
see more please visit: https://homeofbook.com

Introduction
1.1 Motivation
1.2 Target
1.3 About this document
1.4 Interfaces
1.5 Action
Ideology Protocol
2.1 Elements of The Integrated Networks System
2.2 Action Model
2.3 Host Computer Software
2.4 Interfaces
2.5 Communication with Other Protocols
2.6 Reliable Communications
2.7 Installation connection and cancellation of its connection
2.8 Data Switching
2.9 Priority and Security
2.10 Principle Sustainability
Specification for ProtocolFunctions
3.1 Heading Format
3.2 Title 3.2
Sequence Numbers3.4 Installation Of Connection
3.5 Connection Closure
3.6 Priority and Security
3.7 Data Design
3.8 Interfaces
3.9 Event Processing

Dictionary
links

see more please visit: https://homeofbook.com

Introduction
The Transmission Control Protocol (TCP) is designed to be used as a reliable

protocol for communication between host computers in communication
computer networks with packet switching, as well as in systems that combine

such networks.
This document describes the functions that the transmission management
protocol should perform, the program that implements the protocol, and its
interface with programs or users who need its services.

1.1 Motivation
Computer communications systems are playing an increasingly important
role in military, government and civilian applications. This document
primarily highlights the requirements for computer communications in the
military field, and especially for sustainability in the face of insufficient
communication reliability and overload capabilities.
At a time when strategic and tactical networks of computer communications
are emerging and disappearing, it is important to provide the means to
combine them, as well as standard protocols of communication between

see more please visit: https://homeofbook.com

processes that would support a wide range of applications. Anticipating the
need for such standards, the Office of the Defence Secretariat for Research
and Development presented the Transmission Control Protocol (TCP)
protocol described here, based on the standardization of the DoD protocol of
communication between processes.
TCP is a direct connectivity reliability protocol designed for a multi-layered
hierarchy of protocols that support firewall applications. The TCP protocol
ensures the reliability of communications between pairs of processes on host
computers included in various computer communication networks, which are
combined into a single system.
With regard to the reliability of lower-than-TCP protocols, very modest
requests have been made. TCP suggests that it may get a simple, potentially
unreliable service for its datagrams from lower-level protocols. In principle,
the TCP protocol should be operational on a large set of communication
systems, from cable connections to networks with switching packages or
electrical circuits.
The TCP protocol is based on concepts first described by the authors Cerf
and Kahn in the paper. TCP occupies a multi-level protocol architecture
niche directly above the Internet protocol, which allows the TCP protocol to
send and receive segments of variable-length information enclosed in the
Internet datagram shell. The Internet datagram provides tools to address the
sender and recipient of TCP segments on various networks. The Internet
Protocol also performs any fragmentation and assembly of TCP segments
required for transmission and delivery through multiple networks and
intermediate gateways. The Internet Protocol also processes information
about priority, security classification, and delineation of TCP segments. So
this information can be transmitted directly through multiple networks.

Protocol levels
Upper level
TCP
протокол Internet
Communications network

Fig. 1
Most of this document is written in connection with the implementations of

see more please visit: https://homeofbook.com

the TCP protocol, which, together with higher-level protocols, are present on
the host computer. Some computer systems will be integrated into the
network through the main computers containing TCP and Internet levels
protocols, as well as specific network software.
The TCP specification describes its interface with higher-level protocols,
which were feasible even in the case of the main computer, if the appropriate
protocol of communication between the host computer and the main
computer is implemented.

1.2 Target
The TCP protocol is required to provide a reliable service for inter-process
communications in a multi-network system. The TCP protocol should be a
general protocol for communication between host computers in multiple

networks.
1.3 About this document

This document provides a description of the behavior expected of any
implementation of the TCP protocol, as well as its interactions with both

higher-level protocols and TCP protocols on other computers. The rest of this
chapter gives a very brief overview of the protocol and its interfaces. Chapter
2 summarizes the ideological basis for the TCP protocol. Chapter 3 provides
both a detailed description of the behavior required of the TCP protocol when

different events appear (arrival of new segments, user request, errors, etc.)
and descriptions of the details of TCP segment formats.

1.4 Interfaces
The TCP protocol interacts on the one hand with the user or application

program, and on the other - with a lower-level protocol, such as the Internet
protocol.

We explain the interface between the application process and the TCP
protocol with acceptable detail. This interface consists of a set of calls that
are similar to the operating system calls provided to the file management
application process. For example, in this case, there are calls to open and
close connections, to send and receive data on established connections. It is
also expected that the TCP protocol will be able to interact asynchronously
with applications. While TCP protocol developers are given considerable
freedom to create interfaces that correspond to the properties of a particular
operating system, any acceptable implementation requires some mandatory
minimum interface functions between the TCP protocol and the user.

see more please visit: https://homeofbook.com

The interface between the TCP protocol and the lower-level protocols is
much less given, except that there must be some mechanism by which the
two levels can asynchronically communicate with each other. It is generally
believed that the lower-level protocol sets this interface. The TCP protocol is
designed to work with a very diverse environment of connected computer
networks. This document assumes that the lower-level protocol is the
Internet.

1.5 Action
As mentioned earlier, the primary goal of the TCP protocol is to provide a
reliable, secure service for logical chains or connections between pairs of

processes. To provide such a service based on less reliable Internet
communications, the system must have the capacity to work in the following

areas:
basic data transfer
Reliability
Thread management
Channel separation
Working with connections
Priority and safety

The main actions of the TCP protocol in each of these areas are described in
the following paragraphs.
Basic data transmission
TCP protocol is able to transmit continuous streams of octets between its
customers in both directions, packing a certain number of octets into
segments for transmission through Internet systems.
Sometimes users need to make sure that all the data they send to TCP has
already been sent. Push is defined for this purpose. To make sure that the data
sent to the TCP protocol is indeed transferred, the sender indicates that it
should be pushed to the recipient.
Pushing results in TCP protocol programs immediately sending and,
accordingly, obtaining the remaining data. Properly pushed can be invisible
to the recipient, and the push function itself may not have a record boundary
marker.
The
TCP Protocol should have protection against data destruction, This is

see more please visit: https://homeofbook.com

achieved by assigning the next number to each transmitted octet, as well as
the confirmation requirement (ACK) from the TCP program that receives the
data.
Damages are recorded by adding a control amount to each transferable
segment, checking it when receiving and then eliminating defective
segments.
As long as TCP protocol programs continue to function correctly and the
Internet system does not fall completely into components, forwarding errors
will not affect the correct receipt of the data. The TCP protocol protects
against Internet communications errors.
The
TCP Protocol allows the recipient to manage the amount of data sent to the
sender.
Separating channels To allow many processes on a single computer to
simultaneously use TCP level communication capabilities, the TCP protocol
provides a set of addresses or ports on each host computer.
Each compound is uniquely identified by a pair of sockets. Thus, any socket
can be used simultaneously in many compounds.
The port and process correlates are done by each host computer on its own.
However, it is useful to link frequently used processes (such as "logger" or
time-sharing service) with fixed documented sockets.
This service can then be used through known addresses. Installing and setting
up port addresses for other processes can involve more dynamic mechanisms.
The connections of
the Flow and Confidence Management Mechanisms described above require
TCP protocol programs to initiate and maintain certain information about the
status of each data flow.
If two processes want to share information, the relevant TCP protocol
programs must first establish a connection (on each side to initiate status
information). At the end of the exchange, the connection must be terminated
or closed to free up resources to provide to other users.
Since connections must be installed between unreliable host computers and
through an unreliable Internet communication system, a mechanism is used to
confirm the connection with timekeeping queue numbers to avoid mistakenly
initializing connections.

see more please visit: https://homeofbook.com

Priority and security
TCP users can request priority and security for their connection.

2. Ideology protocol
2.1 Elements of the Merged Network System

The merged network environment consists of host computers included in the
network, which in turn connect to each other through the gateways.
It assumes that computer networks can be either local (e.g. ETHERNET) or
large networks (such as ARPANET), but in any case they are based on
package switching technology. The real agents that create and consume
messages that circulate on the network are the processes. Protocols of
different levels in networks, gateways, and hosts support a process-related
communication system that provides a two-way flow of data on logical
connections between process ports.
The term package is used here in general to refer to a portion of data involved
in a separate elementary act of interaction between the network and the host
computer connected to it. In general, we will not be concerned with the
format of the data blocks circulating on the network.
From a communications network perspective, host computers are computers
connected to the network and are senders and recipients of packages.
Processes are seen as active elements on host computers (according to the
most general definition of processes as executable programs).
Because the process can control multiple communication flows leading from
it to another process (or other processes), we postulate that each process can
have a set of ports through which it communicates with the ports of other
processes.

2.2 Action Model
The process sends data, calling the TCP protocol program and giving it data
buffers as arguments. The TCP protocol packs data from these buffers into
segments, and then calls the Internet module to transfer each segment to the
target TCP protocol program. This recipient, in turn, places the data from the
segment in the recipient's buffers and then notifies his client of the arrival of
the data intended for him. TCP protocol programs place control information
into segments, which they then use to verify the sequence of data
transmission.

see more please visit: https://homeofbook.com

The Internet Communications model is that each TCP protocol program is
connected to the Internet protocol module, which provides it with a local
interface. This Internet module puts TCP segments in Internet datagrams and
then sends them to another Internet module or an intermediate gateway. To
transfer the datagram over the local network, it in turn is placed in a package
of the appropriate type.
Package switches can carry out further packaging, fragmentation, or other
operations to transfer packages to the Internet on a local network.
In the gateways between local networks, the Internet datagram is released
from the local network package and explored to determine which network it
should follow. The Internet datagram is then packaged in a package
corresponding to the selected local network and sent to the next gateway or
directly to the final recipient.
The gateway has the ability to break the Internet datagram into more small-
snippet datagrams, if necessary for transmission on the next local network.
To do this, the gateway itself creates a set of Internet datagrams, placing in
each one fragment. In the future, the fragments can be broken again by the
following gateways into even smaller parts. The format of the Internet
datagram fragment is designed so that the recipient - the Internet module was
able to collect fragments again in the original Internet datagrams.
The Internet module, which is the recipient, separates the segment from the
datagram (after it is assembled if necessary) and then transfers it as intended
for the TCP protocol program.
This simple protocol model often obscures many details. One important
feature is the type of service. This trait tells the gateway (or The Internet
module) to choose the service options that should be used when transferring
the datagram to the next local network. The dategram's priority is among the
information about the type of service. Datagrams can also carry security
information in order to allow host computers and gateways operating in a
multi-level security system to subject the relevant datagrams to the test.

2.3 Host Computer Software
The TCP protocol program is supposed to be an operating system module.
Customers refer to the TCP protocol in much the same way as if they were
accessing a file system. The TCP protocol itself can refer to other functions

of the operating system, for example, to manage data structures. It is assumed
that the actual interface with the local network is carried out by the driver of

see more please visit: https://homeofbook.com

the device. The TCP protocol does not directly address network device
drivers, but instead makes a call for the Internet Protocol module, which in

turn appeals to the device driver.
The TCP protocol mechanism does not preclude its implementation on the
input processor. However, in this implementation, the communication
protocol between input processors should provide the means to support the
user interface described in this document and the TCP protocol.

2.4 Interfaces
For user requests to the TCP protocol, the TCP/user interface allows the
connection to be opened and closed, sent and received, or the connection

status. These queries are similar to other user program requests to the
operating system, such as requests to open, read, and close a file.

The interface between TCP and Internet protocols supports requests for
parcels and datagrams addressed to TCP modules in host computers
anywhere on the Internet. Requests under consideration have arguments for
specifying the address, type of service, priority, security, and other managing
information.

2.5 Link to other protocols
The chart below illustrates the location of the TCP protocol in the protocol

hierarchy

Figure 2 Relationship protocols
The TCP protocol is expected to be able to effectively support higher-level
protocols. The TCP protocol should easily interact with higher-level
protocols such as ARPANET Telnet or AUDIN II THP to the TCP.

2.6 Reliable Communications
The flow of data sent to the TCP connection is accepted by the recipient

reliably and in the appropriate order.
The transfer is secure thanks to the use of confirmations and queue numbers.
Conceptually, each data octet is assigned a queue number. The queue number
for the first data octet in the segment is transferred along with this segment
and is called the queue number for the segment. Segments also carry a

see more please visit: https://homeofbook.com

confirmation number, which is the number for the next expected octet of data
being transmitted in the opposite direction. When the TCP protocol transmits
a segment with data, it puts a copy of it in the re-transfer queue and starts the
timer. When confirmation for this data comes, the relevant segment is
removed from the queue. If the confirmation does not come before the
expiration date, the segment is re-sent.
Confirming the TCP protocol does not guarantee that the data has reached the
final recipient, but only that the TCP protocol program on the recipient's
computer takes responsibility for it.
A thread management mechanism is used to direct the flow of data between
TCP protocol programs. The TCP protocol program tells the "window" to the
sending program. This window indicates the number of octets (starting with
the confirmation number) that the TCP host program is ready to accept at the
moment.

2.7 Installing the connection and cancelling it
To identify individual data streams supported by the TCP protocol, the latter
identifies port identifiers. Because port identifiers are selected independently
by each TCP program, they will not be unique. To ensure that addresses are
unique for each TCP protocol program, we combine the Internet address and
port ID that identifies the program. As a result, we get a socket, which will be

unique in all local networks, united in a single whole.
The connection is completely determined by a pair of sockets at its ends.
Local socket can take part in many connections with different other people's
sockets. The connection can be used to transmit data in both directions, in
other words, it is "completely duplex."
The TCP protocol is free to arbitrarily link ports to processes. However, in
any implementation of the protocol, several fundamental concepts must be
adhered to. There should be well-known sockets, which the TCP protocol
associates exclusively with "appropriate" processes. We imagine how
processes can "own" ports and that processes can only initiate connections
from the ports they own. (From the point of view of implementing the
protocol, "possession" is limited to the host computer, but we can imagine the
user command on request of the port (Request Port) or the method of
highlighting a group of unique ports to this process, for example by
associating senior bytes in the port name with this process).
The connection is set by the OPEN team (open) made from a local port and

see more please visit: https://homeofbook.com

has an argument of someone else's socket. In response to such a request, the
TCP protocol program provides the name of the local (short) from the union.
By this name, the user is addressed to this connection on subsequent calls.
There are a few things to keep in mind about connections.
We assume that there is a data structure called the Transmission Control
Block (TCB) designed to preserve the information described above. The
protocol could be implemented in such a way that the local name for the
connection would be a pointer to the TCB structure of the latter. The OPEN
query also indicates whether the connection is active or whether there is a
passive expectation of an external connection.
Requesting a passive connection opens means that the process waits for
external requests for a connection, instead of trying to install it itself. Often, a
process that has made a passive discovery request will accept connection
requests from any other process. In this case, someone else's socket is
indicated as consisting entirely of zeros, which means uncertainty. Uncertain
other people's sockets can only be present in passive opening commands.
A service process that wants to serve other processes that is unknown to it
could make a request for a passive opening with an unspecified socket. In this
case, the connection can be established with any process that requests
connections to this local socket. This procedure will be useful if you know
that the local socket you you have chosen is associated with a particular
service.
Well-known sockets are a convenient mechanism of prior binding of the
address of the socket with any standard service. For example, the "server for
Telnet" process is tightly linked to a specific socket. Other sockets can be
reserved for a file transmitter, Remote Job Entry, a text generator, an echo
server, and Sink processes (the last three items are related to text processing).
The socket address may be reserved for access to the "view" procedure,
which could indicate the socket through which newly-formed services could
be obtained. The concept of the well-known socket is part of the TCP
specification, but the actual asocialization of sockets with services goes
beyond this description of the protocol (see document).
Processes can passively open connections and wait for other processes to
receive active opening requests and the TCP protocol will inform them of the
connection. Two processes that have made active discovery requests to each
other at the same time will get the correct connection. The flexibility of this

see more please visit: https://homeofbook.com

approach becomes critical with the support of distributed computing, when
the components of the system interact with each other in an asynchronous
way.
When sockets are selected for a local passive opening request and someone
else's request for active discovery, two cases are of fundamental importance.
In the first case, the local passive opening completely determines someone
else's socket. At the same time, the selection should be carried out very
carefully. In the second case, during the local passive opening, someone
else's socket is not specified. Then in principle can be established a
connection with any other people's sockets. In all other cases, the selection of
sockets has partial limitations.
If the same local socket is made several waiting passive requests for opening
(recorded in TCB blocks), and an active request for discovery is made from
the outside, then someone else's active socket will be associated with the
TCB unit, where it was pointed to this requesting connection socket. And
only if such a block TCB does not exist, the choice of partner is made among
the blocks TCB with an unspecified foreign socket.
The connection installation procedure uses the Syn sync control flag and
exchanges messages three times. This exchange is called a three-variate
confirmation.
The connection is initiated when a segment that is carrying the SYN flag is
met and is waiting to be recorded in the TCB block. Both the segment and the
record are created by requests for discovery from users. The local and other
people's sockets are matched when the connection is initiated. The connection
is recognized as established when queue numbers are synchronized in both
directions between sockets.
The cancellation of the connection also includes the exchange of segments
carrying the FIN flag this time.

2.8 Data Communication
A set of data transmitted by connection can be seen as a stream of octets. The
user who sends the data indicates when the parcel requests whether the data

sent in this request should be pushed immediately through the network to the
recipient. The indication is carried out by the installation of the PUSH flag

(pushing).
The TCP protocol program can collect data from the user and then transmit it
to the network as it sees fit in the form of segments. If there is a request for

see more please visit: https://homeofbook.com

push, the protocol must transfer all the data not sent earlier. When the TCP
program that receives data collides with the push flag, it should not expect to
receive new data on the network until the data already available is passed on
to the waiting local process.
There is no need to tie push functions to segment boundaries. The data
contained in a segment may be the result of one or more parcel requests. Or a
single query can generate multiple segments.
The purpose of the PUSH push and flag function is to push the data through
the network from sender to recipient. The feature does not process the data
itself.
There is a link between the push function and the use of data buffers in the
interface between the user and the TCP protocol. Every time the data with the
PUSH flag arrives in the recipient's buffer, the contents of that buffer are sent
to the user for processing, even if the buffer has not been filled. If the
incoming data fills the user's buffer before the push command is received, the
user is sent a block of data that matches the size of the buffer. The TCP
protocol also has the means to inform the recipient that from some point he is
dealing with urgent data. The TCP protocol does not try to determine exactly
what the user is doing with the urgent data waiting to be processed. However,
it is generally assumed that the process receiving the data will work to
process urgent data quickly.

2.9 Priority and Safety
The TCP protocol uses the type of service and the Internet protocol security
option to ensure priority and security for TCP users at each connection. Not
all TCP modules will necessarily operate in a tiered security system. Some
modules are limited to conventional, non-specific connections, while others

are limited to the first level of security and privacy. Consequently, some
implementations of the TCP protocol and services for users can only use a

part of the tiered security system.
TCP modules operating in a tiered security system must adequately display
security and priority flags in the sent segments. Such TCP modules should
also allow their customers or higher protocols, such as Telnet and THP, to
specify the required level of security, privacy, and priority for installed
connections.

2.10 Sustainability Principle
All implementations of the TCP protocol will follow the general principle of

see more please visit: https://homeofbook.com

sustainability: be conservative in your actions and grant freedom to others.
3 Specification for protocol functions

3.1 Headline format
TCP segments are transferred in the form of Internet datagrams. The
dategram's headline in the Internet protocol has several information fields,
including the addresses of the sender and host. The TCP headline follows the
Internet with a headline and complements it with information specific to the
TCP protocol.
Title TCP format
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Source Port Destination Port
Sequence Number

Acknowledgment Number

Data
Offset Reserved

U
R
G

A
C
K

P
S
H

P
S
T

S
Y
N

F
I
N Window

Checksum Urgent Pointer
Options Padding

Data

Fig. 3 Title TCP format
Note that each label indicates here the place for the appropriate bit.
Source Port (sender port) 16 bit
sender port number
Destination Port (recipient port) 16 bit
recipient port number
Sequence Number (queue number) 32
bits Queue number for the first data octet in this segment (except when there
is a SYN sync flag).
Acknowledgment Number (confirmation number) 32
bits If the ACK control bit is installed, this box contains the next queue
number, which the sender of the given dategram wishes to receive in the
opposite direction.

see more please visit: https://homeofbook.com

Data Offset 4 bits Number of
32-bit words in TCP header. The TCP title always ends at the 32-bit
boundary of the word, even if it contains options.
Reserved 6
bits This backup field should be filled with zeros.
Control Bits (control bits) 6
bits of this field from left to right

URG: The field of the urgent pointer is involved

ACK: Confirmation field involved

PSH: Pushing function

RST: reboot this connection

Syn: synchronizing queue numbers

End: No more data to transmit

Window (window) 16 bit
Number of data octets starting from the octet, whose number is listed in the

confirmation box.
Checksum (control amount) 16
bits of the control amount field is a 16-bit supplement of the sum of all 16-bit
words of the title and text. If the segment contains an odd number of octets in
the title and text to be accounted for in the control amount, the last octet will
be supplemented with zeros on the right in order to form a 16-bit word to
provide a control amount.
The control amount, among other things, takes into account 96 bits of
pseudo-header, which for internal use is put before the TCP header. This
pseudo-header contains the sender's address, recipient address, protocol, and
length of the TCP segment. This approach protects the TCP protocol from the
segments that have been wrong in the route. This information is processed by
the Internet protocol. It is transmitted through the TCP/local network
interface as arguments or results of requests from the TCP protocol to the IP
protocol.

Sender's address
Recipient's address

see more please visit: https://homeofbook.com

Zeros PTCL TCP length

The length of the TCP segment is the length of the TCP header and the data
field measured in the octets. This is not an accurate indication of the number

of octet transmitted over the network, it does not take into account 12
pseudo-header octets, but nevertheless the calculation of this parameter is still

made.
Urgent Pointer (urgent pointer) 16 bit This box reports the current value of
the
urgent pointer.
Options (options) the length of the variable
Option can be located at the end of the title TCP, and their length is multiple
8 bits.
Options can start from any Oct. They can have two formats:

Single-object type of options;
option type octet, option length octet and data octets of the option in
question.

The octet lengths of the option take into account the option type octet, the
length octet itself, and all the octets with the data.
Note that the list of options may be shorter than you can specify in the Data
Offset field. The seat in the title left behind the "End-of-Option" option
should be filled with zeros. The TCP protocol should be ready to handle all
options.
The following options have now been identified:
Type Length Value
0 - end of the list of options
1 - No operations
2 4 Maximum segment size

Definitions of these options
End of the list of options

00000000 Type 0
This option code determines the end of the list of options. The end of the list
may not match the end of the TCP title listed in the Data Offset field.

see more please visit: https://homeofbook.com

This option is used after all the options, but not after each one. The option
should only be used if there is no other match with the end of the title TCP.
No operations

00000001 Type 1
This type of option can be placed between options. The goal may be to align
the next option along the boundary of the word. There is no guarantee that the
senders will use this option. Therefore, recipients should be prepared to
handle the options even if they do not start at the boundary of the word.
Maximum segment size

00000010 00000100 max.segm.
Type 2 Length 4 .
The field of these options is 16 bits. If the option is on the list, it indicates for
the TCP protocol program the maximum size of the segment you receive that
sent the segment with that option. This option should only be sent at the
initial request for a connection (i.e. in segments with the SYN control bit
installed). If this option has not been used, there are no size restrictions.
Padding (alignment) the length of the variable title alignment is done to make
sure that the TCP header ends and the segment data field starts at the 32-bit
boundary. The alignment is zero.

3.2 Terminology
Before we can discuss many of the details of the TCP protocol, we need to

introduce detailed terminology. To maintain the TCP connection, you need to
have several variables. We decided that these variables would be placed in
the appropriate entry - transmission control unit (TCB). Among the TCB

block variables are local and foreign socket numbers, security and priority
flags for this connection, parcel and receipt buffer signs, current segment

pointers, and re-parcel queues. In addition, TCB has several variables related
to the sender and recipient queues.

Departure

SND.
UNA parcel unconfirmed

see more please visit: https://homeofbook.com

SND.
NXT

send the next segment

SND.
WND Send a window

SND.
UP send an urgent pointer

SND.
WL1 Segment queue number used to update the last window

SND.
WL2 Confirmation number in segment used to update last window

ISS initial departure queue number
Getting

RCV. NXT - Get the next segment

RCV.
WND - get a window

RCV. UP - Get an urgent pointer
IRS - the original number of the receipt queue

The charts below can help link some of these variables to a place in the queue
Departure queue

1. old queue numbers that have been confirmed
2. queue numbers for data that have not been confirmed
3. queue numbers allowed for the new transfer
4. the next queue numbers whose transmission is not yet allowed

Fig. 4 Departure queue
The departure window is a section of the queue marked with mark 3 in Figure
4.
Receiving queue

see more please visit: https://homeofbook.com

1. old queue numbers that have been confirmed
2. queue numbers admitted to the next stage of receipt
3. the next queue numbers that have not yet been approved

Fig. 5 Receiving queue
The receipt window is a section of the queue marked with mark 2 in figure 5.
The discussion also often uses some variables that take their value from the
fields of the next segment.
Variables for the next segment

SEG. Seq queue number for segment
SEG. Ack Confirmation number for segment
SEG. Len Segment length
SEG. Wnd window for segment
SEG. UP Term pointer for segment
SEG. Prc Priority for the segment

The connection during operation passes through a series of intermediate
states. These are LISTEN, SYN-SENT, SYN-RECEIVED, ESTABLISHED,

FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
TIME-WAIT, and the fictitious state of CLOSED. The CLOSED state is
fictitious because it represents a state where there is no TCP block and

therefore no connection. Summary of states:

LISTEN Waiting for a connection request from other people's ports
and TCP programs

SYN-SENT Waiting for a doubles connection request. On our part, the
request has already been made.

SYN-
RECEIVED

Waiting for confirmation after the connection request has
already been accepted and sent.
The state of the open connection, the data taken can be

see more please visit: https://homeofbook.com

ESTABLISHEDpresented to the user. This is the normal state of the
connection in the data transfer phase.

FIN-WAIT-1 Waiting for a request from someone else's TCP program, or
confirming a previously sent connection closing request.

FIN-WAIT-2 Waiting for a request to close the connection from
someone else's TCP program.

CLOSE-WAIT Waiting for a request to close the connection on the part of
your client.

CLOSING Waiting for confirmation from someone else's TCP
program to request the connection to close.

LAST-ACK

Waiting for a request to close a connection previously sent
to someone else's TCP program (the request also included
confirmation of someone else's request to close the
connection).

TIME-WAIT
Waiting for enough time to expire and you can be sure that
someone else's TCP program has received confirmation of
its request to close the connection.

CLOSED The state of complete absence of connection.
The TCP connection goes from one state to another in response to events. An
event is a customer's request (opening, sending, receiving, closing, failure,
receiving a connection state), receiving segments, and especially those that
contain SYN, ACK, RST and FIN flags, and expiring the allotted time.
The state chart in figure 6 only illustrates the change of states, and the events
that caused it, the actions that are produced, but not the addresses, the terms
of the errors, and the actions not directly related to the state change.
For more information on the TCP protocol program's response to events, see
the latest chapter.
Remark. This chart is only a summary, but should not be perceived as a
complete specification.

see more please visit: https://homeofbook.com

3.3 Queue number

The fundamental idea in designing a protocol is that each octet of data sent to
a TCP connection has a queue number. Since each octet is numbered, each of
them can be identified. The acceptable identification mechanism is
cumulative, so the identification of number X means that all octets with
previous numbers have already been received. This mechanism allows you to
record the appearance of duplicates in the conditions of re-transfer. The
numbering of octets within the segment is carried out so that the first octet of
data immediately after the title has the lowest number, and the following
octets have numbers on the increasing.
It is important to remember that the number of rooms for the queue, although
large, but limited. The room ranges from 0 to 2-32-1. Because the set is
limited, all arithmetic operations with queue numbers must be carried out on
the module 2.32. This does not mean that any pre-arithmetic check of the
queue numbers for the hit in the range of 2-32-1 to 0. In the work with
modular arithmetic there are some subtleties, so you need to carefully
program the comparison of such large values. This means "less or equal" (on
the module of 2/32).
The TCP protocol should provide the following types of comparisons for
queue numbers:

(a) whether the confirmation number is the queue number for octets that have
already been sent but have not yet been confirmed;

(b)
whether all octets in the segment have received confirmation of their
numbers (i.e. whether this segment should be removed from the queue for
a second parcel);

(c) whether the segment that came contains the numbers we expect (i.e.
"override" whether this segment is the recipient's window).

In response to the data, the TCP protocol will receive confirmation. To work
with the evidence you have received, you need to be able to make a
comparison for

SND. UNA the oldest of the unconfirmed rooms,
SND. NXT the next number in line waiting for the parcel,

see more please visit: https://homeofbook.com

SEG. Ack
confirmation numbers received from someone else's host of the
TCP program (the next queue number expected by someone
else's TCP program)

SEG. Seq First Octet queue numbers in the segment,
SEG. Len number of octets in the segment data field (given SYN and FIN),

SEG.
SEQ+SEG.

LEN-1
the last octet queue numbers from the segment.

The new confirmation (called "confirmation of acceptability") is a
confirmation of the feasibility of
SND inequalities. UNA < SEG. ACK =< SND. NXT
A segment from the re-parcel queue receives full confirmation if the amount
of its number in the queue and the length of the data field is less, or equal to
the confirmation number from the selected segment.
When you receive the data, you need to make comparison operations for the
following values:

RCV. NXT the next number from the queue of incoming segments, as well
as the left or bottom boundary of the receipt window,

RCV.
NXT+RCV.

WND-1

The queue number of the last segment expected in the incoming
segment, as well as the right or upper boundary of the receipt
window,

SEG. Seq the first number in the queue brought by the incoming segment,
SEG.

SEQ+SEG.
LEN-1

the last number in the queue brought by the incoming segment.

It is believed that the segment overlaps part of the permitted numbers in the
receiving queue if
the RCV. NXT =< SEG. SEQ < RCV. NXT+RCV. WND or
RCV. NXT =< SEG. SEQ+SEG. LEN-1 < RCV. NXT+RCV. WND
The first part of this text looks at whether the beginning of the segment hits
the window, and the second part - whether the back of the segment falls into
the window. If any part of the test is running, the segment ends up in the

see more please visit: https://homeofbook.com

window.
The reality is a little more complicated. By selecting a zero-length window or
zero-length segment, we get four eligibility options for incoming segments

Segment
length

receipt
window Test

0 0 SEG. SEQ = RCV. Nxt
0 >0 RCV. NXT =< SEG. SEQ < RCV. NXT+RCV. WND
>0 0 Unacceptable

>0 >0

RCV. NXT =< SEG. SEQ < RCV. NXT+RCV. WND
или
RCV. NXT =< SEG. SEQ+SEG. LEN-1 < RCV.
NXT+RCV. WND

Note that when the window is zero, no segments will be accepted except for
the ACK segments. Thus, the TCP protocol can set a zero receipt window
when data is transmitted and confirmed. However, even when the receipt

window is zero, the TCP protocol program is required to process the RST and
URG fields of all incoming segments.

We have benefited from this numbering scheme in that it also allows
protection for certain managing information. This is achieved indirectly by
inserting some control flags into the queue, so that they can be re-sent and
confirmed without failure (i.e. one or more copies will be used).
The information management is not really in the segment data field.
Therefore, we must adopt the rules for indirectly assigning queue numbers to
management segments. SYN and FIN are the only control signals acceptable
for such protection, and they are only used when the connection is opened
and closed. For the purpose of maintaining a priority, the SYN signal is seen
as standing in front of the first valid data octet in the segment where both
were placed. At the same time, FIN is considered to be standing after the last
real data octet in the segment. Segment length (SEG. LEN) takes into account
both the data and the queue numbers set aside for management. When SYN is
present, THE SEG value. The SE's corresponds to the queue number for the
SYN signal.

see more please visit: https://homeofbook.com

Choosing the original number for the queue
The protocol does not restrict the reuse of a particular connection. The
connection is set by selecting a pair of segments. New requests for a
connection will be seen as re-implementation of this connection. This
approach raises the following problem: "How does the TCP protocol
distinguish segment duplicates left over from the previous implementation of
that connection?"
To avoid a failure, we should avoid using segments of this connection
implementation when the network still has the same queue numbers left over
from the previous connection implementation. We want to insure against this,
even if the TCP protocol program fails and loses all information about the
queue numbers it uses. When creating new connections, the original queue
numbers generator (ISN) is used, which selects the new 32 bit ISN values.
The generator is tied to a 32-bit watch (probably fictitious), whose value
changes every 4 microseconds. Thus, the full cycle of ISN hours is
approximately 4.55 hours. Since we believe that segments will exist online
for no more than the maximum lifetime of the segment (Maximum Segment
Lifetime - MSL), and that MSL is less than 4.55 hours, we can reasonably
believe that THE numbers will be unique.
For each connection, there is a number in the departure queue and a number
in the receiving queue. The initial number in the departure queue (ISS) is
selected by the TCP program that sends data in that queue, and the initial
number in the receiving queue (IRS) is determined at the time the connection
is established.
When or when a connection is established or initiated, both TCP programs
must synchronize the original queue numbers with each other. This is done
by exchanging segments that set connections that carry a control bit called
"SYN" (for synchronize) that carry the source numbers for queues. For short,
the segments that carry the SYN bit are also called SYN segments. Therefore,
solving the problem requires an acceptable mechanism for selecting the
original queue number and the few confirmation signals when exchanging
ISN numbers.
Synchronization requires each party participating in the connection to send its
own original queue number, and also receive confirmation from a partner.
Each party must also receive the initial queue number from the partner and
send a confirmation.

see more please visit: https://homeofbook.com

1) A --> B сигнал SYN: мой номер очереди X
2) A <-- B сигнал ACK: ваш номер очереди X

3) A <-- B сигнал SYN: мой номер очереди Y

4) A --> B сигнал ACK: ваш номер очереди Y

Because steps 2 and 3 can be combined into one message, the latter is called
confirmation of three paths (three messages).

Confirmation of three paths is necessary because queue numbers are not tied
to some global clock of this computer network, and TCP programs may have
different mechanisms for selecting ISN numbers. The recipient of the first
SYN signal cannot know if the signal has lingered and is already out of date,
or if it is not, even if the recipient does not remember the last queue number
used by this connection (which is also not always possible). So he should ask
the sender to check this SYN signal. Confirmation of the three paths and the
benefits of the timekeeping scheme are discussed in the article.

A Period of Silence
To make sure that TCP does not create a queue-carrying segment that is

already used by the old segment that is still "walking" on the network, TCP
must remain silent for at least the duration of the segment 'MSL' until it

assigns any queue numbers when it starts or recovers from a failure, when
memory records for the previous queue numbers have been lost. This MSL

specification takes 2 minutes.
This value has been selected by the developers and can be changed if the
practice shows the need for it. Note that if the protocol program is in some
ways re-initiated, but the memory left the previous queue numbers, there is
no need in anticipation; you should only make sure that the new queue
numbers are larger than they used before.

The concept of a period of silence in the TCP protocol
This specification stipulates that computers that fail with the loss of all

information about the latest queue numbers transmitted through open (i.e. not
closed special teams) connections will refrain from sending any TCP

segments for at least the maximum life of the segment (Maximum Segment
Lifetime - MSL) in the Internet, whose part is the host. Subsequent

paragraphs provide an explanation for this specification. Some
implementations of the TCP protocol may violate the Silence Agreement, at

see more please visit: https://homeofbook.com

the risk that some recipients in the Internet will perceive old data as new, or
new data will be discarded as duplicates of actually outdated segments.

Protocol programs use new queue numbers whenever a segment is formed
and placed on the host in the network departure queue. The duplicate-fixing
procedure and the queue algorithm in the TCP protocol rely on the unique
link of segment data to the queue. The queue numbers do not have time to
pass the entire range in 2-32 values, before the associated data from the sent
segment will receive confirmation from the recipient, and all copies of the
duplicates of the segment in this segment will leave the Internet network.
Without this condition, it can be assumed that two separate TCP segments
may be assigned the same or overlapping numbers, which will cause a
problem for the recipient in determining which data is new and which are out
of date. Recall that each segment is tied to both the many queues following
each other, and to the data octets available in this segment.
Under normal conditions, TCP monitors the current queue number to be sent,
as well as the oldest of the expected confirmations, avoiding the misuse of
the queue number before confirmation is received from earlier use of the
same number. This alone does not guarantee that the old data - duplicates will
be removed from the network, so the queue numbers are made very large to
reduce the likelihood that the duplicates wandering around the network will
cause a failure on arrival. At the exchange rate of 2 megabytes/sec, the queue
in the 2/32 octet is 4.5 hours long. Because the maximum life time of a
segment on the network is unlikely to exceed a few dozen seconds, this is
considered sufficient protection for future networks, even if data speeds
increase to tens of megabits/sec.
At 100 megabits/sec, one cycle of use of all queue numbers is 5.4 minutes,
which may be quite small but still acceptable.
However, the basic mechanism for registering takes and maintaining queues
can be reversed if the TCP program that sends data does not have a place in
memory to store the numbers in the queue that it last used for a specific
connection. For example, if the TCP program starts with a queue number of 0
when creating all connections, then when the TCP crashes and re-starts, the
TCP program can re-form the previous connection (perhaps after half-open
connection analysis) and send packages on it whose queue numbers are
completely identical or only partially overlap with the numbers that are still
present on the network and sent by the previous implementation of the same

see more please visit: https://homeofbook.com

connection. In the absence of information about queue numbers previously
used to transmit information on this particular connection, the TCP protocol
specification recommends that the sender refrain from sending segments on
this with a connection, allowing segments running into the network of the old
connection to leave the system.
Even host computers that can track current time and use it when selecting the
original queue numbers (i.e. even if time is used to select the original number
when implementing each new connection) are not protected from this
problem.
As an example, let's say that the connection is open with the starting number
of the S queue. The original queue number will be S1'ISN (t), and this is the
last queue number in the old connection implementation! If the recovery
happens quickly enough, the old duplicates created with a queue number
close to the S1 number can be retrieved by their recipient and processed as if
they were new packages in the new connection implementation.
The problem is that the host- the recipient may not know how long it has
been in a glitch and whether there are still old duplicates left over from
previous connections implementations.
One way to solve this problem is to have a deliberate delay in sending
segments over the course of MSL time after recovery in the wake of the crash
- a period of silence specification. Host computers that prefer to avoid a pause
run the risk of getting the problem of old and new packages colliding on a
recipient who wishes not to resort to a period of silence.
Protocol implementations can offer TCP users the option of choosing
between waiting in connections after a failure and not following a period of
silence for any connection. Obviously, for those programs where the user has
chosen the standby mode, in fact, this is not necessary after the computer has
been turned off for at least MSL seconds.
So, each sent segment takes one or more numbers in the waiting queue. The
numbers assigned to the segment are "busy" or "in the works" until the MSL
seconds expire. If you crash, a certain place in the queue for a certain time
continues to be occupied by octets from the last sent segment. If a new
connection is created soon and it uses any numbers from the queue when they
are still using a segment from the previous implementation of the connection,
then this area of overlapping queue numbers may cause problems for the
recipient.

see more please visit: https://homeofbook.com

3.4 Connecting
"Three-way confirmation" is a procedure used to connect. This procedure is
usually initiated by the TCP protocol program in response to a request from

another TCP program. This procedure also works if two TCP programs
initiate it at the same time. When an initialization attempt is made at both

ends at the same time, each TCP protocol program receives a "SYN" segment
that is not validated for syn already sent. Of course, the arrival of old SYN
duplicates can impress the recipient as if the connection is being opened at

the same time. Correct use of "reset" segments can prevent the ambiguity of
such situations.

Here are a few examples of the initialization of the connections: While these
examples do not show the synchronization of the connection with the
segments carrying the data, this is perfectly valid because the TCP program
receiving the segments will not transmit the data to its customer until the
correctness of the data becomes apparent (i.e., the data must be "stored" by
the user until the connection is established).
The simplest three-way confirmation procedure is shown below in Figure 7.
The drawings should be interpreted as follows. "XXX" indicates a segment
that is lost or rejected. Comments appear in brackets.
Here, the "states" of the TCP protocol program correspond to the moment
immediately after the segment is sent or received (the contents of this
segment are shown in the middle column of each line). The content of the
segment is in abbreviated form and is a queue number, control flags and an
ACK field. Other segment fields, such as the window, length, and data field,
remain outside our interest.

. TCP A . TCP B
1. CLOSED . LISTEN

2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-
RECEIVED

3. ESTABLISHED <-- <SEQ=300><ACK=101>
<CTL=SYN,ACK> <-- SYN-

RECEIVED

4. ESTABLISHED --> <SEQ=101><ACK=301>
<CTL=ACK> --> ESTABLISHED

see more please visit: https://homeofbook.com

5. ESTABLISHED --> <SEQ=101><ACK=301>
<CTL=ACK><DATA>

--> ESTABLISHED

The basic procedure of confirming three ways to
synchronize the Figure

7 connection.
On Line 2 of Figure 7, the TCP A program starts by sending a SYN signal,

showing that it will use queue numbers starting at number 100. On line 3, the
TCB B program sends a SYN signal, as well as confirmation that the SYN

signal from the TCP A program has been received. Note that the confirmation
box informs that the TCP B program is currently waiting to receive the

number 101. The latter also confirms that the SYN signal has already taken a
place in the queue at number 100.

On line 4 for TCP B sent in line 3 of the SYN signal, TCP A responds with
an empty segment containing the ACK signal. In line 5, TCP A transmits a
portion of data over the network. Note that the segment in line 5 has the same
queue number as the segment in line 4, because the ACK signal in the queue
does not take up space (if it was not, we should have obtained confirmation -
ACK - for the confirmation itself!).
Figure 8 shows the same initialization with minor complications. Each TCP
program takes turns with closed, SYN-SENT, SYN-RECIEVED and finally,
ESTABLISHED.
. TCP A . TCP B
1. CLOSED . CLOSED
2. SYN-SENT --> <SEQ=100><CTL=SYN> ...

3. SYN-
RECEIVED <-- <SEQ=300><CTL=SYN> <-- SYN-SENT

4. <SEQ=100><CTL=SYN> --> SYN-
RECEIVED

5. SYN-
RECEIVED --> <SEQ=100><ACK=301>

<CTL=SYN,ACK>

6. ESTABLISHED <-- <SEQ=300><ACK=101>
<CTL=SYN,ACK> <-- SYN-

RECEIVED

7. <SEQ=101><ACK=301>
<CTL=ACK> --> ESTABLISHED

see more please visit: https://homeofbook.com

Simultaneous Connection Synchronization
Figure 8

The main reason for using the confirmation of the three ways is to try to
prevent the occurrence of failures when receiving old duplicates that initiate

the connection. To work with the confirmation of three ways, a special
control message - reboot (reset) was invented.

If the TCP program receiving the signal is out of sync (i.e. in SYN-SENT,
SYN-RECEIVED), it returns the LISTEN signal, indicating that it has
received an acceptable restart signal. If the TCP program is in one of the
synchronized states (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-
WAIT, CLOSING, LAST-ACK, TIME-WAIT), it will eliminate the
connection and inform its client about it. We will discuss this situation below
when considering "half-open" connections.
. TCP A . TCP B
1. CLOSED . LISTEN
2. SYN-SENT --> <SEQ=100><CTL=SYN>

3. (duplicate) ... <SEQ=90><CTL=SYN> --> SYN-
RECEIVED

4. SYN-SENT <-- <SEQ=300><ACK=91>
<CTL=SYN,ACK> <--

SYN-
RECEIVED

5. SYN-SENT --> <SEQ=91><CTL=RST> --> LISTEN

6. <SEQ=100><CTL=SYN> --> SYN-
RECEIVED

7. SYN-SENT <-- <SEQ=400><ACK=101>
<CTL=SYN,ACK> <--

SYN-
RECEIVED

8. ESTABLISHED --> <SEQ=101><ACK=401>
<CTL=ACK> --> ESTABLISHED

Getting an old SYN signal duplicate
Figure 9

As a simple example, let's look at the situation with the old duplicates in
Figure 9. On line 3, an old SYN duplicate reaches the TCP B program.
TCP A detects an erroneous value in the ACK field and therefore returns the
RST (reboot) signal. At the same time, the value of the SE's field is chosen in

see more please visit: https://homeofbook.com

such a way as to make the segment believable. About a gram of TCP B when
the RST signal is received goes to LISTEN. When the SYN signal, valid
rather than out-of date, reaches TCP B on line 6, the synchronization process
is normal. If the SYN signal on line 6 reaches the TCP B program before the
RST signal, there may be a more complex exchange combination with the
RST in both directions.

Half-open connections and other anomalies
An established connection is called "half open" if one of the TCP programs
shuts down or abandons the connection. And she did it on her end without
warning her partner. This can also occur if synchronization at the ends of the
line is disrupted due to a failure that resulted in memory loss. If these
connections attempt to send data in a direction, the connection is
automatically restarted. However, it is assumed that half-open connections
are rare and the recovery procedure is used in the network very moderately.
If the connection at the end of A is considered to be non-existent and the
customer at the end of B tries to send the data, it will result in the TCP
program at the end of B receiving a reset notification. This message shows
the TCP program at the end of B that something is wrong and is being asked
to eliminate that connection.
Suppose two customers at points A and B communicate with each other, and
at that point there is a collapse that leads to memory loss in the TCP program
at the end of A. Depending on the operating system that serves the TCP A
program, there is likely to be some mechanism to correct the error. When the
TCP A program is re-launched, it will probably re-start from the beginning or
with the instructions to overcome the failure. As a result, Program A will
probably try to open (OPEN) a connection or send information (SEND)
through a connection that it believes is open. Once the TCP A program fails,
the user will try to re-open the connection.

. TCP A . TCP B
1. Failed . (package number 300, receipt - 100)
2. CLOSED . ESTABLISHED

3. SYN-
SENT --> <SEQ=400><CTL=SYN> --> (??)

see more please visit: https://homeofbook.com

4. (!!) <-- <SEQ=300><ACK=100>
<CTL=SYN>

<-- ESTABLISHED

5. SYN-
SENT --> <SEQ=100><CTL=RST> --> (elimination!!)

6. SYN-
SENT . CLOSED

7. SYN-
SENT --> <SEQ=400><CTL=SYN> --> .

Detection of a half-open link
Figure 10

When the SYN signal reaches the synchronized TCP B program on line 3,
and the segment that has arrived is outside the window, TCP B responds with
confirmation, showing the queue number it wants to receive (ACK-100). The
TCP A program, seeing that the segment on line 4 did not confirm the
information it sent, records the lack of synchronization and sends a reset
signal (RST) because it is found that the connection is half open. On line 5,
TCP B eliminates the connection. The TCP A program will continue to
attempt to establish a connection.
The problem is now solved by simply confirming three paths (Figure 7).
Another interesting story is if the TCP A program fails and TCP B, believing
it is in a state of synchronization, is trying to send data. This situation is
shown in Figure 11.
In this case, the data sent by TCP B and that came to TCP A (line 2). will be
rejected because the connection they use does not exist. Based on this, TCP A
sends an RST signal. Once the RST signal is accepted by TCP B, it will be
reviewed and the connection used before will be eliminated.

. TCP
A . TCP B

1. Failed . (package number 300, receipt - 100)

2. (??) <-
-

<SEQ=300><ACK=100>
<DATA=10><CTL=SYN> <-- ESTABLISHED

3. . --
> <SEQ=100><CTL=RST> --> (elimination!!)

see more please visit: https://homeofbook.com

The active side leads to the discovery of a
half-open link

Figure 11

Figure 12 shows that two TCP programs - A and B - are waiting for the
SYN signal.

. TCP A . TCP B
1. LISTEN . LISTEN
2. <SEQ=Z><CTL=SYN> --> SYN-RECEIVED

3. (??) <-- <SEQ=X><ACK=Z+1>
<CTL=SYN,ACK> <-- SYN-RECEIVED

4. . --> <SEQ=Z+1><CTL=RST> --> Return to LISTEN
5. LISTEN . LISTEN

Old SYN signal duplicate initiates reboot
on two passive sockets

Figure 12

There can be many other variations that can be explained by the following
rules for creating and processing RST signals.

Create a reboot signal
According to the main rule, the restart signal (RST) must be sent whenever a
segment arrives that is obviously not intended for that connection. If it is not
clear whether this case is the case, you should refrain from rebooting.
You can identify three groups of states to connect:

1. If the connection does not exist (CLOSED), the restart signal is sent in
response to any segment that has come, except for the oncoming restart
signal. In particular, SYN signals addressed to a non-existent
connection are rejected in this way.
If the incoming segment has a flag in the ACK field, the segment with
the reboot signal receives a number for the queue from the first
segment ACK field. Otherwise, the segment with the restart signal has

see more please visit: https://homeofbook.com

a zero queue number and a value in the ACK field equal to the amount
of the queue number of the queue and its same length. The connection
remains closed.

2. If the connection is in any non-synchronized state (LISTEN, SYN-
SENT, SYN-RECEIVED), if any confirmation of the incoming
segment has not yet been sent (the segment carries an unacceptable
value in the ACK field) or the incoming segment has a level of
security/closure that does not correspond to the level and protection of
that connection, a reset signal is sent.
If our SYN signal has not been confirmed and the priority level of the
upcoming segment is higher than the requested level, either the local
priority level will be increased (if this is acceptable to the user and the
system), or a reboot signal will be sent. Or, if the priority level of the
coming segment is less than requested, the processing will continue
further, as if the level was the same (if someone else's TCP program
can not raise the level of priority to ours, it will be noted in the next
segment sent by it, then the connection will be closed). If our SYN
signal has received confirmation (perhaps in the segment that came to
us), then the level of priority of the coming segment should exactly
correspond to the places at a different level. If the last condition is not
met, a restart signal is sent.
If the incoming segment carries an ACK signal, the restart signal will
have a queue number corresponding to the ACK signal number in the
incoming segment. Otherwise, the restart signal will have a zero queue
number, and the ACK signal will have a number equal to the number of
the segment that has come and its length. The connection doesn't
change its state.

3. If the connection is in a synchronized state (ESTABLISHED, FIN-
WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST ACK,
TIME-WAIT), then any inappropriate segment (not entering the queue
number window, carrying the wrong confirmation number) should
result in a segment with an empty confirmation box containing the
current number in the parcel queue, as well as confirmation indicating
the next number. The connection remains in its former state.
If the incoming segment has a level of protection, isolation, or priority
that does not correspond to the local connection level, a restart signal is

see more please visit: https://homeofbook.com

sent and the connection goes to CLOSED. The reboot signal has a
queue number corresponding to the ACK signal number in the queue.

Processing a signal to restart
For all states except SYN-SENT, all segments with the Reset Signal (RST)
are tested by se. A restart signal is recognized if its queue number hits the
window. In the SYN SENT (RST signal received in response to the sending
of the SYN trigger signal), the RST signal is recognized if the ACK field
confirms the previously made sending of the SYN signal.
The recipient of the RST signal first checks it, and only then changes its
condition. If the recipient was in LISTEN, they ignore the signal. If the
recipient was in SYN-RECEIVED, it returns to LISTEN. In other cases, the
recipient will eliminate the connection and go into CLOSED state. If the
recipient is in a different state, he will liquidate the connection and notify his
client before moving to CLOSED.

3.5 Closing connection
The closed state means "I don't have data to transmit." Of course, closing a

full duplex connection is the subject of many interpretations, as it is not
obvious how to interpret the side receiving the information in the connection.
We decided to interpret CLOSE in a simplified manner. A CUSTOMER in
CLOSE can still receive information (RECEIVE) until the partner also tells

them that they are moving into CLOSE. In this way, the client can gracefully
complete the work at their end of the connection. The TCP protocol program

is guaranteed to receive all buffers with information sent before the
connection was closed. Therefore, a customer who does not expect
information from the connection should only wait for a report of the
successful closure of this connection, which means that all the data is

received by the TCP program that receives the information. Customers
should keep the connection information they already have closed for reading

until the TCP protocol program informs them that such information is no
longer available.

Three cases are of particular importance:

1) the customer initiates the closure of the connection by giving the
command of their TCP protocol program.

2) closing the connection begins with the partner sending a control signal to
the FIN. .

see more please visit: https://homeofbook.com

3) both customers command to close at the same time.

Case 1 A local customer initiates a closure
In this case, a segment with a FIN signal is created and placed in a segment
queue, After that, the TCP program will no longer accept any commands
from this client to send data on a closed connection, and it goes into FIN-
WAIT-1.
When the partner's TCP program confirms that the FIN signal will be
received and sends its FIN signal here, the local program can confirm that the
latter is receiving it. Note that the TCP program receiving the FIN signal will
confirm it, but will not send its own FIN signal until its client also closes the
connections.
Case 2 The TCP program receives a FIN signal from the network.
If an unclaimed FIN signal comes from the network, the TCP program that
receives it can confirm that the connection is closed and notify its
customer that the connection is closed.
Case 3 Both customers close the connection simultaneously. The
simultaneous closure of the
connection by customers at both ends results in the exchange of segments
with the FIN signal.
. TCP A . TCP B
1. ESTABLISHED . ESTABLISHED

2. (Close)
FIN-WAIT-1 --> <SEQ=100><ACK=300>

<CTL=FIN,ACK> --> CLOSE-WAIT

3. FIN-WAIT-2 <-- <SEQ=300><ACK=101>
<CTL=ACK> <-- CLOSE-WAIT

4. (Close)
TIME-WAIT <-- <SEQ=300><ACK=101>

<CTL=FIN,ACK> <-- LAST-ACK

5. TIME-WAIT --> <SEQ=101><ACK=301>
<CTL=ACK> --> CLOSED

6. (2 MSL)
CLOSED .

Normal Closing Procedure
Figure 13

see more please visit: https://homeofbook.com

. TCP A . TCP B
1. ESTABLISHED . ESTABLISHED
2. (Close) . (Close)

. FIN-WAIT-1 --> <SEQ=100><ACK=300>
<CTL=FIN,ACK> ... FIN-WAIT-1

. <-- <SEQ=300><ACK=100>
<CTL=FIN,ACK> <-- .

. ... <SEQ=100><ACK=300>
<CTL=FIN,ACK> --> .

3. CLOSING --> <SEQ=101><ACK=301>
<CTL=ACK> ... CLOSING

. <-- <SEQ=301><ACK=101>
<CTL=ACK> <-- .

. ... <SEQ=101><ACK=301>
<CTL=ACK> --> .

4. TIME-WAIT . TIME-WAIT
. (2 MSL) . (2 MSL)
. CLOSED . CLOSED

The simultaneous closing of the connection at both ends
of Figure 14

3.6 Priority and Safety
The idea of this part of the protocol is that the connection can only exist
between ports of equal importance without danger and closure, and the
priority level should correspond to the highest of the values requested by the
two ports.
The priority and security parameters used in the TCP protocol are exactly in
line with the Internet (IP) protocol. In the TCP protocol specification, the
concept of "security" should include the parameters used in IP, which include
actual security, privacy, group definition for users, and support for various
restrictions.
Attempting to connect to unacceptable security/privacy values, or with a low
priority, should be rejected by sending a restart signal. Refusal to connect due
to insufficient priority can only be granted after receiving confirmation on the

see more please visit: https://homeofbook.com

SYN signal.
Note that TCP modules that only work with the default priority will
nevertheless check the priority of the incoming segments and, if necessary,
raise the priority level applicable to that particular connection.
Security options can even be used by TCP programs that do not support the
security system (the security field values would apply to non-classified data).
Thus, hosts that do not support the security system should be prepared to
accept security settings, although they do not need to send such parameters.

3.7 Data transfer
If the connection is established, the data is transmitted through segment

exchange. Because segments may be lost as a result of errors (such as control
errors) or network overload, the TCP program uses a re-parcel mechanism
(after a certain amount of time) to make sure each segment is received. The

chapter on queue numbers discussed how the TCP program in segments
checks the number of queues and confirmation numbers for their correctness.
The sender of the data using the SND variable value. NXT tracks the next
number in the queue to be sent. Recipient of the data using the RCV variable.
NXT tracks the next number it expects to arrive. In the SND variable. The
data sender puts the value of the oldest number that was sent but has not yet
been confirmed. If the data flow had instantly dried up and all the data sent
had been confirmed, then all of these variables would have contained the
same value.
When an information sender creates and sends a segment, it increases the
value of the SND variable. Nxt. The addressee increases the value of the
RCV variable when the segment is received. NXT and sends confirmation.
When the TCP program that sends the data is confirmed, it increases the SND
value. Una. The difference in the values of these variables is a measure that
characterizes the latency of segments in the network. The amount to be used
to increment the value of these variables every time is the length of the data
field in the segment. Note that because the connections are in the
ESTABLISHED state, all segments, in addition to the data itself, must carry
some information about the confirmation of previously sent segments.
The user's request to close the connection (CLOSE) involves using the push
function, which is carried out using the CONTROL flag OF FIN to the
incoming segment.

Re-sending time

see more please visit: https://homeofbook.com

Due to the fickleness of the networks that make up the unified system and the
large number of customers using TCP connections, there is a need for a

dynamic definition of the re-delivery time control time. One of the
procedures for determining this time is given as an illustration.

An example of the time-measuring procedure for re-sending segments First,
measure the time that has passed between sending a data octet with a certain
number in the queue, and receiving confirmation indicating, among others, to
that number (the segments sent are not required to correspond to the resulting
segments).
Измеренная временная задержка - это время обращения (Round Trip
Time - RTT). Следующий шаг - вычисление усредненного времени
обращения (Smoothed Round Trip Time - SRTT):
SRTT = (ALPHA * RSTT) + ((1-ALPHA) * RTT)
The re-parcel time (Retransmission Timeout - RTO) is then determined by
using the found value:
RTO, min, LBOUND, (BETA)

UBOUND- Upper limit of time limit (e.g. 1 min),
LBOUND - lower limit (e.g. 1 sec).
ALPHA - smoothing factor (e.g. 0.8 to 0.9),
BETA - delay change factor (e.g. 1.3 to 2.0).

Transfer of urgent information
The TCP Protocol Urgent Transfer Mechanism is designed to enable the
customer sending the data to accept some urgent information, as well as to
allow the TCP program, which receives the data, to inform its client when all
the information is available to date.
This mechanism allows you to mark a point in the data stream as the end of
the emergency information block. When in the TCP program, accepting the
data, this point will be ahead of the number indicator in the receiving queue
(RCV). NXT), this TCP program should give the command to its client to go
into "urgent mode." When the number in the queue for receiving catches up
with an urgent pointer in the data stream, the TCP program should give the
customer command to come to "normal mode." If the urgent pointer changes

see more please visit: https://homeofbook.com

its position when the client is in "urgent mode," the latter will not know about
it.
This method uses the flag field of urgency, which is present in all transferable
segments. The unit in the URG control flag field means that the field of
urgency is involved. To get a pointer to this field in the data stream, you need
to supplement it with the number of the segment in question in the queue.
The absence of the URG flag means that the sender does not have urgent data
that has not been sent.
When specifying urgency, the customer must also send at least one octet of
data. If the customer who puts the data additionally orders the push function,
the transmission of urgent information to the waiting process will be
accelerated many times.

Window control
The window sent to each segment indicates the range of queue numbers that
the window sender (a.s. the recipient of the data) is ready to accept at this
time. It is assumed that this mechanism is related to the current location in the
data buffer.
The large window's indication stimulates the transmission. But if you have
more data than TCP can accept, the data will be discarded. This will result in
unnecessary information forwarding and unnecessary increased workload on
the TCP network and program. Indicating a small window can limit data
transfer to the speed at which it takes to travel on the network after each
segment is sent.
Such protocol mechanisms allow the TCP program to declare a large
window, but subsequently declare a window of much smaller size and not
accept such a large amount of data. Such so-called window cut looks rather
disconcerting. The sustainability principle dictates that the TCP protocol
program does not shorten the window itself, but is prepared for such action
by another TCP program.
The TCP program that sends data should be prepared to accept at least one
octet of new data from the customer and transmit at least one octet of new
data over the network, even if the departure window is zero. The TCP
program must periodically re-send data to another TCP program, even if the
window is zero. In the case of a zero window, it is recommended that you use
a two-minute re-parcel interval. Such repeated parcels are important to ensure
that if one of the two TCP programs has a zero window, the opening of this

see more please visit: https://homeofbook.com

window will be guaranteed to be communicated to the partner.
When the TCP program that receives the data has a zero window, but a
segment comes to it, the program must send confirmation and specify what
number in the queue it is waiting for and what window it currently has
(window zero).
The TCP program packs the data intended for forwarding to segments that fill
the current window. However, it cannot repackage existing segments in the
queue for a second parcel. Such repackage, although not necessary, but can
be useful.
In a one-way data connection, the window information will be transmitted to
the confirmation segments, and they will all have the same queue number.
Therefore, there will be no way to restore their order when receiving. This is
not a serious problem, but it may inadvertently lead to information about the
window from an out-of-date message. To avoid such a problem, the window
drop-out should be taken from the segments with the largest number in the
queue (these are segments whose confirmation number is larger or equal to
the largest number previously received).
The window management procedure has a significant impact on
communications characteristics. Further comments include suggestions to the
developers.

Wishes for window management
A very small window results in very small segments of data being
transmitted, while the best mode is when using larger segments.
To avoid using small windows, the data recipient is asked to delay changing
the window until the available space is X percent of the maximum possible
memory for this connection (where X can be between 20 and 40).
Another tip not to send small segments is to keep the sender from rushing to
send the data until the window is big enough. But if a customer commands to
use a push feature, the data should be sent immediately, even if it's done by a
small segment.
Note that in order to avoid unnecessary re-shipments, there is no need to
delay the delivery of confirmations. The strategy may be to send
confirmation when you receive a small segment (without updating the
window information), then send another confirmation with new information
about the window if the latter expands.

see more please visit: https://homeofbook.com

A segment sent to check a zero window can trigger a breakdown of the
transmitted data into more and more small segments. If a segment containing
a single data octet and sent to check the zero window is received, it will take
one octet in the current window. If TCP simply sends as much data as it can,
whenever the window is not zero, the data transmitted will be broken down
into large and small segments. After some time, the occasional pause in the
recipient's release of the window will break down large segments into
numerous and not-so-large pairs. So, after some time, data transmission will
be mostly small segments.
The proposal is for the implementation of the TCP protocol to actively try to
combine small windows into larger windows, as window controls seek to
introduce many small windows into the simplest implementations of the
protocol.

3.8 Interfaces
Of course, two interfaces are affected here. The interface is the TCP
client/protocol and the interface of the TCP/lower level protocol. We have a
more carefully designed model for the first one. But this does not address the
interface with the lower-level protocol module, as it is done in the
specification of the latter. For a case where the bottom level in the interface is
the IP protocol, we will only note some of the acceptable parameters used by
the TCP protocol.

Customer/TCP interface
The following functional description of the client commands sent to the TCP
protocol program is, at best, speculative, as each operating system will have
its own characteristics. Therefore, we need to warn readers that different
implementations of the TCP protocol may have a different interface with the
customer. However, all implementations of the TCP protocol must provide
some minimal service to ensure that they all adhere to a single hierarchy of
protocol. This chapter describes the functional interface that is required for all
implementations of the TCP protocol.

TCP Customer Team
The following paragraphs functionally characterize the TCP client
interface/protocol. Call notation is like noting most function call butting or
notation in high-level languages, but that doesn't mean trap calls are wrong
(e.g. SVC, UUO, EMT).
The client commands below identify the main operations that the TCP

see more please visit: https://homeofbook.com

protocol program must perform to support interflow communications.
Individual protocol implementations must define their own specific format
and can provide combinations or sets of basic functions for single calls. In
particular, some implementations can automatically open the connection
(OPEN) as soon as the customer gives the first parcel command (SEND) or
receipt (RECEIVE).
In order to maintain the interface between processes, TCP must not only
accept commands, but also return some information to serviced processes.
This information consists of:

a)
general information about the connection (i.e. interruptions, partner
connection closing, communication management with a non-
predetermined alien socket).

b) responding to specific customer commands indicating success or different
types of errors.

Opening Team
OPEN Format
(their port, foreign port, active/passive, control time, priority)
We believe that the local TCP program is responsible for identifying the
processes you serve and will verify that processes that wish to access this
connection are relevant. Depending on the implementation of the TCP
protocol, either the TCP program or the lower-level protocol (such as IP) will
create the sender's address, or rather the identifiers for the local network and
the TCP interface. Such forethought is the result of security consideration,
namely that none of the TCP programs can disguise itself as any other, etc.
If the flag is active/passive, it means that the "listening" (LISTEN) of the
external connection signal has been requested. Passive discovery can either
give a full description of someone else's socket, with which this connection
should be established, or not give any indication about someone else's socket,
which should give a signal. Passive opening of a connection with a well-
defined foreign socket can become an active open connection at any time if a
command is given to send the data (SEND). A transmission control unit
(TCB) is created and partially filled with information from the OPEN team
settings.
In the case of the Active Opening Team (OPEN), the TCP protocol will
immediately start the connection synchronization procedure (more precisely,

see more please visit: https://homeofbook.com

installing).
The time control time, if present among the function parameters, allows the
client to set a elimination time control for all data sent on behalf of the TCP
protocol. If any data does not reach its target during this time of control, TCP
will eliminate the connection. Currently, the generally accepted control time
is five minutes.
The TCP protocol program or any component of the operating system will
verify the customer's rights to open a connection that has priority and security
prioritization and security. If priority or security/privacy is not specified, a
CALL call using the default settings should be used.
The TCP protocol program will only accept incoming requests if they have
the same level of security/closure. The priority of requests should be equal to
or exceed the priority specified in the opening team (OPEN).
If the connection's priority is greater than the value specified in the CALL
request, priority is taken from the query that has come and becomes a
permanent feature of the connection. Developers can re-instruct customers to
negotiate a connection priority. For example, a customer might specify a
priority that should be assigned to the connection. In another example, any
attempt to increase the priority of the connection should receive customer
approval.
At the end of the operation, the TCP protocol returns the local name to the
customer for an open connection. Subsequently, the name of the compound
can be used as a short designation for the connection, identifiable by the pair
of the local socket, someone else's socket.
The team on the send of data
FORMAT
SEND (local connection name, buffer address, number of bytes with data,
push flag, flag of urgency (control time)
This command results in the data contained in the customer's buffer being
transferred to the specified connection. If the connection was not open by this
time, the SEND command is erroneous. Some implementations of the TCP
protocol may allow customers to start communicating immediately with the
SEND command. At the same time, the OPEN team should be carried out
automatically. If the process that gave the command to the parcel is not
authorized to use the connection, the team returns the error to the customer.
If the push flag (PUSH) is installed, the data must be transmitted to the

see more please visit: https://homeofbook.com

intended destination with the appropriate message, and the PUSH bit must be
placed on the last of the segments created in the TCP buffer.
If the host who builds the gram date fragments cannot complete its work at
the allotted time due to the error of the fragment, it throws out the datagram
and can send a message that exceeded the time. This message should not be
sent at all unless a zero snippet of the datagram has been received.
From the gateway comes a message with the code 0, and from the host
computer - a message with code 1.
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Error message format with settings

Type Code Checksum
Pointer Not used

Internet headline q 64 bits of data from the original dategram

IP protocol fields:
The
recipient's address and the sender's address are entered into the gram
returning the error.
If the time target was specified, the current value set by the client will be
changed in this connection.
In simplest implementations, the SEND command does not betray control of
the program that caused it until the transmission is completed or until the
control time is exceeded. However, this simple method can result in a lock
(for example, when both sides at the ends of the connection try to execute the
SEND command first, and only then - RECEIVE) and poor performance.
Therefore, this approach is not recommended. In a more complex
implementation, the return from SEND function is immediate, allowing the
process to run in parallel with the input/inference into the computer network.
And even more than that - allows you to perform several SEND commands at
the same time. Multiple SEND commands are processed on a "first come first
served" basis, so the TCP protocol will have a queue that cannot be serviced
instantly.
Indirectly, we have assumed the asynchronousness of the interface with the
client, in which the SEND command causes the appearance of a special kind

see more please visit: https://homeofbook.com

of signal or pseudo-interruption from the TCP maintenance program. The
alternative is to return immediately from the team. For example, SEND
commands can return immediate confirmation from the local system, even if
the sent segment has not received confirmation from someone else's TCP
program. We are optimistic about the possible success of this operation. If we
make a mistake, the connection will be severed anyway after the control time.
Some asynchronous signals will still remain in the implementations of this
type of TCP (synchronous) protocol, but they will refer to the connection
itself, not to specific segments or buffers.
In order for the process to distinguish between error messages and successful
reports from different SEND commands, it may be convenient to return a
buffer address in response to a SEND request along with a coded response.
The signals between the client and the TCP protocol are discussed below and
determine the information that should be returned to the process that sent the
team.
Receiving team
RECEIVE format
(local connection name, buffer address, byte counter) - byte counter, flag of
urgency, push flag
This command places the information in a buffer associated with a specific
connection. If the team is not preceded by an OPEN command, or if the call-
making process is not authorized to use the connection, the error is returned.
In the simplest implementation of the protocol, management should not be
transferred to the challenged program until either the buffer is filled or there
is an error. However, this scheme is largely subject to blocking.
A more complex implementation could allow several RECEIVE commands
to be put forward at a time. These requests will be executed as data segments
become available. This strategy allows you to increase bandwidth by using a
more advanced scheme (possibly asynchronous), as well as alerting the
program that a PUSH push signal has been received or a buffer is filled.
If you have enough data to fill the buffer before you receive a PUSH push
push signal, the PUSH flag will not be installed in response to RECEIVE.
The buffer will hold as much data as its capacity allows. If the PUSH signal
is detected before the buffer is filled, the buffer will be returned partially
filled and with the PUSH signal.
If urgent data is found, the customer will be alerted by the TCP protocol

see more please visit: https://homeofbook.com

program as soon as they arrive. The customer receiving the data must go to
"urgent mode" on this signal. If the URGENT urgency flag is installed,
additional urgent data will remain unreceived. If the URGENT flag is
dropped, the receipt request will refund all urgent data and the client may be
exempt from the "urgent mode." Note that the data following the urgency
index (non-urgent data) cannot be delivered to the customer in the same
buffer with the previous urgent data, unless the client has clearly defined the
boundary.
To distinguish between multiple RECEIVED commands made and to
monitor buffers, the code returned to the customer is accompanied by both a
buffer pointer and the amount of data actually received.
Other implements in the RECEIVE team may themselves set aside a buffer to
accommodate the data they receive, or the TCP protocol program can use a
cyclical buffer at the same time as the customer.
Connection closing team
CLOSE format
(local connection name)
This command leads to the closure of the connection. If the connection is not
open or the process that has given the command is not authorized to use this
connection, it is returned with an error communication. It is assumed that
closing the connection will be a slow operation in the sense that the
remaining SEND commands will transmit data for some time (and even, if
necessary, reapply) as far as thread management will allow, and the ordered
work will not be done. In this way, you can make multiple SEND parcel
commands and then close the connection with the CLOSE command, making
sure that the data sent will reach the recipient. Obviously, customers should
continue to give commands to receive data from already closed connections,
because someone else's program will still try to send the remaining data to it.
So the CLOSE command should be interpreted as "I don't have any more data
to send" rather than "I don't want to get anything anymore." It may happen (if
the protocol at the customer level is not fully thought out) that the party
closing the connection will not be able to get rid of all their data before the
control time expires. In this case, the CLOSE command is broadcast to
ABORT, and the TCP program refuses to connect.
The customer can command CLOSE at any time at his own discretion, as
well as in response to various messages from the TCP protocol (for example,

see more please visit: https://homeofbook.com

when the connection is closed from the other side, the transfer control time is
exceeded, the recipient is not available).
Because closing a connection requires communication with someone else's
TCP program, connections can be closed for a short time. Trying to re-open
the connection before TCP responds to the CLOSE command will result in a
return to the error message call.
The closing team involves the operation of pushing the data through the
connection.
Connection status team
Status format
(local connection name) -This is a client team that is based
on a specific implementation.

local juice
someone else's juice
Local link name
receipt box
Departure window
Connection status
number of buffers waiting to be confirmed
number of buffers waiting for data
urgency status
Priorities
security/closure
time control

Depending on the state of the connection or the specifics of the protocol
implementation, some of this information may not be available or
meaningless. If the process that you call does not have the right to use this
connection, the error message is rotated. This approach does not allow un
empowered processes to obtain information about the connection.
Unit elimination team
ABORT format
(local connection name)
This command eliminates all unfinished parcel operations and data. The TCB

see more please visit: https://homeofbook.com

unit is eliminated and a special RESET message must be sent to the TCP
program at the other end of the connection. Depending on the implementation
of the protocol, customers can receive a liquidation message in response to
each outstanding request for a parcel or receipt of data. Alternatively,
customers can simply get confirmation from the ABORT team instead.

Messages to the customer from the TCP program
It is assumed that the operating system's service functions provide the TCP

program with the means to send asynchronous signal. When the TCP
program sends a signal to the client's program, a certain amount of

information is also transmitted to the customer himself. This is often done in
the form of error messages. In other cases, information related to the

completion of the parcel and receipt of the data, as well as the execution of
other client commands, will be provided.

The following information is provided:

local connection name Always
report line Always
Buffer address sending and receiving data
number of bytes (the meter received bytes) Getting data
flag pushing Getting data
flag of urgency Getting data

TCP interface with lower-level protocol
The TCP protocol program for the actual delivery of information over the

network, as well as to receive it makes requests to the module of the protocol
of the lower level. One example of this implementation is the ARPA

Internetwork system, where the lower-level module is the Internet Protocol
(IP).

If the lower-level protocol is IP, it asks for the required type of service and
the life of the data on the network as call arguments. The TCP protocol
program uses the following values for these parameters:
Type of service - priority: normal, delayed: normal,
bandwidth: normal, reliable: normal,
i.e. 000,00000

see more please visit: https://homeofbook.com

Lifetime- One Minute, or 00111100
Note that the maximum life time of the segment is two minutes. Here we
clearly determine that the segment should be eliminated if it does not reach
the recipient in the Internet within one minute.
If the IP protocol (or any other protocol with the same functions) is located
below and the routing procedure is applied, the interface must allow the
transmission of route information. This is especially important because the
recipient and recipient addresses that are included in the TCP protocol control
amount will correspond to the actual sender of the data and the most recent
recipient. It is also important to maintain the return route to respond to state
queries.
Any lower-level protocol will be required to provide the sender's address,
recipient address, protocol field, and some TCP message length procedure
required for both IP protocol service functions and the TCP protocol itself.

3.9 Event Processing
The processing described in this chapter is just an example of one possible
implementation of the protocol. Other implementations may have slightly
different processing procedures, but they should differ from those described
in this chapter only in detail, but not in substance.
The TCP protocol program can be seen as a response to events. These events
can be broken down into three categories: customer requests, segment arrival,
expiration of control time. This chapter describes the activities in the TCP
protocol in response to each of these events. In many cases, the processing
required depends on the state of the connection. Events that can occur:
Customer teams

to open the connection
to send data
to get the data
closing the connection
to eliminate the connection
to determine the status of the connection

Receiving
Segments Expiration Of Control Time

see more please visit: https://homeofbook.com

For customer action
to re-send
Waiting

The TCP and customer interface model is that the client commands are
executed immediately, and the likely deferred report is provided through an
event or pseudo-break mechanism. In the further description, the concept of
"signal" may indicate some basis for sending a deferred report.
Error messages are provided in the form of text lines. For example, customer
commands addressed to non-existent connections will receive the message
"error: connection not open."
Please note that in the future all the arithmetic for queue numbers,
confirmation numbers, windows, etc. is carried out on the module 2-32,
which corresponds to the size of many queue numbers.
Note, too, that "zlt;" means "less or equal" (on the module 2/32).
To understand the meaning of processing incoming segments, it would be
natural to imagine that they are first checked for the correctness of the queue
number (i.e. that their information falls within the "receiving window" range
among the expected queue numbers) and that they will, in general, be queued
and processed accordingly by their numbers.
If some segments overlap with other previously received segments, we design
a segment that contains only truly new data, and then adjust the header fields
accordingly.
Note that the state of the TCP protocol program remains unchanged when
processing events unless the opposite is specified specifically.
Open request
Closed (i.e. there is no TCB)
Create a new transmission control unit (TCB) to store connection status
information. Customers may be given the opportunity to check security and
priority settings if they do not receive an "error: precedence not allowed" or
"error: security/compartment not allowed" in the event of a passive opening.
If the opening is active and indicates someone else's socket, then send a
segment with a SYN signal. The starting number for the departure queue is
chosen. The SYN segment and signal sent are in the form of a zlt.-ISS." Set
the SND variable. UNA's ISS, and SND. NXT in ISS.1. Go to SYN-SENT.

see more please visit: https://homeofbook.com

Return control of the process that caused the team in question.
If the customer who made the request did not gain access to the socket
specified in the request, return the message "error: connection illegal for this
process." If there is no place in your computer's memory to create a new
connection, return the message "error: insufficient resources."
LISTEN State
If there is activation and is indicated by someone else's socket, then change
the state of the connection from passive to active, choose ISS. Send a
segment with the SYN signal, bring in the SND. UNA is the value of ISS,
and in SND. NXT ISS+1. Go to THE SYN-SEND state.
The data listed in the SEND command can be sent in the same segment with
the SYN signal, or may be placed in a transfer queue that can be made after
the transition to an ESTABLISHED state. If the team is asked to use a bit of
urgency, the data segments should be sent as a result of the execution. If there
is no place in the queue of orders for shipment, the result will be the answer
"error: insufficient resources." If someone else's socket is not specified, then
return the message "error: foreign socket unspecified"
State

SYN-SENT
SYN-RECEIVED
ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
CLOSE-WAIT
CLOSING
LAST-ACK
TIME-WAIT

return the message "error: connection already exist" in response to the
opening team
SEND request
CLOSED (e.g. no TCB block)
If a customer does not have access to such a connection, return the message

see more please visit: https://homeofbook.com

"error: connection illegal for this process."
LISTEN State
If the socket is specified, then change the state of the connection from passive
to active, choose the ISS number. Send a segment with the SYN signal, set
SND. UNA's ISS, and SND. NXT in ISS.1. Set a new state OF SYN-SENT.
Data from the SEND call can be sent along with the SYN signal, or can be
placed in a queue and sent after the established state has been established.
If the team is asked to use a bit of urgency, it must be transferred along with
the segment of data that occurs when that command is being performed. If
there is no room in the queue for the request, return the message "error:
insufficient resources." If someone else's socket is not specified, then return
"error: foreign socket unspecified."
SYN-SENT
State SYN-RECEIVING
Put the data in line to send after the established state is established.
ESTABLISHED
STATE CLOSE-WAIT
Segment the data buffer and send it back (confirmation value q RCV. NXT).
If you don't have enough memory space to place this buffer, just return the
message "error: insufficient resources."
If the flag of urgency is installed, it will be in the SND. UP value SND. NXT-
1 and set an urgency index to the outgoing segments.
State

FIN-WAIT-1
FIN-WAIT-2
CLOSING
LAST-ACK
TIME-WAIT

Return the message "error: connection closing" and do not comply with the
customer's request.
RECEIVE request
CLOSED (for example, there is no TCB block)

see more please visit: https://homeofbook.com

If a customer does not have access to such a connection, return the message
"error: connection illegal for this process."
State

LISTEN
SYN-SENT
SYN-RECEIVED
Place the request in the service queue after the ESTABISHED state has been
established. If there is no place in the queue for this, return the message
"error: sufficient resources."
State

ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
If there is not enough data in the incoming segments to fulfill this request,
place the latter in the service queue. If there is no place in the queue to place
the RECEIVE request, return the message "error: insufficient resources."
Collect data from the incoming segments in the receiving buffer and then
pass it on to the customer. Install the "detected push" (PUSH) flag if it
occurs.
If the data currently being transmitted to the customer was preceded by RCV.
UP, then notify the customer of the presence of urgent data. When the TCP
protocol assumes responsibility for the customer's receipt of the data, it
actually means sharing information with the sender in the form of
confirmations. The formation of such confirmation is discussed below when
considering the algorithm for processing the incoming segment.
CLOSE-WAIT State
Because the partner at the other end of the connection has already sent a FIN
signal, THE RECEIVE commands should receive data already available in
the system, not just those that have already been passed on to the customer.
State

CLOSING

see more please visit: https://homeofbook.com

LAST-ACK
TIME-WAIT

Вернуть сообщение "error connection closing".
CLOSE request
CLOSED (e.g. no TCB block)
If a customer does not have access to such a connection, return the message
"error: connection illegal for this process."
LISTEN
Any remaining unsatisfied RECEIVE requests will be completed with the
message "error: closing."
SYN-SENT
to erase the TCB block and return the "error closing" message to any
remaining SEND or RECEIVE requests.
If no SEND requests are made and there is no data waiting to be sent, then
form a FIN segment and send it, then go to the FIN-WAIT-1 state.
Otherwise, put the data in the queue for review after the ESTABLISHED
state has been established.
THE state of ESTABLISHED
Put the request in a queue waiting for all the data of the previous commands
to be segmented.
Fin-WAIT-1 Condition
FIN-WAIT-2
Strictly speaking, this situation is erroneous and should result in the customer
receiving an "error: connection closing" message.
CLOSE-WAIT State
Put this query in a queue until all previous SEND requests are placed in
segments.
State

CLOSING
LAST-ACK
TIME-WAIT

see more please visit: https://homeofbook.com

Возвратить сообщение "error: connection closing".
ABORT Request
CLOSED (e.g. no TCB block)
If a customer does not have access to such a connection, return the message
"error: connection illegal for this process."
LISTEN
Any remaining RECEIVED requests must end with the return of the message
"error: connection reset."
SYN-SENT
All in-line SEND and RECEIVE requests must receive a "connection reset"
message, erase the TCB block, go to CLOSED, and return control to the
customer.
State

SYN-RECEIVED
ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
CLOSE-WAIT
Послать сегмент перезагрузки
<SEQ=SND.NXT><CTL=RST>
All in-line SEND and RECEIVED requests should receive a "connection
reset" message. All segments in the transmission queue (with the exception of
the newly formed RST signal) and the re-mailing queue must be eliminated.
Erase the TCB block, go to a CLOSED state, regain customer control.
State

CLOSING
LAST-ACK
TIME-WAIT
Return the "ok" message and erase the TCB block, go to CLOSED, return
control to the client.
STATUS request

see more please visit: https://homeofbook.com

CLOSED (e.g. no TCB block)
If a customer does not have access to such a connection, return the message
"error: connection illegal for this process."
LISTEN
Return the message "state'LISTEN" and the pointer to the TCB block.
STATE SYN-SENT
Return the message "state'SYN-SENT" and the pointer to the TCB block.
SYN-RECEIVED
Return the message "state'SYNRECEIVED" and the pointer to the TCB
block.
ESTABLISHED
Return the message "state'ESTABLISHED" and the pointer to the TCB
block.
State FIN-WAIT-1
Return the message "state-FIN-WAIT-1" and a pointer to the TCB block.
State FIN-WAIT-2
Return the message "state-FIN-WAIT-2" and a pointer to the TCB block.
CLOSE-WAIT Return
the message "state-CLOSE-WAIT" and the pointer to the TCB block.
CLOSE
Return the message "state'CLOSING" and the pointer to the TCB block.
STATE LAST-ACK
Return the message "state'LAST-ACK" and pointer to the TCB block.
TIME-WAIT Return
the message "state'TIME-WAIT" and the pointer to the TCB block.
The arrival of segments
If the closed connection state (for example, there is no TCB block), all data
from the specified segment will be thrown away. The segment that came with
the RST signal will be eliminated. A segment that does not contain an RST
signal will trigger an RST signal in response. Confirmation and queue
number will be chosen in such a way as to make the reboot sequence
acceptable to the TCP program that sent the segment that caused the reaction.
Если бит ACK сброшен, то используется номер очереди нуль:
<SEQ=0><ACK=SEG. SEQ+SEG. LEN><CTL=RST,ACK>

see more please visit: https://homeofbook.com

If the ACK is installed, it is
zlt;SE'SEG. Return control of the
aborted program.
If you have a LISTEN connection state,
check the presence of the RST signal first.
The RST signal that came along with the segment should be ignored, and
management should be returned to the interrupted program.
Second, check for the presence of ACK. Any confirmation is a mistake if it
has come to the end of a
connection still in listen.
Return control of the
aborted program.
Third, check for syn signal presence If a
SYN bit is installed, then check security.
If the value of
se. PRC is smaller than TCB. PRC, then move on to the next point.
Install RCV. NXT in SEG. THE IRS install in SEG. And the rest of the texts
and control functions are put in a queue for later processing. Select the value
for ISS and send a confirmation segment in the form
of zlt;ISS." NXT'lt'SYN, ACK'gt;
Variable SND. NXT is set in ISS'1, and SND. UNA at ISS. Set a new SYN-
RECEIVED state to connect. Note that SYN-RECEIVED will process all
incoming data and control teams (along with SYN), but will no longer
process SYN and ACK signals as before. If the LISTEN state is not fully
formulated (for example, it is not specified exhaustively someone else's
socket, then at this point should be determined the fields of the block TCB,
which remain unfilled.
Fourth, look for the rest of the management commands in the coming
segment, as well as the data itself. Any segments with other control
commands or completed text (but not SYN signal) must receive confirmation
from the local TCP program, and thus be discarded while working with
confirmation. An incoming segment with an RST signal may not be correct
because it cannot be a response to the information given by this connection
implementation. So you're unlikely to get this signal, but if it does, throw
away the incoming segment and return control of the interrupted program.

see more please visit: https://homeofbook.com

If the STATE of the SYN-SENT connection
First, check out the ACK bit If the ACK bit is on display, then
in case the SEG. ACK is or SEG. ACK > SND. NXT,
send a reboot signal tothe
zlt's SEG. If you don't exhibit a bit of
RST. If it's all on display, then doing nothing to throw out the incoming
segment and regain control of the aborted program.) Eliminate the segment,
return the controls.
If SND. UNA =< SEG. ACK =< SND. NXT, the confirmation received in the
segment becomes acceptable.
Second, check out the bit of RST.
In the event that the RST bit is exposed
If you expected to receive a segment with confirmation, then give the
customer an ad "error: connection reset", return the segment, go to CLOSED,
remove the TCB block, and finally return the management of the aborted
program.
Thirdly, check safety and priority levels
If the security/privacy values in the upcoming segment do not match exactly
those in the TCB block, then send a reboot signal, or rather if there is an
ACK, then send a
zlt;SE'SEG. Otherwise,
senda
zlt.s.a. SEQ+SEG. LEN><CTL=RST,ACK>
If there is an ACK, the priority in the next segment should coincide with the
priority specified in the TCB block.
ACK><CTL=RST>
If there is no ACK, you can do this
if the segment prioritizes above the priority in the TCB block, then if the
client and the system allow it, increase the priority in the TCB block to the
value specified in the segment.
If you don't allow to increase priority, send a reboot signal:
SEQ+SEG. If the segment has a
smaller priority than the TCB block, just move on to the next point of
analysis.
Fourth, check the installation of the SYN bit. This step should only be done if

see more please visit: https://homeofbook.com

the ACK bit is not causing problems, or if it is not installed, the segment also
does not contain an RST signal.
If the SYN bit is set and the priority security/privacy settings are acceptable,
then the SEG variable. NXT write down the seg value. The IRS set the SEG
equal. Seq.
Snd. UNA should be upgraded to SEG. ACK (if there is ACK), and any
segments in the queue for a second parcel that have thus received
confirmation must be removed.
If SND. UNA iss (our SYN signal will receive confirmation), then install to
connect the state of ECTABLISHED and form the ACK segment
of the zlt;SE-SND. NXT><ACK=RCV. NXT'lt'lt;CTL'ACK'gt;
and send it. If there are other commands or even some text in the data field in
this segment, then continue processing from the sixth stage below, where
the URG bit is checked.

If you have commands or text in the data box in the intended segment, put
them in the queue for processing after the ESTABLISH status is
established.
Fifth, if the SYN or RST bits are installed, you will throw out the incoming
segment and return control of the interrupted program. If the connection was
in a state not described above at the time of the segment's arrival,
First, check the
Status queue number

SYN-RECEIVED
ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
CLOSE-WAIT
CLOSING
LAST-ACK
TIME-WAIT
Segments are processed one by one. When the segment is received, the test is

see more please visit: https://homeofbook.com

first performed to remove old duplicates, but further processing is done in
order of SEG numbers. Seq. If the content of the segment overlaps the
boundary between old and yet new information, only new data should be
processed.
The eligibility test of the incoming segment considers four options:

Segment
length

Receiving
window

Text

0 0 SEG. SEQ = RCV. Nxt
0 >0 RCV. NXT =< SEG. SEQ < RCV.NXT+RCV.WND
>0 0 Segment is unacceptable

>0 >0
RCV. NXT =< SEG. SEQ < RCV.NXT+RCV.WND
или RCV. NXT =< SEG. SEQ+SEG. LEN-1 <
RCV.NXT+RCV.WND

If RCV. WND zero, no segments will be acceptable, but the acceptability of
getting the correct signals of ACK, URG and RST should be specifically

specified.
If the incoming segment is not acceptable, then send its confirmation in
return. NXT><ACK=RCV. Ifthe RST bit is not installed (if it is
still on display, then throw out the incoming segment and return control of
the aborted program.)
After sending confirmation, eliminate the unaccepted segment and return
control of the interrupted program.
In the future, the recommendations are based on the assumption that the
incoming segment is idealized and begins with the RSV. NXT that doesn't go
out the window. Real segments can be adjusted to this assumption by
discarding any parts of them that go beyond the window (including even
SYN and FIN signals), and further processing them only if the segment then
starts with the RCV number. Nxt. Segments with large numbers in the queue
are saved for processing in the future.
Second, check out the bit of RST.
SYN-RECEIVED If
the RST bit is set, then do the following:
If the connection was initiated by the OPEN passive opening team (for

see more please visit: https://homeofbook.com

example, the transition from LISTEN state was made), then return the
connection to LISTEN, There is no need to inform the user about this
connection.
State

ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
CLOSE-WAIT
If you have a bit of RST installed, all receiving RECEIVE and SEND
requests waiting to be processed should receive a "reset" response.
Remove all segments from the queues. Customers must receive a non-binding
general message called "connection reset." Go to CLOSED, erase the TCB
block and return control of the aborted program.
State

CLOSING
LAST-ACK
TIME-WAIT
If you put up a bit of RST, then go to CLOSED, remove the TCB block and
return control of the interrupted program.
Third, check the importance of security and priority in the upcoming segment
SYN-RECIEVED If
security/closure and priority in the next segment do not match the
security/privacy and priority specified in the TCB block, send a reboot signal
and return control to the aborted program.
ESTABLISHED If
security/closure and priority in the queue do not match exactly with the
safety/privacy and priority specified in the TCB block, then send a reset
signal that still remains unserved RECEIVED and SEND requests must
receive a "reset" response.
Note that this check is put after checking the number in the queue in order to
prevent the rupture of this connection, initiated by obtaining a segment that

see more please visit: https://homeofbook.com

remained from the previous connection with other security and priority that
once existed between these ports.
Fourth, check out a bit of SYN
States

SYN-RECEIVED
ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
CLOSE-WAIT
CLOSING
LAST-ACK
TIME-WAIT
If SYN is within the window, send a reboot signal. Any RECEIVE and
SEND teams waiting to be processed should get a "reset" response, remove
all segments from the queues, and the customer must receive a non-binding
general message "reset connection." Go to CLOSED, remove the TCB block,
return control of the interrupted program.
If SYN is outside the window, it should not reach this point. In the first stage
(check of the queue number) confirmation had to be sent. Fifth, check the
ACK box If the ACK bit is not installed, then the segment is eliminated, and
the controls transfer the interrupted program.
If a bit of ACK is set
by THE SYN-RECEIVED State.
If SND. UNA =< SEG. ACK =< SND. NXT, then go to the ESTABLISHED
state and continue processing.
If the confirmation in the segment was not acceptable, then to form a segment
with a reboot signal
of the SEG. ACK and
send it.
Established
State If SND. UNA < SEG. ACK =< SND. NXT, then set in SND. UNA
value from SEG. Ack. Any segments from the queue for a second parcel that
have received confirmation are removed. Customers should receive positive

see more please visit: https://homeofbook.com

feedback on buffers that have been sent by the SEND team and have now
been fully confirmed (for example, a team to send a buffer with data should
end with the message "ok").
If the confirmation is a duplicate (SEG. ACK < SND. UNA), it can be
ignored.
If the ACK message confirms something that has not yet been sent (SEG.
ACK > SND. NXT), then send ACK, eliminate the segment and return
control of the aborted program.
If SND. UNA < SEG. ACK =< SND. NXT, you should update the box for
the parcel.
If (SND. WL1 < SEG. or (SND. WL1 = SEG. SND and SND. WL2 =< SEG.
ACK) then install SND. WND according to THE SEG. WND, SND. WL1 in
SEG. SEQ, SND. WL2 in SEG. Ack.
Note that in SND. WND recorded a bias relative to the SND. UNA, xnj d
SND. WL1 recorded a queue number for the last segment used to update the
SND. WND as well as that in SND. WL2 recorded a confirmation number
from the last segment used to update the SND. Wnd. At the same time, the
check protects against the use of outdated segments to update the window.
The FIN-WAIT-1 condition
is the same as when processing in the case of established state, but if our FIN
signal has now received confirmation, then go to FIN-WAIT-2 and continue
processing in this state.
The FIN-WAIT-2 state
is the same as when processing for an ESTABLISHED state case, but if the
re-parcel queue is empty, the customer's command to close the CLOSE
connection can get confirmation ("ok"), but does not remove the TCB block.
THE CLOSE-WAIT condition
is the same treatment as it was for the ESTABLISHED standing case.
THE state of CLOSING
is the same as in the case of ESTABLISHED state processing, but if ACK in
the coming segment confirms our FIN signal, then go to TIME-WAIT.
The last-ACK state
is the only thing that can happen in this state is getting confirmation on the
FIN signal.
THE state of TIME-WAIT

see more please visit: https://homeofbook.com

The only thing that can happen in this state is the re-transmission of someone
else's FIN signal.
Confirm the signal and re-start after the 2MSL control time.
Sixth, check out a bit of URG
Status

ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
If a bit of URG is installed in the RCV. UP bring max (RCV. UP, SEG. UP),
and let the customer know that there is urgent data at the other end of the
connection if the urgent pointer (RCV. UP) stands in front of the data. If the
customer has already been notified of this chain of urgent data (or if it is still
in "urgency mode"), you should not remind him of it again.
State

CLOSE-WAIT
CLOSING
LAST-ACK
TIME-WAIT
This should not happen because it was obtained from the other end of the
connection. Ignore the bit of URG.
Seventh, process data from their
State segment

ESTABLISHED
FIN-WAIT-1
FIN-WAIT-2
Once we were able to ESTABLISHED, it became possible to accept the text
to be placed in the receipt buffers specified by the client. Text from segments
can be rolled into buffers until either the buffer is filled or the segment
becomes empty. If the segment is empty and carries the PUSH push flag,
when the buffer is returned, notify the customer that a PUSH signal has been

see more please visit: https://homeofbook.com

received.
When the TCP protocol assumes responsibility for the customer's receipt of
the data, it must also confirm that the data has been received.
Once the TCP program takes over the management of the data flow, it puts
the value of the RCV. NXT in front of the data spectrum, and RCV. WND
sets the buffer capacity accordingly at the moment. In general, the value of
RCV. NXT and RCV. WND should not be adjusted to a smaller side.
Please note that window management is based on the assumptions in Chapter
3.7.
Послать подтверждение в виде
<SEQ=SND. NXT><ACK=RCV. NXT><CTL=ACK>
This confirmation should be added to the segment leaving the other end of
the connection and, if possible, without unnecessary delay.
State

CLOSE-WAIT
CLOSING
LAST-ACK
TIME-WAIT
This should not happen because it was obtained from the other end of the
connection. Ignore the text in the segment.
Eighth, check the FIN bit
not to handle the FIN signal if the state is CLOSED, LISTEN or SYN-SENT
because there is no way to check the SEG. THROW out the incoming
segment and regain control of the interrupted program.
If the FIN bit is installed, then give the customer a "connection closing"
signal, with the same message to complete all pending RECEIVED requests,
to install the RCV. NXT in front of the place in the FIN signal queue, send
for the last confirmation. Note that the FIN signal involves pushing (PUSH)
texts in all segments not yet received by the customer.
State

SYN-RECEIVED
ESTABLISHED

see more please visit: https://homeofbook.com

Go to CLOSE-WAIT
State FIN-WAIT-1
If our FIN signal has received confirmation (possibly in the same segment),
then go to TIME-WAIT, to run a control timer, disable all other timers.
State FIN-WAIT-2
Go to TIME-WAIT.
CLOSE-WAIT State
To Stay close-WAIT
State OF CLOSING
Stay in the State of CLOSING
State of LAST-ACK
Stay in Last-ACK State
TIME-WAIT State
Stay in TIME-WAIT.
Expiration of the control time for the client
If the control time has expired, no matter what state the program is in, remove
all queues, give the customer a general signal "error: connection aborted due
to user timeout", the same signal to give all waiting requests, eliminate the
TCB block, go to THE closed state, return control of the interrupted program.
Expiration of the control time for re-sending
In whatever state the program is, if for the segment in the queue for the
second parcel expired the control time, send this segment again, but out of
turn, to re-initiate the timer of the re-parcel, to return control of the
interrupted program.
Expiration of the time-WAIT time control period If the
time-WAIT status has expired, then eliminate the connection and the TCB
block, go to CLOSED, return control of the aborted program.

Dictionary
1822
BBN Report 1822, "The Specification of the Interconnection of a Host and an
IMP". Спецификация интерфейса между хост-компьютером и сетью
ARPANET.
ACK

see more please visit: https://homeofbook.com

Control Bit (confirmation) that does not occupy any place in the
queue.
ARPANET message
parcel unit between host computer and IMP network ARPANET. Maximum
size of such a unit is about 1012 octets (8096 bits).
ARPANET package
Package Parcel Unit between different IMP within the ARPANET network.
The maximum size of such a unit is about 126 octets (1008 bits).
Connecting
the Logical Way for Communications, defined by a pair of sockets.
Datagram
Message sent through a computer communication system with package
communication.
Recipient Address
Address is usually network and host computer identifiers
FIN
Control bit (ultimate) occupying one place in the queue and indicating that
the TCP protocol program will no longer send data or any commands to the
queue to take place.
Fragment
Part of the logical data unit. In particular, a fragment of the Internet are part
of the Internet datagram.
FTP
File Transfer Protocol
Headline
Control information at the beginning of a message, segment, snippet,
package, or data block

In particular, it is the sender and recipient of messages in terms of
communication network.
Identification
of the Internet Protocol Field.
IMP
Interface Messaging Processor, Package Switch in APRANET Network.

see more please visit: https://homeofbook.com

Internet
address of the sender or recipient at the host level
Internet datagram
Block, transmitted between the Internet protocol module and the program of
higher protocol, equipped with the Internet header.
Internet snippets
Are Part of the Data from the Internet Datagram, which has acquired its own
Internet headline.
IP
протокол Internet
THE IRS
Initial Number is in the receiving queue.
ISN
The original queue number.
ISS
Initial number in the parcel queue.

In particular, the ARPANET network reports some control information in the
host-IMP interface format.
The remaining queue
is the next number in the queue to be confirmed by the TCP program
receiving the data (or otherwise the smallest number in the queue that has not
yet received its confirmation).
Local
data block package transmitted to local network
The implementation module
is usually a program, of some kind of protocol or other procedure.
MSL
Maximum segment lifespan.
Octet
Byte, consisting of eight bits
Options
field options may contain multiple options, each option may have a length of
several octets.

see more please visit: https://homeofbook.com

A
data package with a title that in turn may or may not be logically completed.
Port
Part of the Socket, indicating a logical input or output channel for the process
dealing with the data.
The process
is some program.
PUSH
Is a control bit that does not require a place in the queue and indicates that
this segment contains data that should be "pushed" to the customer-recipient.
RCV.NXT
Next number in the receiving queue
Rcv. UP
Urgent pointer to receive
RCV.WND
Window Receipt
Next number in the receiving queue
Is the next number in the queue that wants to get the local TCP protocol
program
Receiving Window
This concept characterizes the numbers in the queue that should be beamed
by the local TCP protocol program. NXT to RCV. NXT+RCV. WND-1,
carry data and management commands that should be taken into account.
Segments whose numbers in the queue in no way fall into this range are
perceived as duplicates and eliminated.
RST
Checkpoint (reboot bit) that does not take a place in the queue and indicates
that the recipient of this bit must eliminate the connection without any
additional action.
RTP
Real Time Protocol. Protocol for the transmission of critical information
between host computers.
Seg. ACK
Segment Confirmation
Seg. LEN

see more please visit: https://homeofbook.com

Segment Length
Seg. PRC
Priority Value in The Segment
Seg. Se'
queue number for the segment
Seg. UP
Field Urgent Pointer for Segment
Seg. WND
Box Box in Segment

In particular, the TCP segment is a block of data that is transmitted between a
pair of TCP modules.
Confirmation of the
No.
The length of
the segment Place in the queue, which is occupied by the data of this segment
(taking into account also all the commands, which also give a place in the
queue).
Segment number in the
queue Value in the no-room field at the next segment
The number in the departure queue number is the next queue number for the
local TCP protocol program that sends the data and uses those numbers to
control the connection.
The Window parcel window
is a set of numbers from the queue that someone else's TCP protocol program
wants to receive. NXT to SND. UNA+SND. WND-1 (of course, this implies
re-sending those data whose numbers lie between the SND. UNA and SND.
NXT).
SND.NXT
Queue for parcel
Snd. UNA
queue of data not yet sent
Snd. UP
Urgent pointer in line for parcel

see more please visit: https://homeofbook.com

SND.WL1
Segment queue number in the latest updated window
SND.WL2
Segment Confirmation Number in the latest updated window
SND.WND
Package Window
Socket
Address, which specifically includes a port ID.
The sender's
address is an address of departure, usually consisting of network identifiers
and a host computer.
SYN
Control bit in the incoming segment, which occupies one place in the queue
and is used to initiate the connection, to indicate where the queue numbers
begin.
TCB
Control Block for Transmission, a certain data structure where the status of
the connection is recorded.
TCB.PRC
Priority of this connection
TCP
Transfer Control Protocol, protocol for reliable transmission of information
between host computers in the system of merged networks.
TOS
Type of Service, headline field in Internet protocol
The type
of header field service in the Internet protocol that determines the type of
service for a given piece in the Internet standard.
This
bit requires a customer to be ordered to use expedited processing as long as
there is data whose numbers are in line less than indicated in the urgent
pointer.
The Urgent Pointer is
only important if a bit of URG is set.

see more please visit: https://homeofbook.com

see more please visit: https://homeofbook.com

