device two seconds and, if it does not respond, it will reset the driver. To
allow more time (for instance, 60 seconds), set the TdrLevel variable to 3 and set the number

of seconds (which is the value of the TdrDelay variable) to 60 (as per Figure 2.19).

Figure 2.19: Example TDR Variable Settings

Instead of allowing some amount of time before Windows should reset the driver, we can turn
off timeout detection altogether by setting the TdrLevel key to 0. This means that no matter
how long the device takes to respond, the driver will never be reset. This is the most convenient
setting when you are CUDA programming—and it is the setting that I have used throughout this
book.

see more please visit: https://homeofbook.com

http://msdn.microsoft.com/en-us/library/windows/hardware/ff569918%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff569918%28v=vs.85%29.aspx

 28

Chapter 3 Architecture

We are about to run quickly through many terms which must be understood in order for CUDA
to be appreciated. It is natural to be confused by this onslaught of terms. If this chapter is
confusing, read it and the next chapter a few times, code the examples in Chapter 4, and
examine the effect of changing the code. All of these concepts are connected and one cannot
be described without knowing the others.

The GPU is called the device; the CPU and the rest of the system are called the host. The host
is in control of the system memory and other peripheral hardware, including the device itself.
The device has its own architecture and memory, often (but not always) separate from the
system memory. The device is not able to control things such as hard drives, system RAM, or
any other peripherals; this is all the domain of the host.

In computer systems where the device is on-board (i.e. included as part of the original build
hardware and not added as an expansion card of some kind), it may share some of the main
system memory. In these circumstances, the operating system and graphics driver may partition
some of the system memory for specific use by the device as graphics RAM. This memory
effectively becomes dedicated graphics RAM; it is programmed in exactly the same way as
physical graphics RAM. For the remainder of this book, however, I will assume that this is not
the case and that the device has its own dedicated memory.

The device communicates with the host through the PCI bus as shown in Figure 3.1.

Figure 3.1: Device and Host

All communication between the host and the device passes through the PCI bus. The host is
able to read and write its own system RAM as well as the device RAM through special CUDA
API function calls. The device can also read and write device RAM but it has an additional
hierarchy of other memory spaces, which we will examine in detail.

see more please visit: https://homeofbook.com

 29

The device RAM pictured in Figure 3.1 is often a special, fast type of DDR RAM (double data
rate) called graphics DDR (GDDR). This main memory area of the device is often quite large
(one or more gigabytes is not uncommon today). The amount of this device RAM is often cited
as “dedicated graphics RAM” in the specifications of a GPU. As mentioned, in systems without
dedicated graphics RAM, the device RAM will actually be a portion of system RAM and only
separated conceptually. Usually, the device’s RAM chips sit on the device itself and the only
communication channel to the host is the PCI bus socket on the motherboard the device is
plugged into.

Kernels, Launch Configurations, and dim3

Kernels

CUDA kernels are functions that are designed to be executed by the device. They usually differ
from regular host functions in that they are meant to be executed by many threads
simultaneously. The host tells the device to run kernels by using something called a kernel
launch. A kernel launch is similar to a regular C function call, only it has a launch configuration
beside the function’s name. Listing 3.1 shows a kernel launch.

SomeKernel<<<12, 64>>>(a, b, c);

Listing 3.1: Kernel Launch

The launch configuration (Listing 3.1) is described with triple right-angle brackets (<<< and
>>>); it configures the device’s execution units so the kernel’s code can be executed by many
threads. Here, the kernel would be launched with 12 blocks—each containing 64 threads; a, b

and c are the parameters. We will look at launch configurations in more detail momentarily.

Restrictions on Kernels

Kernels have a syntax almost identical to regular C++ or C but there are some restrictions.
Kernels cannot be recursive, they cannot have a variable number of arguments, and they must
return void. They are marked with the __global__ specifier and they are called by the host.

Not all device functions have to return void, only __global__ kernels have this restriction.

Helper functions, callable from the device and marked with __device__, need not return void.

As of Fermi (Fermi is the name of the architecture of NVIDIA devices from the GeForce 400
series), __device__ functions are allowed a limited depth of recursion as illustrated in Listing

4.6.

see more please visit: https://homeofbook.com

 30

Launching a Kernel

The launch configuration is specified after the kernel’s name in a kernel call. The launch
configuration can contain two or three parameters. The first two parameters specify the number
of blocks in the grid and the number of threads in each block (we will describe threads and
blocks shortly). The third parameter specifies the amount of dynamic shared memory.

Kernel_Name<<<gridSize, blockSize>>>(params…);

Kernel_Name<<<gridSize, blockSize, dynamic_Shared_Memory>>>(params…);

Kernel_Name is the name of the kernel function being launched. The gridSize parameter is

the number of blocks in the grid. And the blockSize parameter is the number of threads in

each block. The gridSize and blockSize parameters can be either dim3 (described next) or

regular integers.

dim3

The dim3 data type is a structure composed of three unsigned integers: x, y, and z. It is used to

specify the sizes of grids and blocks of multiple dimensions. It is also the data type of the idx

indices (i.e., threadIdx, blockIdx, blockDim, and gridDim) which are used by threads to

calculate unique IDs in kernels. In Listing 3.1, the launch configuration was specified using
integers; in Listing 3.2, the launch configuration is specified using dim3.

dim3 gridSize(10, 10, 10);
dim3 blockSize(32, 32);

Call_Kernel<<<gridSize, blockSize>>>(params...);

Listing 3.2: Multidimensional Kernel Launch

Listing 3.2 illustrates the code for a multidimensional kernel launch using dim3 structures for the

block and grid size. The launch configuration uses two dim3 structures to specify the

arrangement of threads in the grid. The gridSize parameter specifies that the grid is to be a

three-dimensional array of blocks, with dimensions 10, 10, and 10 (this means a total of 1,000

blocks will be launched). The blockSize parameter specifies that each block is to be composed

of a two-dimensional grid of threads with dimensions 32 and 32. This launch configuration will

result in a total of 1,000 blocks with 32 × 32 threads in each block, for a total thread count of
1,024,000 threads.

The number of blocks and threads launched by the host can exceed the physical capabilities of
the device. If your device is able to execute 768 threads per core and you have 16 cores, then
the device can potentially execute 16 × 768 threads in parallel. But this number (16 × 768 =
12,288) is only the number of blocks and threads the device can physically execute in parallel; it
is not a limit on the sizes specified by the launch configuration. The device has a scheduler
which allocates blocks to physical cores for execution. When a core finishes executing a block,
the scheduler will either give the core another block to execute or, if there are no more blocks to
be executed in the launch, the kernel will complete.

see more please visit: https://homeofbook.com

 31

The dim3 data type supplies constructors for defining single-dimension, 2-D, and 3-D instances

of the structure. The single-dimensional version (using a constructor with one parameter)
initializes a dim3 structure with only the X component set; the other dimensions default to 1. The

2-D constructor (which takes two operands) can be used to set the X and Y dimensions of a
dim3 structure and the Z dimension is set to 1. The 3-D constructor allows the programmer to

set all three dimensions.

Multidimensional grids and blocks are a theoretical construction provided to simplify
programming when data is inherently multidimensional. For instance, when working with a 2-D
image, it might be convenient to launch 2-D blocks of threads and have each thread work with a
single pixel.

Threads, Blocks, the Grid, and Warps

The device is a physical piece of hardware, a dedicated graphics card which plugs into the
motherboard of the computer. The device consists of some number of execution units called
streaming multiprocessors (SM). An SM has a collection of thread processors, a register file,
double precision unit, and shared memory. The SMs are capable of executing many threads
simultaneously, with the thread processor units each executing a different thread.

Threads

In parallel programming (and CUDA), a thread is a conceptual execution unit. It is a theoretical
object which executes a single line of serial instructions. Parallel programming is entirely based
on running concurrent threads. Instead of using a single thread to solve a problem, we can split
problems into separate subproblems and use multiple threads at once to solve the larger
problem. A single thread can be illustrated as an arrow with a squiggly tail as per Figure 3.2.
Each thread in CUDA has an index called threadIdx which, along with the blockIdx and

blockDim, can be read in the kernels and which is of type dim3.

Figure 3.2: A Thread

Note: Concurrency has a specific meaning in parallel programming. Concurrent threads

may or may not actually execute in parallel (at exactly the same time). The order that

threads execute is theoretically outside the programmer's control. Two threads are said

to be concurrent if they could potentially access the same variable at the same time, or if

it impossible to tell based on the code which of the threads will access first.

see more please visit: https://homeofbook.com

 32

Thread Blocks

In CUDA, we group threads together into thread blocks. A thread block is a collection of threads
which can easily communicate with each other. Each block has a block number (blockIdx)

which is unique within the grid and which is a dim3 type. Threads can use the blockIdx in

kernels as a reference to which block the thread belongs. Threads can also reference the
blockDim structure (also a dim3) which is a record of how many threads there are per block.

Figure 3.3: A Thread Block

Grid

When we launch a kernel, we specify a collection of thread blocks called a grid. A thread block
is a collection of threads and the grid is a collection of thread blocks. Figure 3.4 depicts a 2-D
grid of thread blocks.

Figure 3.4: A grid of thread blocks

There is a maximum number of threads per block allowed (1,024 on Fermi, and in the previous
example) but the maximum number of blocks per grid is very large. The total number of threads
that runs concurrently is the size of the grid multiplied by the size of each block in threads.
Threads can use the gridDim structure, which is a dim3, as a record of how many blocks the

grid contained when the kernel was launched.

see more please visit: https://homeofbook.com

 33

The extra layer of abstraction from threads to thread blocks means that, as new hardware
becomes available, it can execute more blocks simultaneously and the code need not be
changed. Threads within blocks have fast communication channels with each other but they
cannot easily communicate with threads of other blocks.

Warps

When the device executes a kernel, it splits threads into groups of 32, called warps. Each warp
contains 32 threads with consecutive threadIdx values. All threads of a warp are from the

same block.

The threads of a warp execute instructions in lockstep; this means they all execute the same
instruction at the same time unless there is a branch. If the threads are in a warp branch
(branching occurs when there is a condition such as an if statement and some threads take

one path while others take another path), the device executes the two paths for the branch in
serial. Managing the branching of threads within warps is an important consideration for
performance programming.

Warps are also an important consideration for resource management. As mentioned, warps
always consist of 32 threads, with consecutive threadIdx values from the same thread block.

Every warp allocates enough resources for all 32 threads whether or not there are 32 threads in
the block. This means, if the number of threads per block is less than 32, then the device will
allocate resources for a complete warp of 32 threads and some of the resources will be wasted.

Even if a thread block contains more than 32 threads, or if it consists of any number of threads
not evenly divisible by 32, then the block will waste resources in one of the warps. It is
recommended that thread blocks have a number of threads which is evenly divisible by 32.

Device Memories

There are many different types of memory in the GPU, each having a specific use along with
various limitations and performance characteristics. Figure 3.5 illustrates the theoretical
relationship between these memories. The two boxes marked “Block 0” and “Block 1” represent
thread blocks; there are usually many more than two of these running concurrently. Each block
has some amount of shared memory and a collection of threads. The threads each have access
to their own local memory and registers.

In addition to the memory spaces which blocks and threads access individually (i.e., the shared
memory, local memory, and registers), there are several memory spaces that all threads can
access. All threads and the CPU host have access to the global memory, the constant memory,
and the texture memory.

see more please visit: https://homeofbook.com

 34

Figure 3.5: Memory Hierarchy

Figure 3.6 shows a typical graphics card. A graphics card is a combination of hardware
including the GPU itself. It is common to refer to an entire graphics card as a GPU, but the GPU
is actually only the main chip on a graphics card, like the chip marked B in Figure 3.6. This
particular graphics card was designed by Gainward and features an NVIDIA GT 440. The heat
sink (which is a large fan for cooling the device) has been removed to better view the layout.

Examining the image in Figure 3.6, you will notice four horizontal and four vertical black
rectangles marked with an A. These rectangles are the device’s main graphics memory chips.
The device’s main memory is used for global, local, constant, and texture memory (all of which
will be explained shortly). Each of these memories also has associated caches, and the caches
are inside the GT 440 chip.

The NVIDIA GT 440 chip itself is marked B. It is a small black square sitting on a larger green
square. The SMs, including shared memory, caches, CUDA cores, and registers, are all located
inside the chip.

The golden pins marked with a C plug into the system’s motherboard. It is through these pins
that the host communicates with the device. There are two related terms, “on-device” and “on-
chip”. On-device means anywhere on the entire card, while on-chip means inside the GT 440
chip itself.

see more please visit: https://homeofbook.com

 35

Figure 3.6: Graphics Card

Registers

The fastest memory in the device is the registers. Registers are fundamental to the device and
have no address because they are not in any type of RAM. The registers are hardware
variables exposed to the programmer in software. They are essentially the workhorses of the
device. They are on-chip (which, again, means they are physically located inside the SM). The
SMs have a register file consisting of some limited number of registers which they can divvy out
to the concurrent blocks.

Note: All computations are performed in the registers. This fact is often hidden from the

programmer. There are no instructions which perform arithmetic, logic, or shifting on any

of the other memories. When the device executes an operation on data in another

memory space, it first copies the data into a register, then performs the operation on that

data before copying the results back to the original location.

Threads do not share registers; each thread is given its own collection of registers with which to
work. When the device runs out of registers, it causes what is called register spilling. The device
will use global memory for extra storage space. When global memory is used in this way, it is
called local memory. In this sense, local memory is not a distinct type of memory; it is the
device’s way of using global memory for extra storage when it runs out of registers. We will
discuss local memory in more detail later; it is used under other circumstances besides coping
with register spilling.

Tip: The value reported as “Total number of registers available per block” in Device Query

is the size of the register file per SM. To find the total number of registers available on

your device, multiply this by the number of SMs. For instance, with the GT 430 in this

see more please visit: https://homeofbook.com

 36

machine, the number of multiprocessors (SMs) is 2, and there are 32,768 registers per

block, so the total number of registers available on this device is 65,536.

To use a register in a kernel, you can simply declare a variable. If there are enough registers
free (i.e. there is no register spilling), this will result in the variable being stored in a register. If,
however, there are not enough registers free, the variable will be created in local memory and
will physically reside in global memory. The distinction between registers, local memory, and
global memory can be confusing. Generally speaking, you want to use as few registers per
thread as possible and avoid register spilling. Local memory is not a distinct type of memory; it
is a usage of global memory.

Shared Memory

Shared memory is shared between the threads of a block. It is very fast, running at almost the
same speed as the registers, and it is on-chip. Shared memory is the same physical memory as
the L1 cache for global memory (see the Caches section that follows). Shared memory is a way
for programmers to control the L1 cache in the device. We will examine it in detail in Chapters 6
and 7 since careful use of shared memory can improve the performance of code substantially.
Understanding shared memory is a big part of efficiently using the device.

Caches

On modern devices (from the Fermi generation and newer), there are two caches, L1 and L2.
These caches are controlled almost entirely by the device. The L1 cache is on-chip, so it is
exceptionally fast (only the registers are faster). The L2 cache is slower than the L1 cache but is
still much faster than global memory. All reads and writes within global memory, including data
copied from the host, gets processed in the L2 cache. When a thread makes a global memory
request, the device first checks to see if the request can be satisfied from the L1 cache and, if it
cannot, then the L2 cache is checked second. Only when neither of the caches can satisfy the
request is global memory read; this final read is the slowest type of read available.

Caches are an automatic memory optimization system which the device controls to help reduce
traffic on the global memory bus. The use of the caches by the device is fairly simple: when data
is read from global memory for the first time, it is stored in the L1 cache (usually). The device
assumes that the same data is likely to be requested again, and storing a copy in the L1 will
mean that if it is requested again, it can be read very quickly the second time. After a while, as
more and more values are stored in the L1, it eventually becomes full. At this point, when more
data is read from global memory, the L1 cache must evict the oldest (least likely to be read)
values and replace them with the newer data. Data evicted from the L1 goes to the L2 cache.

The L2 cache is much farther away from the chip than the L1 cache (leading to slower access
times) but it is still closer than using global memory. The L2 cache is much larger than the L1
cache (see Device Query for the actual sizes of these memories on your device) but,
unfortunately, must also eventually evict stale data in the same manner as the L1 cache.

As mentioned in the Shared Memory section, the L1 cache and shared memory are actually the
same physical memory. Shared memory is a way to control the L1 cache.

see more please visit: https://homeofbook.com

 37

Local Memory

Local memory is local to each thread. Data in local memory is not shared by any other threads
in the grid. Local memory is physically the same memory as global memory. There are two
circumstances under which global memory might be called local memory. Always remember
that local memory is not a distinct type of memory but, rather, it is a particular way of using
global memory.

The first circumstance under which global memory might be referred to as local memory is when
register spilling occurs. When we create local variables within a thread's code (with normal
variable declarations int j, float q, etc.), the device will assign these variables to a register

but only if there are enough registers available. If there are no registers available, then the
device will store the variable in global memory; this use of global memory is called local
memory. The term “local memory” refers to the fact that other threads are not meant to access
these variables. The variables are supposed to be local to each thread, just like the registers.
The partitioning of variables into registers and memory is automatic. Local memory is far slower
than the registers and you will generally want to minimize local memory usage as much as
possible. You can examine the amount of local memory a kernel uses by profiling your
application (see Chapter 8).

The second circumstance under which global memory will be used (and will be called local
memory) is when structures and arrays are used within a kernel. The device stores variables in
registers when it can, but structures and arrays require pointers in order to access their
elements. When the device accesses a particular element of a structure or an array, it uses a
base and offset pointer behind the scenes. This means that in order to use a structure or an
array in a kernel, the variables require addresses to which they can be pointed. Registers do not
have addresses so they cannot be used to store and access the elements of a structure or an
array. So, structures and arrays are stored in the device's global memory. Just like register
spilling, this usage of global memory is automatic and it is called local memory.

Constant Memory

Constant memory is a special memory on the device specifically designed for storing grid-wide
constants. Constant memory cannot be set by the device (hence its name) but the host can set
values in constant memory prior to calling a kernel (in this sense, it is not constant at all).
Constant memory is cached in its own cache, unrelated to the L1 and L2 caches present in
global memory.

Constant memory is very fast when all of the threads of a block read the same value (shared
memory speeds). To create a variable in constant memory, mark it as __constant__. Constant

memory is actually stored in global memory but, as mentioned earlier, because of its dedicated
cache, it can be accessed very fast.

Tip: Use C++ constants (i.e. the const keyword) if the value of a variable will never

change, and use __constant__ (device‘s constant memory) if the host needs the ability to

alter the variable during the program’s execution. C++ constants become immediate

values in machine code and do not take any cycles to read from memory (other than the

initial reading of the instruction). On the other hand, device constants require a read from

see more please visit: https://homeofbook.com

 38

the constant memory. Constant memory is fast when cached but not as fast as no read at

all.

If all of the threads of a warp do not access exactly the same value from constant memory, the
accesses will be serialized. If all threads of a warp do access exactly the same value, the
access will be extremely fast, the memory will be read once from the constant cache, and will be
broadcast to the threads. If the requested memory is not in the constant cache, then the first
read will be slow as the data must come from global memory; subsequent reads will result in a
fast cache hit.

The host can change the value of constant memory using the cudaMemcpyToSymbol API

function call. The syntax is as follows:

cudaError_t cudaMemcpyToSymbol(__constant__ devConst, const void* src_ptr,
size_t size);

The first parameter is a pointer to a __constant__ qualified device variable. The second

parameter is a pointer to the data to copy from the host, and the final parameter is the number
of bytes to copy.

Listing 3.3 contains an example of setting a device constant with the cudaMemcpyToSymbol

function and reading the value in a device kernel. We are skipping ahead a little and most of the
code in Listing 3.3 is completely new. We will not talk about constant memory again; this code is
provided as a reference. Do not feel that you should be familiar with these syntaxes as they will
be covered in the next chapter.

#include <iostream>
#include <cuda.h>

using namespace std;

// The device's scale constant
__device__ __constant__ float DEVICE_CONST_SCALE;

// This kernel scales values in arr by the constant:
__global__ void ScaleArray(float* arr, int count)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(idx < count) arr[idx] *= DEVICE_CONST_SCALE;
}

int main() {
// The host's scale constant
float scale;

// Arrays of floats for host and device
float arr[100], *d_arr;

// Generate random floats on the host:
cout<<"The unscaled array values are:"<<endl;

see more please visit: https://homeofbook.com

 39

for(int i = 0; i < 100; i++) {
 arr[i] = (float)(rand() % 1000) / 1000.0f;
 cout<<i<<". "<<arr[i]<<endl;
 }

// Read a scale value from the user:
cout<<"Enter a scale value:"; cin>>scale;

// Set this scale to the DEVICE_CONST_SCALE in constant memory
cudaMemcpyToSymbol(DEVICE_CONST_SCALE, &scale, sizeof(float));

// Malloc and copy the arr from host to device:
cudaMalloc(&d_arr, sizeof(float) * 100);
cudaMemcpy(d_arr, arr, sizeof(float) * 100, cudaMemcpyHostToDevice);

// Scale the values in the array on the device
ScaleArray<<<1, 100>>>(d_arr, 100);

// Copy the results back to the host and free
cudaMemcpy(arr, d_arr, sizeof(float) * 100, cudaMemcpyDeviceToHost);
cudaFree(d_arr);

// Cout the values to make sure they scaled:
cout<<"The scaled array values are:"<<endl;
for(int i = 0; i < 100; i++) cout<<i<<". "<<arr[i]<<endl;

return 0;

}

Listing 3.3: Writing and reading device constants

Note: In earlier versions of CUDA, the prototype for the cudaMemcpyToSymbol function was

very different to what it is now. Many of the online sources and tutorials still reference the

earlier function prototype which no longer works as expected. The original syntax

included a string as its first parameter; this string was the symbol’s name (e.g,

DEVICE_CONST_SCALE as previously shown in Listing 3.3). The use of strings to specify the

names of device symbols has been deprecated in more recent versions of the CUDA

toolkit.

Texture Memory

Texture memory is another special kind of memory. This memory belies the fact that the device
is designed to work with graphics. Texture memory is cached in its own cache (like the constant
memory), and is designed to store and index pixels in bitmap textures and images. Texture
memory has some interesting (and very useful) indexing abilities. For example, it is able to
automatically and very quickly interpolate several values from an array together or to normalize
an array to a consistent median. Texture memory uses device memory (global memory) but it
has its own cache.

see more please visit: https://homeofbook.com

 40

The access speed to texture memory works out the same as that of constant memory. If data is
cached, the read will be very fast; otherwise it must be read from global memory. For the
remainder of this book, we will not be addressing the use of texture memory in any of the
tutorials presented.

Global Memory

Global memory is the largest store of memory available on the device but is also the slowest to
access compared to the on-chip memories previously described. The cudaMemcpy,

cudaMalloc, and cudaMemset functions all reference global memory (we will learn more about

these functions in the next chapter). Global memory is cached with two levels of cache: L1 and
L2. Global memory is extremely important because the host is able to communicate with the
device via the use of global memory.

The general flow of a CUDA kernel is for the host to copy some data to global memory using the
CUDA API functions. The kernel is then executed by many threads at once which, in turn, reads
the data from global memory and places it into other memory spaces available on the device. A
result is then calculated and stored back in global memory. The host then copies the result from
global memory back to the system using the CUDA API functions.

Memories Summary

This section summarizes some of the key features of each memory area for convenience.
Figure 3.6 illustrates the memories in relation to the core of the SM (yellow box to the right). The
slowest memory is generally that which is furthest from the core of the SM. The left-hand side of
the diagram shows system memory; this memory must be copied to global memory over the
PCI bus using the CUDA API functions. The next slowest memories are those that reside in the
device's main memory storage; these include global memory, local memory, constant memory,
and texture memory. The global memory L2 cache is close to the SM but not on-chip. It is
illustrated in the diagram as being between the global memory and the SM. The memories on
the right-hand side are the fastest of all; they are all on-chip. The registers are the fastest
available of all the memories.

see more please visit: https://homeofbook.com

 41

Figure 3.6: Memories ordered by access speed

The following table summarizes some of the key aspects of the CUDA memory spaces. Global
memory speed is dependent on the current L1 and L2 cache usage and may not be slow at all.

Table 3.1: CUDA memories summary

Memory Scope Speed Notes

System Host - Device cannot read/write system RAM.

Registers Thread Very Fast Limited supply.

L1 Cache Block/SM Fast Device-controlled, same memory as shared memory.

L2 Cache Grid Slow Device-controlled, all global memory r/w goes through L2.

Shared Block Fast User-controlled L1 cache memory.

Texture Grid Slow/Fast Uses global memory but has its own cache.

Constant Grid Slow/Fast Uses global memory but has its own cache, read only.

Local Thread Slow Used for local variables when registers cannot be used.

see more please visit: https://homeofbook.com

 42

Chapter 4 First Kernels

Adding Two Integers

The project described in Listing 2.1 of Chapter 2 will serve as the template for later projects. All
of the code I present in this book should be placed in .cu files as described previously (unless
otherwise specified). These files should be placed in a project which links to the CUDA libraries
and appropriate CUDA headers as shown in Chapter 2.

Our first kernel will add two integers together on the device and return the resulting sum to the
host.

Tip: Type the code into your IDE instead of using copy and paste, especially for these early

examples. Copying and pasting code may paste some characters that are not what the

compiler expects.

#include <iostream>
#include <cuda.h>

using namespace std;

__global__ void AddInts(int* a, int *b) {
a[0]+=b[0];
}

int main() {
int a, b; // Host copies
int *d_a, *d_b; // Device copies

// Read some integers from the user
cout<<"Input a number? ";
cin>>a;
cout<<"And another? ";
cin>>b;

// Allocate RAM on the device
if(cudaMalloc(&d_a, sizeof(float)) != CUDA_SUCCESS) {
 cout<<"There was a problem allocating memory on the GPU"<<endl;
 cudaFree(d_a);
 cudaDeviceReset();
 return 0;
 }

if(cudaMalloc(&d_b, sizeof(float)) != CUDA_SUCCESS) {
 cout<<"There was a problem allocating memory on the GPU"<<endl;
 cudaFree(d_a);
 cudaFree(d_b);
 cudaDeviceReset();

see more please visit: https://homeofbook.com

 43

 return 0;
 }

// Copy host values to device
cudaMemcpy(d_a, &a, sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, sizeof(float), cudaMemcpyHostToDevice);

// Run kernel
AddInts<<<1, 1>>>(d_a, d_b);

// Copy results back to host
cudaMemcpy(&a, d_a, sizeof(float), cudaMemcpyDeviceToHost);

cout<<"The GPU addition results in "<<a<<endl;

// Free device memory
cudaFree(d_a);
cudaFree(d_b);

// Reset device and write performance indicators
cudaDeviceReset();
return 0;

}

Listing 4.1: Adding Integers

Listing 4.1 requests two integers from the user using std::cout and std::cin. It copies them

to the device and adds them together using a CUDA kernel. The result of the addition is copied
from device memory back to system memory and displayed to the user.

Tip: The console window opens and closes too quickly to read the results. To prevent the

window from closing, you can place a breakpoint on the return 0; statement at the end of

the main function. When a program is debugged, Visual Studio will pause execution when

it reaches the breakpoint on this line and it will give the programmer time to view the

output console.

Function Qualifiers

Functions can be designed to execute on the host, the device, or both. CUDA provides several
function qualifiers which are placed at the start of the function declaration and describe the
hardware on which the function is meant to be executed.

 __global__ Functions marked as __global__ are callable from the host but they run

on the device. They are CUDA kernels that the host calls. They cannot be recursive,
cannot have variable parameter lists, and they must return void.

see more please visit: https://homeofbook.com

 44

 __host__ Functions marked as __host__ are called and executed by the host.

These are perfectly normal C++ functions. __host__ is the default and, if a function has

no qualifiers at all (such as main in Listing 4.1), it is assumed to be a normal C++ host

function.

 __device__ Functions marked as device are called and executed on the device. They

are often helper functions for kernels. __device__ functions cannot be called from the

host. They can only be called from kernels or other device functions.

 __host__ __device__ Functions marked as both __host__ and __device__ will be

callable from the host or the device. This qualifier actually results in two functions being
compiled: one for the host and the other for the device. The host version is a perfectly
normal C++ function and is not able to alter the device’s memory. Likewise, the device
version of the function is a __device__ function and is not able to alter any host

variables. This qualifier is used to define helper functions that both the host and the
device might call.

CUDA API Memory Functions and cudaError_t

CUDA API functions return a cudaError_t which indicates if the call was successful. You can

check the return value of a CUDA API function against CUDA_SUCCESS to determine if a function

executed properly. There are many cudaError_t values the CUDA API can return. For a full

list, see the cuda.h header.

cudaError_t cudaMalloc((void**) devPtr, size_t size);

cudaMalloc allocates global memory on the device. The first parameter is the address of a

pointer to the allocated memory. If the call is successful, this pointer will be initialized to point to
the newly allocated memory on the device. The second parameter is the size, in bytes, to
allocate to the requested memory area.

cudaError_t cudaFree(void* devPtr);

This function frees memory previously allocated on the device. Memory should always be freed
on the device when it is no longer needed. The first parameter is the pointer previously allocated
in a cudaMalloc call; each call to free should always be matched by a preceding call to

Malloc.

cudaError_t cudaDeviceReset();

This function cleans up allocated memory and resets the state of the device. This function is
similar to the garbage collector in .NET applications: it tidies things up. But unlike the garbage
collector, the programmer must call this function explicitly. Once reset, the device can be
returned to its initialized state by calling any CUDA API function. Calling this function also
causes all the performance counters to be written by the device. If you are planning to profile a
kernel, or your CUDA code in general, then you should always make sure you call this function
before your program shuts down. This ensures the data is written correctly to the performance
counters for the profiler to use.

see more please visit: https://homeofbook.com

 45

cudaError_t cudaMemcpy(void* dest, void* src, size_t size, cudaMemcpyKind
direction);

This function copies memory from the src pointer (source) to the dest pointer (destination). The

size parameter is the size, in bytes, of the data to be copied. The final parameter specifies the

direction of the copy. The direction can be any one of the following:

 cudaMemcpyHostToHost

 cudaMemcpyHostToDevice
 cudaMemcpyDeviceToHost
 cudaMemcpyDeviceToDevice

The pointers supplied as dest and src must agree with the direction selected. For example,

using cudaMemcpyHostToDevice, the src pointer is a host pointer and the dest pointer is a

device pointer.

Copying Data to and from the GPU

The next example illustrates copying a block of data from the device to the host and using the
CUDA API function cudaMemset to zero the array. The cudaMemcpy function copies data over

the PCI bus to and from the device’s global memory. In the following example, the GPU is used
to clear an array of floating point values to 0.0f.

#include <iostream>
#include <cuda.h>

using namespace std;

int main() {
float values[100]; // CPU copy of an array
float* d_Values; // Pointer to device copy of values

// Print the initial values to screen
for(int i = 0; i < 100; i++)
 cout<<values[i]<<" "; // These will initially be random garbage

// Allocate RAM on the GPU the same size as the values
if(cudaMalloc(&d_Values, sizeof(float) * 100) != CUDA_SUCCESS) {
 cout<<"There was a problem allocating ram on the GPU"<<endl;
 return 0;
 }

// Set the GPU ram to 0, floats with all bits as 0 in IEEE are = 0.0f
if(cudaMemset(d_Values, 0, sizeof(float) * 100) != CUDA_SUCCESS) {
 cout<<"There was a problem setting the values to 0"<<endl;
 }
else {
 // Copy this array of 0s to the CPU's array of values
 if(cudaMemcpy(values, d_Values, sizeof(float) * 100,

see more please visit: https://homeofbook.com

 46

 cudaMemcpyDeviceToHost) != CUDA_SUCCESS) {
 cout<<"There was a problem copying the data from the GPU"<<endl;
 }
 }

// Free the GPU's array
cudaFree(d_Values);

// Print out the CPU's array to make sure they have all been set to 0.0f
for(int i = 0; i < 100; i++)
 cout<<values[i]<<" ";

cudaDeviceReset();

return 0;
}

Listing 4.2: cudaMemset

The new API function in Listing 4.2 is cudaMemset:

cudaError_t cudaMemset(void* devPtr, int value, size_t size);

This function can be used to set the elements of an array to some initial value. The first operand
is a device pointer to the data to be set. The second operand is the value to which you wish to
set each byte in the allocated memory, and the final operand is the size, in bytes, of the memory
area to set. The function sets the allocated memory to a byte-sized value, meaning its
usefulness for setting things such as floating point or integer values is quite limited—unless you
are initializing everything to 0.

There are several steps involved in clearing an array to 0 using the CUDA API. First, there must
be host and device copies of the same data. The host copy is called values[] in Listing 4.3 and

the device copy is called d_Values. Data is allocated on the device to be the same size as it is

on the host. It is then set to 0 with a call to cudaMemset and then the device memory is copied

over the PCI bus back to the host, again using the cudaMemcpy function.

Although Listing 4.3 illustrates a very basic use of the device (it would be far more practical to
simply zero the array with the host), the steps involved (i.e. copying data back and forth over the
PCI bus with cudaMemcpy) are very common in CUDA programming. Also very common is the

use of multiple pointers to point to host and device copies of the same data. Host pointers do
not point to sensible areas of the device and vice versa.

Vector Addition Kernel

The next example illustrates adding two floating point vectors together.

#include <iostream>
#include <ctime>

see more please visit: https://homeofbook.com

 47

#include <cuda.h>

using namespace std;

__global__ void AddVectors(float* a, float* b, int count)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if(idx < count) {
 a[idx] += b[idx];
 }
}

int main() {
// Number of items in the arrays
const int count = 100;

// CPU arrays
float a[count], b[count];

// Device pointers
float* d_a, *d_b;

// Set the random seed for rand()
srand(time(NULL));

// Set the initial values of the CPU arrays
for(int i = 0; i < count; i++) {
 a[i] = (float)(rand() % 100);
 b[i] = (float)(rand() % 100);
 }

// Allocate data on the device
if(cudaMalloc(&d_a, sizeof(float) * count) != CUDA_SUCCESS) {
 cout<<"Memory could not be allocated on the device!"<<endl;
 cudaDeviceReset();
 return 0;
 }
if(cudaMalloc(&d_b, sizeof(float) * count) != CUDA_SUCCESS) {
 cout<<"Memory could not be allocated on the device!"<<endl;
 cudaFree(d_a);
 cudaDeviceReset();
 return 0;
 }

// Copy from host to device
cudaMemcpy(d_a, &a, sizeof(float) * count, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, &b, sizeof(float) * count, cudaMemcpyHostToDevice);

dim3 gridSize((count / 512) + 1);
dim3 blockSize(512);
AddVectors<<<gridSize, blockSize>>>(d_a, d_b, count);

cudaMemcpy(&a, d_a, sizeof(float) * count, cudaMemcpyDeviceToHost);

see more please visit: https://homeofbook.com

 48

// Print out the results
for(int i = 0; i < count; i++)
 cout<<"Result["<<i<<"]="<<a[i]<<endl;

// Free resources
cudaFree(d_a);
cudaFree(d_b);
cudaDeviceReset();

return 0;
}

Listing 4.3: Adding vectors

Listing 4.3 defines two floating point arrays on the host, a and b. It sets the values of the arrays

to random integers using the srand and rand functions. It then copies the two arrays to the

device pointers d_a and d_b and calls a kernel called AddVectors. The kernel adds the values

from the b vector to the corresponding values in the a vector and stores the result in the a

vector. This is then copied back to the host and printed to the screen. Note the use of the dim3

parameters in the launch configuration and the launch of many threads at once.

The kernel illustrates a very common pattern and a major difference between coding with CUDA
and regular serial code. In serial code, the previous algorithm would be executed by a loop
similar to that shown in Listing 4.4.

for(int i = 0; i < count; i++) {
 a[i] += b[i];
 }

Listing 4.4: Serial vector addition

The serial version of the algorithm uses a loop to iterate through the two arrays, adding a single
element each iteration of the loop. The parallel version (as shown in the kernel from Listing 4.3)
uses multiple threads in place of a loop.

see more please visit: https://homeofbook.com

 49

Figure 4.1: Parallel Vector Addition

Figure 4.1 illustrates how the vector addition takes place on the GPU. The vector arrays a and b

(which are actually device pointers d_a and d_b passed to the kernel as parameters) are

illustrated as a series of vertically stacked boxes, each containing a random value originally
copied from the host. Each thread takes care of a single addition and all run at the same time
(execution is only simultaneous in theory, some threads may actually be scheduled to execute
after others. See the note that follows). The 20th thread adds together values a[20] and b[20],

and the 13th thread adds a[13] and b[13]. There is no loop; each thread calculates a unique

ID, called idx in Listing 4.3. The idx variable is used to index data elements from the array

which are particular to the thread.

Note: The devices we are programming are massively parallel. The sheer number of

parallel threads enables a GPU to outperform a CPU for many computations. But

depending on the number of threads in the grid, the device will often schedule thread

blocks to execute one after the other instead of simultaneously. The device does not have

unlimited resources; it executes as many blocks as resources permit, and it schedules

the remaining blocks for later execution as resources become available. Maximizing the

number of simultaneous threads involves a metric called occupancy. We will examine

how to view a kernel's occupancy with a profiler in Chapter 8.

see more please visit: https://homeofbook.com

 50

Calculating a unique ID for each thread (like the idx variable in Listing 4.3) is very common. We

often need to partition a problem into smaller subproblems so that each thread can tackle some
tiny bit of the whole problem. It is common that threads each work on some unique unit of the
problem, like the additions in Figure 4.1 where each thread performs a single addition. For
example, observe the following line.

int idx = threadIdx.x + blockIdx.x * blockDim.x;

This line calculates a unique thread ID. The IDs are in sequence from 0 up to however many
threads were launched, minus one. This calculation can be used whenever the grid and blocks
have a single dimension. If you are working with multidimensional grids, blocks, or both, you will
still need to account for the extra dimensions in the calculation.

Recursive Device Functions

Listing 4.5 shows a recursive device function to calculate an integer factorial.

Recursive device functions are not supported on compute capability 1.x devices. If you have
such a device, the code in the following example will not work.

If, however, you have a compute capability 2.x or later device, the code will run fine; however,
you will need to be sure that the code is being compiled for this compute capability.

The compute capability and SM settings are specified in the project’s properties. Under the
CUDA C/C++ section called Device, you will see an option for Code Generation. Set this to
match your device (e.g., compute_20,sm_20). I present further information on this in the Tips

and Tricks section of Chapter 5, under the details on setting code generation options.

// Illustration of Factorial with recursive device function
#include <iostream>
#include <cuda.h>
using namespace std;
// Recursive device function
__device__ int Factorial(int x) {
if(x == 0) return 1;
else return x * Factorial(x-1);
}

// Kernel
__global__ void MyKernel(int* answer) {
answer[0] = Factorial(answer[0]);
}

int main() {
int i, answer, *d_i;

// Read an int from user
cout<<"Input a number: ";
cin>>i;

see more please visit: https://homeofbook.com

 51

// Copy int to device
cudaMalloc(&d_i, sizeof(int));
cudaMemcpy(d_i, &i, sizeof(int), cudaMemcpyHostToDevice);

// Launch kernel
MyKernel<<<1, 1>>>(d_i);

// Copy answer back to host
cudaMemcpy(&answer, d_i, sizeof(int), cudaMemcpyDeviceToHost);

// Print out
cout<<"The answer is "<<answer<<endl;

cudaFree(d_i);
return 0;

}

Listing 4.5: Recursive device functions

Listing 4.5 illustrates a simple recursive device function but it is very limited in the number the
user can type. The Factorial function quickly overflows 32-bit integers. This leads to incorrect
results for any user input greater than 12.

see more please visit: https://homeofbook.com

 52

Chapter 5 Porting from C++

We examined some very simple uses of the device in the previous chapter. They are not
practical examples, and the host would probably perform the calculations of all the previously
cited kernels much faster than the device. In this chapter, we will introduce a problem that is
better suited to a device using CUDA (and parallel processing in general) than any general
purpose CPU would be.

C++ Host Version

One of the most common reasons one might be interested in CUDA is to optimize an algorithm
that has already been written for the host in C++. In this chapter, we will examine porting a
simple C++ algorithm to CUDA to see if the device can offer any performance improvements
over the original host version. We will write a direct port from standard C++ code straight into
CUDA-based code.

The algorithm works on an array of 3-D points and, for each point, finds the nearest neighbor
from the other points in the list. The host code (Listing 5.1) finds each nearest neighbor by
traversing the array as many times as there are points.

Note: There are well-known data structures that can dramatically improve the number of

comparisons involved with solving the nearest neighbor problem. An implementation

using k-d trees will greatly reduce the number of comparisons.

// main.cu
#include <iostream>
#include <ctime>
#include <cuda_runtime.h> // For float3 structure

#include "FindClosestCPU.h"

using namespace std;

int main() {
// Number of points
const int count = 10000;

// Arrays of points
int *indexOfClosest = new int[count];

float3 *points = new float3[count];

// Create a list of random points
for(int i = 0; i < count; i++) {
 points[i].x = (float)((rand()%10000) - 5000);
 points[i].y = (float)((rand()%10000) - 5000);

see more please visit: https://homeofbook.com

 53

 points[i].z = (float)((rand()%10000) - 5000);
 }

// This variable is used to keep track of the fastest time so far
long fastest = 1000000;

// Run the algorithm 10 times
for(int q = 0; q < 10; q++) {
 long startTime = clock();

 // Run the algorithm
 FindClosestCPU(points, indexOfClosest, count);

 long finishTime = clock();

 cout<<q<<" "<<(finishTime - startTime)<<endl;

 // If that run was faster, update the fastest time so far
 if((finishTime - startTime) < fastest)
 fastest = (finishTime - startTime);
 }

// Print out the fastest time
cout<<"Fastest time: "<<fastest<<endl;

// Print the final results to the screen
cout<<"Final results:"<<endl;
for(int i = 0; i < 10; i++)
 cout<<i<<"."<<indexOfClosest[i]<<endl;

// Deallocate RAM
delete[] indexOfClosest;
delete[] points;

return 0;

}

Listing 5.1: Front end, main.cu

Listing 5.1 is the front end to the algorithm. It is a small C++ program that creates a list of
10,000 random 3-D points. It then runs the FindClosestCPU function which finds the nearest

neighbors to each point. The FindClosestCPU function is defined in Listing 5.2,

FindClosestCPU.h. To add the new header to your project, right-click the project’s name in the

Solution Explorer panel, and click Add > New Item in the context menu.

Note: In the host code (Listing 5.2) and the device code, we are not actually computing

the distance between points. The real distance between points would require an

additional square root function. In this example, we do not need the actual distance; we

only need to find the nearest point; therefore, the square root function has been omitted.

see more please visit: https://homeofbook.com

 54

// FindClosestCPU.h
#pragma once

#include <cuda_runtime.h> // For float3 structure

// FindClosestCPU host function
void FindClosestCPU(float3* points, int* indices, int count) {
if(count <= 1) return; // If there are no points return

// Loop through every point
for(int curPoint = 0; curPoint < count; curPoint++) {
 // Assume the nearest distance is very far
 float distToClosest = 3.40282e38f;

 // Run through all the points again
 for(int i = 0; i < count; i++) {
 // Do not check distance to the same point
 if(i == curPoint) continue;

 // Find distance from points[curPoint] to points[i]
 float dist = ((points[curPoint].x - points[i].x) *
 (points[curPoint].x - points[i].x) +
 (points[curPoint].y - points[i].y) *
 (points[curPoint].y - points[i].y) +
 (points[curPoint].z - points[i].z) *
 (points[curPoint].z - points[i].z));

 // Is dist nearer than the closest so far?
 if(dist < distToClosest) {
 // Update the distance of the nearest point found so far
 distToClosest = dist;

 // Update index of this thread's nearest neighbor so far
 indices[curPoint] = i;
 }
 }
 }
}

Listing 5.2: FindClosestCPU.h

Listing 5.2 shows a simple method for finding the nearest neighbors. The CPU begins with the
first point in the list and assumes the closest point to be a distance of 3.40282e38f away. This

is around the maximum possible value for a float in C++. It steps through the array, checking

the distance to each of the other points. Each time a point is found closer than the current
smallest distance, the smallest distance is updated and the index of the point is recorded. By
the time the CPU has traversed the entire array, it has found the index of the point nearest to
the first (points[0]). It then repeats the process for the second point, then for the third, and so

on until it has found the nearest neighbor to every point in the list.

Upon building and running the program, you should see a series of outputs similar to Figure 5.1.
The first lines of the output show the amount of time (in milliseconds) that it took the CPU to run
the FindClosestCPU algorithm.

see more please visit: https://homeofbook.com

 55

Figure 5.1: Output

The fastest time the host ran the algorithm is reported in Figure 5.1 as 181 milliseconds. When
we port to CUDA, it is this time which we hope to improve. The first 10 results are printed to the
screen. The results in Figure 5.1 show that the nearest point to point[0] was found to be

point[1982], the nearest point to point[1] was point[8115].

Tip: Use the host’s results to check the device results. When porting host code to CUDA,

it is a very good idea to check the results that the device is finding against the results that

the original host code finds. Host code ported to CUDA is useless if the device gives

incorrect results. Sometimes (especially without using a debugger) it is very difficult to

know that the device’s results are correct just by looking at the kernel’s code.

CUDA Version

C++ code can be ported in many different ways. One of the initial questions is, “How can the
problem be broken into separate threads?” There is very often more than one way to do this.
Our current problem is multiple nearest neighbor searches. A natural way to break this particular
problem into threads is to assign a single point to each thread we may have available which,
ultimately, will run on its own individual kernel. Each thread in this case will be responsible for
finding the nearest neighbor of its own point.

The host code employed a nested for loop; by assigning an individual thread each to a different
point, we will remove one of these loops (the outer loop) and replace it with our concurrent
CUDA threads.

see more please visit: https://homeofbook.com

 56

The FindClosestGPU.h in Listing 5.3 contains the prototype for the device version of the

algorithm; FindClosestGPU is a CUDA kernel.

// FindClosestGPU.h
#pragma once

#include <cuda_runtime.h>

__global__ void FindClosestGPU(float3* points, int* indices, int count);

Listing 5.3: FindClosestGPU.h

The FindClosestGPU.cu in Listing 5.4 contains the CUDA kernel FindClosestGPU which

performs the nearest neighbor searches. To add this file to your project, right-click the project’s
name in the Solution Explorer and click Add > New Item in the context menu. This is a very
basic and direct port of the original FindClosestCPU function to CUDA. The outer for loop from

the original code is replaced by multiple threads, but other than this, the two functions are
identical.

// FindClosestGPU.cu
#include <cuda.h>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>

#include "FindClosestGPU.h" // Not required!

// FindClosestGPU kernel
__global__ void FindClosestGPU(float3* points, int* indices, int count) {
if(count <= 1) return; // If there are no points return

// Calculate unique thread idx
int idx = threadIdx.x + blockIdx.x * blockDim.x;

// If the calculated thread idx is within the bounds of the array
if(idx < count) {
 // Assume the nearest distance is very far
 float distanceToClosest = 3.40282e38f;

 // Run through all the points
 for(int i = 0; i < count; i++) {
 // Do not check distance to this thread's point
 if(i == idx) continue;

 // Find distance from this thread's point to another point
 float dist = (points[idx].x - points[i].x) *
 (points[idx].x - points[i].x) +
 (points[idx].y - points[i].y) *
 (points[idx].y - points[i].y) +
 (points[idx].z - points[i].z) *
 (points[idx].z - points[i].z);

 // Is distance nearer than the closest so far?

see more please visit: https://homeofbook.com

 57

 if(dist < distanceToClosest) {
 // Update the distance of the nearest point found so far
 distanceToClosest = dist;

 // Update index of this thread's nearest neighbor so far
 indices[idx] = i;
 }
 }
 }
}

Listing 5.4: FindClosestGPU.cu

Next, we need to alter the C++ front end (main.cu) to call the new CUDA version of the

algorithm instead of the original C++ one. This involves copying the array of points to the
device’s global memory (d_points) and allocating space for the device to store the indices

(d_indexOfClosest). The altered version of the main.cu file is presented in Listing 5.5.

Note: The following program requires more data and execution time than the previous

programs. CUDA is low-level programming and it can cause your device or driver to

reset. It can also cause the Blue Screen of Death, which results in the whole system

resetting. When programming CUDA, it is advisable that you close any unnecessary

applications and save your work in other applications before debugging a CUDA app.

// main.cu
#include <iostream>
#include <ctime>
#include <cuda.h>

// #include "FindClosestCPU.h"
#include "FindClosestGPU.h"

using namespace std;

int main()
{
// Number of points
const int count = 10000;

// Arrays of points
int *indexOfClosest = new int[count];

float3 *points = new float3[count];
float3* d_points; // GPU version
int* d_indexOfClosest;

// Create a list of random points
for(int i = 0; i < count; i++) {
 points[i].x = (float)((rand()%10000) - 5000);
 points[i].y = (float)((rand()%10000) - 5000);
 points[i].z = (float)((rand()%10000) - 5000);

see more please visit: https://homeofbook.com

 58

 }

// Copy the points to the device and malloc space for results
cudaMalloc(&d_points, sizeof(float3) * count);
cudaMemcpy(d_points, points, sizeof(float3) * count, cudaMemcpyHostToDevice);
cudaMalloc(&d_indexOfClosest, sizeof(int) * count);

// This variable is used to keep track of the fastest time so far
long fastest = 1000000;

// Run the algorithm 10 times
for(int q = 0; q < 10; q++) {
 long startTime = clock();

 // Run the algorithm
 FindClosestGPU<<<(count / 64)+1, 64, 64 * sizeof(float4)>>>
 (d_points, d_indexOfClosest, count);

 // Copy the results back to the host
 cudaMemcpy(indexOfClosest, d_indexOfClosest,
 sizeof(int) * count, cudaMemcpyDeviceToHost);

 long finishTime = clock();

 cout<<q<<" "<<(finishTime - startTime)<<endl;

 // If that run was faster, update the fastest time so far
 if((finishTime - startTime) < fastest)
 fastest = (finishTime - startTime);
 }

// Print out the fastest time
cout<<"Fastest time: "<<fastest<<endl;

// Print the final results to the screen
cout<<"Final results:"<<endl;
for(int i = 0; i < 10; i++)
 cout<<i<<"."<<indexOfClosest[i]<<endl;

// Deallocate ram
delete[] indexOfClosest;
delete[] points;
cudaFree(d_points);
cudaFree(d_indexOfClosest);

// Dispose of the CUDA context and write device performance counters
cudaDeviceReset();

return 0;
}

Listing 5.5: Updated main.cu

see more please visit: https://homeofbook.com

 59

Upon executing the modified application, we can see a vast improvement in performance. The
actual increase in performance is completely dependent upon the power of the CPU as
compared to the GPU in the machine running the kernel. Figure 5.2 shows the output from a
machine with an Intel i7 2600 CPU and an NVIDIA GT 430 GPU.

Figure 5.2: Output from FindClosestGPU Kernel

The output in Figure 5.2 shows that the device kernel was able to perform the nearest neighbor
searches with a minimum time of 38 milliseconds. Remembering that the host took around 181
milliseconds (Figure 5.1), the performance gain from this naïve port to CUDA is almost a 5x
speed increase (the device only took about 21 percent of the time the host required). The
design principle behind the port to CUDA was very simple: one of the nested for loops from the

serial code was replaced by concurrent threads. This type of optimization would be extremely
difficult to perform on the host version of the algorithm without using multithreading and the x86
SIMD instruction set, or without hand coding some assembly language. This type of
performance gain is not just a simple speed increase but a major reduction in the amount of
work needed. All of these techniques would require more effort than the simple CUDA port
presented if you were not making use of the GPU on the device. In Chapter 7, we will revisit this
problem and increase the gap in performance between the device and host even further.

see more please visit: https://homeofbook.com

 60

Tips and Tricks

Compile for 64-bit Hardware

Sometimes small changes in the project or program can provide better performance. To achieve
the times in the previous example (Figure 5.2), the project was set to 64 bits. 64-bit machines
(CPUs and GPUs) can often perform slightly faster when they run native 64-bit code rather than
32-bit.

Allow an Epsilon between Host and Device Results

When checking the output from the device against a host output which is known to be correct,
bear in mind the rounding errors. This is applicable when the algorithms deal with floating point
data types. There is often going to be a slight difference between the device and the host
output; a small margin of error might be allowed (often called epsilon).

Use Release Mode and Compiler Optimization

When testing for performance, it is often best to use optimizations since the compiler (both
NVCC and Microsoft C++ compiler) can give an excellent increase in speed automatically. The
project (Listing 5.5) was compiled in release mode, with all optimizations turned on for both the
host and device in order to produce the output shown in Figures 5.1 and 5.2.

Figure 5.3: Setting Code Generation

The Device > Code Generation option was set to match the hardware in this machine (for the
output in Figure 5.2). To set the Code Generation property, open the Project Properties and
click CUDA C/C++ in the left panel, and then click Device. Find the Code Generation setting in
the right panel and select appropriate values for the compute capability (the compute_xx

setting) and sm version (sm here is not streaming multiprocessor! The next paragraph explains

what it is).

see more please visit: https://homeofbook.com

 61

When NVCC compiles a CUDA C/C++ file, it converts it into a quasi-assembly language called
PTX. PTX is not actually the hardware’s assembly language but it closely resembles it. The PTX
code is then compiled to a real device’s machine code. The compute setting is the PTX version

to compile to, and the sm setting is the real machine (that is, the compute capability of the real

hardware). If you are targeting more than one machine, it is best to use compute and sm values

which match the lowest hardware you intend for your application. You can include more than
one specification in the code generation by separating each by semicolons (for example,
compute_10,sm_10;compute_20,sm_20).

For a complete list of NVIDIA’s cards and their compute capabilities (these are the valid values
for sm) visit the NVIDIA website at https://developer.nvidia.com/cuda-gpus.

The value supplied for the compute setting can be selected from the following bulleted list based

on the required capabilities and the sm setting. Keep in mind that the first digits of the compute
and sm values should match (i.e. compute_20,sm_10 is an incompatible code generation

request).

 compute_10: Original, least features

 compute_11: Atomic global memory operations

 compute_12: Atomic shared memory operations

 compute_13: Doubles (64-bit floats)

 compute_20: Fermi hardware

 compute_30: Kepler hardware

The information in this section was taken from the NVCC manual available online at
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html.

see more please visit: https://homeofbook.com

https://developer.nvidia.com/cuda-gpus
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

 62

Chapter 6 Shared Memory

Shared memory is a small amount of on-chip memory, ranging from 16 kilobytes to 48 kilobytes,
depending on the configuration of the kernel. Remember that the term “on-chip” means inside
the main processor of the graphics card (the chip is marked B in Figure 3.6).

Shared memory is very fast, approaching register speeds, but only when used optimally. Shared
memory is allocated and used per block. All threads within the same thread block share the
same allocation of shared memory, and each block allocation of shared memory is not visible to
the other blocks running in the grid.

Because of the speed difference between global memory and shared memory, using shared
memory is almost always preferred if the operation you’re going to perform permits efficient use
of it. In this chapter, we will examine the efficient use of shared memory, but first we need to
learn the syntax and API calls for basic shared memory usage.

Static and Dynamic Allocation

Shared memory can be allocated per block in one of two ways: static or dynamic. The static
method is less flexible and requires that the amount of shared memory be known at compile
time. The dynamic method is slightly more complicated (syntactically), but allows for the amount
of shared memory to be specified at runtime.

Statically Allocated Shared Memory

To declare that a variable in a kernel is to be stored in shared memory, use the __shared__

qualifier keyword beside the variable's name in its definition (see Listing 6.1).

__global__ void MyKernel() {
__shared__ int i; // Shared int
__shared__ float f_array[10]; // 10 shared floats
// ... Some other code
}

Listing 6.1: Statically Allocated Shared Memory

Listing 6.1 shows two variables declared as __shared__, an integer called i, and a floating

point array called f_array. This shared memory (both the i and the f_array variables) are

described as being statically allocated because the amount of shared memory must be constant
at compile-time. Here, we are allocating an int and ten floats per block, for a total of 44 bytes

of shared memory per block (both int and float are 4 bytes long).

see more please visit: https://homeofbook.com

 63

All the threads in a given block will share these variables. Every block launched in a grid will
allocate its own copy of these variables. If we launch a grid of 25 blocks, there will be 25 copies
of i and 25 copies of f_array in shared memory. If the device does not have enough shared

memory to allocate all 25 copies of the requested shared memory, then it cannot execute all the
blocks simultaneously. The device executes as many blocks as it can simultaneously, but when
there are not enough resources, it schedules some blocks to execute after others. Shared
memory is one of the most important resources of the device and careful allocation of shared
memory is an important factor for determining occupancy, which is described in Chapter 8.

Dynamically Allocated Shared Memory

The other way to allocate shared memory is to dynamically allocate it. This allows the amount of
shared memory per kernel to change from launch to launch. In other words, the amount need
not be a compile-time constant. To allocate a dynamic amount of shared memory for a kernel,
we need to supply a third argument in the kernel launch configuration from the host. The code in
Listing 6.2 shows an example launch configuration with this third parameter.

// Kernel
__global__ void SomeKernel() {
// The size of the following is set by the host
extern __shared__ char sharedbuffer[];
}

int main() {

// Other code

// Host launch configuration
SomeKernel<<<10, 23, 32>>>();

// Other code

}

Listing 6.2: Dynamic Shared Memory Allocation

The kernel launch configuration parameters (in the main method) specify to launch the kernel

with 10 blocks of 13 threads each. The final parameter is the amount of dynamic shared

memory to allocate per block. The parameter is measured in bytes, so the value 32 here would

mean that 32 bytes of shared memory should be allocated per block. The 32 bytes can be used
for many different purposes—they could be 8 floats, 16 shorts, 32 chars, or any combination

of data types that would consume 32 bytes.

The kernel declares the shared array as extern __shared__, which means that the amount of

shared memory is dynamic and will be determined by the host in the launch configuration. In the
previous example, the shared array is of char type, but it could be any type at all. Also, the 32

bytes of shared memory per block were specified in the launch configuration with a literal
constant, but this amount can be a variable.

see more please visit: https://homeofbook.com

 64

Using Dynamic Shared Memory as Multiple Data

The launch configuration only allows a single extra value to specify the amount of dynamic
shared memory per block. If an algorithm requires multiple arrays of shared memory per block,
the programmer must allocate a single store of shared memory and use pointers to access it. In
other words, if you need multiple dynamic shared memory arrays, they must be coordinated
manually. Listing 6.3 shows an example of using a single block of shared memory for two
arrays, one of chars and the other of floats.

__global__ void SomeKernel(int sizeofCharArray) {
// Declare a single dynamic store of shared memory per block
extern __shared__ char bothBuffers[];

// Make a char* pointer to the first element
char* firstArray = &bothBuffers[0];

// Make a float* pointer to some other element
float* secondArray = (float*)&bothBuffers[sizeofCharArray];

firstArray[0]++; // Increment first char
secondArray[0]++; // Increment first float
}

Listing 6.3: Using Two Dynamic Arrays

In this listing, the same dynamic shared memory allocation (called bothBuffers) is used for

both a character array (firstArray) and a floating point array (called secondArray).

Obviously, care must be taken not to read and write outside of the bounds of these arrays.

In the listing, the size of the character array is specified and passed as a parameter to the
kernel, sizeOfCharArray. Passing offsets and array sizes as parameters to the kernel allows

arrays of variable types and sizes. The bothBuffers array used dynamic shared memory, but it

could easily be a static allocation, and the sizeOfCharArray parameter could still be used to

manually control the sizes of the arrays.

CUDA Cache Config

As mentioned previously, the L1 cache of global memory and shared memory are actually the
same physical memory. There is 64k (on all current cards) of this memory, and it can be split up
by the programmer to use more L1, more shared memory, or the same amount of both. The L1
is a perfectly normal, automatic cache for global memory. Data is stored in the L1 cache and
evicted as the device sees necessary. Shared memory is completely in the programmer's
control.

When launching a kernel you can split this 64k of memory into 48k of L1 and 16k of shared
memory. You might also use 16k of L1 and 48k of shared memory. On newer cards (700 series
onwards) there is another option, which is to split the memory in half—32k of L1 and 32k of
shared. To set the configuration of shared memory and L1 for a particular kernel, use the
cudaFuncSetCacheConfig function:

see more please visit: https://homeofbook.com

 65

cudaFuncSetCacheConfig(kernelName, enum cudaFuncCache);

Where kernelName is the kernel and cudaFuncCache is one of the values from the

cudaFuncCache column of Table 6.1.

Table 6.1: cudaFuncCache values

cudaFuncCache Integer value Configuration

cudaFuncCachePreferNone 0 Default

cudaFuncCachePreferShared 1 48k of shared, 16k of L1

cudaFuncCachePreferL1 2 16k of shared, 48k of L1

cudaFuncCachePreferEqual 3 32k of shared, 32k of L1

Note: The cudaFuncCachePreferEqual setting is only available on newer cards—700

series and newer. If this setting is selected for an older card, the default value will be

used instead.

Whatever value the programmer uses for the cudaFuncCache setting, it is only a

recommendation to NVCC. If NVCC decides that, despite this setting, the kernel needs more
shared memory, then it will override the settings and choose the 48k of shared memory setting.
This overriding of the programmer’s preference occurs at compile time, not while the program
runs.

The following code example demonstrates how to call the cudaFuncSetCacheConfig function.

// Set the cache config for SomeKernel to 48k of L1
cudaFuncSetCacheConfig(SomeKernel, cudaFuncCachePreferL1);

// Call the kernel
SomeKernel<<<100, 100>>>();

Listing 6.4: Setting the Cache Configuration

Parallel Pitfalls and Race Conditions

This section highlights some dangers of sharing resources between concurrent threads. When
resources are shared between multiple threads (this includes any shared resources from global
memory, shared memory, texture memory etc.) a potential hazard arises that is not present in
serial code. Unless care is taken to properly coordinate access to shared resources, multiple
threads may race for a resource at precisely the same time. This results in code that is often
unpredictable and buggy. The outcome of multiple threads simultaneously altering the value of a
resource is unknown (for practical purposes it is not safe to assume any particular value).

see more please visit: https://homeofbook.com

 66

To understand how a race condition causes trouble and why it results in unpredictable
outcomes, consider how a computer actually operates on variables in memory. Listing 6.5
illustrates a simple kernel with code that purposely causes two race conditions, one in shared
memory, and the other in global memory.

#include <iostream>
#include <cuda.h>

using namespace std;

// Kernel with race conditions
__global__ void Racey(int* result) {

__shared__ int i;

// Race condition 1, shared memory
i = threadIdx.x;

// Race condition 2, global memory
result[0] = i;
}

int main() {
int answer = 0;
int* d_answer;
cudaMalloc(&d_answer, sizeof(int));

Racey<<<1024, 1024>>>(d_answer);

cudaMemcpy(&answer, d_answer, sizeof(int), cudaMemcpyDeviceToHost);

cout<<"The result was "<<answer<<endl;

return 0;
}

Listing 6.5: Race Conditions

The kernel declares a single shared integer called i. Each thread attempts to set this shared

variable to its own threadIdx.x. Each thread in a block has a different threadIdx.x. In theory,

all 1024 threads of each block would simultaneously set this shared variable to different values.
This is only “in theory” because the scheduler is in charge of the order that blocks actually
execute, and depending on the availability of resources, the scheduler may or may not execute
all 1024 threads at the same time. Regardless of whether the scheduler actually executes the
threads simultaneously, or if some threads execute after others, setting the variable i to 1024

different values is meaningless. This type of activity is not conducive to productive software
development. In practice, the actual resulting i will be a single value, but we do not know what.

see more please visit: https://homeofbook.com

 67

The next race condition in Listing 6.5 occurs when global memory is set by every thread in the
grid concurrently. The parameter result is stored in global memory. The line result[0] = i;

is nonsense. For a start, the value of i was set with a race condition in shared memory. In

essence, the programmer is no longer in control of these variables. The final value presented by
these variables is completely up to the device. The device will schedule threads in some order
and actually come up with an answer as shown in Figure 6.2, but it would very foolish to
assume that the device will always return 831.

Figure 6.2: Output from Race Conditions

Read-Modify-Write

It may seem that if a shared variable was incremented by multiple threads instead of being set
to multiple values as in Listing 6.5, the operation would be safe. After all, it is completely
irrelevant what order the threads actually increment. So long as they all do increment, we
should end up with the same value. The trouble is that this is still a race condition. To see why,
we need to look in a little more detail at the increment instruction. The statement i++ actually

does three things (this is applicable to both GPUs and CPUs):

 Read the value of i into a register.

 Increment the value in the register.

 Store the result back to i.

This process is called a read-modify-write operation. Almost all operations which modify
memory (both in the host and the device) do so with these three steps. The GPU and indeed the
CPU never operate directly on RAM. They are only able to operate on data if it is in a register.
This is what the registers are for; they are the variables that a piece of hardware uses for its
core calculations. This means the hardware must read the value from RAM first, and write the
resulting value when the operation is complete. The trouble is that when more than one thread
runs at the same time, they each do the read-modify-write simultaneously, jumbled up in any
order, or both. 100 concurrent threads all trying to increment the same shared variable i might

look like the following:

 All 100 threads read the value of i into registers.

 All 100 threads increment their register to 1.

 All 100 threads store 1 as the result.

see more please visit: https://homeofbook.com

 68

It is tempting to think that we will always get the value 1, but apart from being a very pointless

use of 100 threads, this is not even true. The 100 threads may or may not actually operate in
step with each other. In CUDA, threads are executed in warps of 32 threads at a time (a warp is
a collection of 32 threads with sequential threadIdx values, all from the same block, and all

executing simultaneously). Figure 6.3 illustrates 64 threads running concurrently in two warps.

Figure 6.3: CUDA warps attempting to increment concurrently

In Figure 6.3, we see four time steps from 0 to 3 (these might be thought of as individual clock
cycles). In the example, threads from the first warp (warp 0) first execute a read. As they
increment i, threads from the second warp read the original value of i (which is still 0). The first

32 threads then write their resulting 1 to memory as the second warp increments. Finally, the
second warp writes a 1 to memory as well.

see more please visit: https://homeofbook.com

 69

Figure 6.4: Another possible execution order

Figure 6.4 shows another possible way the scheduler might order two warps trying to increment
a shared variable. In this example, the first warp completes the read-modify-write and the
second warp increments the variable to 2. The scheduler might choose either of these execution
orders when scheduling warps and it might choose other possibilities.

There is more than one possible output from the algorithm. Besides, if 32 threads are
programmed to increment a variable, the programmer is probably hoping for an end result of 32,
which they will almost certainly never get.

Note: There are special primitives for dealing with multiple threads when they share

resources. Mutexes and semaphores are the most common. For those interested in these

parallel primitives, I strongly recommend reading The Little Book of Semaphores by

Robert Downey.

see more please visit: https://homeofbook.com

 70

Block-Wide Barrier

A “barrier” in parallel programming is a point in the code where all threads must meet before any
are able to proceed. It is a simple but extremely useful synchronization technique, which can be
used to eliminate race conditions from code. In CUDA there is a block-wide barrier function,
__syncthreads. The function takes no arguments and has no return value. It ensures that all

threads of the block are synchronized at the point of the function call prior to proceeding. Using
the __syncthreads function, we can ensure that threads do not race for a __shared__

variable. See Listing 6.6.

Listing 6.6: __syncthreads(), the block-wide barrier function

In the previous listing, __syncthreads is used to ensure that only one thread at a time

increments the shared variable i. The initial setting of the variable to 0 by all threads is

guaranteed to result in at least one of them successfully setting the value last. The next line
contains a call to __syncthreads. The threads will all wait until every thread of the block has

executed the i=0 instruction. Once all the threads have paused at the first __syncthreads call,

only the thread with threadIdx.x == 0 will fall through the first if statement and find itself at

another __syncthreads(). As they wait, the first thread (threadIdx.x == 0) will increment i

and then join the other threads of the block waiting at the barrier. The threads will then proceed
and the thread with threadIdx.x == 1 will increment i. The code shows that __syncthreads

and single thread access to shared resources is a safe operation, and we are guaranteed that
by the end of this code, the shared variable i will be incremented to 2.

Note: The __syncthreads() method is only a block-wide barrier. Threads that belong to

other blocks will not be blocked. It is not useful for synchronizing access to global

resources. Never use __syncthreads in situations where threads of a block branch. If

some threads find a __syncthreads() in the code of an if statement while other threads

of the same block fall through the if statement, it will produce a deadlock. The waiting

__global__ void SomeKernel() {
// Declare shared variable
__shared__ int i;

// Set it to 0
i = 0;

// Wait until all threads of the block are together
__syncthreads();

// Allow one thread access to shared i
if(threadIdx.x == 0)
 i++;

// Wait until all threads of the block are together
__syncthreads();

// Allow another single thread access to i
if(threadIdx.x == 1)
 i++;
}

see more please visit: https://homeofbook.com

 71

threads will pause indefinitely, and will never see their brethren again, most likley causing

the program to freeze.

Note: There is no safe way to produce a grid-wide barrier inside a kernel. The device is

not designed to allow grid-wide barriers from within its own code. However, the host can

cause grid-wide barriers. The function cudaMemcpy causes an implicit grid-wide barrier.

The host will wait until the device has completed any executing kernels before the

memory is copied. Also, the host function cudaDeviceSynchronize() is designed to

explicitly allow the host to wait for the device to finish executing a kernel.

Atomic Instructions

Aside from barriers, threads can be made to safely access resources by using atomic
instructions. An atomic instruction is one that performs the read-modify-write in a single,
uninterruptable step. If 32 threads perform an atomic increment concurrently, the variable is
guaranteed to be incremented 32 times. See Listing 6.7 for an example of using the atomicAdd

instruction to increment a global variable.

Note: Atomic instructions are only available on devices with compute capability 1.1 or

higher. To compile the code in Listing 6.7, you will need to specify compute_11,sm_11 or

higher in the Code Generation option of your project.

#include <iostream>
#include <cuda.h>
#include <cuda_runtime.h>

using namespace std;

__global__ void AtomicAdd(int* result) {
// Atomically add 1 to result[0]
atomicAdd(&result[0], 1);
}

int main() {
int answer = 0;
int* d_answer;

// Allocate data and set to 0
cudaMalloc(&d_answer, sizeof(int));
cudaMemset(d_answer, 0, sizeof(int));

// Run 2048 threads
AtomicAdd<<<64, 32>>>(d_answer);

// Copy result and print to screen

see more please visit: https://homeofbook.com

 72

Listing 6.7: Atomically incrementing a global variable

The result from Listing 6.7 (the host’s answer variable) is always 2048. Every thread increments

the global variable result[0] atomically, guaranteeing that its increment is complete before

any other thread is allowed access to result[0]. The kernel was launched with 2048 threads,

so the result will be 2048. When a thread begins an atomic read-modify-write of the result[0]

variable, all other threads will have to wait until it has finished. The threads will each increment
results[0] one at a time.

Atomic instructions are slow but safe. Many common instructions have atomic versions. For a
complete list of the atomic instructions available, see the Atomic Functions section of the CUDA
C Programming guide: http://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#atomic-functions.

Note: Devices with compute capability 2.0 and higher are able to perform atomic

instructions on shared memory. Older devices (compute capability 1.xx) had atomic

instructions for global memory only.

Shared Memory Banks and Conflicts

Now that we have examined some of the common problems in sharing resources between
concurrent threads, we can turn our attention back to shared memory, and in particular how to
use it efficiently. The device performs all operations (adding, multiplication, Boolean operations,
etc.) on data in registers. Shared memory must be read into registers before it is operated on
(global, texture, constant, and all other memories must also be read into registers first). Once a
calculation is performed in the registers, the results can be stored back into shared memory.
Shared memory is organized into words of four bytes each. Any four-byte word could hold a
single 32-bit int, a float, half a double, two short ints, and any other possible combinations

of 32 bits. Each word belongs to one of 32 banks, which read and write values to and from the
registers.

Figure 6.5: Addresses in Shared Memory

cudaMemcpy(&answer, d_answer, sizeof(int), cudaMemcpyDeviceToHost);
cout<<"The result was "<<answer<<endl;

return 0;
}

see more please visit: https://homeofbook.com

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

 73

Figure 6.5 illustrates some of the addresses in shared memory. Bank0 is responsible for reading
and writing the first four bytes of shared memory, and Bank1 reads and writes the next. Bank31
reads and writes bytes with addresses 0x7C to 0x7F, and after this point, the banks repeat.
Bytes at addresses 0x80 to 0x83 belong to Bank0 again (they are the second word of Bank0).

Shared memory can be addressed as bytes, but it is also specifically designed to allow very fast
addressing of 32-bit words. Imagine that we have an array in shared memory comprised of
floats (floats are 32 bits wide or one word each):

__shared__ float arr[256];

Each successive float in the array will belong to a different bank until arr[32], which (like

arr[0]) belongs to Bank0. Figure 6.5 illustrates the indices of these words and which banks

they belong to.

Figure 6.6: Word indices in shared memory

This is important because each bank can only serve a single word to a warp at once. All 32
banks can simultaneously serve all 32 threads of a warp extremely quickly, but only if a single
word is requested from each bank. When a warp requests some pattern of addresses from
shared memory, the addresses correspond to any permutation whatsoever of the banks. Some
permutations are much faster than others. When more than one word is requested from any
single bank by the threads of a warp, it is said to cause a bank conflict. The bank will access the
words in serial, meaning first one, and then the other.

Note: Bank conflicts are only a consideration at the warp level; any inter-block access

patterns do not cause bank conflicts. There is no bank conflict if block0's warp accesses

word0 from Bank0 at the same time that block1 accesses word1 from Bank0.

When all threads of a warp access exactly the same word from shared memory, an operation
called broadcast is performed. Shared memory is read once and the value is divvied out to the
threads of a warp. Broadcast is very fast—the same as reading from every bank with no
conflicts.

see more please visit: https://homeofbook.com

 74

On devices of compute capability 2.0 and up, there is an operation similar to a broadcast (but
more flexible) called a multicast. Any time more than one thread of a warp accesses exactly the
same word from any particular bank, the bank will read shared memory once and give the value
to any threads that require it. The multicast is similar to the broadcast, only all 32 threads of the
warp need not access the same word. If there are no bank conflicts, a multicast operates at the
same speed as a broadcast operation.

Access Patterns

In the previous discussion on bank conflicts, broadcasts and multicasts have important
implications for performance coding. There are many access patterns the threads of a warp
could potentially request from shared memory. Some are much faster than others. All of the
following examples are based on an array of words called arr[].

The following table shows a handful of patterns, the speed one might expect from employing
them, and a description of conflicts that may be caused.

Table 6.2: Access Patterns

Access Pattern Notes

arr[0] Fast, this is a broadcast.

arr[blockIdx.x] Fast, this is a broadcast.

arr[threadIdx.x] Fast, all threads request from different banks.

arr[threadIdx.x/2]
Fast, this is a multicast. Every 2nd thread reads from the same

bank.

arr[threadIdx+71] Fast, all threads request from different banks.

arr[threadIdx.x*2] Slow, 2-way bank conflict.

arr[threadIdx.x*3] Fast, all threads request from different banks.

arr[threadIdx.x*8] Very slow, 8-way bank conflict.

arr[threadIdx.x*128] Extremely slow, 32-way bank conflict.

arr[threadIdx.x*129] Fast, all threads request from different banks.

Accessing multiples of threadIdx.x is analogous (produces the same address patterns) to

accessing structures in an array. For instance, the following structure is exactly four words long.

// 4-word-long structure
struct Point4D {
float x, y, z, w;
};

Listing 6.8: Structure of four words in length

see more please visit: https://homeofbook.com

 75

Given an array of instances of this structure in a kernel, and given that the threads are
accessing subsequent elements based on their threadIdx.x, we will get a four-way bank

conflict from the operation in Listing 6.9.

__shared__ Point4D arr[32];

arr[threadIdx.x].x++; // Four-way bank conflict

Listing 6.9: Four-Way Bank Conflict

The increment of the x element requires three instructions (read-modify-write) and causes not

one, but two four-way bank conflicts. The elements of the array are each four words long. The
structures each have their x values four banks apart. Every fourth bank is serving the warp four

values and the intermediate banks (Banks 1, 2, 3, 5, 6, 7 etc.) are not doing anything. See
Figure 6.7.

Figure 6.7: Four-way bank conflict from structures

There is a very simple solution to this four-way bank conflict—pad the structure with an extra
word, as shown in Listing 6.10.

// 4-word-long structure with extra padding

struct Point4D {

float x, y, z, w;

float padding;

};

Listing 6.10: Structure padded to offset banks

By adding an extra word, the sizeof(Point4D) has gone from four words to five, but the

access pattern from the threads of a warp no longer causes any bank conflicts (at least not
when each thread accesses a subsequent element of the array). With exactly the same code as
before (Listing 6.9), we now see that, thanks to the extra padding, there are no bank conflicts at
all—every thread is requesting a single word from a different bank.

see more please visit: https://homeofbook.com

 76

Figure 6.8: Access pattern with padding word

The access pattern in Figure 6.8 looks a lot more complicated than the one from Figure 6.7, but
it is much faster because every bank is going to be used exactly once.

Adding padding to offset the requested words and better utilize the 32 banks is often an
excellent idea, but not always. It requires enough shared memory to store the extra padding
word. The padding word is often completely useless other than to offset the request pattern.
There are times when adding padding will be beneficial, and other times when shared memory
is too valuable a resource to simply throw away 4 bytes of padding at every thread that wants it.

It is difficult (if not impossible) to entirely invent the best access patterns and padded structures
using theory alone. The only way to fine-tune a shared memory access pattern is trial and error.
The theory, and even the profiler, can only offer suggestions.

see more please visit: https://homeofbook.com

 77

Chapter 7 Blocking with Shared Memory

In Chapter 5, we examined a simple algorithm for solving the nearest neighbor problem for
many points in a list of 3-D points. We followed this in Chapter 6, where we examined shared
memory in some detail. We will now apply this new knowledge to greatly increase the efficiency
of the program from Chapter 5.

One of the most basic uses of shared memory is known as blocking. Blocking allows more
efficient use of the global memory bus, and it also allows the bulk of the calculations to be
performed on shared memory and registers instead of relying on the L1 and L2 caches of global
memory for speed. It works like this: instead of repeatedly having all threads read and write to
and from global memory, we copy blocks of global memory to shared memory. The threads
work on the shared memory copy of the data, and when they are done they load another block
from global memory. In this way the threads do almost all of their operations with shared
memory, minimizing the reads and writes to global memory.

Tip: Another side benefit of blocking is that it offers an opportunity for the programmer to

change the format of the stored data when it is copied to shared memory. For instance,

we could copy 3-D points from global memory and store them as 4-D points in shared

memory. This particular operation may or may not have an impact on performance, but it

certainly opens up many possibilities.

Shared Memory Nearest Neighbor

The following version of the nearest neighbor (Listing 7.1) is an optimized version of the one we
saw previously in Chapter 5. It uses the blocking technique I just described. The threads of a
thread block each copy a single point from global memory to shared memory. They all check if a
neighbor near their own point is in the list of points in shared memory. Once they are done, they
copy more points from global memory, greatly increasing the speed of the algorithm. The code
in Listing 7.1 can replace the code in the FindClosestGPU.cu file.

// FindClosestGPU.cu
#include <cuda.h>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>

#include "FindClosestGPU.h" // Not required!

// Constant block size
__device__ const int blockSize = 128;

// Find nearest neighbor using shared memory blocking
__global__ void FindClosestGPU(float3* points, int* indices, int count) {

see more please visit: https://homeofbook.com

 78

// Shared memory for block
__shared__ float3 OtherBlocksPoints[128];

if(count <= 1) return;

// Calculate a unique idx
int idx = threadIdx.x + blockIdx.x * blockSize;

// Assume the closest if points[-1]
int indexOfClosest = -1;

// This thread's point
float3 thisPoint;

// Read in this block's points
if(idx < count) {
 thisPoint = points[idx];
 }

// Assume distance to nearest is float.max
float distanceToClosest = 3.40282e38f;

// Read in blocks of other points
for(int currentBlockOfPoints = 0; currentBlockOfPoints < gridDim.x;
currentBlockOfPoints++) {

 // Read in a block of points to the OtherBlocksPoints array
 if(threadIdx.x + currentBlockOfPoints * blockSize < count)
 OtherBlocksPoints[threadIdx.x] = points[threadIdx.x +
(currentBlockOfPoints * blockSize)];

 // Wait until blocks read from global into shared memory
 __syncthreads();

 if(idx < count) {
 // Use pointer for faster addressing
 float* ptr = &OtherBlocksPoints[0].x;

 // For each point in shared memory block:
 for(int i = 0; i < blockSize; i++) {

 // Calculate distance
 float dist = (thisPoint.x - ptr[0]) * (thisPoint.x - ptr[0]);
 dist += (thisPoint.y - ptr[1])*(thisPoint.y - ptr[1]);
 dist += (thisPoint.z - ptr[2])*(thisPoint.z - ptr[2]);
 ptr+=3;

 // If this point is within the list and nearer than the
 // current closest, update nearest with this one:
 if(dist<distanceToClosest &&(i+currentBlockOfPoints*blockSize)
 < count && (i+currentBlockOfPoints*blockSize) != idx) {
 distanceToClosest = dist;
 indexOfClosest = (i + currentBlockOfPoints * blockSize);
 }

see more please visit: https://homeofbook.com

 79

 }
 }

 __syncthreads();
 }
if(idx < count)
indices[idx] = indexOfClosest;
}

Listing 7.1: Nearest neighbor with shared memory

As you can see, the kernel in Listing 7.1 is much faster than the previous version from Chapter
5. This version requires that the grid be launched with blocks of 128 threads. At the top of the
listing I have used a constant int called blockSize; this will become a literal in the compiled

code. Literals are usually faster than variables, even automatic variables like blockDim.x.

Each thread calculates a unique idx value and reads the corresponding point from the list of

points. Each thread will find the nearest neighbor to its own point. This is identical to the
operation the previous version performs in Chapter 5.

Next we have a for loop, which counts up using the variable currentBlockOfPoints. Each

time this loop iterates, the threads read a collection of points from global memory into the
shared memory belonging to their block. Note how I use __syncthreads after reading the

points from global memory into the shared memory block, ensuring that no threads begin
checking the distances to the points before the entire block is copied to shared memory.

Once the points are in shared memory, threads iterate through the data and see if any are the
nearest neighbors so far. Once the entire global memory array has passed through shared
memory in these blocks, the calculation is complete. Note also there is another __syncthreads

call after the for loop. This ensures that all the threads have finished checking the points in the

shared memory block prior to reading in a new block.

I have manually used a pointer to address the values of the shared memory points (this is in the
variable called ptr). This is often (but possibly not always) faster than using a structure

addressing syntax. It might also be a good idea when performing complicated calculations to
use small steps (like the calculation of the dist variable in Listing 7.1). This is more efficient for

a compiler to optimize, rather than placing an entire calculation on a single, long line of code. Of
course, like any code, it's always worth trying to see if something is effective.

This version of the algorithm (Listing 7.1) runs at three times the speed of the original CUDA
version presented in Chapter 5, and at 14 times the speed of the original CPU implementation
(these times will differ depending on the performance ratio between your particular GPU and
CPU). It is very possible that this code could be optimized further, but for the current illustration,
it is fast enough.

see more please visit: https://homeofbook.com

 80

Chapter 8 NVIDIA Visual Profiler (NVVP)

We will now shift our attention to something completely different. We will step away from straight
CUDA C coding and look at some of the other tools, which collectively form the CUDA toolkit.
One of the most powerful tools that comes with the CUDA toolkit is the NVIDIA Visual Profiler,
or NVVP. It offers a huge collection of profiling tools specifically aimed at drilling down into
kernels and gathering hundreds of interesting performance counters.

Using a profiler can greatly help code optimization and save programmers a lot of time and trial
and error. NVVP can pinpoint many possible areas where the device could potentially be used
more efficiently. It runs the application, collecting thousands of metrics from the device while the
kernel executes. It presents the information in an effective and easy-to-understand manner.

Older devices with compute capability 1.x do not collect the same metrics as newer devices. If
you are using an older device, you may find that the profiler has insufficient data for some of the
following tests. The profiler will not generate the charts depicted in the figures when there is no
data.

Starting the Profiler

The visual profiler will be installed to any one of several different locations, depending on the
version of the CUDA Toolkit you have installed. The simplest way to run the profiler is to search
your installed apps for NVVP. You can search for NVVP using the Start menu for Windows 7
and previous versions, or the Start screen in Windows 8.

When you run the NVVP application, you will see a brief splash screen. Then, you should see
the main profiler window. A wizard may open and assist you in creating the project and loading
a program to profile.

To open a program for profiling, open the File menu and choose New Session. You will see the
Create New Session dialog. I will use the shared memory version of the nearest neighbor
algorithm (from Chapter 7) for testing out the profiler in the following screenshots, but you can
load any .exe file here. Type a path to an .exe file you have compiled or find the compiled file
you wish to profile by clicking the Browse button (see Figure 8.1). It is usually best to profile
applications which are compiled with optimizations (i.e. release mode rather than debug). The
performance difference between release mode and debug is vast, and the profiler’s information
on a debug mode program is probably not relevant at all to the release mode compilation.

see more please visit: https://homeofbook.com

 81

Figure 8.1: Create New Profiler Session

You can select the working directory and command line arguments to pass the program when it
executes, as well as environment variables, if needed. The only setting that is required in the
Create New Session dialog is the File setting. Once you have chosen the file, click Next.

The next page of the dialog allows you to specify some basic profiling settings, like whether the
application should be profiled straight away (or if the profiler should simply locate the file and
await your command to begin the profiling) and what the device's driver timeout should be. Click
Finish to create the profiler project. If you left the Start execution with profiling check box
selected, the program will run and profile your application straight away.

Tip: Use the Generate Line Number Info option in Visual Studio to get the most out of the

visual profiler. The profiler is able to provide detailed information when the compiled

program includes line number references. This option can be set to Yes (-lineinfo) in

the Project Settings dialog in Visual Studio, in the CUDA C/C++ section.

General Layout

The profiler consists of a menu bar and a toolbar at the top of the window, and three
subwindows, each containing one or more tabs (see Figure 8.2). The top-left window provides
an overview of the kernels and other CUDA API function calls. It consists of a collapsible tree
view of devices (including the host), streams, and contexts that are active in the application.

see more please visit: https://homeofbook.com

 82

Figure 8.2: Main Window of NVVP

This overview panel also contains a chart to the left of the tree view. The rows of the chart can
be opened or closed using the tree view. The chart depicts the amount of time taken for kernels
to execute and the CUDA API function calls. The longer a function or kernel takes, the longer
the bar representing the call will be.

If you choose not to profile the application straight away or need to re-run the profile after
making changes to the .exe, you can click the Play button in the toolbar (the one with a loading
bar behind it) to re-run the profile at any time.

Once the application has been profiled, select the bar that represents the kernel call you are
interested in. I have selected the first call to FindClosestGPU in Figure 8.3.

see more please visit: https://homeofbook.com

 83

Figure 8.3: Properties of a Kernel Call

The Properties panel will be filled with information about the kernel call (right side of Figure 8.3).
The start, end, and total execution time is displayed in milliseconds. The launch configuration
shows that the grid consisted of a total of 79 blocks, each with 128 threads.

There are metrics for register counts per thread and shared memory per block. We will examine
these in more detail shortly because they greatly influence the occupancy metric. The next
number is theoretical occupancy. We will also examine occupancy in detail as we progress
through this chapter, because of the generated achieved occupancy metric, which tells us the
actual occupancy a kernel achieved, not just the highest theoretical occupancy.

The final three properties show the amount of shared memory the SMs requested, how much
they were given, and the word size of the banks of shared memory (which is 4 for all current
cards).

Occupancy

Occupancy is a simple metric for determining how busy the device is compared to how busy it
could be. Occupancy is the ratio of the number of concurrently running warps divided by the
maximum number of warps that could be running with the particular device.

see more please visit: https://homeofbook.com

 84

Concurrent warps may or may not actually run at the same time. A warp is said to be active
(concurrently running) if the device has allocated the resources (shared memory and registers)
for the warp. The device will keep a warp active until it has finished executing the kernel. It will
switch back and forth between active warps in an attempt to hide the latency of memory and
arithmetic caused by the warps as they execute instructions.

Usually, the more warps running concurrently (the higher the occupancy), the better the
utilization of the device, and the higher the performance. If there are many warps running
concurrently, when one is delayed, the scheduler can switch to some other warp and thus hide
this delay or latency.

Tip: The CUDA Toolkit supplies an Excel worksheet called the CUDA Occupancy

Calculator. This can be found at C:\Program Files\NVIDIA GPU Computing

Toolkit\CUDA\v6.5\tools or a similar folder, depending on your installation. The worksheet

allows you to quickly input the compute capability, shared memory usage, register counts

per thread, and block size. It calculates the theoretical occupancy and shows detailed

charts depicting the possible outcome of varying the block size, the register counts, the

shared memory usage, or all three. Figure 8.4 shows screenshot of the calculator.

Figure 8.4: CUDA GPU Occupancy Calculator

see more please visit: https://homeofbook.com

 85

The maximum number of threads per SM (according to the output Device Query for my device;
be sure to check the output for your own hardware) is 1,536 (or 48 × 32). This means for 100
percent occupancy, the kernel would need to have a total of 1,536 threads active at any one
time; anything less than this is not 100 percent occupancy. There is most likely more than one
SM in the device (again, according to Device Query for my hardware there are two), and the
total number of active threads is 1,536 multiplied by the number of SMs in the device. For
instance, if there are two SMs, the total number of active threads could potentially be 3,072.

This maximum occupancy can only be achieved with very special care. The number of threads
per block, registers per thread, and shared memory per block work together to define the
number of threads the SM is able to execute concurrently.

Note: Maximizing occupancy is not always the best option for optimizing a particular

kernel, but it usually helps. For a very enlightening presentation on optimizing certain

kernels with low occupancy, see Vasily Volkov's 2010 GPU Technology Conference (GTC)

presentation, Better Performance at Lower Occupancy. The slides are available at

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf. The presentation was recorded

and is available online from GTC on demand at http://www.gputechconf.com/gtcnew/on-

demand-gtc.php.

Register Count

Each SM in the device is able to execute up to eight blocks concurrently, and up to 48 warps,
but only if resources permit. One of the governing resources is the register count per thread.
The Register/Thread metric in Figure 8.3 shows how many registers are used per thread. The
number of registers used is related to the number of variables (and the variable types—for
instance, doubles take two registers each) in the kernel's code. Reusing a small collection of
variables in the code rather than defining many different variables will generally decrease the
number of registers per thread, but usually at the expense of code complexity.

If this value is high (perhaps 40 or 60 registers per thread) and there are a considerable number
of threads per block, the SMs will not be able to execute 48 warps concurrently.

Tip: NVCC can return verbose information. This output includes, among other things, a

printout of the register usage per kernel to Visual Studio's output window during the

project build. If you wish to enable this output, set the Verbose PTXAS Output option to

Yes (--ptxas-options=-v) in your project's properties in the CUDA/Device section.

Note: There is a single additional, implicit register used per thread, which is not reported

in the profiler or with the verbose PTXAS output. All register counts should have this

additional register added to be accurate. Instead of a maximum of 64 registers per kernel,

we are limited to 63.

see more please visit: https://homeofbook.com

http://www.cs.berkeley.edu/~volkov/volkov10-GTC.pdf
http://www.gputechconf.com/gtcnew/on-demand-gtc.php
http://www.gputechconf.com/gtcnew/on-demand-gtc.php

 86

The maximum number of concurrent threads per SM for this device (GT 430 according to
Device Query) is 1,536 (48 warps of 32 threads each). The maximum number of registers
(reported by Device Query) is 32,768, or 32k. If each thread uses 24 registers (plus a single
implicit register), then 1,536 threads would use 25 × 1,536; or 38,400 registers. This number is
greater than the 32,768 available registers, so the device cannot possibly perform at 100
percent occupancy. Each warp would require 32 × 25 (since there are 32 threads per warp)
registers, or 800. The number of available registers divided by this value and rounded down will
yield the approximate number of active warps an SM can execute, 32,768 / 800 = 40. This
means the number of active warps the device could execute if it had only a single SM would be
40 instead of the maximum of 48.

Tip: There is a very simple way to reduce the register usage of threads—set the

MaxRegCount value in the project's properties. In the CUDA C/C++ tab under the Device

subheading, one of the options is labeled Max Used Register. Set a small number here if

your kernel's register usage is limiting occupancy. Be careful! Do not set this to an

impractically low value (such as 1 or 2); your code may take a very long time to compile

or not compile at all. A setting of 0 (default) means NVCC will decide how many registers

to use. Setting values lower than the number NVCC would use will generally mean that

local memory is used when registers spill, and may not give you any extra benefit in

increasing performance.

Shared Memory Usage

The total amount of shared memory on the device is 64k, of which some portion will be used as
L1 cache. The kernel in this example used 16k of L1 cache and 48k of shared memory. Each
block used an array of float3 structures, which has a sizeof value of 12 bytes each. There

were 128 elements in the array, so the total shared memory usage per block for this kernel is
128 × 3 × 4 bytes, which is 1.5 kilobytes.

The SM will execute up to eight blocks at once if resources permit. Since 48k / 1.5k = 32, our
shared memory usage would actually permit 32 simultaneous blocks. This means that shared
memory is not a limiting factor on the occupancy for this kernel.

Unguided Analysis

We can get a lot more detail from the profiler by selecting a particular instance of the kernel in
the graphical display window and using the unguided analysis option. In the following
screenshot (Figure 8.5), I have selected the first kernel launch.

see more please visit: https://homeofbook.com

 87

Figure 8.5: Unguided Analysis

Clicking the Run Analysis buttons (these are the buttons with a small chart and green arrow in
the Analysis tab of the left panel) will re-run the application in the profiler, but it will collect the
specifically requested data on the currently selected kernel. The selected kernel will usually take
much longer to run because the profiler collects information as it executes the code.

Kernel Performance Limiter

The information from an unguided analysis can help you pinpoint exactly where the bottlenecks
in your code are. Clicking on the Kernel Performance Limiter button in this example produces
the following chart (Figure 8.6).

see more please visit: https://homeofbook.com

 88

Figure 8.6: Kernel Performance Limiter

Control flow and memory operations are only a small portion of the Compute bar in Figure 8.6.
The Memory bar shows that we are relying heavily on shared memory and not using the L1
cache at all. This heavy use of shared memory was intentional; it is the result of the blocking
technique we applied in Chapter 7.

The arithmetic operations portion of the Compute bar is glaringly large. The chart indicates that
if the kernel is to execute much faster, it will require much less arithmetic. To decrease the
amount of arithmetic in a kernel, we would need to either simplify the expressions (which will
probably not offer a substantial gain since the expressions were not complicated), or we can
use a more efficient algorithm.

Our algorithm, which is essentially just a brute force linear search, was a poor choice. Each
point is compared to every other point in the entire array, and if we really wanted to reduce the
amount of arithmetic, we would investigate storing our points in a more sophisticated structure
where we wouldn’t need to perform so many comparisons. The profiler has not directly said this,
but it can be gleaned from Figure 8.6. Our kernel requires too many point comparisons, and that
is the main reason it is slow.

Kernel Latency

The Kernel Latency option produces a sophisticated output of charts that indicate what might be
limiting the occupancy of the kernel (see Figure 8.7).

see more please visit: https://homeofbook.com

 89

Figure 8.7: Kernel Latency

This option also produces the achieved occupancy statistic in the Properties tab, just above the
theoretical occupancy. The output in Figure 8.7 compares the achieved occupancy with the
maximum. It indicates quite clearly that the block size (128 threads) is a possible limiting factor.

For this particular kernel and this particular device, this tip from the profiler makes little to no
difference on overall performance. I tested many block sizes and found that although larger
block sizes increase the occupancy (for instance, 512 threads per block achieves an occupancy
of 92.2 percent), the overall performance remains the same. The suggestion from the profiler to
increase the block size is, in this instance, not beneficial, but this will often not be the case.

Kernel Compute

When we use the Kernel Compute option, we can see again that arithmetic is probably a
bottleneck in our code. The chart in Figure 8.8 (the output from the Kernel Compute analysis)
also shows that our texture compute usage is non-existent. Storing points as textures and
allowing the texture units to perform at least some of the computation might improve our
performance.

see more please visit: https://homeofbook.com

 90

Figure 8.8: Kernel Compute

Kernel Memory

The Kernel Memory usage profile shows that our shared memory usage is unsurprisingly quite
high from the blocking technique we employed in Chapter 7 (Figure 8.9). The texture cache
reads are very low since we did not use any texture memory at all. This output again suggests
that there may be some benefit gained if we can figure out a way to use texture memory for our
current problem.

Figure 8.9: Kernel memory with shared memory blocking

see more please visit: https://homeofbook.com

 91

The “Idle” readings for L2 and device memory are often a good thing since these memories are
very slow compared to shared memory. Figure 8.10 shows the Kernel Memory usage profile for
the original CUDA version of the algorithm (where we did not use shared memory). I have
included it as it makes for an interesting comparison.

Figure 8.10: Kernel memory without shared memory blocking

The difference in performance (from 37 milliseconds in our Chapter 5 algorithm to 12
milliseconds in our Chapter 7 algorithm) is almost entirely attributed to the L2 cache being
employed in the original code. The original version of the code (which leads to Figure 8.9) used
L1 cache extensively. When the original kernel’s code executed, points were evicted from L1 to
L2 when they were actually going to be read again in the very near future. The difference
between the use of L2 and shared memory blocking gave us the healthy 300 percent
performance gain.

Data copied to the device using cudaMemcpy always goes through the L2. In Figure 8.8, the L2

reads are showing that the points were read from L2 into our shared memory blocks.

Memory Access Pattern

To perform memory access oattern unguided analysis, you must generate line numbers when
you compile your application. This option will examine the efficiency of the usage of global
memory. Figure 8.11 is an example output.

see more please visit: https://homeofbook.com

 92

Figure 8.11: Memory Access Pattern

The top three lines (those referencing line 118 in the code) are potentially not as important as
the lower three. Line 118 is where we read a single point from global memory into each thread.
There are three transactions here because the structure (float3) is made of three floats. The

following three transactions are potentially much more important to us (they reference line 128
in the code where we read global memory into blocks of shared memory). It is clear from Figure
8.11 and knowing how our blocking worked that the transaction counts at line 118 (3,752) are
completely insignificant compared to the line 128 transactions (296,408) seen further down. If
we needed to optimize based on this output, we should start by looking at line 128 rather than
line 118.

In this particular code, you can see that this point is not making any difference whatsoever on
the actual performance of the kernel. If we comment out line 128 in the code and re-run the
kernel, it achieves exactly the same performance.

In the original CUDA version of the algorithm (from Chapter 5), the inner loop was causing
37,520,000 transactions (not shown in the screenshot). In the new version (from Chapter 7), the
global memory transactions of the inner loop are completely negligible and not shown by the
profiler at all in Figure 8.10. What we are looking at instead is the comparatively tiny number of
transactions involved in creating the shared memory blocks. The 296,408 transactions from
reading the blocks into shared memory are a vast improvement over 37,520,000.

see more please visit: https://homeofbook.com

 93

Divergent Execution

The final option (second to last if you are using CUDA version 6.0 or higher) in the unguided
analysis is the divergent execution analysis. In our particular kernel the divergence of threads
within a warp is irrelevant and the threads of each warp act in lockstep almost all of the time.
This type of execution pattern is ideal for CUDA and it is possible here because our algorithm
was embarrassingly parallel. There is almost no communication required between threads
whatsoever (except for the occasional block-wide barriers __syncthreads()).

Thread divergence is a tricky problem to solve. A good way to think about solving poor
performance from thread divergence is to alter the data, the algorithm, or both instead of trying
to optimize small sections and maintaining the same algorithm, data structure, or both. Minimize
thread communication and synchronization. Organize data such that large groups of
consecutive threads (i.e. 32 threads of a warp) will most likely take the same branches in an if
statement.

Tip: When questioning how data might be better be stored and accessed, consider Array

of Structures versus Structure of Arrays. Known as “AoS vs. SoA,” this concept involves

a perpendicular rotation of data in memory to improve access patterns. For example,

instead of storing 3-D points as [x1, y1, z1, x2, y2, z2...], the data is stored with all the x

values first, followed by the y and then the z, e.g., [x1, x2, x3..., y1, y2, y3... z1, z2, z3]. In other

words, instead of storing data as an array of points (AoS), it might help access patterns to

store three arrays—one for the X values, one for the Y values, and one for the Z values

(SoA).

Tip: CUDA can be used to perform one algorithm quickly, but it can also be used to

perform the same algorithm multiple times. This seemingly obvious statement is always

worth considering when deciding what should be converted to CUDA. For instance, in a

string search, we could use CUDA to search quickly for a particular sequence of

characters. But a completely different approach would be to use CUDA to simultaneously

perform many searches.

Other Tools

Details Tab

The Details tab gives a summary of all kernel launches. This information is essentially the same
as the information in the Properties window, but it is given for all launches at once in a
spreadsheet-like format.

Tip: If you have a kernel selected in the graphical view, the details will be displayed for

that kernel only. To show all details, right-click in the graphical view and select Don't

Focus Timeline from the context menu.

see more please visit: https://homeofbook.com

 94

Metrics and Events

Finally, from the Run option in the menu bar, you can select to collect or configure metrics and
events. This will open a window that allows you to specify the exact statistics you are interested
in collecting (see Figure 8.12).

Figure 8.12: Metrics and Events

The benefit of specifically defining the metrics you are interested in is that when you click Apply
and Run, the metrics will be collected for all the kernels. In the previous sections, the data was
collected for the selected kernel alone. The output metrics are not shown in the Properties
window but the Details panel.

In addition to this, you can select many metrics at once by selecting the root nodes in the tree
view (Figure 8.12). This allows you to quickly select all metrics and run a gigantic analysis,
collecting information on every aspect of every kernel in an application. It takes some time to
complete the analysis, depending on the kernel. The output from such a request is a proverbial
gold mine for studying possible optimizations. The entire Details panel can be exported to a
comma separated values (CSV) file and opened in a standard spreadsheet application. To
export the Details panel, click the Export Details in CSV Format button in the top right of the
panel (see Figure 8.13).

see more please visit: https://homeofbook.com

 95

Figure 8.13: Export details to CSV format

see more please visit: https://homeofbook.com

 96

Chapter 9 Nsight

This chapter is mostly relevant to readers who use Visual Studio Professional. The Nsight
debugger is a free download from the NVIDIA website. Unfortunately the Express editions of
Visual Studio do not allow extensions such as Nsight to be installed.

If you are using the Express edition of Visual Studio, this chapter still may offer some insight into
how the device works, but you will not be able to work along with the examples I present.

The Nsight debugger is useful for debugging graphics APIs like DirectX and OpenGL as well as
compute APIs. The debugger is available from the following website:

https://developer.nvidia.com/nvidia-nsight-visual-studio-edition

To download Nsight from the previous link, you will need to register as an NVIDIA developer
and log in to your account. To register as a CUDA developer, visit the following website:

https://developer.nvidia.com/programs/cuda/register

The registration and download procedure for Nsight changes over time, and you may need to
provide additional details to NVIDIA’s staff before you are allowed access the Nsight debugger
download.

The download comes with an automatic installer, so to add the extension to Visual Studio you
only need to double-click the downloaded file. Once Nsight is installed, you should be able to
run Visual Studio Professional and see the Nsight option in the menu bar.

Generating Profiling Reports

Nsight can generate very detailed reports including all the information that the profiler (NVVP)
generates, and a lot more. Choose Nsight > Start Performance Analysis from the menu bar.
You should see a window that looks like Figure 10.1.

see more please visit: https://homeofbook.com

https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/programs/cuda/register

 97

Figure 10.1: Profiling with Nsight

Select Profile CUDA Application and click the Launch button to run the application and collect
metrics just like those from the NVVP. Once the application closes, you will see the Reports tab
pictured in Figure 10.2. The CUDA Launches selection will show similar data to the NVVP
reports.

see more please visit: https://homeofbook.com

 98

Figure 10.2: Reports from Nsight Profiler

Selecting the CUDA Devices or GPU Devices reports shows information about the device used
in the application. This information is similar to that of Device Query, but much more detailed.
There is also a very large number of other reports that can be generated, and which I
encourage you to explore.

Debugging

Using Nsight, we can break into the code of a kernel just as we can in regular application code.
To do this, set a breakpoint by clicking in the left margin of the Visual Studio code window, in
exactly the same way you would set a host breakpoint. To debug CUDA code, the Nsight
monitor must be running. Instead of debugging with the Start Debugging option in the menu bar,
you have to select Start CUDA Debugging from the Nsight menu.

The application will run until the breakpoint is hit; then it will pause and pass control back to
Visual Studio. When the program pauses at a breakpoint, you can open two very interesting
windows. In the menu bar under the Nsight item, select Windows > CUDA Info. This will open
the CUDA Info window. Or you can open a Warp Watch window by selecting Window > Warp
Watch. The CUDA Info and Warp Watch windows are only available from the menu bar when
the application hits a breakpoint.

Tip: You can freeze the warps that you aren’t interested in debugging by choosing Nsight

> Freeze and either Freeze all except current block or Freeze all except current warp. This will

prevent the other warps or blocks from proceeding. When you resume from a break point,

the device will break again at the next warp or block, depending on the setting. In this way

you can examine each warp or block in turn.

see more please visit: https://homeofbook.com

 99

CUDA Info Window

Figure 10.3: CUDA Info Window

From the CUDA Info window, you can view information on many aspects of the application by
clicking the drop-down list in the upper-left corner, including warps (the default), textures, and
memory allocations. The screenshot in Figure 10.3 displays the warps information. Clicking the
values highlighted in blue will take you to the info pages for those items.

When CUDA is debugging you can, as expected, press F11 to step into and F10 to step over
the code. Figure 10.4 shows more details in the Warp Info window. You can see which line in
the code the warp is up to, and whether a warp is active in the device or not.

Figure 10.4: Lanes, source lines, and status

see more please visit: https://homeofbook.com

 100

Tip: If you double-click on a warp in the CUDA Info window, it will cause all open Warp

Watch windows to display the known information for the selected warp.

You can get a good idea of the way branching splits up your warps by examining the Lanes
view of the CUDA Info window. When a warp is split into one or more groups, some threads
become inactive while a single branch is executed. After each branch's code is executed, the
threads re-join each other and continue as a collection of 32. Figure 10.5 illustrates a warp of
threads that has been split into two, giving us even threads and odd threads.

Figure 10.5: Lanes and Branching

Warp Watch Window

We can set a watch on a variable to track how it changes as a warp executes. Since 32 threads
of a warp all execute in step, it is more useful to watch 32 copies of the same variable, one for
each thread of a warp. You can open up to four Warp Watch windows from the menu bar under
Nsight > Windows > CUDA Warp Watch. Set a break point in your code and use Start CUDA
Debugging to debug your program. Figure 10.6 shows an example Warp Watch window.

see more please visit: https://homeofbook.com

 101

Figure 10.6: Warp Watch

To add a watch to the Warp Watch window, at the point a program breaks, click on the gray
<Add Watch> cell shown in the upper-right corner of Figure 10.6 and type the name of the
variable you would like to observe. You can step through the code line by line using F10 (step
over) or F11 (step into) and see how the 32 warps’ variables change. If you have a CUDA Info
window open, you can double-click on any currently displayed warp (each line in the warp’s
view represents a different warp). The Warp Watch windows will switch to the variables for the
selected warp. To load the first warp of a block into the open CUDA warp watches, double-click
a block in the Blocks view of the CUDA Info window.

Tip: To set a watch on variables in shared memory, you should turn on Verbose PTAXS

Output. This option can be found in the project properties in the CUDA C/C++ section.

Tip: You can also watch variables using Visual Studio's standard watch windows. Right-

click on the variable's name in the code when the program breaks, and select Add Watch

from the context menu. Be aware that only the first thread's values from the current warp

are displayed when using this technique. Therefore this is mostly useful for watching

constant and shared variables, since they are block-wide.

Be sure to rebuild your application before starting the Nsight debugger (Ctrl+Shift+B). The
debugger may not rebuild prior to running the application, so if you have made changes to your
code, the project must be rebuilt.

see more please visit: https://homeofbook.com

 102

Tip: You might notice the variables in a warp window not changing with the cursor. To

better match the change of variables with the cursor, navigate to Nsight > Options and set

the value for the Default Timeline Axis Mode to Relative to Cursor.

When the application uses the Nsight debugger, it runs on the host. You can use cout to

quickly write to the console window. If you use printf, the Nsight debugger will print to the

screen, and you can also debug with the standard Visual Studio debugger. When you debug
with Visual Studio, all calls to printf are ignored, and calls to cout in kernels will result in a

compilation error. Remove all cout and printf calls in production code.

see more please visit: https://homeofbook.com

 103

Chapter 10 CUDA Libraries

The CUDA toolkit comes with a powerful collection of libraries, meaning you do not need to
code your own versions to satisfy many common problems. In this chapter we will examine two
of these libraries in detail. Even if your only interest is to learn efficient code, it's worth getting to
know the other libraries.

Libraries: Brief Description

The following list briefly describes some of the libraries that are installed with the CUDA toolkit.
These libraries are all of a very high quality, and are optimized, well tested, and generally very
simple to use. These libraries are actively updated, and each new version of the CUDA toolkit
usually includes newer versions of each of these libraries.

CUFFT—CUDA Fast Fourier Transform. This is a CUDA-accelerated implementation of the fast
Fourier transform algorithm, which is extremely important in countless fields of study.

CUBLAS—CUDA Basic Linear Algebra Subprograms. This is a CUDA implementation of the
popular BLAS library.

CUSPARSE—This library contains CUDA-accelerated algorithms for working with sparse and
dense vectors and matrices.

NPP—NVIDIA Performance Primitives. This library presently contains implementations of
several algorithms for working with video and image data and some signal processing functions.
It is designed to closely resemble the Intel Integrated Performance Primitives library, but it is not
currently a complete implementation.

CURAND—CUDA Random Number Generation. This library contains implementations of many
strong and efficient random number generators, which are accelerated by CUDA. We will look at
the CURAND library in some detail in examples later in this chapter.

Thrust—Thrust is a template library using parallel algorithms and data structures. It is designed
as a CUDA-accelerated implementation of the Standard Template Library (STL), which is
familiar to most C++ programmers. We will look at Thrust in some detail later in this chapter.

Others—There are countless libraries available online, and the collection is constantly
expanding and being updated. For additional libraries, check out
https://developer.nvidia.com/gpu-accelerated-libraries. The NVIDIA website does not offer an
exhaustive list but libraries mentioned on the website tend to be of a very high quality.

We will now examine two of the previously mentioned libraries with a little more detail: CURAND
and Thrust. The implementation and use of the other libraries (either those mentioned in the
previous list or any of the countless libraries) is often similar to CURAND and/or Thrust. The
following sections are intended to be a general introduction to using CUDA accelerated libraries
with CURAND and Thrust as examples.

see more please visit: https://homeofbook.com

https://developer.nvidia.com/gpu-accelerated-libraries

 104

CUDA Random Number Generation Library

(CURAND)

CURAND is a CUDA-accelerated collection of pseudo-random number generators. It includes a
multitude of different generators, most of which generate extremely high quality random
numbers, the sequences of which have very long periods. The library is useful for two reasons:
it is able to generate sets of random numbers very quickly because it is CUDA accelerated, but
also it contains special generators that are designed to generate random numbers on the fly in
device code.

Host and Device APIs

The beauty of the CURAND library is that it is not only useful for quickly generating blocks of
random numbers for consumption by the device (or the host), but it can also generate numbers
in kernel code. There are two APIs included; one (the host API) is designed to generate random
numbers with the host and store the resulting sequence in global memory (or system memory).
The host can then call a kernel, passing the block of random numbers as a parameter for
consumption by the device, or the block of random numbers can be consumed by the host. The
other API (the kernel or device API) is designed to generate random numbers on the fly within
kernels for immediate consumption by CUDA threads.

To use the CURAND library functions you must include the curand.h header in your project

and link to the curand.lib library file in your project's properties. To include the various header

and libraries in your project, look in the same folders as you did previously, and find curand.h

and curand.lib. If they are there and you set your paths up correctly at the beginning of the

book, then you should be able to just #include the headers where needed, and add the .lib to

your linker list as you did with cudart.lib.

The curand.h header is the header for the host API. Additionally, you can include the

curand_kernel.h header to use the device API, which we will examine shortly.

Host API

The host API can be used to generate blocks of random numbers in the device's global memory
or in system memory. The following code listing (Listing 10.1) generates two blocks of random
numbers using the host API: one in global memory and one in system memory. The host API
can be used without the CUDA build customization and in a standard .cpp, instead of .cu files.
The following code (Listing 10.1) was created as a new project. This section is not meant as a
continuation of what we have previously coded, but is a completely new example project.

// main.cpp
#include <iostream>
#include <ctime> // For seeding with time(NULL)
#include <cuda.h>
#include <curand.h> // CURAND host API header

using namespace std;

see more please visit: https://homeofbook.com

 105

int main() {
// Count of numbers to generate
const int count = 20;

// Device generator stores in device global memory
curandGenerator_t deviceGenerator;

// Host generators store in system RAM
curandGenerator_t hostGenerator;

// Define device pointer for storing deviceGenerator results
float *d_deviceOutput;

// Define host arrays for storing hostGenerator's results
float h_deviceOutput[count], hostOutput[count];

// Allocate memory on device for deviceGenerator
cudaMalloc(&d_deviceOutput, sizeof(float)*count);

// Initialize the two generators
curandCreateGenerator(&deviceGenerator, CURAND_RNG_PSEUDO_DEFAULT);
curandCreateGeneratorHost(&hostGenerator, CURAND_RNG_PSEUDO_DEFAULT);

// Set the seed for both generators to 0. Using the same seed will
// cause both generators create exactly the same sequence.
curandSetPseudoRandomGeneratorSeed(deviceGenerator, 0);
curandSetPseudoRandomGeneratorSeed(hostGenerator, 0);

// If you would like the generators to use an unpredictable seed and
// create different sequences, you can use time(NULL) as the seed.
// Alter the value in some way (I've multiplied my hostGenerators by 10
// in the following) otherwise time(NULL) will be exactly the same when
// you seed them.
// curandSetPseudoRandomGeneratorSeed(deviceGenerator, time(NULL));
// curandSetPseudoRandomGeneratorSeed(hostGenerator, time(NULL)*10);

// Generate a random block of uniform floats with both generators:
// The deviceGenerator outputs to global memory:
curandGenerateUniform(deviceGenerator, d_deviceOutput, count);
// The hostGenerator's output is in system RAM
curandGenerateUniform(hostGenerator, hostOutput, count);

// Copy the device results to the host
cudaMemcpy(h_deviceOutput, d_deviceOutput,
 sizeof(float)*count, cudaMemcpyDeviceToHost);

// Free device and CURAND resources
cudaFree(d_deviceOutput);
curandDestroyGenerator(deviceGenerator);
curandDestroyGenerator(hostGenerator);

// Print out the generator sequences for comparison
for(int i = 0; i < count; i++) {

see more please visit: https://homeofbook.com

 106

 cout<<i<<". Device generated "<<h_deviceOutput[i]<<
 " Host generated "<<hostOutput[i]<<endl;
 }

return 0;
}

Listing 10.1: CURAND Host API

Listing 10.1 generates two blocks of 20 random, floating point values. There are two types of
generators in Listing 10.1: host and device (not to be confused with the two APIs). Both of these
generators belong to the host API, and the device API generates its values inside kernels. The
difference between the two generators is that the host generator (hostGenerator) stores the

resulting sequence in system RAM, while the device generator (deviceGenerator) stores the

sequence in global memory. The two generators in the previous listing should generate exactly
the same values for their blocks of random floats, because they use the same seed. In fact,
every time the program is executed, the generators will generate exactly the same sequences of
numbers. If you comment out the lines that seed the generators to 0, and uncomment the lines

that seed to time(NULL), you should find that the generators generate different numbers from

each other, and different values each time the program is executed.

Note: You need not include the cuda.h header because the CUDA API is already included

in the curand.h header. Likewise, the time(NULL) function can be called without the

inclusion of the ctime header. These headers were included for clarity.

To generate random numbers with the CURAND library, you first need to create generator
handles.

You can create a host generator with curandCreateGeneratorHost or a device generator with

curandCreateGenerator. The first parameter to each of these functions is a

curandGenerator_t, which will be passed to subsequent CURAND function calls as a

generator handle.

The second parameter is the type of random number generator to use. There are many different
algorithms for generating random numbers with computers, and the list of random generators
changes with each generation of this library. To see the full list of algorithms included in the
version of the CURAND library you have installed, right-click on the
CURAND_RNG_PSEUDO_DEFAULT identifier and select Go to definition from the context menu in

Visual Studio, or search for the file CURAND.h and examine its contents.

The d_deviceOutput pointer is a device pointer to data in the device’s global memory. After the

sequence is generated, this pointer could be passed to a kernel for consumption. In Listing 10.1,
it is copied back to the host and printed to the screen to be compared with the host’s generated
values.

Tip: When using the host API for consumption by the device, it is best to generate the

numbers as infrequently as possible. The numbers should be generated once prior to a

see more please visit: https://homeofbook.com

 107

kernel call. It would be very slow to jump back and forth between the host and device

while the host generates new numbers in the middle of an algorithm.

Uniformly Distributed Generation

A uniformly distributed random float is one that lies between 0.0f and 1.0f. In theory, every

possible value between these points is as likely as any other to be generated in the sequence.
In reality there are an infinite number of real values between any two real numbers, but in
computing there are around 224 different floats between 0.0f and 1.0f.

Tip: Random numbers in any range can be created from a set of random normalized

numbers (such as those generated by curandGenerateUniform). For instance, to convert

the sequences from Listing 10.1 into random floats between 100.0f and 150.0f, you

could multiply each by 50.0f (the difference between the lowest value and the highest,

150.0f–100.0f) and add 100.0f. Be aware that the curandGenerateUniform function

generates from 0.0f to 1.0f, but 0.0f is not included, and 1.0f is.

Normally Distributed Generation

Sometimes we need to generate numbers with a normal distribution. This means the values
most likely to be generated will be those closest to the mean. Numbers further away from the
mean have a decreasing likelihood of being generated, and the frequency of numbers when
plotted will look like the familiar bell curve of a normal distribution.

In a normal distribution any number is possible, but the chances of generating numbers far from
the mean (in standard scores) becomes very small very quickly. Use the
curandGenerateNormal function to generate numbers based on a normal curve. The function

requires a mean and a standard deviation value to describe the fall off and magnitude of the
curve from which to generate numbers. For instance, replace the call to
curandGenerateUniform in the previous code with a call to curandGenerateNormal based on

the standard normal curve (this a normal curve with mean 0.0f and standard deviation of 1.0f)

as per Listing 10.2.

// Generate a random block of floats from normal curves
curandGenerateNormal(deviceGenerator, d_deviceOutput, count, 0.0f, 1.0f);
curandGenerateNormal(hostGenerator, hostOutput, count, 0.0f, 1.0f);

Listing 10.2: Generating numbers from normal curves

You will see that the numbers generated tend towards 0.0f (the mean of our normal curve and

4th parameter of the curandGenerateNormal function), but that several are 1.0f or more away

from this mean. Most (theoretically 68.2 percent) of the numbers generated will be within -1.0f

and 1.0f because we supplied 1.0f as our standard deviation (the 5th parameter of the

curandGenerateNormal function) and 0.0f is the middle of -1.0 and 1.0. Using the values

0.0f for the mean and 1.0f for the standard deviation means the number will be generated

from a standard normal curve.

see more please visit: https://homeofbook.com

 108

Device API

The device API allows for the generation of random values within a kernel, without leaving the
device. The device API is a little more complicated than the host API because it needs to set up
and maintain the states of multiple generators (one for each thread). Include the
curand_kernel.h header in your project files to use the device API and, as with the host API,

link to the curand.lib library in your project's properties. The generation occurs within kernels,

so (unlike the host API) you will need to use the CUDA Build Customization to launch kernels
and store the code in a .cu file. Examine the code in Listing 10.3, in particular the
InitRandGenerator and Generate kernels. Again, this code is intended as a new project; it

does not build on anything we have previously coded.

// main.cu
#include <iostream>
#include <cuda.h>
#include <curand_kernel.h>
#include <device_launch_parameters.h>

using namespace std;

// Kernel to init random generator states
__global__ void InitRandGenerator(curandStateMRG32k3a *state) {
int id = threadIdx.x + blockIdx.x * blockDim.x;

// Init the seed for this thread
curand_init(0, id, 0, &state[id]);
}

// Generate random numbers using the device API
__global__ void Generate(unsigned int *result, int count, curandStateMRG32k3a
*state) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

// Make a local copy of the state
curandStateMRG32k3a localState = state[idx];

// Generate one number per thread
if(idx < count) {
 // The numbers generated will be integers between 0 and 100
 result[idx] = (unsigned int) curand(&localState)%100;
 }
}

int main() {
// How many numbers to generate
const int count = 100;

// Declare the arrays to hold the results
unsigned int* h_a = new unsigned int[count];
unsigned int* d_a;
cudaMalloc(&d_a, sizeof(unsigned int)*count);

see more please visit: https://homeofbook.com

 109

// Declare the array to hold the state of the generator
curandStateMRG32k3a *generatorState;
cudaMalloc(&generatorState, sizeof(curandStateMRG32k3a) * count);

// Call an init kernel to set up the state
InitRandGenerator<<<(count/64)+1, 64>>>(generatorState);

// Call a kernel to generate the random numbers
Generate<<<(count/64)+1, 64>>>(d_a, count, generatorState);

// Copy the results back to the host
cudaMemcpy(h_a, d_a, sizeof(unsigned int)*count, cudaMemcpyDeviceToHost);

// Print the results to the screen
for(int i = 0; i < count; i++)
 cout<<i<<". "<<h_a[i]<<endl;

// Free resources
cudaFree(d_a);
cudaFree(generatorState);
delete[] h_a;

return 0;
}

Listing 10.3: CURAND Device API

Listing 10.3 generates 100 random unsigned ints using the CURAND device API. It stores the

numbers in global memory before copying them to the host and printing them out. The important
thing to remember here is that the generated numbers can be consumed immediately in the
kernel’s code; I have copied them back purely for purposes of demonstration.

An area of device memory needs to be allocated to hold the state of the generator; this can be
done using cudaMalloc. I selected the curandStateMRG32k3a state, which will use a multiple

recursive generator algorithm (this is the CUDA version of the MRG32k3a algorithm available in

the Intel MKL Vector Statistical Library).

The seed and current position of the numbers generated so far for each thread must be known
prior to generating subsequent random numbers. This state maintains this information.

Each thread sets up its own seed based on the threadIdx by calling the curand_init device

function (in the InitRandGenerator kernel).

Since threadIdx.x is calculated to be unique within this grid, each thread will generate a

different seed. Once the state has been seeded, the threads can generate a random number by
calling curand. The curand function returns the next sequence of 32 bits from the state for each

thread. We can take the remainder after division with the modulus operator to get a number
within a certain range (in Listing 10.3 the numbers will range from 0 to 99 because of the %100).

see more please visit: https://homeofbook.com

 110

The line curandStateMRG32k3a localState = state[idx]; creates a local copy of the state

for each thread. It makes no difference to the performance of Listing 10.3, but if your kernel
generates many numbers per thread, it will be quicker to use a local copy. Creating a local copy
means that we do not need to use array subscripts, which are slower.

Tip: Creating generators is a slow process and they should, if possible, be created once

and reused to avoid the overhead of setting up the states each time.

Thrust

The second library we will look at in detail is the Thrust library. The Thrust library is a CUDA-
accelerated version of the Standard Template Library (STL) for C++. The library provides data
types and common algorithms optimized with CUDA.

Tip: Many of the identifiers included in the Thrust library have the same names as those

from the STL. When mixing Thrust and STL code it may be helpful to avoid using the

using directive to include the entire namespaces. Instead, qualify references fully. For

instance, use std::sort and thrust::sort.

There are two different types of basic vectors included in the Thrust library: host_vector and

the device_vector. Host vectors are stored in system memory and controlled by the host,

while device vectors are stored in device memory and controlled by the device.

The Thrust headers are located in the thrust subdirectory of the main CUDA toolkit headers
directory. To use host or device vectors in your code, include the appropriate header,
thrust\host_vector.h or thrust\device_vector.h.

Thrust does not have its own library (i.e. there is no thrust.lib like there was for CURAND). But it
does use the standard CUDA Runtime library, so make sure your project links to CUDART.lib

before using Thrust.

Basic Vector Manipulations

To define a Thrust vector, use thrust::host_vector<type> or

thrust::device_vector<type> where type is the data type for the vector. There are various

constructors you can use to initialize the vectors, including defining the size and initial values for
each of the elements in the vector. Listing 10.4 shows some basic examples of defining vectors,
accessing elements, and copying data to and from the various vector library types.

// main.cu
#include <iostream>
#include <thrust\host_vector.h>
#include <thrust\device_vector.h>
#include <vector> // STL vector header

see more please visit: https://homeofbook.com

 111

int main() {
// Defining vectors

// STL vector, 100 ints set to 18
std::vector<int> stdV(100, 18);

// Host vector of 100 floats
thrust::host_vector<float> h(100);

// Host vector, 100 ints set to 67
thrust::host_vector<int> hi(100, 67);

// Empty device vector of doubles
thrust::device_vector<double> dbv;

// Device vector, 100 ints set to 0
thrust::device_vector<int> di(100, 0);

//
// Adding and removing elements
//

// Print initial element count for h
std::cout<<"H contains "<<h.size()<<" elements"<<std::endl;

// Remove last element
h.pop_back();
std::cout<<"H contains "<<h.size()<<" elements"<<std::endl;

// Adding and removing elements from device vector is the same
dbv.push_back(0.5);
std::cout<<"Final elements of dbv is "<<dbv.back()<<std::endl;
dbv.pop_back();

//
// Copying data between vectors
//

// Print out the first element of h
std::cout<<"First element of hi is "<<hi[0]<<std::endl;

// Copying host vector to device vector
di = hi;
std::cout<<"First element of di is "<<di[0]<<std::endl;

// Copy from STD vector to device vector
di = stdV;
std::cout<<"First element of di is "<<di[0]<<std::endl;

return 0;
}

Listing 10.4: Basic Vector Manipulations

see more please visit: https://homeofbook.com

 112

Listing 10.4 shows that vectors can be copied from host to device and even STL vectors using
the equal operator, =. Copying to or from a device vector uses cudaMalloc behind the scenes.

Bear this in mind when coding with Thrust, or code can drop dramatically in performance,
especially when performing many small copies.

Elements can be accessed using the array subscript operators []. The standard STL vector

manipulations like push_back, pop_back, and back (and many others) are all available for

Thrust vectors. Vectors local to a function, device and host, are disposed of automatically when
the function returns.

Sorting with Thrust

Listing 10.5 shows an example of how to use the sorting algorithm available in Thrust. It creates
and sorts three lists of 20,000,000 integers. One is sorted using STL, one is a Thrust host
vector, and the final one is a Thrust device vector. Each vector type sorts the integers five times,
regenerating a random list between sorts. Note that, in this example, the device vector does not
actually generate the random numbers, but copies them from the host vector.

// main.cu
// Standard headers
#include <iostream>
#include <ctime>

// CUDA and Thrust headers
#include <thrust\host_vector.h>
#include <thrust\device_vector.h>
#include <thrust\sort.h>

// STL headers
#include <vector>
#include <algorithm>

// Helper defines and variable for timing
long startTime;
#define StartTimer() startTime=clock()
#define ElapsedTime (clock()-startTime)

int main() {
int count = 20000000; // 20 million elements to sort

// Vectors
std::vector<int> stlVec(count); // STL vector
thrust::host_vector<int> hostVec(count); // Thrust host vector
thrust::device_vector<int> devVec(count); // Thrust device vector

std::cout<<"Comparison of Thrust and STL sort times on vectors of size "<<
 count<<"\n\n";

// Sort 5 times using STL vector
std::cout<<"STL vector:"<<std::endl;
for(int i = 0; i < 5; i++) {

see more please visit: https://homeofbook.com

 113

 std::generate(stlVec.begin(), stlVec.end(), rand);
 StartTimer();
 std::sort(stlVec.begin(), stlVec.end());
 std::cout<<"Run["<<i<<"] Sorted in "<<ElapsedTime<<" millis"<<
 std::endl;
 }

// Sort 5 times using Thrust host vector
std::cout<<"\nThrust host vector:"<<std::endl;
for(int i = 0; i < 5; i++) {
 thrust::generate(hostVec.begin(), hostVec.end(), rand);
 StartTimer();
 thrust::sort(hostVec.begin(), hostVec.end());
 std::cout<<"Run["<<i<<"] Sorted in "<<ElapsedTime<<" millis"<<
 std::endl;
 }

// Sort 5 times using Thrust device vector
std::cout<<"\nThrust device vector:"<<std::endl;
for(int i = 0; i < 5; i++) {
 // Host generates values for devVec
 thrust::generate(hostVec.begin(),hostVec.end(),rand);
 devVec = hostVec; // Copy from host since there's no rand()

 StartTimer();
 thrust::sort(devVec.begin(), devVec.end());
 std::cout<<"Run["<<i<<"] Sorted in "<<ElapsedTime<<" millis"<<
 std::endl;
 }
std::cout<<"All tests complete!"<<std::endl;
return 0;
}

Listing 10.5: Vector Sorting Comparison

see more please visit: https://homeofbook.com

 114

Figure 10.1: Example output from Listing 10.5

The Thrust device vector is clearly very fast (Figure 10.1 shows the device vector is around 10
times faster than STL and around 3 times faster than the host vector). What is perhaps
surprising is that the host vector is considerably faster than the STL. When the lists are sorted
already (or nearly), the STL sort has a special trick; it notices the elements are in order and
quits the sort early. This gives the STL a peculiar advantage with nearly sorted lists. Placing the
lines that regenerate the random list outside the for loops shows this. The STL sorts at around

168 milliseconds on the tested machine when the list is sorted.

Replacing all the calls to sort with stable_sort implements a stable sort. The indices of

identical elements are guaranteed to maintain order with respect to one another through a
stable sort. A stable sort slows the STL vector down while the Thrust vectors are relatively
unaffected.

Transformations, Reductions, and Stream Compaction

As a final example, Listing 10.6 shows more of the Thrust library's abilities. It finds the factors of
an integer up to its square root. This is a very inefficient method for factorizing integers (it is just
a brute force search with a marvelously undesirable memory footprint), but it shows how to use
several other important functions of the Thrust library.

The following code will not work on devices with compute capability 1.x. Remember to set the
SM and compute values in your project to 2.0 or higher.

// main.cu

#include <iostream>

see more please visit: https://homeofbook.com

 115

// Thrust headers
#include <thrust\device_vector.h>
#include <thrust\transform.h>
#include <thrust\sequence.h>
#include <thrust\copy.h>

// Helper function, returns true if x is zero
// else return false
struct isZero {
 __device__ bool operator()(const int x) {
 return x == 0;
 }
};

int main() {

int x = 600; // The integer to factorize

//
// Define Thrust device vectors
//
// dx vector will be filled with multiple copies of x
thrust::device_vector<int> dx((int)(std::sqrt((double)x)+1));
// dy vector will be filled with sequence (2, 3, 4... etc.)
thrust::device_vector<int> dy((int)(std::sqrt((double)x)+1));
// factors vector is used to store up to 20 factors
thrust::device_vector<int> factors(20);

// Fill dx with multiple copies of x
thrust::fill(dx.begin(), dx.end(), x);

// Fill dy with a sequence of integers from 2 up to
// the square root of x
thrust::sequence(dy.begin(), dy.end(), 2, 1);

// Set elements of dx[] to remainders after division
// of dx[] and dy[]
thrust::transform(dx.begin(), dx.end(), dy.begin(), dx.begin(),
 thrust::modulus<int>());

// Multiply all remainders together
int product = thrust::reduce(dx.begin(), dx.end(), 1,
 thrust::multiplies<int>());

// If this product is 0 we found factors!
if(!product && x >= 4) {
 std::cout<<"Factors found!"<<std::endl;

 // Compact dx to factors where dy is 0
 thrust::copy_if(dy.begin(), dy.end(), dx.begin(),
 factors.begin(), isZero());

 // Print out the results

see more please visit: https://homeofbook.com

 116

 for(int i = 0; i < factors.size(); i++) {
 if(factors[i] != 0)
 std::cout<<factors[i]<<" is a factor of "<<
 x<<std::endl;
 }
 }
else { // Otherwise x is prime
 std::cout<<x<<" is prime, factors are 1 and "<<x<<std::endl;
 }

return 0;
}

Listing 10.6: Factorizing Integers

After the headers in Listing 10.6, you will see the definition of a structure (isZero). The

structure consists of a single Boolean function, which is used as a predicate later in the code.

Three vectors are used in the main method. dx and dy (nothing to do with calculus) are used as

two temporary device storage vectors. dx holds multiple copies of the integer being factorized,

which is the value of the variable x. dy holds all of the integers from 2 up to the square root of x.

To fill the dx vector with multiple copies of the x variable, the thrust::fill function is

employed. It takes two iterators, which specify the start and end of the area to fill, and a third
parameter, which is the value to fill with.

To create a list of all integers from 2 up to the square root of x and store them in the dy vector, I

have used the thrust::sequence function. There are overloaded versions of sequence, but

the version used here takes four parameters. The first two parameters are the start and end
iterators for the area being filled. The third parameter is the value to start with, and the final
parameter is the step or gap between the values generated.

The next step is to divide the xs stored in dx with the sequential integers in dy, taking the

remainder with the modulus operator. In the code this is achieved with the thrust::transform

function. Transforms perform the same operation on many elements of vectors. The transform
function used in the code takes four parameters. The first two are the start and end iterators of
the input. The next is the start iterator for the second input (modulus requires two operands).
The third parameter is the output iterator to which the results will be stored, and the final
parameter is the function to be performed between the elements of the dx and dy vectors. The

result of this function call is that each of the xs in dx is divided by the corresponding element in

dy, and the remainder after the division replaces the original values in dx.

The next function call is an example of using a thrust::reduce. A reduce algorithm (or

parallel reduction) reduces the elements of a vector (or array or any other list) to a single value.
It could, for instance, produce the sum of elements in an array, the standard deviation, average,
or any other single value. In the code it is used to multiply all the elements of dx together. If any

of them were 0, the result of this multiplication would be 0, which means we found factors (i.e.

some integers were found that evenly divide x). If the result of this multiplication is not 0, it

means none of the integers in dy are factors of x. If no integer from 2 to the square root of x is a

factor of x, then x is prime.

see more please visit: https://homeofbook.com

 117

The thrust::reduce function used here takes four parameters. The first two are the start and

end iterators to the data that is to be reduced. The third parameter is the start value for the
reduction. If you were summing a list of numbers you might use 0 for the initial value, but here
we are multiplying, so I have used 1. The final parameter is the operation to use. I have used
integer multiplication with thrust::multiplies<int>(). The resulting float (product) from

this reduction is the product of all the elements in the dx vector. The reduction, as used here, is

a complete waste of time, and it is only supplied for illustration of thrust::reduce.

The final task (if we found the factors and product was 0) is to copy the factors we found into

another vector (the factors vector). To do this we want to copy elements from dy to factors

where dx's elements are 0. It is a complicated operation to describe in English, but it is easily

achieved by a call to thrust::copy_if. This operation is called a stream compaction. We are

compacting the elements in dy to another vector based on some predicate (i.e. that the

corresponding element in dx is 0). The function (thrust::copy_if) as used here takes five

parameters; the first two are the start and end iterators of the stream being compacted, which is
dy. The next is called the stencil parameter; it is the vector of the values to compare against the

predicate. Here, we are checking if dx's values are 0, so the stencil is dx. The fourth parameter

is the start iterator to store the results, factors.begin(). The final parameter is the predicate,

a function returning bool, which decides which elements are copied and which are not.

The isZero() function was defined at the top of the application; it returns true when its

parameter is 0 and false for any other values. This predicate (isZero) is a __device__

function. Every element in the dx vector will be passed through the predicate function

concurrently; when the results are true, the corresponding elements of dy are copied to

subsequent positions in factors. The end result of the stream compaction is that the factors of

x will be stored in the factors vector, from which they are printed to the screen using a for

loop and cout.

This has been a very quick look into some aspects of the Thrust library. Each of the categories
of algorithm (transforms, reductions, and stream compactions) are far more flexible than this
simple example illustrates. In addition, the Thrust library has a collection of very powerful and
flexible iterators, which we have not looked at in these examples. For further reading on the
topic of the Thrust library, consult the Thrust Quick Start Guide, which comes with the CUDA
Toolkit. The exact path of the PDF documentation will differ for each version of the toolkit; the
following is the default path for version 6.5:

C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v6.5\doc\pdf\Thrust_Quick_Start_Guide.pdf

The Thrust Quick Start Guide is also available online from NVIDIA at
http://docs.nvidia.com/cuda/thrust/index.html.

see more please visit: https://homeofbook.com

http://docs.nvidia.com/cuda/thrust/index.html

 118

Conclusion

Throughout this book we have looked at many aspects which together form the CUDA
programming architecture. I have necessarily left out the vast majority of information and
concentrated only on a few key aspects of the technology. We have seen that even a modest
modern graphics card is an extremely powerful piece of hardware, and that CUDA offers
potential performance gains that are very exciting to anybody interested in pushing modern
hardware to its limits. A few hours spent porting an algorithm to a GPU may yield a speed-up
that would be completely impossible to gain with a CPU, regardless of the time spent optimizing.

Aside from the obvious gains in performance, I hope I have shown that studying the CUDA SDK
gives programmers a completely new set of skills.

The sheer number of concurrent parallel threads makes for a very different programming
experience than one might get from programming a handful of threads with a CPU.

I have spoken only about CUDA in this book. There are other graphics cards manufacturers,
and they make equal hardware. They have their own languages and ecosystems. There is also
OpenCL, which is an open source compute library (very similar to the CUDA driver API) that has
the great benefit of working on many different graphics cards, including on-board graphics.

Thank you very much for reading, and I hope you have enjoyed this short adventure into the
world of general purpose programming using NVIDIA hardware and CUDA. If you would like to
explore further, I recommend looking into graphics APIs, DirectX or OpenGL, and other GPGPU
languages, such as OpenCL.

see more please visit: https://homeofbook.com

 119

More Information

GPU Technology Conference (GTC)

http://www.gputechconf.com/page/home.html

If you are interested in finding more information on any topics involving CUDA, GPGPU, or
graphics cards in general, watch relevant video presentations from the GTC.

GTC On Demand

http://www.gputechconf.com/gtcnew/on-demand-gtc.php

The GTC On-Demand site offers presentations from past years of the GTC. The sheer amount
of information presented here is incredible. Every aspect of programming graphics cards has
been discussed in detail and most of the older presentations are still relevant.

CUDA Library Documentation

https://developer.nvidia.com/gpu-accelerated-libraries

The CUDA libraries are very powerful. We looked at only two, and rather quickly. Full references
for each library can be found at the bottom of the library's webpage. In addition, PDF versions of
these documents are installed with the SDK and can be found in the /doc/ subfolder of the
CUDA toolkit (depending on the CUDA version you have installed the exact path may be differ,
but it will likely be something similar to the following: C:\Program Files\NVIDIA GPU Computing
Toolkit\CUDA\v6.5\doc\pdf).

You will find many PDF documents here, including:

 CUDA_C_Programming_Guide.pdf, a general reference to CUDA C.

 CUDA_C_Best_Practices_Guide.pdf, a reference full of NVIDIA's recommended
practices when programming with CUDA.

 CUDA_Runtime_API.pdf, a reference to the runtime API.

The Little Book of Semaphores by Allen B. Downey

http://www.greenteapress.com/semaphores/

This book is a true gem—it is a must-read for all who wish to dip into the baffling but very
beautiful world of parallel problem solving using semaphores and mutexes. It is the best book
on the topic available, and Mr. Downey's talk (available from the same site) is an excellent
supplement. The simple algorithms we programmed did not require any of these
synchronization primitives, but as the complexity of thread interaction increases, a solid
knowledge of semaphores becomes indispensable.

see more please visit: https://homeofbook.com

http://www.gputechconf.com/page/home.html
http://www.gputechconf.com/gtcnew/on-demand-gtc.php
https://developer.nvidia.com/gpu-accelerated-libraries
http://www.greenteapress.com/semaphores/

	The Story behind the Succinctly Series of Books
	About the Author
	Chapter 1 Introduction
	Chapter 2 Creating a CUDA Project
	Downloading the Tools
	Visual Studio 2012 Express
	CUDA Toolkit

	Device Query
	Creating a CUDA Project
	Text Highlighting
	Timeout Detection and Recovery

	Chapter 3 Architecture
	Kernels, Launch Configurations, and dim3
	Kernels
	Restrictions on Kernels
	Launching a Kernel
	dim3

	Threads, Blocks, the Grid, and Warps
	Threads
	Thread Blocks
	Grid
	Warps

	Device Memories
	Registers
	Shared Memory
	Caches
	Local Memory
	Constant Memory
	Texture Memory
	Global Memory

	Memories Summary

	Chapter 4 First Kernels
	Adding Two Integers
	Function Qualifiers
	CUDA API Memory Functions and cudaError_t

	Copying Data to and from the GPU
	Vector Addition Kernel

	Recursive Device Functions

	Chapter 5 Porting from C++
	C++ Host Version
	CUDA Version
	Tips and Tricks

	Chapter 6 Shared Memory
	Static and Dynamic Allocation
	Statically Allocated Shared Memory

	Dynamically Allocated Shared Memory
	Using Dynamic Shared Memory as Multiple Data

	CUDA Cache Config
	Parallel Pitfalls and Race Conditions
	Read-Modify-Write
	Block-Wide Barrier
	Atomic Instructions

	Shared Memory Banks and Conflicts
	Access Patterns

	Chapter 7 Blocking with Shared Memory
	Shared Memory Nearest Neighbor

	Chapter 8 NVIDIA Visual Profiler (NVVP)
	Starting the Profiler
	General Layout

	Occupancy
	Register Count
	Shared Memory Usage

	Unguided Analysis
	Kernel Performance Limiter
	Kernel Latency
	Kernel Compute
	Kernel Memory
	Memory Access Pattern
	Divergent Execution

	Other Tools
	Details Tab
	Metrics and Events

	Chapter 9 Nsight
	Generating Profiling Reports
	Debugging
	CUDA Info Window
	Warp Watch Window

	Chapter 10 CUDA Libraries
	Libraries: Brief Description
	CUDA Random Number Generation Library (CURAND)
	Host and Device APIs
	Host API
	Device API

	Thrust
	Basic Vector Manipulations
	Sorting with Thrust
	Transformations, Reductions, and Stream Compaction

	Conclusion
	More Information

