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The Story behind the Succinctly Series 
 of Books 

Daniel Jebaraj, Vice President 
Syncfusion, Inc. 

taying on the cutting edge 

As many of you may know, Syncfusion is a provider of software components for the 
Microsoft platform. This puts us in the exciting but challenging position of always 
being on the cutting edge. 

Whenever platforms or tools are shipping out of Microsoft, which seems to be about 
every other week these days, we have to educate ourselves, quickly. 

Information is plentiful but harder to digest 

In reality, this translates into a lot of book orders, blog searches, and Twitter scans. 

While more information is becoming available on the Internet and more and more books are 
being published, even on topics that are relatively new, one aspect that continues to inhibit us is 
the inability to find concise technology overview books.  

We are usually faced with two options: read several 500+ page books or scour the web for 
relevant blog posts and other articles. Just as everyone else who has a job to do and customers 
to serve, we find this quite frustrating. 

The Succinctly series 

This frustration translated into a deep desire to produce a series of concise technical books that 
would be targeted at developers working on the Microsoft platform.  

We firmly believe, given the background knowledge such developers have, that most topics can 
be translated into books that are between 50 and 100 pages.  

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything 
wonderful born out of a deep desire to change things for the better? 

The best authors, the best content 

Each author was carefully chosen from a pool of talented experts who shared our vision. The 
book you now hold in your hands, and the others available in this series, are a result of the 
authors’ tireless work. You will find original content that is guaranteed to get you up and running 
in about the time it takes to drink a few cups of coffee.  

S 
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Free forever  

Syncfusion will be working to produce books on several topics. The books will always be free. 
Any updates we publish will also be free.  

Free? What is the catch? 

There is no catch here. Syncfusion has a vested interest in this effort.  

As a component vendor, our unique claim has always been that we offer deeper and broader 
frameworks than anyone else on the market. Developer education greatly helps us market and 
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn 
the moon to cheese!” 

Let us know what you think 

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at 
succinctly-series@syncfusion.com.  

We sincerely hope you enjoy reading this book and that it helps you better understand the topic 
of study. Thank you for reading. 

 

 

 

 

 

 

 

 

 

 

 

 

Please follow us on Twitter and “Like” us on Facebook to help us spread the  
word about the Succinctly series! 
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Chapter 1  Getting Started 

The SciPy library (Scientific Python, pronounced "sigh-pie") is an open source extension to the 
Python language. When Python was first released in 1991, the language omitted an array data 
structure by design. It quickly became apparent that an array type and functions that operate on 
arrays would be needed for numeric and scientific computing. 

The SciPy stack has three components: Python, NumPy, and SciPy. The Python language has 
basic features, such as loop control statements and a general purpose list data structure. The 
NumPy library (Numerical Python) has array and matrix data structures plus some relatively 
simple functions such as array search. The SciPy library, which requires NumPy, has many 
intermediate and advanced functions that work with arrays and matrices. There is some overlap 
between SciPy and NumPy, meaning there are some functions that are in both libraries. 

When SciPy was first released in 2001, it contained built-in array and matrix types. In 2006, the 
array and matrix functionality from SciPy was moved into a newly created NumPy library so that 
programmers who needed just an array type didn't have to import the entire SciPy library. 
Because of the dependency, the term SciPy also refers to NumPy. 

This e-book makes no assumptions about your background or experience. Even if you have no 
Python programming experience at all, you should be able to follow along with a bit of effort. 

Each section of this e-book presents a complete demo program. Every programmer I know, 
including me, learns how to program in a new language by getting an example program up and 
running, and then experimenting by making changes. So if you want to learn SciPy, copy and 
paste the source code from the demo programs, run the programs, and then fiddle with the 
programs. Find the code samples in Syncfusion’s Bitbucket repository. 

The approach I take in this e-book is not to present hundreds of one-line SciPy examples. 
Instead, I've tried to pick key examples that give you the knowledge you need to learn SciPy 
quickly. For example, section 5.4 explains how the normal() function generates random 

values. Once you understand the normal() function, you can easily figure out how to use the 

35 other distribution functions, such as the poisson() and exponential() functions. 

In my opinion, the most difficult part of learning any programming language or technology is 
getting a first program to run. After that, it's just details. But getting started can be frustrating. 
The purpose of this first chapter is to make sure you can install SciPy and run a program. 

In section 1.1, you'll learn how to install the software required to access the SciPy library. In 
particular, you'll see how to install the Anaconda distribution, which includes Python, SciPy, 
NumPy, and many related and useful packages. You'll also learn how to install SciPy separately 
if you have an existing instance of Python installed. In section 1.2, you'll learn how to edit and 
execute Python programs that use the SciPy and NumPy libraries. In section 1.3, you'll learn a 
bit about program structure and style when using SciPy and NumPy. Section 1.4 presents a 
quick reference for NumPy and SciPy. 

Enough chit-chat. Let's get started.  
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1.1 Installing SciPy and NumPy 

It's no secret that the best way to learn a programming language, library, or technology is to use 
it. Unlike the installation process for many Python libraries, installing SciPy is not trivial. Briefly, 
the crux of the difficulty is that SciPy and NumPy contain hooks to C language routines. 

It is possible to first install Python, and then install the SciPy and NumPy packages separately 
from source code using the pip (PIP Installs Packages) utility program, but this approach can be 
troublesome. I recommend that you either use the Anaconda distribution bundle or, if you install 
Python, NumPy, and SciPy separately, that you use a pre-built binary installer for NumPy and 
SciPy.  

 Note: The terms package, module, and library have different meanings but are often used 

more or less interchangeably. 

There are several advantages to using Anaconda. There are binary installers for Windows, OS 
X, and Linux. The distribution comes with Python, NumPy, and SciPy, as well as many other 
related packages. This means you have one relatively easy installation procedure. The 
distribution comes with the conda open source package and environment manager, which 
means you can work with multiple versions of Python. In other words, even if you already have 
Python installed, Anaconda will let you work with a new Python + SciPyPy installation without 
resource conflicts. Anaconda also comes with two nice Python editors, IDLE and Spyder. 

The open source Anaconda distribution is maintained by the Continuum Analytics company at 
http://www.continuum.io/. Let's walk through the installation process, step by step. I'll show you 
screenshots for a Windows installation, but you should have little trouble installing on OS X or 
any flavor of Linux. First, use your web browser of choice to go to the Continuum Analytics site, 
and then locate the download link and click on it. 

 

Figure 1: The Anaconda Download Site 
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Next, locate the link to your appropriate operating system and click on it. 

At this point you must choose between Python version 2.x and Python version 3.x. If you're new 
to Python, the essential point is that the two versions are not fully compatible. Python users can 
have strong opinions about which Python version they prefer, but for use with SciPy, I 
recommend using Python 2.7 in order to maintain compatibility with older functions.  

 

Figure 2: Python Version Selection 

After selecting the Python version, you should see a message asking if you want to save the 
self-extracting executable installer, or if you want to run the installer immediately. You can do 
either. I chose the Run option. 

 

Figure 3: Run the Executable Installer 

The installation process begins by displaying a welcome splash screen. Notice that the 
Anaconda distribution number (2.4.1 in this case) is not the same as the Python version number 
(2.7). 
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Figure 4: The Welcome Splash 

After clicking Next, you'll be presented with a license agreement, which you can read if you're a 
glutton for legal jargon punishment. Click I Agree. 

 

Figure 5: License Agreement 
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Next, you'll have the option of installing for all users or just for the current user (presumably 
you). I suggest using Anaconda's recommendation. 

 

Figure 6: User Options 

Then, you'll need to specify the installation root directory. With open source software such as 
Python, it's normal to install programs in a directory located off drive C rather than in the 
C:\Program Files directory. I recommend installing at C:\Anaconda2. 

see more please visit: https://homeofpdf.com 



 
14 

 

Figure 7: The Installation Directory 

Next, you'll get an option to add the locations of the Anaconda executables to the System PATH 
variable, and an option to register the Anaconda Python as the default. Select both check boxes 
and click Install. 
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Figure 8: The PATH and Integration Options 

You'll see a progress bar during the installation process. Notice that NumPy and SciPy are 
included in the installation components. 

 

Figure 9: Anaconda Includes SciPy and NumPy 

When the installation is complete, you'll see an "Installation Complete" message. If there are 
any errors during the installation, they'll appear here. If so, you can read the error messages, fix 
whatever is wrong, delete the root installation directory, and try again. 
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Figure 10: Installation Completed 

After you click Next, you'll see a final completion confirmation message. You can click Finish. 

 

Figure 11: Installation Confirmation 

The last step of the Anaconda installation process is to verify that your installation is working. 
First, verify that Python is up and running. Launch a command shell and navigate to the root 
directory by entering a cd \ command. Then type the command: 
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C:\> python --version 

If Python responds with information about a version, then Python is almost certainly installed 
correctly, but you should now verify this by executing a Python statement. At the command 
prompt, enter the command python (I've included a space after the prompt for readability): 

C:\> python 

This will start the Python interpreter, which will be indicated by the three greater-than characters 
prompt. Instruct Python to print a traditional first message: 

>>> print "Hello, Python!" 

Finally, verify that NumPy is installed correctly by creating and manipulating an array. Enter the 
following commands at the Python prompt: 

>>> import numpy as np 
>>> a = np.array([4, 6, 8]) 
>>> print type(a) 
>>> a[0] = 7 
>>> print a 
>>> exit() 

 

Figure 12: Verify Your Installation 

The import statement brings the NumPy library into scope so it can be used. The np alias could 

have been something else, but np is customary and good. 
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The statement a = np.array([4, 6, 8]) creates an array named a with three cells with 

integer values 4, 6, and 8. The Python type() function tells you that a is, in fact, an array 

(technically an ndarray, which stands for an n-dimensional array). 

The statement a[0] = 7 sets the value in the first cell of the array to 7, overwriting the original 

value of 2. The point here is that NumPy arrays, like those in most languages, use 0-based 
indexing. Congratulations! You have all the software you need to explore SciPy and NumPy. 

Installing Python, NumPy, and SciPy separately 

Instead of using the Anaconda distribution, you can install Python, NumPy, and SciPy 
separately. To install Python, go to https://www.python.org/downloads/ and select the download 
for either a 3.x or 2.x version. I recommend the 2.7 version. After installation is complete, add 
C:\Python27 (or the location of python.exe if you used a non-default location) and 
C:\Python27\Lib\idelib to your system PATH environment variable. To install NumPy and SciPy, 
I strongly recommend that you use pre-built executable installers. In particular, the ones I 
recommend are maintained at the SourceForge repository. Install NumPy first. Go to 
http://sourceforge.net/projects/numpy/files/NumPy/. 

That site has different versions of both NumPy and SciPy. Go into the directory of the version 
you wish to install. I recommend using a recent version that has the most downloads. Go into a 
version directory, and then look for a file named something like numpy-1.10.2-win32-superpack-
python2.7.exe. 

 

Figure 13: Binary Installer Link for NumPy 
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Make sure you have the version that corresponds to your Python version, then click on the link 
and you'll get the option to run the installer. 

You'll have the option to either run the installer program immediately, or save the installer so 
you can run it later. I usually choose the Run option. 

 

Figure 14: Run the NumPy Installer Executable 

After you click Run, the installer will launch and present you with an installation wizard. Click 
Next. 

 

Figure 15: NumPy Installation Wizard  

The installer should find your existing Python installation and recommend an installation 
directory for the NumPy library. 
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Figure 16: The NumPy Installer Finds Existing Python Installation 

Click Next on the next few wizard pages and you'll complete the NumPy installation. You can 
verify NumPy was installed by launching a Python shell and entering the command import 
numpy. If no error message results, NumPy has been installed.  

 

Figure 17: Verify Separate NumPy Installation 

Now you can install the SciPy library from SourceForge using the exact same process. 

Resources 

For installation information, including alternatives to the Anaconda distribution, see 
http://www.scipy.org/install.html. 
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1.2 Editing SciPy programs 

Although Python and SciPy can be used interactively, for many scenarios you'll want to write 
and execute a program (technically a script). If you have installed the Anaconda distribution, you 
have three main ways to edit and execute a Python program. First, you can use any simple text 
editor, such as Notepad, and execute from a command line. Second, you can edit and execute 
programs using the IDLE (Integrated DeveLopment Environment) program. Third, you can edit 
and execute using the Spyder program. I'll walk you through each approach. 

Code Listing 1: A Simple SciPy/NumPy Program 

# test.py 
 
import numpy as np 
import scipy as sp 
 
print "\nHello from test.py" 
 
a = np.array([2, 4, 6, 8]) 
print a 
 
length = a.size  # 4 
a[length-1] = 9 
print a 
 
print "Goodbye from test.py" 

Launch Notepad and type or copy and paste the statements shown in Code Listing 1. Save the 
program as test.py in any directory, such as C:\SciPy. If you use Notepad, be sure it doesn't add 
an extra .txt extension to the file name. 

 

Figure 18: Executing from a Command Prompt 
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Launch a Command Prompt (Windows) or command shell such as bash (Linux). Navigate to the 
directory containing file test.py. Execute the program by entering the command: 

> python test.py 

Using Notepad as an editor and executing from a shell is simple and effective, but I recommend 
using either IDLE or Spyder. The idle.bat launcher file is typically located by default in the 
C:\Python27\Lib\idelib directory. To start the IDLE program, launch a command shell, navigate 
to the location of the .bat file if that directory is not in your PATH variable, and enter the 
command idle. 

This will start a special Python Shell as shown in the top part of Figure 19. 

 

Figure 19: Using the IDLE Program 

From the Python Shell menu bar, click File > New File. This will launch a similar-looking editor, 
as shown in the bottom part of Figure 19. Now, type or copy and paste the program in Code 
Listing 1 into the IDLE editor. Save the program as test.py in any convenient directory using File 
> Save. Execute the program by clicking Run > Run Module, or pressing the F5 shortcut key. 
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Program output is displayed in the Python Shell window. Some experienced Python users 
criticize IDLE for being too simple and lacking sophisticated editing and debugging features, but 
I like IDLE a lot and it's my SciPy programming environment of choice in most situations. 

 

Figure 20: Using the Spyder Program 

The Anaconda distribution comes with the open source Spyder (Scientific PYthon Development 
EnviRonment) program. To start Spyder, launch a command shell and enter: 

> spyder 

Type or copy and paste the program from Code Listing 1 into the Spyder editor window on the 
left side. You can either save first using File > Save or execute immediately by clicking Run > 
Run. Program output appears in the lower right window. 

Resources 

If you use Visual Studio, consider the Python Tools for Visual Studio (PTVS) plugin at 
http://microsoft.github.io/PTVS/. 

If you use the Eclipse IDE, you might want to take a look at the PyDev plugin at 
http://www.pydev.org/. 
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1.3 Program structure 

Because the Python language is so flexible, there are many ways to structure a program. Some 
experienced Python programmers have strong opinions about what constitutes good Python 
program structure. Other programmers, like me, believe that there's no single best program 
structure suitable for all situations. 

Take a look at the demo program in Code Listing 2. The program begins with comments 
indicating the program file name and Python version. Because the Python 2.x and Python 3.x 
versions are not fully compatible, it's a good idea to indicate which version your program is 
using. If you are using Linux, you can optionally use a shebang like #!/usr/bin/env python 

as the very first statement. 

Code Listing 2: Python Program Structure Demo 

# structure.py 
# Python 2.7 
 
import numpy as np 
 
def make_x(n): 
  result = np.zeros((n,n)) 
  for i in xrange(n): 
    for j in xrange(n): 
      if i == j or (i + j == n-1): 
        result[i,j] = 1.0 
  return result 
 
def main(): 
  print "\nBegin program structure demo \n" 
 
  try: 
    n = 5 
    print "X matrix with size n = " + str(n) + " is " 
    mx = make_x(n) 
    print mx 
    print "" 
 
    n = -1 
    print "X matrix with size n = " + str(n) + " is " 
    mx = make_x(n) 
    print mx 
    print "" 
  except Exception, e: 
    print "Error: " + str(e) 
 
  print "\nEnd demo \n" 
 
if __name__ == "__main__": 
  main() 
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C:\SciPy\Ch1> python structure.py 

Begin program structure demo  

 

X matrix with size n = 5 is  

[[ 1.  0.  0.  0.  1.] 

 [ 0.  1.  0.  1.  0.] 

 [ 0.  0.  1.  0.  0.] 

 [ 0.  1.  0.  1.  0.] 

 [ 1.  0.  0.  0.  1.]] 

 

X matrix with size n = -1 is  

Error: negative dimensions are not allowed 

 

End demo 

Next, the demo program imports the NumPy library and assigns a short alias: 

import numpy as np 

This idiom is standard for NumPy and SciPy programming and I recommend that you use it 
unless you have a specific reason for not doing so. Next, the demo creates a program-defined 
function named make_x(): 

def make_x(n): 
  result = np.zeros((n,n)) 
  for i in xrange(n): 
    for j in xrange(n): 
      if i == j or (i + j == n-1): 
        result[i,j] = 1.0 
  return result   

The make_x() function accepts a matrix dimension parameter n (presumably an odd integer) 

and returns a NumPy matrix with 1.0 values on the main diagonal (upper-left cell to lower-right 
cell) and the minor diagonal, and 0.0 values elsewhere.  

The demo uses an indentation of two spaces instead of the widely recommended four spaces. I 
use two-space indentation throughout this e-book mostly to save space, but to be honest, I 
prefer using two spaces, anyway.  

The demo program defines a main() function that is the execution entry point: 

def main(): 
  print "\nBegin program structure demo \n" 
  # rest of calling statements here 
  print "\nEnd demo \n" 
 
if __name__ == "__main__": 
  main() 
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The program-defined main() function is called using the __main__ mechanism (note: there are 

two underscore characters before and after the word main). Defining a main() function has 

several advantages compared to simply placing the program's calling statements after import 
statements and function definitions. 

The primary downside to using a main() function in your program is simply the extra time and 

space it takes you to write the program. Throughout the rest of this e-book, I do not use a 
main() function, just to save space. 

By default, when the Python interpreter reads a source .py file, it will execute all statements in 
the file. However, just before beginning execution, the interpreter sets a system __name__ 

variable to the value __main__ for the source file that started execution. The value of the 

__name__ variable for any other module that is called is set to the name of the module. 

In other words, the interpreter knows which program or module is the main one that started 
execution and will execute just the statements in that program or module. Put another way, 
Python modules that don't have an if __name__ == "__main__" statement will not be 

automatically executed. This mechanism allows you to write Python code and then import that 
code into another module. In effect, this allows you to write library modules. 

Additionally, by using a main() function, you can avoid program-defined variable and function 

names clashing with Python system names and keywords. Finally, using a main() function 

gives you more control over control flow if you use the try-except error handling mechanism.  

The demo program uses double quote characters to delimit strings. Unlike some other 
languages, Python recognizes no semantic difference between single quotes and double 
quotes. In particular, Python does not have a character data type, so both "c" and 'c' 

represent a string with a single character. 

The demo program uses the try-except mechanism (that is, a try statement followed by an 

except statement). Using try-except is particularly useful when you are writing new code, but 

the downside is additional time and lines of code. The demo programs in the remainder of this 
e-book do not use try-except in order to save space. 

Resources 

The more or less official Python style guide is PEP 0008 (Python Enhancements Proposal #8). 
See https://www.python.org/dev/peps/pep-0008/. 

Many Python programmers use the Google Python Style Guide. See 
https://google.github.io/styleguide/pyguide.html. 

For additional details about the Python try and except statements and error handling, see 

https://docs.python.org/2/tutorial/errors.html. 

For a discussion of the pros and cons of using a shebang in Linux environments, see 
https://en.wikipedia.org/wiki/Shebang_(Unix). 
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1.4 Quick reference program 

The program in Code Listing 3 is a quick reference for many of the NumPy and SciPy functions 
and programming techniques that are presented in this e-book.  

Code Listing 3: Syntax Demo 

# quick_ref.py                            # SciPy Programming Succinctly  
# Python 2.7 
 
import numpy as np                        # arrays, matrices, functions 
import scipy.linalg as spla               # determinant, inverse, etc. 
import scipy.special as ss                # advanced functions like gamma 
import scipy.constants as sc              # math constants like e 
import scipy.integrate as si              # functions for integration 
import scipy.optimize as so               # functions for optimization 
import itertools as it                    # permutations, combinations 
import time                               # for timing 
 
class Permutation:                        # custom class using an array 
  def __init__(self, n):                  # constructor 
    self.n = n 
    self.data = np.arange(n)              # [0, 1, 2, . . (n-1)] 
 
  def as_string(self):                    # instance method 
    s = "# " 
    for i in xrange(self.n):              # traverse an array             
      s += str(self.data[i]) + " " 
    return s + "#" 
 
  @staticmethod 
  def my_fact(n):                         # static method 
    result = 1                            # iterative rather than recursive 
    for i in xrange(1, n+1):              # recursion supported in Python 
      result *= i                         # but usually not a good idea 
    return result  
 
# ---------------------------------- 
def show_matrix(m, decimals):             # standalone function 
  (rows, cols) = np.shape(m)              # matrix dimensions as tuple 
  for i in rows:                          # traverse a matrix 
    for j in cols: 
      print "%." + str(dec) % m[i,j] 
    print "" 
# ---------------------------------- 
 
print "\nBegin quick examples \n" 
 
arr_a = np.array([3.0, 2.0, 0.0, 1.0])    # create array of float64 
arr_b = np.zeros(4, dtype=np.int32)       # create int array [0, 0, 0, 0] 
b = 1.0 in arr_a                          # search array using "in": True 
result = np.where(arr_a == 1.0)           # result is (array([3]),) 
arr_s = np.sort(arr_a, kind="quicksort")  # sort array: [0.0, 1.0, 2.0, 3.0] 
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arr_r = arr_s[::-1]                       # reverse: [3.0, 2.0, 1.0, 0.0] 
 
np.random.seed(0)                         # set seed for reproducibility 
np.random.shuffle(arr_r)                  # randomize content order 
 
arr_ref = arr_a                           # copy array by reference 
arr_d = np.copy(arr_a)                    # copy array by value 
arr_v = arr_a.view()                      # copy by view reference 
arr_e = arr_a + arr_b                     # add arrays 
 
m_a = np.matrix([[1.0, 2.0], [3.0, 4.0]]) # matrix-style 2x2 matrix 
m_b = np.array([[8, 7], [6, 5]])          # ndarray-style 2x2 matrix 
m_c = np.zeros((2,2), dtype=np.int32)     # ndarray 2x2 matrix all 0s 
try:                                      # try-except 
  m = np.loadtxt("foo.txt")               # matrix from file 
except Exception: 
  print "Unable to open file" 
 
m_e = m_a.transpose()                     # matrix transposition 
d = spla.det(m_a)                         # matrix determinant 
m_i = np.linalg.inv(m_a)                  # matrix inverse 
 
m_idty = np.eye(2)                        # identity 2x2 matrix 
m_m = np.dot(m_a, m_i)                    # matrix multiplication 
b = np.allclose(m_m, m_idty, 1.0e-5)      # matrix equality by value 
 
m_x = m_a + np.array([5.0, 8.0])          # broadcasting 
  
p_it = it.permutations(xrange(3))         # permutations iterator 
start_t = time.clock()                    # timing 
for p in p_it: 
  print p 
end_t = time.clock() 
elap = end_t - start_t 
print "elapsed = " + str(elap) + "secs"   # string concatenation 
   
pc = Permutation(3)                       # instantiate a custom class 
print pc.as_string()                      # instance method call 
nf = Permutation.my_fact(3)               # static method call 
 
arr = np.array([1.0, 3.0, 5.0, 7.0])      # a sorted array 
ii = np.searchsorted(arr, 2.0)            # binary search 
if ii < len(arr_s) and arr_s[ii] == 2.0:  # somewhat tricky return 
  print "2.0 found" 
 
(perm, low, upp) = spla.lu(m_a)           # matrix LU decomposition 
med = np.median(arr_a)                    # statistics function 
rv = np.random.normal(0.0, 1.0)           # random variable generation 
g = ss.gamma(3.5)                         # advanced math function 
 
print "\nEnd quick reference \n" 
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Chapter 2  Arrays 

Many of my colleagues, when they first started using Python, were surprised to learn that the 
language does not have a built-in array data structure. The Python list data structure is versatile 
enough to handle many programming scenarios, but for scientific and numeric programming, 
arrays and matrices are needed. The most fundamental object in the SciPy and NumPy libraries 
is the array data structure. The following screenshot shows you where this chapter is headed. 

 

Figure 21: NumPy Array Demo 

In section 2.1, you'll learn the most common ways to create and initialize NumPy arrays, and 
learn about the various numeric data types supported by NumPy.  

In section 2.2, you'll learn how to search an array for a target value using the where() function, 

using the in keyword, and by using a program-defined function. 

In section 2.3, you'll learn how to sort a NumPy array using the three different built-in sorting 
algorithms (quicksort, merge sort, and heap sort). You'll also learn about the NumPy array 
reference mechanism.  
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In section 2.4, you'll learn how to randomize an array using the NumPy shuffle() function and 

how to randomize an array using a program-defined function and the Fisher-Yates algorithm. 

2.1 Array initialization 

The most fundamental object in the NumPy library is the array data structure. A NumPy array is 
similar to arrays in other programming languages. Arrays have a fixed size and each cell must 
hold the same type. The NumPy library has several functions that allow you to create an array. 

Take a look at the demo program in Code Listing 4. After two preliminary print statements, 

program execution begins by creating an array using hard-coded numeric values: 

arr = np.array([1., 3., 5., 7., 9.]) 
dt = np.dtype(arr[0]) 
print "Cell element type is " + str(dt.name) # displays 'float64' 

The NumPy array() function accepts a Python list (as indicated by the square brackets) and 

returns an array containing the list values. Notice the decimal points. These tell the interpreter to 
cast the cell values as float64, the default floating-point data type for arrays. Without the 

decimals, the interpreter would cast the values to int32, the default integer type for arrays. 

Code Listing 4: Initializing Numeric Arrays 

# arrays.py 
# Python 2.7 
 
import numpy as np 
 
def my_print(arr, cols, dec): 
  n = len(arr) # print array using indexing 
  fmt = "%." + str(dec) + "f" # like %.4f 
  for i in xrange(n):  # alt: for x in arr 
    if i > 0 and i % cols == 0: 
      print "" 
    print fmt % arr[i], 
  print "\n" 
 
# ===== 
 
print "\nBegin array demo \n" 
 
print "Creating array arr using np.array() and list with hard-coded values " 
arr = np.array([1., 3., 5., 7., 9.]) # float64 
dt = np.dtype(arr[0]) 
print "Cell element type is " + str(dt.name) 
print "" 
 
print "Printing array arr using built-in print() " 
print arr 
print "" 
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print "Creating int array arr using np.arange(9) " 
arr = np.arange(9) # [0, 1, . . 8] # int32 
print "Printing array arr using built-in print() " 
print arr 
print "" 
 
cols = 4; dec = 0 
print "Printing array arr using my_print() with cols=" + str(cols), 
print "and dec=" + str(dec) 
my_print(arr, cols, dec) 
 
print "Creating array arr using np.zeros(5) " 
arr = np.zeros(5) 
print "Printing array arr using built-in print() " 
print arr 
print "" 
 
print "Creating array arr using  np.linspace(2., 5., 6)" 
arr = np.linspace(2., 5., 6) # 6 values from [2.0 to 5.0] inc. 
print "Printing array arr using built-in print() " 
print arr 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch2> python arrays.py 

 

Begin array demo  

 

Creating array arr using np.array() and list with hard-coded values  

Cell element type is float64 

 

Printing array arr using built-in print()  

[ 1.  3.  5.  7.  9.] 

 

Creating int array arr using np.arange(9)  

Printing array arr using built-in print()  

[0 1 2 3 4 5 6 7 8] 

 

Printing array arr using my_print() with cols=4 and dec=0 

0 1 2 3  

4 5 6 7  

8  

 

Creating array arr using np.zeros(5)  

Printing array arr using built-in print()  

[ 0.  0.  0.  0.  0.] 

 

Creating array arr using  np.linspace(2., 5., 6) 
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Printing array arr using built-in print()  

[ 2.   2.6  3.2  3.8  4.4  5. ] 

 

End demo 

If you are creating an array and neither float64 nor int32 is appropriate, you can make the 

data type explicit. For example: 

arr = np.array([2.0, 4.0, 6.0], dtype=np.float16) 

NumPy has four floating-point data types: float_, float16, float32, and float64. The 

default floating-point type is float64: a signed value with an 11-bit exponent and a 52-bit 

mantissa. NumPy also supports complex numbers. 

NumPy has 11 integer data types, including int32, int64, and uint64. The default integer data 

type is int32 (that is, a signed 32-bit integer with possible values between -2,147,483,648 and 

+2,147,483,647). 

You can also create arrays with string values and with Boolean values. For example: 

arr_b = np.array([True, False, True]) 
arr_s = np.array(["ant", "bat", "cow"]) 

After creating the array, the demo displays the array values using the built-in print statement: 

print "Printing array arr using built-in print() " 
print arr 

The Python 2.7 print statement is simple and effective for displaying NumPy arrays in most 

situations. If you need to customize the output format, you can use the NumPy 
set_printoptions() function or write a program-defined display function. 

Next, the demo program creates and initializes an array using the NumPy arange() function:   

arr = np.arange(9) 
print "Printing array arr using built-in print() " 
print arr    # displays [0 1 2 3 4 5 6 7 8] 

A call to arange(n) returns an int32 array with sequential values 0, 1, 2,… (n-1). Note that the 

NumPy arange() function (the name stands for array-range, and is not a misspelling of the 

word arrange) is quite different from the Python range() function, which returns a list of integer 

values, and the Python xrange() function, which returns an iterator object that can be used to 

traverse a list or an array. 

Next, the demo program displays the array generated by the arange() function, using a 

program-defined function named my_print(): 
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cols = 4; dec = 0 
print "Printing array arr using my_print() with cols=" + str(cols), 
print "and dec=" + str(dec) 
my_print(arr, cols, dec) 

The custom function displays an array in a specified number of columns (4 here), using a 
specified number of decimal places (0 here because the values are integers). 

If you are new to Python, you might be puzzled by the trailing comma character after the first 
print statement. This syntax is used to print without a newline character and is similar to the 

C# Console.Write() method (as opposed to the WriteLine() method) or the Java 

System.out.print() method (as opposed to the println() method). 

Program-defined function my_print() is implemented as: 

def my_print(arr, cols, dec): 
  n = len(arr) 
  fmt = "%." + str(dec) + "f"  # like %.4f 
  for i in xrange(n): 
    if i > 0 and i % cols == 0: 
      print "" 
    print fmt % arr[i], 
  print "\n" 

The function first finds the number of cells in the array using the Python len() function. An 

alternative is to use the more efficient NumPy size property: 

n = arr.size 

Note that size has no parentheses after it because it's a property, not a function. The 

my_print() function iterates through the array using traditional array indexing: 

for i in xrange(n): 

Using this technique, a cell value in array arr is accessed as arr[i]. An alternative is to iterate 

over the array like so: 

for x in arr 

Here, x is a cell value. This technique is similar to using a "for-each" loop in other languages 

such as C#. In most situations, I prefer using array indexing to "for-eaching" but most of my 
colleagues prefer the "for x in arr" syntax. 

Next, the demo program creates an array using the NumPy zeros() function: 

arr = np.zeros(5) 
print "Printing array arr using built-in print() " 
print arr 
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Based on my experience, using the zeros() function is perhaps the most common way to 

create a NumPy array. As the name suggests, a call to zeros(n) creates an array with n cells 

and initializes each cell to a 0.0 value. The default element value is float64, so if you want an 

integer array initialized to 0 values, you'd have to supply the dtype parameter value to zeros() 

like so: 

arr = np.zeros(5, dtype=np.int32) 

A closely related NumPy function is ones(), which initializes an array to all 1.0 (or integer 1) 

values. 

The demo concludes by creating and initializing an array using the NumPy linspace() 

function: 

arr = np.linspace(2., 5., 6) 
print "Printing array arr using built-in print() " 
print arr 

A call to linspace(start, stop, num) returns an array that has num cells with values evenly 

spaced between start and stop, inclusive. The demo call np.linspace(2., 5., 6) returns 

an array of six float64 values starting with 2.0 and ending with 5.0 (2.0, 2.6, 3.2, 3.8, 4.4, and 

5.0). 

Note that almost all Python and NumPy functions that accept start and stop parameters return 
values in [start, stop), that is, between start inclusive and stop exclusive. The NumPy 
linspace() function is an exception. 

There are many other NumPy functions that can create arrays, but the array() and zeros() 
functions can handle most programming scenarios. And you can always create specialized 
arrays using a program-defined function. For example, suppose you needed to create an array 
of the first n odd integers. You could define: 

def my_odds(n): 
  result = np.zeros(n, dtype=np.int32) 
  v = 1 
  for i in xrange(n): 
    result[i] = v 
    v += 2 
  return result 

And then you could create an array holding the first four odd integers with a call: 

arr = my_odds(4) 

A task that is closely related to creating NumPy arrays is copying an existing array. The NumPy 
copy() function can do this, and is described in detail later in this e-book. 

Resources 

For additional details on NumPy numeric data types, see  
http://docs.scipy.org/doc/numpy-1.10.1/user/basics.types.html. 
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For additional information about NumPy numeric array initialization functions, see  
http://docs.scipy.org/doc/numpy-1.10.1/user/basics.creation.html. 

For additional details on NumPy array iteration, see  
http://docs.scipy.org/doc/numpy-dev/reference/arrays.nditer.html#arrays-nditer 

2.2 Array searching 

Searching a numeric array for some target value is a common task. There are three basic ways 
to search a NumPy array. You can use the NumPy where() function, you can use the Python 

in keyword, or you can use a program-defined search function. Interestingly, there is no NumPy 

index() function like those found in several programming languages, including C# and Java. 

Code Listing 5: Array Searching Demo 

# searching.py 
# Python 2.7 
 
import numpy as np 
 
def my_search(a, x, eps): 
  for i in xrange(len(a)): 
    if (np.isclose(a[i], x, eps)): 
       return i 
  return -1 
 
# ===== 
 
print "\nBegin array search demo \n" 
 
arr = np.array([7.0, 9.0, 5.0, 1.0, 5.0, 8.0]) 
 
print "Array arr is " 
print arr 
print "" 
 
target = 5.0 
print "Target value is " 
print target 
print "" 
 
found = target in arr 
print "Search result using 'target in arr' syntax = " + str(found) 
print "" 
 
result = np.where(arr == target) 
print "Search result using np.where(arr == target) is " 
print result 
print "" 
 
idx = my_search(arr, target, 1.0e-6) 
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print "Search result using my_search() = " 
print idx 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch2> python searching.py 

 

Begin array search demo  

 

Array arr is  

[ 7.  9.  5.  1.  5.  8.] 

 

Target value is  

5.0 

 

Search result using 'target in arr' syntax = True 

 

Search result using np.where(arr == target) is  

(array([2, 4], dtype=int64),) 

 

Search result using my_search() =  

2 

 

End demo  

The demo program begins with creating an array and a target value to search for: 

arr = np.array([7.0, 9.0, 5.0, 1.0, 5.0, 8.0]) 
print "Array arr is " 
print arr 

target = 5.0 
print "Target value is " 
print target 

Next, the demo program searches the array for the target value using the Python in keyword: 

found = target in arr 
print "Search result using 'target in arr' syntax = " + str(found) # 'True' 

The return result from a call to target in arr is Boolean, either True or False. Nice and 

simple. However, using this syntax for searching an array of floating-point values is not really a 
good idea. The problem is that comparing two floating-point values for exact equality is very 
tricky. For example: 
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>>> x = 0.15 + 0.15 
>>> y = 0.20 + 0.10 
>>> 'yes' if x == y else 'no' 
'no'  
>>> # what the heck?! 

When comparing two floating-point values for equality, you should usually not compare for exact 
equality; instead, you should check if the two values are very, very close to each other. 

Floating-point values stored in memory are sometimes just close approximations to their true 
values, so comparing two floating-point values for exact equality can give unexpected results. 
The target in arr syntax doesn't give you any direct way to control how the target value is 

compared to the values in the array. Note that this problem with checking for exact equality 
doesn't exist for integer arrays (or string arrays or Boolean arrays), so the target in arr 

syntax is fine for those. 

The target in arr syntax does work properly in the demo program, returning a correct result 

of True. Next, the demo program searches using the NumPy where() function: 

result = np.where(arr == target) 
print "Search result using np.where(arr == target) is " 
print result 

The somewhat tricky return result is: 

(array([2, 4], dtype=int64,) 

The where() function returns a tuple (as indicated by the parentheses) containing an array. The 

array holds the indices in the searched array where the target value occurs, cells 2 and 4 in this 
case. If you search for a target value that is not in the array, the return result is a tuple with an 
array with length 0: 

(array([], dtype=int64),) 

Therefore, if you just want to know if a target value is in an array, you can check the return value 
along the line of: 

if len(result[0]) == 0: 
  print "target not found in array" 
else: 
  print "target is in array" 

As is the case with searching using the in keyword, searching an array of floating-point values 

using the where() function is not recommended because you cannot control how the cell values 

are compared to the target value. But using the where() function with integer, string, and 

Boolean arrays is safe and effective. 

Next, the demo searches the array using a program-defined function: 
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idx = my_search(arr, target, 1.0e-6) 
print "Search result using my_search() = " 
print idx 

The program-defined my_search() function returns -1 if the target value is not found in the 

array, or the cell index of the first occurrence of the target if the target is in the array. In this case 
the return value is 2 because the target value, 5.0, is in cells [2] and [4] of the array. The third 
argument, 1.0e-6, is the tolerance defining how close two floating-point values must be in order 
to be considered equal. 

Function my_search() is defined: 

def my_search(a, x, eps): 
  for i in xrange(len(a)): 
    if np.isclose(a[i], x, eps): 
       return i 
  return -1 

The NumPy isclose() function compares two values and returns True if the values are within 

eps (this stands for epsilon, the Greek letter often used in mathematics to represent a small 
value) of each other. 

Instead of using the isclose() function, you can compare directly using either the Python built-

in abs() function or the NumPy fabs() function like so: 

if abs(a[i] - x) < eps: 
  return i 

if np.fabs(a[i] - x) < eps: 
  return i 

To summarize, to search an array of floating-point values, I recommend using a program-
defined function, which allows you to control the comparison of two values for equality. For 
integer, string, and Boolean arrays, you can use the in keyword, the where() function, or a 

program-defined function. 

In some situations, you may want to find the location of the last occurrence of a target value in 
an array. Using the where() function with integer, string, or Boolean arrays, you could write 

code like: 

result = np.where(arr == target) 
 
if len(result[0]) == 0: 
  print "-1" # not found 
else: 
  print result[0][len(result[0])-1] # last idx 

To find the last occurrence of a target value in a program-defined function, you could traverse 
the array from back to front with a for i in xrange(len(a)-1, -1, -1): loop. 
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Resources 

For additional information about the NumPy where() function, see  

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.where.html. 

For technical details about how NumPy stores arrays in memory, see 
http://docs.scipy.org/doc/numpy-1.10.0/reference/internals.html. 

For a list of Python built-in functions such as the absolute value, see 
https://docs.python.org/2/library/functions.html. 

2.3 Array sorting 

Putting values in an array in order is a common and fundamental programming task. The 
NumPy library has a sort() function that implements three different sorting algorithms: the 

quicksort algorithm, the mergesort algorithm, and the heapsort algorithm. 

Interestingly, unlike the sorting functions in most other languages, a call to sort(arr) returns a 

sorted array, leaving the original array arr unchanged. The sort functions in many programming 

languages sort their array argument in place, and do not return a new sorted array. However, 
you can sort a NumPy array arr in place if you wish by using the call arr.sort(). 

Code Listing 6: Array Sorting Demo 

# sorting.py 
# Python 2.7 
 
import numpy as np 
import time 
 
def my_qsort(a): 
  quick_sorter(a, 0, len(a)-1) 
 
def quick_sorter(a, lo, hi): 
  if lo < hi: 
    p = partition(a, lo, hi) 
    quick_sorter(a, lo, p-1) 
    quick_sorter(a, p+1, hi) 
 
def partition(a, lo, hi): 
  piv = a[hi] 
  i = lo 
  for j in xrange(lo, hi): 
    if a[j] <= piv: 
      a[i], a[j] = a[j], a[i] 
      i += 1 
  a[i], a[hi] = a[hi], a[i] 
  return i 
 
# ===== 
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print "\nBegin array sorting demo \n" 
 
arr = np.array([4.0, 3.0, 0.0, 2.0, 1.0, 9.0, 7.0, 6.0, 5.0]) 
print "Original array is " 
print arr 
print "" 
 
s_arr = np.sort(arr, kind='quicksort') 
print "Return result of sorting using np.sort(arr, 'quicksort') is " 
print s_arr 
print "" 
print "Original array after calling np.sort() is " 
print arr 
print "" 
 
print "Calling my_qsort(arr) " 
start_time = time.clock() # record starting time 
my_qsort(arr) 
end_time = time.clock() 
elapsed_time = end_time - start_time 
 
print "Elapsed time = " 
print str(elapsed_time) + " seconds" 
print "" 
 
print "Original array after calling my_qsort(arr) is " 
print arr 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch2> python sorting.py 
 

Begin array sorting demo  

 

Original array is  

[ 4.  3.  0.  2.  1.  9.  7.  6.  5.] 

 

Return result of sorting using np.sort(arr, 'quicksort') is  

[ 0.  1.  2.  3.  4.  5.  6.  7.  9.] 

 

Original array after calling np.sort() is  

[ 4.  3.  0.  2.  1.  9.  7.  6.  5.] 

 

Calling my_qsort(arr)  

Elapsed time =  

3.6342481559e-05 seconds 

 

Original array after calling my_qsort(arr) is  

[ 0.  1.  2.  3.  4.  5.  6.  7.  9.] 
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End demo 

The demo program begins by creating an array: 

arr = np.array([4.0, 3.0, 0.0, 2.0, 1.0, 9.0, 7.0, 6.0, 5.0]) 
print "Original array is " 
print arr 

Next, the demo program sorts the array using the NumPy sort() function: 

s_arr = np.sort(arr, kind='quicksort') 

The sort() function returns a new array with values in order, leaving the original array 

unchanged: 

print "Return result of sorting using np.sort(arr, 'quicksort') is " 
print s_arr   # in order 
print "Original array after calling np.sort() is " 
print arr     # unchanged 

It is possible to sort an array in place using either a slightly different syntax or calling pattern: 

arr.sort(kind='quicksort') 
print arr     # arr is sorted 

arr = np.sort(arr, kind='quicksort') 
print arr     # arr is sorted 

The quicksort algorithm is the default, so the call to sort() could have been written: 

s_arr = np.sort(arr) 

Supplying an explicit kind argument to sort() is useful as a form of documentation, especially 

in situations where other people will be using your code. 

The other two sorting algorithms could have been called like so: 

s_arr = np.sort(arr, kind='mergesort') 
s_arr = np.sort(arr, kind='heapsort') 

arr.sort(kind='mergesort') 
arr.sort(kind='heapsort') 

By default, the sort() function orders array elements from low value to high value. If you want 

to sort an array from high value to low, you can't do so directly, but you can use Python slicing 
syntax to reverse after sorting (there is no explicit reverse() function for arrays): 
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arr = np.array([4.0, 8.0, 6.0, 5.0]) 
s_arr = np.sort(arr, kind='quicksort')  # s_arr = [4.0 5.0 6.0 8.0] 
r_arr = s_arr[::-1]                     # r_arr = [8.0 6.0 5.0 4.0] 

arr = np.array([4.0, 8.0, 6.0, 5.0]) 
orig = np.copy(arr)                  # make a copy of original 
arr[::-1].sort(kind='quicksort')     # reverse sort arr in-place 
r_arr = np.copy(arr)                 # copy reversed to r_arr if you wish 
arr = np.copy(orig)                  # restore arr to original if you wish 

Note that the sort() function has an optional order parameter. However, this parameter 

controls the order in which fields are compared when an array has cells holding an object with 
multiple fields. So order does not control ascending versus descending sort behavior. 

The demo program concludes by sorting an array using a program-defined my_qsort() 

function: 

start_time = time.clock() 
my_qsort(arr) 
end_time = time.clock() 
 
elapsed_time = end_time - start_time 
print "Elapsed time = " 
print str(elapsed_time) + " seconds" 
 
print "Original array after callng my_qsort(arr) is " 
print arr    # arr is sorted 

The program-defined my_qsort() function sorts its array argument in place. The demo 

measures the approximate amount of time used by my_qsort() by wrapping its call with 

time.clock() function calls. Notice the demo program has an import time statement at the 

top of the source code to bring the clock() function into scope. 

The whole point of using a library like NumPy is that you can use built-in functions like sort() 

and so you don't have to write program-defined functions. However, there are some scenarios 
where writing a custom version of a NumPy function is useful. In particular, you can customize 
the behavior of a program-defined function, usually at the expense of extra time (to write the 
function) and performance. 

The heart of the quicksort algorithm is the partition() function. A detailed explanation of how 

quicksort and partitioning work is outside the scope of this e-book, but the behavior of any 
quicksort implementation depends on how the so-called pivot value is selected. The key line of 
code in the custom partition() function is: 

piv = a[hi] 

The pivot value is selected as the last cell value in the current sub-array being processed. 
Alternatives are to select the first cell value (piv = a[lo]), the middle cell value, or a randomly 

selected cell value between a[lo] and a[hi]. 

see more please visit: https://homeofpdf.com 



 
 

43 

Resources 

For additional information about the NumPy sort() function, see  

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.sort.html. 

The program-defined quicksort function in this section is based on the Wikipedia article at 
https://en.wikipedia.org/wiki/Quicksort. 

For additional information about working with the Python time module, see 

https://docs.python.org/2/library/time.html. 

For additional information about NumPy array slicing, see 
http://docs.scipy.org/doc/numpy-1.10.0/reference/arrays.indexing.html. 

2.4 Array shuffling 

A surprisingly common task in data science programming is shuffling an array. Shuffling is 
rearranging the cell values in an array into a random order. You can think of shuffling as 
somewhat the opposite of sorting. You can shuffle an array using the built-in NumPy 
random.shuffle() function or by writing a program-defined shuffle function. 

Code Listing 7: Array Shuffling Demo 

# shuffling.py 
# Python 2.7 
 
import numpy as np 
 
def my_shuffle(a, seed): 
  # shuffle array a in place using Fisher-Yates algorithm 
  np.random.seed(seed) 
  n = len(a) 
  for i in xrange(n): 
    r = np.random.randint(i, n) 
    a[r], a[i] = a[i], a[r] 
  return 
 
# ===== 
 
arr = np.arange(10, dtype=np.int64) # [0, 1, 2, .. 9] 
orig = np.copy(arr) 
print "Array arr is " 
print arr 
print "" 
 
np.random.shuffle(arr) 
print "Array arr after a call to np.random.shuffle(arr) is " 
print arr 
print "" 
 
print "Resetting array arr" 
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arr = np.copy(orig) 
print "Array arr is " 
print arr 
print "" 
 
my_shuffle(arr, seed=0) 
print "Array arr after call to my_shuffle(arr, seed=0) is " 
print arr 
print "" 
     
print "\nEnd demo \n"  

 

C:\SciPy\Ch2> python shuffling.py 
 

Array arr is  

[0 1 2 3 4 5 6 7 8 9] 

 

Array arr after a call to np.random.shuffle(arr) is  

[1 9 8 3 0 2 7 5 6 4] 

 

Resetting array arr 

Array arr is  

[0 1 2 3 4 5 6 7 8 9] 

 

Array arr after call to my_shuffle(arr, seed=0) is  

[5 1 0 6 7 3 9 8 4 2] 

 

End demo 

The demo program begins by creating an ordered integer array with 10 values (0 through 9) 
using the arange() function, and makes a copy of that array using the copy() function: 

arr = np.arange(10, dtype=np.int64) 
orig = np.copy(arr) 
print "Array arr is " 
print arr 

Next, the demo shuffles the contents of the array using the NumPy random.shuffle() 

function: 

np.random.shuffle(arr) 
print "Array arr after a call to np.random.shuffle(arr) is " 
print arr 

The random.shuffle() function reorders the contents of its array argument in place to a 

random order. In this example, the seed value for the underlying random number generator was 
not set, so if you ran the program again, you'd almost certainly get a different ordering of the 
array. If you want to make your program results reproducible, which is usually the case, you can 
explicitly set the underlying seed value like so: 
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np.random.seed(0) 
np.random.shuffle(arr) 

Here the seed was arbitrarily set to 0. Next, the demo program resets the array to its original 
values using the copy: 

print "Resetting array arr" 
arr = np.copy(orig) 
print "Array arr is " 
print arr 

It would have been a mistake to use the assignment operator instead of the copy() function in 

an effort to make a copy of the original array. For example, suppose you had written this code: 

arr = np.arange(10, dtype=np.int64) 
orig = arr   # assignment is probably not what you intended 
print "Array arr is " 
print arr 

Because array assignment works by reference rather than by value, orig and arr are 

essentially pointers that both point to the same array in memory. Any change made to arr, such 

as a call to random.shuffle(arr), implicitly affects orig, too. Therefore, an attempt to reset 

arr after a call to random.shuffle() would have no effect.  

Another important consequence of NumPy arrays being reference objects is that a function with 
an array parameter can modify the array in place. You can also create a reference to an array 
using the view() function, for example arr_v = arr.view() creates a reference copy of arr.  

The demo program concludes by using a program-defined function my_shuffle() to shuffle the 

array: 

my_shuffle(arr, seed=0) 
print "Array arr after call to my_shuffle(arr, seed=0) is " 
print arr 

Function my_shuffle() is defined as: 

def my_shuffle(a, seed): 
  np.random.seed(seed) 
  n = len(a) 
  for i in xrange(n): 
    r = np.random.randint(i, n) 
    a[r], a[i] = a[i], a[r] 
  return 

Shuffling an array into a random order is surprisingly tricky and it's very easy to write faulty 
code. The function my_shuffle() uses what is called the Fisher-Yates algorithm, which is the 

best approach in most situations. Notice the function uses the very handy a,b = b,a Python 

idiom to swap two values. An alternative is to use the standard tmp=a; a=b; b=tmp idiom 

that's required in other programming languages.  
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Resources 

For additional details about the NumPy random.shuffle() function, see 

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.random.shuffle.html. 

For additional information about setting the random seed, see 
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.random.seed.html. 

For a really interesting explanation of the Fisher-Yates shuffle algorithm, see 
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle. 
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Chapter 3  Matrices 

Matrices are arguably the most important data structure used in numeric and scientific 
programming. The following screenshot shows you where this chapter is headed. 

 

Figure 22: NumPy Matrices Demo 

In section 3.1, you'll learn the most common ways to create and initialize NumPy matrices, and 
learn the differences between the two kinds of matrix data structures supported in NumPy. 

In section 3.2, you'll learn how to perform matrix multiplication using the dot() function. 

In section 3.3, you'll learn about the three different ways to transpose a matrix. 

In section 3.4, you'll learn about the important NumPy and SciPy linalg modules, how to find 

the determinant of a matrix using the det() function, and what the determinant is used for. 
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In section 3.5, you'll learn how to create an identity matrix using the eye() function, find the 

inverse of a matrix using the linalg.inv() function, and correctly compare two matrices for 

equality using the isclose() function. 

In section 3.6, you'll learn how to load values into a matrix from a text file using the loadtxt() 

function. 

3.1 Matrix initialization 

Matrices are arguably the most significant feature of the NumPy library. NumPy supports two 
kinds of matrices: n-dimensional array style matrices and explicit NumPy matrices. The two 
kinds of matrices are mostly compatible with each other. NumPy matrices can be created in 
many ways, but three common techniques in many data science scenarios are using the 
matrix() function, the array() function, and the zeros() function. 

Code Listing 8: Matrix Initialization Demo 

# matrices.py 
# Python 2.7 
 
import numpy as np 
 
def show_matrix(m, dec, wid): 
  fmt = "%" + str(wid) + "." + str(dec) + "f" 
  (rows, cols) = np.shape(m) 
  for i in xrange(rows): 
    for j in xrange(cols): 
      print fmt % m[i,j], 
    print ""  # end of row 
  print "" # final newline 
 
# ===== 
 
print "\nBegin matrices demo \n" 
 
ma = np.matrix([[1.0, 2.0, 3.0], # 2x3 
               [4.0, 5.0, 6.0]]) 
 
mb = np.zeros((3, 2), dtype=np.int32) # 3x2 
 
mc = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) # 2x3 
 
md = np.matrix([[7.0, 8.0, 9.0]]) # 1x3 
 
print "Matrix ma is " 
print ma 
print "" 
 
print "Matrix mb is " 
print mb 
print "" 
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print "N-dimensional array/matrix mc is " 
print mc 
print "" 
 
print "Matrix ma is type " + str(type(ma)) 
print "Matrix mb is type " + str(type(mb)) 
print "Matrix mc is type " + str(type(mc)) 
print "" 
 
print "Contents of matrix ma using show_matrix(ma, 3, 6) are " 
show_matrix(ma, 3, 6) 
 
msum = ma + mc 
print "Result of ma + mc = " 
print (msum) 
print "" 
 
md = np.matrix([[7.0, 8.0, 9.0]]) 
mx = ma + md 
print "Matrix md is " 
print md 
print "" 
print "Result of ma + md is " 
print mx 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch3> python matrices.py 
 

Begin matrices demo  

 

Matrix ma is  

[[ 1.  2.  3.] 

 [ 4.  5.  6.]] 

 

Matrix mb is  

[[0 0] 

 [0 0] 

 [0 0]] 

 

N-dimensional array/matrix mc is  

[[ 1.  2.  3.] 

 [ 4.  5.  6.]] 

 

ma is type <class 'numpy.matrixlib.defmatrix.matrix'> 

mb is type <type 'numpy.ndarray'> 

mc is type <type 'numpy.ndarray'> 

 

Contents of matrix ma using show_matrix(ma, 3, 6) are  

 1.000  2.000  3.000  
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 4.000  5.000  6.000  

 

Result of ma + mc =  

[[  2.   4.   6.] 

 [  8.  10.  12.]] 

 

Matrix md is  

[[ 7.  8.  9.]] 

 

Result of ma + md is  

[[  8.  10.  12.] 

 [ 11.  13.  15.]] 

 

End demo 

The demo program begins by creating a matrix using the NumPy matrix() function: 

ma = np.matrix([[1.0, 2.0, 3.0], 
                [4.0, 5.0, 6.0]]) 

There are two rows, each with three columns, so the matrix has shape 2×3. Because no dtype 

argument was specified, each cell of the matrix holds the default float64 data type. 

Next, the demo creates a 3×2 matrix using the NumPy zeros() function: 

mb = np.zeros((3, 2), dtype=np.int32) 

Notice the double sets of parentheses used here as opposed to the single set of parentheses 
used to create a simple array. Each cell of matrix mb holds a 32-bit integer. If the dtype 

argument had been omitted, each cell would have been the default float64 data type. As you'll 

see shortly, matrix mb is actually a NumPy n-dimensional array rather than a NumPy matrix. In 

the vast majority of programming situations, you can use either a NumPy 2-dimensional array or 
a NumPy matrix. The general terms matrix and matrices can refer to either a NumPy matrix or a 
NumPy n-dimensional array. 

Next, the demo creates two additional matrices: 

mc = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) 
md = np.matrix([[7.0, 8.0, 9.0]]) 

Matrix mc is a 2×3 n-dimensional array with the same values as explicit matrix ma. Matrix md is a 

1×3 matrix. Matrices with one row are often called row matrices. Matrices with one column are 
called column matrices. For example: 

mm = np.matrix([[7.0], [8.0], [9.0]]) 

Row and column matrices are not the same as simple one-dimensional arrays. You can create 
a column matrix from a row matrix (or vice versa) using the reshape() function, for example, mm 
= np.reshape(md, (3,1)). And you can make a regular array from an ndarray-style matrix 

using the flatten() or ravel() functions, for example: 
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aa = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])  # a 2x3 ndarray matrix 
arr = np.flatten(aa)  # arr is an array [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]   

After displaying the contents of matrices ma, mb, and mc, the demo displays their object types: 

print "ma is type " + str(type(ma))  # 'numpy.matrixlib.defmatrix.matrix' 
print "mb is type " + str(type(mb))  # displays 'numpy.ndarray' 
print "mc is type " + str(type(mc))  # displays 'numpy.ndarray' 

To summarize, when creating a NumPy matrix, the result can be either an explicit matrix (for 
example, when using the matrix() function) or an ndarray (for example, when using the 

zeros() function). In most cases, you don't have to worry about what the object type is 

because the two forms of matrices are usually (but not always) compatible. 

Next, the demo displays the contents of matrix ma using the program-defined show_matrix() 

function: 

print "Contents of matrix ma using show_matrix(ma, 3, 6) are " 
show_matrix(ma, 3, 6) 

The second and third parameters for show_matrix() are the number of decimals to use and 

the width to use when displaying each cell value. In situations like this, where there are similar 
parameters, it's more readable to use named-parameter syntax like: 

show_matrix(ma, dec=3, wid=6) 

Function show_matrix() illustrates how to traverse a matrix: 

def show_matrix(m, dec, wid): 
  fmt = "%" + str(wid) + "." + str(dec) + "f" 
  (rows, cols) = np.shape(m) 
  for i in xrange(rows): 
    for j in xrange(cols): 
      print fmt % m[i,j], 
    print ""  # end of row 
  print "" # final newline 

The dimensions of the matrix are determined using the NumPy shape() function, which returns 

a tuple with the number of rows and columns. An alternative approach is: 

rows = len(m) 
cols = len(m[0]) 

A NumPy matrix m is an array of arrays. So len(m) is the number of rows, m[0] is the first row, 

and len(m[0]) is the number of cells in the first row, which is the same as the number of 

columns (assuming all rows of m have the same number of columns). 

The nested for loops iterate over the cells of the matrix from left to right, then top to bottom: 
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for i in xrange(rows): 
  for j in xrange(cols): 
    # curr cell is m[i,j] 

Interestingly, NumPy allows you to access a matrix cell using either m[i,j] syntax or m[i][j] 

syntax. The two forms are completely equivalent. In most cases the m[i,j] form is preferred, 

only because it's easier to type. 

Next, the demo program illustrates matrix addition: 

msum = ma + mc 
print "Result of ma + mc = " 
print msum 

Recall that both ma and mc are 2×3 matrices with values 1.0 through 6.0: 

[[ 1.0  2.0  3.0] 
 [ 4.0  5.0  6.0]] 

Not surprisingly, the result (where I've added 0s after the decimal points for readability) is: 

[[ 2.0   4.0   6.0] 
 [ 8.0  10.0  12.0]] 

However, recall that ma is an explicit NumPy matrix but mc is a NumPy ndarray. The point is 

that the two different types of matrices could be added together without any problems. 

Next, the demo shows an unusual feature of NumPy called broadcasting: 

md = np.matrix([[7.0, 8.0, 9.0]]) 
mx = ma + md 
print "Result of ma + md is " 
print mx 

Matrix ma is 2×3. Matrix md is 1×3. In just about any other programming language that I'm aware 

of, an attempt to add these two matrices would generate some kind of error because these 
matrices have different shapes. However, NumPy allows the addition and returns: 

[[  8.0  100.  12.0] 
 [ 11.0  13.0  15.0]] 

NumPy essentially expands the 1×3 md matrix to a 2×3 matrix, duplicating values, so that it has 

the same shape as ma, and then corresponding cells can be added. Some of my colleagues 

think NumPy broadcasting is a wonderful, useful feature. Others feel that broadcasting is a 
dubious feature that encourages sloppy coding and can easily lead to program bugs. 

Resources 

For a discussion of the differences between NumPy matrices and arrays, see 
http://www.scipy.org/scipylib/faq.html#what-is-the-difference-between-matrices-and-arrays. 
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For details about creating matrices using the NumPy matrix() function, see 

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.matrix.html. 

For details about creating ndarray style matrices using the NumPy array() function, see 

http://docs.scipy.org/doc/numpy-1.10.1/user/basics.creation.html. 

3.2 Matrix multiplication 

Performing matrix multiplication is a very common task in many numeric programming 
scenarios. The NumPy dot() function performs matrix multiplication. 

The demo program in Code Listing 9 illustrates matrix multiplication using NumPy. The program 
then defines a custom function named my_mult(), which performs matrix multiplication using 

nested loops. Program execution begins with a preliminary print statement and then the demo 

creates a 2x3 matrix A, and a 3x2 matrix B using the NumPy matrix() function: 

A = np.matrix([[1.0, 2.0, 3.0], 
               [4.0, 5.0, 6.0]]) 

B = np.matrix([[7.0, 8.0], 
               [9.0, 10.0], 
               [11.0, 12.0]]) 

Code Listing 9: Matrix Multiplication Demo 

# multiplication.py 
# Python 2.7 
 
import numpy as np 
 
def my_mult(a, b): 
  (arows, acols) = np.shape(a) 
  (brows, bcols) = np.shape(b) 
  result = np.zeros((arows, bcols)) 
  for i in xrange(arows): 
    for j in xrange(bcols): 
      for k in xrange(acols): 
        result[i,j] = result[i,j] + a[i,k] * b[k,j] 
  return result 
 
# ===== 
 
print "\nBegin matrix multiplication demo \n" 
 
A = np.matrix([[1.0, 2.0, 3.0], 
               [4.0, 5.0, 6.0]]) 
 
B = np.matrix([[7.0, 8.0], 
               [9.0, 10.0], 
               [11.0, 12.0]]) 

see more please visit: https://homeofpdf.com 

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.matrix.html
http://docs.scipy.org/doc/numpy-1.10.1/user/basics.creation.html


 
54 

 
C = np.dot(A, B) # NumPy matrix multiplication 
 
D = my_mult(A, B) # slower Python  
 
print "Matrix A = " 
print A 
print "" 
 
print "Matrix B = " 
print B 
print "" 
 
print "Result of dot(A,B) = " 
print C 
print "" 
 
print "Result of my_mult(A,B) = " 
print D 
print "" 
 
print "End demo \n" 

 

C:\SciPy\Ch3> python multiplication.py 
 
Begin matrix multiplication demo  

 

Matrix A =  

[[ 1.  2.  3.] 

 [ 4.  5.  6.]] 

 

Matrix B =  

[[  7.   8.] 

 [  9.  10.] 

 [ 11.  12.]] 

 

Result of dot(A,B) =  

[[  58.   64.] 

 [ 139.  154.]] 

 

Result of my_mult(A,B) =  

[[  58.   64.] 

 [ 139.  154.]] 

 

End demo 

After creating the two matrices and displaying their values, we compute their product using the 
NumPy dot() function and then again using the program-defined my_mult() function like so: 

C = np.dot(A, B) 
D = my_mult(A, B) 
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NumPy matrix objects can also be multiplied using the * operator, for example C = A * B, but 

ndarray objects must use the dot() function. In other words, the dot() function works for both 

types and so is preferable in most situations. 

The demo concludes by displaying both results to visually verify they're the same: 

Result of A dot B = 

[[  58.   64.] 

 [ 139.  154.]] 

 

Result of my_mult(A,B) = 

[[  58.   64.] 

 [ 139.  154.]] 

Matrix multiplication is perhaps best explained by example. Matrix A has shape 2×3 and matrix 
B has shape 3×2. The shape of their product is 2×2: 

(2 x 3) * (3 x 2) = (2 x 2) 

You can imagine that the two innermost dimensions, 3 and 3 here, cancel each other out, 
leaving the two outermost dimensions. For example, a 5×4 matrix times a 4×7 matrix will have 
shape 5×7. If the two innermost dimensions are not equal, NumPy will generate a "shapes not 
aligned" error. 

The result value at cell [x,y] is the product of the values in row x of the first matrix and column y 
of the second matrix. So for the demo, the result at cell [0,1] uses row 0 of matrix A = [1, 2, 3] 
and column 1 of matrix B = [8, 10, 12], giving (1 * 8) + (2 * 10) + (3 * 12) = 64. 

The implementation of program-defined function my_mult(a, b) begins by determining the 

number of rows and columns in each of the two matrix parameters by using the NumPy 
shape() function: 

def my_mult(a, b): 
  (arows, acols) = np.shape(a) 
  (brows, bcols) = np.shape(b) 
. . . 

The shape() function returns a tuple holding the number of rows and the number of columns in 

a matrix. You could perform an error check here to verify that the two matrices are conformable, 
for example, if acols != brows: print "Error!". 

Once the sizes of the two input matrices are known, a result matrix with the correct shape can 
be initialized using the NumPy zeros() function: 

result = np.zeros((arows, bcols)) 

Notice the use of double parentheses, which forces the zeros() function to return a matrix 

rather than an array. Function my_mult() then iterates over each row and each column, 

accumulating and storing the sum of products into each cell of the result matrix: 
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for i in xrange(arows): 
  for j in xrange(bcols): 
    for k in xrange(acols): 
      result[i,j] = result[i,j] + a[i,k] * b[k,j] 
return result 

Notice that the program-defined matrix multiplication function is quite simple but does involve 
triple-nested for loops. For small matrices, the difference in performance between a program-

defined method and the NumPy dot() function probably isn't significant in most scenarios. But 

for large matrices, the slower performance of a program-defined method would likely be 
noticeable and annoying. 

The dot() function can be applied to NumPy one-dimensional arrays as well as matrices. For 

example: 

>>> import numpy as np 
>>> arr1 = np.array([1, 3, 5]) 
>>> arr2 = np.array([6, 4, 2]) 
>>> arr3 = np.dot(arr1, arr2) 
>>> print arr3 
28 

In this example, the result is calculated as (1 * 6) + (3 * 4) + (5 * 2) = 6 + 12 + 10 = 28. In math 
terminology, this is called the dot product (hence the name of the NumPy function), the scalar 
product, or the inner product. 

NumPy has a dedicated inner() function that works just with arrays. For example: 

>>> arr4 = np.inner(arr1, arr2) 
>>> print arr4 
28 

One possible program-defined implementation of an array dot product function is: 

def my_dotprod(a1, a2): 
  result = 0 
  for i in xrange(len(a1)): 
    result = result + a1[i] * a2[i] 
  return result 

The dot() function can also be applied to arrays with three or more dimensions, but this is a 

relatively uncommon scenario. 

 

Resources 

For additional details on the NumPy dot() function, see 

http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html. 
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For a table that lists the approximately 60 NumPy matrix functions, see 
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.matrix.html. 

For information on the NumPy ndarray data type, which includes matrices, see 

http://docs.scipy.org/doc/numpy-1.10.1/reference/arrays.ndarray.html. 

3.3 Matrix transposition 

A simple but common matrix operation is transposing rows and columns. The NumPy library 
supports three built-in ways to transpose a matrix m: the m.transpose() function, the 

np.transpose(m) function, and the m.T property. 

Code Listing 10: Matrix Transposition Demo 

# transposition.py 
# Python 2.7 
 
import numpy as np 
 
def my_transpose(m): 
  (rows, cols) = np.shape(m) 
  result = np.zeros((rows, cols)) 
  for i in xrange(rows): 
    for j in xrange(cols): 
      result[j,i] = m[i,j] 
  return result 
 
# ===== 
 
print "\nBegin matrix transposition demo \n" 
 
m = np.matrix([[1., 2., 3.], 
               [4., 5., 6.], 
               [7., 8., 9.]]) 
 
print "Matrix m = " 
print m 
print "" 
 
mt = m.transpose() 
print "Transpose from m.transpose() function = " 
print mt 
print "" 
 
mt = np.transpose(m) 
print "Transpose from np.transpose(m) function = " 
print mt 
print "" 
 
mt = m.T 
print "Transpose from m.T property  = " 
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print mt 
print "" 
 
mt = my_transpose(m) 
print "Transpose from my_transpose() function = " 
print mt 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch3> python transposition.py 
 
Begin matrix transposition demo  

 

Matrix m =  

[[ 1.  2.  3.] 

 [ 4.  5.  6.] 

 [ 7.  8.  9.]] 

 

Transpose from m.transpose() function =  

[[ 1.  4.  7.] 

 [ 2.  5.  8.] 

 [ 3.  6.  9.]] 

 

Transpose from np.transpose(m) function =  

[[ 1.  4.  7.] 

 [ 2.  5.  8.] 

 [ 3.  6.  9.]] 

 

Transpose from m.T property  =  

[[ 1.  4.  7.] 

 [ 2.  5.  8.] 

 [ 3.  6.  9.]] 

 

Transpose from my_transpose() function =  

[[ 1.  4.  7.] 

 [ 2.  5.  8.] 

 [ 3.  6.  9.]] 

 

End demo 

The demo program begins by creating and displaying a simple 3×3 float64 matrix: 

m = np.matrix([[1., 2., 3.], 
               [4., 5., 6.], 
               [7., 8., 9.]]) 

print "Matrix m = " 
print m 
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Here, matrix m is called a square matrix because it has the same number of rows and columns. 

Matrix transposition works with either square or non-square matrices. 

Next, the demo program creates a transposition of the matrix m using three different NumPy 

built-in techniques: 

mt = m.transpose() 
print "Transpose from m.transpose() function = " 
print mt 

mt = np.transpose(m) 
print "Transpose from np.transpose(m) function = " 
print mt 

mt = m.T 
print "Transpose from m.T property  = " 
print mt 

The first function call uses the transpose() method of the ndarray class. Notice the syntax is 

matrix.transpose() and there are no arguments. The second function call uses the NumPy 

function that accepts a matrix as its argument. The third call has no parentheses, indicating it is 
a property. In all three function calls, the original matrix m is not changed. If you want to change 

a matrix, you can use a calling pattern along the lines of m = np.transpose(m). 

An immediate and obvious question is: Why are there three ways to transpose a matrix? There's 
no good answer. One of the strengths of open source projects like NumPy and SciPy is that 
they are collaborative efforts. However, this strength is offset by a certain amount of redundancy 
in the libraries. Basically, when you're using NumPy and SciPy you can often perform a task 
several ways, and frequently there's no clear best way. 

The demo program concludes by calling a custom transpose function named my_transpose(): 

mt = my_transpose(m) 
 
Function my_transpose() is defined: 

def my_transpose(m): 
  (rows, cols) = np.shape(m) 
  result = np.zeros((rows, cols)) 
  for i in xrange(rows): 
    for j in xrange(cols): 
      result[j,i] = m[i,j] 
  return result 

There's no advantage to using program-defined my_transpose() unless you needed to 

customize transposition behavior in some way. 
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Resources 

For details about the three built-in NumPy ways to transpose a matrix, see: 
 
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.transpose.html 
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.ndarray.transpose.html 
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.ndarray.T.html 

3.4 Matrix determinants 

The determinant of a matrix is a value that indicates whether or not the matrix has an inverse (if 
the determinant is 0.0, then the matrix does not have an inverse). Determinants also indicate if a 
set of vectors are linearly dependent and how many solutions there are to a linear system of 
equations. Both NumPy and SciPy have a det() function in their linalg (linear algebra) 

submodules. 

Code Listing 11: Matrix Determinant Demo 

# determinants.py 
# Python 2.7 
 
import numpy as np 
 
def extract(m, col): 
  # return n-1 x n-1 submatrix w/o row 0 and col  
  n = len(m) 
  result = np.zeros((n-1, n-1)) 
  for i in xrange(1, n): 
    k = 0 
    for j in xrange(n): 
      if j != col: 
        result[i-1,k] = m[i,j] 
        k += 1 
  return result 
   
def my_det(m): # inefficient! 
  n = len(m) 
  if n == 1: 
    return m[0] 
  elif n == 2: 
    return (m[0,0] * m[1,1]) - (m[0,1] * m[1,0]) 
  else: 
    sum = 0.0 
    for k in xrange(n): 
      sign = -1 
      if k % 2 == 0: 
        sign = +1 
      subm = extract(m, k) 
      sum = sum + sign * m[0,k] * my_det(subm) 
    return sum 
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# ===== 
 
print "\nBegin matrix determinant demo \n" 
 
m = np.matrix([[1., 4., 2., 3.], 
               [0., 1., 5., 4.], 
               [1., 0., 1., 0.], 
               [2., 3., 4., 1.]]) 
 
print "Matrix m is " 
print m 
print "" 
 
d = np.linalg.det(m) 
print "Determinant of m using np.linalg.det() is " 
print d 
print "" 
 
d = my_det(m) 
print "Determinant of m using my_det() is " 
print d 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch3> python determinants.py 
 
Begin matrix determinant demo  

 

Matrix m is  

[[ 1.  4.  2.  3.] 

 [ 0.  1.  5.  4.] 

 [ 1.  0.  1.  0.] 

 [ 2.  3.  4.  1.]] 

 

Determinant of m using np.linalg.det() is  

-40.0 

 

Determinant of m using my_det() is  

-40.0 

 

End demo 

The demo program begins by creating and displaying a 4×4 float64 matrix: 

see more please visit: https://homeofpdf.com 



 
62 

m = np.matrix([[1., 4., 2., 3.], 
               [0., 1., 5., 4.], 
               [1., 0., 1., 0.], 
               [2., 3., 4., 1.]]) 
 
print "Matrix m = " 
print m 

Determinants only apply to square matrices (those with the same number of rows and columns). 
The simplest case (other than a 1×1 matrix with a single value) is a 2×2 matrix. Consider the 
2×2 matrix in the lower left portion of the demo matrix: 

1.0  2.0 
3.0  4.0 

The determinant of this matrix is (1.0 * 4.0) - (2.0 * 3.0) = 4.0 - 6.0 = -2.0. In words, to calculate 
the determinant of a 2×2 matrix, you take upper left times lower right, and subtract upper right 
times lower left. 

A determinant of a square matrix always exists, but it can be zero. For example, consider this 
matrix: 

3.0  2.0 
6.0  4.0 

The determinant would be (3.0 * 4.0) - (2.0 * 6.0) = (12.0 - 12.0) = 0. Matrices that have a 
determinant of zero do not have an inverse. 

For 3×3 and larger matrices, the mathematical definition of the determinant is recursive. 
Suppose a 3×3 matrix is: 

a  b  c 
d  e  f 
g  h  i 

In this, a, b, c, etc., represent arbitrary numbers. The determinant is: 

 

Figure 23: Definition of a 3x3 Matrix Determinant  

Notice you have to extract n submatrices of size n-1 × n-1 by removing the first row and each of 
the n columns. Writing code from scratch to calculate the determinant of a matrix with a size 
larger than 3×3 is very difficult, but with NumPy and SciPy, all you have to do is call the 
linalg.det() function.  

The demo program finds the determinant of the matrix it created like so: 
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d = np.linalg.det(m) 
print "Determinant of m using np.linalg.det() is " 
print d 

Simple and easy. The NumPy linalg submodule currently has 28 functions that operate on 

matrices, including the det() function. The larger SciPy linalg submodule has 82 functions. 

Interestingly, the SciPy linalg submodule contains a slightly different det() function. The 

SciPy version of det() has a parameter overwrite_a that allows the matrix to be changed 

during the calculation of the determinant, which improves performance. Many functions appear 
in both the NumPy and SciPy libraries, which is both useful and a possible source of confusion. 

The demo has a program-defined function my_det() that calculates the determinant of a matrix. 

Let me emphasize that the program-defined function is very inefficient and is intended only to 
demonstrate advanced NumPy and SciPy programming techniques. The custom my_det() 

function shouldn't be used unless you want to demonstrate a bad way to calculate a matrix 
determinant. 

Function my_det() uses the same calling signature as the NumPy det() function: 

d = my_det(m) 
print "Determinant of m using my_det() is " 
print d 

Function my_det() is recursive, meaning that it calls itself. The my_det() function also calls a 

helper function extract() defined as: 

def extract(m, col): 
  n = len(m) 
  result = np.zeros((n-1, n-1)) 
  for i in xrange(1, n): 
    k = 0 
    for j in xrange(n): 
      if j != col: 
        result[i-1,k] = m[i,j] 
        k += 1 
  return result 

Function extract(m, col) accepts an n × n matrix m and returns an n-1 × n-1 matrix from 

which the first row and column col have been removed. The key code in my_det() is: 

for k in xrange(n): 
  sign = -1 
  if k % 2 == 0: sign = +1 
    subm = extract(m, k) 
    sum = sum + sign * m[0,k] * my_det(subm) 
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Each of the n sub-matrices is extracted and my_det() is called recursively. There are very few 

situations where recursive code is a good choice, and calculating a determinant of a matrix is 
not one of them. The NumPy and SciPy implementations of det() use a technique called matrix 

decomposition, which is complicated, but very efficient. 

Resources 

For details about the NumPy det() function, see 

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.linalg.det.html. 

For details about the SciPy det() function, see 

http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.det.html. 

3.5 Matrix inversion 

One of the most common and important operations in numeric programming is finding the 
inverse of a matrix. The NumPy and SciPy linalg.inv() functions perform matrix inversion. 

The demo program in Code Listing 12 illustrates matrix inversion using NumPy. As usual, at the 
top of the code, the program brings the NumPy library into scope and provides a convenience 
alias: import numpy as np. 

Because the inv() function is part of the NumPy linalg (linear algebra) submodule, an 

alternative would be to use a from numpy import linalg statement. The demo program then 

defines a custom function named my_close(), which determines if two matrices are equal in 

the sense that all corresponding cell values are equal or nearly equal, within some small 
tolerance. 

Program execution begins with a preliminary print statement and then the demo creates a 3×3 

matrix m using the NumPy matrix() function, explicitly specifying the data type: 

m = np.matrix([[3, 0, 4], 
               [2, 5, 1], 
               [0, 4, 5]], dtype=np.float64) 

Code Listing 12: Matrix Inverse Demo 

# inversion.py 
# Python 2.7 
 
import numpy as np 
 
def my_close(m1, m2, eps): 
  (rows, cols) = np.shape(m1) 
  for i in xrange(rows): 
    for j in xrange(cols): 
      if abs(m1[i,j] - m2[i,j]) > eps: 
        return False 
  return True 
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# ===== 
 
print "\nBegin matrix inversion demo \n" 
 
m = np.matrix([[3, 0, 4], 
               [2, 5, 1], 
               [0, 4, 5]], dtype=np.float64) 
 
print "Matrix m is" 
print m 
print "" 
 
mi = np.linalg.inv(m) 
print "The inverse of m is" 
print mi 
print "" 
 
idty = np.eye(3) 
print "The 3x3 identity matrix idty is" 
print idty 
print "" 
 
print "Product of mi * m is" 
mim = np.dot(mi, m) 
print mim 
print "" 
 
b1 = np.allclose(mim, idty) 
print "Comparing mi * m with idty using np.allclose() gives" 
print str(b1) 
print "" 
 
b2 = my_close(mim, idty, 1.0e-4) 
print "Comparing mi * m with idty using my_close() gives" 
print str(b2) 
 
print "\nEnd demo\n" 

 

C:\SciPy\Ch3> python inversion.py 
 
Begin matrix inversion demo  

 

Matrix m is 

[[ 3.  0.  4.] 

 [ 2.  5.  1.] 

 [ 0.  4.  5.]] 

 

The inverse of m is 

[[ 0.22105263  0.16842105 -0.21052632] 

 [-0.10526316  0.15789474  0.05263158] 
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 [ 0.08421053 -0.12631579  0.15789474]] 

 

The 3x3 identity matrix idty is 

[[ 1.  0.  0.] 

 [ 0.  1.  0.] 

 [ 0.  0.  1.]] 

 

Product of mi * m is 

[[  1.00000000e+00  -1.11022302e-16   0.00000000e+00] 

 [  0.00000000e+00   1.00000000e+00   0.00000000e+00] 

 [  0.00000000e+00   1.11022302e-16   1.00000000e+00]] 

 

Comparing mi * m with idty using np.allclose() gives 

True 

 

Comparing mi * m with idty using my_close() gives 

True 

 

End demo 

Matrix m could have been created as an n-dimensional array using the array() function: 

m = np.array([[3., 0., 4.],[2., 5., 1.],[0., 4., 5.]]) 

After creating the matrix m and displaying its values, the inverse of the matrix is computed and 

displayed like so: 

mi = np.linalg.inv(m) 
print "The inverse of m is" 
print mi 

If the from numpy import linalg statement had been used at the top of the script, the inv() 

function could have been called as linalg.inv(m) instead. The inv() function applies only to 

square matrices (equal number of rows and columns) that have a determinant not equal to zero. 
The return value is a square matrix with the same shape as the original matrix. 

Matrix inversion is one of the most technically challenging algorithms in numeric processing. 
Believe me, you do not want to try to write your own custom matrix inversion function, unless 
you are willing to spend a lot of time and effort, presumably because you need to implement 
some specialized behavior. 

Not all matrices have an inverse. If you apply the inv() function to such a matrix, you'll get a 

"singular matrix" error. Therefore, you want to check first along the lines of: 

d = np.linalg.det(m) 
if d == 0.0: 
  print "Matrix does not have an inverse" 
else: 
  mi = np.linalg.inv(m) 
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Next, the demo creates and displays a 3x3 identity matrix: 

idty = np.eye(3) 
print "The 3x3 identity matrix idty is" 
print idty 

An identity matrix is a square matrix where the cells on the diagonal from upper left to lower 
right contain 1.0 values, and all the other cells contain 0.0 values. 

In ordinary arithmetic, the inverse of some number x is 1/x. For example, the inverse of 3 is 1/3. 
Notice that any number times its inverse equals 1. The identity matrix is analogous to the 
number 1 in ordinary arithmetic. Any matrix times its inverse equals the identity matrix. 

The demo verifies the inverse is correct by multiplying the original matrix m by its inverse mi and 

displaying the result, which is, in fact, the identity matrix: 

print "Product of mi * m is" 
mim = np.dot(mi, m) 
print mim 

The output is somewhat difficult to read because of the print statement's default formatting: 

Product of mi * m is 
[[  1.00000000e+00  -1.11022302e-16   0.00000000e+00] 
 [  0.00000000e+00   1.00000000e+00   0.00000000e+00] 
 [  0.00000000e+00   1.11022302e-16   1.00000000e+00]] 

If you look closely, you'll see that that main diagonal elements are 1.0 and the other cell values 
are very, very close to 0.0. Visual verification that two matrices (the product of the original matrix 
times its inverse, and the identity matrix) are equal is fine in simple scenarios, but in many 
situations a programmatic approach is better. The demo compares the matrix times its inverse 
(mim) and the identity matrix in two ways: 

b1 = np.allclose(mim, idty) 
print "Comparing mi * m with idty using np.allclose() gives" 
print str(b1) 
 
b2 = my_close(mim, idty, 1.0e-4) 
print "Comparing mi * m with idty using my_close() gives" 
print str(b2) 

In general, it's a bad idea to compare two matrices that hold floating-point values for exact 
equality because floating-point values have some storage limit and therefore are sometimes 
only approximations to their true values. For example: 

>>> x = 0.17 + 0.17  # 0.34 
>>> y = 0.30 + 0.04  # 0.34 
>>> b = (x == y)     # 0.34 == 0.34 should be True 
>>> print b 
False                # oops 
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The NumPy allclose() function accepts two matrices and returns True if both matrices have 

the same shape and all corresponding pairs of cell values are very close to each other (within 
1.0e-5 (0.00001)), and False otherwise. If the default 1.0e-5 tolerance isn't suitable, you can 

pass a different tolerance argument to the allclose() function. For example, the statement: 

b1 = np.allclose(mim, idty, 1.0e-8) 

will return True only if all corresponding cells in matrices mim and idty are within 1.0e-8 of each 

other. 

The demo program defines a custom method named my_close() that has similar functionality 

to the NumPy allclose() function. There's no advantage to writing such a custom function 

unless you need to implement some sort of specialized behavior, such as having a different 
tolerance for different rows or columns. 

Program-defined function my_close() is implemented as: 

def my_close(m1, m2, eps): 
  (rows, cols) = np.shape(m1) 
  for i in xrange(rows): 
    for j in xrange(cols): 
      if abs(m1[i,j] - m2[i,j]) > eps: 
        return False 
  return True 

Function my_close() doesn't check if its two matrix parameters have the same shape. You 

could do so like this: 

(rows_m1, cols_m1) = np.shape(m1) 
(rows_m2, cols_m2) = np.shape(m2) 
if rows_m1 != rows_m2 or cols_m1 != cols_m2: 
  return None 

The SciPy version of inv() has an overwrite_a parameter that permits the cell values in the 

original matrix to be overwritten during the calculation of the inverse. For example: 

import numpy as np 
import scipy.linalg as spla 
m = np.random.rand(10, 10) 
d = np.linalg.det(m) 
if d == 0: 
  print "Matrix does not have inverse" 
else: 
  mi = spla.inv(m, overwrite_a=True) 

This code creates a 10×10 matrix with random values in the range [0.0 and 1.0), and then 
computes the matrix's inverse, allowing the matrix values to be changed in order to improve 
performance. However, when I've used this approach, I've never seen the original matrix 
changed with this form of function call.  
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Resources 

For additional details on the NumPy matrix inv() function, see 

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html. 

For additional details on the NumPy allclose() function, see 

http://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html. 

For information about the NumPy eye() function, see 

http://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html. 

For information about the SciPy version of the inv() function, see 

http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.inv.html. 

3.6 Matrix loading from file 

In many practical scenarios, you'll want to read data into a matrix from a text file. The NumPy 
loadtxt() function is very versatile and can handle most situations. It's also possible to load 

data into a matrix from a text file using a custom function if you need specialized behavior. 

Code Listing 13: Loading Matrix Data from a Text File Demo 

# loadingdata.py 
# Python 2.7 
 
import numpy as np 
 
def my_load(fn, sep): 
  f = open(fn, "r") 
 
  rows = 0; cols = 0 
  for line in f: 
    rows += 1 
    cols = len(line.strip().split(sep)) 
   
  result = np.zeros((rows,cols)) # make matrix 
 
  f.seek(0) # back to start of file 
 
  i = 0 # row index 
  while True: 
    line = f.readline() 
    if not line: break 
    line = line.strip() 
    tokens = line.split(',') # a list 
    for j in xrange(cols): 
      result[i,j] = np.float64(tokens[j]) 
    i += 1 
   
  f.close() 
  return result 
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# ===== 
 
print "\nBegin matrix load demo \n" 
 
fn = r"C:\SciPy\Ch3\datafile.txt" 
 
m = np.loadtxt(fn, delimiter=',') 
print "Matrix loaded using np.loadtxt() = " 
print m 
print "" 
 
m = my_load(fn, sep=',') 
print "Matrix loaded using my_load() = " 
print m 
print "" 
 
print "\nEnd demo\n" 

 

C:\SciPy\Ch3> python loadingdata.py 
 
Begin matrix load demo  

 

Matrix loaded using np.loadtxt() =  

[[ 1.  2.] 

 [ 3.  4.] 

 [ 5.  6.] 

 [ 7.  8.]] 

 

Matrix loaded using my_load() =  

[[ 1.  2.] 

 [ 3.  4.] 

 [ 5.  6.] 

 [ 7.  8.]] 

 

End demo 

The demo program begins by specifying the location of the source data file: 

fn = r"C:\SciPy\Ch3\datafile.txt" 

Here, fn stands for file name. The r qualifier stands for raw and tells the Python interpreter to 

treat backslashes as literals rather than the start of an escape sequence. File datafile.txt is 

a simple comma-delimited text file with no header: 

1.0, 2.0 
3.0, 4.0 
5.0, 6.0 
7.0, 8.0  
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Next, the demo creates and loads a matrix like so: 

m = np.loadtxt(fn, delimiter=',') 
print "Matrix loaded using np.loadtxt() = " 
print m 

The delimiter argument tells loadtxt() how values are separated on each line. The default 

value is any whitespace character (spaces, tabs, newlines), so the argument is required in this 
case. 

In addition to the required fname parameter and optional delimiter parameter, loadtxt() has 

seven additional optional parameters. Of these, based on my experience, the three most 
commonly used parameters are comments, skiprows, and usecols. For example, suppose a 

data file is: 

colA : colB : colC 
1.0 : 2.0 : 3.0 
4.0 : 5.0 : 6.0 
$ some comment 
7.0 : 8.0 : 9.0 

The following statement means: skip the first line, treat lines with '$' or '%' as comments, and 
load only column 0 and 2. 

m = np.loadtxt(fn, delimiter=':', comments=['$', '%'], skiprows=1, 
  usecols=[0,2])   

Although loadtxt() is quite versatile, there are many scenarios it doesn't handle. In these 

situations, it's easy to write a custom load function. The demo program defines such a function: 

def my_load(fn, sep): 
  f = open(fn, "r") 
  rows = 0; cols = 0 
  for line in f: 
    rows += 1 
    cols = len(line.strip().split(sep)) 
  result = np.zeros((rows,cols)) # make matrix 
  f.seek(0) # back to start of file 
  i = 0     # row index 
  while True: 
    line = f.readline() # read a line of data 
    if not line: break  # end of file? 
    line = line.strip() # remove whitespace from line 
    tokens = line.split(',') # split line items into a list 
    for j in xrange(cols):   # store each item in the curr row 
      result[i,j] = np.float64(tokens[j]) 
    i += 1  # next row 
  f.close() 
  return result 
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The function my_load() performs a preliminary scan of the file to determine the number of rows 

and columns there are, then creates a matrix with the appropriate shape, resets the file read 
pointer, and does a second scan to read, parse, and store each value in the data file. There are 
several alternative designs you can use.  

Resources 

For details about the NumPy loadtxt() function, see 

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.loadtxt.html. 

For details about NumPy function genfromtxt() that can handle missing values, see 

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.genfromtxt.html. 
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Chapter 4  Combinatorics 

Combinatorics is a branch of mathematics dealing with permutations (rearrangements of items) 
and combinations (subsets of items). Python has limited support for combinatorics in the 
itertools and scipy modules, but you can create combinatorics functions using NumPy 

arrays and matrices. The following screenshot shows you where this chapter is headed. 

 

Figure 24: Combinatorics Demo 

In section 4.1, you'll learn how to create a program-defined Permutation class using NumPy, 

and how to write an effective factorial function. 

In section 4.2, you'll learn how to write a successor() function that returns the next permutation 

element in lexicographical order. 
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In section 4.3, you'll learn how to create a useful element() function that directly generates a 

specified permutation element. 

In section 4.4, you'll learn how to create a Combination class. 

In section 4.5, you'll learn how to write a Combination successor() function. 

And in section 4.6, you'll learn how to write an element() function for combinations. 

4.1 Permutations 

A mathematical permutation set is all possible orderings of n items. For example, if n = 3 and 
the items are the integers (0, 1, 2) then there are six possible permutation elements: 

(0, 1, 2) 
(0, 2, 1) 
(1, 0, 2) 
(1, 2, 0) 
(2, 0, 1) 
(2, 1, 0) 

Python supports permutations in the SciPy special module and in the Python itertools 

module. Interestingly, NumPy has no direct support for permutations, but it is possible to 
implement custom permutation functions using NumPy arrays. 

Code Listing 14: Permutations Demo 

# permutations.py 
# Python 2.7 
 
import numpy as np 
import itertools as it 
import scipy.special as ss 
 
class Permutation: 
  def __init__(self, n): 
    self.n = n 
    self.data = np.arange(n) 
 
  @staticmethod 
  def my_fact(n): 
    ans = 1 
    for i in xrange(1, n+1): 
      ans *= i 
    return ans 
 
  def as_string(self): 
    s = "# " 
    for i in xrange(self.n): 
      s = s + str(self.data[i]) + " " 
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    s = s + "#" 
    return s 
 
# ===== 
 
print "\nBegin permutation demo \n" 
 
n = 3 
print "Setting n = " + str(n) 
print "" 
 
num_perms = ss.factorial(n) 
print "Using scipy.special.factorial(n) there are ", 
print str(num_perms), 
print "possible permutation elements" 
print "" 
 
print "Making all permutations using itertools.permutations()" 
all_perms = it.permutations(xrange(n)) 
p = all_perms.next() 
 
print "The first itertools permutation is " 
print p 
print "" 
 
num_perms = Permutation.my_fact(n) 
print "Using my_fact(n) there are " + str(num_perms), 
print "possible permutation elements" 
print "" 
 
print "Making a custom Permutation object " 
p = Permutation(n) 
print "The first custom permutation element is " 
print p.as_string() 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch4> python permutations.py 
 
Begin permutation demo  

 

Setting n = 3 

 

Using scipy.special.factorial(n) there are  6.0 possible permutation elements 

 

Making all permutations using itertools.permutations() 

The first itertools permutation is  

(0, 1, 2) 

 

Using my_fact(n) there are 6 possible permutation elements 
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Making a custom Permutation object  

The first custom permutation element is  

# 0 1 2 # 

 

End demo 

The demo program begins by importing three modules: 

import numpy as np 
import itertools as it 
import scipy.special as ss 

The itertools module has the primary permutations class, but the closely associated 

factorial() function is defined in the special submodule of the scipy module. If this feels a 

bit awkward to you, you're not alone. 

The demo program defines a custom Permutation class. In most cases, you will only want to 

define a custom implementation of a function when you need to implement some specialized 
behavior, or you want to avoid using a module that contains the function. 

Program execution begins by setting up the number of permutation elements: 

n = 3 
print "Setting n = " + str(n) 

Using lowercase n for the number of permutations is traditional, so you should use it unless you 
have a reason not to. Next, the demo program determines the number of possible permutations 
using the SciPy factorial() function: 

num_perms = ss.factorial(n) 
print "Using scipy.special.factorial(n) there are ", 
print str(num_perms), 
print "possible permutation elements"  

The factorial(n) function is often written as n! as a shortcut. The factorial of a number is 

best explained by example: 

factorial(3) = 3 * 2 * 1 = 6 
factorial(5) = 5 * 4 * 3 * 2 * 1 = 120 

The value of factorial(0) is usually considered a special case and defined to be 1. Next, the 

demo creates a Python permutations iterator: 

all_perms = it.permutations(xrange(n)) 

I like to think of a Python iterator object as a little factory that can emit data when a request is 
made of it using an explicit or implicit call to a next() function. Notice the call to the 

permutations() function accepts xrange(n) rather than just n, as you might have thought. 

The demo program requests and displays the first itertools permutation element like so: 
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p = all_perms.next() 
print "The first itertools permutation is " 
print p 

Next, the demo program uses the custom functions. First, the my_fact() function is called: 

num_perms = Permutation.my_fact(n) 
print "Using my_fact(n) there are " + str(num_perms), 
print "possible permutation elements" 

Notice that the call to my_fact() is appended to Permutation, which is the name of its defining 

class. This is because the my_fact() function is decorated with the @staticmethod attribute. 

Next, the demo creates an instance of the custom Permutation class. The Permutation class 

__init__() constructor method initializes an object to the first permutation element so there's 

no need to call a next() function: 

p = Permutation(n) 
print "The first custom permutation element is " 
print p.as_string() 

The custom as_string() function displays a Permutation element delimited by the % 

character so that the element can be easily distinguished from a tuple, a list, or another Python 
collection. I used % because both permutation and percent start with the letter p. 

The custom my_fact() function is short and simple: 

def my_fact(n): 
  ans = 1 
  for i in xrange(1, n+1): 
    ans *= i 
  return ans 

The mathematical factorial function is often used in computer science classes as an example of 
a function that can be implemented using recursion: 

@staticmethod 
def my_fact_rec(n): 
  if n == 0 or n == 1: 
    return 1 
  else: 
    return n * Permutation.my_fact_rec(n-1) 

Although recursion has a certain mysterious aura, in most situations (such as this one), 
recursion is highly inefficient and so should be avoided. 

An option for any implementation of a factorial function, especially where the function will be 
called many times, is to create a pre-calculated lookup table with values for the first handful (say 
1,000) results. The extra storage is usually a small price to pay for much-improved performance. 
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Resources 

For details about the Python itertools module that contains the permutations iterator, see 

https://docs.python.org/2/library/itertools.html. 

For details about the SciPy factorial() function, see 

http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.misc.factorial.html. 

For information about mathematical permutations, see 
https://en.wikipedia.org/wiki/Permutation. 

4.2 Permutation successor 

When working with mathematical permutations, a key operation is generating the successor to a 
given permutation element. For example, if n = 3 and the items are the integers (0, 1, 2) then 
there are six possible permutation elements. When listed in what is called lexicographical order, 
the elements are: 

(0, 1, 2) 
(0, 2, 1) 
(1, 0, 2) 
(1, 2, 0) 
(2, 0, 1) 
(2, 1, 0) 

Notice that if we removed the separating commas and interpreted each element as an ordinary 
integer (like 120), the elements would be in ascending order (12 < 21 < 102 < 120 < 201 < 210).  

Code Listing 15: Permutation Successor Demo 

# perm_succ.py 
# Python 2.7 
 
import numpy as np 
import itertools as it 
 
class Permutation: 
  def __init__(self, n): 
    self.n = n 
    self.data = np.arange(n) 
 
  def as_string(self): 
    s = "# " 
    for i in xrange(self.n): 
      s = s + str(self.data[i]) + " " 
    s = s + "#" 
    return s 
 
  def successor(self): 
    res = Permutation(self.n) # result 
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    res.data = np.copy(self.data) 
 
    left = self.n - 2 
    while res.data[left] > res.data[left+1] and left >= 1: 
      left -= 1 
 
    if left == 0 and res.data[left] > res.data[left+1]: 
      return None 
 
    right = self.n - 1 
    while res.data[left] > res.data[right]: 
      right -= 1 
 
    res.data[left], res.data[right] = \ 
                     res.data[right], res.data[left] 
 
    i = left + 1 
    j = self.n - 1 
    while i < j: 
      tmp = res.data[i] 
      res.data[i] = res.data[j] 
      res.data[j] = tmp 
      i += 1; j -= 1 
    return res 
 
# ===== 
 
print "\nBegin permutation successor demo \n" 
 
n = 3 
print "Setting n = " + str(n) 
print "" 
 
perm_it = it.permutations(xrange(n)) 
print "Iterating all permutations using itertools permutations(): " 
 
for p in perm_it: 
  print "p = " + str(p) 
print "" 
   
p = Permutation(n) 
print "Iterating all permutations using custom Permutation class: " 
while p is not None: 
  print "p = " + p.as_string() 
  p = p.successor() 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch4> python perm_succ.py 
 
Begin permutation successor demo  
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Setting n = 3 

 

Iterating all permutations using itertools permutations():  

p = (0, 1, 2) 

p = (0, 2, 1) 

p = (1, 0, 2) 

p = (1, 2, 0) 

p = (2, 0, 1) 

p = (2, 1, 0) 

 

Iterating all permutations using custom Permutation class:  

p = # 0 1 2 # 

p = # 0 2 1 # 

p = # 1 0 2 # 

p = # 1 2 0 # 

p = # 2 0 1 # 

p = # 2 1 0 # 

 

End demo 

The demo program begins by importing two modules: 

import numpy as np 
import itertools as it 

Since the itertools module has many kinds of iterable objects, an alternative is to bring just 

the permutations iterator into scope: 

from itertools import permutations 

The demo program defines a custom Permutation class. In most cases, you will only want to 

define a custom implementation of a function when you need to implement some specialized 
behavior, or you want to avoid using a module that contains the function. 

Program execution begins by setting up the number of permutation elements: 

n = 3 
print "Setting n = " + str(n) 

Using lowercase n for the number of permutations is traditional, so you should use it unless you 
have a reason not to. 

Next, the demo program iterates through all possible permutation elements using an implicit 
mechanism: 

perm_it = permutations(xrange(n)) 
print "Iterating all permutations using itertools permutations(): " 
for p in perm_it: 
  print "p = " + str(p) 
print "" 
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The perm_it iterator can emit all possible permutation elements. In most situations, Python 

iterators are designed to be called using a for item in iterator pattern, as shown. In other 

programming languages, this pattern is sometimes distinguished from a regular for loop by 

using a foreach keyword. 

Note that the itertools.permutations() iterator emits tuples, indicated by the parentheses 

in the output, rather than a list or a NumPy array. 

It is possible, but somewhat awkward, to explicitly call the permutations iterator using the 
next() function like so: 

perm_it = it.permutations(xrange(n)) 
while True: 
  try: 
    p = perm_it.next() 
    print "p = " + str(p) 
  except StopIteration: 
    break 
print "" 

By design, iterator objects don't have an explicit way to signal the end of iteration, such as an 
end() function or returning a special value like None. Instead, when an iterator object has no 

more items to emit and a call to next() is made, a StopIteration exception is thrown. To 

terminate a loop, you must catch the exception. 

Next, the demo program iterates through all permutation elements for n = 3 using the program-
defined Permutation class: 

p = Permutation(n) 
print "Iterating all permutations using custom Permutation class: " 
while p is not None: 
  print "p = " + p.as_string() 
  p = p.successor() 

The successor() function of the Permutation class uses a traditional stopping technique by 

returning None when there are no more permutation elements. The function successor() uses 

an unobvious approach to determine when the current permutation element is the last one. A 
straightforward approach isn't efficient. For example, if n = 5, the last element is (4 3 2 1 0) and 
it'd be very time-consuming to check if data[0] > data[1] > data[2] > . . > data[n-1] on each call. 

The logic in the program-defined successor() function is rather clever. Suppose n = 5 and the 

current permutation element is: 

# 0 1 4 3 2 # 

The next element in lexicographical order after 01432, using the digits 0 through 4, is 02134. 
The successor() function first finds the indices of two items to swap, called left and right. In 

this case, left = 1 and right = 4. The items at those indices are swapped, giving a preliminary 

result of 02431. Then the items from index right through the end of the element are placed in 

order (431 in this example) giving the final result of 02134. 
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Resources 

For details about the Python itertools module and the permutations iterator, see 

https://docs.python.org/2/library/itertools.html. 

The itertools.permutations iterator uses the Python yield mechanism. See 

https://docs.python.org/2/reference/simple_stmts.html#yield. 

4.3 Permutation element 

When working with mathematical permutations, it's often useful to be able to generate a specific 
element. For example, if n = 3 and the items are the integers (0, 1, 2), then there are six 
permutation elements. When listed in lexicographical order, the elements are: 

[0]  (0, 1, 2) 
[1]  (0, 2, 1) 
[2]  (1, 0, 2) 
[3]  (1, 2, 0) 
[4]  (2, 0, 1) 
[5]  (2, 1, 0) 

In many situations, you want to iterate through all possible permutations, but in some cases you 
may want to generate just a specific permutation element. For example, a function call like pe = 
perm_element(4) would store (2, 0, 1) into pe. 

Code Listing 16: Generating a Permutation Element Directly 

# perm_elem.py 
# Python 2.7 
 
import numpy as np 
import itertools as it 
import time 
 
class Permutation: 
  def __init__(self, n): 
    self.n = n 
    self.data = np.arange(n) 
 
  def as_string(self): 
    s = "# " 
    for i in xrange(self.n): 
      s = s + str(self.data[i]) + " " 
    s = s + "#" 
    return s 
 
  def element(self, idx): 
    result = Permutation(self.n) 
     
    factoradic = np.zeros(self.n) 
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    for j in xrange(1, self.n + 1): 
      factoradic[self.n-j] = idx % j 
      idx = idx / j 
 
    for i in xrange(self.n): 
      factoradic[i] += 1 
 
    result.data[self.n - 1] = 1 
 
    for i in xrange(self.n - 2, -1, -1): 
      result.data[i] = factoradic[i] 
      for j in xrange(i + 1, self.n):   
        if result.data[j] >= result.data[i]: 
          result.data[j] += 1 
 
    for i in xrange(self.n): 
      result.data[i] -= 1 
 
    return result; 
 
# ===== 
 
def perm_element(n, idx): 
  p_it = it.permutations(xrange(n)) 
  i = 0 
  for p in p_it: 
    if i == idx: 
      return p 
      break 
    i += 1 
 
# ===== 
 
print "\nBegin permutation element demo \n" 
 
n = 20 
print "Setting n = " + str(n) + "\n" 
 
idx = 1000000000 
print "Element " + str(idx) + " using itertools.permutations() is " 
start_time = time.clock() 
pe = perm_element(n, idx) 
end_time = time.clock() 
elapsed_time = end_time - start_time 
print pe  
print "Elapsed time = " + str(elapsed_time) + " seconds " 
print "" 
 
p = Permutation(n) 
start_time = time.clock() 
pe = p.element(idx) 
end_time = time.clock() 
elapsed_time = end_time - start_time 
print "Element " + str(idx) + " using custom Permutation class is " 

see more please visit: https://homeofpdf.com 



 
84 

print pe.as_string() 
print "Elapsed time = " + str(elapsed_time) + " seconds " 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch4> python perm_elem.py 
 
Begin permutation element demo  

 

Setting n = 20 

 

Element 1000000000 using itertools.permutations() is  

(0, 1, 2, 3, 4, 5, 6, 9, 8, 7, 15, 17, 14, 16, 19, 11, 13, 18, 10, 12) 

Elapsed time = 162.92199766 seconds  

 

Element 1000000000 using custom Permutation class is  

# 0 1 2 3 4 5 6 9 8 7 15 17 14 16 19 11 13 18 10 12 # 

Elapsed time = 0.000253287676799 seconds  

 

End demo 

The demo program begins by importing three modules: 

import numpy as np 
import itertools as it 
import time 

The demo program defines a custom Permutation class that has an element() member 

function and a stand-alone function perm_element() that is not part of a class. Both functions 

return a specific permutation element. Function perm_element() uses the built-in 

permutations() iterator from the itertools module. Function element() uses a NumPy 

array plus a clever algorithm that involves something called the factoradic. Program execution 
begins by setting up the order of a permutation, n:  

n = 20 
print "Setting n = " + str(n) + "\n" 

The order of a permutation is the number of items in each permutation. For n = 20 there are 20! 
= 2,432,902,008,176,640,000 different permutation elements. Next, the demo finds the 
permutation element 1,000,000,000 using the program-defined perm_element() function: 

print "Element " + str(idx) + " using itertools.permutations() is " 
start_time = time.clock() 
pe = perm_element(n, idx) 
end_time = time.clock() 

After the permutation element has been computed, the element and the elapsed time required 
are displayed: 
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elapsed_time = end_time - start_time 
print pe 
print "Elapsed time = " + str(elapsed_time) + " seconds " 

In this example, the perm_element() function took over 2 and a half minutes to execute. Not 

very good performance. 

Next, the demo computes the same permutation element using the program-defined 
Permutation class: 

p = Permutation(n) 
start_time = time.clock() 
pe = p.element(idx) 
end_time = time.clock() 

Then the element and the elapsed time required are displayed using the custom class 
approach: 

elapsed_time = end_time - start_time 
print "Element " + str(idx) + " using custom Permutation class is " 
print pe.as_string() 
print "Elapsed time = " + str(elapsed_time) + " seconds " 

The elapsed time using the custom Permutation element() function class was approximately 

0.0003 seconds—much better performance than the 160+ seconds for the itertools-based 

function. 

It really wasn't a fair fight. The perm_element() function works by creating an itertools. 
permutations iterator and then generating each successive permutation one at a time until the 

desired permutation element is reached. The function definition is: 

p_it = it.permutations(xrange(n)) # make a permutation iterator 
  i = 0           # index counter 
  for p in p_it:  # request next permutation 
    if i == idx:  # are we there yet? 
      return p    # if so, return curr permutation tuple 
      break       # and break out of loop 
    i += 1        # next index 

On the other hand, the custom element() function uses some very clever mathematics and an 

entity called the factoradic of a number to construct the requested permutation element directly. 

The regular decimal representation of numbers is based on powers of 10. For example, 1047 is 
(1 * 10^3) + (0 * 10^2) + (4 * 10^1) + (7 * 10^0). The factoradic of a number is an alternate 
representation based on factorials. For example, 1047 is 1232110 because it's (1 * 6!) + (2 * 5!) 
+ (3 * 4!) + (2 * 3!) + (1 * 2!) + (1 * 1!) + (0 * 0!). Using some rather remarkable mathematics, it's 
possible to use the factoradic of a permutation element index to compute the element directly. 
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Resources 

For details about the Python itertools module, which contains the permutations iterator, see 

https://docs.python.org/2/library/itertools.html. 

For information about mathematical factoradics, see 
https://en.wikipedia.org/wiki/Factorial_number_system. 

4.4 Combinations 

A mathematical combination set is a collection of all possible subsets of k items selected from n 
items. For example, if n = 5 and k = 3 and the items are the integers (0, 1, 2, 3, 4), then there 
are 10 possible combination elements: 

(0, 1, 2) 
(0, 1, 3) 
(0, 1, 4) 
(0, 2, 3) 
(0, 2, 4) 
(0, 3, 4) 
(1, 2, 3) 
(1, 2, 4) 
(1, 3, 4) 
(2, 3, 4) 

For combinations, the order of the items does not matter. Therefore, there is no element (0, 2, 
1) because it is considered the same as (0, 1, 2). Python supports combinations in the SciPy 
special module and in the Python itertools module. There is no direct support for 

combinations in SciPy, but it's possible to implement combination functions using NumPy 
arrays. 

Code Listing 17: Combinations Demo 

# combinations.py 
# Python 2.7 
 
import numpy as np 
import itertools as it 
import scipy.special as ss 
 
class Combination: 
  # n == order, k == subset size 
  def __init__(self, n, k): 
    self.n = n 
    self.k = k 
    self.data = np.arange(self.k) 
 
  def as_string(self): 
    s = "^ " 
    for i in xrange(self.k): 
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      s = s + str(self.data[i]) + " " 
    s = s + "^" 
    return s 
 
  @staticmethod 
  def my_choose(n,k): 
    if n < k: return 0 
    if n == k: return 1; 
     
    delta = k 
    imax = n - k 
    if k < n-k: 
      delta = n-k 
      imax = k 
 
    ans = delta + 1 
    for i in xrange(2, imax+1): 
      ans = (ans * (delta + i)) / i 
    return ans 
 
# ===== 
 
print "\nBegin combinations demo \n" 
 
n = 5 
k = 3 
print "Setting n = " + str(n) + " k = " + str(k) 
print "" 
 
num_combs = ss.comb(n, k) 
print "n choose k using scipy.comb() is ", 
print num_combs 
print "" 
 
print "Making all combinations using itertools.combinations() " 
all_combs = it.combinations(xrange(n), k) 
 
c = all_combs.next() 
print "First itertools combination element is "  
print c 
print "" 
 
num_combs = Combination.my_choose(n, k) 
print "n choose k using my_choose(n, k) is ", 
print num_combs 
print "" 
 
print "Making a custom Combination object " 
c = Combination(n, k) 
print "The first custom combination element is " 
print c.as_string() 
 
print "\nEnd demo \n" 
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C:\SciPy\Ch4> python combinations.py 
 
Begin combinations demo  

 

Setting n = 5 k = 3 

 

n choose k using scipy.comb() is  10.0 

 

Making all combinations using itertools.combinations()  

First itertools combination element is  

(0, 1, 2) 

 

n choose k using my_choose(n, k) is  10 

 

Making a custom Combination object  

The first custom combination element is  

^ 0 1 2 ^ 

 

End demo 

The demo program begins by importing three modules: 

import numpy as np 
import itertools as it 
import scipy.special as ss 

The itertools module has the primary combinations class, but the closely associated comb() 

function is defined in the special submodule of the scipy module (and also in scipy.misc). 

The demo program defines a custom Combination class. In most cases, you will only want to 

define a custom implementation of a function when you need to implement some specialized 
behavior, or you want to avoid using a module that contains the function. 

Program execution begins by setting up the number of items n, and the subset size k: 

n = 5 
k = 3 
print "Setting n = " + str(n) + " k = " + str(k) 

Lowercase n and k are most often used with combinations, so if you use different variable 
names it would be a good idea to comment on which is the number of items and which is the 
subset size. Next, the demo program determines the number of possible combination elements 
using the SciPy comb() function: 

num_combs = ss.comb(n, k) 
print "n choose k using scipy.comb() is ", 
print num_combs 
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The function that returns the number of ways to select k items from n items is almost universally 
called choose(n, k) so it's not clear why the SciPy code implementation is named comb(n, k). 

The mathematical definition of choose(n, k) is n! / k! * (n-k)! where ! is the factorial function. For 
example: 

choose(5, 3) = 5! / (3! * 2!) = 120 / (6 * 2) = 10 

As it turns out, a useful fact is that choose(n, k) = choose(n, n-k). For example, choose(10, 7) = 
choose(10, 3). The choose function is easier to calculate using smaller values of the subset 
size. 

Next, the demo creates a Python combinations iterator: 

all_combs = it.combinations(xrange(n), k) 

I like to think of a Python iterator object as a little factory that can emit data when a request is 
made of it using an explicit or implicit call to a next() function. Notice the call to the 

it.combinations() function accepts xrange(n) rather than just n. The choice of the name 

all_combs could be somewhat misleading if you're not familiar with Python iterators. The 

all_combs iterator doesn't generate all possible combination elements when it is created. It 

does, however, have the ability to emit all combination elements. 

In addition to xrange(), the it.combinations() iterator can accept any iterable object. For 

example: 

all_combs = it.combinations(np.array(["a", "b", "c"]), k) 

Next, the demo program requests and displays the first itertools combination element like so: 

c = all_combs.next() 
print "The first itertools combination element is " 
print c 

Next, the demo program demonstrates the custom functions. First, the program-defined 
my_choose() function is called: 

num_combs = Combination.my_choose(n, k) 
print "n choose k using my_choose(n, k) is ", 
print num_combs 

Notice that the call to my_choose() is appended to Combination, which is the name of its 

defining class. This is because the my_choose() function is decorated with the @staticmethod 

attribute. 

Next, the demo creates an instance of the custom Combination class. The Combination class 

__init__() constructor method initializes an object to the first combination element, so there's 

no need to call a next() function to get the first element: 
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print "Making a custom Combination object " 
c = Combination(n, k) 
print "The first custom combination element is " 
print c.as_string() 

The custom as_string() function displays a Combination element delimited by the ^ (carat) 

character so that the element can be easily distinguished from a tuple, a list, or another Python 
collection. I used ^ because both combination and carat start with the letter c. 

The custom my_choose() function is rather subtle. It would be a weak approach to implement a 

choose function directly using the math definition because that would involve the calculation of 
three factorial functions. The factorial of a number can be very large. For example, 20! is 
2,432,902,008,176,640,000 and 1000! is an almost unimaginably large number. 

The my_choose() function uses a clever alternate definition that is best explained by example: 

choose(10, 7) = choose(10, 3) = (10 * 9 * 8) / (3 * 2 * 1) = 120 

Expressed in words, to calculate a choose(n, k) value, first simplify k to an equivalent smaller k 
if possible. Then the result is a division with k! on the bottom and n * n-1 * n-2 * . . * (n-k+1) on 
the top. 

Furthermore, the top and bottom parts of the division don't have to be computed fully. Instead, 
the product of each pair of terms in the top can be iteratively divided by a term in the bottom. 
For example: 

choose(10, 3) = 10 * 9 / 3 = 30 * 8 / 2 = 120 

The implementation of my_choose() is presented in Code Listing 18. 

Code Listing 18: Program-Defined Choose() Function  

def my_choose(n, k): 

  if n < k: 

    return 0 

  if n == k: 

    return 1; 

 

  delta = k 

  imax = n - k 

  if k < n-k: 

    delta = n-k 

    imax = k 

 

  ans = delta + 1 

  for i in xrange(2, imax+1): 

    ans = (ans * (delta + i)) / i 

 

  return ans 

The first two statements look for early exit conditions. The statements with delta and imax 

simplify k if possible. The for loop performs the iterated pair-multiplication and division. 
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Resources 

For details about the Python itertools module that contains the combinations iterator, see 

https://docs.python.org/2/library/itertools.html. 

For details about the SciPy factorial() function, see 

http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.misc.comb.html. 

4.5 Combination successor 

When working with mathematical combinations, a key operation is generating the successor to 
a given combination element. For example, if n = 5, k = 3, and the n items are the integers (0, 1, 
2, 3, 4), then there are 10 possible combination elements. When listed in lexicographical order, 
the elements are: 

(0, 1, 2) 
(0, 1, 3) 
(0, 1, 4) 
(0, 2, 3) 
(0, 2, 4) 
(0, 3, 4) 
(1, 2, 3) 
(1, 2, 4) 
(1, 3, 4) 
(2, 3, 4) 

Notice that if we removed the separating commas and interpreted each element as an ordinary 
integer (like 124), the elements would be in ascending order (12 < 13 < 14 < 23 < . . < 234).  

Code Listing 19: Combinations Successor Demo 

# comb_succ.py 
# Python 2.7 
 
import numpy as np 
import itertools as it 
 
class Combination: 
  # n == order, k == subset size 
   
  def __init__(self, n, k): 
    self.n = n 
    self.k = k 
    self.data = np.arange(self.k) 
 
  def as_string(self): 
    s = "^ " 
    for i in xrange(self.k): 
      s = s + str(self.data[i]) + " " 
    s = s + "^" 
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    return s 
 
  def successor(self): 
    if self.data[0] == self.n - self.k: 
      return None 
     
    res = Combination(self.n, self.k) 
    for i in xrange(self.k): 
      res.data[i] = self.data[i] 
 
    i = self.k - 1 
    while i > 0 and res.data[i] == self.n - self.k + i: 
      i -= 1 
 
    res.data[i] += 1 
 
    for j in xrange(i, self.k - 1): 
      res.data[j+1] = res.data[j] + 1 
 
    return res 
 
# ===== 
 
print "\nBegin combination successor demo \n" 
 
n = 5 
k = 3 
print "Setting n = " + str(n) + " k = " + str(k) 
print "" 
 
print "Iterating through all elements using itertools.combinations()" 
comb_iter = it.combinations(xrange(n), k) 
for c in comb_iter: 
  print "c = " + str(c) 
print "" 
 
print "Iterating through all elements using custom Combination class" 
c = Combination(n, k) 
while c is not None: 
  print "c = " + c.as_string() 
  c = c.successor() 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch4> python comb_succ.py 
 
Begin combination successor demo  

 

Setting n = 5 k = 3 

 

Iterating through all elements using itertools.combinations() 
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c = (0, 1, 2) 

c = (0, 1, 3) 

c = (0, 1, 4) 

c = (0, 2, 3) 

c = (0, 2, 4) 

c = (0, 3, 4) 

c = (1, 2, 3) 

c = (1, 2, 4) 

c = (1, 3, 4) 

c = (2, 3, 4) 

 

Iterating through all elements using custom Combination class 

c = ^ 0 1 2 ^ 

c = ^ 0 1 3 ^ 

c = ^ 0 1 4 ^ 

c = ^ 0 2 3 ^ 

c = ^ 0 2 4 ^ 

c = ^ 0 3 4 ^ 

c = ^ 1 2 3 ^ 

c = ^ 1 2 4 ^ 

c = ^ 1 3 4 ^ 

c = ^ 2 3 4 ^ 

 

End demo 

The demo program begins by importing two modules: 

import numpy as np 
import itertools as it 

Since the itertools module has many kinds of iterable objects, an alternative is to bring just 

the permutations iterator into scope: 

from itertools import combinations 

The demo program defines a custom Combination class. In most cases, you will only want to 

define a custom implementation of a function when you need to implement some specialized 
behavior, or you want to avoid using a module that contains the function (such as itertools). 

Program execution begins by setting up the number of items and the subset size: 

n = 5 
k = 3 
print "Setting n = " + str(n) + " k = " + str(k) 

It is customary to use n and k when working with mathematical combinations, so you should do 
so unless you have a reason to use different variable names. 

Next, the demo program iterates through all possible combination elements using an implicit 
mechanism: 
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print "Iterating through all elements using itertools.combinations()" 
comb_iter = it.combinations(xrange(n), k) 
for c in comb_iter: 
  print "c = " + str(c) 
print "" 

The comb_iter iterator can emit all possible combination elements. In most situations, Python 

iterators are designed to be called using a for item in iterator pattern, as shown. In other 

programming languages, this pattern is sometimes distinguished from a regular for loop by 

using a foreach keyword (C#) or special syntax like for x : somearr (Java). 

Note that the itertools.combinations() iterator emits tuples, indicated by the parentheses 

in the output, rather than a list or a NumPy array. 

It is possible but awkward to explicitly call the combinations iterator using the next() function 

like so: 

comb_iter = it.combinations(xrange(n), k) 
while True: 
  try: 
    c = comb_iter.next() 
    print "c = " + str(c) 
  except StopIteration: 
    break 
print "" 

By design, iterator objects don't have an explicit way to signal the end of iteration, such as a 
last() function or returning a special value like None. Instead, when an iterator object has no 

more items to emit and a call to next() is made, a StopIteration exception is thrown. To 

terminate a loop, you must catch the exception. Note that you could catch a general Exception 

rather than the more specific StopIteration. 

Next, the demo program iterates through all combination elements for n = 5 and k = 3 using the 

successor() function of the program-defined Combination class: 

print "Iterating through all elements using custom Combination class" 
c = Combination(n, k) 
while c is not None: 
  print "c = " + c.as_string() 
  c = c.successor() 
print "" 

The successor() function of the Combination class uses a traditional stopping technique by 

returning None when there are no more permutation elements. The logic in the program-defined 

successor() function is rather clever. Suppose n = 7, k = 4, and the current combination 

element is: 

^ 0 1 5 6 ^ 

see more please visit: https://homeofpdf.com 



 
 

95 

The next element in lexicographical order after 0256, using the digits 0 through 6, is 0345. The 
successor algorithm first finds the index i of the left-most item that must change. In this case, i 

= 1, which corresponds to item 2. The item at i is incremented, giving a preliminary result of 

0356. Then the items to the right of the new value at i (56 in this case) are updated so that they 

are all consecutive relative to the value at i (45 in this case), giving the final result of 0345. 

Notice that it's quite easy for successor() to determine the last combination element because 

it's the only one that has a value of n-k at index 0. For example, with n = 5 and k = 3, n-k = 2 

and the last combination element is (2 3 4). Or, if n = 20 and k = 8, the last combination element 

would be (12 13 14 . . . 19). 

One potential advantage of using a program-defined Combination class rather than the 

itertools.combinations() iterator is that you can easily define a predecessor() function. 

For example, consider the functions in Code Listing 20: 

Code Listing 20: A Combination Predecessor Function  

def predecessor(self): 
  if self.data[self.n - self.k] == self.n - self.k: 
    return None     
  res = Combination(self.n, self.k) 
  res.data = np.copy(self.data)   
  i = self.k - 1 
  while i > 0 and res.data[i] == res.data[i-1] + 1: 
    i -= 1   
  res.data[i] -= 1; i += 1   
  while i < k: 
    res.data[i] = self.n - self.k + i 
    i += 1 
  return res 
   
def last(self): 
  res = Combination(self.n, self.k) 
  nk = self.n - self.k 
  for i in xrange(self.k): 
    res.data[i] = nk + i 
  return res 

Then the following statements would iterate through all combination elements in reverse order: 

c = Combination(n, k) # 0 1 2 
c = c.last()          # 2 3 4 
while c is not None: 
  print "c = " + c.as_string() 
  c = c.predecessor() 

Resources 

For details about the Python itertools module, which contains the combinations iterator, see 

https://docs.python.org/2/library/itertools.html. 

The itertools.combinations iterator uses the Python yield mechanism. See 

https://docs.python.org/2/reference/simple_stmts.html#yield. 
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4.6 Combination element 

When working with mathematical combinations, it's often useful to be able to generate a specific 
element. For example, if n = 5, k = 3, and the items are the integers (0, 1, 2, 3, 4), then there are 
10 combination elements. When listed in lexicographical order, the elements are: 

[0]  (0, 1, 2) 
[1]  (0, 1, 3) 
[2]  (0, 1, 4) 
[3]  (0, 2, 3) 
[4]  (0, 2, 4) 
[5]  (0, 3, 4) 
[6]  (1, 2, 3) 
[7]  (1, 2, 4) 
[8]  (1, 3, 4) 
[9]  (2, 3, 4) 

In many situations, you want to iterate through all possible combination elements, but in some 
cases you may want to generate just a specific combination element. For example, a function 
call like ce = comb_element(5) would store (0, 3, 4) into ce. 

Using the built-in itertools.combinations iterator, the only way you can get a specific 

combination element is to iterate from the first element until you reach the desired element. This 
approach is impractical in all but the simplest scenarios. An efficient alternative is to define a 
custom Combination class and element() function that use NumPy arrays for data. 

Code Listing 21: Generating a Combination Element Directly 

# comb_elem.py 
# Python 2.7 
 
import numpy as np          # to make custom Combination class 
import itertools as it      # has combinations iterator 
import scipy.special as ss  # has comb() aka choose() function 
import time                 # to time performance 
 
class Combination: 
  def __init__(self, n, k): 
    self.n = n 
    self.k = k 
    self.data = np.arange(k) 
 
  def as_string(self): 
    s = "^ " 
    for i in xrange(self.k): 
      s = s + str(self.data[i]) + " " 
    s = s + "^" 
    return s 
 
  @staticmethod 
  def my_choose(n,k): 
    if n < k: return 0 
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    if n == k: return 1; 
     
    delta = k 
    imax = n - k 
    if k < n-k: 
      delta = n-k 
      imax = k 
 
    ans = delta + 1 
    for i in xrange(2, imax+1): 
      ans = (ans * (delta + i)) / i 
    return ans 
 
  def element(self, idx): 
    maxM = Combination.my_choose(self.n, self.k) - 1 
 
    ans = np.zeros(self.k, dtype=np.int64) 
    a = self.n 
    b = self.k 
    x = maxM - idx 
    for i in xrange(self.k): 
      ans[i] = self.my_largestV(a, b, x) 
      x = x - Combination.my_choose(ans[i], b) 
      a = ans[i] 
      b -= 1 
 
    for i in xrange(self.k): 
      ans[i] = (self.n - 1) - ans[i] 
 
    result = Combination(self.n, self.k) 
    for i in xrange(self.k): 
      result.data[i] = ans[i] 
    return result 
 
  def my_largestV(self, a, b, x): 
    v = a - 1 
    while Combination.my_choose(v, b) > x: 
      v -= 1 
    return v 
 
# ===== 
 
def comb_element(n, k, idx): 
  comb_it = it.combinations(xrange(n), k) 
  i = 0 
  for c in comb_it: 
    if i == idx: 
      return c 
      break 
    i += 1 
  return None 
 
# ===== 
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print "\nBegin combination element demo \n" 
 
n = 100 
k = 8 
print "Setting n = " + str(n) + " k = " + str(k) 
ces = ss.comb(n, k) 
print "There are " + str(ces) + " different combinations \n" 
 
idx = 100000000 
 
print "Element " + str(idx) + " using itertools.combinations() is " 
start_time = time.clock() 
ce = comb_element(n, k, idx) 
end_time = time.clock() 
elapsed_time = end_time - start_time 
print ce  
print "Elapsed time = " + str(elapsed_time) + " seconds " 
print "" 
 
c = Combination(n, k) 
start_time = time.clock() 
ce = c.element(idx) 
end_time = time.clock() 
elapsed_time = end_time - start_time 
print "Element " + str(idx) + " using custom Combination class is " 
print ce.as_string() 
print "Elapsed time = " + str(elapsed_time) + " seconds " 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch4> python comb_elem.py 
 
Begin combination element demo  

 

Setting n = 100 k = 8 

There are 186087894300.0 different combinations  

 

Element 100000000 using itertools.combinations() is  

(0, 1, 3, 19, 20, 44, 47, 90) 

Elapsed time = 10.664860732 seconds  

 

Element 100000000 using custom Combination class is  

^ 0 1 3 19 20 44 47 90 ^ 

Elapsed time = 0.001009821625 seconds  

 

End demo 
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The demo program sets up a combinatorial problem with n = 100 items taken k = 8 at a time. So 

the first combination element is (0, 1, 2, 3, 4, 5, 6, 7). The number of different combination 
elements is calculated using the comb() function from the scipy.special module and is 

186,087,894,300. Note that in virtually all other programming language libraries, the function to 
calculate the number of different combination elements is called choose(). 

The demo calculates combination element 100,000,000 using a stand-alone, program-defined 
function comb_element() that uses the built-in itertools.combinations iterator. This 

approach took just over 10 seconds on a more or less standard desktop PC machine. 

The demo calculates the same combination element using a program-defined Combination 

class and element() function. This approach took just over 0.001 seconds. The point is that 

Python iterators are designed to iterate well, but are not well suited for other scenarios. 

The program-defined function comb_element() is: 

def comb_element(n, k, idx): 
  comb_it = it.combinations(xrange(n), k) # make an iterator 
  i = 0                    # index counter 
  for c in comb_it:        # request next combination element 
    if i == idx:           # are we there yet? 
      return c; break      # if so, return current element and exit loop 
    i += 1                 # otherwise bump counter 
  return None              # should never get here 

The function doesn't check if parameter idx is valid. You could do so using a statement like: 

if idx >= ss.comb(n, k):  # error 

The obvious problem with using an iterator is that there's no way to avoid walking through every 
combination element until you reach the desired element. On the other hand, the program-
defined element() function in the Combination class uses a clever mathematical idea called 

the combinadic to generate a combination element directly. 

The regular decimal representation of numbers is based on powers of 10. For example, 7203 is 
(7 * 10^3) + (2 * 10^2) + (0 * 10^1) + (3 * 10^0). The combinadic of a number is an alternate 
representation based on the mathematical choose(n,k) function. For example, if n = 7 and k = 4, 
the number 27 is 6521 in combinadic form because 27 = choose(6,4) + choose(5,3) + 
choose(2,2) + choose(1,1). Using some rather remarkable mathematics, it's possible to use the 
combinadic of a combination element index to compute the element directly.  

Resources 

For details about the Python itertools module that contains the combinations iterator, see 

https://docs.python.org/2/library/itertools.html. 

For information about mathematial combinadics, see 
https://en.wikipedia.org/wiki/Combinatorial_number_system.  
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Chapter 5  Miscellaneous Topics 

This chapter deals with miscellaneous NumPy and SciPy functions and techniques. The goal is 
to present representative examples so you'll be able to search the SciPy documentation more 
efficiently. The following screenshot shows you where this chapter is headed. 

 

Figure 25: Miscellaneous NumPy Functions Demo 

In section 5.1, you'll learn how to use the NumPy searchsorted() binary search function and 

how to interpret its unusual return value.  

In section 5.2, you'll learn how to use SciPy to perform LU decomposition on a square matrix 
and why decomposition is important. 

In section 5.3, you'll learn about NumPy and SciPy statistics functions such as mean() and 

std(). 
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In section 5.4, you'll learn how to generate random values from a specified distribution such as 
the Normal or Poisson, and how to bin data using the histogram() function. 

In section 5.5, you'll learn about SciPy miscellaneous functions such as the double factorial. 

In section 5.6, you'll learn how to use special SciPy functions such as bernoulli() and  

gamma(). 

5.1 Array binary search 

To search a sorted array, you can use the NumPy searchsorted() function. The 

searchsorted() function is quite different from the binary search functions in other languages. 

Also, you must be careful when dealing with arrays that have floating-point values. 

Code Listing 22: Array Binary Search Demo 

# binsearch.py 
# Python 2.7 
 
import numpy as np 
 
def my_bin_search(a, t, eps): 
  lo = 0 
  hi = len(a)-1 
  while lo <= hi: 
    mid = (lo + hi) / 2 
    if np.isclose(a[mid], t, eps): 
      return mid 
    elif a[mid] < t: 
      lo = mid + 1 
    else: 
      hi = mid - 1 
  return -1 
 
print "\nBegin array binary search demo \n" 
 
arr = np.array([1.0, 3.0, 4.0, 6.0, 8.0, 11.0, 13.0]) 
print "Array arr is " 
print arr 
print "" 
 
target = 11.0  
print "Target value to find is " + str(target) 
print "" 
 
print "Searching array using np.searchsorted() function " 
idx = np.searchsorted(arr, target) 
if idx < len(arr) and arr[idx] == target: 
  print "Target found at cell " + str(idx) 
else: 
  print "Target not found " 
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print "" 
 
print "Searching array using my_bin_search() function " 
idx = my_bin_search(arr, target, 1.0e-5) 
if idx == -1: 
  print "Target not found " 
else: 
  print "Target found at cell = " + str(idx) 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch5> python binsearch.py 
 
Begin array binary search demo  

 

Array arr is  

[  1.   3.   4.   6.   8.  11.  13.] 

 

Target value to find is 11.0 

 

Searching array using np.searchsorted() function  

Target found at cell 5 

 

Searching array using my_bin_search() function  

Target found at cell = 5 

 

End demo 

The demo program execution begins by setting up an array to search and a target value to 
search for: 

arr = np.array([1.0, 3.0, 4.0, 6.0, 8.0, 11.0, 13.0]) 
print "Array arr is " 
print arr 

target = 11.0 
print "Target value to find is " + str(target) 

If you need to search a very large array and the array is already sorted, a binary search is often 
the best approach because it's much faster than a simple sequential search. For small arrays 
(typically those with less than 100 cells), the marginally faster performance of a binary search is 
often unimportant, and if your array is not already sorted, the time required to sort the array 
usually wipes out any time saved by a binary search. 

Next, the demo calls the NumPy searchsorted() function like so: 
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print "Searching array using np.searchsorted() function " 
idx = np.searchsorted(arr, target) 
if idx < len(arr) and arr[idx] == target: 
  print "Target found at cell " + str(idx) 
else: 
  print "Target not found "   

The binary search functions in most programming languages return a -1 if the target is not 
found, or return the cell index that holds the target value if the target is found. The 
searchsorted() function works a bit differently. 

A call to searchsorted(arr, x) returns the cell index in sorted array arr where x would be 

inserted so that the array would remain sorted. For example, if arr = [2.0, 5.0, 6.0, 9.0] 

and x = 3.0, then searchsorted(arr, x) returns 1 because the 3.0 would be inserted at cell 

1 in order to keep the array sorted. If x = 11.0, then searchsorted(arr, x) would return 4 

because the 11.0 would have to be inserted beyond the end of the array. 

If x is a value that is already in the array, then searchsorted(arr, x) will return the cell where 

the value is. Therefore, to determine if a value is in an array arr using the return value idx from 

searchsorted(arr, x), you must first check that idx is less than the length of arr and then 

check to see if the value at arr[idx] equals the target value. 

If the search array holds floating-point values, using searchsorted() is somewhat risky. For 

example, if the target value is 11.0000000000000001 (there are 15 zeros), it would not be found 
by the demo program, but a slightly less precise target of 11.000000000000001 (there are 14 
zeros) would be found. 

The lesson is that, when searching a sorted array of floating-point values using the NumPy 
searchsorted(), you don't have control over how the function determines floating-point value 

equality, so you may want to write a program-defined binary search function like 
my_bin_search() in the demo program: 

def my_bin_search(a, t, eps): 
  lo = 0 
  hi = len(a)-1 
  while lo <= hi: 
    mid = (lo + hi) / 2 
    if np.isclose(a[mid], t, eps): 
      return mid 
    elif a[mid] < t: 
      lo = mid + 1 
    else: 
      hi = mid - 1 
  return -1   # not found 

The program-defined function my_bin_search() uses a standard iterative (as opposed to 

recursive) binary search algorithm with early check for equality, combined with an epsilon 
parameter to control how close two floating-point values must be for them to be evaluated as 
equal. 
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Resources 

For details about the NumPy searchsorted() function, see 

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.searchsorted.html. 

For information about the array binary search algorithm used by the demo, see 
https://en.wikipedia.org/wiki/Binary_search_algorithm. 

5.2 Matrix decomposition 

Matrix decomposition is the process of breaking a matrix down into two smaller matrices that, 
when multiplied together, give the original matrix (or a slightly rearranged version of the 
original). An analogy in regular arithmetic is breaking down the number 21 into 3 and 7 because 
3 * 7 = 21. 

Matrix decomposition, also called matrix factorization, is rarely used by itself, but decomposition 
is the basis for efficient algorithms that find the inverse and the determinant of a matrix. 

There are several kinds of matrix decomposition. The most common form is called lower-upper 
decomposition for reasons that will become clear shortly. The scipy.linalg.lu() function 

performs lower-upper matrix decomposition. It's sometimes useful to write a program-defined 
matrix decomposition function. 

Code Listing 23: Matrix Decomposition Demo 

# decomposition.py 
# Python 2.7 
 
import numpy as np 
import scipy.linalg as spla 
 
def my_decomp(m): 
  # LU decompose matrix m using Crout's algorithm 
  n = len(m) 
  toggle = 1 # row swapping parity 
  lum = np.copy(m) # result matrix 
  perm = np.arange(n) # row permutation info 
     
  for j in xrange(n-1): 
    max = abs(lum[j,j]) 
    piv = j 
     
    for i in xrange(j+1, n): # find pivot row 
      xij = abs(lum[i,j])     
      if (xij > max): 
        max = xij 
        piv = i 
         
    if (piv != j): 
      for k in xrange(n): # swap rows j, piv 
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        t = lum[piv,k] 
        lum[piv,k] = lum[j,k] 
        lum[j,k] = t 
       
      perm[j], perm[piv] = perm[piv], perm[j] 
      toggle = -toggle 
       
    xjj = lum[j,j] 
    if xjj != 0.0: 
      for i in xrange(j+1, n): 
        xij = lum[i,j] / xjj 
        lum[i,j] = xij 
        for k in xrange(j+1, n): 
          lum[i,k] = lum[i,k] - (xij * lum[j,k]) 
           
  return (lum, perm, toggle) 
 
# ===== 
 
print "\nBegin matrix decomposition demo \n" 
 
m = np.matrix([[3., 2., 1., 3.], 
               [5., 6., 4., 2.], 
               [7., 9., 8., 1.], 
               [4., 2., 3., 0.]]) 
 
print "Original matrix m = " 
print m 
 
print "\nDecomposing m using scipy.linalg.lu() " 
(perm, low, upp) = spla.lu(m) 
 
print "\nResult permutation matrix is " 
print perm 
 
print "\nResult lower matrix is " 
print low 
 
print "\nResult upper matrix is " 
print upp 
 
prod = np.dot(low, upp) 
print "\nProduct of lower * upper is " 
print prod 
 
print "\n----------" 
 
print "\nDecomposing m using my_decomp() " 
(lum, perm, t) = my_decomp(m) 
 
print "\nResult row swap parity (+1 / -1) = " + str(t) 
 
print "\nResult permutation array is " 
print perm 
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print "\nResult combined LU matrix = " 
print lum 
 
print "\nEnd demo\n" 

 

C:\SciPy\Ch5> python decomposition.py 
 
Begin matrix decomposition demo  

 

Original matrix m =  

[[ 3.  2.  1.  3.] 

 [ 5.  6.  4.  2.] 

 [ 7.  9.  8.  1.] 

 [ 4.  2.  3.  0.]] 

 

Decomposing m using scipy.linalg.lu()  

 

Result permutation matrix is  

[[ 0.  0.  1.  0.] 

 [ 0.  0.  0.  1.] 

 [ 1.  0.  0.  0.] 

 [ 0.  1.  0.  0.]] 

 

Result lower matrix is  

[[ 1.          0.          0.          0.        ] 

 [ 0.57142857  1.          0.          0.        ] 

 [ 0.42857143  0.59090909  1.          0.        ] 

 [ 0.71428571  0.13636364  1.          1.        ]] 

 

Result upper matrix is  

[[ 7.          9.          8.          1.        ] 

 [ 0.         -3.14285714 -1.57142857 -0.57142857] 

 [ 0.          0.         -1.5         2.90909091] 

 [ 0.          0.          0.         -1.54545455]] 

 

Product of lower * upper is  

[[ 7.  9.  8.  1.] 

 [ 4.  2.  3.  0.] 

 [ 3.  2.  1.  3.] 

 [ 5.  6.  4.  2.]] 

 

---------- 

 

Decomposing m using my_decomp()  

 

Result row swap parity (+1 / -1) = 1 

 

Result permutation array is  
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[2 3 0 1] 

 

Result combined LU matrix =  

[[ 7.          9.          8.          1.        ] 

 [ 0.57142857 -3.14285714 -1.57142857 -0.57142857] 

 [ 0.42857143  0.59090909 -1.5         2.90909091] 

 [ 0.71428571  0.13636364  1.         -1.54545455]] 

 

End demo 

The demo program begins by bringing the scipy.linalg submodule into scope: 

import numpy as np 
import scipy.linalg as spla 

After creating the source matrix m and displaying its values, the matrix is decomposed using the 

linalg.lu() function like so: 

print "\nDecomposing m using scipy.linalg.lu() " 
(perm, low, upp) = spla.lu(m) 

The return result is a tuple with three items. The first item, perm, will be explained shortly. The 

second and third items are the decomposed matrices. For the demo, return matrix low is: 

[[ 1.          0.          0.          0.        ] 
 [ 0.57142857  1.          0.          0.        ] 
 [ 0.42857143  0.59090909  1.          0.        ] 
 [ 0.71428571  0.13636364  1.          1.        ]] 

Notice that the relevant values are in the lower part of the matrix, and there are dummy 1.0 
values on the main diagonal. The return matrix upp is: 

[[ 7.          9.          8.          1.        ] 
 [ 0.         -3.14285714 -1.57142857 -0.57142857] 
 [ 0.          0.         -1.5         2.90909091] 
 [ 0.          0.          0.         -1.54545455]] 

Here, all the relevant values are on the main diagonal and above. Next, the demo multiplies low 

and upp using the NumPy dot() function and displays the resulting matrix: 

[[ 7.  9.  8.  1.] 
 [ 4.  2.  3.  0.] 
 [ 3.  2.  1.  3.] 
 [ 5.  6.  4.  2.]] 

The original matrix is: 
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[[ 3.  2.  1.  3.] 
 [ 5.  6.  4.  2.] 
 [ 7.  9.  8.  1.] 
 [ 4.  2.  3.  0.]] 

Notice that the product of matrices low and upp is almost the original matrix. Rows 0 and 1 have 

been swapped and rows 2 and 4 have been swapped. The swap information is contained in the 
perm matrix result: 

[[ 0.  0.  1.  0.] 
 [ 0.  0.  0.  1.] 
 [ 1.  0.  0.  0.] 
 [ 0.  1.  0.  0.]] 

This may be interesting, but what's the point? As it turns out, the lower and upper matrices of a 
decomposition can be used to easily calculate the determinant of the original matrix, and can 
also be used to compute the inverse of the original matrix. 

The determinant of a matrix is the product of the parity of row swaps times the product of the 
diagonal elements of the upper matrix. The inverse of a matrix can be computed using a short 
helper function that performs what is called elimination on the lower and upper matrices. 

This is exactly how SciPy calculates the determinant and inverse of a matrix. It may seem odd 
to use such an indirect approach, but decomposing a matrix and then finding the determinant or 
the inverse is much easier and faster than finding the determinant or inverse directly. 

The LU decomposition functions in many other libraries return different values than the 
scipy.linalg.lu() function. The demo program implements a custom my_decomp() 

decomposition function that returns values in a different format. The call to my_decomp() is: 

print "\nDecomposing m using my_decomp() " 
(lum, perm, t) = my_decomp(m) 

The program-defined function returns a tuple of three items. The first is a combined lower-upper 
matrix (instead of separate lower and upper matrices). The second item is a permutation array 
(instead of a matrix). And the third item is a toggle parity where +1 indicates an even number of 
row swaps and -1 indicates an odd number of row swaps. For the demo, the combined lower-
upper matrix result from my_decomp() is: 

 [[ 7.          9.          8.          1.        ] 
  [ 0.57142857 -3.14285714 -1.57142857 -0.57142857] 
  [ 0.42857143  0.59090909 -1.5         2.90909091] 
  [ 0.71428571  0.13636364  1.         -1.54545455]] 

These are the same values from linalg.lu() except combined into a single matrix to save 

space. The result perm array from my_decomp() is: 

[2 3 0 1] 
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This contains essentially the same information as the perm matrix return from linalg.lu(), 

indicating that if the lower and upper matrices were extracted from the combined LU matrix, and 
then multiplied together, the result would be the original matrix with rows 0 and 2 swapped and 
rows 1 and 3 swapped. 

Resources 

For general information about matrix LU decomposition, see 
https://en.wikipedia.org/wiki/LU_decomposition. 

For details about the SciPy linalg.lu() decomposition function, see 

http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.linalg.lu.html. 

5.3 Statistics 

The NumPy and SciPy libraries have a wide range of statistics functions that work with arrays 
and matrices. Representative examples include the mean(), std(), median(), and corrcoef() 

functions. 

Code Listing 24: Statistics Functions Demo 

# statistics.py 
# Python 2.7 
 
import numpy as np 
import math 
 
def my_corr(x, y): 
  n = len(x) 
  mx = np.mean(x) 
  my = np.mean(y) 
   
  num = 0.0 
  for i in xrange(n): 
    num += (x[i] - mx) * (y[i] - my) 
  ssx = 0.0 
  ssy = 0.0 
  for i in xrange(n): 
    ssx += math.pow(x[i] - mx, 2) 
    ssy += math.pow(y[i] - my, 2) 
   
  denom = math.sqrt(ssx) * math.sqrt(ssy) 
  return num / denom 
   
# ===== 
 
print "\nBegin statistics demo \n" 
 
ability = np.array([0., 1., 3., 4., 4., 6.]) 
payrate = np.array([15., 15., 25., 20., 30., 33. ]) 
 
print "ability array = " 
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print ability 
print "" 
 
print "payrate array = " 
print payrate 
print "" 
 
ma = np.median(ability) 
print "The median ability score is " 
print ma 
print "" 
 
s_sd = np.std(payrate, ddof=1) 
print "The sample standard deviation of payrates is " 
print s_sd 
print "" 
 
pr = np.corrcoef(ability, payrate) 
print "Pearson r calculated using np.corrcoef() = " 
print pr 
print "" 
 
pr = my_corr(ability, payrate) 
print "Pearson r calculated using my_corr() = " 
print "%1.8f" % pr 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch5> python statistics.py 
 
Begin statistics demo  

 

ability array =  

[ 0.  1.  3.  4.  4.  6.] 

 

payrate array =  

[ 15.  15.  25.  20.  30.  33.] 

 

The median ability score is  

3.5 

 

The sample standard deviation of payrates is  

7.61577310586 

 

Pearson r calculated using np.corrcoef() =  

[[ 1.          0.88700711] 

 [ 0.88700711  1.        ]] 

 

Pearson r calculated using my_corr() =  

0.88700711 

End demo 
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The demo program execution begins by setting up two parallel arrays. The first array represents 
the ability scores of six people. The second array represents the pay rates of the six people: 

ability = np.array([0., 1., 3., 4., 4., 6.]) 
payrate = np.array([15., 15., 25., 20., 30., 33. ]) 

Next, after displaying the values in the two arrays, the demo illustrates the use of the NumPy 
median() and std() functions: 

ma = np.median(ability) 
print "The median ability score is " 
print ma 

s_sd = np.std(payrate, ddof=1) 
print "The sample standard deviation of payrates is " 
print s_sd 

The median is the middle value in an array or, as in this example when there isn't a single 
middle value, the average of the two values closest to the middle. 

By default, the NumPy std() function returns the population standard deviation of its array 

argument. If you want the sample standard deviation, you can use the ddof (delta degrees of 

freedom) parameter with value = 1. 

Next, the demo computes and displays the Pearson r coefficient of correlation using the 
corrcoef() function: 

pr = np.corrcoef(ability, payrate) 
print "Pearson r calculated using np.corrcoef() = " 
print pr 

The correlation coefficient is a value between -1.0 and +1.0, the magnitude indicating the 
strength of the linear relation and the sign indicating the direction of the relationship. Notice the 
output is in the form of a matrix with the coefficient value (0.88700711) duplicated on the minor 
diagonal. 

The demo concludes by calling a program-defined function my_corr() that also calculates the 

Pearson r coefficient of correlation: 

pr = my_corr(ability, payrate) 
print "Pearson r calculated using my_corr() = " 
print "%1.8f" % pr 

There's no advantage to using the program-defined correlation function. The point is that 
NumPy and SciPy have many built-in statistics functions, but in the rare situations when you 
need to implement a custom statistics function, NumPy and SciPy have all the tools you need. 

Resources 

For a list of the NumPy statistics functions, see 
http://docs.scipy.org/doc/numpy-1.10.0/reference/routines.statistics.html. 
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For an explanation of the Pearson correlation coefficient that was used for my_corr(), see 

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient. 

For information about the NumPy corrcoef() function, see 

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.corrcoef.html. 

5.4 Random numbers 

The NumPy library has a wide range of functions that can generate pseudo-random values from 
a specified distribution type. Representative examples include the random.normal(), 
random.poisson(), random.exponential(), and random.logistic() functions. 

Code Listing 25: Random Sampling Demo 

# distributions.py 
# Python 2.7 
 
import numpy as np 
import math          # for custom Gaussian class 
import random        # for custom Gaussian class 
 
class Gaussian: 
  # generate using Box-Muller algorithm 
  def __init__(self, mean, sd, seed): 
    self.mean = mean 
    self.sd = sd 
    self.rnd = random.Random(seed) 
 
  def next(self): 
    two_pi = 2.0*3.14159265358979323846 
    u1 = self.rnd.random()  # [0.0 to 1.0) 
    while u1 < 1.0e-10: 
      u1 = self.rnd.random() 
    u2 = self.rnd.random() 
    z = math.sqrt(-2.0 * math.log(u1)) * math.cos(two_pi * u2) 
    return z * self.sd + self.mean 
   
# ===== 
 
print "\nBegin distributions demo \n" 
 
np.random.seed(0) 
mean = 0.0 
std = 1.0 
n = 100 
 
print "Setting mean = " + str(mean) 
print "Setting std  = " + str(std) 
print "" 
 
print "Generating " + str(n) + " Normal values " 
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values = np.zeros(n) 
for i in xrange(n): 
  x = np.random.normal(mean, std) 
  values[i] = x 
 
print "Normally distributed random values are: " 
print values 
print "" 
 
bins = 5 
print "Constructing histogram data using " + str(bins) + " bins " 
(histo, edges) = np.histogram(values, bins=5) 
 
print "Count of values in each bin: " 
print histo 
print "" 
 
print "The beginning and end values of each bin: " 
print edges 
print "" 
 
print "Generating 5 values using custom Gaussian class: "  
g = Gaussian(0.0, 1.0, 0) 
for i in xrange(5): 
  x = g.next() 
  print "%1.5f" % x, 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch5> python distributions.py 
 
Begin distributions demo  

 

Setting mean = 0.0 

Setting std  = 1.0 

 

Generating 100 Normal values  

Normally distributed random values are:  

[ 1.76405235  0.40015721  0.97873798  2.2408932   1.86755799 -0.97727788 

  0.95008842 -0.15135721 -0.10321885  0.4105985   0.14404357  1.45427351 

  0.76103773  0.12167502  0.44386323  0.33367433  1.49407907 -0.20515826 

  0.3130677  -0.85409574 -2.55298982  0.6536186   0.8644362  -0.74216502 

  2.26975462 -1.45436567  0.04575852 -0.18718385  1.53277921  1.46935877 

  0.15494743  0.37816252 -0.88778575 -1.98079647 -0.34791215  0.15634897 

  1.23029068  1.20237985 -0.38732682 -0.30230275 -1.04855297 -1.42001794 

 -1.70627019  1.9507754  -0.50965218 -0.4380743  -1.25279536  0.77749036 

 -1.61389785 -0.21274028 -0.89546656  0.3869025  -0.51080514 -1.18063218 

 -0.02818223  0.42833187  0.06651722  0.3024719  -0.63432209 -0.36274117 

 -0.67246045 -0.35955316 -0.81314628 -1.7262826   0.17742614 -0.40178094 

 -1.63019835  0.46278226 -0.90729836  0.0519454   0.72909056  0.12898291 
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  1.13940068 -1.23482582  0.40234164 -0.68481009 -0.87079715 -0.57884966 

 -0.31155253  0.05616534 -1.16514984  0.90082649  0.46566244 -1.53624369 

  1.48825219  1.89588918  1.17877957 -0.17992484 -1.07075262  1.05445173 

 -0.40317695  1.22244507  0.20827498  0.97663904  0.3563664   0.70657317 

  0.01050002  1.78587049  0.12691209  0.40198936] 

 

Constructing histogram data using 5 bins  

Count of values in each bin:  

[ 6 20 35 27 12] 

 

The beginning and end values of each bin  

[-2.55298982 -1.58844093 -0.62389204  0.34065685  1.30520574  2.26975462] 

 

Generating 5 values using custom Gaussian class:  

0.02905 -0.07370 -0.95775 -0.22946 -1.05415  

 

End demo 

The demo program begins by preparing to generate 100 random values that come from a 
Normal (also called Gaussian or bell-shaped) distribution with mean = 0.0 and standard 
deviation = 1.0. 

np.random.seed(0) 
mean = 0.0 
std = 1.0 
n = 100 

Setting the global random seed, in this case to an arbitrary value of 0, means that the program 
results will be the same every time the program is run. For a Normal distribution with mean = 
0.0, the vast majority of values will be between (-3 * std) and (+3 * std), so we expect all 
generated values to be in the range [-3.0, +3.0]. 

Next, the demo program creates an array with 100 cells and fills each cell with a Normal 
distributed random value: 

print "Generating " + str(n) + " Normal values " 
values = np.zeros(n) 
for i in xrange(n): 
  x = np.random.normal(mean, std) 
  values[i] = x 

An alternative approach is to create the array directly by supplying a value for the optional size 

parameter: values = np.normal(mean, std, 100). After displaying the 100 values, the 

demo program constructs histogram information from the values: 

bins = 5 
print "Constructing histogram data using " + str(bins) + " bins " 
(histo, edges) = np.histogram(values, bins=5) 
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The NumPy histogram() function returns a tuple that has two arrays. The first array stores the 

count of values in each bin. The second array stores the boundary values for each bin. This is  
clearer when you examine the output. The statements: 

print histo 
print edges 

produce the following output: 

Count of values in each bin: 
[ 6 20 35 27 12] 

The beginning and end values of each bin: 
[-2.55298982 -1.58844093 -0.62389204  0.34065685  1.30520574  2.26975462] 

This means there were 6 values in the interval [-2.55, -1.58), 20 values in [-1.58, -0.62), 35 
values in [-0.62, 0.34), 27 values in [0.34, 1.30), and 12 values in [1.30, 2.26]. If you visually 
scan the 100 values, you can see the smallest value generated is -2.55298982 and the largest 
is 2.26975462. 

The demo program concludes by showing you how to implement a Normal distribution value 
generator without using NumPy via a program-defined class named Gaussian. The class 

constructor accepts a mean, a standard deviation, and a seed: 

class Gaussian: 
  def __init__(self, mean, sd, seed): 
    self.mean = mean 
    self.sd = sd 
    self.rnd = random.Random(seed) 

The class uses a Random object from the Python random module. The next() function uses the 

clever Box-Muller algorithm to transform two uniform random values into one that is Normal. 

def next(self): 
  two_pi = 2.0*3.14159265358979323846 
  u1 = self.rnd.random()  # [0.0 to 1.0) 
  while u1 < 1.0e-10: 
    u1 = self.rnd.random() 
  u2 = self.rnd.random() 
  z = math.sqrt(-2.0 * math.log(u1)) * math.cos(two_pi * u2) 
  return z * self.sd + self.mean 

The while loop in function next() guarantees that variable u1 is not a very small value so that 

log(u1) won't fail. This example illustrates that it's relatively easy to implement a custom 

generator in rare situations where NumPy doesn't have the generator you need. 

Resources 

For a list of NumPy random sampling functions, see 
http://docs.scipy.org/doc/numpy-1.10.0/reference/routines.random.html. 
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For details about the NumPy histogram() function, see 

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.histogram.html. 

For information about the Box-Muller algorithm, see 
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform. 

5.5 Double factorial 

The SciPy library has a collection of useful mathematical functions in the scipy.misc 

submodule. Examples include the misc.derivative(), misc.logsumexp(), and 

misc.factorial2() functions. 

Code Listing 26: Double Factorial Demo 

# doublefact.py 
# Python 2.7 
 
import scipy.misc as sm 
 
def my_double_fact(n): 
  result = 1 
  stop = 2 # for even n 
  if n % 2 == 0: 
    stop = 1 # odd n 
  for i in xrange(n, stop-1, -2): 
    result *= i 
  return result 
 
# ===== 
 
print "\nBegin double factorial function demo \n" 
 
n = 3 
dfact = sm.factorial2(n) 
print "Double factorial of " + str(n) + " using misc.factorial2() = " 
print str(dfact) 
print "" 
 
n = 4 
dfact = sm.factorial2(n) 
print "Double factorial of " + str(n) + " using misc.factorial2() = " 
print str(dfact) 
print "" 
 
n = 4 
dfact = my_double_fact(n) 
print "Double factorial of " + str(n) + " using my_double_fact() = " 
print str(dfact) 
print "" 
 
print "\nEnd demo \n" 
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C:\SciPy\Ch5> python doublefact.py 
 
Begin double factorial function demo  

 

Double factorial of 3 using misc.factorial2() =  

3.0 

 

Double factorial of 4 using misc.factorial2() =  

8.0 

 

Double factorial of 4 using my_double_fact() =  

8 

 

End demo 

The demo program illustrates the double factorial function, which is best explained by example. 
The double factorial of n is often abbreviated as n!!, much like n! is an abbreviation for the 
regular factorial function. 

7!! = 7 * 5 * 3 * 1 = 105 
6!! = 6 * 4 * 2 = 48 

In words, the double factorial is like the regular factorial function except every other term in the 
product is skipped in the product. The double factorial function is used as a helper in many 
important mathematical functions such as the specialized gamma function. The demo program 
begins by importing the scipy.misc submodule: 

import scipy.misc as sm 

Note that the factorial2() function is also in the scipy.special submodule. After import, the 

factorial2() function can be called like so: 

n = 3 
dfact = sm.factorial2(n) 
print "Double factorial of " + str(n) + " using misc.factorial2() = " 
print str(dfact) 

The factorial2() function has an optional parameter exact that, if set to False, allows the 

function to do a fast approximation rather than a slower exact calculation. 

The demo implements a program-defined version of the double factorial function named 
my_double_fact(). There's no advantage to a program-defined version unless you need some 

sort of specialized behavior, or wish to avoid importing a module for some reason. 
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Resources 

For details about the misc.factorial2() function, see 

http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.misc.factorial2.html. 

For information about the double factorial function, including alternate definitions, see 
https://en.wikipedia.org/wiki/Double_factorial. 

5.6 The gamma function 

The SciPy library has a large collection of mathematical functions in the scipy.special 

submodule. Examples include elliptic functions, Bessel functions, advanced statistical functions, 
and gamma functions. 

Code Listing 27: Gamma and Special Gamma Demo 

# gamma.py 
# Python 2.7 
 
import scipy.special as ss 
import math 
 
def my_special_gamma(n): 
  # return gamma(n/2)  
  if n % 2 == 0: # n/2 is an integer 
    return math.factorial(n / 2 - 1) 
  else: 
    root_pi = math.sqrt(math.pi) 
    return root_pi * ss.factorial2(n-2) / math.pow(2.0, (n-1) / 2.0) 
 
# ===== 
 
print "\nBegin gamma function demo \n" 
 
n = 3 
n_fact = math.factorial(n) 
print "Factorial of " + str(n) + " = " + str(n_fact) 
 
n = 4 
n_fact = math.factorial(n) 
print "Factorial of " + str(n) + " = " + str(n_fact) 
print "" 
 
n = 5 
n_gamma = ss.gamma(n) 
print "Gamma of " + str(n) + " using special.gamma() = " 
print str(n_gamma) 
print "" 
 
n = 4.5 
n_gamma = ss.gamma(n) 
print "Gamma of " + str(n) + " using special.gamma() = " 

see more please visit: https://homeofpdf.com 

http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.misc.factorial2.html
https://en.wikipedia.org/wiki/Double_factorial


 
 

119 

print str(n_gamma) 
print "" 
 
n = 9 
s_gamma = my_special_gamma(n) 
print "Gamma of " + str(n) + "/2 using my_special_gamma() = " 
print str(s_gamma) 
print "" 
 
print "\nEnd demo \n" 

 

C:\SciPy\Ch5> python gamma.py 
 
Begin gamma function demo  

 

Factorial of 3 = 6 

Factorial of 4 = 24 

 

Gamma of 5 using special.gamma() =  

24.0 

 

Gamma of 4.5 using special.gamma() =  

11.6317283966 

 

Gamma of 9/2 using my_special_gamma() =  

11.6317283966 

 

End demo 

The factorial function applies only to integers. The gamma function extends the factorial function 
to real numbers. For example, factorial(3) = 3 * 2 * 1 = 6 and factorial(4) = 4 * 3 * 2 * 1 = 24. 
However factorial(3.5) is not defined. 

For integer arguments, gamma(n) = factorial(n-1). For example, gamma(5) = factorial(4) = 24. 
For non-integer arguments, such as n = 4.5, the gamma() function returns a value between 
factorial(3) and factorial(4). 

Without a routine like the SciPy special.gamma() function, calculating the gamma value for an 

arbitrary argument like n = 4.68 is difficult. However, there is a relatively easy way to calculate 
gamma for arguments that are integers divided by two. If n is even, then n/2 is an integer and 
gamma can be calculated using factorial. For example, gamma(10/2) = gamma(5.0) = 
factorial(4). If n is odd, there is a special equation that can be used. For example, if n = 9 then 
gamma(9/2) = gamma(4.5) has a shortcut solution. These types of arguments are called 
positive half-integers. But for all other arguments, calculating gamma is difficult. 

The demo program begins by importing the scipy.special submodule and the Python math 

module: 

import scipy.special as ss 
import math 
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Next, the demo program calculates and displays the factorial for n=3 and n=4 in order to 

illustrate the relationship between special.gamma(n) and math.factorial(n): 

n = 3 
n_fact = math.factorial(n) 
print "Factorial of " + str(n) + " = " + str(n_fact) 
n = 4 
n_fact = math.factorial(n) 
print "Factorial of " + str(n) + " = " + str(n_fact) 

Next, the demo calculates and displays the value of gamma(5): 

n = 5 
n_gamma = ss.gamma(n) 
print "Gamma of " + str(n) + " using special.gamma() = " 
print str(n_gamma) 

The output is 24.0, verifying that if n is an integer, then gamma(n) = factorial(n-1). Next, the 
demo calculates and displays the value of gamma(4.5): 

n = 4.5 
n_gamma = ss.gamma(n) 
print "Gamma of " + str(n) + " using special.gamma() = " 
print str(n_gamma) 

The point here is that gamma(4.5) = 11.63 is a value between factorial(3) = 6 and factorial(4) = 
24. 

The demo program implements a program-defined function my_special_gamma() that works 

with positive half-integers: 

def my_special_gamma(n): 
  # return gamma(n/2) 
  if n % 2 == 0: # n/2 is an integer 
    return math.factorial(n / 2 - 1) 
  else: 
    root_pi = math.sqrt(math.pi) 
    return root_pi * ss.factorial2(n-2) / math.pow(2.0, (n-1) / 2.0) 

For odd values of n, the function's return value is not at all obvious and comes from math 

theory. Interestingly, even though the scipy.special submodule has 17 functions that are 

related to gamma(), there is no dedicated gamma function for positive half-integer arguments. 

Resources 

For a complete list of the 300+ SciPy special functions, see 
http://docs.scipy.org/doc/scipy/reference/special.html. 

For information about the specialized gamma function for positive half-integers, see 
https://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function. 
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