
see more please visit: https://homeofpdf.com

2

SciPy Programming

Succinctly

By

James McCaffrey

Foreword by Daniel Jebaraj

see more please visit: https://homeofpdf.com

3

Copyright © 2016 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: Chris Lee

Copy Editor: Jacqueline Bieringer, content producer, Syncfusion, Inc.

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

see more please visit: https://homeofpdf.com

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books .. 6

About the Author ... 8

Chapter 1 Getting Started ... 9

1.1 Installing SciPy and NumPy ..10

Installing Python, NumPy, and SciPy separately ..18

1.2 Editing SciPy programs ..21

1.3 Program structure ...24

1.4 Quick reference program ..27

Chapter 2 Arrays ..29

2.1 Array initialization ...30

2.2 Array searching ..35

2.3 Array sorting ...39

2.4 Array shuffling ..43

Chapter 3 Matrices ...47

3.1 Matrix initialization ..48

3.2 Matrix multiplication ..53

3.3 Matrix transposition ..57

3.4 Matrix determinants ..60

3.5 Matrix inversion ..64

3.6 Matrix loading from file ...69

Chapter 4 Combinatorics...73

4.1 Permutations ..74

4.2 Permutation successor ...78

4.3 Permutation element ..82

see more please visit: https://homeofpdf.com

5

4.4 Combinations ...86

4.5 Combination successor ..91

4.6 Combination element ..96

Chapter 5 Miscellaneous Topics ... 100

5.1 Array binary search .. 101

5.2 Matrix decomposition .. 104

5.3 Statistics ... 109

5.4 Random numbers ... 112

5.5 Double factorial .. 116

5.6 The gamma function ... 118

see more please visit: https://homeofpdf.com

6

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about
every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

see more please visit: https://homeofpdf.com

7

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

see more please visit: https://homeofpdf.com

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

8

About the Author

James McCaffrey works for Microsoft Research in Redmond, WA. He holds a B.A. in
psychology from the University of California at Irvine, a B.A. in applied mathematics from
California State University at Fullerton, an M.S. in information systems from Hawaii Pacific
University, and a doctorate from the University of Southern California. James enjoys exploring
all forms of activity that involve human interaction and combinatorial mathematics, such as the
analysis of betting behavior associated with professional sports, machine learning algorithms,
and data mining.

see more please visit: https://homeofpdf.com

9

Chapter 1 Getting Started

The SciPy library (Scientific Python, pronounced "sigh-pie") is an open source extension to the
Python language. When Python was first released in 1991, the language omitted an array data
structure by design. It quickly became apparent that an array type and functions that operate on
arrays would be needed for numeric and scientific computing.

The SciPy stack has three components: Python, NumPy, and SciPy. The Python language has
basic features, such as loop control statements and a general purpose list data structure. The
NumPy library (Numerical Python) has array and matrix data structures plus some relatively
simple functions such as array search. The SciPy library, which requires NumPy, has many
intermediate and advanced functions that work with arrays and matrices. There is some overlap
between SciPy and NumPy, meaning there are some functions that are in both libraries.

When SciPy was first released in 2001, it contained built-in array and matrix types. In 2006, the
array and matrix functionality from SciPy was moved into a newly created NumPy library so that
programmers who needed just an array type didn't have to import the entire SciPy library.
Because of the dependency, the term SciPy also refers to NumPy.

This e-book makes no assumptions about your background or experience. Even if you have no
Python programming experience at all, you should be able to follow along with a bit of effort.

Each section of this e-book presents a complete demo program. Every programmer I know,
including me, learns how to program in a new language by getting an example program up and
running, and then experimenting by making changes. So if you want to learn SciPy, copy and
paste the source code from the demo programs, run the programs, and then fiddle with the
programs. Find the code samples in Syncfusion’s Bitbucket repository.

The approach I take in this e-book is not to present hundreds of one-line SciPy examples.
Instead, I've tried to pick key examples that give you the knowledge you need to learn SciPy
quickly. For example, section 5.4 explains how the normal() function generates random

values. Once you understand the normal() function, you can easily figure out how to use the

35 other distribution functions, such as the poisson() and exponential() functions.

In my opinion, the most difficult part of learning any programming language or technology is
getting a first program to run. After that, it's just details. But getting started can be frustrating.
The purpose of this first chapter is to make sure you can install SciPy and run a program.

In section 1.1, you'll learn how to install the software required to access the SciPy library. In
particular, you'll see how to install the Anaconda distribution, which includes Python, SciPy,
NumPy, and many related and useful packages. You'll also learn how to install SciPy separately
if you have an existing instance of Python installed. In section 1.2, you'll learn how to edit and
execute Python programs that use the SciPy and NumPy libraries. In section 1.3, you'll learn a
bit about program structure and style when using SciPy and NumPy. Section 1.4 presents a
quick reference for NumPy and SciPy.

Enough chit-chat. Let's get started.

see more please visit: https://homeofpdf.com

https://bitbucket.org/syncfusiontech/scipy-programming-succinctly

10

1.1 Installing SciPy and NumPy

It's no secret that the best way to learn a programming language, library, or technology is to use
it. Unlike the installation process for many Python libraries, installing SciPy is not trivial. Briefly,
the crux of the difficulty is that SciPy and NumPy contain hooks to C language routines.

It is possible to first install Python, and then install the SciPy and NumPy packages separately
from source code using the pip (PIP Installs Packages) utility program, but this approach can be
troublesome. I recommend that you either use the Anaconda distribution bundle or, if you install
Python, NumPy, and SciPy separately, that you use a pre-built binary installer for NumPy and
SciPy.

 Note: The terms package, module, and library have different meanings but are often used

more or less interchangeably.

There are several advantages to using Anaconda. There are binary installers for Windows, OS
X, and Linux. The distribution comes with Python, NumPy, and SciPy, as well as many other
related packages. This means you have one relatively easy installation procedure. The
distribution comes with the conda open source package and environment manager, which
means you can work with multiple versions of Python. In other words, even if you already have
Python installed, Anaconda will let you work with a new Python + SciPyPy installation without
resource conflicts. Anaconda also comes with two nice Python editors, IDLE and Spyder.

The open source Anaconda distribution is maintained by the Continuum Analytics company at
http://www.continuum.io/. Let's walk through the installation process, step by step. I'll show you
screenshots for a Windows installation, but you should have little trouble installing on OS X or
any flavor of Linux. First, use your web browser of choice to go to the Continuum Analytics site,
and then locate the download link and click on it.

Figure 1: The Anaconda Download Site

see more please visit: https://homeofpdf.com

http://www.continuum.io/

11

Next, locate the link to your appropriate operating system and click on it.

At this point you must choose between Python version 2.x and Python version 3.x. If you're new
to Python, the essential point is that the two versions are not fully compatible. Python users can
have strong opinions about which Python version they prefer, but for use with SciPy, I
recommend using Python 2.7 in order to maintain compatibility with older functions.

Figure 2: Python Version Selection

After selecting the Python version, you should see a message asking if you want to save the
self-extracting executable installer, or if you want to run the installer immediately. You can do
either. I chose the Run option.

Figure 3: Run the Executable Installer

The installation process begins by displaying a welcome splash screen. Notice that the
Anaconda distribution number (2.4.1 in this case) is not the same as the Python version number
(2.7).

see more please visit: https://homeofpdf.com

12

Figure 4: The Welcome Splash

After clicking Next, you'll be presented with a license agreement, which you can read if you're a
glutton for legal jargon punishment. Click I Agree.

Figure 5: License Agreement

see more please visit: https://homeofpdf.com

13

Next, you'll have the option of installing for all users or just for the current user (presumably
you). I suggest using Anaconda's recommendation.

Figure 6: User Options

Then, you'll need to specify the installation root directory. With open source software such as
Python, it's normal to install programs in a directory located off drive C rather than in the
C:\Program Files directory. I recommend installing at C:\Anaconda2.

see more please visit: https://homeofpdf.com

14

Figure 7: The Installation Directory

Next, you'll get an option to add the locations of the Anaconda executables to the System PATH
variable, and an option to register the Anaconda Python as the default. Select both check boxes
and click Install.

see more please visit: https://homeofpdf.com

15

Figure 8: The PATH and Integration Options

You'll see a progress bar during the installation process. Notice that NumPy and SciPy are
included in the installation components.

Figure 9: Anaconda Includes SciPy and NumPy

When the installation is complete, you'll see an "Installation Complete" message. If there are
any errors during the installation, they'll appear here. If so, you can read the error messages, fix
whatever is wrong, delete the root installation directory, and try again.

see more please visit: https://homeofpdf.com

16

Figure 10: Installation Completed

After you click Next, you'll see a final completion confirmation message. You can click Finish.

Figure 11: Installation Confirmation

The last step of the Anaconda installation process is to verify that your installation is working.
First, verify that Python is up and running. Launch a command shell and navigate to the root
directory by entering a cd \ command. Then type the command:

see more please visit: https://homeofpdf.com

17

C:\> python --version

If Python responds with information about a version, then Python is almost certainly installed
correctly, but you should now verify this by executing a Python statement. At the command
prompt, enter the command python (I've included a space after the prompt for readability):

C:\> python

This will start the Python interpreter, which will be indicated by the three greater-than characters
prompt. Instruct Python to print a traditional first message:

>>> print "Hello, Python!"

Finally, verify that NumPy is installed correctly by creating and manipulating an array. Enter the
following commands at the Python prompt:

>>> import numpy as np
>>> a = np.array([4, 6, 8])
>>> print type(a)
>>> a[0] = 7
>>> print a
>>> exit()

Figure 12: Verify Your Installation

The import statement brings the NumPy library into scope so it can be used. The np alias could

have been something else, but np is customary and good.

see more please visit: https://homeofpdf.com

18

The statement a = np.array([4, 6, 8]) creates an array named a with three cells with

integer values 4, 6, and 8. The Python type() function tells you that a is, in fact, an array

(technically an ndarray, which stands for an n-dimensional array).

The statement a[0] = 7 sets the value in the first cell of the array to 7, overwriting the original

value of 2. The point here is that NumPy arrays, like those in most languages, use 0-based
indexing. Congratulations! You have all the software you need to explore SciPy and NumPy.

Installing Python, NumPy, and SciPy separately

Instead of using the Anaconda distribution, you can install Python, NumPy, and SciPy
separately. To install Python, go to https://www.python.org/downloads/ and select the download
for either a 3.x or 2.x version. I recommend the 2.7 version. After installation is complete, add
C:\Python27 (or the location of python.exe if you used a non-default location) and
C:\Python27\Lib\idelib to your system PATH environment variable. To install NumPy and SciPy,
I strongly recommend that you use pre-built executable installers. In particular, the ones I
recommend are maintained at the SourceForge repository. Install NumPy first. Go to
http://sourceforge.net/projects/numpy/files/NumPy/.

That site has different versions of both NumPy and SciPy. Go into the directory of the version
you wish to install. I recommend using a recent version that has the most downloads. Go into a
version directory, and then look for a file named something like numpy-1.10.2-win32-superpack-
python2.7.exe.

Figure 13: Binary Installer Link for NumPy

see more please visit: https://homeofpdf.com

https://www.python.org/downloads/
http://sourceforge.net/projects/numpy/files/NumPy/

19

Make sure you have the version that corresponds to your Python version, then click on the link
and you'll get the option to run the installer.

You'll have the option to either run the installer program immediately, or save the installer so
you can run it later. I usually choose the Run option.

Figure 14: Run the NumPy Installer Executable

After you click Run, the installer will launch and present you with an installation wizard. Click
Next.

Figure 15: NumPy Installation Wizard

The installer should find your existing Python installation and recommend an installation
directory for the NumPy library.

see more please visit: https://homeofpdf.com

20

Figure 16: The NumPy Installer Finds Existing Python Installation

Click Next on the next few wizard pages and you'll complete the NumPy installation. You can
verify NumPy was installed by launching a Python shell and entering the command import
numpy. If no error message results, NumPy has been installed.

Figure 17: Verify Separate NumPy Installation

Now you can install the SciPy library from SourceForge using the exact same process.

Resources

For installation information, including alternatives to the Anaconda distribution, see
http://www.scipy.org/install.html.

see more please visit: https://homeofpdf.com

http://www.scipy.org/install.html

21

1.2 Editing SciPy programs

Although Python and SciPy can be used interactively, for many scenarios you'll want to write
and execute a program (technically a script). If you have installed the Anaconda distribution, you
have three main ways to edit and execute a Python program. First, you can use any simple text
editor, such as Notepad, and execute from a command line. Second, you can edit and execute
programs using the IDLE (Integrated DeveLopment Environment) program. Third, you can edit
and execute using the Spyder program. I'll walk you through each approach.

Code Listing 1: A Simple SciPy/NumPy Program

test.py

import numpy as np
import scipy as sp

print "\nHello from test.py"

a = np.array([2, 4, 6, 8])
print a

length = a.size # 4
a[length-1] = 9
print a

print "Goodbye from test.py"

Launch Notepad and type or copy and paste the statements shown in Code Listing 1. Save the
program as test.py in any directory, such as C:\SciPy. If you use Notepad, be sure it doesn't add
an extra .txt extension to the file name.

Figure 18: Executing from a Command Prompt

see more please visit: https://homeofpdf.com

22

Launch a Command Prompt (Windows) or command shell such as bash (Linux). Navigate to the
directory containing file test.py. Execute the program by entering the command:

> python test.py

Using Notepad as an editor and executing from a shell is simple and effective, but I recommend
using either IDLE or Spyder. The idle.bat launcher file is typically located by default in the
C:\Python27\Lib\idelib directory. To start the IDLE program, launch a command shell, navigate
to the location of the .bat file if that directory is not in your PATH variable, and enter the
command idle.

This will start a special Python Shell as shown in the top part of Figure 19.

Figure 19: Using the IDLE Program

From the Python Shell menu bar, click File > New File. This will launch a similar-looking editor,
as shown in the bottom part of Figure 19. Now, type or copy and paste the program in Code
Listing 1 into the IDLE editor. Save the program as test.py in any convenient directory using File
> Save. Execute the program by clicking Run > Run Module, or pressing the F5 shortcut key.

see more please visit: https://homeofpdf.com

23

Program output is displayed in the Python Shell window. Some experienced Python users
criticize IDLE for being too simple and lacking sophisticated editing and debugging features, but
I like IDLE a lot and it's my SciPy programming environment of choice in most situations.

Figure 20: Using the Spyder Program

The Anaconda distribution comes with the open source Spyder (Scientific PYthon Development
EnviRonment) program. To start Spyder, launch a command shell and enter:

> spyder

Type or copy and paste the program from Code Listing 1 into the Spyder editor window on the
left side. You can either save first using File > Save or execute immediately by clicking Run >
Run. Program output appears in the lower right window.

Resources

If you use Visual Studio, consider the Python Tools for Visual Studio (PTVS) plugin at
http://microsoft.github.io/PTVS/.

If you use the Eclipse IDE, you might want to take a look at the PyDev plugin at
http://www.pydev.org/.

see more please visit: https://homeofpdf.com

http://microsoft.github.io/PTVS/
http://www.pydev.org/

24

1.3 Program structure

Because the Python language is so flexible, there are many ways to structure a program. Some
experienced Python programmers have strong opinions about what constitutes good Python
program structure. Other programmers, like me, believe that there's no single best program
structure suitable for all situations.

Take a look at the demo program in Code Listing 2. The program begins with comments
indicating the program file name and Python version. Because the Python 2.x and Python 3.x
versions are not fully compatible, it's a good idea to indicate which version your program is
using. If you are using Linux, you can optionally use a shebang like #!/usr/bin/env python

as the very first statement.

Code Listing 2: Python Program Structure Demo

structure.py
Python 2.7

import numpy as np

def make_x(n):
 result = np.zeros((n,n))
 for i in xrange(n):
 for j in xrange(n):
 if i == j or (i + j == n-1):
 result[i,j] = 1.0
 return result

def main():
 print "\nBegin program structure demo \n"

 try:
 n = 5
 print "X matrix with size n = " + str(n) + " is "
 mx = make_x(n)
 print mx
 print ""

 n = -1
 print "X matrix with size n = " + str(n) + " is "
 mx = make_x(n)
 print mx
 print ""
 except Exception, e:
 print "Error: " + str(e)

 print "\nEnd demo \n"

if __name__ == "__main__":
 main()

see more please visit: https://homeofpdf.com

25

C:\SciPy\Ch1> python structure.py

Begin program structure demo

X matrix with size n = 5 is

[[1. 0. 0. 0. 1.]

 [0. 1. 0. 1. 0.]

 [0. 0. 1. 0. 0.]

 [0. 1. 0. 1. 0.]

 [1. 0. 0. 0. 1.]]

X matrix with size n = -1 is

Error: negative dimensions are not allowed

End demo

Next, the demo program imports the NumPy library and assigns a short alias:

import numpy as np

This idiom is standard for NumPy and SciPy programming and I recommend that you use it
unless you have a specific reason for not doing so. Next, the demo creates a program-defined
function named make_x():

def make_x(n):
 result = np.zeros((n,n))
 for i in xrange(n):
 for j in xrange(n):
 if i == j or (i + j == n-1):
 result[i,j] = 1.0
 return result

The make_x() function accepts a matrix dimension parameter n (presumably an odd integer)

and returns a NumPy matrix with 1.0 values on the main diagonal (upper-left cell to lower-right
cell) and the minor diagonal, and 0.0 values elsewhere.

The demo uses an indentation of two spaces instead of the widely recommended four spaces. I
use two-space indentation throughout this e-book mostly to save space, but to be honest, I
prefer using two spaces, anyway.

The demo program defines a main() function that is the execution entry point:

def main():
 print "\nBegin program structure demo \n"
 # rest of calling statements here
 print "\nEnd demo \n"

if __name__ == "__main__":
 main()

see more please visit: https://homeofpdf.com

26

The program-defined main() function is called using the __main__ mechanism (note: there are

two underscore characters before and after the word main). Defining a main() function has

several advantages compared to simply placing the program's calling statements after import
statements and function definitions.

The primary downside to using a main() function in your program is simply the extra time and

space it takes you to write the program. Throughout the rest of this e-book, I do not use a
main() function, just to save space.

By default, when the Python interpreter reads a source .py file, it will execute all statements in
the file. However, just before beginning execution, the interpreter sets a system __name__

variable to the value __main__ for the source file that started execution. The value of the

__name__ variable for any other module that is called is set to the name of the module.

In other words, the interpreter knows which program or module is the main one that started
execution and will execute just the statements in that program or module. Put another way,
Python modules that don't have an if __name__ == "__main__" statement will not be

automatically executed. This mechanism allows you to write Python code and then import that
code into another module. In effect, this allows you to write library modules.

Additionally, by using a main() function, you can avoid program-defined variable and function

names clashing with Python system names and keywords. Finally, using a main() function

gives you more control over control flow if you use the try-except error handling mechanism.

The demo program uses double quote characters to delimit strings. Unlike some other
languages, Python recognizes no semantic difference between single quotes and double
quotes. In particular, Python does not have a character data type, so both "c" and 'c'

represent a string with a single character.

The demo program uses the try-except mechanism (that is, a try statement followed by an

except statement). Using try-except is particularly useful when you are writing new code, but

the downside is additional time and lines of code. The demo programs in the remainder of this
e-book do not use try-except in order to save space.

Resources

The more or less official Python style guide is PEP 0008 (Python Enhancements Proposal #8).
See https://www.python.org/dev/peps/pep-0008/.

Many Python programmers use the Google Python Style Guide. See
https://google.github.io/styleguide/pyguide.html.

For additional details about the Python try and except statements and error handling, see

https://docs.python.org/2/tutorial/errors.html.

For a discussion of the pros and cons of using a shebang in Linux environments, see
https://en.wikipedia.org/wiki/Shebang_(Unix).

see more please visit: https://homeofpdf.com

https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/pyguide.html
https://docs.python.org/2/tutorial/errors.html
https://en.wikipedia.org/wiki/Shebang_(Unix)

27

1.4 Quick reference program

The program in Code Listing 3 is a quick reference for many of the NumPy and SciPy functions
and programming techniques that are presented in this e-book.

Code Listing 3: Syntax Demo

quick_ref.py # SciPy Programming Succinctly
Python 2.7

import numpy as np # arrays, matrices, functions
import scipy.linalg as spla # determinant, inverse, etc.
import scipy.special as ss # advanced functions like gamma
import scipy.constants as sc # math constants like e
import scipy.integrate as si # functions for integration
import scipy.optimize as so # functions for optimization
import itertools as it # permutations, combinations
import time # for timing

class Permutation: # custom class using an array
 def __init__(self, n): # constructor
 self.n = n
 self.data = np.arange(n) # [0, 1, 2, . . (n-1)]

 def as_string(self): # instance method
 s = "# "
 for i in xrange(self.n): # traverse an array
 s += str(self.data[i]) + " "
 return s + "#"

 @staticmethod
 def my_fact(n): # static method
 result = 1 # iterative rather than recursive
 for i in xrange(1, n+1): # recursion supported in Python
 result *= i # but usually not a good idea
 return result

def show_matrix(m, decimals): # standalone function
 (rows, cols) = np.shape(m) # matrix dimensions as tuple
 for i in rows: # traverse a matrix
 for j in cols:
 print "%." + str(dec) % m[i,j]
 print ""

print "\nBegin quick examples \n"

arr_a = np.array([3.0, 2.0, 0.0, 1.0]) # create array of float64
arr_b = np.zeros(4, dtype=np.int32) # create int array [0, 0, 0, 0]
b = 1.0 in arr_a # search array using "in": True
result = np.where(arr_a == 1.0) # result is (array([3]),)
arr_s = np.sort(arr_a, kind="quicksort") # sort array: [0.0, 1.0, 2.0, 3.0]

see more please visit: https://homeofpdf.com

28

arr_r = arr_s[::-1] # reverse: [3.0, 2.0, 1.0, 0.0]

np.random.seed(0) # set seed for reproducibility
np.random.shuffle(arr_r) # randomize content order

arr_ref = arr_a # copy array by reference
arr_d = np.copy(arr_a) # copy array by value
arr_v = arr_a.view() # copy by view reference
arr_e = arr_a + arr_b # add arrays

m_a = np.matrix([[1.0, 2.0], [3.0, 4.0]]) # matrix-style 2x2 matrix
m_b = np.array([[8, 7], [6, 5]]) # ndarray-style 2x2 matrix
m_c = np.zeros((2,2), dtype=np.int32) # ndarray 2x2 matrix all 0s
try: # try-except
 m = np.loadtxt("foo.txt") # matrix from file
except Exception:
 print "Unable to open file"

m_e = m_a.transpose() # matrix transposition
d = spla.det(m_a) # matrix determinant
m_i = np.linalg.inv(m_a) # matrix inverse

m_idty = np.eye(2) # identity 2x2 matrix
m_m = np.dot(m_a, m_i) # matrix multiplication
b = np.allclose(m_m, m_idty, 1.0e-5) # matrix equality by value

m_x = m_a + np.array([5.0, 8.0]) # broadcasting

p_it = it.permutations(xrange(3)) # permutations iterator
start_t = time.clock() # timing
for p in p_it:
 print p
end_t = time.clock()
elap = end_t - start_t
print "elapsed = " + str(elap) + "secs" # string concatenation

pc = Permutation(3) # instantiate a custom class
print pc.as_string() # instance method call
nf = Permutation.my_fact(3) # static method call

arr = np.array([1.0, 3.0, 5.0, 7.0]) # a sorted array
ii = np.searchsorted(arr, 2.0) # binary search
if ii < len(arr_s) and arr_s[ii] == 2.0: # somewhat tricky return
 print "2.0 found"

(perm, low, upp) = spla.lu(m_a) # matrix LU decomposition
med = np.median(arr_a) # statistics function
rv = np.random.normal(0.0, 1.0) # random variable generation
g = ss.gamma(3.5) # advanced math function

print "\nEnd quick reference \n"

see more please visit: https://homeofpdf.com

29

Chapter 2 Arrays

Many of my colleagues, when they first started using Python, were surprised to learn that the
language does not have a built-in array data structure. The Python list data structure is versatile
enough to handle many programming scenarios, but for scientific and numeric programming,
arrays and matrices are needed. The most fundamental object in the SciPy and NumPy libraries
is the array data structure. The following screenshot shows you where this chapter is headed.

Figure 21: NumPy Array Demo

In section 2.1, you'll learn the most common ways to create and initialize NumPy arrays, and
learn about the various numeric data types supported by NumPy.

In section 2.2, you'll learn how to search an array for a target value using the where() function,

using the in keyword, and by using a program-defined function.

In section 2.3, you'll learn how to sort a NumPy array using the three different built-in sorting
algorithms (quicksort, merge sort, and heap sort). You'll also learn about the NumPy array
reference mechanism.

see more please visit: https://homeofpdf.com

30

In section 2.4, you'll learn how to randomize an array using the NumPy shuffle() function and

how to randomize an array using a program-defined function and the Fisher-Yates algorithm.

2.1 Array initialization

The most fundamental object in the NumPy library is the array data structure. A NumPy array is
similar to arrays in other programming languages. Arrays have a fixed size and each cell must
hold the same type. The NumPy library has several functions that allow you to create an array.

Take a look at the demo program in Code Listing 4. After two preliminary print statements,

program execution begins by creating an array using hard-coded numeric values:

arr = np.array([1., 3., 5., 7., 9.])
dt = np.dtype(arr[0])
print "Cell element type is " + str(dt.name) # displays 'float64'

The NumPy array() function accepts a Python list (as indicated by the square brackets) and

returns an array containing the list values. Notice the decimal points. These tell the interpreter to
cast the cell values as float64, the default floating-point data type for arrays. Without the

decimals, the interpreter would cast the values to int32, the default integer type for arrays.

Code Listing 4: Initializing Numeric Arrays

arrays.py
Python 2.7

import numpy as np

def my_print(arr, cols, dec):
 n = len(arr) # print array using indexing
 fmt = "%." + str(dec) + "f" # like %.4f
 for i in xrange(n): # alt: for x in arr
 if i > 0 and i % cols == 0:
 print ""
 print fmt % arr[i],
 print "\n"

=====

print "\nBegin array demo \n"

print "Creating array arr using np.array() and list with hard-coded values "
arr = np.array([1., 3., 5., 7., 9.]) # float64
dt = np.dtype(arr[0])
print "Cell element type is " + str(dt.name)
print ""

print "Printing array arr using built-in print() "
print arr
print ""

see more please visit: https://homeofpdf.com

31

print "Creating int array arr using np.arange(9) "
arr = np.arange(9) # [0, 1, . . 8] # int32
print "Printing array arr using built-in print() "
print arr
print ""

cols = 4; dec = 0
print "Printing array arr using my_print() with cols=" + str(cols),
print "and dec=" + str(dec)
my_print(arr, cols, dec)

print "Creating array arr using np.zeros(5) "
arr = np.zeros(5)
print "Printing array arr using built-in print() "
print arr
print ""

print "Creating array arr using np.linspace(2., 5., 6)"
arr = np.linspace(2., 5., 6) # 6 values from [2.0 to 5.0] inc.
print "Printing array arr using built-in print() "
print arr
print ""

print "\nEnd demo \n"

C:\SciPy\Ch2> python arrays.py

Begin array demo

Creating array arr using np.array() and list with hard-coded values

Cell element type is float64

Printing array arr using built-in print()

[1. 3. 5. 7. 9.]

Creating int array arr using np.arange(9)

Printing array arr using built-in print()

[0 1 2 3 4 5 6 7 8]

Printing array arr using my_print() with cols=4 and dec=0

0 1 2 3

4 5 6 7

8

Creating array arr using np.zeros(5)

Printing array arr using built-in print()

[0. 0. 0. 0. 0.]

Creating array arr using np.linspace(2., 5., 6)

see more please visit: https://homeofpdf.com

32

Printing array arr using built-in print()

[2. 2.6 3.2 3.8 4.4 5.]

End demo

If you are creating an array and neither float64 nor int32 is appropriate, you can make the

data type explicit. For example:

arr = np.array([2.0, 4.0, 6.0], dtype=np.float16)

NumPy has four floating-point data types: float_, float16, float32, and float64. The

default floating-point type is float64: a signed value with an 11-bit exponent and a 52-bit

mantissa. NumPy also supports complex numbers.

NumPy has 11 integer data types, including int32, int64, and uint64. The default integer data

type is int32 (that is, a signed 32-bit integer with possible values between -2,147,483,648 and

+2,147,483,647).

You can also create arrays with string values and with Boolean values. For example:

arr_b = np.array([True, False, True])
arr_s = np.array(["ant", "bat", "cow"])

After creating the array, the demo displays the array values using the built-in print statement:

print "Printing array arr using built-in print() "
print arr

The Python 2.7 print statement is simple and effective for displaying NumPy arrays in most

situations. If you need to customize the output format, you can use the NumPy
set_printoptions() function or write a program-defined display function.

Next, the demo program creates and initializes an array using the NumPy arange() function:

arr = np.arange(9)
print "Printing array arr using built-in print() "
print arr # displays [0 1 2 3 4 5 6 7 8]

A call to arange(n) returns an int32 array with sequential values 0, 1, 2,… (n-1). Note that the

NumPy arange() function (the name stands for array-range, and is not a misspelling of the

word arrange) is quite different from the Python range() function, which returns a list of integer

values, and the Python xrange() function, which returns an iterator object that can be used to

traverse a list or an array.

Next, the demo program displays the array generated by the arange() function, using a

program-defined function named my_print():

see more please visit: https://homeofpdf.com

33

cols = 4; dec = 0
print "Printing array arr using my_print() with cols=" + str(cols),
print "and dec=" + str(dec)
my_print(arr, cols, dec)

The custom function displays an array in a specified number of columns (4 here), using a
specified number of decimal places (0 here because the values are integers).

If you are new to Python, you might be puzzled by the trailing comma character after the first
print statement. This syntax is used to print without a newline character and is similar to the

C# Console.Write() method (as opposed to the WriteLine() method) or the Java

System.out.print() method (as opposed to the println() method).

Program-defined function my_print() is implemented as:

def my_print(arr, cols, dec):
 n = len(arr)
 fmt = "%." + str(dec) + "f" # like %.4f
 for i in xrange(n):
 if i > 0 and i % cols == 0:
 print ""
 print fmt % arr[i],
 print "\n"

The function first finds the number of cells in the array using the Python len() function. An

alternative is to use the more efficient NumPy size property:

n = arr.size

Note that size has no parentheses after it because it's a property, not a function. The

my_print() function iterates through the array using traditional array indexing:

for i in xrange(n):

Using this technique, a cell value in array arr is accessed as arr[i]. An alternative is to iterate

over the array like so:

for x in arr

Here, x is a cell value. This technique is similar to using a "for-each" loop in other languages

such as C#. In most situations, I prefer using array indexing to "for-eaching" but most of my
colleagues prefer the "for x in arr" syntax.

Next, the demo program creates an array using the NumPy zeros() function:

arr = np.zeros(5)
print "Printing array arr using built-in print() "
print arr

see more please visit: https://homeofpdf.com

34

Based on my experience, using the zeros() function is perhaps the most common way to

create a NumPy array. As the name suggests, a call to zeros(n) creates an array with n cells

and initializes each cell to a 0.0 value. The default element value is float64, so if you want an

integer array initialized to 0 values, you'd have to supply the dtype parameter value to zeros()

like so:

arr = np.zeros(5, dtype=np.int32)

A closely related NumPy function is ones(), which initializes an array to all 1.0 (or integer 1)

values.

The demo concludes by creating and initializing an array using the NumPy linspace()

function:

arr = np.linspace(2., 5., 6)
print "Printing array arr using built-in print() "
print arr

A call to linspace(start, stop, num) returns an array that has num cells with values evenly

spaced between start and stop, inclusive. The demo call np.linspace(2., 5., 6) returns

an array of six float64 values starting with 2.0 and ending with 5.0 (2.0, 2.6, 3.2, 3.8, 4.4, and

5.0).

Note that almost all Python and NumPy functions that accept start and stop parameters return
values in [start, stop), that is, between start inclusive and stop exclusive. The NumPy
linspace() function is an exception.

There are many other NumPy functions that can create arrays, but the array() and zeros()
functions can handle most programming scenarios. And you can always create specialized
arrays using a program-defined function. For example, suppose you needed to create an array
of the first n odd integers. You could define:

def my_odds(n):
 result = np.zeros(n, dtype=np.int32)
 v = 1
 for i in xrange(n):
 result[i] = v
 v += 2
 return result

And then you could create an array holding the first four odd integers with a call:

arr = my_odds(4)

A task that is closely related to creating NumPy arrays is copying an existing array. The NumPy
copy() function can do this, and is described in detail later in this e-book.

Resources

For additional details on NumPy numeric data types, see
http://docs.scipy.org/doc/numpy-1.10.1/user/basics.types.html.

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.1/user/basics.types.html

35

For additional information about NumPy numeric array initialization functions, see
http://docs.scipy.org/doc/numpy-1.10.1/user/basics.creation.html.

For additional details on NumPy array iteration, see
http://docs.scipy.org/doc/numpy-dev/reference/arrays.nditer.html#arrays-nditer

2.2 Array searching

Searching a numeric array for some target value is a common task. There are three basic ways
to search a NumPy array. You can use the NumPy where() function, you can use the Python

in keyword, or you can use a program-defined search function. Interestingly, there is no NumPy

index() function like those found in several programming languages, including C# and Java.

Code Listing 5: Array Searching Demo

searching.py
Python 2.7

import numpy as np

def my_search(a, x, eps):
 for i in xrange(len(a)):
 if (np.isclose(a[i], x, eps)):
 return i
 return -1

=====

print "\nBegin array search demo \n"

arr = np.array([7.0, 9.0, 5.0, 1.0, 5.0, 8.0])

print "Array arr is "
print arr
print ""

target = 5.0
print "Target value is "
print target
print ""

found = target in arr
print "Search result using 'target in arr' syntax = " + str(found)
print ""

result = np.where(arr == target)
print "Search result using np.where(arr == target) is "
print result
print ""

idx = my_search(arr, target, 1.0e-6)

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.1/user/basics.creation.html
http://docs.scipy.org/doc/numpy-dev/reference/arrays.nditer.html#arrays-nditer

36

print "Search result using my_search() = "
print idx
print ""

print "\nEnd demo \n"

C:\SciPy\Ch2> python searching.py

Begin array search demo

Array arr is

[7. 9. 5. 1. 5. 8.]

Target value is

5.0

Search result using 'target in arr' syntax = True

Search result using np.where(arr == target) is

(array([2, 4], dtype=int64),)

Search result using my_search() =

2

End demo

The demo program begins with creating an array and a target value to search for:

arr = np.array([7.0, 9.0, 5.0, 1.0, 5.0, 8.0])
print "Array arr is "
print arr

target = 5.0
print "Target value is "
print target

Next, the demo program searches the array for the target value using the Python in keyword:

found = target in arr
print "Search result using 'target in arr' syntax = " + str(found) # 'True'

The return result from a call to target in arr is Boolean, either True or False. Nice and

simple. However, using this syntax for searching an array of floating-point values is not really a
good idea. The problem is that comparing two floating-point values for exact equality is very
tricky. For example:

see more please visit: https://homeofpdf.com

37

>>> x = 0.15 + 0.15
>>> y = 0.20 + 0.10
>>> 'yes' if x == y else 'no'
'no'
>>> # what the heck?!

When comparing two floating-point values for equality, you should usually not compare for exact
equality; instead, you should check if the two values are very, very close to each other.

Floating-point values stored in memory are sometimes just close approximations to their true
values, so comparing two floating-point values for exact equality can give unexpected results.
The target in arr syntax doesn't give you any direct way to control how the target value is

compared to the values in the array. Note that this problem with checking for exact equality
doesn't exist for integer arrays (or string arrays or Boolean arrays), so the target in arr

syntax is fine for those.

The target in arr syntax does work properly in the demo program, returning a correct result

of True. Next, the demo program searches using the NumPy where() function:

result = np.where(arr == target)
print "Search result using np.where(arr == target) is "
print result

The somewhat tricky return result is:

(array([2, 4], dtype=int64,)

The where() function returns a tuple (as indicated by the parentheses) containing an array. The

array holds the indices in the searched array where the target value occurs, cells 2 and 4 in this
case. If you search for a target value that is not in the array, the return result is a tuple with an
array with length 0:

(array([], dtype=int64),)

Therefore, if you just want to know if a target value is in an array, you can check the return value
along the line of:

if len(result[0]) == 0:
 print "target not found in array"
else:
 print "target is in array"

As is the case with searching using the in keyword, searching an array of floating-point values

using the where() function is not recommended because you cannot control how the cell values

are compared to the target value. But using the where() function with integer, string, and

Boolean arrays is safe and effective.

Next, the demo searches the array using a program-defined function:

see more please visit: https://homeofpdf.com

38

idx = my_search(arr, target, 1.0e-6)
print "Search result using my_search() = "
print idx

The program-defined my_search() function returns -1 if the target value is not found in the

array, or the cell index of the first occurrence of the target if the target is in the array. In this case
the return value is 2 because the target value, 5.0, is in cells [2] and [4] of the array. The third
argument, 1.0e-6, is the tolerance defining how close two floating-point values must be in order
to be considered equal.

Function my_search() is defined:

def my_search(a, x, eps):
 for i in xrange(len(a)):
 if np.isclose(a[i], x, eps):
 return i
 return -1

The NumPy isclose() function compares two values and returns True if the values are within

eps (this stands for epsilon, the Greek letter often used in mathematics to represent a small
value) of each other.

Instead of using the isclose() function, you can compare directly using either the Python built-

in abs() function or the NumPy fabs() function like so:

if abs(a[i] - x) < eps:
 return i

if np.fabs(a[i] - x) < eps:
 return i

To summarize, to search an array of floating-point values, I recommend using a program-
defined function, which allows you to control the comparison of two values for equality. For
integer, string, and Boolean arrays, you can use the in keyword, the where() function, or a

program-defined function.

In some situations, you may want to find the location of the last occurrence of a target value in
an array. Using the where() function with integer, string, or Boolean arrays, you could write

code like:

result = np.where(arr == target)

if len(result[0]) == 0:
 print "-1" # not found
else:
 print result[0][len(result[0])-1] # last idx

To find the last occurrence of a target value in a program-defined function, you could traverse
the array from back to front with a for i in xrange(len(a)-1, -1, -1): loop.

see more please visit: https://homeofpdf.com

39

Resources

For additional information about the NumPy where() function, see

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.where.html.

For technical details about how NumPy stores arrays in memory, see
http://docs.scipy.org/doc/numpy-1.10.0/reference/internals.html.

For a list of Python built-in functions such as the absolute value, see
https://docs.python.org/2/library/functions.html.

2.3 Array sorting

Putting values in an array in order is a common and fundamental programming task. The
NumPy library has a sort() function that implements three different sorting algorithms: the

quicksort algorithm, the mergesort algorithm, and the heapsort algorithm.

Interestingly, unlike the sorting functions in most other languages, a call to sort(arr) returns a

sorted array, leaving the original array arr unchanged. The sort functions in many programming

languages sort their array argument in place, and do not return a new sorted array. However,
you can sort a NumPy array arr in place if you wish by using the call arr.sort().

Code Listing 6: Array Sorting Demo

sorting.py
Python 2.7

import numpy as np
import time

def my_qsort(a):
 quick_sorter(a, 0, len(a)-1)

def quick_sorter(a, lo, hi):
 if lo < hi:
 p = partition(a, lo, hi)
 quick_sorter(a, lo, p-1)
 quick_sorter(a, p+1, hi)

def partition(a, lo, hi):
 piv = a[hi]
 i = lo
 for j in xrange(lo, hi):
 if a[j] <= piv:
 a[i], a[j] = a[j], a[i]
 i += 1
 a[i], a[hi] = a[hi], a[i]
 return i

=====

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.where.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/internals.html
https://docs.python.org/2/library/functions.html

40

print "\nBegin array sorting demo \n"

arr = np.array([4.0, 3.0, 0.0, 2.0, 1.0, 9.0, 7.0, 6.0, 5.0])
print "Original array is "
print arr
print ""

s_arr = np.sort(arr, kind='quicksort')
print "Return result of sorting using np.sort(arr, 'quicksort') is "
print s_arr
print ""
print "Original array after calling np.sort() is "
print arr
print ""

print "Calling my_qsort(arr) "
start_time = time.clock() # record starting time
my_qsort(arr)
end_time = time.clock()
elapsed_time = end_time - start_time

print "Elapsed time = "
print str(elapsed_time) + " seconds"
print ""

print "Original array after calling my_qsort(arr) is "
print arr
print ""

print "\nEnd demo \n"

C:\SciPy\Ch2> python sorting.py

Begin array sorting demo

Original array is

[4. 3. 0. 2. 1. 9. 7. 6. 5.]

Return result of sorting using np.sort(arr, 'quicksort') is

[0. 1. 2. 3. 4. 5. 6. 7. 9.]

Original array after calling np.sort() is

[4. 3. 0. 2. 1. 9. 7. 6. 5.]

Calling my_qsort(arr)

Elapsed time =

3.6342481559e-05 seconds

Original array after calling my_qsort(arr) is

[0. 1. 2. 3. 4. 5. 6. 7. 9.]

see more please visit: https://homeofpdf.com

41

End demo

The demo program begins by creating an array:

arr = np.array([4.0, 3.0, 0.0, 2.0, 1.0, 9.0, 7.0, 6.0, 5.0])
print "Original array is "
print arr

Next, the demo program sorts the array using the NumPy sort() function:

s_arr = np.sort(arr, kind='quicksort')

The sort() function returns a new array with values in order, leaving the original array

unchanged:

print "Return result of sorting using np.sort(arr, 'quicksort') is "
print s_arr # in order
print "Original array after calling np.sort() is "
print arr # unchanged

It is possible to sort an array in place using either a slightly different syntax or calling pattern:

arr.sort(kind='quicksort')
print arr # arr is sorted

arr = np.sort(arr, kind='quicksort')
print arr # arr is sorted

The quicksort algorithm is the default, so the call to sort() could have been written:

s_arr = np.sort(arr)

Supplying an explicit kind argument to sort() is useful as a form of documentation, especially

in situations where other people will be using your code.

The other two sorting algorithms could have been called like so:

s_arr = np.sort(arr, kind='mergesort')
s_arr = np.sort(arr, kind='heapsort')

arr.sort(kind='mergesort')
arr.sort(kind='heapsort')

By default, the sort() function orders array elements from low value to high value. If you want

to sort an array from high value to low, you can't do so directly, but you can use Python slicing
syntax to reverse after sorting (there is no explicit reverse() function for arrays):

see more please visit: https://homeofpdf.com

42

arr = np.array([4.0, 8.0, 6.0, 5.0])
s_arr = np.sort(arr, kind='quicksort') # s_arr = [4.0 5.0 6.0 8.0]
r_arr = s_arr[::-1] # r_arr = [8.0 6.0 5.0 4.0]

arr = np.array([4.0, 8.0, 6.0, 5.0])
orig = np.copy(arr) # make a copy of original
arr[::-1].sort(kind='quicksort') # reverse sort arr in-place
r_arr = np.copy(arr) # copy reversed to r_arr if you wish
arr = np.copy(orig) # restore arr to original if you wish

Note that the sort() function has an optional order parameter. However, this parameter

controls the order in which fields are compared when an array has cells holding an object with
multiple fields. So order does not control ascending versus descending sort behavior.

The demo program concludes by sorting an array using a program-defined my_qsort()

function:

start_time = time.clock()
my_qsort(arr)
end_time = time.clock()

elapsed_time = end_time - start_time
print "Elapsed time = "
print str(elapsed_time) + " seconds"

print "Original array after callng my_qsort(arr) is "
print arr # arr is sorted

The program-defined my_qsort() function sorts its array argument in place. The demo

measures the approximate amount of time used by my_qsort() by wrapping its call with

time.clock() function calls. Notice the demo program has an import time statement at the

top of the source code to bring the clock() function into scope.

The whole point of using a library like NumPy is that you can use built-in functions like sort()

and so you don't have to write program-defined functions. However, there are some scenarios
where writing a custom version of a NumPy function is useful. In particular, you can customize
the behavior of a program-defined function, usually at the expense of extra time (to write the
function) and performance.

The heart of the quicksort algorithm is the partition() function. A detailed explanation of how

quicksort and partitioning work is outside the scope of this e-book, but the behavior of any
quicksort implementation depends on how the so-called pivot value is selected. The key line of
code in the custom partition() function is:

piv = a[hi]

The pivot value is selected as the last cell value in the current sub-array being processed.
Alternatives are to select the first cell value (piv = a[lo]), the middle cell value, or a randomly

selected cell value between a[lo] and a[hi].

see more please visit: https://homeofpdf.com

43

Resources

For additional information about the NumPy sort() function, see

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.sort.html.

The program-defined quicksort function in this section is based on the Wikipedia article at
https://en.wikipedia.org/wiki/Quicksort.

For additional information about working with the Python time module, see

https://docs.python.org/2/library/time.html.

For additional information about NumPy array slicing, see
http://docs.scipy.org/doc/numpy-1.10.0/reference/arrays.indexing.html.

2.4 Array shuffling

A surprisingly common task in data science programming is shuffling an array. Shuffling is
rearranging the cell values in an array into a random order. You can think of shuffling as
somewhat the opposite of sorting. You can shuffle an array using the built-in NumPy
random.shuffle() function or by writing a program-defined shuffle function.

Code Listing 7: Array Shuffling Demo

shuffling.py
Python 2.7

import numpy as np

def my_shuffle(a, seed):
 # shuffle array a in place using Fisher-Yates algorithm
 np.random.seed(seed)
 n = len(a)
 for i in xrange(n):
 r = np.random.randint(i, n)
 a[r], a[i] = a[i], a[r]
 return

=====

arr = np.arange(10, dtype=np.int64) # [0, 1, 2, .. 9]
orig = np.copy(arr)
print "Array arr is "
print arr
print ""

np.random.shuffle(arr)
print "Array arr after a call to np.random.shuffle(arr) is "
print arr
print ""

print "Resetting array arr"

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.sort.html
https://en.wikipedia.org/wiki/Quicksort
https://docs.python.org/2/library/time.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/arrays.indexing.html

44

arr = np.copy(orig)
print "Array arr is "
print arr
print ""

my_shuffle(arr, seed=0)
print "Array arr after call to my_shuffle(arr, seed=0) is "
print arr
print ""

print "\nEnd demo \n"

C:\SciPy\Ch2> python shuffling.py

Array arr is

[0 1 2 3 4 5 6 7 8 9]

Array arr after a call to np.random.shuffle(arr) is

[1 9 8 3 0 2 7 5 6 4]

Resetting array arr

Array arr is

[0 1 2 3 4 5 6 7 8 9]

Array arr after call to my_shuffle(arr, seed=0) is

[5 1 0 6 7 3 9 8 4 2]

End demo

The demo program begins by creating an ordered integer array with 10 values (0 through 9)
using the arange() function, and makes a copy of that array using the copy() function:

arr = np.arange(10, dtype=np.int64)
orig = np.copy(arr)
print "Array arr is "
print arr

Next, the demo shuffles the contents of the array using the NumPy random.shuffle()

function:

np.random.shuffle(arr)
print "Array arr after a call to np.random.shuffle(arr) is "
print arr

The random.shuffle() function reorders the contents of its array argument in place to a

random order. In this example, the seed value for the underlying random number generator was
not set, so if you ran the program again, you'd almost certainly get a different ordering of the
array. If you want to make your program results reproducible, which is usually the case, you can
explicitly set the underlying seed value like so:

see more please visit: https://homeofpdf.com

45

np.random.seed(0)
np.random.shuffle(arr)

Here the seed was arbitrarily set to 0. Next, the demo program resets the array to its original
values using the copy:

print "Resetting array arr"
arr = np.copy(orig)
print "Array arr is "
print arr

It would have been a mistake to use the assignment operator instead of the copy() function in

an effort to make a copy of the original array. For example, suppose you had written this code:

arr = np.arange(10, dtype=np.int64)
orig = arr # assignment is probably not what you intended
print "Array arr is "
print arr

Because array assignment works by reference rather than by value, orig and arr are

essentially pointers that both point to the same array in memory. Any change made to arr, such

as a call to random.shuffle(arr), implicitly affects orig, too. Therefore, an attempt to reset

arr after a call to random.shuffle() would have no effect.

Another important consequence of NumPy arrays being reference objects is that a function with
an array parameter can modify the array in place. You can also create a reference to an array
using the view() function, for example arr_v = arr.view() creates a reference copy of arr.

The demo program concludes by using a program-defined function my_shuffle() to shuffle the

array:

my_shuffle(arr, seed=0)
print "Array arr after call to my_shuffle(arr, seed=0) is "
print arr

Function my_shuffle() is defined as:

def my_shuffle(a, seed):
 np.random.seed(seed)
 n = len(a)
 for i in xrange(n):
 r = np.random.randint(i, n)
 a[r], a[i] = a[i], a[r]
 return

Shuffling an array into a random order is surprisingly tricky and it's very easy to write faulty
code. The function my_shuffle() uses what is called the Fisher-Yates algorithm, which is the

best approach in most situations. Notice the function uses the very handy a,b = b,a Python

idiom to swap two values. An alternative is to use the standard tmp=a; a=b; b=tmp idiom

that's required in other programming languages.

see more please visit: https://homeofpdf.com

46

Resources

For additional details about the NumPy random.shuffle() function, see

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.random.shuffle.html.

For additional information about setting the random seed, see
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.random.seed.html.

For a really interesting explanation of the Fisher-Yates shuffle algorithm, see
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle.

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.random.shuffle.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.random.seed.html
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle

47

Chapter 3 Matrices

Matrices are arguably the most important data structure used in numeric and scientific
programming. The following screenshot shows you where this chapter is headed.

Figure 22: NumPy Matrices Demo

In section 3.1, you'll learn the most common ways to create and initialize NumPy matrices, and
learn the differences between the two kinds of matrix data structures supported in NumPy.

In section 3.2, you'll learn how to perform matrix multiplication using the dot() function.

In section 3.3, you'll learn about the three different ways to transpose a matrix.

In section 3.4, you'll learn about the important NumPy and SciPy linalg modules, how to find

the determinant of a matrix using the det() function, and what the determinant is used for.

see more please visit: https://homeofpdf.com

48

In section 3.5, you'll learn how to create an identity matrix using the eye() function, find the

inverse of a matrix using the linalg.inv() function, and correctly compare two matrices for

equality using the isclose() function.

In section 3.6, you'll learn how to load values into a matrix from a text file using the loadtxt()

function.

3.1 Matrix initialization

Matrices are arguably the most significant feature of the NumPy library. NumPy supports two
kinds of matrices: n-dimensional array style matrices and explicit NumPy matrices. The two
kinds of matrices are mostly compatible with each other. NumPy matrices can be created in
many ways, but three common techniques in many data science scenarios are using the
matrix() function, the array() function, and the zeros() function.

Code Listing 8: Matrix Initialization Demo

matrices.py
Python 2.7

import numpy as np

def show_matrix(m, dec, wid):
 fmt = "%" + str(wid) + "." + str(dec) + "f"
 (rows, cols) = np.shape(m)
 for i in xrange(rows):
 for j in xrange(cols):
 print fmt % m[i,j],
 print "" # end of row
 print "" # final newline

=====

print "\nBegin matrices demo \n"

ma = np.matrix([[1.0, 2.0, 3.0], # 2x3
 [4.0, 5.0, 6.0]])

mb = np.zeros((3, 2), dtype=np.int32) # 3x2

mc = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) # 2x3

md = np.matrix([[7.0, 8.0, 9.0]]) # 1x3

print "Matrix ma is "
print ma
print ""

print "Matrix mb is "
print mb
print ""

see more please visit: https://homeofpdf.com

49

print "N-dimensional array/matrix mc is "
print mc
print ""

print "Matrix ma is type " + str(type(ma))
print "Matrix mb is type " + str(type(mb))
print "Matrix mc is type " + str(type(mc))
print ""

print "Contents of matrix ma using show_matrix(ma, 3, 6) are "
show_matrix(ma, 3, 6)

msum = ma + mc
print "Result of ma + mc = "
print (msum)
print ""

md = np.matrix([[7.0, 8.0, 9.0]])
mx = ma + md
print "Matrix md is "
print md
print ""
print "Result of ma + md is "
print mx

print "\nEnd demo \n"

C:\SciPy\Ch3> python matrices.py

Begin matrices demo

Matrix ma is

[[1. 2. 3.]

 [4. 5. 6.]]

Matrix mb is

[[0 0]

 [0 0]

 [0 0]]

N-dimensional array/matrix mc is

[[1. 2. 3.]

 [4. 5. 6.]]

ma is type <class 'numpy.matrixlib.defmatrix.matrix'>

mb is type <type 'numpy.ndarray'>

mc is type <type 'numpy.ndarray'>

Contents of matrix ma using show_matrix(ma, 3, 6) are

 1.000 2.000 3.000

see more please visit: https://homeofpdf.com

50

 4.000 5.000 6.000

Result of ma + mc =

[[2. 4. 6.]

 [8. 10. 12.]]

Matrix md is

[[7. 8. 9.]]

Result of ma + md is

[[8. 10. 12.]

 [11. 13. 15.]]

End demo

The demo program begins by creating a matrix using the NumPy matrix() function:

ma = np.matrix([[1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0]])

There are two rows, each with three columns, so the matrix has shape 2×3. Because no dtype

argument was specified, each cell of the matrix holds the default float64 data type.

Next, the demo creates a 3×2 matrix using the NumPy zeros() function:

mb = np.zeros((3, 2), dtype=np.int32)

Notice the double sets of parentheses used here as opposed to the single set of parentheses
used to create a simple array. Each cell of matrix mb holds a 32-bit integer. If the dtype

argument had been omitted, each cell would have been the default float64 data type. As you'll

see shortly, matrix mb is actually a NumPy n-dimensional array rather than a NumPy matrix. In

the vast majority of programming situations, you can use either a NumPy 2-dimensional array or
a NumPy matrix. The general terms matrix and matrices can refer to either a NumPy matrix or a
NumPy n-dimensional array.

Next, the demo creates two additional matrices:

mc = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
md = np.matrix([[7.0, 8.0, 9.0]])

Matrix mc is a 2×3 n-dimensional array with the same values as explicit matrix ma. Matrix md is a

1×3 matrix. Matrices with one row are often called row matrices. Matrices with one column are
called column matrices. For example:

mm = np.matrix([[7.0], [8.0], [9.0]])

Row and column matrices are not the same as simple one-dimensional arrays. You can create
a column matrix from a row matrix (or vice versa) using the reshape() function, for example, mm
= np.reshape(md, (3,1)). And you can make a regular array from an ndarray-style matrix

using the flatten() or ravel() functions, for example:

see more please visit: https://homeofpdf.com

51

aa = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) # a 2x3 ndarray matrix
arr = np.flatten(aa) # arr is an array [1.0, 2.0, 3.0, 4.0, 5.0, 6.0]

After displaying the contents of matrices ma, mb, and mc, the demo displays their object types:

print "ma is type " + str(type(ma)) # 'numpy.matrixlib.defmatrix.matrix'
print "mb is type " + str(type(mb)) # displays 'numpy.ndarray'
print "mc is type " + str(type(mc)) # displays 'numpy.ndarray'

To summarize, when creating a NumPy matrix, the result can be either an explicit matrix (for
example, when using the matrix() function) or an ndarray (for example, when using the

zeros() function). In most cases, you don't have to worry about what the object type is

because the two forms of matrices are usually (but not always) compatible.

Next, the demo displays the contents of matrix ma using the program-defined show_matrix()

function:

print "Contents of matrix ma using show_matrix(ma, 3, 6) are "
show_matrix(ma, 3, 6)

The second and third parameters for show_matrix() are the number of decimals to use and

the width to use when displaying each cell value. In situations like this, where there are similar
parameters, it's more readable to use named-parameter syntax like:

show_matrix(ma, dec=3, wid=6)

Function show_matrix() illustrates how to traverse a matrix:

def show_matrix(m, dec, wid):
 fmt = "%" + str(wid) + "." + str(dec) + "f"
 (rows, cols) = np.shape(m)
 for i in xrange(rows):
 for j in xrange(cols):
 print fmt % m[i,j],
 print "" # end of row
 print "" # final newline

The dimensions of the matrix are determined using the NumPy shape() function, which returns

a tuple with the number of rows and columns. An alternative approach is:

rows = len(m)
cols = len(m[0])

A NumPy matrix m is an array of arrays. So len(m) is the number of rows, m[0] is the first row,

and len(m[0]) is the number of cells in the first row, which is the same as the number of

columns (assuming all rows of m have the same number of columns).

The nested for loops iterate over the cells of the matrix from left to right, then top to bottom:

see more please visit: https://homeofpdf.com

52

for i in xrange(rows):
 for j in xrange(cols):
 # curr cell is m[i,j]

Interestingly, NumPy allows you to access a matrix cell using either m[i,j] syntax or m[i][j]

syntax. The two forms are completely equivalent. In most cases the m[i,j] form is preferred,

only because it's easier to type.

Next, the demo program illustrates matrix addition:

msum = ma + mc
print "Result of ma + mc = "
print msum

Recall that both ma and mc are 2×3 matrices with values 1.0 through 6.0:

[[1.0 2.0 3.0]
 [4.0 5.0 6.0]]

Not surprisingly, the result (where I've added 0s after the decimal points for readability) is:

[[2.0 4.0 6.0]
 [8.0 10.0 12.0]]

However, recall that ma is an explicit NumPy matrix but mc is a NumPy ndarray. The point is

that the two different types of matrices could be added together without any problems.

Next, the demo shows an unusual feature of NumPy called broadcasting:

md = np.matrix([[7.0, 8.0, 9.0]])
mx = ma + md
print "Result of ma + md is "
print mx

Matrix ma is 2×3. Matrix md is 1×3. In just about any other programming language that I'm aware

of, an attempt to add these two matrices would generate some kind of error because these
matrices have different shapes. However, NumPy allows the addition and returns:

[[8.0 100. 12.0]
 [11.0 13.0 15.0]]

NumPy essentially expands the 1×3 md matrix to a 2×3 matrix, duplicating values, so that it has

the same shape as ma, and then corresponding cells can be added. Some of my colleagues

think NumPy broadcasting is a wonderful, useful feature. Others feel that broadcasting is a
dubious feature that encourages sloppy coding and can easily lead to program bugs.

Resources

For a discussion of the differences between NumPy matrices and arrays, see
http://www.scipy.org/scipylib/faq.html#what-is-the-difference-between-matrices-and-arrays.

see more please visit: https://homeofpdf.com

http://www.scipy.org/scipylib/faq.html#what-is-the-difference-between-matrices-and-arrays

53

For details about creating matrices using the NumPy matrix() function, see

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.matrix.html.

For details about creating ndarray style matrices using the NumPy array() function, see

http://docs.scipy.org/doc/numpy-1.10.1/user/basics.creation.html.

3.2 Matrix multiplication

Performing matrix multiplication is a very common task in many numeric programming
scenarios. The NumPy dot() function performs matrix multiplication.

The demo program in Code Listing 9 illustrates matrix multiplication using NumPy. The program
then defines a custom function named my_mult(), which performs matrix multiplication using

nested loops. Program execution begins with a preliminary print statement and then the demo

creates a 2x3 matrix A, and a 3x2 matrix B using the NumPy matrix() function:

A = np.matrix([[1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0]])

B = np.matrix([[7.0, 8.0],
 [9.0, 10.0],
 [11.0, 12.0]])

Code Listing 9: Matrix Multiplication Demo

multiplication.py
Python 2.7

import numpy as np

def my_mult(a, b):
 (arows, acols) = np.shape(a)
 (brows, bcols) = np.shape(b)
 result = np.zeros((arows, bcols))
 for i in xrange(arows):
 for j in xrange(bcols):
 for k in xrange(acols):
 result[i,j] = result[i,j] + a[i,k] * b[k,j]
 return result

=====

print "\nBegin matrix multiplication demo \n"

A = np.matrix([[1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0]])

B = np.matrix([[7.0, 8.0],
 [9.0, 10.0],
 [11.0, 12.0]])

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.matrix.html
http://docs.scipy.org/doc/numpy-1.10.1/user/basics.creation.html

54

C = np.dot(A, B) # NumPy matrix multiplication

D = my_mult(A, B) # slower Python

print "Matrix A = "
print A
print ""

print "Matrix B = "
print B
print ""

print "Result of dot(A,B) = "
print C
print ""

print "Result of my_mult(A,B) = "
print D
print ""

print "End demo \n"

C:\SciPy\Ch3> python multiplication.py

Begin matrix multiplication demo

Matrix A =

[[1. 2. 3.]

 [4. 5. 6.]]

Matrix B =

[[7. 8.]

 [9. 10.]

 [11. 12.]]

Result of dot(A,B) =

[[58. 64.]

 [139. 154.]]

Result of my_mult(A,B) =

[[58. 64.]

 [139. 154.]]

End demo

After creating the two matrices and displaying their values, we compute their product using the
NumPy dot() function and then again using the program-defined my_mult() function like so:

C = np.dot(A, B)
D = my_mult(A, B)

see more please visit: https://homeofpdf.com

55

NumPy matrix objects can also be multiplied using the * operator, for example C = A * B, but

ndarray objects must use the dot() function. In other words, the dot() function works for both

types and so is preferable in most situations.

The demo concludes by displaying both results to visually verify they're the same:

Result of A dot B =

[[58. 64.]

 [139. 154.]]

Result of my_mult(A,B) =

[[58. 64.]

 [139. 154.]]

Matrix multiplication is perhaps best explained by example. Matrix A has shape 2×3 and matrix
B has shape 3×2. The shape of their product is 2×2:

(2 x 3) * (3 x 2) = (2 x 2)

You can imagine that the two innermost dimensions, 3 and 3 here, cancel each other out,
leaving the two outermost dimensions. For example, a 5×4 matrix times a 4×7 matrix will have
shape 5×7. If the two innermost dimensions are not equal, NumPy will generate a "shapes not
aligned" error.

The result value at cell [x,y] is the product of the values in row x of the first matrix and column y
of the second matrix. So for the demo, the result at cell [0,1] uses row 0 of matrix A = [1, 2, 3]
and column 1 of matrix B = [8, 10, 12], giving (1 * 8) + (2 * 10) + (3 * 12) = 64.

The implementation of program-defined function my_mult(a, b) begins by determining the

number of rows and columns in each of the two matrix parameters by using the NumPy
shape() function:

def my_mult(a, b):
 (arows, acols) = np.shape(a)
 (brows, bcols) = np.shape(b)
. . .

The shape() function returns a tuple holding the number of rows and the number of columns in

a matrix. You could perform an error check here to verify that the two matrices are conformable,
for example, if acols != brows: print "Error!".

Once the sizes of the two input matrices are known, a result matrix with the correct shape can
be initialized using the NumPy zeros() function:

result = np.zeros((arows, bcols))

Notice the use of double parentheses, which forces the zeros() function to return a matrix

rather than an array. Function my_mult() then iterates over each row and each column,

accumulating and storing the sum of products into each cell of the result matrix:

see more please visit: https://homeofpdf.com

56

for i in xrange(arows):
 for j in xrange(bcols):
 for k in xrange(acols):
 result[i,j] = result[i,j] + a[i,k] * b[k,j]
return result

Notice that the program-defined matrix multiplication function is quite simple but does involve
triple-nested for loops. For small matrices, the difference in performance between a program-

defined method and the NumPy dot() function probably isn't significant in most scenarios. But

for large matrices, the slower performance of a program-defined method would likely be
noticeable and annoying.

The dot() function can be applied to NumPy one-dimensional arrays as well as matrices. For

example:

>>> import numpy as np
>>> arr1 = np.array([1, 3, 5])
>>> arr2 = np.array([6, 4, 2])
>>> arr3 = np.dot(arr1, arr2)
>>> print arr3
28

In this example, the result is calculated as (1 * 6) + (3 * 4) + (5 * 2) = 6 + 12 + 10 = 28. In math
terminology, this is called the dot product (hence the name of the NumPy function), the scalar
product, or the inner product.

NumPy has a dedicated inner() function that works just with arrays. For example:

>>> arr4 = np.inner(arr1, arr2)
>>> print arr4
28

One possible program-defined implementation of an array dot product function is:

def my_dotprod(a1, a2):
 result = 0
 for i in xrange(len(a1)):
 result = result + a1[i] * a2[i]
 return result

The dot() function can also be applied to arrays with three or more dimensions, but this is a

relatively uncommon scenario.

Resources

For additional details on the NumPy dot() function, see

http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html.

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html

57

For a table that lists the approximately 60 NumPy matrix functions, see
http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.matrix.html.

For information on the NumPy ndarray data type, which includes matrices, see

http://docs.scipy.org/doc/numpy-1.10.1/reference/arrays.ndarray.html.

3.3 Matrix transposition

A simple but common matrix operation is transposing rows and columns. The NumPy library
supports three built-in ways to transpose a matrix m: the m.transpose() function, the

np.transpose(m) function, and the m.T property.

Code Listing 10: Matrix Transposition Demo

transposition.py
Python 2.7

import numpy as np

def my_transpose(m):
 (rows, cols) = np.shape(m)
 result = np.zeros((rows, cols))
 for i in xrange(rows):
 for j in xrange(cols):
 result[j,i] = m[i,j]
 return result

=====

print "\nBegin matrix transposition demo \n"

m = np.matrix([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])

print "Matrix m = "
print m
print ""

mt = m.transpose()
print "Transpose from m.transpose() function = "
print mt
print ""

mt = np.transpose(m)
print "Transpose from np.transpose(m) function = "
print mt
print ""

mt = m.T
print "Transpose from m.T property = "

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.matrix.html
http://docs.scipy.org/doc/numpy-1.10.1/reference/arrays.ndarray.html

58

print mt
print ""

mt = my_transpose(m)
print "Transpose from my_transpose() function = "
print mt
print ""

print "\nEnd demo \n"

C:\SciPy\Ch3> python transposition.py

Begin matrix transposition demo

Matrix m =

[[1. 2. 3.]

 [4. 5. 6.]

 [7. 8. 9.]]

Transpose from m.transpose() function =

[[1. 4. 7.]

 [2. 5. 8.]

 [3. 6. 9.]]

Transpose from np.transpose(m) function =

[[1. 4. 7.]

 [2. 5. 8.]

 [3. 6. 9.]]

Transpose from m.T property =

[[1. 4. 7.]

 [2. 5. 8.]

 [3. 6. 9.]]

Transpose from my_transpose() function =

[[1. 4. 7.]

 [2. 5. 8.]

 [3. 6. 9.]]

End demo

The demo program begins by creating and displaying a simple 3×3 float64 matrix:

m = np.matrix([[1., 2., 3.],
 [4., 5., 6.],
 [7., 8., 9.]])

print "Matrix m = "
print m

see more please visit: https://homeofpdf.com

59

Here, matrix m is called a square matrix because it has the same number of rows and columns.

Matrix transposition works with either square or non-square matrices.

Next, the demo program creates a transposition of the matrix m using three different NumPy

built-in techniques:

mt = m.transpose()
print "Transpose from m.transpose() function = "
print mt

mt = np.transpose(m)
print "Transpose from np.transpose(m) function = "
print mt

mt = m.T
print "Transpose from m.T property = "
print mt

The first function call uses the transpose() method of the ndarray class. Notice the syntax is

matrix.transpose() and there are no arguments. The second function call uses the NumPy

function that accepts a matrix as its argument. The third call has no parentheses, indicating it is
a property. In all three function calls, the original matrix m is not changed. If you want to change

a matrix, you can use a calling pattern along the lines of m = np.transpose(m).

An immediate and obvious question is: Why are there three ways to transpose a matrix? There's
no good answer. One of the strengths of open source projects like NumPy and SciPy is that
they are collaborative efforts. However, this strength is offset by a certain amount of redundancy
in the libraries. Basically, when you're using NumPy and SciPy you can often perform a task
several ways, and frequently there's no clear best way.

The demo program concludes by calling a custom transpose function named my_transpose():

mt = my_transpose(m)

Function my_transpose() is defined:

def my_transpose(m):
 (rows, cols) = np.shape(m)
 result = np.zeros((rows, cols))
 for i in xrange(rows):
 for j in xrange(cols):
 result[j,i] = m[i,j]
 return result

There's no advantage to using program-defined my_transpose() unless you needed to

customize transposition behavior in some way.

see more please visit: https://homeofpdf.com

60

Resources

For details about the three built-in NumPy ways to transpose a matrix, see:

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.transpose.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.ndarray.transpose.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.ndarray.T.html

3.4 Matrix determinants

The determinant of a matrix is a value that indicates whether or not the matrix has an inverse (if
the determinant is 0.0, then the matrix does not have an inverse). Determinants also indicate if a
set of vectors are linearly dependent and how many solutions there are to a linear system of
equations. Both NumPy and SciPy have a det() function in their linalg (linear algebra)

submodules.

Code Listing 11: Matrix Determinant Demo

determinants.py
Python 2.7

import numpy as np

def extract(m, col):
 # return n-1 x n-1 submatrix w/o row 0 and col
 n = len(m)
 result = np.zeros((n-1, n-1))
 for i in xrange(1, n):
 k = 0
 for j in xrange(n):
 if j != col:
 result[i-1,k] = m[i,j]
 k += 1
 return result

def my_det(m): # inefficient!
 n = len(m)
 if n == 1:
 return m[0]
 elif n == 2:
 return (m[0,0] * m[1,1]) - (m[0,1] * m[1,0])
 else:
 sum = 0.0
 for k in xrange(n):
 sign = -1
 if k % 2 == 0:
 sign = +1
 subm = extract(m, k)
 sum = sum + sign * m[0,k] * my_det(subm)
 return sum

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.transpose.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.ndarray.transpose.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.ndarray.T.html

61

=====

print "\nBegin matrix determinant demo \n"

m = np.matrix([[1., 4., 2., 3.],
 [0., 1., 5., 4.],
 [1., 0., 1., 0.],
 [2., 3., 4., 1.]])

print "Matrix m is "
print m
print ""

d = np.linalg.det(m)
print "Determinant of m using np.linalg.det() is "
print d
print ""

d = my_det(m)
print "Determinant of m using my_det() is "
print d
print ""

print "\nEnd demo \n"

C:\SciPy\Ch3> python determinants.py

Begin matrix determinant demo

Matrix m is

[[1. 4. 2. 3.]

 [0. 1. 5. 4.]

 [1. 0. 1. 0.]

 [2. 3. 4. 1.]]

Determinant of m using np.linalg.det() is

-40.0

Determinant of m using my_det() is

-40.0

End demo

The demo program begins by creating and displaying a 4×4 float64 matrix:

see more please visit: https://homeofpdf.com

62

m = np.matrix([[1., 4., 2., 3.],
 [0., 1., 5., 4.],
 [1., 0., 1., 0.],
 [2., 3., 4., 1.]])

print "Matrix m = "
print m

Determinants only apply to square matrices (those with the same number of rows and columns).
The simplest case (other than a 1×1 matrix with a single value) is a 2×2 matrix. Consider the
2×2 matrix in the lower left portion of the demo matrix:

1.0 2.0
3.0 4.0

The determinant of this matrix is (1.0 * 4.0) - (2.0 * 3.0) = 4.0 - 6.0 = -2.0. In words, to calculate
the determinant of a 2×2 matrix, you take upper left times lower right, and subtract upper right
times lower left.

A determinant of a square matrix always exists, but it can be zero. For example, consider this
matrix:

3.0 2.0
6.0 4.0

The determinant would be (3.0 * 4.0) - (2.0 * 6.0) = (12.0 - 12.0) = 0. Matrices that have a
determinant of zero do not have an inverse.

For 3×3 and larger matrices, the mathematical definition of the determinant is recursive.
Suppose a 3×3 matrix is:

a b c
d e f
g h i

In this, a, b, c, etc., represent arbitrary numbers. The determinant is:

Figure 23: Definition of a 3x3 Matrix Determinant

Notice you have to extract n submatrices of size n-1 × n-1 by removing the first row and each of
the n columns. Writing code from scratch to calculate the determinant of a matrix with a size
larger than 3×3 is very difficult, but with NumPy and SciPy, all you have to do is call the
linalg.det() function.

The demo program finds the determinant of the matrix it created like so:

see more please visit: https://homeofpdf.com

63

d = np.linalg.det(m)
print "Determinant of m using np.linalg.det() is "
print d

Simple and easy. The NumPy linalg submodule currently has 28 functions that operate on

matrices, including the det() function. The larger SciPy linalg submodule has 82 functions.

Interestingly, the SciPy linalg submodule contains a slightly different det() function. The

SciPy version of det() has a parameter overwrite_a that allows the matrix to be changed

during the calculation of the determinant, which improves performance. Many functions appear
in both the NumPy and SciPy libraries, which is both useful and a possible source of confusion.

The demo has a program-defined function my_det() that calculates the determinant of a matrix.

Let me emphasize that the program-defined function is very inefficient and is intended only to
demonstrate advanced NumPy and SciPy programming techniques. The custom my_det()

function shouldn't be used unless you want to demonstrate a bad way to calculate a matrix
determinant.

Function my_det() uses the same calling signature as the NumPy det() function:

d = my_det(m)
print "Determinant of m using my_det() is "
print d

Function my_det() is recursive, meaning that it calls itself. The my_det() function also calls a

helper function extract() defined as:

def extract(m, col):
 n = len(m)
 result = np.zeros((n-1, n-1))
 for i in xrange(1, n):
 k = 0
 for j in xrange(n):
 if j != col:
 result[i-1,k] = m[i,j]
 k += 1
 return result

Function extract(m, col) accepts an n × n matrix m and returns an n-1 × n-1 matrix from

which the first row and column col have been removed. The key code in my_det() is:

for k in xrange(n):
 sign = -1
 if k % 2 == 0: sign = +1
 subm = extract(m, k)
 sum = sum + sign * m[0,k] * my_det(subm)

see more please visit: https://homeofpdf.com

64

Each of the n sub-matrices is extracted and my_det() is called recursively. There are very few

situations where recursive code is a good choice, and calculating a determinant of a matrix is
not one of them. The NumPy and SciPy implementations of det() use a technique called matrix

decomposition, which is complicated, but very efficient.

Resources

For details about the NumPy det() function, see

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.linalg.det.html.

For details about the SciPy det() function, see

http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.det.html.

3.5 Matrix inversion

One of the most common and important operations in numeric programming is finding the
inverse of a matrix. The NumPy and SciPy linalg.inv() functions perform matrix inversion.

The demo program in Code Listing 12 illustrates matrix inversion using NumPy. As usual, at the
top of the code, the program brings the NumPy library into scope and provides a convenience
alias: import numpy as np.

Because the inv() function is part of the NumPy linalg (linear algebra) submodule, an

alternative would be to use a from numpy import linalg statement. The demo program then

defines a custom function named my_close(), which determines if two matrices are equal in

the sense that all corresponding cell values are equal or nearly equal, within some small
tolerance.

Program execution begins with a preliminary print statement and then the demo creates a 3×3

matrix m using the NumPy matrix() function, explicitly specifying the data type:

m = np.matrix([[3, 0, 4],
 [2, 5, 1],
 [0, 4, 5]], dtype=np.float64)

Code Listing 12: Matrix Inverse Demo

inversion.py
Python 2.7

import numpy as np

def my_close(m1, m2, eps):
 (rows, cols) = np.shape(m1)
 for i in xrange(rows):
 for j in xrange(cols):
 if abs(m1[i,j] - m2[i,j]) > eps:
 return False
 return True

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.linalg.det.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.linalg.det.html

65

=====

print "\nBegin matrix inversion demo \n"

m = np.matrix([[3, 0, 4],
 [2, 5, 1],
 [0, 4, 5]], dtype=np.float64)

print "Matrix m is"
print m
print ""

mi = np.linalg.inv(m)
print "The inverse of m is"
print mi
print ""

idty = np.eye(3)
print "The 3x3 identity matrix idty is"
print idty
print ""

print "Product of mi * m is"
mim = np.dot(mi, m)
print mim
print ""

b1 = np.allclose(mim, idty)
print "Comparing mi * m with idty using np.allclose() gives"
print str(b1)
print ""

b2 = my_close(mim, idty, 1.0e-4)
print "Comparing mi * m with idty using my_close() gives"
print str(b2)

print "\nEnd demo\n"

C:\SciPy\Ch3> python inversion.py

Begin matrix inversion demo

Matrix m is

[[3. 0. 4.]

 [2. 5. 1.]

 [0. 4. 5.]]

The inverse of m is

[[0.22105263 0.16842105 -0.21052632]

 [-0.10526316 0.15789474 0.05263158]

see more please visit: https://homeofpdf.com

66

 [0.08421053 -0.12631579 0.15789474]]

The 3x3 identity matrix idty is

[[1. 0. 0.]

 [0. 1. 0.]

 [0. 0. 1.]]

Product of mi * m is

[[1.00000000e+00 -1.11022302e-16 0.00000000e+00]

 [0.00000000e+00 1.00000000e+00 0.00000000e+00]

 [0.00000000e+00 1.11022302e-16 1.00000000e+00]]

Comparing mi * m with idty using np.allclose() gives

True

Comparing mi * m with idty using my_close() gives

True

End demo

Matrix m could have been created as an n-dimensional array using the array() function:

m = np.array([[3., 0., 4.],[2., 5., 1.],[0., 4., 5.]])

After creating the matrix m and displaying its values, the inverse of the matrix is computed and

displayed like so:

mi = np.linalg.inv(m)
print "The inverse of m is"
print mi

If the from numpy import linalg statement had been used at the top of the script, the inv()

function could have been called as linalg.inv(m) instead. The inv() function applies only to

square matrices (equal number of rows and columns) that have a determinant not equal to zero.
The return value is a square matrix with the same shape as the original matrix.

Matrix inversion is one of the most technically challenging algorithms in numeric processing.
Believe me, you do not want to try to write your own custom matrix inversion function, unless
you are willing to spend a lot of time and effort, presumably because you need to implement
some specialized behavior.

Not all matrices have an inverse. If you apply the inv() function to such a matrix, you'll get a

"singular matrix" error. Therefore, you want to check first along the lines of:

d = np.linalg.det(m)
if d == 0.0:
 print "Matrix does not have an inverse"
else:
 mi = np.linalg.inv(m)

see more please visit: https://homeofpdf.com

67

Next, the demo creates and displays a 3x3 identity matrix:

idty = np.eye(3)
print "The 3x3 identity matrix idty is"
print idty

An identity matrix is a square matrix where the cells on the diagonal from upper left to lower
right contain 1.0 values, and all the other cells contain 0.0 values.

In ordinary arithmetic, the inverse of some number x is 1/x. For example, the inverse of 3 is 1/3.
Notice that any number times its inverse equals 1. The identity matrix is analogous to the
number 1 in ordinary arithmetic. Any matrix times its inverse equals the identity matrix.

The demo verifies the inverse is correct by multiplying the original matrix m by its inverse mi and

displaying the result, which is, in fact, the identity matrix:

print "Product of mi * m is"
mim = np.dot(mi, m)
print mim

The output is somewhat difficult to read because of the print statement's default formatting:

Product of mi * m is
[[1.00000000e+00 -1.11022302e-16 0.00000000e+00]
 [0.00000000e+00 1.00000000e+00 0.00000000e+00]
 [0.00000000e+00 1.11022302e-16 1.00000000e+00]]

If you look closely, you'll see that that main diagonal elements are 1.0 and the other cell values
are very, very close to 0.0. Visual verification that two matrices (the product of the original matrix
times its inverse, and the identity matrix) are equal is fine in simple scenarios, but in many
situations a programmatic approach is better. The demo compares the matrix times its inverse
(mim) and the identity matrix in two ways:

b1 = np.allclose(mim, idty)
print "Comparing mi * m with idty using np.allclose() gives"
print str(b1)

b2 = my_close(mim, idty, 1.0e-4)
print "Comparing mi * m with idty using my_close() gives"
print str(b2)

In general, it's a bad idea to compare two matrices that hold floating-point values for exact
equality because floating-point values have some storage limit and therefore are sometimes
only approximations to their true values. For example:

>>> x = 0.17 + 0.17 # 0.34
>>> y = 0.30 + 0.04 # 0.34
>>> b = (x == y) # 0.34 == 0.34 should be True
>>> print b
False # oops

see more please visit: https://homeofpdf.com

68

The NumPy allclose() function accepts two matrices and returns True if both matrices have

the same shape and all corresponding pairs of cell values are very close to each other (within
1.0e-5 (0.00001)), and False otherwise. If the default 1.0e-5 tolerance isn't suitable, you can

pass a different tolerance argument to the allclose() function. For example, the statement:

b1 = np.allclose(mim, idty, 1.0e-8)

will return True only if all corresponding cells in matrices mim and idty are within 1.0e-8 of each

other.

The demo program defines a custom method named my_close() that has similar functionality

to the NumPy allclose() function. There's no advantage to writing such a custom function

unless you need to implement some sort of specialized behavior, such as having a different
tolerance for different rows or columns.

Program-defined function my_close() is implemented as:

def my_close(m1, m2, eps):
 (rows, cols) = np.shape(m1)
 for i in xrange(rows):
 for j in xrange(cols):
 if abs(m1[i,j] - m2[i,j]) > eps:
 return False
 return True

Function my_close() doesn't check if its two matrix parameters have the same shape. You

could do so like this:

(rows_m1, cols_m1) = np.shape(m1)
(rows_m2, cols_m2) = np.shape(m2)
if rows_m1 != rows_m2 or cols_m1 != cols_m2:
 return None

The SciPy version of inv() has an overwrite_a parameter that permits the cell values in the

original matrix to be overwritten during the calculation of the inverse. For example:

import numpy as np
import scipy.linalg as spla
m = np.random.rand(10, 10)
d = np.linalg.det(m)
if d == 0:
 print "Matrix does not have inverse"
else:
 mi = spla.inv(m, overwrite_a=True)

This code creates a 10×10 matrix with random values in the range [0.0 and 1.0), and then
computes the matrix's inverse, allowing the matrix values to be changed in order to improve
performance. However, when I've used this approach, I've never seen the original matrix
changed with this form of function call.

see more please visit: https://homeofpdf.com

69

Resources

For additional details on the NumPy matrix inv() function, see

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html.

For additional details on the NumPy allclose() function, see

http://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html.

For information about the NumPy eye() function, see

http://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html.

For information about the SciPy version of the inv() function, see

http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.inv.html.

3.6 Matrix loading from file

In many practical scenarios, you'll want to read data into a matrix from a text file. The NumPy
loadtxt() function is very versatile and can handle most situations. It's also possible to load

data into a matrix from a text file using a custom function if you need specialized behavior.

Code Listing 13: Loading Matrix Data from a Text File Demo

loadingdata.py
Python 2.7

import numpy as np

def my_load(fn, sep):
 f = open(fn, "r")

 rows = 0; cols = 0
 for line in f:
 rows += 1
 cols = len(line.strip().split(sep))

 result = np.zeros((rows,cols)) # make matrix

 f.seek(0) # back to start of file

 i = 0 # row index
 while True:
 line = f.readline()
 if not line: break
 line = line.strip()
 tokens = line.split(',') # a list
 for j in xrange(cols):
 result[i,j] = np.float64(tokens[j])
 i += 1

 f.close()
 return result

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.eye.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.inv.html

70

=====

print "\nBegin matrix load demo \n"

fn = r"C:\SciPy\Ch3\datafile.txt"

m = np.loadtxt(fn, delimiter=',')
print "Matrix loaded using np.loadtxt() = "
print m
print ""

m = my_load(fn, sep=',')
print "Matrix loaded using my_load() = "
print m
print ""

print "\nEnd demo\n"

C:\SciPy\Ch3> python loadingdata.py

Begin matrix load demo

Matrix loaded using np.loadtxt() =

[[1. 2.]

 [3. 4.]

 [5. 6.]

 [7. 8.]]

Matrix loaded using my_load() =

[[1. 2.]

 [3. 4.]

 [5. 6.]

 [7. 8.]]

End demo

The demo program begins by specifying the location of the source data file:

fn = r"C:\SciPy\Ch3\datafile.txt"

Here, fn stands for file name. The r qualifier stands for raw and tells the Python interpreter to

treat backslashes as literals rather than the start of an escape sequence. File datafile.txt is

a simple comma-delimited text file with no header:

1.0, 2.0
3.0, 4.0
5.0, 6.0
7.0, 8.0

see more please visit: https://homeofpdf.com

71

Next, the demo creates and loads a matrix like so:

m = np.loadtxt(fn, delimiter=',')
print "Matrix loaded using np.loadtxt() = "
print m

The delimiter argument tells loadtxt() how values are separated on each line. The default

value is any whitespace character (spaces, tabs, newlines), so the argument is required in this
case.

In addition to the required fname parameter and optional delimiter parameter, loadtxt() has

seven additional optional parameters. Of these, based on my experience, the three most
commonly used parameters are comments, skiprows, and usecols. For example, suppose a

data file is:

colA : colB : colC
1.0 : 2.0 : 3.0
4.0 : 5.0 : 6.0
$ some comment
7.0 : 8.0 : 9.0

The following statement means: skip the first line, treat lines with '$' or '%' as comments, and
load only column 0 and 2.

m = np.loadtxt(fn, delimiter=':', comments=['$', '%'], skiprows=1,
 usecols=[0,2])

Although loadtxt() is quite versatile, there are many scenarios it doesn't handle. In these

situations, it's easy to write a custom load function. The demo program defines such a function:

def my_load(fn, sep):
 f = open(fn, "r")
 rows = 0; cols = 0
 for line in f:
 rows += 1
 cols = len(line.strip().split(sep))
 result = np.zeros((rows,cols)) # make matrix
 f.seek(0) # back to start of file
 i = 0 # row index
 while True:
 line = f.readline() # read a line of data
 if not line: break # end of file?
 line = line.strip() # remove whitespace from line
 tokens = line.split(',') # split line items into a list
 for j in xrange(cols): # store each item in the curr row
 result[i,j] = np.float64(tokens[j])
 i += 1 # next row
 f.close()
 return result

see more please visit: https://homeofpdf.com

72

The function my_load() performs a preliminary scan of the file to determine the number of rows

and columns there are, then creates a matrix with the appropriate shape, resets the file read
pointer, and does a second scan to read, parse, and store each value in the data file. There are
several alternative designs you can use.

Resources

For details about the NumPy loadtxt() function, see

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.loadtxt.html.

For details about NumPy function genfromtxt() that can handle missing values, see

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.genfromtxt.html.

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.loadtxt.html
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.genfromtxt.html

73

Chapter 4 Combinatorics

Combinatorics is a branch of mathematics dealing with permutations (rearrangements of items)
and combinations (subsets of items). Python has limited support for combinatorics in the
itertools and scipy modules, but you can create combinatorics functions using NumPy

arrays and matrices. The following screenshot shows you where this chapter is headed.

Figure 24: Combinatorics Demo

In section 4.1, you'll learn how to create a program-defined Permutation class using NumPy,

and how to write an effective factorial function.

In section 4.2, you'll learn how to write a successor() function that returns the next permutation

element in lexicographical order.

see more please visit: https://homeofpdf.com

74

In section 4.3, you'll learn how to create a useful element() function that directly generates a

specified permutation element.

In section 4.4, you'll learn how to create a Combination class.

In section 4.5, you'll learn how to write a Combination successor() function.

And in section 4.6, you'll learn how to write an element() function for combinations.

4.1 Permutations

A mathematical permutation set is all possible orderings of n items. For example, if n = 3 and
the items are the integers (0, 1, 2) then there are six possible permutation elements:

(0, 1, 2)
(0, 2, 1)
(1, 0, 2)
(1, 2, 0)
(2, 0, 1)
(2, 1, 0)

Python supports permutations in the SciPy special module and in the Python itertools

module. Interestingly, NumPy has no direct support for permutations, but it is possible to
implement custom permutation functions using NumPy arrays.

Code Listing 14: Permutations Demo

permutations.py
Python 2.7

import numpy as np
import itertools as it
import scipy.special as ss

class Permutation:
 def __init__(self, n):
 self.n = n
 self.data = np.arange(n)

 @staticmethod
 def my_fact(n):
 ans = 1
 for i in xrange(1, n+1):
 ans *= i
 return ans

 def as_string(self):
 s = "# "
 for i in xrange(self.n):
 s = s + str(self.data[i]) + " "

see more please visit: https://homeofpdf.com

75

 s = s + "#"
 return s

=====

print "\nBegin permutation demo \n"

n = 3
print "Setting n = " + str(n)
print ""

num_perms = ss.factorial(n)
print "Using scipy.special.factorial(n) there are ",
print str(num_perms),
print "possible permutation elements"
print ""

print "Making all permutations using itertools.permutations()"
all_perms = it.permutations(xrange(n))
p = all_perms.next()

print "The first itertools permutation is "
print p
print ""

num_perms = Permutation.my_fact(n)
print "Using my_fact(n) there are " + str(num_perms),
print "possible permutation elements"
print ""

print "Making a custom Permutation object "
p = Permutation(n)
print "The first custom permutation element is "
print p.as_string()

print "\nEnd demo \n"

C:\SciPy\Ch4> python permutations.py

Begin permutation demo

Setting n = 3

Using scipy.special.factorial(n) there are 6.0 possible permutation elements

Making all permutations using itertools.permutations()

The first itertools permutation is

(0, 1, 2)

Using my_fact(n) there are 6 possible permutation elements

see more please visit: https://homeofpdf.com

76

Making a custom Permutation object

The first custom permutation element is

0 1 2 #

End demo

The demo program begins by importing three modules:

import numpy as np
import itertools as it
import scipy.special as ss

The itertools module has the primary permutations class, but the closely associated

factorial() function is defined in the special submodule of the scipy module. If this feels a

bit awkward to you, you're not alone.

The demo program defines a custom Permutation class. In most cases, you will only want to

define a custom implementation of a function when you need to implement some specialized
behavior, or you want to avoid using a module that contains the function.

Program execution begins by setting up the number of permutation elements:

n = 3
print "Setting n = " + str(n)

Using lowercase n for the number of permutations is traditional, so you should use it unless you
have a reason not to. Next, the demo program determines the number of possible permutations
using the SciPy factorial() function:

num_perms = ss.factorial(n)
print "Using scipy.special.factorial(n) there are ",
print str(num_perms),
print "possible permutation elements"

The factorial(n) function is often written as n! as a shortcut. The factorial of a number is

best explained by example:

factorial(3) = 3 * 2 * 1 = 6
factorial(5) = 5 * 4 * 3 * 2 * 1 = 120

The value of factorial(0) is usually considered a special case and defined to be 1. Next, the

demo creates a Python permutations iterator:

all_perms = it.permutations(xrange(n))

I like to think of a Python iterator object as a little factory that can emit data when a request is
made of it using an explicit or implicit call to a next() function. Notice the call to the

permutations() function accepts xrange(n) rather than just n, as you might have thought.

The demo program requests and displays the first itertools permutation element like so:

see more please visit: https://homeofpdf.com

77

p = all_perms.next()
print "The first itertools permutation is "
print p

Next, the demo program uses the custom functions. First, the my_fact() function is called:

num_perms = Permutation.my_fact(n)
print "Using my_fact(n) there are " + str(num_perms),
print "possible permutation elements"

Notice that the call to my_fact() is appended to Permutation, which is the name of its defining

class. This is because the my_fact() function is decorated with the @staticmethod attribute.

Next, the demo creates an instance of the custom Permutation class. The Permutation class

__init__() constructor method initializes an object to the first permutation element so there's

no need to call a next() function:

p = Permutation(n)
print "The first custom permutation element is "
print p.as_string()

The custom as_string() function displays a Permutation element delimited by the %

character so that the element can be easily distinguished from a tuple, a list, or another Python
collection. I used % because both permutation and percent start with the letter p.

The custom my_fact() function is short and simple:

def my_fact(n):
 ans = 1
 for i in xrange(1, n+1):
 ans *= i
 return ans

The mathematical factorial function is often used in computer science classes as an example of
a function that can be implemented using recursion:

@staticmethod
def my_fact_rec(n):
 if n == 0 or n == 1:
 return 1
 else:
 return n * Permutation.my_fact_rec(n-1)

Although recursion has a certain mysterious aura, in most situations (such as this one),
recursion is highly inefficient and so should be avoided.

An option for any implementation of a factorial function, especially where the function will be
called many times, is to create a pre-calculated lookup table with values for the first handful (say
1,000) results. The extra storage is usually a small price to pay for much-improved performance.

see more please visit: https://homeofpdf.com

78

Resources

For details about the Python itertools module that contains the permutations iterator, see

https://docs.python.org/2/library/itertools.html.

For details about the SciPy factorial() function, see

http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.misc.factorial.html.

For information about mathematical permutations, see
https://en.wikipedia.org/wiki/Permutation.

4.2 Permutation successor

When working with mathematical permutations, a key operation is generating the successor to a
given permutation element. For example, if n = 3 and the items are the integers (0, 1, 2) then
there are six possible permutation elements. When listed in what is called lexicographical order,
the elements are:

(0, 1, 2)
(0, 2, 1)
(1, 0, 2)
(1, 2, 0)
(2, 0, 1)
(2, 1, 0)

Notice that if we removed the separating commas and interpreted each element as an ordinary
integer (like 120), the elements would be in ascending order (12 < 21 < 102 < 120 < 201 < 210).

Code Listing 15: Permutation Successor Demo

perm_succ.py
Python 2.7

import numpy as np
import itertools as it

class Permutation:
 def __init__(self, n):
 self.n = n
 self.data = np.arange(n)

 def as_string(self):
 s = "# "
 for i in xrange(self.n):
 s = s + str(self.data[i]) + " "
 s = s + "#"
 return s

 def successor(self):
 res = Permutation(self.n) # result

see more please visit: https://homeofpdf.com

https://docs.python.org/2/library/itertools.html
http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.misc.factorial.html
https://en.wikipedia.org/wiki/Permutation

79

 res.data = np.copy(self.data)

 left = self.n - 2
 while res.data[left] > res.data[left+1] and left >= 1:
 left -= 1

 if left == 0 and res.data[left] > res.data[left+1]:
 return None

 right = self.n - 1
 while res.data[left] > res.data[right]:
 right -= 1

 res.data[left], res.data[right] = \
 res.data[right], res.data[left]

 i = left + 1
 j = self.n - 1
 while i < j:
 tmp = res.data[i]
 res.data[i] = res.data[j]
 res.data[j] = tmp
 i += 1; j -= 1
 return res

=====

print "\nBegin permutation successor demo \n"

n = 3
print "Setting n = " + str(n)
print ""

perm_it = it.permutations(xrange(n))
print "Iterating all permutations using itertools permutations(): "

for p in perm_it:
 print "p = " + str(p)
print ""

p = Permutation(n)
print "Iterating all permutations using custom Permutation class: "
while p is not None:
 print "p = " + p.as_string()
 p = p.successor()

print "\nEnd demo \n"

C:\SciPy\Ch4> python perm_succ.py

Begin permutation successor demo

see more please visit: https://homeofpdf.com

80

Setting n = 3

Iterating all permutations using itertools permutations():

p = (0, 1, 2)

p = (0, 2, 1)

p = (1, 0, 2)

p = (1, 2, 0)

p = (2, 0, 1)

p = (2, 1, 0)

Iterating all permutations using custom Permutation class:

p = # 0 1 2 #

p = # 0 2 1 #

p = # 1 0 2 #

p = # 1 2 0 #

p = # 2 0 1 #

p = # 2 1 0 #

End demo

The demo program begins by importing two modules:

import numpy as np
import itertools as it

Since the itertools module has many kinds of iterable objects, an alternative is to bring just

the permutations iterator into scope:

from itertools import permutations

The demo program defines a custom Permutation class. In most cases, you will only want to

define a custom implementation of a function when you need to implement some specialized
behavior, or you want to avoid using a module that contains the function.

Program execution begins by setting up the number of permutation elements:

n = 3
print "Setting n = " + str(n)

Using lowercase n for the number of permutations is traditional, so you should use it unless you
have a reason not to.

Next, the demo program iterates through all possible permutation elements using an implicit
mechanism:

perm_it = permutations(xrange(n))
print "Iterating all permutations using itertools permutations(): "
for p in perm_it:
 print "p = " + str(p)
print ""

see more please visit: https://homeofpdf.com

81

The perm_it iterator can emit all possible permutation elements. In most situations, Python

iterators are designed to be called using a for item in iterator pattern, as shown. In other

programming languages, this pattern is sometimes distinguished from a regular for loop by

using a foreach keyword.

Note that the itertools.permutations() iterator emits tuples, indicated by the parentheses

in the output, rather than a list or a NumPy array.

It is possible, but somewhat awkward, to explicitly call the permutations iterator using the
next() function like so:

perm_it = it.permutations(xrange(n))
while True:
 try:
 p = perm_it.next()
 print "p = " + str(p)
 except StopIteration:
 break
print ""

By design, iterator objects don't have an explicit way to signal the end of iteration, such as an
end() function or returning a special value like None. Instead, when an iterator object has no

more items to emit and a call to next() is made, a StopIteration exception is thrown. To

terminate a loop, you must catch the exception.

Next, the demo program iterates through all permutation elements for n = 3 using the program-
defined Permutation class:

p = Permutation(n)
print "Iterating all permutations using custom Permutation class: "
while p is not None:
 print "p = " + p.as_string()
 p = p.successor()

The successor() function of the Permutation class uses a traditional stopping technique by

returning None when there are no more permutation elements. The function successor() uses

an unobvious approach to determine when the current permutation element is the last one. A
straightforward approach isn't efficient. For example, if n = 5, the last element is (4 3 2 1 0) and
it'd be very time-consuming to check if data[0] > data[1] > data[2] > . . > data[n-1] on each call.

The logic in the program-defined successor() function is rather clever. Suppose n = 5 and the

current permutation element is:

0 1 4 3 2 #

The next element in lexicographical order after 01432, using the digits 0 through 4, is 02134.
The successor() function first finds the indices of two items to swap, called left and right. In

this case, left = 1 and right = 4. The items at those indices are swapped, giving a preliminary

result of 02431. Then the items from index right through the end of the element are placed in

order (431 in this example) giving the final result of 02134.

see more please visit: https://homeofpdf.com

82

Resources

For details about the Python itertools module and the permutations iterator, see

https://docs.python.org/2/library/itertools.html.

The itertools.permutations iterator uses the Python yield mechanism. See

https://docs.python.org/2/reference/simple_stmts.html#yield.

4.3 Permutation element

When working with mathematical permutations, it's often useful to be able to generate a specific
element. For example, if n = 3 and the items are the integers (0, 1, 2), then there are six
permutation elements. When listed in lexicographical order, the elements are:

[0] (0, 1, 2)
[1] (0, 2, 1)
[2] (1, 0, 2)
[3] (1, 2, 0)
[4] (2, 0, 1)
[5] (2, 1, 0)

In many situations, you want to iterate through all possible permutations, but in some cases you
may want to generate just a specific permutation element. For example, a function call like pe =
perm_element(4) would store (2, 0, 1) into pe.

Code Listing 16: Generating a Permutation Element Directly

perm_elem.py
Python 2.7

import numpy as np
import itertools as it
import time

class Permutation:
 def __init__(self, n):
 self.n = n
 self.data = np.arange(n)

 def as_string(self):
 s = "# "
 for i in xrange(self.n):
 s = s + str(self.data[i]) + " "
 s = s + "#"
 return s

 def element(self, idx):
 result = Permutation(self.n)

 factoradic = np.zeros(self.n)

see more please visit: https://homeofpdf.com

https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/reference/simple_stmts.html#yield

83

 for j in xrange(1, self.n + 1):
 factoradic[self.n-j] = idx % j
 idx = idx / j

 for i in xrange(self.n):
 factoradic[i] += 1

 result.data[self.n - 1] = 1

 for i in xrange(self.n - 2, -1, -1):
 result.data[i] = factoradic[i]
 for j in xrange(i + 1, self.n):
 if result.data[j] >= result.data[i]:
 result.data[j] += 1

 for i in xrange(self.n):
 result.data[i] -= 1

 return result;

=====

def perm_element(n, idx):
 p_it = it.permutations(xrange(n))
 i = 0
 for p in p_it:
 if i == idx:
 return p
 break
 i += 1

=====

print "\nBegin permutation element demo \n"

n = 20
print "Setting n = " + str(n) + "\n"

idx = 1000000000
print "Element " + str(idx) + " using itertools.permutations() is "
start_time = time.clock()
pe = perm_element(n, idx)
end_time = time.clock()
elapsed_time = end_time - start_time
print pe
print "Elapsed time = " + str(elapsed_time) + " seconds "
print ""

p = Permutation(n)
start_time = time.clock()
pe = p.element(idx)
end_time = time.clock()
elapsed_time = end_time - start_time
print "Element " + str(idx) + " using custom Permutation class is "

see more please visit: https://homeofpdf.com

84

print pe.as_string()
print "Elapsed time = " + str(elapsed_time) + " seconds "
print ""

print "\nEnd demo \n"

C:\SciPy\Ch4> python perm_elem.py

Begin permutation element demo

Setting n = 20

Element 1000000000 using itertools.permutations() is

(0, 1, 2, 3, 4, 5, 6, 9, 8, 7, 15, 17, 14, 16, 19, 11, 13, 18, 10, 12)

Elapsed time = 162.92199766 seconds

Element 1000000000 using custom Permutation class is

0 1 2 3 4 5 6 9 8 7 15 17 14 16 19 11 13 18 10 12 #

Elapsed time = 0.000253287676799 seconds

End demo

The demo program begins by importing three modules:

import numpy as np
import itertools as it
import time

The demo program defines a custom Permutation class that has an element() member

function and a stand-alone function perm_element() that is not part of a class. Both functions

return a specific permutation element. Function perm_element() uses the built-in

permutations() iterator from the itertools module. Function element() uses a NumPy

array plus a clever algorithm that involves something called the factoradic. Program execution
begins by setting up the order of a permutation, n:

n = 20
print "Setting n = " + str(n) + "\n"

The order of a permutation is the number of items in each permutation. For n = 20 there are 20!
= 2,432,902,008,176,640,000 different permutation elements. Next, the demo finds the
permutation element 1,000,000,000 using the program-defined perm_element() function:

print "Element " + str(idx) + " using itertools.permutations() is "
start_time = time.clock()
pe = perm_element(n, idx)
end_time = time.clock()

After the permutation element has been computed, the element and the elapsed time required
are displayed:

see more please visit: https://homeofpdf.com

85

elapsed_time = end_time - start_time
print pe
print "Elapsed time = " + str(elapsed_time) + " seconds "

In this example, the perm_element() function took over 2 and a half minutes to execute. Not

very good performance.

Next, the demo computes the same permutation element using the program-defined
Permutation class:

p = Permutation(n)
start_time = time.clock()
pe = p.element(idx)
end_time = time.clock()

Then the element and the elapsed time required are displayed using the custom class
approach:

elapsed_time = end_time - start_time
print "Element " + str(idx) + " using custom Permutation class is "
print pe.as_string()
print "Elapsed time = " + str(elapsed_time) + " seconds "

The elapsed time using the custom Permutation element() function class was approximately

0.0003 seconds—much better performance than the 160+ seconds for the itertools-based

function.

It really wasn't a fair fight. The perm_element() function works by creating an itertools.
permutations iterator and then generating each successive permutation one at a time until the

desired permutation element is reached. The function definition is:

p_it = it.permutations(xrange(n)) # make a permutation iterator
 i = 0 # index counter
 for p in p_it: # request next permutation
 if i == idx: # are we there yet?
 return p # if so, return curr permutation tuple
 break # and break out of loop
 i += 1 # next index

On the other hand, the custom element() function uses some very clever mathematics and an

entity called the factoradic of a number to construct the requested permutation element directly.

The regular decimal representation of numbers is based on powers of 10. For example, 1047 is
(1 * 10^3) + (0 * 10^2) + (4 * 10^1) + (7 * 10^0). The factoradic of a number is an alternate
representation based on factorials. For example, 1047 is 1232110 because it's (1 * 6!) + (2 * 5!)
+ (3 * 4!) + (2 * 3!) + (1 * 2!) + (1 * 1!) + (0 * 0!). Using some rather remarkable mathematics, it's
possible to use the factoradic of a permutation element index to compute the element directly.

see more please visit: https://homeofpdf.com

86

Resources

For details about the Python itertools module, which contains the permutations iterator, see

https://docs.python.org/2/library/itertools.html.

For information about mathematical factoradics, see
https://en.wikipedia.org/wiki/Factorial_number_system.

4.4 Combinations

A mathematical combination set is a collection of all possible subsets of k items selected from n
items. For example, if n = 5 and k = 3 and the items are the integers (0, 1, 2, 3, 4), then there
are 10 possible combination elements:

(0, 1, 2)
(0, 1, 3)
(0, 1, 4)
(0, 2, 3)
(0, 2, 4)
(0, 3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)

For combinations, the order of the items does not matter. Therefore, there is no element (0, 2,
1) because it is considered the same as (0, 1, 2). Python supports combinations in the SciPy
special module and in the Python itertools module. There is no direct support for

combinations in SciPy, but it's possible to implement combination functions using NumPy
arrays.

Code Listing 17: Combinations Demo

combinations.py
Python 2.7

import numpy as np
import itertools as it
import scipy.special as ss

class Combination:
 # n == order, k == subset size
 def __init__(self, n, k):
 self.n = n
 self.k = k
 self.data = np.arange(self.k)

 def as_string(self):
 s = "^ "
 for i in xrange(self.k):

see more please visit: https://homeofpdf.com

https://docs.python.org/2/library/itertools.html
https://en.wikipedia.org/wiki/Factorial_number_system

87

 s = s + str(self.data[i]) + " "
 s = s + "^"
 return s

 @staticmethod
 def my_choose(n,k):
 if n < k: return 0
 if n == k: return 1;

 delta = k
 imax = n - k
 if k < n-k:
 delta = n-k
 imax = k

 ans = delta + 1
 for i in xrange(2, imax+1):
 ans = (ans * (delta + i)) / i
 return ans

=====

print "\nBegin combinations demo \n"

n = 5
k = 3
print "Setting n = " + str(n) + " k = " + str(k)
print ""

num_combs = ss.comb(n, k)
print "n choose k using scipy.comb() is ",
print num_combs
print ""

print "Making all combinations using itertools.combinations() "
all_combs = it.combinations(xrange(n), k)

c = all_combs.next()
print "First itertools combination element is "
print c
print ""

num_combs = Combination.my_choose(n, k)
print "n choose k using my_choose(n, k) is ",
print num_combs
print ""

print "Making a custom Combination object "
c = Combination(n, k)
print "The first custom combination element is "
print c.as_string()

print "\nEnd demo \n"

see more please visit: https://homeofpdf.com

88

C:\SciPy\Ch4> python combinations.py

Begin combinations demo

Setting n = 5 k = 3

n choose k using scipy.comb() is 10.0

Making all combinations using itertools.combinations()

First itertools combination element is

(0, 1, 2)

n choose k using my_choose(n, k) is 10

Making a custom Combination object

The first custom combination element is

^ 0 1 2 ^

End demo

The demo program begins by importing three modules:

import numpy as np
import itertools as it
import scipy.special as ss

The itertools module has the primary combinations class, but the closely associated comb()

function is defined in the special submodule of the scipy module (and also in scipy.misc).

The demo program defines a custom Combination class. In most cases, you will only want to

define a custom implementation of a function when you need to implement some specialized
behavior, or you want to avoid using a module that contains the function.

Program execution begins by setting up the number of items n, and the subset size k:

n = 5
k = 3
print "Setting n = " + str(n) + " k = " + str(k)

Lowercase n and k are most often used with combinations, so if you use different variable
names it would be a good idea to comment on which is the number of items and which is the
subset size. Next, the demo program determines the number of possible combination elements
using the SciPy comb() function:

num_combs = ss.comb(n, k)
print "n choose k using scipy.comb() is ",
print num_combs

see more please visit: https://homeofpdf.com

89

The function that returns the number of ways to select k items from n items is almost universally
called choose(n, k) so it's not clear why the SciPy code implementation is named comb(n, k).

The mathematical definition of choose(n, k) is n! / k! * (n-k)! where ! is the factorial function. For
example:

choose(5, 3) = 5! / (3! * 2!) = 120 / (6 * 2) = 10

As it turns out, a useful fact is that choose(n, k) = choose(n, n-k). For example, choose(10, 7) =
choose(10, 3). The choose function is easier to calculate using smaller values of the subset
size.

Next, the demo creates a Python combinations iterator:

all_combs = it.combinations(xrange(n), k)

I like to think of a Python iterator object as a little factory that can emit data when a request is
made of it using an explicit or implicit call to a next() function. Notice the call to the

it.combinations() function accepts xrange(n) rather than just n. The choice of the name

all_combs could be somewhat misleading if you're not familiar with Python iterators. The

all_combs iterator doesn't generate all possible combination elements when it is created. It

does, however, have the ability to emit all combination elements.

In addition to xrange(), the it.combinations() iterator can accept any iterable object. For

example:

all_combs = it.combinations(np.array(["a", "b", "c"]), k)

Next, the demo program requests and displays the first itertools combination element like so:

c = all_combs.next()
print "The first itertools combination element is "
print c

Next, the demo program demonstrates the custom functions. First, the program-defined
my_choose() function is called:

num_combs = Combination.my_choose(n, k)
print "n choose k using my_choose(n, k) is ",
print num_combs

Notice that the call to my_choose() is appended to Combination, which is the name of its

defining class. This is because the my_choose() function is decorated with the @staticmethod

attribute.

Next, the demo creates an instance of the custom Combination class. The Combination class

__init__() constructor method initializes an object to the first combination element, so there's

no need to call a next() function to get the first element:

see more please visit: https://homeofpdf.com

90

print "Making a custom Combination object "
c = Combination(n, k)
print "The first custom combination element is "
print c.as_string()

The custom as_string() function displays a Combination element delimited by the ^ (carat)

character so that the element can be easily distinguished from a tuple, a list, or another Python
collection. I used ^ because both combination and carat start with the letter c.

The custom my_choose() function is rather subtle. It would be a weak approach to implement a

choose function directly using the math definition because that would involve the calculation of
three factorial functions. The factorial of a number can be very large. For example, 20! is
2,432,902,008,176,640,000 and 1000! is an almost unimaginably large number.

The my_choose() function uses a clever alternate definition that is best explained by example:

choose(10, 7) = choose(10, 3) = (10 * 9 * 8) / (3 * 2 * 1) = 120

Expressed in words, to calculate a choose(n, k) value, first simplify k to an equivalent smaller k
if possible. Then the result is a division with k! on the bottom and n * n-1 * n-2 * . . * (n-k+1) on
the top.

Furthermore, the top and bottom parts of the division don't have to be computed fully. Instead,
the product of each pair of terms in the top can be iteratively divided by a term in the bottom.
For example:

choose(10, 3) = 10 * 9 / 3 = 30 * 8 / 2 = 120

The implementation of my_choose() is presented in Code Listing 18.

Code Listing 18: Program-Defined Choose() Function

def my_choose(n, k):

 if n < k:

 return 0

 if n == k:

 return 1;

 delta = k

 imax = n - k

 if k < n-k:

 delta = n-k

 imax = k

 ans = delta + 1

 for i in xrange(2, imax+1):

 ans = (ans * (delta + i)) / i

 return ans

The first two statements look for early exit conditions. The statements with delta and imax

simplify k if possible. The for loop performs the iterated pair-multiplication and division.

see more please visit: https://homeofpdf.com

91

Resources

For details about the Python itertools module that contains the combinations iterator, see

https://docs.python.org/2/library/itertools.html.

For details about the SciPy factorial() function, see

http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.misc.comb.html.

4.5 Combination successor

When working with mathematical combinations, a key operation is generating the successor to
a given combination element. For example, if n = 5, k = 3, and the n items are the integers (0, 1,
2, 3, 4), then there are 10 possible combination elements. When listed in lexicographical order,
the elements are:

(0, 1, 2)
(0, 1, 3)
(0, 1, 4)
(0, 2, 3)
(0, 2, 4)
(0, 3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)

Notice that if we removed the separating commas and interpreted each element as an ordinary
integer (like 124), the elements would be in ascending order (12 < 13 < 14 < 23 < . . < 234).

Code Listing 19: Combinations Successor Demo

comb_succ.py
Python 2.7

import numpy as np
import itertools as it

class Combination:
 # n == order, k == subset size

 def __init__(self, n, k):
 self.n = n
 self.k = k
 self.data = np.arange(self.k)

 def as_string(self):
 s = "^ "
 for i in xrange(self.k):
 s = s + str(self.data[i]) + " "
 s = s + "^"

see more please visit: https://homeofpdf.com

https://docs.python.org/2/library/itertools.html
http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.misc.comb.html

92

 return s

 def successor(self):
 if self.data[0] == self.n - self.k:
 return None

 res = Combination(self.n, self.k)
 for i in xrange(self.k):
 res.data[i] = self.data[i]

 i = self.k - 1
 while i > 0 and res.data[i] == self.n - self.k + i:
 i -= 1

 res.data[i] += 1

 for j in xrange(i, self.k - 1):
 res.data[j+1] = res.data[j] + 1

 return res

=====

print "\nBegin combination successor demo \n"

n = 5
k = 3
print "Setting n = " + str(n) + " k = " + str(k)
print ""

print "Iterating through all elements using itertools.combinations()"
comb_iter = it.combinations(xrange(n), k)
for c in comb_iter:
 print "c = " + str(c)
print ""

print "Iterating through all elements using custom Combination class"
c = Combination(n, k)
while c is not None:
 print "c = " + c.as_string()
 c = c.successor()
print ""

print "\nEnd demo \n"

C:\SciPy\Ch4> python comb_succ.py

Begin combination successor demo

Setting n = 5 k = 3

Iterating through all elements using itertools.combinations()

see more please visit: https://homeofpdf.com

93

c = (0, 1, 2)

c = (0, 1, 3)

c = (0, 1, 4)

c = (0, 2, 3)

c = (0, 2, 4)

c = (0, 3, 4)

c = (1, 2, 3)

c = (1, 2, 4)

c = (1, 3, 4)

c = (2, 3, 4)

Iterating through all elements using custom Combination class

c = ^ 0 1 2 ^

c = ^ 0 1 3 ^

c = ^ 0 1 4 ^

c = ^ 0 2 3 ^

c = ^ 0 2 4 ^

c = ^ 0 3 4 ^

c = ^ 1 2 3 ^

c = ^ 1 2 4 ^

c = ^ 1 3 4 ^

c = ^ 2 3 4 ^

End demo

The demo program begins by importing two modules:

import numpy as np
import itertools as it

Since the itertools module has many kinds of iterable objects, an alternative is to bring just

the permutations iterator into scope:

from itertools import combinations

The demo program defines a custom Combination class. In most cases, you will only want to

define a custom implementation of a function when you need to implement some specialized
behavior, or you want to avoid using a module that contains the function (such as itertools).

Program execution begins by setting up the number of items and the subset size:

n = 5
k = 3
print "Setting n = " + str(n) + " k = " + str(k)

It is customary to use n and k when working with mathematical combinations, so you should do
so unless you have a reason to use different variable names.

Next, the demo program iterates through all possible combination elements using an implicit
mechanism:

see more please visit: https://homeofpdf.com

94

print "Iterating through all elements using itertools.combinations()"
comb_iter = it.combinations(xrange(n), k)
for c in comb_iter:
 print "c = " + str(c)
print ""

The comb_iter iterator can emit all possible combination elements. In most situations, Python

iterators are designed to be called using a for item in iterator pattern, as shown. In other

programming languages, this pattern is sometimes distinguished from a regular for loop by

using a foreach keyword (C#) or special syntax like for x : somearr (Java).

Note that the itertools.combinations() iterator emits tuples, indicated by the parentheses

in the output, rather than a list or a NumPy array.

It is possible but awkward to explicitly call the combinations iterator using the next() function

like so:

comb_iter = it.combinations(xrange(n), k)
while True:
 try:
 c = comb_iter.next()
 print "c = " + str(c)
 except StopIteration:
 break
print ""

By design, iterator objects don't have an explicit way to signal the end of iteration, such as a
last() function or returning a special value like None. Instead, when an iterator object has no

more items to emit and a call to next() is made, a StopIteration exception is thrown. To

terminate a loop, you must catch the exception. Note that you could catch a general Exception

rather than the more specific StopIteration.

Next, the demo program iterates through all combination elements for n = 5 and k = 3 using the

successor() function of the program-defined Combination class:

print "Iterating through all elements using custom Combination class"
c = Combination(n, k)
while c is not None:
 print "c = " + c.as_string()
 c = c.successor()
print ""

The successor() function of the Combination class uses a traditional stopping technique by

returning None when there are no more permutation elements. The logic in the program-defined

successor() function is rather clever. Suppose n = 7, k = 4, and the current combination

element is:

^ 0 1 5 6 ^

see more please visit: https://homeofpdf.com

95

The next element in lexicographical order after 0256, using the digits 0 through 6, is 0345. The
successor algorithm first finds the index i of the left-most item that must change. In this case, i

= 1, which corresponds to item 2. The item at i is incremented, giving a preliminary result of

0356. Then the items to the right of the new value at i (56 in this case) are updated so that they

are all consecutive relative to the value at i (45 in this case), giving the final result of 0345.

Notice that it's quite easy for successor() to determine the last combination element because

it's the only one that has a value of n-k at index 0. For example, with n = 5 and k = 3, n-k = 2

and the last combination element is (2 3 4). Or, if n = 20 and k = 8, the last combination element

would be (12 13 14 . . . 19).

One potential advantage of using a program-defined Combination class rather than the

itertools.combinations() iterator is that you can easily define a predecessor() function.

For example, consider the functions in Code Listing 20:

Code Listing 20: A Combination Predecessor Function

def predecessor(self):
 if self.data[self.n - self.k] == self.n - self.k:
 return None
 res = Combination(self.n, self.k)
 res.data = np.copy(self.data)
 i = self.k - 1
 while i > 0 and res.data[i] == res.data[i-1] + 1:
 i -= 1
 res.data[i] -= 1; i += 1
 while i < k:
 res.data[i] = self.n - self.k + i
 i += 1
 return res

def last(self):
 res = Combination(self.n, self.k)
 nk = self.n - self.k
 for i in xrange(self.k):
 res.data[i] = nk + i
 return res

Then the following statements would iterate through all combination elements in reverse order:

c = Combination(n, k) # 0 1 2
c = c.last() # 2 3 4
while c is not None:
 print "c = " + c.as_string()
 c = c.predecessor()

Resources

For details about the Python itertools module, which contains the combinations iterator, see

https://docs.python.org/2/library/itertools.html.

The itertools.combinations iterator uses the Python yield mechanism. See

https://docs.python.org/2/reference/simple_stmts.html#yield.

see more please visit: https://homeofpdf.com

https://docs.python.org/2/library/itertools.html
https://docs.python.org/2/reference/simple_stmts.html#yield

96

4.6 Combination element

When working with mathematical combinations, it's often useful to be able to generate a specific
element. For example, if n = 5, k = 3, and the items are the integers (0, 1, 2, 3, 4), then there are
10 combination elements. When listed in lexicographical order, the elements are:

[0] (0, 1, 2)
[1] (0, 1, 3)
[2] (0, 1, 4)
[3] (0, 2, 3)
[4] (0, 2, 4)
[5] (0, 3, 4)
[6] (1, 2, 3)
[7] (1, 2, 4)
[8] (1, 3, 4)
[9] (2, 3, 4)

In many situations, you want to iterate through all possible combination elements, but in some
cases you may want to generate just a specific combination element. For example, a function
call like ce = comb_element(5) would store (0, 3, 4) into ce.

Using the built-in itertools.combinations iterator, the only way you can get a specific

combination element is to iterate from the first element until you reach the desired element. This
approach is impractical in all but the simplest scenarios. An efficient alternative is to define a
custom Combination class and element() function that use NumPy arrays for data.

Code Listing 21: Generating a Combination Element Directly

comb_elem.py
Python 2.7

import numpy as np # to make custom Combination class
import itertools as it # has combinations iterator
import scipy.special as ss # has comb() aka choose() function
import time # to time performance

class Combination:
 def __init__(self, n, k):
 self.n = n
 self.k = k
 self.data = np.arange(k)

 def as_string(self):
 s = "^ "
 for i in xrange(self.k):
 s = s + str(self.data[i]) + " "
 s = s + "^"
 return s

 @staticmethod
 def my_choose(n,k):
 if n < k: return 0

see more please visit: https://homeofpdf.com

97

 if n == k: return 1;

 delta = k
 imax = n - k
 if k < n-k:
 delta = n-k
 imax = k

 ans = delta + 1
 for i in xrange(2, imax+1):
 ans = (ans * (delta + i)) / i
 return ans

 def element(self, idx):
 maxM = Combination.my_choose(self.n, self.k) - 1

 ans = np.zeros(self.k, dtype=np.int64)
 a = self.n
 b = self.k
 x = maxM - idx
 for i in xrange(self.k):
 ans[i] = self.my_largestV(a, b, x)
 x = x - Combination.my_choose(ans[i], b)
 a = ans[i]
 b -= 1

 for i in xrange(self.k):
 ans[i] = (self.n - 1) - ans[i]

 result = Combination(self.n, self.k)
 for i in xrange(self.k):
 result.data[i] = ans[i]
 return result

 def my_largestV(self, a, b, x):
 v = a - 1
 while Combination.my_choose(v, b) > x:
 v -= 1
 return v

=====

def comb_element(n, k, idx):
 comb_it = it.combinations(xrange(n), k)
 i = 0
 for c in comb_it:
 if i == idx:
 return c
 break
 i += 1
 return None

=====

see more please visit: https://homeofpdf.com

98

print "\nBegin combination element demo \n"

n = 100
k = 8
print "Setting n = " + str(n) + " k = " + str(k)
ces = ss.comb(n, k)
print "There are " + str(ces) + " different combinations \n"

idx = 100000000

print "Element " + str(idx) + " using itertools.combinations() is "
start_time = time.clock()
ce = comb_element(n, k, idx)
end_time = time.clock()
elapsed_time = end_time - start_time
print ce
print "Elapsed time = " + str(elapsed_time) + " seconds "
print ""

c = Combination(n, k)
start_time = time.clock()
ce = c.element(idx)
end_time = time.clock()
elapsed_time = end_time - start_time
print "Element " + str(idx) + " using custom Combination class is "
print ce.as_string()
print "Elapsed time = " + str(elapsed_time) + " seconds "
print ""

print "\nEnd demo \n"

C:\SciPy\Ch4> python comb_elem.py

Begin combination element demo

Setting n = 100 k = 8

There are 186087894300.0 different combinations

Element 100000000 using itertools.combinations() is

(0, 1, 3, 19, 20, 44, 47, 90)

Elapsed time = 10.664860732 seconds

Element 100000000 using custom Combination class is

^ 0 1 3 19 20 44 47 90 ^

Elapsed time = 0.001009821625 seconds

End demo

see more please visit: https://homeofpdf.com

99

The demo program sets up a combinatorial problem with n = 100 items taken k = 8 at a time. So

the first combination element is (0, 1, 2, 3, 4, 5, 6, 7). The number of different combination
elements is calculated using the comb() function from the scipy.special module and is

186,087,894,300. Note that in virtually all other programming language libraries, the function to
calculate the number of different combination elements is called choose().

The demo calculates combination element 100,000,000 using a stand-alone, program-defined
function comb_element() that uses the built-in itertools.combinations iterator. This

approach took just over 10 seconds on a more or less standard desktop PC machine.

The demo calculates the same combination element using a program-defined Combination

class and element() function. This approach took just over 0.001 seconds. The point is that

Python iterators are designed to iterate well, but are not well suited for other scenarios.

The program-defined function comb_element() is:

def comb_element(n, k, idx):
 comb_it = it.combinations(xrange(n), k) # make an iterator
 i = 0 # index counter
 for c in comb_it: # request next combination element
 if i == idx: # are we there yet?
 return c; break # if so, return current element and exit loop
 i += 1 # otherwise bump counter
 return None # should never get here

The function doesn't check if parameter idx is valid. You could do so using a statement like:

if idx >= ss.comb(n, k): # error

The obvious problem with using an iterator is that there's no way to avoid walking through every
combination element until you reach the desired element. On the other hand, the program-
defined element() function in the Combination class uses a clever mathematical idea called

the combinadic to generate a combination element directly.

The regular decimal representation of numbers is based on powers of 10. For example, 7203 is
(7 * 10^3) + (2 * 10^2) + (0 * 10^1) + (3 * 10^0). The combinadic of a number is an alternate
representation based on the mathematical choose(n,k) function. For example, if n = 7 and k = 4,
the number 27 is 6521 in combinadic form because 27 = choose(6,4) + choose(5,3) +
choose(2,2) + choose(1,1). Using some rather remarkable mathematics, it's possible to use the
combinadic of a combination element index to compute the element directly.

Resources

For details about the Python itertools module that contains the combinations iterator, see

https://docs.python.org/2/library/itertools.html.

For information about mathematial combinadics, see
https://en.wikipedia.org/wiki/Combinatorial_number_system.

see more please visit: https://homeofpdf.com

https://docs.python.org/2/library/itertools.html
https://en.wikipedia.org/wiki/Combinatorial_number_system

100

Chapter 5 Miscellaneous Topics

This chapter deals with miscellaneous NumPy and SciPy functions and techniques. The goal is
to present representative examples so you'll be able to search the SciPy documentation more
efficiently. The following screenshot shows you where this chapter is headed.

Figure 25: Miscellaneous NumPy Functions Demo

In section 5.1, you'll learn how to use the NumPy searchsorted() binary search function and

how to interpret its unusual return value.

In section 5.2, you'll learn how to use SciPy to perform LU decomposition on a square matrix
and why decomposition is important.

In section 5.3, you'll learn about NumPy and SciPy statistics functions such as mean() and

std().

see more please visit: https://homeofpdf.com

101

In section 5.4, you'll learn how to generate random values from a specified distribution such as
the Normal or Poisson, and how to bin data using the histogram() function.

In section 5.5, you'll learn about SciPy miscellaneous functions such as the double factorial.

In section 5.6, you'll learn how to use special SciPy functions such as bernoulli() and

gamma().

5.1 Array binary search

To search a sorted array, you can use the NumPy searchsorted() function. The

searchsorted() function is quite different from the binary search functions in other languages.

Also, you must be careful when dealing with arrays that have floating-point values.

Code Listing 22: Array Binary Search Demo

binsearch.py
Python 2.7

import numpy as np

def my_bin_search(a, t, eps):
 lo = 0
 hi = len(a)-1
 while lo <= hi:
 mid = (lo + hi) / 2
 if np.isclose(a[mid], t, eps):
 return mid
 elif a[mid] < t:
 lo = mid + 1
 else:
 hi = mid - 1
 return -1

print "\nBegin array binary search demo \n"

arr = np.array([1.0, 3.0, 4.0, 6.0, 8.0, 11.0, 13.0])
print "Array arr is "
print arr
print ""

target = 11.0
print "Target value to find is " + str(target)
print ""

print "Searching array using np.searchsorted() function "
idx = np.searchsorted(arr, target)
if idx < len(arr) and arr[idx] == target:
 print "Target found at cell " + str(idx)
else:
 print "Target not found "

see more please visit: https://homeofpdf.com

102

print ""

print "Searching array using my_bin_search() function "
idx = my_bin_search(arr, target, 1.0e-5)
if idx == -1:
 print "Target not found "
else:
 print "Target found at cell = " + str(idx)
print ""

print "\nEnd demo \n"

C:\SciPy\Ch5> python binsearch.py

Begin array binary search demo

Array arr is

[1. 3. 4. 6. 8. 11. 13.]

Target value to find is 11.0

Searching array using np.searchsorted() function

Target found at cell 5

Searching array using my_bin_search() function

Target found at cell = 5

End demo

The demo program execution begins by setting up an array to search and a target value to
search for:

arr = np.array([1.0, 3.0, 4.0, 6.0, 8.0, 11.0, 13.0])
print "Array arr is "
print arr

target = 11.0
print "Target value to find is " + str(target)

If you need to search a very large array and the array is already sorted, a binary search is often
the best approach because it's much faster than a simple sequential search. For small arrays
(typically those with less than 100 cells), the marginally faster performance of a binary search is
often unimportant, and if your array is not already sorted, the time required to sort the array
usually wipes out any time saved by a binary search.

Next, the demo calls the NumPy searchsorted() function like so:

see more please visit: https://homeofpdf.com

103

print "Searching array using np.searchsorted() function "
idx = np.searchsorted(arr, target)
if idx < len(arr) and arr[idx] == target:
 print "Target found at cell " + str(idx)
else:
 print "Target not found "

The binary search functions in most programming languages return a -1 if the target is not
found, or return the cell index that holds the target value if the target is found. The
searchsorted() function works a bit differently.

A call to searchsorted(arr, x) returns the cell index in sorted array arr where x would be

inserted so that the array would remain sorted. For example, if arr = [2.0, 5.0, 6.0, 9.0]

and x = 3.0, then searchsorted(arr, x) returns 1 because the 3.0 would be inserted at cell

1 in order to keep the array sorted. If x = 11.0, then searchsorted(arr, x) would return 4

because the 11.0 would have to be inserted beyond the end of the array.

If x is a value that is already in the array, then searchsorted(arr, x) will return the cell where

the value is. Therefore, to determine if a value is in an array arr using the return value idx from

searchsorted(arr, x), you must first check that idx is less than the length of arr and then

check to see if the value at arr[idx] equals the target value.

If the search array holds floating-point values, using searchsorted() is somewhat risky. For

example, if the target value is 11.0000000000000001 (there are 15 zeros), it would not be found
by the demo program, but a slightly less precise target of 11.000000000000001 (there are 14
zeros) would be found.

The lesson is that, when searching a sorted array of floating-point values using the NumPy
searchsorted(), you don't have control over how the function determines floating-point value

equality, so you may want to write a program-defined binary search function like
my_bin_search() in the demo program:

def my_bin_search(a, t, eps):
 lo = 0
 hi = len(a)-1
 while lo <= hi:
 mid = (lo + hi) / 2
 if np.isclose(a[mid], t, eps):
 return mid
 elif a[mid] < t:
 lo = mid + 1
 else:
 hi = mid - 1
 return -1 # not found

The program-defined function my_bin_search() uses a standard iterative (as opposed to

recursive) binary search algorithm with early check for equality, combined with an epsilon
parameter to control how close two floating-point values must be for them to be evaluated as
equal.

see more please visit: https://homeofpdf.com

104

Resources

For details about the NumPy searchsorted() function, see

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.searchsorted.html.

For information about the array binary search algorithm used by the demo, see
https://en.wikipedia.org/wiki/Binary_search_algorithm.

5.2 Matrix decomposition

Matrix decomposition is the process of breaking a matrix down into two smaller matrices that,
when multiplied together, give the original matrix (or a slightly rearranged version of the
original). An analogy in regular arithmetic is breaking down the number 21 into 3 and 7 because
3 * 7 = 21.

Matrix decomposition, also called matrix factorization, is rarely used by itself, but decomposition
is the basis for efficient algorithms that find the inverse and the determinant of a matrix.

There are several kinds of matrix decomposition. The most common form is called lower-upper
decomposition for reasons that will become clear shortly. The scipy.linalg.lu() function

performs lower-upper matrix decomposition. It's sometimes useful to write a program-defined
matrix decomposition function.

Code Listing 23: Matrix Decomposition Demo

decomposition.py
Python 2.7

import numpy as np
import scipy.linalg as spla

def my_decomp(m):
 # LU decompose matrix m using Crout's algorithm
 n = len(m)
 toggle = 1 # row swapping parity
 lum = np.copy(m) # result matrix
 perm = np.arange(n) # row permutation info

 for j in xrange(n-1):
 max = abs(lum[j,j])
 piv = j

 for i in xrange(j+1, n): # find pivot row
 xij = abs(lum[i,j])
 if (xij > max):
 max = xij
 piv = i

 if (piv != j):
 for k in xrange(n): # swap rows j, piv

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.searchsorted.html
https://en.wikipedia.org/wiki/Binary_search_algorithm

105

 t = lum[piv,k]
 lum[piv,k] = lum[j,k]
 lum[j,k] = t

 perm[j], perm[piv] = perm[piv], perm[j]
 toggle = -toggle

 xjj = lum[j,j]
 if xjj != 0.0:
 for i in xrange(j+1, n):
 xij = lum[i,j] / xjj
 lum[i,j] = xij
 for k in xrange(j+1, n):
 lum[i,k] = lum[i,k] - (xij * lum[j,k])

 return (lum, perm, toggle)

=====

print "\nBegin matrix decomposition demo \n"

m = np.matrix([[3., 2., 1., 3.],
 [5., 6., 4., 2.],
 [7., 9., 8., 1.],
 [4., 2., 3., 0.]])

print "Original matrix m = "
print m

print "\nDecomposing m using scipy.linalg.lu() "
(perm, low, upp) = spla.lu(m)

print "\nResult permutation matrix is "
print perm

print "\nResult lower matrix is "
print low

print "\nResult upper matrix is "
print upp

prod = np.dot(low, upp)
print "\nProduct of lower * upper is "
print prod

print "\n----------"

print "\nDecomposing m using my_decomp() "
(lum, perm, t) = my_decomp(m)

print "\nResult row swap parity (+1 / -1) = " + str(t)

print "\nResult permutation array is "
print perm

see more please visit: https://homeofpdf.com

106

print "\nResult combined LU matrix = "
print lum

print "\nEnd demo\n"

C:\SciPy\Ch5> python decomposition.py

Begin matrix decomposition demo

Original matrix m =

[[3. 2. 1. 3.]

 [5. 6. 4. 2.]

 [7. 9. 8. 1.]

 [4. 2. 3. 0.]]

Decomposing m using scipy.linalg.lu()

Result permutation matrix is

[[0. 0. 1. 0.]

 [0. 0. 0. 1.]

 [1. 0. 0. 0.]

 [0. 1. 0. 0.]]

Result lower matrix is

[[1. 0. 0. 0.]

 [0.57142857 1. 0. 0.]

 [0.42857143 0.59090909 1. 0.]

 [0.71428571 0.13636364 1. 1.]]

Result upper matrix is

[[7. 9. 8. 1.]

 [0. -3.14285714 -1.57142857 -0.57142857]

 [0. 0. -1.5 2.90909091]

 [0. 0. 0. -1.54545455]]

Product of lower * upper is

[[7. 9. 8. 1.]

 [4. 2. 3. 0.]

 [3. 2. 1. 3.]

 [5. 6. 4. 2.]]

Decomposing m using my_decomp()

Result row swap parity (+1 / -1) = 1

Result permutation array is

see more please visit: https://homeofpdf.com

107

[2 3 0 1]

Result combined LU matrix =

[[7. 9. 8. 1.]

 [0.57142857 -3.14285714 -1.57142857 -0.57142857]

 [0.42857143 0.59090909 -1.5 2.90909091]

 [0.71428571 0.13636364 1. -1.54545455]]

End demo

The demo program begins by bringing the scipy.linalg submodule into scope:

import numpy as np
import scipy.linalg as spla

After creating the source matrix m and displaying its values, the matrix is decomposed using the

linalg.lu() function like so:

print "\nDecomposing m using scipy.linalg.lu() "
(perm, low, upp) = spla.lu(m)

The return result is a tuple with three items. The first item, perm, will be explained shortly. The

second and third items are the decomposed matrices. For the demo, return matrix low is:

[[1. 0. 0. 0.]
 [0.57142857 1. 0. 0.]
 [0.42857143 0.59090909 1. 0.]
 [0.71428571 0.13636364 1. 1.]]

Notice that the relevant values are in the lower part of the matrix, and there are dummy 1.0
values on the main diagonal. The return matrix upp is:

[[7. 9. 8. 1.]
 [0. -3.14285714 -1.57142857 -0.57142857]
 [0. 0. -1.5 2.90909091]
 [0. 0. 0. -1.54545455]]

Here, all the relevant values are on the main diagonal and above. Next, the demo multiplies low

and upp using the NumPy dot() function and displays the resulting matrix:

[[7. 9. 8. 1.]
 [4. 2. 3. 0.]
 [3. 2. 1. 3.]
 [5. 6. 4. 2.]]

The original matrix is:

see more please visit: https://homeofpdf.com

108

[[3. 2. 1. 3.]
 [5. 6. 4. 2.]
 [7. 9. 8. 1.]
 [4. 2. 3. 0.]]

Notice that the product of matrices low and upp is almost the original matrix. Rows 0 and 1 have

been swapped and rows 2 and 4 have been swapped. The swap information is contained in the
perm matrix result:

[[0. 0. 1. 0.]
 [0. 0. 0. 1.]
 [1. 0. 0. 0.]
 [0. 1. 0. 0.]]

This may be interesting, but what's the point? As it turns out, the lower and upper matrices of a
decomposition can be used to easily calculate the determinant of the original matrix, and can
also be used to compute the inverse of the original matrix.

The determinant of a matrix is the product of the parity of row swaps times the product of the
diagonal elements of the upper matrix. The inverse of a matrix can be computed using a short
helper function that performs what is called elimination on the lower and upper matrices.

This is exactly how SciPy calculates the determinant and inverse of a matrix. It may seem odd
to use such an indirect approach, but decomposing a matrix and then finding the determinant or
the inverse is much easier and faster than finding the determinant or inverse directly.

The LU decomposition functions in many other libraries return different values than the
scipy.linalg.lu() function. The demo program implements a custom my_decomp()

decomposition function that returns values in a different format. The call to my_decomp() is:

print "\nDecomposing m using my_decomp() "
(lum, perm, t) = my_decomp(m)

The program-defined function returns a tuple of three items. The first is a combined lower-upper
matrix (instead of separate lower and upper matrices). The second item is a permutation array
(instead of a matrix). And the third item is a toggle parity where +1 indicates an even number of
row swaps and -1 indicates an odd number of row swaps. For the demo, the combined lower-
upper matrix result from my_decomp() is:

 [[7. 9. 8. 1.]
 [0.57142857 -3.14285714 -1.57142857 -0.57142857]
 [0.42857143 0.59090909 -1.5 2.90909091]
 [0.71428571 0.13636364 1. -1.54545455]]

These are the same values from linalg.lu() except combined into a single matrix to save

space. The result perm array from my_decomp() is:

[2 3 0 1]

see more please visit: https://homeofpdf.com

109

This contains essentially the same information as the perm matrix return from linalg.lu(),

indicating that if the lower and upper matrices were extracted from the combined LU matrix, and
then multiplied together, the result would be the original matrix with rows 0 and 2 swapped and
rows 1 and 3 swapped.

Resources

For general information about matrix LU decomposition, see
https://en.wikipedia.org/wiki/LU_decomposition.

For details about the SciPy linalg.lu() decomposition function, see

http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.linalg.lu.html.

5.3 Statistics

The NumPy and SciPy libraries have a wide range of statistics functions that work with arrays
and matrices. Representative examples include the mean(), std(), median(), and corrcoef()

functions.

Code Listing 24: Statistics Functions Demo

statistics.py
Python 2.7

import numpy as np
import math

def my_corr(x, y):
 n = len(x)
 mx = np.mean(x)
 my = np.mean(y)

 num = 0.0
 for i in xrange(n):
 num += (x[i] - mx) * (y[i] - my)
 ssx = 0.0
 ssy = 0.0
 for i in xrange(n):
 ssx += math.pow(x[i] - mx, 2)
 ssy += math.pow(y[i] - my, 2)

 denom = math.sqrt(ssx) * math.sqrt(ssy)
 return num / denom

=====

print "\nBegin statistics demo \n"

ability = np.array([0., 1., 3., 4., 4., 6.])
payrate = np.array([15., 15., 25., 20., 30., 33.])

print "ability array = "

see more please visit: https://homeofpdf.com

https://en.wikipedia.org/wiki/LU_decomposition
http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.linalg.lu.html

110

print ability
print ""

print "payrate array = "
print payrate
print ""

ma = np.median(ability)
print "The median ability score is "
print ma
print ""

s_sd = np.std(payrate, ddof=1)
print "The sample standard deviation of payrates is "
print s_sd
print ""

pr = np.corrcoef(ability, payrate)
print "Pearson r calculated using np.corrcoef() = "
print pr
print ""

pr = my_corr(ability, payrate)
print "Pearson r calculated using my_corr() = "
print "%1.8f" % pr

print "\nEnd demo \n"

C:\SciPy\Ch5> python statistics.py

Begin statistics demo

ability array =

[0. 1. 3. 4. 4. 6.]

payrate array =

[15. 15. 25. 20. 30. 33.]

The median ability score is

3.5

The sample standard deviation of payrates is

7.61577310586

Pearson r calculated using np.corrcoef() =

[[1. 0.88700711]

 [0.88700711 1.]]

Pearson r calculated using my_corr() =

0.88700711

End demo

see more please visit: https://homeofpdf.com

111

The demo program execution begins by setting up two parallel arrays. The first array represents
the ability scores of six people. The second array represents the pay rates of the six people:

ability = np.array([0., 1., 3., 4., 4., 6.])
payrate = np.array([15., 15., 25., 20., 30., 33.])

Next, after displaying the values in the two arrays, the demo illustrates the use of the NumPy
median() and std() functions:

ma = np.median(ability)
print "The median ability score is "
print ma

s_sd = np.std(payrate, ddof=1)
print "The sample standard deviation of payrates is "
print s_sd

The median is the middle value in an array or, as in this example when there isn't a single
middle value, the average of the two values closest to the middle.

By default, the NumPy std() function returns the population standard deviation of its array

argument. If you want the sample standard deviation, you can use the ddof (delta degrees of

freedom) parameter with value = 1.

Next, the demo computes and displays the Pearson r coefficient of correlation using the
corrcoef() function:

pr = np.corrcoef(ability, payrate)
print "Pearson r calculated using np.corrcoef() = "
print pr

The correlation coefficient is a value between -1.0 and +1.0, the magnitude indicating the
strength of the linear relation and the sign indicating the direction of the relationship. Notice the
output is in the form of a matrix with the coefficient value (0.88700711) duplicated on the minor
diagonal.

The demo concludes by calling a program-defined function my_corr() that also calculates the

Pearson r coefficient of correlation:

pr = my_corr(ability, payrate)
print "Pearson r calculated using my_corr() = "
print "%1.8f" % pr

There's no advantage to using the program-defined correlation function. The point is that
NumPy and SciPy have many built-in statistics functions, but in the rare situations when you
need to implement a custom statistics function, NumPy and SciPy have all the tools you need.

Resources

For a list of the NumPy statistics functions, see
http://docs.scipy.org/doc/numpy-1.10.0/reference/routines.statistics.html.

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.0/reference/routines.statistics.html

112

For an explanation of the Pearson correlation coefficient that was used for my_corr(), see

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient.

For information about the NumPy corrcoef() function, see

http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.corrcoef.html.

5.4 Random numbers

The NumPy library has a wide range of functions that can generate pseudo-random values from
a specified distribution type. Representative examples include the random.normal(),
random.poisson(), random.exponential(), and random.logistic() functions.

Code Listing 25: Random Sampling Demo

distributions.py
Python 2.7

import numpy as np
import math # for custom Gaussian class
import random # for custom Gaussian class

class Gaussian:
 # generate using Box-Muller algorithm
 def __init__(self, mean, sd, seed):
 self.mean = mean
 self.sd = sd
 self.rnd = random.Random(seed)

 def next(self):
 two_pi = 2.0*3.14159265358979323846
 u1 = self.rnd.random() # [0.0 to 1.0)
 while u1 < 1.0e-10:
 u1 = self.rnd.random()
 u2 = self.rnd.random()
 z = math.sqrt(-2.0 * math.log(u1)) * math.cos(two_pi * u2)
 return z * self.sd + self.mean

=====

print "\nBegin distributions demo \n"

np.random.seed(0)
mean = 0.0
std = 1.0
n = 100

print "Setting mean = " + str(mean)
print "Setting std = " + str(std)
print ""

print "Generating " + str(n) + " Normal values "

see more please visit: https://homeofpdf.com

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://docs.scipy.org/doc/numpy-1.10.0/reference/generated/numpy.corrcoef.html

113

values = np.zeros(n)
for i in xrange(n):
 x = np.random.normal(mean, std)
 values[i] = x

print "Normally distributed random values are: "
print values
print ""

bins = 5
print "Constructing histogram data using " + str(bins) + " bins "
(histo, edges) = np.histogram(values, bins=5)

print "Count of values in each bin: "
print histo
print ""

print "The beginning and end values of each bin: "
print edges
print ""

print "Generating 5 values using custom Gaussian class: "
g = Gaussian(0.0, 1.0, 0)
for i in xrange(5):
 x = g.next()
 print "%1.5f" % x,
print ""

print "\nEnd demo \n"

C:\SciPy\Ch5> python distributions.py

Begin distributions demo

Setting mean = 0.0

Setting std = 1.0

Generating 100 Normal values

Normally distributed random values are:

[1.76405235 0.40015721 0.97873798 2.2408932 1.86755799 -0.97727788

 0.95008842 -0.15135721 -0.10321885 0.4105985 0.14404357 1.45427351

 0.76103773 0.12167502 0.44386323 0.33367433 1.49407907 -0.20515826

 0.3130677 -0.85409574 -2.55298982 0.6536186 0.8644362 -0.74216502

 2.26975462 -1.45436567 0.04575852 -0.18718385 1.53277921 1.46935877

 0.15494743 0.37816252 -0.88778575 -1.98079647 -0.34791215 0.15634897

 1.23029068 1.20237985 -0.38732682 -0.30230275 -1.04855297 -1.42001794

 -1.70627019 1.9507754 -0.50965218 -0.4380743 -1.25279536 0.77749036

 -1.61389785 -0.21274028 -0.89546656 0.3869025 -0.51080514 -1.18063218

 -0.02818223 0.42833187 0.06651722 0.3024719 -0.63432209 -0.36274117

 -0.67246045 -0.35955316 -0.81314628 -1.7262826 0.17742614 -0.40178094

 -1.63019835 0.46278226 -0.90729836 0.0519454 0.72909056 0.12898291

see more please visit: https://homeofpdf.com

114

 1.13940068 -1.23482582 0.40234164 -0.68481009 -0.87079715 -0.57884966

 -0.31155253 0.05616534 -1.16514984 0.90082649 0.46566244 -1.53624369

 1.48825219 1.89588918 1.17877957 -0.17992484 -1.07075262 1.05445173

 -0.40317695 1.22244507 0.20827498 0.97663904 0.3563664 0.70657317

 0.01050002 1.78587049 0.12691209 0.40198936]

Constructing histogram data using 5 bins

Count of values in each bin:

[6 20 35 27 12]

The beginning and end values of each bin

[-2.55298982 -1.58844093 -0.62389204 0.34065685 1.30520574 2.26975462]

Generating 5 values using custom Gaussian class:

0.02905 -0.07370 -0.95775 -0.22946 -1.05415

End demo

The demo program begins by preparing to generate 100 random values that come from a
Normal (also called Gaussian or bell-shaped) distribution with mean = 0.0 and standard
deviation = 1.0.

np.random.seed(0)
mean = 0.0
std = 1.0
n = 100

Setting the global random seed, in this case to an arbitrary value of 0, means that the program
results will be the same every time the program is run. For a Normal distribution with mean =
0.0, the vast majority of values will be between (-3 * std) and (+3 * std), so we expect all
generated values to be in the range [-3.0, +3.0].

Next, the demo program creates an array with 100 cells and fills each cell with a Normal
distributed random value:

print "Generating " + str(n) + " Normal values "
values = np.zeros(n)
for i in xrange(n):
 x = np.random.normal(mean, std)
 values[i] = x

An alternative approach is to create the array directly by supplying a value for the optional size

parameter: values = np.normal(mean, std, 100). After displaying the 100 values, the

demo program constructs histogram information from the values:

bins = 5
print "Constructing histogram data using " + str(bins) + " bins "
(histo, edges) = np.histogram(values, bins=5)

see more please visit: https://homeofpdf.com

115

The NumPy histogram() function returns a tuple that has two arrays. The first array stores the

count of values in each bin. The second array stores the boundary values for each bin. This is
clearer when you examine the output. The statements:

print histo
print edges

produce the following output:

Count of values in each bin:
[6 20 35 27 12]

The beginning and end values of each bin:
[-2.55298982 -1.58844093 -0.62389204 0.34065685 1.30520574 2.26975462]

This means there were 6 values in the interval [-2.55, -1.58), 20 values in [-1.58, -0.62), 35
values in [-0.62, 0.34), 27 values in [0.34, 1.30), and 12 values in [1.30, 2.26]. If you visually
scan the 100 values, you can see the smallest value generated is -2.55298982 and the largest
is 2.26975462.

The demo program concludes by showing you how to implement a Normal distribution value
generator without using NumPy via a program-defined class named Gaussian. The class

constructor accepts a mean, a standard deviation, and a seed:

class Gaussian:
 def __init__(self, mean, sd, seed):
 self.mean = mean
 self.sd = sd
 self.rnd = random.Random(seed)

The class uses a Random object from the Python random module. The next() function uses the

clever Box-Muller algorithm to transform two uniform random values into one that is Normal.

def next(self):
 two_pi = 2.0*3.14159265358979323846
 u1 = self.rnd.random() # [0.0 to 1.0)
 while u1 < 1.0e-10:
 u1 = self.rnd.random()
 u2 = self.rnd.random()
 z = math.sqrt(-2.0 * math.log(u1)) * math.cos(two_pi * u2)
 return z * self.sd + self.mean

The while loop in function next() guarantees that variable u1 is not a very small value so that

log(u1) won't fail. This example illustrates that it's relatively easy to implement a custom

generator in rare situations where NumPy doesn't have the generator you need.

Resources

For a list of NumPy random sampling functions, see
http://docs.scipy.org/doc/numpy-1.10.0/reference/routines.random.html.

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.0/reference/routines.random.html

116

For details about the NumPy histogram() function, see

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.histogram.html.

For information about the Box-Muller algorithm, see
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform.

5.5 Double factorial

The SciPy library has a collection of useful mathematical functions in the scipy.misc

submodule. Examples include the misc.derivative(), misc.logsumexp(), and

misc.factorial2() functions.

Code Listing 26: Double Factorial Demo

doublefact.py
Python 2.7

import scipy.misc as sm

def my_double_fact(n):
 result = 1
 stop = 2 # for even n
 if n % 2 == 0:
 stop = 1 # odd n
 for i in xrange(n, stop-1, -2):
 result *= i
 return result

=====

print "\nBegin double factorial function demo \n"

n = 3
dfact = sm.factorial2(n)
print "Double factorial of " + str(n) + " using misc.factorial2() = "
print str(dfact)
print ""

n = 4
dfact = sm.factorial2(n)
print "Double factorial of " + str(n) + " using misc.factorial2() = "
print str(dfact)
print ""

n = 4
dfact = my_double_fact(n)
print "Double factorial of " + str(n) + " using my_double_fact() = "
print str(dfact)
print ""

print "\nEnd demo \n"

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.histogram.html
https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

117

C:\SciPy\Ch5> python doublefact.py

Begin double factorial function demo

Double factorial of 3 using misc.factorial2() =

3.0

Double factorial of 4 using misc.factorial2() =

8.0

Double factorial of 4 using my_double_fact() =

8

End demo

The demo program illustrates the double factorial function, which is best explained by example.
The double factorial of n is often abbreviated as n!!, much like n! is an abbreviation for the
regular factorial function.

7!! = 7 * 5 * 3 * 1 = 105
6!! = 6 * 4 * 2 = 48

In words, the double factorial is like the regular factorial function except every other term in the
product is skipped in the product. The double factorial function is used as a helper in many
important mathematical functions such as the specialized gamma function. The demo program
begins by importing the scipy.misc submodule:

import scipy.misc as sm

Note that the factorial2() function is also in the scipy.special submodule. After import, the

factorial2() function can be called like so:

n = 3
dfact = sm.factorial2(n)
print "Double factorial of " + str(n) + " using misc.factorial2() = "
print str(dfact)

The factorial2() function has an optional parameter exact that, if set to False, allows the

function to do a fast approximation rather than a slower exact calculation.

The demo implements a program-defined version of the double factorial function named
my_double_fact(). There's no advantage to a program-defined version unless you need some

sort of specialized behavior, or wish to avoid importing a module for some reason.

see more please visit: https://homeofpdf.com

118

Resources

For details about the misc.factorial2() function, see

http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.misc.factorial2.html.

For information about the double factorial function, including alternate definitions, see
https://en.wikipedia.org/wiki/Double_factorial.

5.6 The gamma function

The SciPy library has a large collection of mathematical functions in the scipy.special

submodule. Examples include elliptic functions, Bessel functions, advanced statistical functions,
and gamma functions.

Code Listing 27: Gamma and Special Gamma Demo

gamma.py
Python 2.7

import scipy.special as ss
import math

def my_special_gamma(n):
 # return gamma(n/2)
 if n % 2 == 0: # n/2 is an integer
 return math.factorial(n / 2 - 1)
 else:
 root_pi = math.sqrt(math.pi)
 return root_pi * ss.factorial2(n-2) / math.pow(2.0, (n-1) / 2.0)

=====

print "\nBegin gamma function demo \n"

n = 3
n_fact = math.factorial(n)
print "Factorial of " + str(n) + " = " + str(n_fact)

n = 4
n_fact = math.factorial(n)
print "Factorial of " + str(n) + " = " + str(n_fact)
print ""

n = 5
n_gamma = ss.gamma(n)
print "Gamma of " + str(n) + " using special.gamma() = "
print str(n_gamma)
print ""

n = 4.5
n_gamma = ss.gamma(n)
print "Gamma of " + str(n) + " using special.gamma() = "

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.misc.factorial2.html
https://en.wikipedia.org/wiki/Double_factorial

119

print str(n_gamma)
print ""

n = 9
s_gamma = my_special_gamma(n)
print "Gamma of " + str(n) + "/2 using my_special_gamma() = "
print str(s_gamma)
print ""

print "\nEnd demo \n"

C:\SciPy\Ch5> python gamma.py

Begin gamma function demo

Factorial of 3 = 6

Factorial of 4 = 24

Gamma of 5 using special.gamma() =

24.0

Gamma of 4.5 using special.gamma() =

11.6317283966

Gamma of 9/2 using my_special_gamma() =

11.6317283966

End demo

The factorial function applies only to integers. The gamma function extends the factorial function
to real numbers. For example, factorial(3) = 3 * 2 * 1 = 6 and factorial(4) = 4 * 3 * 2 * 1 = 24.
However factorial(3.5) is not defined.

For integer arguments, gamma(n) = factorial(n-1). For example, gamma(5) = factorial(4) = 24.
For non-integer arguments, such as n = 4.5, the gamma() function returns a value between
factorial(3) and factorial(4).

Without a routine like the SciPy special.gamma() function, calculating the gamma value for an

arbitrary argument like n = 4.68 is difficult. However, there is a relatively easy way to calculate
gamma for arguments that are integers divided by two. If n is even, then n/2 is an integer and
gamma can be calculated using factorial. For example, gamma(10/2) = gamma(5.0) =
factorial(4). If n is odd, there is a special equation that can be used. For example, if n = 9 then
gamma(9/2) = gamma(4.5) has a shortcut solution. These types of arguments are called
positive half-integers. But for all other arguments, calculating gamma is difficult.

The demo program begins by importing the scipy.special submodule and the Python math

module:

import scipy.special as ss
import math

see more please visit: https://homeofpdf.com

120

Next, the demo program calculates and displays the factorial for n=3 and n=4 in order to

illustrate the relationship between special.gamma(n) and math.factorial(n):

n = 3
n_fact = math.factorial(n)
print "Factorial of " + str(n) + " = " + str(n_fact)
n = 4
n_fact = math.factorial(n)
print "Factorial of " + str(n) + " = " + str(n_fact)

Next, the demo calculates and displays the value of gamma(5):

n = 5
n_gamma = ss.gamma(n)
print "Gamma of " + str(n) + " using special.gamma() = "
print str(n_gamma)

The output is 24.0, verifying that if n is an integer, then gamma(n) = factorial(n-1). Next, the
demo calculates and displays the value of gamma(4.5):

n = 4.5
n_gamma = ss.gamma(n)
print "Gamma of " + str(n) + " using special.gamma() = "
print str(n_gamma)

The point here is that gamma(4.5) = 11.63 is a value between factorial(3) = 6 and factorial(4) =
24.

The demo program implements a program-defined function my_special_gamma() that works

with positive half-integers:

def my_special_gamma(n):
 # return gamma(n/2)
 if n % 2 == 0: # n/2 is an integer
 return math.factorial(n / 2 - 1)
 else:
 root_pi = math.sqrt(math.pi)
 return root_pi * ss.factorial2(n-2) / math.pow(2.0, (n-1) / 2.0)

For odd values of n, the function's return value is not at all obvious and comes from math

theory. Interestingly, even though the scipy.special submodule has 17 functions that are

related to gamma(), there is no dedicated gamma function for positive half-integer arguments.

Resources

For a complete list of the 300+ SciPy special functions, see
http://docs.scipy.org/doc/scipy/reference/special.html.

For information about the specialized gamma function for positive half-integers, see
https://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function.

see more please visit: https://homeofpdf.com

http://docs.scipy.org/doc/scipy/reference/special.html
https://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function

	Table of Contents
	The Story behind the Succinctly Series of Books
	About the Author
	Chapter 1 Getting Started
	1.1 Installing SciPy and NumPy
	Installing Python, NumPy, and SciPy separately

	1.2 Editing SciPy programs
	1.3 Program structure
	1.4 Quick reference program

	Chapter 2 Arrays
	2.1 Array initialization
	2.2 Array searching
	2.3 Array sorting
	2.4 Array shuffling

	Chapter 3 Matrices
	3.1 Matrix initialization
	3.2 Matrix multiplication
	3.3 Matrix transposition
	3.4 Matrix determinants
	3.5 Matrix inversion
	3.6 Matrix loading from file

	Chapter 4 Combinatorics
	4.1 Permutations
	4.2 Permutation successor
	4.3 Permutation element
	4.4 Combinations
	4.5 Combination successor
	4.6 Combination element

	Chapter 5 Miscellaneous Topics
	5.1 Array binary search
	5.2 Matrix decomposition
	5.3 Statistics
	5.4 Random numbers
	5.5 Double factorial
	5.6 The gamma function

