
see more please visit: https://homeofpdf.com

Containers	in	OpenStack

	

	

	

	

	

	

	

	

	

Leverage	OpenStack	services	to	make	the	most	of	Docker,	Kubernetes
and	Mesos

	

	

	

	

	

	

	

	

	

see more please visit: https://homeofpdf.com

	

	

	

	

	

	

Pradeep	Kumar	Singh

	

Madhuri	Kumari

	

	

	

	

	

	

	

	

	

	

	

see more please visit: https://homeofpdf.com

BIRMINGHAM	-	MUMBAI

see more please visit: https://homeofpdf.com

Containers	in	OpenStack

Copyright	©	2017	Packt	Publishing

	

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval
system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written
permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in
critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

First	published:	December	2017

Production	reference:	1191217

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN		978-1-78839-438-3

www.packtpub.com

see more please visit: https://homeofpdf.com

http://www.packtpub.com

Credits
Authors

Pradeep	Kumar	Singh

Madhuri	Kumari

Copy	Editor

Safis	Editing

Reviewers

Felipe	Monteiro

Venkatesh	Loganathan

Vinoth	Kumar	Selvaraj

Project	Coordinator

Shweta	H	Birwatkar

Commissioning	Editor

Gebin	George

Proofreader

Safis	Editing

Acquisition	Editor

Namrata	Patil

Indexer

Francy	Puthiry

Content	Development	Editor

Amrita	Noronha

Graphics

Tania	Dutta

Technical	Editor

Akash	Patel

Production	Coordinator

Shantanu	Zagade

see more please visit: https://homeofpdf.com

About	the	Authors
Pradeep	Kumar	Singh	is	an	OpenStack	developer.	He	has	expertise	in	the
domains	of	containers,	storage,	and	web	application	development.	Pradeep	is	a
core	reviewer	for	OpenStack	Zun.	Pradeep	also	loves	machine	learning	and	the
infrastructure	part	of	it.	In	his	free	time,	he	plays	with	his	Raspberry	Pi	3
clusters,	and	also	loves	to	write	code	in	different	programming	languages.

Madhuri	Kumari	is	an	OpenStack	developer.	She	has	expertise	in	the	domains
of	cloud	computing,	containers,	and	virtualization.	She	has	been	working	on
OpenStack	since	December	2014	and	is	a	core	reviewer	for	two	OpenStack
projects,	Magnum	and	Zun.	Besides	this,	she	has	also	worked	on	the	Ironic,
Swift,	Murano,	and	Valence.	She	is	an	active	speaker	at	OpenStack	summits,
LinuxCon,	and	local	meetups.	She	was	also	nominated	for	the	RedHat	Women	in
Open	Source	Award,	2017.

see more please visit: https://homeofpdf.com

About	the	Reviewers
Felipe	Monteiro	currently	works	for	AT&T	as	a	software	developer,
predominantly	focusing	on	developing	AT&T’s	under-cloud	platform	(UCP)	for
orchestrating	OpenStack	on	Kubernetes	deployment.	He	is	currently	the	lead
developer	for	Deckhand	and	Armada,	two	of	the	core	microservices	that
comprise	UCP.	He	also	works	on	OpenStack,	particularly	on	Murano,
OpenStack’s	application	catalog,	and	Patrole,	a	Tempest	plugin	responsible	for
validating	the	correct	implementation	of	RBAC	and	API	compliance	with
RBAC.	He	was	the	Murano	PTL	during	the	Pike	release	cycle	and	is	currently	a
core	reviewer	for	both	Murano	and	Patrole.

Venkatesh	Loganathan	is	a	senior	DevOps	engineer	at	CD	Cloudenablers	Pvt.
Ltd.,	a	product-based	cloud	technology	start-up	in	Chennai,	India.	He	has	spent
an	equal	amount	of	time	focusing	on	release	engineering	in	the	agile
methodology,	automating	daily	activities	through	configuration	management
tools,	and	maintaining	the	site	at	high	availability.

I	would	like	to	thank	my	Amma,	Appa,	Anna,	and	my	friends	for	their	love	and
support.	My	special	thanks	to	our	Cloudenablers	team	for	giving	me	this
opportunity	and	motivation	to	explore	new	technologies.

Vinoth	Kumar	Selvaraj	is	a	passionate	computer	science	engineer	from	Tamil
Nadu,	India.	He	works	as	a	DevOps	engineer	at	Cloudenablers	Inc.

As	an	active	moderator	on	Ask	OpenStack,	he	consistently	answers	and	provides
solutions	for	questions	posted	on	the	Ask	OpenStack	forum.	Based	on	karma
points,	he	was	ranked	20	out	of	20,000	members	in	the	Ask	OpenStack	forum.
He	has	also	written	many	OpenStack-related	articles	for	http://superuser.openstack.org/
and	hosts	a	dedicated	website	for	his	works	on	OpenStack	at	http://www.hellovinoth.co
m/.

You	can	visit	his	LinkedIn	page	at	https://www.linkedin.com/in/vinothkumarselvaraj/	and
tweet	him	@vinoth6664.

Vinoth	has	also	authored	a	book	entitled	OpenStack	Bootcamp	for	Packt.

see more please visit: https://homeofpdf.com

http://superuser.openstack.org/
http://www.hellovinoth.com/
https://www.linkedin.com/in/vinothkumarselvaraj/

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.co
m.	Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Packt
Pub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.	At	www.PacktPub.c
om,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of
free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to
all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you
plan	your	personal	development	and	advance	your	career.

see more please visit: https://homeofpdf.com

http://www.PacktPub.com
https://www.packtpub.com/
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

see more please visit: https://homeofpdf.com

Customer	Feedback
Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our
editorial	process.	To	help	us	improve,	please	leave	us	an	honest	review	on	this
book's	Amazon	page	at	https://www.amazon.com/dp/1788394380.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	email	us
at	customerreviews@packtpub.com.	We	award	our	regular	reviewers	with	free	eBooks
and	videos	in	exchange	for	their	valuable	feedback.	Help	us	be	relentless	in
improving	our	products

see more please visit: https://homeofpdf.com

https://www.amazon.com/dp/1788394380

Table	of	Contents
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	 Working	with	Containers
The	historical	context	of	virtualization
Introduction	to	containers
Container	components
Types	of	containers

Machine	containers
Application	containers

Types	of	container	runtime	tools
Docker
Rocket
LXD
OpenVZ
Windows	Server	containers
Hyper-V	containers
Clear	container

Installation	of	Docker
Docker	hands-on

Working	with	Docker	images
Listing	images
Getting	new	images
Searching	Docker	images
Deleting	images

Working	with	Docker	containers
Creating	containers
Listing	containers

see more please visit: https://homeofpdf.com

Checking	container's	logs
Starting	containers
Deleting	containers

Summary
2.	 Working	with	Container	Orchestration	Engines

Introduction	to	COE
Docker	Swarm

Docker	Swarm	components
Node

Manager	node
Worker	node

Tasks
Services
Discovery	service
Scheduler

Swarm	mode
Apache	Mesos

Apache	Mesos	and	its	components
Master
Slaves
Frameworks
Offer
Tasks
Zookeeper

Kubernetes
Kubernetes	architecture

External	request
Master	node

kube-apiserver
etcd
kube-controller-manager
kube-scheduler

Worker	nodes
kubelet
kube-proxy
Container	runtime
supervisord
fluentd

Concepts	in	Kubernetes
Pod

see more please visit: https://homeofpdf.com

Replica	sets	and	replication	controllers
Deployments
Secrets
Labels	and	selectors
Services
Volumes

Kubernetes	installation
Kubernetes	hands-on
Summary

3.	 OpenStack	Architecture
Introduction	to	OpenStack
OpenStack	architecture
Introduction	to	KeyStone,	the	OpenStack	identity	service
Introduction	to	Nova,	the	OpenStack	compute	service
Introduction	to	Neutron,	the	OpenStack	network	service
Introduction	to	Cinder,	the	OpenStack	block	storage	service
Introduction	to	Glance,	the	OpenStack	image	service
Introduction	to	Swift,	the	OpenStack	object	store
DevStack	installation

Creating	a	KeyStone	user
Assign	role	to	the	user
Creating	a	VM	using	Nova
Attach	volume	to	VM
Uploading	an	image	to	Swift

Summary
4.	 Containerization	in	OpenStack

The	need	for	containers	in	OpenStack
Efforts	within	the	OpenStack	community	to	support	containers

Nova
Heat
Magnum
Zun
Kuryr
Kolla
Murano
Fuxi
OpenStack-Helm

Summary

see more please visit: https://homeofpdf.com

5.	 Magnum	–	COE	Management	in	OpenStack
Magnum	introduction
Concepts

Cluster	template
Cluster
Cluster	driver
Heat	Stack	Template
Template	definition
Certificate
Service
Stats
Quotas

Key	features
External	load	balancer	for	Kubernetes
Transport	Layer	Security
Scaling
Storage

Ephemeral	storage
Persistent	storage

Notifications
Container	monitoring

Components
Magnum	API
Magnum	conductor

Walk-through
Magnum	DevStack	installation
Managing	COEs
Summary

6.	 Zun	–	Container	Management	in	OpenStack
Introduction	to	Zun
Concepts

Containers
Images
Services
Hosts
Capsules
Container	drivers
Image	drivers

see more please visit: https://homeofpdf.com

Network	drivers
Key	features

Cinder	integration
Container	composition
Kuryr	networking
Container	sandbox
CPU	sets

Components
zun-api
Zun	scheduler
zun-compute
Zun	WebSocket	proxy

Walk-through
Zun	DevStack	installation
Managing	containers
Summary

7.	 Kuryr	–	Container	Plugin	for	OpenStack	Networking
Introducing	Kuryr
Kuryr	architecture

Mapping	the	Docker	libnetwork	to	the	neutron	API
Providing	the	generic	VIF-Binding	infrastructure
Providing	containerized	images	of	neutron	plugins
Nesting	VMs	and	Magnum	use	cases

Installation	of	Kuryr
Walk-through
Summary

8.	 Murano	–	Containerized	Application	Deployment	on	OpenStack
Introduction	to	Murano
Murano	concepts

Environment
Package
Session

The	environment	template
Deployments
Bundle
Categories

Key	features
Production-ready	applications
Application	catalog	UI

see more please visit: https://homeofpdf.com

Distributing	workloads
Application	development
Murano	repository
Cinder	volumes
Barbican	support
HOT	packages

Murano	components
The	Murano	API
The	Murano	engine
The	Murano	agent
The	Murano	dashboard

Walk-through
Murano	DevStack	installation
Deploying	a	containerized	application
Summary

9.	 Kolla	–	Containerized	Deployment	of	OpenStack
Kolla	introduction
Key	features

Highly	available	deployment
Ceph	support
Image	building
Docker	hub	support
Local	registry	support
Multiple	build	sources
Dockerfile	customization

Architecture
Deploying	containerized	OpenStack	services

Setting	up	a	local	registry
Automatic	host	bootstrap
Building	images
Deploying	images

Summary
10.	 Best	Practices	for	Containers	and	OpenStack

The	advantages	of	different	OpenStack	projects
Best	practices	for	securing	and	deploying	containers
Summary

see more please visit: https://homeofpdf.com

Preface
Containers	are	one	of	the	most	talked	about	technologies	of	recent	times.	They
have	become	increasingly	popular	as	they	are	changing	the	way	we	develop,
deploy,	and	run	software	applications.	OpenStack	gets	tremendous	traction	as	it
is	used	by	many	organizations	across	the	globe	and	as	containers	gain	popularity
and	become	more	complex,	it's	necessary	for	OpenStack	to	provide	various
infrastructure	resources	for	containers	such	as	compute,	network,	and	storage.

Containerization	in	OpenStack	aims	at	answering	the	question,	how	can
OpenStack	keep	pace	with	the	increasing	challenges	of	container	technology?
You	will	start	with	getting	familiar	with	container	and	OpenStack	basics	so	that
you	understand	how	the	container	ecosystem	and	OpenStack	work	together.	To
help	you	get	better	at	compute,	networking,	managing	application	services	and
deployment	tools,	the	book	has	dedicated	chapters	for	different	OpenStack
projects:	Magnum,	Zun,	Kuryr,	Murano,	and	Kolla.

Toward	the	end,	you	will	be	introduced	to	some	best	practices	to	secure	your
containers	and	COE	on	OpenStack	with	an	overview	of	using	each	OpenStack
project	for	different	use	cases.

see more please visit: https://homeofpdf.com

What	this	book	covers
Chapter	1,	Working	with	Containers,	starts	with	discussing	the	history	of
virtualization	and	then	talks	about	the	evolution	of	containers.	After	this,	it
focuses	on	explaining	containers,	their	types,	and	the	different	container	runtime
tools.	It	then	dives	into	Docker	and	its	installation,	and	also	shows	how	to	use
Docker	to	perform	operations	on	containers.

Chapter	2,	Working	with	Container	Orchestration	Engines,	starts	with	an
introduction	to	Container	Orchestration	Engines	and	then	it	introduces	different
COEs	available	today.	It	explains	the	installation	of	Kubernetes	and	how	to	use	it
to	manage	containers	in	an	example	application.

Chapter	3,	OpenStack	Architecture,	starts	with	an	introduction	to	OpenStack	and	its
architecture.	Then	it	briefly	explains	OpenStack's	core	components	and	their
architecture.

Chapter	4,	Containerization	in	OpenStack,	explains	the	need	for	containerization	in
OpenStack,	and	also	talks	about	different	OpenStack	container-related	projects.

Chapter	5,	Magnum	–	COE	Management	in	OpenStack,	explains	the	Magnum
project	of	OpenStack	in	detail.	It	talks	about	the	concepts,	components,	and
architecture	of	Magnum.	Then,	it	demonstrates	Magnum	installation	with
DevStack	and	it's	hands-on.

Chapter	6,	Zun	–	Container	Management	in	OpenStack,	explains	the	Zun	project	of
OpenStack	in	detail.	It	talks	about	the	concepts,	components,	architecture	of
Zun.	Then,	it	demonstrates	Zun	installation	with	DevStack	and	it's	hands-on.

Chapter	7,	Kuryr	–	Container	Plugin	for	OpenStack	Networking,	explains	the
Kuryr	project	of	OpenStack	in	detail.	It	talks	about	the	concepts,	components,
and	architecture	of	Kuryr.	Then,	it	demonstrates	Kuryr	installation	with
DevStack	and	it's	hands-on.

Chapter	8,	Murano	–	Containerized	Application	Deployment	on
OpenStack,	explains	the	Murano	project	of	OpenStack	in	detail.	It	talks	about	the

see more please visit: https://homeofpdf.com

concepts,	components,	and	architecture	of	Murano.	Then,	it	demonstrates
Murano	installation	with	DevStack	and	it's	hands-on.

Chapter	9,	Kolla	–	Containerized	Deployment	of	OpenStack,	explains	the	Kolla
project	of	OpenStack	in	detail.	It	talks	about	the	sub-projects,	key	features	and
architecture	of	Kolla.	Then,	it	explains	the	deployment	process	for	OpenStack
ecosystem	using	the	Kolla	project.

Chapter	10,	Best	Practices	for	Containers	and	OpenStack,	summarizes	different
container-related	OpenStack	projects	and	their	advantages.	Then,	it	also	explains
the	security	issues	with	containers	and	the	best	practices	to	resolve	them.

see more please visit: https://homeofpdf.com

What	you	need	for	this	book
This	book	assumes	a	basic	level	of	understanding	of	cloud	computing,	the	Linux
operating	system	and	containers.	The	book	will	guide	you	through	the
installation	of	any	tools	that	are	required.

You	can	use	any	tool	for	the	test	environment,	such	as	Vagrant,	Oracle's
VirtualBox,	or	a	VMware	workstation.

In	this	book,	the	following	software	list	is	required:

Operating	system:	Ubuntu	16.04
OpenStack:	Pike	release	or	newer
VirtualBox	4.5	or	newer
Vagrant	1.7	or	newer

To	run	the	OpenStack	installation	in	a	development	environment,	the	following
minimum	hardware	resources	are	required:

A	host	machine	with	CPU	hardware	virtualization	support
8	core	CPU
12	GB	RAM
60	GB	free	disk	space

Internet	connectivity	is	required	to	download	the	necessary	packages	for
OpenStack	and	other	tools.

see more please visit: https://homeofpdf.com

Who	this	book	is	for
The	book	is	targeted	toward	cloud	engineers,	system	administrators,	or	anyone
from	the	production	team	who	works	on	the	OpenStack	cloud.	This	book	acts	as
an	end-to-end	guide	for	anyone	who	wants	to	start	using	the	concept	of
containerization	in	OpenStack.

see more please visit: https://homeofpdf.com

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles,	and	an
explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file
extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown
as	follows:	"The	zun-compute	service	is	the	main	component	of	the	Zun	system."

Any	command-line	input	or	output	is	written	as	follows:

$	sudo	mkdir	-p	/opt/stack

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	in	menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	"You
can	see	in	the	following	screenshot	that	we	are	given	two	options	to	choose	for
our	container	host:	Kubernetes	Pod	and	Docker	Standalone	Host."

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.

see more please visit: https://homeofpdf.com

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.	To	send	us
general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the	book's	title
in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise	in	and
you	are	interested	in	either	writing	or	contributing	to	a	book,	see	our	author
guide	at	www.packtpub.com/authors.

see more please visit: https://homeofpdf.com

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

see more please visit: https://homeofpdf.com

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http:/
/www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	http://www.pack
tpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublis
hing/Containers-in-OpenStack.	We	also	have	other	code	bundles	from	our	rich	catalog
of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check	them	out!

see more please visit: https://homeofpdf.com

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Containers-in-OpenStack
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake
in	the	text	or	the	code-we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on
the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata
section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/sup
port	and	enter	the	name	of	the	book	in	the	search	field.	The	required	information
will	appear	under	the	Errata	section.

see more please visit: https://homeofpdf.com

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you
valuable	content.

see more please visit: https://homeofpdf.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

see more please visit: https://homeofpdf.com

Working	with	Containers
This	chapter	covers	containers	and	various	topics	related	to	them.	In	this	chapter,
we	will	be	covering	the	following	topics:

The	historical	context	of	virtualization
Introduction	to	containers
Container	components
Types	of	containers
Types	of	container	runtime	tools
Installation	of	Docker
Docker	hands-on

see more please visit: https://homeofpdf.com

The	historical	context	of
virtualization
Traditional	virtualization	appeared	on	the	Linux	kernel	in	the	form	of
hypervisors	such	as	Xen	and	KVM.	This	allowed	users	to	isolate	their	runtime
environment	in	the	form	of	virtual	machines	(VMs).	Virtual	machines	run	their
own	operating	system	kernel.	Users	attempted	to	use	the	resources	on	host
machines	as	much	as	possible.	However,	high	densities	were	difficult	to	achieve
with	this	form	of	virtualization,	especially	when	a	deployed	application	was
small	in	size	compared	to	a	kernel;	most	of	the	host's	memory	was	consumed	by
multiple	copies	of	kernels	running	on	it.	Hence,	in	such	high-density	workloads,
machines	were	divided	using	technologies	such	as	chroot	jails	which	provided
imperfect	workload	isolation	and	carried	security	implications.

In	2001,	an	operating	system	virtualization	in	the	form	of	Linux	vServer	was
introduced	as	a	series	of	kernel	patches.

This	led	to	an	early	form	of	container	virtualization.	In	such	forms	of
virtualization,	the	kernel	groups	and	isolates	processes	belonging	to	different
tenants,	each	sharing	the	same	kernel.

Here	is	a	table	that	explains	the	various	developments	that	took	place	to	enable
operating	system	virtualization:

Year	and
Development Description

1979:	chroot

The	concept	of	containers	emerged	way	back	in	1979	with	UNIX
chroot.	Later,	in	1982,	this	was	incorporated	into	BSD.	With	chroot,
users	can	change	the	root	directory	for	any	running	process	and	its
children,	separating	it	from	the	main	OS	and	directory.

see more please visit: https://homeofpdf.com

2000:
FreeBSD
Jails

FreeBSD	Jails	was	introduced	by	Derrick	T.	Woolworth	at	R&D
associates	in	2000	for	FreeBSD.	It	is	an	operating	system's	system
call	similar	to	chroot,	with	additional	process	sandboxing	features	for
isolating	the	filesystem,	users,	networking,	and	so	on.

2001:	Linux
vServer

Another	jail	mechanism	that	can	securely	partition	resources	on	a
computer	system	(filesystem,	CPU	time,	network	addresses,	and
memory).

2004:	Solaris
containers

Solaris	containers	were	introduced	for	x86	and	SPARC	systems,	and
first	released	publicly	in	February	2004.	They	are	a	combination	of
system	resource	controls	and	the	boundary	separations	provided	by
zones.

2005:
OpenVZ

OvenVZ	is	similar	to	Solaris	containers	and	makes	use	of	a	patched
Linux	kernel	for	providing	virtualization,	isolation,	resource
management,	and	checkpointing.

2006:	Process
containers

Process	containers	were	implemented	at	Google	in	2006	for	limiting,
accounting,	and	isolating	the	resource	usage	(CPU,	memory,	disk	I/O,
network,	and	so	on)	of	a	collection	of	processes.

2007:	Control
groups

Control	groups,	also	known	as	CGroups,	were	implemented	by
Google	and	added	to	the	Linux	Kernel	in	2007.	CGroups	help	in	the
limiting,	accounting,	and	isolation	of	resource	usages	(memory,	CPU,
disks,	network,	and	so	on)	for	a	collection	of	processes.

2008:	LXC
LXC	stands	for	Linux	containers	and	was	implemented	using
CGroups	and	Linux	namespaces.	In	comparison	to	other	container
technologies,	LXC	works	on	the	vanilla	Linux	kernel.

2011:	Warden
Warden	was	implemented	by	Cloud	Foundry	in	2011	using	LXC	at
the	initial	stage;	later	on,	it	was	replaced	with	their	own
implementation.

see more please visit: https://homeofpdf.com

2013:
LMCTFY

LMCTFY	stands	for	Let	Me	Contain	That	For	You.	It	is	the	open
source	version	of	Google's	container	stack,	which	provides	Linux
application	containers.

2013:	Docker Docker	was	started	in	the	year	of	2016.	Today	it	is	the	most	widely
used	container	management	tool.

2014:	Rocket

Rocket	is	another	container	runtime	tool	from	CoreOS.	It	emerged	to
address	security	vulnerabilities	in	early	versions	of	Docker.	Rocket	is
another	possibility	or	choice	to	use	instead	of	Docker,	with	the	most
resolved	security,	composability,	speed,	and	production	requirements.

2016:
Windows
containers

Microsoft	added	container	support	(Windows	containers)	to	the
Microsoft	Windows	Server	operating	system	in	2015	for	Windows-
based	applications.	With	the	help	of	this	implementation,	Docker
would	be	able	to	run	Docker	containers	on	Windows	natively	without
having	to	run	a	virtual	machine	to	run.

see more please visit: https://homeofpdf.com

Introduction	to	containers
Linux	containers	are	operating	system	level	virtualization	which	provides
multiple	isolated	environments	on	a	single	host.	Rather	than	using	dedicated
guest	OS	like	VMs,	they	share	the	host	OS	kernel	and	hardware.

Before	containers	came	into	the	limelight,	multitasking	and	traditional
hypervisor-based	virtualization	were	used,	mainly.	Multitasking	allows	multiple
applications	to	run	on	the	same	host	machine,	however,	it	provides	less	isolation
between	different	applications.

Traditional	hypervisor-based	virtualization	allows	multiple	guest	machines	to
run	on	top	of	host	machines.	Each	of	these	guest	machines	runs	their	own
operating	system.	This	approach	provides	the	highest	level	of	isolation	as	well	as
the	ability	to	run	different	operating	systems	simultaneously	on	the	same
hardware.

However,	it	comes	with	a	number	of	disadvantages:

Each	operating	system	takes	a	while	to	boot
Each	kernel	takes	up	its	own	memory	and	CPU,	so	the	overhead	of
virtualization	is	large
The	I/O	is	less	efficient	as	it	has	to	pass	through	different	layers
Resource	allocation	is	not	done	on	a	fine-grained	basis,	for	example,
memory	is	allocated	to	a	virtual	machine	at	the	time	of	creation,	and
memory	left	idle	by	one	virtual	machine	can't	be	used	by	others
The	maintenance	load	of	keeping	each	kernel	up	to	date	is	large

The	following	figure	explains	the	concept	of	virtualization:

see more please visit: https://homeofpdf.com

Containers	provide	the	best	of	both	words.	To	provide	an	isolated	and	secure
environment	for	containers,	they	use	Linux	kernel	features	such	as	chroot,
namespaces,	CGroups,	AppArmor,	SELinux	profiles,	and	so	on.

The	secure	access	to	the	host	machine	kernel	from	the	container	is	ensured	by
Linux	security	modules..	Boot	is	faster	as	there	is	no	kernel	or	operating	system
to	start	up.	Resource	allocation	is	fine-grained	and	handled	by	the	host	kernel,
allowing	the	effective	per	container	quality	of	service	(QoS).	The	next	figure
explains	container	virtualization.

However,	there	are	some	disadvantages	of	containers	compared	to	traditional
hypervisor-based	virtualization:	guest	operating	systems	are	limited	to	those
which	can	use	the	same	kernel.

Traditional	hypervisors	provide	additional	isolation	that	is	not	available	in
containers,	meaning	the	noisy	neighbor	problem	is	more	significant	in	containers
than	it	is	with	a	traditional	hypervisor:

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Container	components
Linux	containers	are	typically	comprised	of	five	major	components:

Kernel	namespaces:	Namespaces	are	the	major	building	blocks	of	Linux
containers.	They	isolate	various	types	of	Linux	resources	such	as	the
network,	processes,	users,	and	the	filesystem	into	different	groups.	This
allows	different	groups	of	processes	to	have	completely	independent	views
of	their	resources.	Other	resources	that	can	be	segregated	include	the
process	ID	space,	the	IPC	space,	and	semaphore	space.
Control	groups:	Control	groups,	also	known	as	CGroups,	limit	and
account	for	different	types	of	resource	usage	such	as	the	CPU,	memory,
disk	I/O,	network	I/O,	and	so	on,	across	a	group	of	different	processes.
They	help	in	preventing	one	container	from	resource	starvation	or
contention	caused	by	another	container,	and	thereby	maintains	QoS.
Security:	Security	in	containers	is	provided	via	the	following	components:

Root	capabilities:	This	will	help	in	enforcing	namespaces	in	so-called
privileged	containers	by	reducing	the	power	of	root,	in	some	cases	to
no	power	at	all.
Discretionary	Access	Control	(DAC):	It	mediates	access	to	resources
based	on	user-applied	policies	so	that	individual	containers	can't
interfere	with	each	other	and	can	be	run	by	non-root	users	securely.
Mandatory	Access	Controls	(MAC):	Mandatory	Access	Controls
(MAC),	such	as	AppArmor	and	SELinux,	are	not	required	for	creating
containers,	but	are	often	a	key	element	to	their	security.	MAC	ensures
that	neither	the	container	code	itself	nor	the	code	running	in	the
containers	has	a	greater	degree	of	access	than	the	process	itself
requires.	This	way,	it	minimizes	the	privileges	granted	to	rogue	or
compromised	processes.
Toolsets:	Above	the	host	kernel	lies	the	user-space	toolsets	such	as
LXD,	Docker,	and	other	libraries,	which	help	in	managing	containers:

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Types	of	containers
The	types	of	containers	are	as	follows:

see more please visit: https://homeofpdf.com

Machine	containers
Machine	containers	are	virtual	environments	that	share	the	kernel	of	the	host
operating	system	but	provide	user	space	isolation.	They	look	far	more	similar	to
virtual	machines.	They	have	their	own	init	process,	and	may	run	a	limited
number	of	daemons.	Programs	can	be	installed,	configured,	and	run	just	as	they
would	be	on	any	guest	operating	system.	Similar	to	a	virtual	machine,	anything
running	inside	a	container	can	only	see	resources	that	have	been	assigned	to	that
container.	Machine	containers	are	useful	when	the	use	case	is	to	run	a	fleet	of
identical	or	different	flavors	of	distros.

Machine	containers	having	their	own	operating	system	does	not	mean	that	they
are	running	a	full-blown	copy	of	their	own	kernel.	Rather,	they	run	a	few
lightweight	daemons	and	have	a	number	of	necessary	files	to	provide	a	separate
OS	within	another	OS.

Container	technologies	such	as	LXC,	OpenVZ,	Linux	vServer,	BSD	Jails,	and
Solaris	zones	are	all	suitable	for	creating	machine	containers.

The	following	figure	shows	the	machine	container	concept:

see more please visit: https://homeofpdf.com

Application	containers
While	machine	containers	are	designed	to	run	multiple	processes	and
applications,	application	containers	are	designed	to	package	and	run	a	single
application.	They	are	designed	to	be	very	small.	They	need	not	contain	a	shell	or
init	process.	The	disk	space	required	for	an	application	container	is	very	small.
Container	technologies	such	as	Docker	and	Rocket	are	examples	of	application
containers.

The	following	figure	elaborates	on	application	containers:

see more please visit: https://homeofpdf.com

Types	of	container	runtime	tools
Multiple	solutions	are	available	today	for	managing	containers.	This	section
discusses	alternative	types	of	containers.

see more please visit: https://homeofpdf.com

Docker
Docker	is	the	world's	leading	container	platform	software.	It	has	been	available
since	2013.	Docker	is	a	container	runtime	tool	designed	to	make	it	easier	to
create,	deploy,	and	run	applications	by	using	containers.	Docker	has	drastically
reduced	the	complexity	of	managing	applications	by	containerizing	them.	It
allows	applications	to	use	the	same	Linux	kernel	as	the	host	OS,	unlike	VMs,
which	create	a	whole	new	OS	with	dedicated	hardware.	Docker	containers	can
run	both	on	Linux	and	Windows	workloads.	Docker	containers	have	enabled
huge	efficiencies	in	the	development	of	software,	but	require	runtime	tools	such
as	Swarm	or	Kubernetes.

see more please visit: https://homeofpdf.com

Rocket
Rocket	is	another	container	runtime	tool	from	CoreOS.	It	emerged	to	address
security	vulnerabilities	in	early	versions	of	Docker.	Rocket	is	another	possibility
or	choice	to	Docker,	with	the	most	resolved	security,	composability,	speed,	and
production	requirements.	Rocket	has	built	things	differently	to	Docker	in	many
aspects.	The	main	difference	is	that	Docker	runs	a	central	daemon	with	root
privileges	and	spins	off	a	new	container	as	its	sub	process,	whereas	Rocket	never
spins	a	container	with	root	privileges.	However,	Docker	always	recommends
running	containers	within	SELinux	or	AppArmor.	Since	then,	Docker	has	come
up	with	many	solutions	to	tackle	the	flaws.

see more please visit: https://homeofpdf.com

LXD
LXD	is	a	container	hypervisor	for	managing	LXC	by	Ubuntu.	LXD	is	a	daemon
which	provides	a	REST	API	for	running	containers	and	managing	related
resources.	LXD	containers	provide	the	same	user	experience	as	traditional	VMs,
but	using	LXC,	which	provides	similar	runtime	performance	to	containers	and
improved	utilization	over	VMs.	LXD	containers	run	a	full	Linux	OS	so	are
typically	long	running,	whereas	Docker	application	containers	are	short-lived.
This	makes	LXD	a	machine	management	tool	that	is	different	to	Docker	and	is
closer	to	software	distribution.

see more please visit: https://homeofpdf.com

OpenVZ
OpenVZ	is	a	container-based	virtualization	for	Linux	which	allows	the	running
of	multiple	secure,	isolated	Linux	containers	also	known	as	virtual
environments	(VEs)	and	virtual	private	server	(VPS)	on	a	single	physical
server.	OpenVZ	enables	better	server	utilization	and	ensures	that	applications	do
not	conflict.	It	is	similar	to	LXC.	It	can	only	run	on	a	Linux-based	OS.	Since	all
OpenVZ	containers	share	the	same	kernel	version	as	hosts,	users	are	not	allowed
to	do	any	kernel	modification.	However,	it	also	has	the	advantage	of	a	low
memory	footprint	due	to	the	shared	host	kernel.

see more please visit: https://homeofpdf.com

Windows	Server	containers
Windows	Server	2016	introduced	Linux	containers	to	Microsoft	workloads.
Microsoft	has	partnered	with	Docker	to	bring	the	benefits	of	the	Docker
container	to	Microsoft	Windows	Server.	They	have	also	re-engineered	the	core
windows	OS	to	enable	container	technology.	There	are	two	types	of	Windows
containers:	Windows	server	containers	and	Hyper-V	isolation.

Windows	server	containers	are	used	for	running	application	containers	on
Microsoft	workloads.	They	use	process	and	namespace	isolation	technology	for
ensuring	the	isolation	between	multiple	containers.	They	also	share	the	same
kernel	as	the	host	OS,	as	these	containers	require	the	same	kernel	version	and
configuration	as	the	host.	These	containers	do	not	provide	a	strict	security
boundary	and	should	not	be	used	to	isolate	untrusted	code.

see more please visit: https://homeofpdf.com

Hyper-V	containers
Hyper-V	containers	are	types	of	Windows	containers	which	provide	higher
security	compared	to	Windows	server	containers.	Hyper-V	hosts	Windows
server	containers	in	lightweight,	highly	optimized	Hyper-V	virtual	machines.
Thus,	they	bring	a	higher	degree	of	resource	isolation,	but	at	the	cost	of
efficiency	and	density	on	the	host.	They	can	be	used	when	the	trust	boundaries
of	the	host	OS	requires	additional	security.	In	this	configuration,	the	kernel	of	the
container	host	is	not	shared	with	other	containers	on	the	same	host.	Since	these
containers	do	not	share	the	kernel	with	the	host	or	other	containers	on	the	host,
they	can	run	kernels	with	different	versions	and	configurations.	Users	can
choose	to	run	containers	with	or	without	Hyper-V	isolation	at	runtime.

see more please visit: https://homeofpdf.com

Clear	container
Virtual	machines	are	secure	but	very	expensive	and	slow	to	start,	whereas
containers	are	fast	and	provide	a	more	efficient	alternative,	but	are	less	secure.
Intel's	Clear	containers	are	a	trade-off	solution	between	hypervisor-based	VMs
and	Linux	containers	that	offer	agility	similar	to	that	of	conventional	Linux
containers,	while	also	offering	the	hardware-enforced	workload	isolation	of
hypervisor-based	VMs.

A	Clear	container	is	a	container	wrapped	in	its	own	individual	ultra-fast,
trimmed	down	VM	which	offers	security	and	efficiency.	The	Clear	container
model	uses	a	fast	and	lightweight	QEMU	hypervisor	that	has	been	optimized	to
reduce	memory	footprints	and	improve	startup	performance.	It	has	also
optimized,	in	the	kernel,	the	systemd	and	core	user	space	for	minimal	memory
consumption.	These	features	improve	the	resource	utilization	efficiency
significantly	and	offer	enhanced	security	and	speed	compared	to	traditional
VMs.

Intel	Clear	containers	provide	a	lightweight	mechanism	to	isolate	the	guest
environment	from	the	host	and	also	provide	hardware-based	enforcement	for
workload	isolation.	Moreover,	the	OS	layer	is	shared	transparently	and	securely
from	the	host	into	the	address	space	of	each	Intel	Clear	container,	providing	an
optimal	combination	of	high	security	with	low	overhead.

With	the	security	and	agility	enhancements	offered	by	Clear	containers,	they
have	seen	a	high	adoption	rate.	Today,	they	seamlessly	integrate	with	the	Docker
project	with	the	added	protection	of	Intel	VT.	Intel	and	CoreOS	have
collaborated	closely	to	incorporate	Clear	containers	into	CoreOS's	Rocket	(Rkt)
container	runtime.

see more please visit: https://homeofpdf.com

Installation	of	Docker
Docker	is	available	in	two	editions,	Community	Edition	(CE)	and	Enterprise
Edition	(EE):

Docker	Community	Edition	(CE):	It	is	ideal	for	developers	and	small
teams	looking	to	get	started	with	Docker	and	may	be	experimenting	with
container-based	apps
Docker	Enterprise	Edition	(EE):	It	is	designed	for	enterprise	development
and	IT	teams	who	build,	ship,	and	run	business	critical	applications	in
production	at	scale

This	section	will	demonstrate	the	instructions	for	installing	Docker	CE	on
Ubuntu	16.04.	The	Docker	installation	package,	available	in	the	official	Ubuntu
16.04	repository,	may	not	be	the	latest	version.	To	get	the	latest	and	greatest
version,	install	Docker	from	the	official	Docker	repository.	This	section	shows
you	how	to	do	just	that:

1.	 First,	add	the	GPG	key	for	the	official	Docker	repository	to	the	system:

								$	curl	-fsSL	https://download.docker.com/linux/ubuntu/gpg	|

								sudo	apt-key	add		

2.	 Add	the	Docker	repository	to	APT	sources:

								$	sudo	add-apt-repository	"deb	[arch=amd64]

								https://download.docker.com/linux/ubuntu	$(lsb_release	-cs)	stable"		

3.	 Next,	update	the	package	database	with	the	Docker	packages	from	the
newly	added	repository:

								$	sudo	apt-get	update		

4.	 Make	sure	you	are	about	to	install	Docker	repository	instead	of	the	default
Ubuntu	16.04	repository:

								$	apt-cache	policy	docker-ce		

5.	 You	should	see	an	output	similar	to	the	following:

see more please visit: https://homeofpdf.com

								docker-ce:

										Installed:	(none)

										Candidate:	17.06.0~ce-0~ubuntu

										Version	table:

													17.06.0~ce-0~ubuntu	500

																500	https://download.docker.com/linux/ubuntu	xenial/stable	

																amd64	Packages

													17.03.2~ce-0~ubuntu-xenial	500

																500	https://download.docker.com/linux/ubuntu	xenial/stable	

																amd64	Packages

													17.03.1~ce-0~ubuntu-xenial	500

															500	https://download.docker.com/linux/ubuntu	xenial/stable	

															amd64	Packages

													17.03.0~ce-0~ubuntu-xenial	500

														500	https://download.docker.com/linux/ubuntu	xenial/stable	

														amd64	Packages

Notice	that	docker-ce	is	not	installed,	but	the	candidate	for
installation	is	from	the	Docker	repository	for	Ubuntu	16.04.	The
docker-ce	version	number	might	be	different.

6.	 Finally,	install	Docker:

								$	sudo	apt-get	install	-y	docker-ce		

7.	 Docker	should	now	be	installed,	the	daemon	started,	and	the	process
enabled	to	start	on	boot.	Check	that	it's	running:

								$	sudo	systemctl	status	docker

								docker.service	-	Docker	Application	Container	Engine

											Loaded:	loaded	(/lib/systemd/system/docker.service;	enabled;	

								vendor	preset:	enabled)

											Active:	active	(running)	since	Sun	2017-08-13	07:29:14	UTC;	45s

								ago

													Docs:	https://docs.docker.com

									Main	PID:	13080	(dockerd)

											CGroup:	/system.slice/docker.service

																			├─13080	/usr/bin/dockerd	-H	fd://

																			└─13085	docker-containerd	-l	

											unix:///var/run/docker/libcontainerd/docker-containerd.sock	--

											metrics-interval=0	--start

8.	 Verify	that	Docker	CE	is	installed	correctly	by	running	the	hello-world
image:

								$	sudo	docker	run	hello-world	

								Unable	to	find	image	'hello-world:latest'	locally	

								latest:	Pulling	from	library/hello-world	

								b04784fba78d:	Pull	complete	

								Digest:

								sha256:f3b3b28a45160805bb16542c9531888519430e9e6d6ffc09d72261b0d26

								ff74f	

								Status:	Downloaded	newer	image	for	hello-world:latest	

	

								Hello	from	Docker!	

								This	message	shows	that	your	installation	appears	to	be

see more please visit: https://homeofpdf.com

								working	correctly.

								To	generate	this	message,	Docker	took	the	following	steps:

								The	Docker	client	contacted	the	Docker	daemon

								The	Docker	daemon	pulled	the	hello-world	image	from	the	Docker	Hub

								The	Docker	daemon	created	a	new	container	from	that	image,	

								which	ran	the	executable	that	produced	the	output	you	are	

								currently	reading	

								The	Docker	daemon	streamed	that	output	to	the	Docker	client,	

								which	sent	it	to	your	terminal

								To	try	something	more	ambitious,	you	can	run	an	Ubuntu	

								container	with	the	following:

									$	docker	run	-it	ubuntu	bash	

								Share	images,	automate	workflows,	and	more	with	a	free	Docker	ID:	

								https://cloud.docker.com/	

								For	more	examples	and	ideas,

								visit:	https://docs.docker.com/engine/userguide/.

see more please visit: https://homeofpdf.com

Docker	hands-on
This	section	explains	how	to	use	Docker	to	run	any	application	inside	containers.
The	Docker	installation	explained	in	the	previous	section	also	installs	the	docker
command-line	utility	or	the	Docker	client.	Let's	explore	the	docker	command.
Using	the	docker	command	consists	of	passing	it	a	chain	of	options	and
commands	followed	by	arguments.

The	syntax	takes	this	form:

$	docker	[option]	[command]	[arguments]

#	To	see	help	for	individual	command

$	docker	help	[command]		

To	view	system	wide	information	about	Docker	and	the	Docker	version,	use	the
following:

$	sudo	docker	info

$	sudo	docker	version		

Docker	has	many	subcommands	to	manage	multiple	resources	managed	by	the
Docker	daemon.	Here	is	a	list	of	management	commands	supported	by	Docker:

Management	command Description

Config Manages	Docker	configs

container Manages	containers

image Manages	images

network Manages	networks

see more please visit: https://homeofpdf.com

Node Manages	Swarrn	nodes

Plugin Manages	plugins

secret Manages	Docker	secrets

Service Manages	services

Stack Manages	Docker	stacks

Swarm Manages	swarm

System Manages	Docker

Volume Manages	volumes

	

In	the	next	section,	we	will	explore	container	and	image	resources.

see more please visit: https://homeofpdf.com

Working	with	Docker	images
An	image	is	a	lightweight,	standalone	executable	package	that	includes
everything	needed	to	run	a	piece	of	software,	including	the	code,	a	runtime,
libraries,	environment	variables,	and	configuration	files.	Docker	images	are	used
to	create	Docker	containers.	Images	are	stored	in	the	Docker	Hub.

see more please visit: https://homeofpdf.com

Listing	images
You	can	list	all	of	the	images	that	are	available	in	the	Docker	host	by	running	the
Docker	images	subcommand.	The	default	Docker	images	will	show	all	top-level
images,	their	repository	and	tags,	and	their	size:

$	sudo	docker	images

REPOSITORY										TAG																	IMAGE	ID												CREATED													SIZE

wordpress											latest														c4260b289fc7								10	days	ago									406MB

mysql															latest														c73c7527c03a								2	weeks	ago									412MB

hello-world									latest														1815c82652c0								2	months	ago								1.84kB

see more please visit: https://homeofpdf.com

Getting	new	images
Docker	will	automatically	download	any	image	that	is	not	present	in	the	Docker
host	system.	The	docker	pull	subcommand	will	always	download	the	image	that
has	the	latest	tag	in	that	repository	if	a	tag	is	not	provided.	If	a	tag	is	provided,	it
pulls	the	specific	image	with	that	tag.

To	pull	a	base	image,	do	the	following:

$	sudo	docker	pull	Ubuntu	

#	To	pull	specific	version	

$	sudo	docker	pull	ubuntu:16.04	

see more please visit: https://homeofpdf.com

Searching	Docker	images
One	of	the	most	important	features	of	Docker	is	that	a	lot	of	people	have	created
Docker	images	for	a	variety	of	purposes.	Many	of	these	have	been	uploaded	to
Docker	Hub.	You	can	easily	search	for	Docker	images	in	the	Docker	Hub
registry	by	using	the	docker	search	subcommand:

$	sudo	docker	search	ubuntu

NAME																																											DESCRIPTION																																					

STARS					OFFICIAL			AUTOMATED

rastasheep/ubuntu-sshd																									Dockerized	SSH	service,	built	on	top	of	

of...			97																			[OK]

ubuntu-upstart																																	Upstart	is	an	event-based	replacement	

for	...			76								[OK]

ubuntu-debootstrap																													debootstrap	--variant=minbase	--

components...			30								[OK]

nuagebec/ubuntu																																Simple	always	updated	Ubuntu	docker	

images...			22																			[OK]

tutum/ubuntu																																			Simple	Ubuntu	docker	images	with	SSH	

access					18		

see more please visit: https://homeofpdf.com

Deleting	images
To	delete	an	image,	run	the	following:

$	sudo	docker	rmi	hello-world

Untagged:	hello-world:latest

Untagged:	hello-

world@sha256:b2ba691d8aac9e5ac3644c0788e3d3823f9e97f757f01d2ddc6eb5458df9d801

Deleted:	sha256:05a3bd381fc2470695a35f230afefd7bf978b566253199c4ae5cc96fafa29b37

Deleted:	sha256:3a36971a9f14df69f90891bf24dc2b9ed9c2d20959b624eab41bbf126272a023		

Please	refer	to	the	Docker	documentation	for	the	rest	of	the	commands	related	to
Docker	images.

see more please visit: https://homeofpdf.com

Working	with	Docker	containers
A	container	is	a	runtime	instance	of	an	image.	It	runs	completely	isolated	from
the	host	environment	by	default,	only	accessing	host	files	and	ports	if	configured
to	do	so.

see more please visit: https://homeofpdf.com

Creating	containers
Launching	a	container	is	simple,	as	docker	run	passes	the	image	name	you	would
like	to	run	and	the	command	to	run	this	within	the	container.	If	the	image	doesn't
exist	on	your	local	machine,	Docker	will	attempt	to	fetch	it	from	the	public
image	registry:

$	sudo	docker	run	--name	hello_world	ubuntu	/bin/echo	hello	world		

In	the	preceding	example,	the	container	will	start,	print	hello	world,	and	then
stop.	Containers	are	designed	to	stop	once	the	command	executed	within	them
has	exited.

As	an	example,	let's	run	a	container	using	the	latest	image	in	Ubuntu.	The
combination	of	the	-i	and	-t	switches	gives	you	interactive	shell	access	to	the
container:

$	sudo	docker	run	-it	ubuntu

root@a5b3bce6ed1b:/#	ls

bin		boot		dev		etc		home		lib		lib64		media		mnt		opt		proc		root		

run		sbin		srv		sys		tmp		usr		var		

see more please visit: https://homeofpdf.com

Listing	containers
You	can	list	the	all	containers	running	on	the	Docker	host	using	the	following:

#	To	list	active	containers

$	sudo	docker	ps

				

#	To	list	all	containers

$	sudo	docker	ps	-a

CONTAINER	ID								IMAGE															COMMAND																		CREATED													

STATUS																						PORTS															NAMES

2db72a5a0b99								ubuntu														"/bin/echo	hello	w..."		

58	seconds	ago						Exited	(0)	58	seconds	ago																							

hello_world		

see more please visit: https://homeofpdf.com

Checking	container's	logs
You	can	also	view	the	information	logged	by	a	running	container	using	the
following:

$	sudo	docker	logs	hello_world

hello	world		

see more please visit: https://homeofpdf.com

Starting	containers
You	can	start	a	stopped	container	using	the	following:

$	sudo	docker	start	hello_world		

Similarly,	you	can	use	commands	such	as	stop,	pause,	unpause,	reboot,	restart,
and	so	on	to	operate	containers.

see more please visit: https://homeofpdf.com

Deleting	containers
You	can	also	delete	a	stopped	container	using	the	following:

$	sudo	docker	delete	hello_world

				

#	To	delete	a	running	container,	use	-force	parameter

$	sudo	docker	delete	--force	[container]		

Please	refer	to	the	Docker	documentation	for	the	rest	of	the	commands	related	to
Docker	containers.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	learned	about	containers	and	their	types.	We	have	also
learned	about	the	components	in	containers.	We	took	a	look	at	the	different
container	runtime	tools.	We	took	a	deep	dive	into	Docker,	we	installed	it,	and	we
did	a	hands-on	exercise.	We	also	learned	the	commands	for	managing	containers
and	images	using	Docker.	In	the	next	chapter,	we	will	read	about	different	COE
tools	available	today.

see more please visit: https://homeofpdf.com

Working	with	Container
Orchestration	Engines
In	this	chapter,	we	will	be	looking	at	the	Container	Orchestration
Engine	(COE).	Container	Orchestration	Engines	are	tools	which	help	in
managing	many	containers	running	on	multiple	hosts.

In	this	chapter,	we	will	be	covering	the	following	topics:

Introduction	to	COE
Docker	Swarm
Apache	Mesos
Kubernetes
Kubernetes	installation
Kubernetes	hands-on

see more please visit: https://homeofpdf.com

Introduction	to	COE
Containers	provide	users	with	an	easy	way	to	package	and	run	their	applications.
Packaging	involves	defining	the	library	and	tools	that	are	necessary	for	a	user's
application	to	run.	These	packages,	once	converted	to	images,	can	be	used	to
create	and	run	containers.	These	containers	can	be	run	anywhere,	whether	it's	on
developer	laptops,	QA	systems,	or	production	machines,	without	any	change	in
environment.	Docker	and	other	container	runtime	tools	provide	the	facility	to
manage	the	life	cycle	of	such	containers.

Using	these	tools,	users	can	build	and	manage	images,	run	containers,	delete
containers,	and	perform	other	container	life	cycle	operations.	But	these	tools	can
only	manage	one	container	on	a	single	host.	When	we	deploy	our	application	on
multiple	containers	and	multiple	hosts,	we	need	some	kind	of	automation	tool.
This	type	of	automation	is	generally	called	orchestration.	Orchestration	tools
provide	a	number	of	features,	including:

Provisioning	and	managing	hosts	on	which	containers	will	run
Pulling	the	images	from	the	repository	and	instantiating	the	containers
Managing	the	life	cycle	of	containers
Scheduling	containers	on	hosts	based	on	the	host's	resource	availability
Starting	a	new	container	when	one	dies
Scaling	the	containers	to	match	the	application's	demand
Providing	networking	between	containers	so	that	they	can	access	each	other
on	different	hosts
Exposing	these	containers	as	services	so	that	they	can	be	accessed	from
outside
Health	monitoring	of	the	containers
Upgrading	the	containers

Generally,	these	kinds	of	orchestration	tools	provide	declarative	configuration	in
YAML	or	JSON	format.	These	definitions	carry	all	of	the	information	related	to
containers	including	image,	networking,	storage,	scaling,	and	other	things.
Orchestration	tools	use	these	definitions	to	apply	the	same	setting	to	provide	the
same	environment	every	time.

see more please visit: https://homeofpdf.com

There	are	many	container	orchestration	tools	available,	such	as	Docker	Machine,
Docker	Compose,	Kuberenetes,	Docker	Swarm,	and	Apache	Mesos,	but	this
chapter	focuses	only	on	Docker	Swarm,	Apache	Mesos,	and	Kubernetes.

see more please visit: https://homeofpdf.com

Docker	Swarm
Docker	Swarm	is	a	native	orchestration	tool	from	Docker	itself.	It	manages	a
pool	of	Docker	hosts	and	turns	them	into	a	single	virtual	Docker	host.	Docker
Swarm	provides	a	standard	Docker	API	to	manage	containers	on	the	cluster.	It's
easy	for	users	to	move	to	Docker	Swarm	if	they	are	already	using	Docker	to
manage	their	containers.

Docker	Swarm	follows	a	swap,	plug,	and	play	principle.	This	provides	pluggable
scheduling	algorithms,	a	broad	registry,	and	discovery	backend	support	in	the
cluster.	Users	can	use	various	scheduling	algorithms	and	discovery	backends	as
per	their	needs.	The	following	diagram	represents	the	Docker	Swarm
architecture:

see more please visit: https://homeofpdf.com

Docker	Swarm	components
The	following	sections	explain	the	various	components	in	Docker	Swarm.

see more please visit: https://homeofpdf.com

Node
Node	is	an	instance	of	the	Docker	host	participating	in	the	Swarm	cluster.	There
can	be	one	or	multiple	nodes	in	a	single	Swarm	cluster	deployment.	Nodes	are
categorized	into	Manager	and	Worker	based	on	their	roles	in	the	system.

see more please visit: https://homeofpdf.com

Manager	node
The	Swarm	manager	node	manages	the	nodes	in	the	cluster.	It	provides	the	API
to	manage	the	nodes	and	containers	across	the	cluster.	Manager	nodes	distribute
units	of	work,	also	known	as	tasks,	to	worker	nodes.	If	there	are	multiple
manager	nodes,	then	they	select	a	single	leader	to	perform	an	orchestration	task.

see more please visit: https://homeofpdf.com

Worker	node
The	worker	node	receives	and	executes	task	distributed	by	manager	nodes.	By
default,	every	manager	node	is	also	a	worker	node,	but	they	can	be	configured	to
run	Manager	tasks	exclusively.	Worker	nodes	run	agents	and	keep	track	of	tasks
running	on	them,	and	reports	them.	The	Worker	node	also	notifies	the	manager
node	about	the	current	state	of	assigned	tasks.

see more please visit: https://homeofpdf.com

Tasks
Task	is	the	individual	Docker	container	with	a	command	to	run	inside	the
container.	The	manager	assigns	the	tasks	to	worker	nodes.	Tasks	are	the	smallest
unit	of	scheduling	in	the	cluster.

see more please visit: https://homeofpdf.com

Services
Service	is	the	interface	for	a	set	of	Docker	containers	or	tasks	running	across	the
Swarm	cluster.

see more please visit: https://homeofpdf.com

Discovery	service
The	Discovery	service	stores	cluster	states	and	provides	node	and	service
discoverability.	Swarm	supports	a	pluggable	backend	architecture	that	supports
etcd,	Consul,	Zookeeper,	static	files,	lists	of	IPs,	and	so	on,	as	discovery
services.

see more please visit: https://homeofpdf.com

Scheduler
The	Swarm	scheduler	schedules	the	tasks	on	different	nodes	in	the	system.
Docker	Swarm	comes	with	many	built-in	scheduling	strategies	that	gives	users
the	ability	to	guide	container	placement	on	nodes	in	order	to	maximize	or
minimize	the	task	distribution	across	the	cluster.	The	random	strategy	is	also
supported	by	Swarm.	It	chooses	a	random	node	to	place	the	task	on.

see more please visit: https://homeofpdf.com

Swarm	mode
In	version	1.12,	Docker	introduced	the	Swarm	mode,	built	into	its	engine.	To	run
a	cluster,	the	user	needs	to	execute	two	commands	on	each	Docker	host:

To	enter	Swarm	mode:

$	docker	swarm	init

To	add	a	node	to	the	cluster:

$	docker	swarm	join		

Unlike	Swarm,	Swarm	mode	comes	with	service	discovery,	load	balancing,
security,	rolling	updates	and	scaling,	and	so	on,	built	into	the	Docker	engine
itself.	Swarm	mode	makes	the	management	of	the	cluster	easy	since	it	does	not
require	any	orchestration	tools	to	create	and	manage	the	cluster.

see more please visit: https://homeofpdf.com

Apache	Mesos
Apache	Mesos	is	an	open	source,	fault-tolerant	cluster	manager.	It	manages	a	set
of	nodes	called	slaves	and	offers	their	available	computing	resources	to
frameworks.	Frameworks	take	the	resource	availability	from	the	master	and
launches	the	tasks	on	the	slaves.	Marathon	is	one	such	framework,	which	runs
containerized	applications	on	the	Mesos	cluster.	Together,	Mesos	and	Marathon
become	a	container	orchestration	engine	like	Swarm	or	Kubernetes.

The	following	diagram	represents	the	whole	architecture:

see more please visit: https://homeofpdf.com

Apache	Mesos	and	its	components
Here	is	a	list	of	Apache	Mesos	components:

see more please visit: https://homeofpdf.com

Master
Master	manages	the	slave	nodes	in	the	system.	There	may	be	many	masters	in
the	system,	but	only	one	is	elected	as	leader.

see more please visit: https://homeofpdf.com

Slaves
Slaves	are	the	nodes	which	offer	their	resources	to	the	master	and	run	the	tasks
provided	by	frameworks.

see more please visit: https://homeofpdf.com

Frameworks
Frameworks	are	long	running	applications	consisting	of	schedulers	which	take
resource	offers	from	the	master	and	execute	the	tasks	on	the	slave.

see more please visit: https://homeofpdf.com

Offer
Offer	is	nothing	but	a	collection	of	each	slave	node's	available	resources.	The
master	gets	these	offers	from	slave	nodes	and	provides	them	to	frameworks,
which	in	turn	runs	tasks	on	the	slave	nodes

see more please visit: https://homeofpdf.com

Tasks
Tasks	are	the	smallest	unit	of	work	scheduled	by	frameworks	to	be	run	on	slave
nodes.	For	example,	a	containerized	application	can	be	one	task

see more please visit: https://homeofpdf.com

Zookeeper
Zookeeper	is	a	centralized	configuration	manager	in	a	cluster.	Mesos	uses
Zookeeper	to	elect	a	master	and	for	slaves	to	join	the	cluster

In	addition,	the	Mesos	Marathon	framework	provides	service	discovery	and	load
balancing	for	long	running	applications,	such	as	containers.	Marathon	also
provides	the	REST	API	to	manage	workloads.

see more please visit: https://homeofpdf.com

Kubernetes
Kubernetes	is	a	container	orchestration	engine	created	by	Google,	designed	to
automate	the	deployment,	scaling,	and	operating	of	containerized	applications.	It
is	one	of	the	fastest	developing	COEs	because	it	provides	a	reliable	platform	to
build	distributed	applications	on	a	massive	scale.	Kubernetes	automates	your
application,	manages	its	life	cycle,	and	maintains	and	tracks	resource	allocation
in	a	cluster	of	servers.	It	can	run	application	containers	on	physical	or	virtual
machine	clusters.

It	provides	a	unified	API	to	deploy	web	applications,	databases,	and	batch	jobs.
It	comprises	of	a	rich	set	of	complex	features:

Auto-scaling
Self-healing	infrastructure
Configuration	and	updating	of	batch	jobs
Service	discovery	and	load	balancing
Application	life	cycle	management
Quota	management

see more please visit: https://homeofpdf.com

Kubernetes	architecture
This	section	outlines	the	Kubernetes	architecture	and	the	various	components
that	deliver	a	running	cluster.

Kubernetes	consists	of	the	following	components	from	a	top-level	view:

External	requests
Master	node
Worker	nodes

The	following	diagram	shows	the	architecture	of	Kubernetes:

We	will	discuss	each	of	the	components	in	detail	in	the	next	section.	Some	of	the
key	components	are	depicted	in	the	diagram.

see more please visit: https://homeofpdf.com

External	request
Users	interact	with	Kubernetes	cluster	through	APIs;	they	explain	what	their
requirements	are	and	what	their	application	looks	like,	and	Kubernetes	does	all
the	hard	work	to	manage	their	application.	kubectl	is	command-line	tool	from	the
Kubernetes	project	to	call	Kubernetes	APIs	in	a	simple	way.

see more please visit: https://homeofpdf.com

Master	node
The	master	node	provides	the	cluster's	control	plane.	It	acts	like	a	controller	in
the	cluster.	Most	of	the	major	functionalities,	such	as	scheduling,	service
discovery,	load	balancing,	responding	to	cluster	events,	and	so	on,	are	done	by
components	running	on	the	master	node	only.	Now,	let's	take	a	look	at	the	master
components	and	their	functionalities.

see more please visit: https://homeofpdf.com

kube-apiserver
It	exposes	the	Kubernetes	APIs.	All	of	the	internal	and	external	requests	go
through	the	API	server.	It	verifies	all	of	the	incoming	requests	for	authenticity
and	the	right	level	of	access,	and	then	forwards	the	requests	to	targeted
components	in	the	cluster.

see more please visit: https://homeofpdf.com

etcd
etcd	is	used	for	storing	all	of	the	cluster	state	information	by	Kubernetes.	etcd	is	a
critical	component	in	Kubernetes.

see more please visit: https://homeofpdf.com

kube-controller-manager
There	are	multiple	controllers	in	the	Kubernetes	cluster	such	as	the	node
controller,	replication	controller,	endpoints	controller,	service	account,	and	token
controllers.	These	controllers	are	run	as	background	threads	that	handle	routine
tasks	in	the	cluster.

see more please visit: https://homeofpdf.com

kube-scheduler
It	watches	all	of	the	newly	created	pods	and	schedules	them	to	run	on	a	node	if
they	aren't	assigned	to	any	node.

Please	read	the	Kubernetes	documentation	(https://kubernetes.io/docs/concepts/overview/co
mponents/)	to	learn	about	other	components	in	the	control	plane,	including:

Cloud-controller-manager
Web	UI
Container	resource	monitoring
Cluster	level	logging

see more please visit: https://homeofpdf.com

https://kubernetes.io/docs/concepts/overview/components/

Worker	nodes
The	worker	nodes	run	the	user's	applications	and	services.	There	can	be	one	or
more	worker	node	in	the	cluster.	You	can	add	or	remove	nodes	from	the	cluster
to	achieve	scalability	in	the	cluster.	Worker	nodes	also	run	multiple	components
to	manage	applications.

see more please visit: https://homeofpdf.com

kubelet
kubelet	is	the	primary	agent	that	lives	on	every	worker	node.	It	listens	to	the	kube-
apiserver	for	commands	to	perform.	Some	of	the	functionalities	of	kubelet	include
mounting	the	pod's	volume,	downloads	the	pod's	secrets,	running	the	pod's
containers	via	Docker	or	specified	container	runtime,	and	so	on.

see more please visit: https://homeofpdf.com

kube-proxy
It	enables	the	service	abstraction	for	Kubernetes	by	maintaining	network	rules
on	the	host	and	performing	connection	forwarding.

see more please visit: https://homeofpdf.com

Container	runtime
Either	Docker	or	Rocket	to	create	containers.

see more please visit: https://homeofpdf.com

supervisord
supervisord	is	a	lightweight	process	monitor	and	control	system	that	can	be	used
to	keep	kubelet	and	Docker	running.

see more please visit: https://homeofpdf.com

fluentd
fluentd	is	a	daemon	which	helps	provide	cluster-level	logging.

see more please visit: https://homeofpdf.com

Concepts	in	Kubernetes
In	the	following	sections,	we	will	learn	about	the	concepts	of	Kubernetes	that	are
used	to	represent	your	cluster.

see more please visit: https://homeofpdf.com

Pod
A	pod	is	the	smallest	deployable	unit	of	computing	in	Kubernetes.	A	pod	is	a
group	of	one	or	more	containers	with	shared	storage	or	a	shared	network,	and	a
specification	of	how	to	run	the	containers.	Containers	themselves	are	not
assigned	to	hosts,	whereas	closely	related	containers	are	always	co-located	and
co-scheduled	together	as	pods	and	run	in	a	shared	context.

A	pod	models	an	application-specific	logical	host;	it	contains	one	or	more
application	container,	and	they	are	relatively	tightly	coupled.	In	a	pre-container
world,	they	would	have	executed	on	the	same	physical	or	virtual	machine.	Using
pods,	we	have	the	advantage	of	better	resource	sharing,	guaranteed	fate	sharing,
inter-process	communication	and	simplified	management.

see more please visit: https://homeofpdf.com

Replica	sets	and	replication
controllers
Replica	sets	are	the	next	generation	of	replication	controllers.	The	only
difference	between	both	is	that	replica	sets	support	the	more	advanced	set-based
selectors	whereas	replication	controllers	only	support	equality-based	selectors,
therefore	making	replica	sets	more	flexible	than	replication	controllers.
However,	the	following	explanation	applies	to	both.

A	pod	is	ephemeral	and	won't	be	rescheduled	if	the	node	it	is	running	on	goes
down.	The	replica	set	ensures	that	a	specific	number	of	pod	instances	(or
replicas)	are	running	at	any	given	time.

see more please visit: https://homeofpdf.com

Deployments
Deployment	is	high-level	abstraction	which	creates	replica	sets	and	pods.
Replica	sets	maintain	the	desired	number	of	pods	in	a	running	state.	Deployment
provides	an	easy	way	to	upgrade,	rollback,	and	scale	up	or	scale	down	pods	by
just	changing	the	deployment	specification.

see more please visit: https://homeofpdf.com

Secrets
Secrets	are	used	to	store	sensitive	information	such	as	usernames,	passwords,
OAuth	tokens,	certificates,	and	SSH	keys.	It's	safer	and	more	flexible	to	store
such	sensitive	information	in	secrets	rather	than	putting	them	in	pod	templates.
Pods	can	refer	these	secrets	and	use	the	information	inside	them.

see more please visit: https://homeofpdf.com

Labels	and	selectors
Labels	are	key	value	pairs	that	can	be	attached	to	objects,	such	as	pods	and	even
nodes.	They	are	used	to	specify	the	identifying	attributes	of	objects	that	are
meaningful	and	relevant	to	users.	Labels	can	be	attached	to	objects	at	creation
time	and	added	or	modified	later.	They	are	used	to	organize	and	select	subsets	of
objects.	Some	examples	include	environment	(development,	testing,	production,
release),	stable,	pike,	and	so	on.

Labels	don't	provide	uniqueness.	Using	label	selectors,	a	client	or	user	can
identify	and	subsequently	manage	a	group	of	objects.	This	is	the	core	grouping
primitive	of	Kubernetes	and	it	is	used	in	many	situations.

Kubernetes	supports	two	kinds	of	selectors:	equality-based	and	set-based.
Equality-based	uses	key	value	pairs	to	filter	based	on	basic	equality	or
inequality,	whereas	set-based	are	a	bit	more	powerful	and	allow	for	the	filtering
of	keys	according	to	a	set	of	values.

see more please visit: https://homeofpdf.com

Services
As	pods	are	short-lived	objects	in	Kubernetes,	the	IP	address	assigned	to	them
can't	be	relied	upon	to	be	stable	for	a	long	time.	This	makes	the	communication
between	pods	difficult.	Hence,	Kubernetes	has	introduced	the	concept	of	a
service.	A	service	is	an	abstraction	on	top	of	a	number	of	pods	and	a	policy	by
which	to	access	them,	typically	requiring	the	running	of	a	proxy	for	other
services	to	communicate	with	it	via	a	virtual	IP	address.

see more please visit: https://homeofpdf.com

Volumes
Volume	provides	persistent	storage	to	pods	or	containers.	If	data	is	not	persisted
on	external	storage,	then	once	the	container	crashes,	all	of	its	files	will	be	lost.
Volumes	also	make	data	sharing	easy	between	multiple	containers	inside	the
pod.	Kubernetes	supports	many	types	of	volumes,	and	pods	can	use	any	number
of	volumes	simultaneously.

see more please visit: https://homeofpdf.com

Kubernetes	installation
Kubernetes	can	run	on	various	platforms,	from	laptops	and	VMs	on	a	cloud
provider	to	a	rack	of	bare	metal	servers.	There	are	multiple	solutions	today	to
install	and	run	Kubernetes	clusters.	Read	the	Kubernetes	documentation	to	find
the	best	solution	for	your	particular	use	case.

In	this	chapter,	we	will	use	kubeadm	to	bring	up	a	Kubernetes	cluster	on	Ubuntu
16.04+.	kubeadm	can	be	used	to	easily	bring	up	a	cluster	with	a	single	command
per	machine.

In	this	installation,	we	will	use	a	tool	called	kubeadm,	which	is	a	part	of
Kubernetes.	The	prerequisites	for	installing	kubeadm	are:

One	or	more	machines	running	Ubuntu	16.04+
Minimum	of	1	GB	or	more	of	RAM	per	machine
Full	network	connectivity	between	all	machines	in	the	cluster

All	of	the	machines	in	the	cluster	need	the	following	components	to	be	installed:

1.	 Install	Docker	on	all	of	the	machines.	As	per	the	Kubernetes
documentation,	version	1.12	is	recommended.	Please	refer	to	the
Installation	of	Docker	section	in	Chapter	1,	Working	with	Containers,	for
instructions	on	installing	Docker.

2.	 Install	kubectl	on	each	machine.	kubectl	is	a	command-line	tool	from
Kubernetes	to	deploy	and	manage	applications	on	Kubernetes.	You	can	use
kubectl	to	inspect	cluster	resources,	create,	delete,	and	update	components,
and	look	at	your	new	cluster	and	bring	up	example	apps.	Again,	there	are
multiple	options	to	install	kubectl.	In	this	chapter,	we	will	use	curl	to	install
it.	Please	refer	to	the	Kubernetes	documentation	for	more	options.
1.	 Download	the	latest	release	of	kubectl	using	curl:

								$	curl	-LO	https://storage.googleapis.com/kubernetes-

								release/release/$(curl	-s	https://storage.googleapis.com/kubernetes

								release/release/stable.txt)/bin/linux/amd64/kubectl

2.	 Make	the	kubectl	binary	executable:

see more please visit: https://homeofpdf.com

								$	chmod	+x	./kubectl		

3.	 Now,	install	kubelet	and	kubeadm	on	all	the	machines.	kubelet	is	the	component
that	runs	on	all	of	the	machines	in	your	cluster	and	does	things	such	as
starting	pods	and	containers.	kubeadm	is	the	command	to	bootstrap	the	cluster:
1.	 Log	in	as	root:

								$	sudo	-i		

2.	 Update	and	install	the	packages:

								$	apt-get	update	&&	apt-get	install	-y	apt-transport-https

3.	 Add	the	authenticate	key	for	the	package:

								$	curl	-s	https://packages.cloud.google.com/apt/doc/apt-key.gpg	

								|	apt-key	add	-		

4.	 Add	the	Kubernetes	source	to	the	apt	list:

								$	cat	<<EOF	>/etc/apt/sources.list.d/kubernetes.list

								deb	http://apt.kubernetes.io/	kubernetes-xenial	main

								EOF		

5.	 Update	and	install	the	tools:

								$	apt-get	update

								$	apt-get	install	-y	kubelet	kubeadm		

The	following	steps	demonstrate	how	to	set	up	a	secure	Kubernetes	cluster	using
kubeadm.	We	will	also	create	a	pod	network	on	the	cluster	so	that	the	application
components	can	talk	to	each	other.	Finally,	install	a	sample	microservices
application	on	the	cluster	to	verify	the	installation.

1.	 Initialize	the	master	node.	To	initialize	the	master,	choose	one	of	the
machines	you	previously	installed	kubeadm	on	and	run	the	following
command.	We	have	specified	pod-network-cidr	for	providing	the	network	for
communication	between	pods:

										$	kubeadm	init	--pod-network-cidr=10.244.0.0/16		

Please	refer	to	the	kubeadm	reference	document	to	read	more	about	the
flags	kubeadm	init	provides.

see more please visit: https://homeofpdf.com

This	may	take	several	minutes,	as	kubeadm	init	will	first	run	a	series	of	pre-
checks	to	ensure	that	the	machine	is	ready	to	run	Kubernetes.	It	might
expose	warnings	and	exit	on	errors	depending	on	the	pre-check	results.	It
will	then	download	and	install	the	control	plane	components	and	cluster
database.

The	output	of	the	preceding	command	looks	like	this:

[kubeadm]	WARNING:	kubeadm	is	in	beta,	please	do	not	use	it	for	production	

clusters.

[init]	Using	Kubernetes	version:	v1.7.4

[init]	Using	Authorization	modes:	[Node	RBAC]

[preflight]	Running	pre-flight	checks

[preflight]	WARNING:	docker	version	is	greater	than	the	most	recently	validated	

version.	Docker	version:	17.06.1-ce.	Max	validated	version:	1.12

[preflight]	Starting	the	kubelet	service

[kubeadm]	WARNING:	starting	in	1.8,	tokens	expire	after	24	hours	by	default	(if	

you	require	a	non-expiring	token	use	--token-ttl	0)

[certificates]	Generated	CA	certificate	and	key.

[certificates]	Generated	API	server	certificate	and	key.

[certificates]	API	Server	serving	cert	is	signed	for	DNS	names	[galvin	

kubernetes	kubernetes.default	kubernetes.default.svc	

kubernetes.default.svc.cluster.local]	and	IPs	[10.96.0.1	10.0.2.15]

[certificates]	Generated	API	server	kubelet	client	certificate	and	key.

[certificates]	Generated	service	account	token	signing	key	and	public	key.

[certificates]	Generated	front-proxy	CA	certificate	and	key.

[certificates]	Generated	front-proxy	client	certificate	and	key.

[certificates]	Valid	certificates	and	keys	now	exist	in	"/etc/kubernetes/pki"

[kubeconfig]	Wrote	KubeConfig	file	to	disk:	"/etc/kubernetes/admin.conf"

[kubeconfig]	Wrote	KubeConfig	file	to	disk:	"/etc/kubernetes/kubelet.conf"

[kubeconfig]	Wrote	KubeConfig	file	to	disk:	"/etc/kubernetes/controller-

manager.conf"

[kubeconfig]	Wrote	KubeConfig	file	to	disk:	"/etc/kubernetes/scheduler.conf"

[apiclient]	Created	API	client,	waiting	for	the	control	plane	to	become	ready

[apiclient]	All	control	plane	components	are	healthy	after	62.001439	seconds

[token]	Using	token:	07fb67.033bd701ad81236a

[apiconfig]	Created	RBAC	rules

[addons]	Applied	essential	addon:	kube-proxy

[addons]	Applied	essential	addon:	kube-dns		

Your	Kubernetes	master	has	initialized	successfully:

mkdir	-p	$HOME/.kube

sudo	cp	-i	/etc/kubernetes/admin.conf	$HOME/.kube/config

sudo	chown	$(id	-u):$(id	-g)	$HOME/.kube/config		

You	should	now	deploy	a	pod	network	to	the	cluster.

Run	kubectl	apply	-f	[podnetwork].yaml	with	one	of	the	options	listed	at:	

http://kubernetes.io/docs/admin/addons/.

You	can	now	join	any	number	of	machines	by	running	the	following	on	each	node	

as	the	root:

kubeadm	join	--token	07fb67.033bd701ad81236a	10.0.2.15:6443

Save	the	kubeadm	join	command	from	the	preceding	output.	You	will	need
this	to	join	nodes	to	your	Kubernetes	cluster.	The	token	is	used	for
mutual	authentication	between	the	master	and	the	nodes.

Now,	to	start	using	your	cluster,	run	the	following	commands	as	a	regular

see more please visit: https://homeofpdf.com

user:

$	mkdir	-p	$HOME/.kube

$	sudo	cp	-i	/etc/kubernetes/admin.conf	$HOME/.kube/config

$	sudo	chown	$(id	-u):$(id	-g)	$HOME/.kube/config		

2.	 Install	a	pod	network.	This	network	is	used	for	the	communication	between
pods	in	the	cluster:

The	network	must	be	deployed	before	running	any	application.
Also,	services	such	as	kube-dns	will	not	start	up	before	a	network
is	installed.	kubeadm	only	supports	Container	Network	Interface
(CNI)	networks	and	does	not	support	kubenet.

There	are	multiple	network	add-on	projects	which	can	be	used	to	create	a
secure	network.	To	see	a	complete	list,	please	visit	the	Kubernetes
documentation	for	reference.	In	this	example,	we	will	use	flannel	for	the
networking.	Flannel	is	an	overlay	network	provider:

		$	sudo	kubectl	apply	-f	

https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-

flannel.yml

		serviceaccount	"flannel"	created

		configmap	"kube-flannel-cfg"	created

		daemonset	"kube-flannel-ds"	created

		$	sudo	kubectl	apply	-f	

https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-

flannel-rbac.yml

		clusterrole	"flannel"	created

		clusterrolebinding	"flannel"	created		

You	can	confirm	that	it	is	working	by	checking	that	the	kube-dns	pod	is	up
and	running	in	the	output:

$	kubectl	get	pods	--all-namespaces

NAMESPACE					NAME																													READY					STATUS				RESTARTS			

AGE

kube-system			etcd-galvin																						1/1							Running			0										

2m

kube-system			kube-apiserver-galvin												1/1							Running			0										

2m

kube-system			kube-controller-manager-galvin			1/1							Running			0										

2m

kube-system			kube-dns-2425271678-lz9fp								3/3							Running			0										

2m

kube-system			kube-flannel-ds-f9nx8												2/2							Running			2										

1m

kube-system			kube-proxy-wcmdg																	1/1							Running			0										

2m

kube-system			kube-scheduler-galvin												1/1							Running			0										

2m		

see more please visit: https://homeofpdf.com

3.	 Join	the	nodes	to	the	cluster.	To	add	nodes	to	the	Kubernetes	cluster,	and
SSH	to	the	node	and	run	the	following:

$	sudo	kubeadm	join	--token	<token>	<master-ip>:<port>

[kubeadm]	WARNING:	kubeadm	is	in	beta,	please	do	not	use	it	for	production	

clusters.

[preflight]	Running	pre-flight	checks

[discovery]	Trying	to	connect	to	API	Server	"10.0.2.15:6443"

[discovery]	Created	cluster-info	discovery	client,	requesting	info	from	

"https://10.0.2.15:6443"

[discovery]	Cluster	info	signature	and	contents	are	valid,	will	use	API	Server	

"https://10.0.2.15:6443"

[discovery]	Successfully	established	connection	with	API	Server	

"10.0.2.15:6443"

[bootstrap]	Detected	server	version:	v1.7.4

[bootstrap]	The	server	supports	the	Certificates	API	

(certificates.k8s.io/v1beta1)

[csr]	Created	API	client	to	obtain	unique	certificate	for	this	node,	generating	

keys	and	certificate	signing	request

[csr]	Received	signed	certificate	from	the	API	server,	generating	KubeConfig...

[kubeconfig]	Wrote	KubeConfig	file	to	disk:	"/etc/kubernetes/kubelet.conf"		

Node	join	complete:

Certificate	signing	request	sent	to	master	and	response

Received

Kubelet	informed	of	new	secure	connection	details

Run	kubectl	get	nodes	on	the	master	to	see	this	machine	join.

Now,	run	the	following	command	to	verify	the	joining	of	the	nodes:

$	kubectl	get	nodes

NAME						STATUS				AGE							VERSION

brunno				Ready					14m							v1.7.4

Verify	your	installation	by	creating	a	sample	Nginx	pod:

$	kubectl	run	my-nginx	--image=nginx	--replicas=2	--port=80

deployment	"my-nginx"	created

				

$	kubectl	get	pods	

NAME																								READY					STATUS				RESTARTS			AGE

my-nginx-4293833666-c4c5p			1/1							Running			0										22s

my-nginx-4293833666-czrnf			1/1							Running			0										22s		

see more please visit: https://homeofpdf.com

Kubernetes	hands-on
We	learned	how	to	install	the	Kubernetes	cluster	in	the	previous	section.	Now,
let's	create	a	more	complex	example	with	Kubernetes.	In	this	application,	we
will	deploy	an	application	running	a	WordPress	site	and	MySQL	database	using
official	Docker	images.

1.	 Create	a	persistent	volume.	Both	WordPress	and	MySQL	will	use	this
volume	to	store	data.	We	will	create	two	local	persistent	volumes	of	size	5
GB	each.	Copy	the	following	content	to	the	volumes.yaml	file:

								apiVersion:	v1

								kind:	PersistentVolume

								metadata:

										name:	pv-1

										labels:

												type:	local

								spec:

										capacity:

												storage:	5Gi

										accessModes:

												-	ReadWriteOnce

										hostPath:

												path:	/tmp/data/pv-1

											storageClassName:	slow	

								apiVersion:	v1

								kind:	PersistentVolume

								metadata:

										name:	pv-2

										labels:

												type:	local

								spec:

										capacity:

												storage:	5Gi

										accessModes:

												-	ReadWriteOnce

										hostPath:

												path:	/tmp/data/pv-2

										storageClassName:	slow	

						

2.	 Now,	create	the	volume	by	running	the	following	command:

								$	kubectl	create	-f	volumes.yaml	

								persistentvolume	"pv-1"	created

								persistentvolume	"pv-2"	created				

3.	 Check	that	the	volumes	were	created:

see more please visit: https://homeofpdf.com

										$	kubectl	get	pv

										NAME						CAPACITY			ACCESSMODES			RECLAIMPOLICY			STATUS						

										CLAIM					STORAGECLASS			REASON				AGE

										pv-1						5Gi								RWO											Retain										Available																																					

										8s

										pv-2						5Gi								RWO											Retain										Available																																				

										8s		

4.	 Create	a	secret	to	store	the	MySQL	password.	This	secret	will	be	referenced
by	the	MySQL	and	WordPress	pods	so	that	those	pods	will	have	access	to
it:

								$	kubectl	create	secret	generic	mysql-pass	-from-

								literal=password=admin

								secret	"mysql-pass"	created

5.	 Verify	that	the	secrets	were	created:

								$	kubectl	get	secrets

								NAME																		TYPE																																		DATA				

								AGE

								default-token-1tb58			kubernetes.io/service-account-token			3						

								3m

								mysql-pass												Opaque																																1			

								9s

6.	 Create	the	MySQL	deployment.	We	will	now	create	a	service	that	exposes	a
MySQL	container,	a	persistent	volume	claim	of	5	GB,	and	a	deployment
running	the	pod	with	the	MySQL	container.	Copy	the	following	content	to
the	mysql-deployment.yaml	file:

								apiVersion:	v1

								kind:	Service

								metadata:

										name:	wordpress-mysql

										labels:

												app:	wordpress

								spec:

										ports:

												-	port:	3306

										selector:

												app:	wordpress

												tier:	mysql

										clusterIP:	None

								apiVersion:	v1

								kind:	PersistentVolumeClaim

								metadata:

										name:	mysql-pv-claim

										labels:

												app:	wordpress

								spec:

										accessModes:

												-	ReadWriteOnce

										resources:

												requests:

see more please visit: https://homeofpdf.com

														storage:	5Gi

										storageClassName:	slow	

								apiVersion:	extensions/v1beta1

								kind:	Deployment

								metadata:

										name:	wordpress-mysql

										labels:

												app:	wordpress

								spec:

										strategy:

												type:	Recreate

										template:

												metadata:

														labels:

																app:	wordpress

																tier:	mysql

												spec:

														containers:

														-	image:	mysql:5.6

																name:	mysql

																env:

																-	name:	MYSQL_ROOT_PASSWORD

																		valueFrom:

																				secretKeyRef:

																						name:	mysql-pass

																						key:	password

																				ports:

																-	containerPort:	3306

																		name:	mysql

																volumeMounts:

																-	name:	mysql-persistent-storage

																		mountPath:	/var/lib/mysql

														volumes:

														-	name:	mysql-persistent-storage

																persistentVolumeClaim:

																			claimName:	mysql-pv-claim		

7.	 Now,	launch	the	MySQL	pod:

										$	kubectl	create	-f	mysql-deployment.yaml	

										service	"wordpress-mysql"	created

										persistentvolumeclaim	"mysql-pv-claim"	created

										deployment	"wordpress-mysql"	created		

8.	 Check	the	status	of	the	pod:

										$	kubectl	get	pods

										NAME																															READY					STATUS				RESTARTS

										AGE

												wordpress-mysql-2222028001-l8x9x			1/1							Running			0		

										6m						

9.	 Alternatively,	you	can	check	the	logs	of	the	pod	by	running	the	following:

								$	kubectl	logs	wordpress-mysql-2222028001-l8x9x

				

								Initializing	database

see more please visit: https://homeofpdf.com

								2017-08-27	15:30:00	0	[Warning]	TIMESTAMP	with	implicit	DEFAULT	

								value	is	deprecated.	Please	use	--explicit_defaults_for_timestamp	

								server	

								option	(see	documentation	for	more	details).

								2017-08-27	15:30:00	0	[Note]	Ignoring	--secure-file-priv	value	as

								server	is	running	with	--bootstrap.

								2017-08-27	15:30:00	0	[Note]	/usr/sbin/mysqld	(mysqld	5.6.37)

								starting	as	process	36	...

				

				

								2017-08-27	15:30:03	0	[Warning]	TIMESTAMP	with	implicit	DEFAULT

								value	is	deprecated.	Please	use	--explicit_defaults_for_timestamp	

								server	

								option	(see	documentation	for	more	details).

								2017-08-27	15:30:03	0	[Note]	Ignoring	--secure-file-priv	value	as	

								server	is	running	with	--bootstrap.

								2017-08-27	15:30:03	0	[Note]	/usr/sbin/mysqld	(mysqld	5.6.37)

								starting	as	process	59	...

								Please	remember	to	set	a	password	for	the	MySQL	root	user!

								To	do	so,	start	the	server,	then	issue	the	following	

								commands:

								/usr/bin/mysqladmin	-u	root	password	'new-password'	

								/usr/bin/mysqladmin	-u	root	-h	wordpress-mysql-2917821887-dccql	

								password	'new-password'	

Alternatively,	you	can	run	the	following:

/usr/bin/mysql_secure_installation	

This	will	also	give	you	the	option	of	removing	the	test	databases	and
anonymous	user	created	by	default.	It	is	strongly	recommended	for
production	servers.

Check	the	manual	for	more	instructions:

Please	report	any	problems	at	http://bugs.mysql.com/.

The	latest	information	about	MySQL	is	available	on	the	web	at	h
ttp://www.mysql.com.

Support	MySQL	by	buying	support/licenses	at:	http://shop.mysql.com.

Please	note	that	a	new	default	config	file	was	not	created;	please	make
sure	your	config	file	is	current.

The	default	config	file,	/etc/mysql/my.cnf,	exists	on	the	system.

see more please visit: https://homeofpdf.com

http://bugs.mysql.com/
http://www.mysql.com
http://shop.mysql.com

This	file	will	be	read	by	default	by	the	MySQL	server.	If	you	do	not	want
to	use	this,	either	remove	it	or	use	the	following	command:

--defaults-file	argument	to	mysqld_safe	when	starting	the	server

				

Database	initialized

MySQL	init	process	in	progress...

2017-08-27	15:30:05	0	[Warning]	TIMESTAMP	with	implicit	DEFAULT	

value	is	deprecated.	Please	use	--explicit_defaults_for_timestamp	

server	option	(see	documentation	for	more	details).

2017-08-27	15:30:05	0	[Note]	mysqld	(mysqld	5.6.37)	starting	as	

process	87	...

Warning:	Unable	to	load	'/usr/share/zoneinfo/iso3166.tab'	as	time	

zone.	Skipping	it.

Warning:	Unable	to	load	'/usr/share/zoneinfo/leap-seconds.list'	as

time	zone.	Skipping	it.

Warning:	Unable	to	load	'/usr/share/zoneinfo/zone.tab'	as	time

zone.	Skipping	it.		

The	MySQL	init	process	is	now	done.	We	are	ready	for	startup:

2017-08-27	15:30:11	0	[Warning]	TIMESTAMP	with	implicit	DEFAULT	

value	is	deprecated.	Please	use	--explicit_defaults_for_timestamp

server	

option	(see	documentation	for	more	details).

2017-08-27	15:30:11	0	[Note]	mysqld	(mysqld	5.6.37)	starting	as

process	5	...		

Check	the	status	of	persistent	volume	claims	by	running	the	following:

$	kubectl	get	pvc

NAME													STATUS				VOLUME				CAPACITY			ACCESSMODES			

STORAGECLASS			AGE

mysql-pv-claim			Bound					pv-1						5Gi								RWO									

slow											2h

wp-pv-claim						Bound					pv-2						5Gi								RWO									

slow											2h

Create	the	WordPress	deployment.	We	will	now	create	a	service	that
exposes	a	WordPress	container,	a	persistent	volume	claim	of	5	GB,	and	a
deployment	running	the	pod	with	the	WordPress	container.	Copy	the
following	content	to	the	wordpress-deployment.yaml	file:

apiVersion:	v1	

kind:	Service	

metadata:	

		name:	wordpress	

		labels:	

				app:	wordpress	

spec:	

		ports:	

				-	port:	80	

		selector:	

				app:	wordpress	

				tier:	frontend	

see more please visit: https://homeofpdf.com

		type:	NodePort	

apiVersion:	v1	

kind:	PersistentVolumeClaim	

metadata:	

		name:	wp-pv-claim	

		labels:	

				app:	wordpress	

spec:	

		accessModes:	

				-	ReadWriteOnce	

		resources:	

				requests:	

						storage:	5Gi	

		storageClassName:	slow		

apiVersion:	extensions/v1beta1	

kind:	Deployment	

metadata:	

		name:	wordpress	

		labels:	

				app:	wordpress	

spec:	

		strategy:	

				type:	Recreate	

		template:	

				metadata:	

						labels:	

								app:	wordpress	

								tier:	frontend	

				spec:	

						containers:	

						-	image:	wordpress:4.7.3-apache	

								name:	wordpress	

								env:	

								-	name:	WORDPRESS_DB_HOST	

										value:	wordpress-mysql	

								-	name:	WORDPRESS_DB_PASSWORD	

										valueFrom:	

												secretKeyRef:	

														name:	mysql-pass	

														key:	password	

								ports:	

								-	containerPort:	80	

										name:	wordpress	

								volumeMounts:	

								-	name:	wordpress-persistent-storage	

										mountPath:	/var/www/html	

						volumes:	

						-	name:	wordpress-persistent-storage	

								persistentVolumeClaim:	

										claimName:	wp-pv-claim	

10.	 Now,	launch	the	WordPress	pod:

						$	kubectl	create	-f	wordpress-deployment.yaml	

						service	"wordpress"	created

						persistentvolumeclaim	"wp-pv-claim"	created

						deployment	"wordpress"	created

		

see more please visit: https://homeofpdf.com

11.	 Check	the	status	of	the	service:

								$	kubectl	get	services	wordpress

								NAME								CLUSTER-IP						EXTERNAL-IP			PORT(S)								AGE

								wordpress			10.99.124.161			<nodes>						80:31079/TCP			4m

The	application	is	up	and	running	now!

The	following	lists	the	commands	needed	to	delete	all	of	the	resources	created:

To	delete	your	secret:

								$	kubectl	delete	secret	mysql-pass		

To	delete	all	of	the	deployments	and	services:

								$	kubectl	delete	deployment	-l	app=wordpress

								$	kubectl	delete	service	-l	app=wordpress

To	delete	the	persistent	volume	claims	and	the	persistent	volumes:

								$	kubectl	delete	pvc	-l	app=wordpress

								$	kubectl	delete	pv	pv-1	pv-2		

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	have	learned	about	container	orchestration	engines.	We
looked	at	the	different	COEs	such	as	Docker	Swarm	and	Apache	Mesos.	We
dealt	with	Kubernetes	and	its	architecture,	components,	and	concepts	in	detail.

We	learned	how	to	install	a	Kubernetes	cluster	using	the	kubeadm	tool.	Then,	at	the
end,	we	did	a	hands-on	exercise	to	run	a	MySQL	WordPress	application	on	a
Kubernetes	cluster.	In	the	next	chapter,	we	will	read	about	the	OpenStack
architecture	and	its	core	components.

see more please visit: https://homeofpdf.com

OpenStack	Architecture
This	chapter	will	start	with	an	introduction	to	OpenStack.	Then	this	chapter	will
explain	the	architecture	of	OpenStack	and	further	explain	each	core	project	in
OpenStack.	Finally,	the	chapter	will	demonstrate	DevStack	installation	and	use	it
for	doing	some	operations	with	OpenStack.	This	chapter	will	cover	the
following:

Introduction	to	OpenStack
OpenStack	architecture
Introduction	to	KeyStone,	the	OpenStack	identity	service
Introduction	to	Nova,	the	OpenStack	compute	service
Introduction	to	Neutron,	the	OpenStack	network	service
Introduction	to	Cinder,	the	OpenStack	block	storage	service
Introduction	to	Glance,	the	OpenStack	image	service
Introduction	to	Swift,	the	OpenStack	object	service
DevStack	installation

see more please visit: https://homeofpdf.com

Introduction	to	OpenStack
OpenStack	is	a	free	and	open	source	software	for	creating	private	and	public
clouds.	It	provides	interrelated	sets	of	components	to	manage	and	access	large
pools	of	compute,	networking	and	storage	resources	spanned	across	a	datacenter.
Users	can	manage	it	either	using	web-based	user	interfaces	and	command	lines
or	REST	APIs.	OpenStack	was	open	sourced	in	2010	by	Rackspace	and	NASA.
Currently,	it	is	managed	by	The	OpenStack	Foundation,	a	non-profit	entity.

see more please visit: https://homeofpdf.com

OpenStack	architecture
The	following	figure	(from:	https://docs.openstack.org/arch-design/design.html)	represents
the	logical	architecture	of	OpenStack	and	how	users	can	connect	to	various
services.	OpenStack	has	multiple	components	for	different	purposes	such	as
Nova	for	managing	compute	resources,	Glance	for	managing	OS	images,	and	so
on.	We	will	learn	about	each	component	in	detail	in	the	upcoming	sections.

In	very	simple	terms,	if	a	user	requests	to	provision	a	VM	using	CLI	or	the	APIs,
the	request	is	handled	by	Nova.	Nova	then	talks	to	KeyStone	to	authenticate	the
request,	Glance	for	the	OS	image,	and	Neutron	for	setting	up	the	network
resources.	Then,	after	receiving	responses	from	each	component,	it	boots	the
VM	and	returns	a	response	to	the	user:

see more please visit: https://homeofpdf.com

https://docs.openstack.org/arch-design/design.html

see more please visit: https://homeofpdf.com

Introduction	to	KeyStone,	the
OpenStack	identity	service
KeyStone	is	an	OpenStack	identity	service	which	provides	the	following
capabilities:

Identity	provider:	In	OpenStack,	identity	is	represented	as	a	user	in	the
form	of	a	name	and	password.	In	simple	setups,	KeyStone	stores	the
identity	of	a	user	in	its	database.	But	it	is	recommended	you	use	third-party
identity	providers	such	as	LDAP	in	production.
API	client	authentication:	Authentication	is	validating	a	user's	identity.
KeyStone	can	do	it	by	using	many	third-party	backends	such	as	LDAP	and
AD.	Once	authenticated,	the	user	gets	a	token	which	he/she	can	use	to
access	other	OpenStack	service	APIs.
Multitenant	authorization:	KeyStone	provides	the	authorization	to	access
a	particular	resource	by	adding	a	role	to	every	user	in	every	tenant.	When	a
user	access	any	OpenStack	service,	the	service	verifies	the	role	of	the	user
and	whether	he/she	can	access	the	resource.
Service	discovery:	KeyStone	manages	a	service	catalog	in	which	other
services	can	register	their	endpoints.	Whenever	any	other	service	wants	to
interact	to	any	particular	service,	it	can	refer	to	the	service	catalog	and	can
get	the	address	of	that	service.

KeyStone	contains	the	following	components:

KeyStoneAPI:	KeyStone	API	is	a	WSGI	application	which	handles	all	the
incoming	requests
Services:	KeyStone	is	comprised	of	many	internal	services	exposed	over	an
API	endpoint.	These	services	are	consumed	by	a	frontend	API	in	a
combined	fashion
Identity:	The	identity	service	handles	requests	related	to	user	credential
validation	and	CRUD	operations	associated	with	users	and	group	data.	In
production	environments,	third-party	entities	such	as	LDAP	can	be	used	as
an	identity	service	backend

see more please visit: https://homeofpdf.com

Resource:	The	resource	service	is	responsible	for	managing	data	related	to
projects	and	domains
Assignment:	The	assignment	service	is	responsible	for	roles	and	assigning
roles	to	users
Token:	The	token	service	is	responsible	for	managing	and	validating	tokens
Catalog:	The	catalog	service	is	responsible	for	managing	service	endpoints
and	providing	discovery	services
Policy:	The	policy	service	is	responsible	for	providing	rule-based
authorization

The	following	figure	represents	the	architecture	of	KeyStone:

see more please visit: https://homeofpdf.com

Introduction	to	Nova,	the	OpenStack
compute	service
Nova	is	a	compute	service	for	OpenStack	which	provides	a	way	to	provision
compute	instances,	also	known	as	virtual	machines.	Nova	has	capabilities	to
create	and	manage	the	following:

Virtual	machines
Bare	metal	servers
System	containers

Nova	contains	multiple	services,	each	performing	different	functions.	They
internally	communicate	via	RPC	message-passing	mechanisms.

Nova	consists	of	the	following	components:

Nova	API:	The	Nova	API	service	processes	incoming	REST	requests	to
create	and	manage	virtual	servers.	The	API	service	mainly	deals	with
database	reads	and	writes,	and	communicates	over	RPC	with	other	services
to	generate	responses	to	the	REST	requests.
Placement	API:	Nova	Placement	API	service	was	introduced	in	14.0.0
Newton	release.	This	service	tracks	the	resource	provider	inventories	and
usages	of	each	provider.	A	resource	provider	can	be	a	shared	storage	pool,
compute	node	and	so	on.
Scheduler:	The	scheduler	service	decides	which	compute	host	gets
instances.
Compute:	The	compute	service	is	responsible	for	communicating	with
hypervisors	and	virtual	machines.	It	runs	on	each	compute	node.
Conductor:	The	conductor	service	acts	as	a	database	proxy,	handles	object
conversion	and	helps	with	request	coordination.
Database:	The	database	is	an	SQL	database	for	data	storage.
Messaging	queue:	This	route's	information	is	moved	between	different
Nova	services.
Network:	The	network	service	manages	IP	forwarding,	bridges,	VLANs

see more please visit: https://homeofpdf.com

and	so	on.

The	following	figure	represents	the	architecture	of	Nova:

see more please visit: https://homeofpdf.com

Introduction	to	Neutron,	the
OpenStack	network	service
Neutron	is	network	service	for	OpenStack	which	provides	a	variety	of
networking	options	in	an	OpenStack	cloud.	Its	old	name	was	Quantum	and	it
was	later	renamed	to	Neutron.	Neutron	uses	a	vast	array	of	plugins	to	provide
different	network	configurations.

Neutron	contains	the	following	components:

Neutron	server	(neutron-server	and	neutron-*-plugin):	The	Neutron	server
handles	incoming	REST	API	requests.	It	communicates	to	the	database
using	plugins
Plugin	agent	(neutron-*-agent):	The	plugin	agent	runs	on	each	compute	node
to	manage	the	local	virtual	switch	(vswitch)	configuration
DHCP	agent	(neutron-dhcp-agent):	The	DHCP	agent	provides	DHCP	services
to	tenant	networks.	This	agent	is	responsible	for	maintaining	all	DHCP
configurations
L3	agent	(neutron-l3-agent):	The	L3	agent	provides	L3/NAT	forwarding	for
the	external	network	access	of	VMs	on	tenant	networks
Network	provider	services	(SDN	server/services):	This	service	provides
additional	networking	services	to	tenant	networks
Messaging	queue:	Routes	information	between	the	Neutron	processes
Database:	The	database	is	an	SQL	database	for	data	storage

The	following	figure	represents	the	architecture	of	Neutron:

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Introduction	to	Cinder,	the
OpenStack	block	storage	service
Cinder	is	a	block	storage	service	for	OpenStack	which	provides	persistent	block
storage	resources	for	VMs	in	Nova.	Cinder	uses	LVM	or	other	plugin	drivers	to
provide	storage.	Users	can	use	Cinder	to	create,	delete,	and	attach	a	volume.
Also,	more	advanced	features	such	as	clone,	extend	volumes,	snapshots,	and
write	images	can	be	used	as	bootable	persistent	instances	for	VMs	and	bare
metals.	Cinder	can	also	be	used	independently	of	other	OpenStack	services.

The	block	storage	service	consists	of	the	following	components	and	provides	a
highly	available,	fault	tolerant	and	recoverable	solution	for	managing	volumes:

cinder-api:	A	WSGI	app	that	authenticates	and	routes	requests	to	the
cinder-volume	service
cinder-scheduler:	Schedules	requests	for	the	optimal	storage	provider	node
to	create	volume	on
cinder-volume:	Interacts	with	a	variety	of	storage	providers	and	also
handles	the	read	and	write	requests	to	maintain	states.	It	also	interacts	with
cinder-scheduler
cinder-backup:	Backs	up	volumes	to	OpenStack	object	storage	(Swift).	It
also	interacts	with	a	variety	of	storage	providers

Messaging	queue	routes	information	between	the	block	storage	processes.	The
following	figure	is	the	architecture	diagram	of	Cinder:

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Introduction	to	Glance,	the
OpenStack	image	service
Glance	is	the	image	service	project	for	OpenStack	which	provides	discovering,
registering,	and	retrieving	abilities	for	disk	and	server	images.	Users	can	upload
and	discover	data	images	and	metadata	definitions	that	are	meant	to	be	used	with
other	services.	In	short,	Glance	is	a	central	repository	for	managing	images	for
VMs,	containers	and	bare	metals.	Glance	has	a	RESTful	API	that	allows	for	the
querying	of	image	metadata	as	well	as	the	retrieval	of	the	actual	image.

The	OpenStack	image	service,	Glance,	includes	the	following	components:

glance-api:	A	WSGI	app	that	accepts	image	API	calls	for	image	discovery,
retrieval	and	storage.	It	authenticates	it	with	Keystone	and	forwards	the
request	to	the	glance-registry.
glance-registry:	A	private	internal	service	that	stores,	processes	and
retrieves	metadata	about	images.	Metadata	includes	items	such	as	size	and
type.
Database:	It	stores	image	metadata.	You	can	choose	MySQL	or	SQLite
according	to	your	preferences.
Storage	repository	for	image	files:	Various	repository	types	are	supported
for	storing	images.
Metadata	definition	service:	A	common	API	for	vendors,	admins,	services
and	users	to	meaningfully	define	their	own	custom	metadata.	This	metadata
can	be	used	for	different	types	of	resources	such	as	images,	artifacts,
volumes,	flavors	and	aggregates.	A	definition	includes	the	new	property's
key,	description,	constraints,	and	the	resource	type	it	can	be	associated	with.

The	following	figure	is	the	architecture	diagram	of	Glance.	Glance	also	has	a
client-server	architecture	that	provides	a	REST	API	to	the	user,	through	which
requests	to	the	server	can	be	performed:

see more please visit: https://homeofpdf.com

see more please visit: https://homeofpdf.com

Introduction	to	Swift,	the	OpenStack
object	store
Swift	is	the	object	store	service	for	OpenStack	which	can	be	used	to	store
redundant,	scalable	data	on	clusters	of	servers	that	are	capable	of	storing
petabytes	of	data.	It	provides	a	fully	distributed,	API-accessible	storage	platform
that	can	be	integrated	directly	into	applications	or	used	for	backup,	archiving	and
data	retention.	Swift	uses	a	distributed	architecture	with	no	central	point	of
control,	which	makes	it	highly	available,	distributed	and	eventually	a	consistent
object	storage	solution.	It	is	ideal	for	storing	unstructured	data	which	can	grow
without	bounds	and	can	be	retrieved	and	updated.

Data	is	written	to	multiple	nodes	that	extend	to	different	zones	for	ensuring	data
replication	and	integrity	across	the	cluster.	Clusters	can	scale	horizontally	by
adding	new	nodes.	In	case	of	node	failure,	the	data	is	replicated	to	other	active
nodes.

Swift	organizes	data	in	a	hierarchy.	It	accounts	for	the	stored	list	of	containers,
containers	for	storing	lists	of	objects	and	objects	for	storing	the	actual	data	with
metadata.

Swift	has	the	following	major	components	in	order	to	deliver	high	availability,
high	durability,	and	high	concurrency.	Swift	has	many	other	services	such	as
updaters,	auditors,	and	replicators	which	handle	housekeeping	tasks	to	deliver	a
consistent	object	storage	solution:

proxy-servers:	The	public	API	is	exposed	through	the	proxy	server.	It
handles	all	of	the	incoming	API	requests	and	routes	the	request	to
appropriate	services.
Rings:	Ring	maps	the	logical	names	of	data	to	locations	on	particular	disks.
There	are	separate	rings	for	different	resources	in	Swift.
Zones:	A	zone	isolates	data	from	other	zones.	If	a	failure	happens	in	one
zone,	the	cluster	is	not	impacted	as	the	data	is	replicated	across	zones.
Accounts:	An	account	is	a	database	that	stores	the	list	of	containers	in	an

see more please visit: https://homeofpdf.com

account.	It	is	distributed	across	the	cluster.
Containers:	A	container	is	a	database	that	stores	the	list	of	objects	in	a
container.	It	is	distributed	across	the	cluster.
Objects:	The	data	itself.
Partitions:	It	stores	objects,	account	databases	and	container	databases	and
helps	manage	locations	in	which	data	lives	in	the	cluster.

The	following	figure	shows	an	architecture	diagram	for	Swift:

see more please visit: https://homeofpdf.com

DevStack	installation
DevStack	is	a	set	of	extensible	scripts	used	to	quickly	bring	up	a	complete
development	OpenStack	environment.	DevStack	is	meant	for	only	development
and	testing	purposes.	Please	note	that	it	should	not	be	used	in	a	production
environment.	DevStack	installs	all	the	core	components	by	default	which	are
Nova,	Neutron,	Cinder,	Glance,	Keystone,	and	Horizon.

Devstack	is	able	to	run	on	Ubuntu	16.04/17.04,	Fedora	24/25,	and
CentOS/RHEL	7,	as	well	as	Debian	and	OpenSUSE.

In	this	section,	we	will	set	up	a	basic	OpenStack	environment	on	Ubuntu	16.04
and	try	out	some	commands	to	test	various	components	in	OpenStack.

1.	 Add	a	stack	user	using	the	following	method.	You	should	run	DevStack	as	a
non-root	user	with	sudo	enabled:

								$	sudo	useradd	-s	/bin/bash	-d	/opt/stack	-m	stack			

2.	 Now	add	the	sudo	privilege	to	the	user.

								$	echo	"stack	ALL=(ALL)	NOPASSWD:	ALL"	|	sudo	tee	

								/etc/sudoers.d/stack

								$	sudo	su	-	stack				

3.	 Download	DevStack.	DevStack	by	defaults	installs	the	master	version	of
the	project	from	Git.	You	can	specify	the	use	of	stable	branches	also:

								$	git	clone	https://git.openstack.org/openstack-dev/devstack	

								/opt/stack/devstack

								$	cd	/opt/stack/devstack		

4.	 Create	a	local.conf	file.	This	is	a	config	file	used	by	DevStack	for	installation.
Here	is	the	minimum	configuration	required	by	DevStack	to	get	started
(please	refer	to	https://docs.openstack.org/devstack/latest/	for	more	configurations):

								$	cat	>	local.conf	<<	END

								[[local|localrc]]

								DATABASE_PASSWORD=password

								RABBIT_PASSWORD=password

								SERVICE_TOKEN=password

								SERVICE_PASSWORD=password

see more please visit: https://homeofpdf.com

https://docs.openstack.org/devstack/latest/

								ADMIN_PASSWORD=password	

								enable_service	s-proxy

								enable_service	s-object

								enable_service	s-container

								enable_service	s-account								

								END		

5.	 Start	the	installation.	This	may	take	around	15	to	20	minutes	depending	on
your	internet	connectivity	and	your	host	capacity:

										$./stack.sh		

You	will	see	output	similar	to	the	following:

=========================

DevStack	Component	Timing

=========================

Total	runtime				3033

				

run_process							24

test_with_retry				3

apt-get-update				19

pip_install						709

osc														269

wait_for_service		25

git_timed								730

dbsync												20

apt-get										625

=========================

		

				

This	is	your	host	IP	address:	10.0.2.15

This	is	your	host	IPv6	address:	::1

Horizon	is	now	available	at	http://10.0.2.15/dashboard

Keystone	is	serving	at	http://10.0.2.15/identity/

The	default	users	are:	admin	and	demo

The	password:	password

				

WARNING:

Using	lib/neutron-legacy	is	deprecated,	and	it	will	be	removed	in	the	future

With	the	removal	of	screen	support,	tail_log	is	deprecated	and	will	be	removed	after	

Queens

				

			

Services	are	running	under	systemd	unit	files.

For	more	information	see:

https://docs.openstack.org/devstack/latest/systemd.html

			

DevStack	Version:	pike

Change:	0f75c57ad6b0011561777ae95b53612051149518	Merge	"doc:	How	to	remote-pdb	under	

systemd"	2017-09-08	02:24:21	+0000

OS	Version:	Ubuntu	16.04	xenial

				

2017-09-09	08:00:09.397	|	stack.sh	completed	in	3033	seconds.		

You	can	access	Horizon	to	experience	the	web	interface	with	OpenStack,	or	you
can	source	openrc	in	your	shell,	and	then	use	the	OpenStack	command-line	tool	to

see more please visit: https://homeofpdf.com

manage	vms,	networks,	volumes,	and	images	from	there.	Here's	how	you	do	it:

$	source	openrc	admin	admin		

see more please visit: https://homeofpdf.com

Creating	a	KeyStone	user
Now	let's	create	a	user	and	then	assign	it	an	admin	role.	These	actions	will	be
handled	by	KeyStone:

$	openstack	domain	list	

+---------+---------+---------+--------------------+	

|	ID						|	Name				|	Enabled	|	Description								|	

+---------+---------+---------+--------------------+	

|	default	|	Default	|	True				|	The	default	domain	|	

+---------+---------+---------+--------------------+	

	

$	openstack	user	create	--domain	default	--password-prompt	my-new-user	

User	Password:	

Repeat	User	Password:	

+---------------------+----------------------------------+	

|	Field															|	Value																												|	

+---------------------+----------------------------------+	

|	domain_id											|	default																										|	

|	enabled													|	True																													|	

|	id																		|	755bebd276f3451fa49f1194aee4dc20	|	

|	name																|	my-new-user																						|	

|	options													|	{}																															|	

|	password_expires_at	|	None																													|	

+---------------------+----------------------------------+	

see more please visit: https://homeofpdf.com

Assign	role	to	the	user
We	will	assign	an	admin	role	to	our	user	my-new-user:

$	openstack	role	add	--domain	default	--user	my-new-user	admin	

	

$	openstack	user	show	my-new-user	

+---------------------+----------------------------------+	

|	Field															|	Value																												|	

+---------------------+----------------------------------+	

|	domain_id											|	default																										|	

|	enabled													|	True																													|	

|	id																		|	755bebd276f3451fa49f1194aee4dc20	|	

|	name																|	my-new-user																						|	

|	options													|	{}																															|	

|	password_expires_at	|	None																													|	

+---------------------+----------------------------------+	

see more please visit: https://homeofpdf.com

Creating	a	VM	using	Nova
Let's	create	a	VM	using	Nova.	We	will	use	the	cirros	image	from	Glance,	and	the
network	from	Neutron.

The	available	list	of	images	in	Glance	are	created	by	DevStack:

$	openstack	image	list	

+--------------------------------------+--------------------------+--------+	

|	ID																																			|	Name																					|	Status	|	

+--------------------------------------+--------------------------+--------+	

|	f396a79e-7ccf-4354-8201-623e4a6ec115	|	cirros-0.3.5-x86_64-disk	|	active	|	

|	0bc135f6-ebb5-4e8c-a44a-8b96954dfd93	|	kubernetes/pause									|	active	|	

+--------------------------------------+--------------------------+--------+		

Also	check	the	network	list	in	Neutron	created	by	the	DevStack	installation:

$	openstack	network	list

+--------------------------------------+---------+------------------------------------

--+

|	ID																																			|	Name				|	Subnets																																																																				

|

+--------------------------------------+---------+------------------------------------

--+

|	765cab64-cfaf-49f7-8e51-194cb9f40b9e	|	public		|	af1dc81e-30f6-48b1-8e4f-

6c978fe863e8,	f430926e-5648-4f88-a4bd-d009bf316dda	|

|	a021cfcd-cf4b-41f2-b30a-033c12c542e4	|	private	|	254b646c-e518-4418-bcef-

08ea0a44f4bc,	93651473-3533-46a3-b77e-a2056d6f6ec5	|

+--------------------------------------+---------+------------------------------------

--+		

Nova	provides	a	flavor	that	specifies	the	VM	resources.	Here	is	the	list	of	flavors
created	by	DevStack	in	Nova:

$	openstack	flavor	list																																																																																								

+----+-----------+-------+------+-----------+-------+-----------+

|	ID	|	Name						|			RAM	|	Disk	|	Ephemeral	|	VCPUs	|	Is	Public	|

+----+-----------+-------+------+-----------+-------+-----------+

|	1		|	m1.tiny			|			512	|				1	|									0	|					1	|	True						|

|	2		|	m1.small		|		2048	|			20	|									0	|					1	|	True						|

|	3		|	m1.medium	|		4096	|			40	|									0	|					2	|	True						|

|	4		|	m1.large		|		8192	|			80	|									0	|					4	|	True						|

|	42	|	m1.nano			|				64	|				0	|									0	|					1	|	True						|

|	5		|	m1.xlarge	|	16384	|		160	|									0	|					8	|	True						|

|	84	|	m1.micro		|			128	|				0	|									0	|					1	|	True						|

|	c1	|	cirros256	|			256	|				0	|									0	|					1	|	True						|

|	d1	|	ds512M				|			512	|				5	|									0	|					1	|	True						|

|	d2	|	ds1G						|		1024	|			10	|									0	|					1	|	True						|

|	d3	|	ds2G						|		2048	|			10	|									0	|					2	|	True						|

|	d4	|	ds4G						|		4096	|			20	|									0	|					4	|	True						|

+----+-----------+-------+------+-----------+-------+-----------+		

see more please visit: https://homeofpdf.com

We	will	create	a	keypair	to	be	used	to	SSH	to	the	VM	created	in	Nova:

$	openstack	keypair	create	--public-key	~/.ssh/id_rsa.pub	mykey

+-------------+---+

|	Field							|	Value																																											|

+-------------+---+

|	fingerprint	|	98:0a:d5:70:30:34:16:06:79:3e:fc:33:14:b1:d9:b7	|

|	name								|	mykey																																											|

|	user_id					|	bbcd13444b1e4e4886eb8f36f4e80600																|

+-------------+---+		

Let's	create	a	VM	using	all	the	resources	we	listed	previously:

$	openstack	server	create	--flavor	m1.tiny	--image	f396a79e-7ccf-4354-8201-

623e4a6ec115			--nic	net-id=a021cfcd-cf4b-41f2-b30a-033c12c542e4		--key-name	mykey	

test-vm

+-------------------------------------+---

------------------+

|	Field																															|	Value																																																											

|

+-------------------------------------+---

------------------+

|	OS-DCF:diskConfig																			|	MANUAL																																																										

|

|	OS-EXT-AZ:availability_zone									|																																																																	

|

|	OS-EXT-SRV-ATTR:host																|	None																																																												

|

|	OS-EXT-SRV-ATTR:hypervisor_hostname	|	None																																																												

|

|	OS-EXT-SRV-ATTR:instance_name							|																																																																	

|

|	OS-EXT-STS:power_state														|	NOSTATE																																																									

|

|	OS-EXT-STS:task_state															|	scheduling																																																						

|

|	OS-EXT-STS:vm_state																	|	building																																																								

|

|	OS-SRV-USG:launched_at														|	None																																																												

|

|	OS-SRV-USG:terminated_at												|	None																																																												

|

|	accessIPv4																										|																																																																	

|

|	accessIPv6																										|																																																																	

|

|	addresses																											|																																																																	

|

|	adminPass																											|	dTTHcP3dByXR																																																				

|

|	config_drive																								|																																																																	

|

|	created																													|	2017-09-09T08:36:55Z																																												

|

|	flavor																														|	m1.tiny	(1)																																																					

|

|	hostId																														|																																																																	

|

|	id																																		|	6dc0c74c-7259-4730-929e-b0f3d39a2c45																												

|

|	image																															|	cirros-0.3.5-x86_64-disk	(f396a79e-7ccf-4354-

see more please visit: https://homeofpdf.com

8201-623e4a6ec115)	|

|	key_name																												|	mykey																																																											

|

|	name																																|	test-vm																																																									

|

|	progress																												|	0																																																															

|

|	project_id																										|	7994b2ef08de4a05a5db61fcbee29506																																

|

|	properties																										|																																																																	

|

|	security_groups																					|	name='default'																																																		

|

|	status																														|	BUILD																																																											

|

|	updated																													|	2017-09-09T08:36:55Z																																												

|

|	user_id																													|	bbcd13444b1e4e4886eb8f36f4e80600																																

|

|	volumes_attached																				|																																																																	

|

+-------------------------------------+---

------------------+				

		

Check	the	server	list	to	verify	whether	the	VM	was	launched	successfully	or	not:

$	openstack	server	list

+--------------------------------------+---------+--------+---------------------------

-----------------------------+--------------------------+---------+

|	ID																																			|	Name				|	Status	|	Networks																																															

|	Image																				|	Flavor		|

+--------------------------------------+---------+--------+---------------------------

-----------------------------+--------------------------+---------+

|	6dc0c74c-7259-4730-929e-b0f3d39a2c45	|	test-vm	|	ACTIVE	|	private=10.0.0.8,	

fd26:4d99:7734:0:f816:3eff:feaf:e37b	|	cirros-0.3.5-x86_64-disk	|	m1.tiny	|

+--------------------------------------+---------+--------+---------------------------

----------------------------+--------------------------+---------+		

see more please visit: https://homeofpdf.com

Attach	volume	to	VM
Now	that	our	VM	is	running,	let's	try	to	do	something	more	ambitious.	We	will
now	create	a	volume	in	Cinder	and	attach	it	to	our	running	VM:

$	openstack	availability	zone	list

+-----------+-------------+

|	Zone	Name	|	Zone	Status	|

+-----------+-------------+

|	internal		|	available			|

|	nova						|	available			|

|	nova						|	available			|

|	nova						|	available			|

|	nova						|	available			|

+-----------+-------------+

				

				

$	openstack	volume	create	--size	1	--availability-zone	nova	my-new-volume

+---------------------+--------------------------------------+

|	Field															|	Value																																|

+---------------------+--------------------------------------+

|	attachments									|	[]																																			|

|	availability_zone			|	nova																																	|

|	bootable												|	false																																|

|	consistencygroup_id	|	None																																	|

|	created_at										|	2017-09-09T08:41:33.020340											|

|	description									|	None																																	|

|	encrypted											|	False																																|

|	id																		|	889c1f21-7ca5-4913-aa80-44182cea824e	|

|	migration_status				|	None																																	|

|	multiattach									|	False																																|

|	name																|	my-new-volume																								|

|	properties										|																																						|

|	replication_status		|	None																																	|

|	size																|	1																																				|

|	snapshot_id									|	None																																	|

|	source_volid								|	None																																	|

|	status														|	creating																													|

|	type																|	lvmdriver-1																										|

|	updated_at										|	None																																	|

|	user_id													|	bbcd13444b1e4e4886eb8f36f4e80600					|

+---------------------+--------------------------------------+		

Let's	check	the	list	of	volumes	in	Cinder.	We	will	see	that	our	volume	is	created
and	is	in	an	available	state:

$	openstack	volume	list

+--------------------------------------+---------------+-----------+------+-----------

--+

|	ID																																			|	Name										|	Status				|	Size	|	Attached	

to	|

+--------------------------------------+---------------+-----------+------+-----------

--+

|	889c1f21-7ca5-4913-aa80-44182cea824e	|	my-new-volume	|	available	|				1	|													

see more please visit: https://homeofpdf.com

|

+--------------------------------------+---------------+-----------+------+-----------

--+		

Let's	attach	this	volume	to	our	VM:

$	openstack	server	add	volume	test-vm	889c1f21-7ca5-4913-aa80-44182cea824e

		

Verify	whether	the	volume	was	attached:

$	openstack	volume	list

+--------------------------------------+---------------+--------+------+--------------

--------------------+

|	ID																																			|	Name										|	Status	|	Size	|	Attached	to																						

|

+--------------------------------------+---------------+--------+------+--------------

--------------------+

|	889c1f21-7ca5-4913-aa80-44182cea824e	|	my-new-volume	|	in-use	|				1	|	Attached	to	

test-vm	on	/dev/vdb		|

+--------------------------------------+---------------+--------+------+--------------

--------------------+		

You	can	see	here	that	the	volume	is	attached	to	our	test-vm	vm.

see more please visit: https://homeofpdf.com

Uploading	an	image	to	Swift
We	will	try	to	upload	an	image	to	Swift.	First,	check	the	account	details:

$	openstack	object	store	account	show

+------------+---------------------------------------+

|	Field						|	Value																																	|

+------------+---------------------------------------+

|	Account				|	AUTH_8ef89519b0454b57a038b6f044fa0101	|

|	Bytes						|	0																																					|

|	Containers	|	0																																					|

|	Objects				|	0																																					|

+------------+---------------------------------------+		

We	will	create	an	images	container	to	store	all	our	images.	Similarly,	we	can
create	multiple	containers	inside	an	account	with	any	logical	name	to	store
different	types	of	data:

$	openstack	container	create	images

+---------------------------------------+-----------+---------------------------------

---+

|	account																															|	container	|	x-trans-id																									

|

+---------------------------------------+-----------+---------------------------------

---+

|	AUTH_8ef89519b0454b57a038b6f044fa0101	|	images				|	tx3f28728ccbbe4fcabfe1b-

0059b3af9b	|

+---------------------------------------+-----------+---------------------------------

---+

		

$	openstack	container	list

+--------+

|	Name			|

+--------+

|	images	|

+--------+		

Now	that	we	have	a	container,	let's	upload	an	image	to	the	container:

$	openstack	object	create	images	sunrise.jpeg

+--------------+-----------+----------------------------------+

|	object							|	container	|	etag																													|

+--------------+-----------+----------------------------------+

|	sunrise.jpeg	|	images				|	243f98a9d31d140bb123e56624703106	|

+--------------+-----------+----------------------------------+

				

$	openstack	object	list	images

+--------------+

|	Name									|

+--------------+

|	sunrise.jpeg	|

+--------------+

				

see more please visit: https://homeofpdf.com

$	openstack	container	show	images

+--------------+---------------------------------------+

|	Field								|	Value																																	|

+--------------+---------------------------------------+

|	account						|	AUTH_8ef89519b0454b57a038b6f044fa0101	|

|	bytes_used			|	2337288																															|

|	container				|	images																																|

|	object_count	|	1																																					|

+--------------+---------------------------------------+		

You	can	see	that	the	image	was	successfully	uploaded	to	the	Swift	object	store.

There	are	many	more	features	that	are	available	in	OpenStack,	which	you	can
read	about	in	the	user	guides	available	for	each	project.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	gave	you	a	basic	introduction	to	OpenStack	and	the
components	available	in	OpenStack.	We	discussed	the	components	and	the
architecture	of	individual	projects.	Then	we	completed	a	DevStack	installation	to
set	up	a	development	environment	for	running	OpenStack.	We	then	did	some
hands-on	provisioning	for	a	VM	using	Nova.	This	included	adding	a	KeyStone
user,	assigning	a	role	to	them	and	attaching	a	volume	to	the	VM	after	it	was
provisioned.	Also,	we	looked	at	how	we	can	use	Swift	to	upload	and	download
files.	In	the	next	chapter,	we	will	look	at	the	state	of	containerization	in
OpenStack.

see more please visit: https://homeofpdf.com

Containerization	in	OpenStack
This	chapter	starts	by	explaining	the	need	for	containers	in	OpenStack.	Then,	it
also	explains	the	different	processes	going	on	inside	OpenStack	to	support
containers.

Containers	are	a	pretty	hot	topic	today.	Users	want	to	run	their	production
workloads	on	containers	along	with	virtual	machines.	They	are	popular	for	the
following	reasons:

Containers	provide	immutable	infrastructure	models	using	the	concept	of
packaging
It's	easy	to	develop	and	run	microservices	using	containers
They	facilitate	quicker	development	and	testing	of	applications

The	Linux	kernel	has	supported	containers	for	several	years.	Microsoft	also
recently	started	to	support	containers	in	the	form	of	Windows	Server	containers
and	Hyper-V	containers.	As	containers	have	evolved	over	time,	so	has
OpenStack	support	for	containers.	OpenStack	provides	APIs	to	manage
containers	and	their	orchestration	engines	within	the	data	centers.

In	this	chapter,	we	will	discuss	how	OpenStack	and	containers	fit	together.	This
chapter	covers	the	following	topics:

The	need	for	containers	in	OpenStack
Efforts	within	the	OpenStack	community	to	support	containers

see more please visit: https://homeofpdf.com

The	need	for	containers	in	OpenStack
OpenStack	is	used	by	a	large	number	of	organizations.	Cloud	infrastructure
vendors	have	called	OpenStack	an	open	source	alternative	to	Amazon	Web
Services	for	organizations	aiming	to	maintain	a	private	cloud	but	with	public
cloud	scalability	and	agility.	OpenStack	is	popular	for	Linux-based
Infrastructure	as	a	Service	(IaaS)	offerings.	As	containers	are	gaining
popularity,	it's	become	necessary	for	OpenStack	to	provide	various	infrastructure
resources	such	as	computing,	networking,	and	storage	to	containers.	Rather	than
creating	new	vertical	silos	to	manage	containers	in	their	data	centers,	developers
and	operators	can	find	value	in	providing	a	cross	plate-form	API	to	manage
virtual	machines,	containers,	and	bare	metals.

see more please visit: https://homeofpdf.com

Efforts	within	the	OpenStack
community	to	support	containers
OpenStack	provides	the	following:

Compute	resources
Multi-tenant	security	and	isolation
Management	and	monitoring
Storage	and	networking

The	preceding	mentioned	services	are	needed	for	any	cloud/data	center
management	tool	regardless	of	which	containers,	virtual	machines,	or	bare	metal
servers	are	being	used.	Containers	complement	existing	technology	and	bring	a
new	set	of	benefits.	OpenStack	provides	the	support	to	run	containers	on	bare
metal	or	virtual	machines.

In	OpenStack,	the	following	projects	have	taken	initiative	or	provided	support
for	containers	and	related	technologies.

see more please visit: https://homeofpdf.com

Nova
Nova	is	a	compute	service	for	OpenStack.	Nova	provides	APIs	to	manage
virtual	machines.	Nova	supports	the	provisioning	of	machine	containers	using
two	libraries,	that	is,	LXC	and	OpenVZ	(Virtuozzo).	These	container	related
libraries	are	supported	by	libvirt,	which	Nova	uses	to	manage	virtual	machines.

see more please visit: https://homeofpdf.com

Heat
Heat	is	an	orchestration	service	for	OpenStack.	Heat	has	supported	the
orchestration	of	Docker	containers	since	the	Icehouse	release	of	OpenStack.
Users	need	to	enable	plugins	for	Docker	orchestration	in	Heat	to	use	this	feature.

see more please visit: https://homeofpdf.com

Magnum
Magnum	is	a	container	infrastructure	management	service	for	OpenStack.
Magnum	provides	APIs	to	deploy	Kubernetes,	Swarm,	and	Mesos	clusters	on
OpenStack	infrastructure.	Magnum	uses	Heat	templates	to	deploy	these	clusters
on	OpenStack.	Users	can	use	these	clusters	to	run	their	containerized
applications.

see more please visit: https://homeofpdf.com

Zun
Zun	is	a	container	management	service	for	OpenStack.	Zun	provides	APIs	to
manage	the	life	cycle	of	containers	in	OpenStack's	cloud.	Currently,	Zun
provides	the	support	to	run	containers	on	bare	metals,	but	in	the	future,	it	may
provide	the	support	to	run	containers	on	virtual	machines	created	by	Nova.	Zun
uses	Kuryr	to	provide	neutron	networking	to	containers.	Zun	uses	Cinder	for
providing	persistent	storage	to	containers.

see more please visit: https://homeofpdf.com

Kuryr
Kuryr	is	a	Docker	network	plugin	that	provides	networking	services	to	Docker
containers	using	Neutron.

see more please visit: https://homeofpdf.com

Kolla
Kolla	is	a	project	to	which	it	deploys	OpenStack	Controller	plane	services
within	Docker	containers.	Kolla	simplifies	deployment	and	operations	by
packaging	each	controller	service	as	a	micro-service	inside	a	Docker	container.

see more please visit: https://homeofpdf.com

Murano
Murano	is	an	OpenStack	project	which	provides	an	application	catalog	for	app
developers	and	cloud	administrators	to	publish	cloud-ready	applications	in	a
repository	available	within	OpenStack	Dashboard	(Horizon)	which	can	be	run
inside	Docker	or	Kubernetes.	It	provides	developers	and	operators	with	the
ability	to	control	the	full	life	cycle	of	applications.

see more please visit: https://homeofpdf.com

Fuxi
Fuxi	is	storage	plugin	for	Docker	containers	that	enables	containers	to	use
Cinder	volume	and	Manila	share	as	persistent	storage	inside	them.

see more please visit: https://homeofpdf.com

OpenStack-Helm
The	OpenStack-Helm	is	another	OpenStack	project	that	provides	a	framework
for	operators	and	developers	to	deploy	OpenStack	on	top	of	Kubernetes.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	learned	why	OpenStack	should	support	containers.	We	also
looked	at	the	efforts	which	are	going	on	in	the	OpenStack	community	to	support
containers.

In	the	next	chapter,	we	will	learn	about	Magnum	(a	container	infrastructure
management	service	in	OpenStack)	in	detail.	We	will	be	also	doing	some	hands-
on	exercises	with	COE	management	using	Magnum	in	OpenStack.

see more please visit: https://homeofpdf.com

Magnum	–	COE	Management	in
OpenStack
This	chapter	will	explain	the	OpenStack	project	for	managing	the	Container
Orchestration	Engine	(COE),	Magnum.	Magnum	is	the	OpenStack	project	for
managing	infrastructure	and	for	running	containers	on	top	of	OpenStack,	backed
by	different	technologies.	In	this	chapter,	we	will	cover	the	following	topics:

Magnum	introduction
Concepts
Key	features
Components
Walk-through
Magnum	DevStack	installation
Managing	COEs

see more please visit: https://homeofpdf.com

Magnum	introduction
Magnum	is	an	OpenStack	service	that	was	created	in	2014	by	the	OpenStack
containers	team	to	enable	a	Container	Orchestration	Engine	(COE)	offering
the	ability	to	deploy	and	manage	containers	as	first-class	resources	in
OpenStack.

Currently,	Magnum	supports	Kubernetes,	Apache	Mesos,	and	Docker	Swarm
COEs.	Magnum	uses	Heat	to	do	the	orchestration	of	these	COEs	on	VMs	or	bare
metals	provisioned	by	OpenStack.	It	uses	OS	images	that	contain	the	required
tools	to	run	containers.	Magnum	offers	KeyStone	compatible	APIs	and	a
complete	multi-tenant	solution	for	managing	your	COEs	on	top	of	an	OpenStack
cluster.

A	Magnum	cluster	is	a	set	of	various	resources	provided	by	different	OpenStack
services.	It	consists	of	a	group	of	VMs	provisioned	by	Nova,	networks
connecting	these	VMs	created	by	Neutron,	volumes	attached	to	VMs	created	by
Cinder,	and	so	on.	A	Magnum	cluster	can	also	have	some	external	resources
depending	on	the	options	provided	while	creating	a	cluster.	For	example,	we	can
create	an	external	load	balancer	for	our	cluster	by	specifying	the	-master-lb-enabled
option	in	the	cluster	template.

Some	of	the	salient	features	of	Magnum	are:

Provides	a	standard	API	for	complete	life	cycle	management	of	COEs
Supports	multiple	COEs	such	as	Kubernetes,	Swarm,	Mesos,	and	DC/OS
Supports	the	ability	to	scale	a	cluster	up	or	down
Supports	multi-tenancy	for	container	clusters
Different	choices	of	container	cluster	deployment	models:	VM	or	bare-
metal
Provides	KeyStone-based	multi-tenant	security	and	auth	management
Neutron	based	multi-tenant	network	control	and	isolation
Supports	Cinder	to	provide	volume	for	containers
Integrated	with	OpenStack
Secure	container	cluster	access	(Transport	Layer	Security	(TLS))	enabled

see more please visit: https://homeofpdf.com

Support	for	external	infrastructure	can	also	be	used	by	the	cluster,	such	as
DNS,	public	network,	public	discovery	service,	Docker	registry,	load
balancer,	and	so	on
Barbican	provides	the	storage	of	secrets	such	as	certificates	used	for	TLS
within	the	cluster
Kuryr-based	networking	for	container-level	isolation

see more please visit: https://homeofpdf.com

Concepts
Magnum	has	several	different	types	of	objects	that	form	the	Magnum	system.	In
this	section,	we	will	learn	about	each	of	them	in	detail	and	also	learn	what	they
are	used	for	in	Magnum.	Two	important	objects	are	the	cluster	and	the	cluster
template.	Here	is	a	list	of	Magnum	objects:

see more please visit: https://homeofpdf.com

Cluster	template
This	was	previously	known	as	Baymodel.	Cluster	template	is	equivalent	to	a
Nova	flavor.	An	object	stores	template	information	about	the	cluster	such	as	a
keypair,	image,	and	so	on,	and	this	is	used	to	create	new	clusters	consistently.
Some	parameters	are	relevant	to	the	infrastructure	of	the	cluster,	while	others	are
for	the	particular	COE.	Multiple	cluster	templates	can	exist	for	different	COEs.

A	cluster	template	cannot	be	updated	or	deleted	if	is	used	by	any
cluster.

see more please visit: https://homeofpdf.com

Cluster
This	was	previously	known	as	Bay.	It	is	a	collection	of	node	objects	where	work
is	scheduled.	This	node	can	be	a	VM	or	bare	metal.	Magnum	deploys	a	cluster
according	to	the	attributes	defined	in	the	particular	cluster	template	as	well	as	a
few	additional	parameters	for	the	cluster.	Magnum	deploys	the	orchestration
templates	provided	by	the	cluster	driver	to	create	and	configure	all	of	the
necessary	infrastructure	where	the	COE	runs.	After	a	cluster	is	created,	users	can
use	the	native	CLIs	of	each	COE	to	run	their	application	on	top	of	OpenStack.

see more please visit: https://homeofpdf.com

Cluster	driver
Cluster	driver	contains	all	of	the	necessary	files	that	are	needed	for	setting	up	a
cluster.	It	contains	a	heat	template	defining	the	resources	to	be	created	for	any
cluster,	scripts	to	install	and	configure	services	on	the	cluster,	the	version
information	of	the	driver,	and	the	template	definition.

see more please visit: https://homeofpdf.com

Heat	Stack	Template
The	Heat	Stack	Template	(HOT)	is	a	template	that	defines	the	resources	which
will	form	a	COE	cluster.	Every	COE	type	has	a	different	template	depending	on
the	steps	of	its	installation.	This	template	is	passed	to	Heat	by	Magnum	to	set	up
a	full	COE	cluster.

see more please visit: https://homeofpdf.com

Template	definition
Template	definition	represents	the	mapping	between	Magnum	attributes	and
Heat	template	attributes.	It	also	has	outputs	that	are	consumed	by	Magnum.	It
indicates	which	cluster	type	it	will	use	for	a	given	cluster.

see more please visit: https://homeofpdf.com

Certificate
Certificate	is	an	object	that	represents	the	CA	certificate	for	a	cluster	in
Magnum.	Magnum	generates	both	server	and	client	certificates	while	creating	a
cluster	to	provide	a	secure	communication	between	Magnum	services	and	COE
services.	The	CA	certificate	and	key	are	stored	in	Magnum	for	use	by	a	user	to
access	the	cluster	securely.	Users	need	to	generate	a	client	certificate,	a	client
key,	and	a	Certificate	Signing	Request	(CSR),	and	then	send	a	request	to
Magnum	to	get	it	signed	and	also	download	the	signing	cert	for	accessing	the
cluster.

see more please visit: https://homeofpdf.com

Service
Service	is	an	object	that	stores	the	information	about	the	magnum-conductor	binary.
This	object	contains	information	such	as	the	host	where	the	service	is	running,	if
the	service	is	disabled	or	not,	the	last	seen	details,	and	so	on.	This	information
can	be	used	by	admins	to	see	the	status	of	the	magnum-conductor	services.

see more please visit: https://homeofpdf.com

Stats
Magnum	also	manages	the	statistics	of	each	project	usage.	This	information	is
helpful	for	administration	purposes.	Stats	objects	contain	some	metrics	about	the
current	usage	of	any	admin	or	user	for	a	tenant	or	even	for	all	active	tenants.
They	provide	information,	such	as	the	total	number	of	clusters,	nodes,	and	so	on.

see more please visit: https://homeofpdf.com

Quotas
Quotas	is	an	object	that	stores	the	resource	quota	of	any	given	project.	Imposing
quotas	on	resources	puts	a	limitation	on	a	number	of	resources	that	can	be
consumed,	which	helps	to	guarantee	fairness	or	the	fair	distribution	of	resources
at	creation	time.	If	a	particular	project	needs	more	resources,	the	concept	of
quota	provides	the	ability	to	increase	the	resource	count	on-demand,	given	that
the	system	constraints	are	not	exceeded.	Quotas	are	tied	closely	to	physical
resources	and	are	billable	entities.

see more please visit: https://homeofpdf.com

Key	features
We	have	learned	that	Magnum	provides	various	features	in	addition	to	the
management	of	COE	infrastructure	in	the	previous	section.	In	the	following
sections,	we	will	talk	about	some	of	the	advanced	features	present	in	Magnum.

see more please visit: https://homeofpdf.com

External	load	balancer	for
Kubernetes
Magnum	uses	Flannel	by	default	to	provide	networking	for	the	resources	in
Kuberenetes.	The	pods	and	services	can	access	each	other	and	the	external
internet	using	this	private	container	networking.	However,	these	resources	can't
be	accessed	from	an	external	network.	To	allow	access	from	the	external
network,	Magnum	provides	the	support	for	setting	up	an	external	load	balancer
for	a	Kubernetes	cluster.

Please	refer	to	https://docs.openstack.org/magnum/latest/user/#steps-for-the-cluster-
administrator	to	set	up	a	Kubernetes	load	balancer	using	Magnum.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/magnum/latest/user/#steps-for-the-cluster-administrator

Transport	Layer	Security
Magnum	allows	us	to	set	up	secure	communication	between	a	cluster's	services
and	the	outside	world	using	TLS.	The	TLS	communication	in	Magnum	is
employed	at	three	layers:

Communication	between	Magnum	services	and	the	cluster	API	endpoint.
Communication	between	the	cluster	worker	nodes	and	the	master	nodes.
Communication	between	the	end	user	and	the	cluster.	End	users	use	the
native	client	libraries	to	interact	with	the	cluster	and	with	the	certificates	to
communicate	over	a	secure	network.	This	applies	to	both	a	CLI	and	a
program	that	uses	a	client	for	the	particular	cluster.	Each	client	needs	a
valid	certificate	to	authenticate	and	communicate	with	a	cluster.

The	first	two	cases	are	implemented	internally	by	Magnum,	and	it	creates,
stores,	and	configures	services	to	use	the	certificate	for	communication	and	are
not	exposed	to	the	users.	The	last	case	involves	the	users	creating	a	certificate,
signing	it,	and	then	using	it	to	access	the	cluster.

Magnum	uses	Barbican	to	store	the	certificates.	This	provides	another	level	of
security	with	the	storage	of	a	certificate.	Magnum	also	supports	other	ways	of
storing	certificates,	such	as	storing	them	in	a	local	filesystem	of	the	conductor
node	or	in	the	Magnum	database.

Please	refer	to	https://docs.openstack.org/magnum/latest/user/#interfacing-with-a-secure-cluster	for
more	details	on	how	to	configure	clients	to	access	the	secure	cluster.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/magnum/latest/user/#interfacing-with-a-secure-cluster

Scaling
Scaling	is	yet	another	powerful	feature	of	Magnum.	Magnum	supports	the
scaling	of	the	cluster,	whereas	the	scaling	of	containers	is	outside	of	Magnum's
scope.	Scaling	a	cluster	can	help	users	to	either	add	or	remove	nodes	from	the
cluster.	While	scaling	up,	Magnum	creates	a	VM	or	bare	metal,	deploys	the	COE
services	on	it,	and	then	register	it	to	the	cluster.	When	scaling	down,	Magnum
tries	to	remove	the	node	with	the	least	workload.

See	the	Managing	COEs	section	to	learn	how	to	scale	a	cluster.

see more please visit: https://homeofpdf.com

Storage
Magnum	supports	Cinder	to	provide	block	storage	to	the	containers,	which	can
either	be	persistent	or	ephemeral	storage.

see more please visit: https://homeofpdf.com

Ephemeral	storage
All	of	the	changes	to	a	container's	filesystem	can	be	either	stored	in	a	local
filesystem	or	in	Cinder	volume.	This	is	the	ephemeral	storage	which	gets	deleted
after	the	container	exits.	Magnum	provides	additional	Cinder	volume	to	be	used
as	ephemeral	storage	with	containers.	Users	can	specify	the	volume	size	in	the
cluster	template	using	the	docker-volume-size	attribute.	Also,	users	can	select	a
different	volume	type,	such	as	a	device	mapper,	and	overlay	this	with	the
docker_volume_type	attribute.

see more please visit: https://homeofpdf.com

Persistent	storage
There	can	be	a	need	to	persist	the	container's	data	when	it	exits.	A	container	can
be	mounted	with	Cinder	volume	for	this	purpose.	When	a	container	exits,	the
volume	is	unmounted,	thus	persisting	the	data.

There	are	a	number	of	third-party	volume	drivers	that	support	Cinder	as	the
backend,	such	as	Rexray	and	Flocker.	Magnum	currently	supports	Rexray	as	the
volume	driver	for	Swarm,	and	Mesos	and	Cinder	for	Kubernetes.

see more please visit: https://homeofpdf.com

Notifications
Magnum	generates	notification	about	usage	data.	This	data	is	useful	for	third-
party	applications	for	the	purpose	of	billing,	quota	management,	monitoring,	and
so	on.	To	provide	a	standard	format	for	the	notification,	Magnum	uses	the	Cloud
Auditing	Data	Federation	(CADF)	format.

see more please visit: https://homeofpdf.com

Container	monitoring
Magnum	also	supports	the	monitoring	of	containers.	It	collects	metrics	such	as
the	container	CPU	load,	the	number	of	available	Inodes,	the	cumulative	count	of
bytes	received,	memory,	CPU	statistics	of	the	node,	and	so	on.	The	offered
monitoring	stack	relies	on	the	following	set	of	containers	and	services	present	in
the	COE	environment:

cAdvisor
Node	exporter
Prometheus
Grafana

Users	can	set	up	this	monitoring	stack	by	specifying	the	given	two	configurable
labels	in	the	Magnum	cluster	template's	definition	that	are	prometheus_monitoring
when	set	to	True,	the	monitoring	will	be	enabled	and	grafana_admin_password	which
the	admin	password.

see more please visit: https://homeofpdf.com

Components
The	diagram	in	the	Magnum	Conductor	section	shows	the	architecture	of
Magnum,	which	has	two	binaries	named	magnum-api	and	magnum-conductor	that	form
the	Magnum	system.	Magnum	interacts	with	Heat	to	do	the	orchestration.	This
means	Heat	is	the	OpenStack	component	that	talks	to	various	other	projects	such
as	Nova,	Neutron,	and	Cinder	to	set	up	the	infrastructure	for	COE,	and	then	it
installs	the	COE	on	top	of	it.	We	will	now	learn	about	the	detailed	functions	of
the	services.

see more please visit: https://homeofpdf.com

Magnum	API
Magnum	API	is	a	WSGI	server	that	serves	the	API	requests	that	the	user	sends
to	Magnum.	The	Magnum	API	has	many	controllers	to	handle	a	request	for	each
of	the	resources:

Baymodel
Bay
Certificate
Cluster
Cluster	template
Magnum	services
Quota
Stats

Baymodel	and	Bay	will	be	replaced	by	cluster	and	cluster	templates	respectively.
Each	of	the	controllers	handle	a	request	for	specific	resources.	They	validate	the
request	for	permissions,	validate	the	OpenStack	resources	(such	as	validating	if
an	image	passed	in	the	cluster	template	exists	in	Glance	or	not),	create	DB
objects	for	the	resource	with	the	input	data,	and	passes	the	request	to	magnum-
conductor	via	the	AMQP	server.	The	call	to	magnum-conductor	can	be	synchronous	or
asynchronous	depending	on	the	processing	time	taken	by	each	of	the	operations.

For	example,	the	list	calls	can	be	synchronous	as	they	are	not	time-consuming,
whereas	the	create	requests	can	be	asynchronous.	Upon	receiving	a	response
from	the	conductor	service,	the	magnum-api	service	returns	the	response	to	the	user.

see more please visit: https://homeofpdf.com

Magnum	conductor
Magnum	conductor	is	an	RPC	server	that	provides	coordination	and	database
query	support	for	Magnum.	It	is	stateless	and	horizontally	scalable,	meaning
multiple	instances	of	the	conductor	service	can	run	at	the	same	time.	The	magnum-
conductor	service	selects	the	cluster	driver	and	then	sends	the	template	files	to	the
Heat	service	to	do	the	installation,	and	finally	updates	the	database	with	the
object	details.

Here	is	an	architecture	diagram	for	Magnum,	which	shows	the	different
components	in	Magnum,	what	other	OpenStack	projects	they	communicate	to,
and	the	infrastructure	provisioned	for	running	any	COE:

see more please visit: https://homeofpdf.com

Walk-through
In	this	section,	we	will	walk	you	through	the	process	of	a	COE	cluster	being
created	by	Magnum.	This	section	deals	with	the	request	flow	and	the	component
interaction	of	various	projects	in	OpenStack.	Provisioning	a	cluster	in	Magnum
involves	interaction	between	multiple	components	inside	OpenStack.

The	request	flow	for	provisioning	a	cluster	in	Magnum	goes	like	this:

1.	 The	user	sends	a	REST	API	call	to	magnum-api	for	creating	a	cluster	via	a	CLI
or	Horizon,	with	the	authentication	token	received	from	KeyStone.

2.	 magnum-api	receives	the	request	and	sends	the	request	for	the	validation	of
token	and	access	permission	to	KeyStone.

3.	 KeyStone	validates	the	token	and	sends	the	updated	authentications	headers
with	roles	and	permissions.

4.	 magnum-api	then	validates	the	quota	for	the	request.	If	the	quota	exceeds	the
hard	limit,	an	exception	is	raised	complaining	that	the	resource	limit	has
exceeded	and	the	request	exists	with	403	HTTP	status.

5.	 Then	the	validation	of	all	OpenStack	resources	specified	in	the	cluster
template	is	done.	For	example,	magnum-api	talks	to	nova-api	to	check	if	the
specified	keypair	exists	or	not.	If	the	validation	fails,	the	requests	exists
with	400	HTTP	status.

6.	 magnum-api	generates	a	name	for	the	cluster	if	the	name	is	not	specified	in	the
request.

7.	 magnum-api	then	creates	a	database	object	for	the	cluster.
8.	 magnum-api	sends	the	RPC	asynchronous	call	request	to	magnum-conductor	to

process	the	request	further.
9.	 magnum-conductor	picks	the	request	from	the	message	queue.
10.	 magnum-conductor	sets	the	status	of	the	cluster	to	CREATE_IN_PROGRESS	and	stores	the

entry	in	the	database.
11.	 magnum-conductor	creates	the	trustee,	trust,	and	certificate	for	the	cluster	and

sets	them	to	cluster	for	later	use.
12.	 Based	on	the	cluster	distribution,	COE	type,	and	server	type	provided	in	the

cluster	template,	magnum-conductor	selects	a	driver	for	the	cluster.
13.	 magnum-conductor	then	extracts	the	template	files,	template,	environment	files,

see more please visit: https://homeofpdf.com

and	heat	parameters	from	the	cluster	driver	and	then	sends	the	request	to
Heat	to	create	the	stack.

14.	 Heat	then	talks	to	multiple	OpenStack	services	such	as	Nova,	Neutron,	and
Cinder	to	set	up	the	cluster	and	install	the	COE	on	top	of	it.

15.	 After	the	stack	is	created	in	Heat,	the	stack	ID	and	cluster	status	is	set	to
CREATE_COMPLETE	in	the	Magnum	database.

There	are	periodic	tasks	in	Magnum	which	sync	the	cluster	status
in	the	Magnum	database	at	a	specific	time	interval.

see more please visit: https://homeofpdf.com

Magnum	DevStack	installation
To	install	Magnum	with	DevStack	for	development	purposes,	follow	these	steps:

1.	 Create	a	root	directory	for	DevStack	if	needed:

								$	sudo	mkdir	-p	/opt/stack

								$	sudo	chown	$USER	/opt/stack

								Clone	DevStack	repo:

								$	git	clone	https://git.openstack.org/openstack-dev/devstack

								/opt/stack/devstack		

2.	 We	will	run	DevStack	with	minimal	local.conf	settings	required	to	enable
Magnum,	Heat,	and	Neutron:

				$	cat	>	/opt/stack/devstack/local.conf	<<	END

				[[local|localrc]]

				DATABASE_PASSWORD=password

				RABBIT_PASSWORD=password

				SERVICE_TOKEN=password

				SERVICE_PASSWORD=password

				ADMIN_PASSWORD=password

				#	magnum	requires	the	following	to	be	set	correctly

				PUBLIC_INTERFACE=eth1

				

				#	Enable	barbican	service	and	use	it	to	store	TLS	certificates

				enable_plugin	barbican	

				https://git.openstack.org/openstack/barbican

				

				enable_plugin	heat	

				https://git.openstack.org/openstack/heat

				

				#	Enable	magnum	plugin	after	dependent	plugins

				enable_plugin	magnum	

				https://git.openstack.org/openstack/magnum

				

				#	Optional:		uncomment	to	enable	the	Magnum	UI	plugin	in	

				Horizon

				#enable_plugin	magnum-ui	

				https://github.com/openstack/magnum-ui

				

				VOLUME_BACKING_FILE_SIZE=20G

				END

		

Please	note	that	we	have	to	use	Barbican	here	for	storing	the	TLS
certificate	generated	by	Magnum.	For	details,	see	the	Transport
Layer	Security	section	under	the	Key	Features	section.

Also,	make	sure	to	use	the	appropriate	interface	for	setup	in

see more please visit: https://homeofpdf.com

local.conf.

3.	 Now,	run	DevStack:

								$	cd	/opt/stack/devstack

								$./stack.sh		

4.	 You	will	have	a	Magnum	setup	running.	To	verify	the	installation,	check	the
list	of	Magnum	services	running:

$	magnum	service-list

+----+----------+------------------+-------+----------+-----------------+------

-+---------------------------+

|	id	|	host					|	binary											|	state	|	disabled	|	disabled_reason	|	

created_at													

|	updated_at																|

+----+----------+------------------+-------+----------+-----------------+------

-+---------------------------+

|	1		|	devstack	|	magnum-conductor	|	up				|	False				|	-															|	2017-

09

19T11:14:12+00:00	|	2017-09-19T14:06:41+00:00	|

+----+----------+------------------+-------+----------+-----------------+------

-+---------------------------+		

see more please visit: https://homeofpdf.com

Managing	COEs
Magnum	provides	seamless	management	for	the	life	cycle	of	the	cluster	in
OpenStack.	The	current	operations	are	the	basic	CRUD	operations,	with	some
advance	features	such	as	the	scaling	of	the	cluster,	setting	up	external	load
balancers,	setting	up	a	secure	cluster	with	TLS,	and	so	on.	In	this	section,	we
will	create	a	Swarm	Cluster	Template,	use	this	template	to	create	a	Swarm
cluster,	and	then,	we	will	run	some	workloads	on	the	cluster	to	verify	our	cluster
status.

First,	we	will	prepare	our	session	to	be	able	to	use	the	various	OpenStack	clients
including	Magnum,	Neutron,	and	Glance.	Create	a	new	shell	and	source	the
DevStack	openrc	script:

$	source	/opt/stack/devstack/openrc	admin	admin		

Create	a	keypair	to	use	with	the	cluster	template.	This	keypair	will	be	used	to	ssh
to	the	cluster	nodes:

$	openstack	keypair	create	--public-key	~/.ssh/id_rsa.pub	testkey

+-------------+---+

|	Field							|	Value																																											|

+-------------+---+

|	fingerprint	|	d2:8d:c8:d2:2a:82:fc:aa:98:17:5f:9b:22:08:8a:f7	|

|	name								|	testkey																																									|

|	user_id					|	4360ea27027a4d9d97e749bba9698915																|

+-------------+---+		

DevStack	creates	a	Fedora	Atomic	micro-OS	image	in	Glance	for	Magnum's
use.	Users	can	also	create	additional	images	in	Glance	for	use	in	their	cluster.
Verify	the	image	created	in	Glance:

$	openstack	image	list

+--------------------------------------+------------------------------------+--------+

|	ID																																			|	Name																															|	Status	|

+--------------------------------------+------------------------------------+--------+

|	482bd0b4-883d-4fc5-bf26-a88a98ceddd1	|	Fedora-Atomic-26-20170723.0.x86_64	|	active	|

|	6862d910-a320-499e-a19f-1dbcdc79455f	|	cirros-0.3.5-x86_64-disk											|	active	|

+--------------------------------------+------------------------------------+--------+

Now,	create	a	Magnum	cluster	template	with	the	swarm	COE	type.	This	is
similar	in	nature	to	a	Nova	flavor	and	tells	Magnum	how	to	construct	the	cluster.
The	cluster	template	specifies	all	of	the	resources	to	be	used	in	our	cluster,	such

see more please visit: https://homeofpdf.com

as	a	Fedora	Atomic	image,	a	Nova	keypair,	a	network,	and	so	on:

$	magnum	cluster-template-create	swarm-template	--image	Fedora-Atomic-26-

20170723.0.x86_64	--keypair	testkey	--external-network	public	--flavor	m1.small	--

docker-volume-size	5		--dns-nameserver	8.8.8.8	--coe	swarm

+-----------------------+--------------------------------------+

|	Property														|	Value																																|

+-----------------------+--------------------------------------+

|	insecure_registry					|	-																																				|

|	labels																|	{}																																			|

|	updated_at												|	-																																				|

|	floating_ip_enabled			|	True																																	|

|	fixed_subnet										|	-																																				|

|	master_flavor_id						|	-																																				|		

|	uuid																		|	0963601a-50aa-4361-9f6f-5f64f0826da8	|

|	no_proxy														|	-																																				|

|	https_proxy											|	-																																				|

|	tls_disabled										|	False																																|

|	keypair_id												|	testkey																														|

|	public																|	False																																|

|	http_proxy												|	-																																				|

|	docker_volume_size				|	5																																				|

|	server_type											|	vm																																			|

|	external_network_id			|	public																															|

|	cluster_distro								|	fedora-atomic																								|

|	image_id														|	Fedora-Atomic-26-20170723.0.x86_64			|

|	volume_driver									|	-																																				|

|	registry_enabled						|	False																																|

|	docker_storage_driver	|	devicemapper																									|

|	apiserver_port								|	-																																				|

|	name																		|	swarm-template																							|

|	created_at												|	2017-09-19T13:06:28+00:00												|

|	network_driver								|	docker																															|

|	fixed_network									|	-																																				|

|	coe																			|	swarm																																|

|	flavor_id													|	m1.small																													|

|	master_lb_enabled					|	False																																|

|	dns_nameserver								|	8.8.8.8																														|

+-----------------------+--------------------------------------+		

Verify	the	cluster	template	creation	by	using	the	following	command:

$	magnum	cluster-template-list

+--------------------------------------+----------------+

|	uuid																																	|	name											|

+--------------------------------------+----------------+

|	0963601a-50aa-4361-9f6f-5f64f0826da8	|	swarm-template	|

+--------------------------------------+----------------+		

Create	a	cluster	using	the	preceding	template.	This	cluster	will	result	in	a	group
of	VMs	to	be	created	with	Docker	Swarm	installed	on	them:

$	magnum	cluster-create	swarm	--cluster-template	swarm-template	--node-count	1

Request	to	create	cluster	f42f5dfc-a2d0-4f89-9af1-566c666727c3	has	been	accepted.		

Clusters	will	have	an	initial	status	of	CREATE_IN_PROGRESS.	Magnum	will	update	the
status	to	CREATE_COMPLETE	when	it	is	done	creating	the	cluster.

see more please visit: https://homeofpdf.com

Heat	can	be	used	to	see	detailed	information	on	the	status	of	a	stack	or	specific
cluster.

To	check	the	list	of	all	cluster	stacks,	use	the	following:

$	openstack	stack	list

+--------------------------------------+--------------------+-------------------------

---------+-------------------+----------------------+--------------+

|	ID																																			|	Stack	Name									|	Project																										

|	Stack	Status							|	Creation	Time								|	Updated	Time	|

+--------------------------------------+--------------------+-------------------------

---------+--------------------+----------------------+--------------+

|	9d39e877-32ff-4904-a349-727274caee68	|	swarm-5g5ilw3lak6p	|	

8c4a19b957904085992dd800621459b6	|	CREATE_IN_PROGRESS	|	2017-09-19T13:07:52Z	|	None									

|

+--------------------------------------+--------------------+-------------------------

---------+--------------------+----------------------+--------------+		

To	see	the	details	of	cluster,	do	the	following:

$	magnum	cluster-show	swarm

+---------------------+---

--

--

--

---+

|	Property												|	Value																																																																																																																																																																																																																																																																																																																																																																																																

|

+---------------------+---

--

--

--

---+

|	labels														|	{}																																																																																																																																																																																																																																																																																																																																																																																																			

|

|	updated_at										|	2017-09-19T13:16:41+00:00																																																																																																																																																																																																																																																																																																																																																																												

|

|	keypair													|	testkey																																																																																																																																																																																																																																																																																																																																																																																														

|

|	node_count										|	1																																																																																																																																																																																																																																																																																																																																																																																																				

|

|	uuid																|	f42f5dfc-a2d0-4f89-9af1-566c666727c3																																																																																																																																																																																																																																																																																																																																																																	

|

|	api_address									|	https://172.24.4.4:6443

|

|	master_addresses				|	['172.24.4.2']																																																																																																																																																																																																																																																																																																																																																																																							

|

|	create_timeout						|	60																																																																																																																																																																																																																																																																																																																																																																																																			

|

|	status														|	CREATE_COMPLETE																																																																																																																																																																																																																																																																																																																																																																																								

|

|	docker_volume_size		|	5																																																																																																																																																																																																																																																																																																																																																																																																				

|

|	master_count								|	1																																																																																																																																																																																																																																																																																																																																																																																																				

|

|	node_addresses						|	['172.24.4.3']																																																																																																																																																																																																																																																																																																																																																																																																			

|

|	status_reason							|	Stack	CREATE	completed	successfully																																																																																																																																																																																																																																											

|

see more please visit: https://homeofpdf.com

|	coe_version									|	1.2.5																																																																																																																																																																																																																																																																																																																																																																																																

|

|	cluster_template_id	|	0963601a-50aa-4361-9f6f-5f64f0826da8																																																																																																																																																																																																																																																																																																																																																																	

|

|	name																|	swarm																																																																																																																																																																																																																																																																																																																																																																																																

|

|	stack_id												|	9d39e877-32ff-4904-a349-727274caee68																																																																																																																																																																																																																																																																																																																																																																	

|

|	created_at										|	2017-09-19T13:07:46+00:00																																																																																																																																																																																																																																																																																																																																																																												

|

|	discovery_url							|	https://discovery.etcd.io/af18b93f0d1b64db0d803a1c76e4d0d0																																																																																																																																																																																																																																																																																																																																											

|

|	container_version			|	1.12.6																																																																																																																																																																																																																																																																																																																																																																																															

|

+---------------------+---

--

--

--

---+		

We	now	need	to	set	up	the	Docker	CLI	to	use	the	swarm	cluster	we	have	created
with	the	appropriate	credentials.

Create	a	dir	to	store	certs	and	cd.	The	DOCKER_CERT_PATH	env	variable	is	consumed	by
Docker,	which	expects	ca.pem,	key.pem,	and	cert.pem	to	be	in	that	directory:

$	export	DOCKER_CERT_PATH=~/.docker

$	mkdir	-p	${DOCKER_CERT_PATH}

$	cd	${DOCKER_CERT_PATH}

Generate	an	RSA	key:

$	openssl	genrsa	-out	key.pem	4096

Create	openssl	config	to	help	generated	a	CSR:

$	cat	>	client.conf	<<	END

[req]

distinguished_name	=	req_distinguished_name

req_extensions					=	req_ext

prompt	=	no

[req_distinguished_name]

CN	=	Your	Name

[req_ext]

extendedKeyUsage	=	clientAuth

END	

Run	the	openssl	req	command	to	generate	the	CSR:

$	openssl	req	-new	-days	365	-config	client.conf	-key	key.pem	-out	client.csr				

Now	that	you	have	your	client	CSR,	use	the	Magnum	CLI	to	get	it	signed	and
also	download	the	signing	cert:

see more please visit: https://homeofpdf.com

$	magnum	ca-sign	--cluster	swarm-cluster	--csr	client.csr	>	cert.pem

$	magnum	ca-show	--cluster	swarm-cluster	>	ca.pem		

Set	the	CLI	to	use	TLS.	This	env	var	is	consumed	by	Docker:

$	export	DOCKER_TLS_VERIFY="1"	

Set	the	correct	host	to	use,	which	is	the	public	IP	address	of	the	Swarm	API
server	endpoint.

This	env	var	is	consumed	by	Docker:

$	export	DOCKER_HOST=$(magnum	cluster-show	swarm-cluster	|	awk	'/

api_address	/{print	substr($4,7)}')		

Next,	we	will	create	a	container	in	this	Swarm	cluster.	This	container	will	ping
the	address	8.8.8.8	four	times:

$	docker	run	--rm	-it	cirros:latest	ping	-c	4	8.8.8.8		

You	should	see	a	similar	output	to	the	following:

PING	8.8.8.8	(8.8.8.8):	56	data	bytes

64	bytes	from	8.8.8.8:	seq=0	ttl=40	time=25.513	ms

64	bytes	from	8.8.8.8:	seq=1	ttl=40	time=25.348	ms

64	bytes	from	8.8.8.8:	seq=2	ttl=40	time=25.226	ms

64	bytes	from	8.8.8.8:	seq=3	ttl=40	time=25.275	ms

				

---	8.8.8.8	ping	statistics	---

4	packets	transmitted,	4	packets	received,	0%	packet	loss

round-trip	min/avg/max	=	25.226/25.340/25.513	ms		

After	a	cluster	is	created,	you	can	dynamically	add	or	remove	node(s)	to	or	from
the	cluster	by	updating	the	node_count	attribute.	For	example,	to	add	one	more
node,	do	the	following:

$	magnum	cluster-update	swarm	replace	node_count=2		

Clusters	will	have	a	status	of	UPDATE_IN_PROGRESS	while	the	process	of	the	update
continues.	After	the	completion	of	update,	the	status	will	be	updated	to
UPDATE_COMPLETE.	Reducing	node_count	removes	all	of	the	existing	pods/containers	on
the	nodes	that	were	deleted.	Magnum	tries	to	delete	the	node	with	the	least
workload.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	learned	about	the	OpenStack	container	infrastructure
management	service,	Magnum,	in	detail.	We	looked	into	the	different	objects	in
Magnum.	Then,	we	learned	about	the	components	and	architecture	of	Magnum.
Then,	we	provided	a	detailed	overview	of	the	user	request	workflow	in	Magnum.

Finally,	we	looked	at	how	to	install	a	development	setup	for	Magnum	using
DevStack	and	then	did	a	hands-on	exercise	using	Magnum	CLI	to	create	a
Docker	Swarm	COE.

In	the	next	chapter,	we	will	learn	about	Zun,	which	is	a	container	management
service	for	OpenStack.

see more please visit: https://homeofpdf.com

Zun	–	Container	Management	in
OpenStack
In	this	chapter,	we	will	learn	about	the	OpenStack	project	for	managing
containers,	Zun.	Zun	is	the	only	solution	available	in	OpenStack	that	allows	its
users	to	manage	their	application	containers,	backed	by	different	technologies
with	the	goodness	of	other	OpenStack	components	such	as	Cinder,	Glance,	and
Neutron.	Zun	provides	a	strong	platform	for	running	containerized	applications
on	top	of	OpenStack	IaaS.

This	chapter	will	cover	the	following	topics:

Introduction	to	Zun
Concepts
Key	features
Components
Walk-through
Zun	DevStack	installation
Managing	containers

see more please visit: https://homeofpdf.com

Introduction	to	Zun
Zun	is	an	OpenStack	service	started	in	the	Mitaka	cycle	developed	by	the
members	of	the	Magnum	team.	A	decision	was	made	at	the	OpenStack	Austin
Summit	in	2016	to	create	a	new	project	to	allow	for	the	management	of
containers	and	let	the	Magnum	Container	Infrastructure	Management	service
manage	only	the	infrastructure	for	running	containers.	The	result	was	the	Zun
project.

Zun	is	a	container	management	service	for	OpenStack	that	provides	APIs	to
manage	containers	abstracted	by	different	technologies	at	the	backend.	Zun
supports	Docker	as	the	container	runtime	tool.	Today,	Zun	integrates	with	many
OpenStack	services	such	as	Neutron	for	networking,	Glance	for	managing
container	images,	and	Cinder	for	providing	volume	to	the	containers.

Zun	has	various	add-ons	over	Docker,	which	makes	it	a	powerful	solution	for
container	management.	Here	is	a	list	of	some	of	the	salient	features	of	Zun:

Provides	a	standard	API	for	the	complete	life	cycle	management	of
containers
Provides	KeyStone-based	multi-tenant	security	and	auth	management
Supports	Docker	with	runc	and	clear	container	for	managing	containers
The	support	of	clear	container	provides	higher	security	by	packing	an
individual	container	in	a	VM	with	a	small	footprint
Supports	Cinder	to	provide	volume	for	containers
Kuryr-based	networking	for	container-level	isolation
Supports	container	orchestration	via	Heat
Container	composition	known	as	capsules	lets	user	run	multiple	containers
with	related	resources	as	a	single	unit
Supports	the	SR-IOV	feature	that	enables	the	sharing	of	a	physical	PCIe
device	to	be	shared	across	VMs	and	containers
Supports	interactive	sessions	with	containers
Zun	allows	users	to	run	heavy	workloads	with	dedicated	resources	by
exposing	CPU	sets

see more please visit: https://homeofpdf.com

Concepts
In	the	following	sections,	we	will	look	at	the	various	objects	available	in	the	Zun
system.

see more please visit: https://homeofpdf.com

Containers
The	container	is	the	most	important	resource	in	Zun.	A	container	in	Zun
represents	any	application	container	run	by	the	users.	A	container	object	stores
information	such	as	the	image,	command,	workdir,	host,	and	so	on.	Zun	is	an
extendable	solution;	it	can	support	other	container	runtime	tools	as	well.	It	has	a
driver-based	implementation	for	each	tool.	The	Docker	driver	in	Zun	manages
containers	via	Docker.	Containers	in	Zun	support	many	advanced	operations
including	CRUD	operations	such	as	create,	start,	stop,	pause,	delete,	update,	kill,
and	so	on.

see more please visit: https://homeofpdf.com

Images
Images	in	Zun	are	container	images.	These	images	are	managed	either	by
Docker	Hub	or	Glance.	Users	can	download	the	image	and	save	them	to	Glance
prior	to	container	creation	to	save	time.	An	image	object	stores	information	such
as	the	image	name,	tag,	size,	and	so	on.	Operations	supported	for	images	are
upload,	download,	update,	and	search	images.

see more please visit: https://homeofpdf.com

Services
A	service	in	Zun	represents	the	zun-compute	service.	Zun	can	have	multiple
instances	of	zun-compute	services	running	to	support	scalability.	This	object	is	used
to	establish	the	state	of	the	compute	services	running	in	the	Zun	cluster.	A
service	stores	information	such	as	the	state,	enabled	or	disabled,	last	known
time,	and	so	on.

see more please visit: https://homeofpdf.com

Hosts
A	host	in	Zun	represents	the	compute	node's	resources.	The	compute	node	is	the
physical	machine	where	the	containers	run.	This	is	used	to	establish	the	list	of
available,	used	resources	in	Zun.	A	host	object	in	Zun	stores	useful	information
about	a	compute	node	such	as	total	memory,	free	memory,	total	number	of
running,	stopped,	or	paused	containers,	total	CPUs,	free	CPUs,	and	so	on.

see more please visit: https://homeofpdf.com

Capsules
A	capsule	in	Zun	represents	a	composition	unit	which	contains	multiple
containers	and	other	related	resources.	Containers	in	a	capsule	share	resources
among	themselves	and	are	tightly	coupled	to	work	together	as	a	single	unit.	A
capsule	object	stores	information	such	as	the	container	list,	CPU,	memory,	and
so	on.

see more please visit: https://homeofpdf.com

Container	drivers
Zun	is	designed	to	be	an	extendable	solution	for	managing	containers	on	top	of
OpenStack.	Zun	supports	Docker	to	manage	containers.	It	aims	to	support
multiple	other	tools	in	the	future	as	well,	such	as	Rocket.	To	support	this,	Zun
has	a	collection	of	container	drivers,	which	can	be	implemented	with	many	other
runtime	tools	and	made	available	as	solutions	with	Zun.	Users	can	choose	to
manage	their	containers	with	their	choice	of	tool.

see more please visit: https://homeofpdf.com

Image	drivers
We	have	learned	that	Zun	can	support	multiple	container	runtime	tools	to
manage	containers.	Similarly,	it	supports	multiple	image	drivers	for	the
managing	of	container	images	such	as	Glance	driver	and	Docker	driver.	The
image	driver	is	also	configurable;	users	can	choose	any	of	the	available	solutions
for	their	use	case.

see more please visit: https://homeofpdf.com

Network	drivers
The	ability	to	communicate	between	two	containers	and	between	a	container	and
VM	is	provided	by	the	network	driver	in	Zun.	Zun	has	a	Kuryr	driver	for
managing	all	of	the	network	resources	for	containers.	It	supports	operations	such
as	creating	and	deleting	a	network,	connecting	to	and	disconnecting	a	container
from	a	network,	and	so	on.

see more please visit: https://homeofpdf.com

Key	features
Zun	has	many	advanced	features	in	addition	to	the	basic	management	of
containers.	In	this	section,	we	will	talk	about	some	of	the	advanced	features
present	in	Zun.	There	are	many	other	features	in	progress,	such	as	SRIOV
networking,	PCIe	devices,	and	so	on,	which	are	referred	to	in	the	Zun
documentation.

see more please visit: https://homeofpdf.com

Cinder	integration
Zun	supports	the	attaching	of	persistent	storage	to	the	containers	which	exist
even	after	the	container	exits.	This	storage	can	be	used	to	store	large	amounts	of
data	outside	the	host,	which	is	more	reliable	if	the	host	goes	down.	This	support
is	enabled	in	Zun	via	Cinder.	Users	can	mount	and	unmount	Cinder	volumes	to
their	containers.	The	users	first	need	to	create	the	volume	in	Cinder	and	then
provide	the	volume	while	creating	the	container.

see more please visit: https://homeofpdf.com

Container	composition
Zun	supports	the	creation	of	multiple	containers	as	a	single	unit.	This	unit	is
known	as	a	capsule	in	Zun.	This	concept	is	very	similar	to	pods	in	Kubernetes.	A
capsule	contains	multiple	containers	and	all	of	the	related	resources	such	as
network	and	storage,	tightly	coupled.	All	of	the	containers	in	a	capsule	are
scheduled	on	the	same	host	and	share	resources	such	as	the	Linux	namespaces,
CGroups,	and	so	on.

see more please visit: https://homeofpdf.com

Kuryr	networking
A	container	created	by	Zun	can	interact	with	the	VMs	created	by	Nova.	This
feature	is	provided	by	Kuryr-libnetwork.	It	interacts	with	Neutron	to	create	the
necessary	network	resources	for	the	container	and	provides	a	communication
path	for	other	OpenStack	resources.

see more please visit: https://homeofpdf.com

Container	sandbox
Zun	has	a	collection	of	sandbox	containers.	A	sandbox	is	a	container	that	has	all
of	the	IaaS	resources	associated	with	it,	such	as	ports,	IP	addresses,	volumes,	and
so	on.	The	aim	of	the	sandbox	is	to	decouple	the	overhead	of	managing	these
IaaS	resources	from	the	application	containers.	A	sandbox	can	manage	single	or
multiple	containers	and	provide	all	of	the	needed	resources.

see more please visit: https://homeofpdf.com

CPU	sets
Zun	allows	its	users	to	run	a	high-performance	container	with	dedicated
resources.	Zun	exposes	its	host	capabilities	to	the	users,	and	users	can	specify
the	required	CPU	while	creating	a	container.

The	scheduler	filters	a	node	with	the	available	resource	and	provisions	the
container	on	that	node.	The	host	information	is	updated	in	the	database	to	reflect
the	updated	resources.

see more please visit: https://homeofpdf.com

Components
The	diagram	in	the	Zun	WebSocket	proxy	section	shows	the	architecture	of	Zun.
Zun	has	two	binaries:	zun-api	and	zun-compute.	These	two	services	together	carry
the	whole	life	cycle	of	container	management	of	containers.	These	services
interact	with	other	OpenStack	services	such	as	Glance	for	the	container	images,
Cinder	for	providing	volume	to	the	containers,	and	Neutron	for	the	connectivity
between	containers	and	the	outside	world.	The	request	for	containers	is	finally
communicated	to	the	Docker	services	running	on	the	compute	node.	Docker	then
creates	the	container	for	the	users.

see more please visit: https://homeofpdf.com

zun-api
zun-api	is	a	WSGI	server	that	serves	the	users'	API	requests.	For	every	resource	in
Zun,	there	are	separate	handlers:

Container
Host
Images
Zun	services

Each	of	the	controllers	handle	a	request	for	specific	resources.	They	validate	the
request	for	permissions,	validate	the	OpenStack	resources	including	validating	if
the	image	is	present	in	Docker	Hub	or	Glance,	and	create	a	DB	object	for	the
resource	with	the	input	data.	The	request	is	forwarded	to	the	compute	manager.
Upon	receiving	a	response	from	the	zun-compute	service,	the	zun-api	service	returns
the	response	to	the	user.

see more please visit: https://homeofpdf.com

Zun	scheduler
The	scheduler	in	Zun	is	not	an	RPC	service.	It	is	a	simple	Python	class	which
applies	a	filter	on	the	compute	nodes	and	picks	up	the	appropriate	node	for
serving	the	request.	The	compute	manager	then	passes	the	request	to	the	selected
zun-compute	via	an	RPC	call.	The	call	to	zun-compute	can	be	synchronous	or
asynchronous	depending	on	the	processing	time	taken	by	each	of	the	operations.
For	example,	the	list	calls	can	be	synchronous	as	they	are	not	time-consuming,
whereas	the	create	requests	can	be	asynchronous.

see more please visit: https://homeofpdf.com

zun-compute
The	zun-compute	service	is	the	main	component	of	the	Zun	system.	It	performs
most	of	the	backend	operations,	hiding	all	the	complexities.	zun-compute	selects	an
appropriate	driver	for	serving	each	request	and	creates	the	related	resources	for
containers,	such	as	network	resources.	It	then	passes	the	request	to	the	driver
with	all	the	required	information.	zun-compute	talks	to	multiple	projects	for	various
resources	such	as	Glance	for	the	container	images	and	Neutron	for	the	network
resources.

see more please visit: https://homeofpdf.com

Zun	WebSocket	proxy
Zun	has	a	WebSocket	proxy	service	for	running	containers	in	interactive	mode.
This	service	establishes	a	secure	connection	with	the	container	to	run	any
commands	inside	it:

see more please visit: https://homeofpdf.com

Walk-through
In	this	section,	we	will	walk	you	through	how	a	container	is	created	in	Zun	and
how	the	request	flows	from	the	user	to	the	Docker	which	creates	the	container.
Zun	interacts	with	multiple	other	OpenStack	services	for	resources	needed	for
the	container.

The	request	flow	for	creating	a	container	in	Zun	is	as	follows:

1.	 The	user	sends	a	REST	API	call	to	the	zun-api	service	for	creating	a	cluster
via	a	CLI	or	Horizon,	with	the	authentication	token	received	from
KeyStone.

2.	 zun-api	receives	the	request	and	sends	the	request	for	the	validation	of	token
and	access	permission	to	KeyStone.

3.	 KeyStone	validates	the	token	and	sends	updated	authentications	headers
with	roles	and	permissions.

4.	 zun-api	then	parses	some	parameters	from	the	request,	such	as	the	security
group,	memory,	and	runtime,	and	validates	them.

5.	 The	requested	network	is	created	by	zun-api.	zun-api	sends	a	request	to
Neutron	to	ensure	the	requested	network	or	port	is	usable.	If	not,	zun-api
sends	another	request	to	Neutron	to	search	the	available	network	and
creates	a	new	Docker	network	for	the	container.

6.	 zun-api	then	checks	whether	the	requested	image	is	available	or	not.	If	the
image	is	not	found,	the	request	fails	with	400	HTTP	status.

7.	 zun-api	generates	a	name	for	the	container	if	not	provided	in	the	request.
8.	 zun-api	then	creates	a	database	object	for	the	container.
9.	 zun-api	sends	the	request	to	the	compute	API	manager.	The	compute

manager	looks	for	the	destination	compute	node	from	the	scheduler.
10.	 zun-api	then	sends	the	RPC	asynchronous	call	request	to	zun-compute,	selected

in	the	previous	step,	to	process	the	request	further.
11.	 zun-compute	picks	the	request	from	the	message	queue.
12.	 zun-compute	sets	the	task_state	of	the	container	to	IMAGE_PULLING	and	stores	the

entry	in	the	database.
13.	 zun-compute	calls	the	image	driver	to	download	the	image.
14.	 After	the	image	is	downloaded	successfully,	the	task_state	is	now	set	to

see more please visit: https://homeofpdf.com

CONTAINER_CREATING	in	the	database.
15.	 Now,	zun-compute	claims	the	resources	required	for	the	container	and	updates

the	compute	node	resource	table	with	the	required	information.
16.	 Finally,	the	request	to	the	Docker	is	sent	to	create	the	container	with	all	of

the	required	parameters.
17.	 The	Docker	driver	creates	the	container,	sets	the	status	to	CREATED	and

status_reason	to	None,	and	saves	the	container	object	in	the	database.
18.	 The	task_state	is	set	to	None	upon	successful	completion	of	the	container.

There	are	periodic	tasks	in	Zun	which	sync	the	container	status	in
the	Zun	database	at	a	specific	time	interval.

see more please visit: https://homeofpdf.com

Zun	DevStack	installation
We	will	now	look	at	how	to	install	a	development	setup	of	Zun	using	DevStack:

Create	a	root	directory	for	DevStack	if	needed:

$	sudo	mkdir	-p	/opt/stack

$	sudo	chown	$USER	/opt/stack		

To	clone	DevStack	repository,	do	the	following:

$	git	clone	https://git.openstack.org/openstack-dev/devstack	

/opt/stack/devstack		

Now,	create	a	minimal	local.conf	for	running	the	DevStack	setup.	We	will	enable
the	following	plugins	to	create	a	Zun	setup:

devstack-plugin-container:	This	plugin	installs	Docker
kuryr-libnetwork:	This	is	the	Docker	libnetwork	driver	that	uses	Neutron	to
provide	networking	services

$	cat	>	/opt/stack/devstack/local.conf	<<	END

[[local|localrc]]

HOST_IP=$(ip	addr	|	grep	'state	UP'	-A2	|	tail	-n1	|	awk	'{print	$2}'	|	cut	-f1		-

d'/')

DATABASE_PASSWORD=password

RABBIT_PASSWORD=password

SERVICE_TOKEN=password

SERVICE_PASSWORD=password

ADMIN_PASSWORD=password

enable_plugin	devstack-plugin-container	

https://git.openstack.org/openstack/devstack-plugin-container

enable_plugin	zun	https://git.openstack.org/openstack/zun

enable_plugin	kuryr-libnetwork	https://git.openstack.org/openstack/kuryr-libnetwork

				

#	Optional:		uncomment	to	enable	the	Zun	UI	plugin	in	Horizon

#	enable_plugin	zun-ui	https://git.openstack.org/openstack/zun-ui

END

Now,	run	DevStack:

$	cd	/opt/stack/devstack

$./stack.sh		

Create	a	new	shell	and	source	the	DevStack	openrc	script	to	use	Zun	CLI:

$	source	/opt/stack/devstack/openrc	admin	admin

see more please visit: https://homeofpdf.com

		

Now,	let's	verify	the	Zun	installation	by	looking	at	the	service	list:

$	zun	service-list

+----+--------+-------------+-------+----------+-----------------+--------------------

-------+--------------------------+

|	Id	|	Host			|	Binary						|	State	|	Disabled	|	Disabled	Reason	|	Created	At																

|	Updated	At																|

+----+--------+-------------+-------+----------+-----------------+--------------------

-------+---------------------------+

|	1		|	galvin	|	zun-compute	|	up				|	False				|	None												|	2017-10-10	

11:22:50+00:00	|	2017-10-10	11:37:03+00:00	|

+----+--------+-------------+-------+----------+-----------------+--------------------

-------+---------------------------+		

Let's	look	at	the	host-list,	which	also	shows	the	compute	nodes	being	registered
for	use	in	Zun:

$	zun	host-list

+--------------------------------------+----------+-----------+------+----------------

----+--------+

|	uuid																																	|	hostname	|	mem_total	|	cpus	|	os																	

|	labels	|

+--------------------------------------+----------+-----------+------+----------------

----+--------+

|	08fb3f81-d88e-46a1-93b9-4a2c18ed1f83	|	galvin			|	3949						|	1				|	Ubuntu	16.04.3	

LTS	|	{}					|

+--------------------------------------+----------+-----------+------+----------------

----+--------+		

We	can	see	that	we	have	one	compute	node,	which	is	the	host	machine	itself.
Now,	let's	also	look	at	the	available	resources	in	the	host:

$	zun	host-show	galvin

+------------------+--

--

---+

|	Property									|	Value																																																																																																																																																																																															

|

+------------------+--

--

--+

|	hostname									|	galvin																																																																																																																																																																																														

|

|	uuid													|	08fb3f81-d88e-46a1-93b9-4a2c18ed1f83																																																																																																																																																																

|

|	links												|	["{u'href':	u'http://10.0.2.15/v1/hosts/08fb3f81-d88e-46a1-93b9-

4a2c18ed1f83',	u'rel':	u'self'}",	"{u'href':	u'http://10.0.2.15/hosts/08fb3f81-d88e-

46a1-93b9-4a2c18ed1f83',	u'rel':	u'bookmark'}"]	|

|	kernel_version			|	4.10.0-28-generic																																																																																																																																																																																			

|

|	labels											|	{}																																																																																																																																																																																																		

|

|	cpus													|	1																																																																																																																																																																																																			

|

|	mem_total								|	3949																																																																																																																																																																																																

|

see more please visit: https://homeofpdf.com

|	total_containers	|	0																																																																																																																																																																																																		

|

|	os_type										|	linux																																																																																																																																																																																															

|

|	os															|	Ubuntu	16.04.3	LTS																																																																																																																																																																																		

|

|	architecture					|	x86_64																																																																																																																																																																																														

|

+------------	------+---

--

--+		

We	can	see	that	the	zun-compute	service	is	running.	The	current	setup	only	installs
one	compute	service;	you	can	install	a	multi-node	Zun	setup	also.	Please	refer	to	
https://github.com/openstack/zun/blob/master/doc/source/contributor/quickstart.rst	for	more	details.

see more please visit: https://homeofpdf.com

https://github.com/openstack/zun/blob/master/doc/source/contributor/quickstart.rst

Managing	containers
Now	that	we	have	a	Zun	setup	running,	we	will	try	to	do	some	operations	on
containers	in	this	section.

We	will	now	create	a	container	in	Zun.	But	before	that,	let's	check	the	Docker
status:

$	sudo	docker	ps	-a

CONTAINER	ID								IMAGE																																																	COMMAND																		

CREATED														STATUS																										PORTS															NAMES		

We	can	see	that	no	container	exists	now.	Now,	let's	create	the	container:

$	zun	create	--name	test	cirros	ping	-c	4	8.8.8.8

+-------------------+---

--

--+

|	Property										|	Value																																																																																																																																																																																																									

|

+-------------------+---

--

--+

|	addresses									|																																																																																																																																																																																																															

|

|	links													|	["{u'href':	u'http://10.0.2.15/v1/containers/f78e778a-ecbd-42d3-

bc77-ac50334c8e57',	u'rel':	u'self'}",	"{u'href':	

u'http://10.0.2.15/containers/f78e778a-ecbd-42d3-bc77-ac50334c8e57',	u'rel':	

u'bookmark'}"]	|

|	image													|	cirros																																																																																																																																																																																																								

|

|	labels												|	{}																																																																																																																																																																																																												

|

|	networks										|																																																																																																																																																																																																															

|

|	security_groups			|	None																																																																																																																																																																																																										

|

|	image_pull_policy	|	None																																																																																																																																																																																																										

|

|	uuid														|	f78e778a-ecbd-42d3-bc77-ac50334c8e57																																																																																																																																																																										

|

|	hostname										|	None																																																																																																																																																																																																										

|

|	environment							|	{}																																																																																																																																																																																																												

|

|	memory												|	None																																																																																																																																																																																																										

|

|	status												|	Creating																																																																																																																																																																																																						

|

|	workdir											|	None																																																																																																																																																																																																										

|

|	auto_remove							|	False																																																																																																																																																																																																									

|

see more please visit: https://homeofpdf.com

|	status_detail					|	None																																																																																																																																																																																																										

|

|	host														|	None																																																																																																																																																																																																										

|

|	image_driver						|	None																																																																																																																																																																																																										

|

|	task_state								|	None																																																																																																																																																																																																										

|

|	status_reason					|	None																																																																																																																																																																																																										

|

|	name														|	test																																																																																																																																																																																																										

|

|	restart_policy				|	None																																																																																																																																																																																																										

|

|	ports													|	None																																																																																																																																																																																																										

|

|	command											|	"ping"	"-c"	"4"	"8.8.8.8"																																																																																																																																																																																					

|

|	runtime											|	None																																																																																																																																																																																																										

|

|	cpu															|	None																																																																																																																																																																																																										

|

|	interactive							|	False																																																																																																																																																																																																									

|

+-------------------+---

--

--+		

Now,	let's	look	at	the	Zun	list	to	check	the	container	status:

stack@galvin:~/devstack$	zun	list

+--------------------------------------+------+--------+----------+---------------+---

--------+-------+

|	uuid																																	|	name	|	image		|	status			|	task_state				|	

addresses	|	ports	|

+--------------------------------------+------+--------+----------+---------------+---

--------+-------+

|	f78e778a-ecbd-42d3-bc77-ac50334c8e57	|	test	|	cirros	|	Creating	|	image_pulling	|											

|	[]				|

+--------------------------------------+------+--------+----------+---------------+---

--------+-------+

We	can	see	that	the	container	is	in	a	creating	state.	Let's	check	the	container	in
Docker	as	well:

$	sudo	docker	ps	-a

CONTAINER	ID								IMAGE																																																				COMMAND																		

CREATED													STATUS																							PORTS															NAMES

cbd2c94d6273								cirros:latest																																												"ping	-c	

4	8.8.8.8"						38	seconds	ago						Created																																										

zun-f78e778a-ecbd-42d3-bc77-ac50334c8e57		

Now,	let's	start	the	container	and	look	at	the	logs:

$	zun	start	test

Request	to	start	container	test	has	been	accepted.

				

$	zun	logs	test

see more please visit: https://homeofpdf.com

PING	8.8.8.8	(8.8.8.8):	56	data	bytes

64	bytes	from	8.8.8.8:	seq=0	ttl=40	time=25.513	ms

64	bytes	from	8.8.8.8:	seq=1	ttl=40	time=25.348	ms

64	bytes	from	8.8.8.8:	seq=2	ttl=40	time=25.226	ms

64	bytes	from	8.8.8.8:	seq=3	ttl=40	time=25.275	ms

				

---	8.8.8.8	ping	statistics	---

4	packets	transmitted,	4	packets	received,	0%	packet	loss

round-trip	min/avg/max	=	25.226/25.340/25.513	ms		

Let's	do	some	advanced	operations	with	the	container.	We	will	now	create	an
interactive	container	with	Zun:

$	zun	run	-i	--name	new	ubuntu	/bin/bash

+-------------------+---

--

--+

|	Property										|	Value																																																																																																																																																																																																									

|

+-------------------+---

--

--+

|	addresses									|																																																																																																																																																																																																															

|

|	links													|	["{u'href':	u'http://10.0.2.15/v1/containers/dd6764ee-7e86-4cf8-

bae8-b27d6d1b3225',	u'rel':	u'self'}",	"{u'href':	

u'http://10.0.2.15/containers/dd6764ee-7e86-4cf8-bae8-b27d6d1b3225',	u'rel':	

u'bookmark'}"]	|

|	image													|	ubuntu																																																																																																																																																																																																								

|

|	labels												|	{}																																																																																																																																																																																																												

|

|	networks										|																																																																																																																																																																																																															

|

|	security_groups			|	None																																																																																																																																																																																																										

|

|	image_pull_policy	|	None																																																																																																																																																																																																										

|

|	uuid														|	dd6764ee-7e86-4cf8-bae8-b27d6d1b3225																																																																																																																																																																										

|

|	hostname										|	None																																																																																																																																																																																																										

|

|	environment							|	{}																																																																																																																																																																																																												

|

|	memory												|	None																																																																																																																																																																																																										

|

|	status												|	Creating																																																																																																																																																																																																						

|

|	workdir											|	None																																																																																																																																																																																																										

|

|	auto_remove							|	False																																																																																																																																																																																																									

|

|	status_detail					|	None																																																																																																																																																																																																										

|

|	host														|	None																																																																																																																																																																																																										

|

|	image_driver						|	None																																																																																																																																																																																																										

|

|	task_state								|	None																																																																																																																																																																																																										

|

|	status_reason					|	None																																																																																																																																																																																																										

|

see more please visit: https://homeofpdf.com

|	name														|	new																																																																																																																																																																																																											

|

|	restart_policy				|	None																																																																																																																																																																																																										

|

|	ports													|	None																																																																																																																																																																																																										

|

|	command											|	"/bin/bash"																																																																																																																																																																																																			

|

|	runtime											|	None																																																																																																																																																																																																										

|

|	cpu															|	None																																																																																																																																																																																																										

|

|	interactive							|	True																																																																																																																																																																																																										

|

+-------------------+---

--

--+

Waiting	for	container	start

Waiting	for	container	start

Waiting	for	container	start

Waiting	for	container	start

Waiting	for	container	start

Waiting	for	container	start

Waiting	for	container	start

Waiting	for	container	start

Waiting	for	container	start

Waiting	for	container	start

connected	to	dd6764ee-7e86-4cf8-bae8-b27d6d1b3225,	press	Enter	to	continue

type	~.	to	disconnect

root@81142e581b10:/#	

root@81142e581b10:/#	ls

bin		boot		dev		etc		home		lib		lib64		media		mnt		opt		proc		root		run		sbin		srv		

sys		tmp		usr		var

root@81142e581b10:/#	exit

exit		

Now,	let's	delete	the	container:

$	zun	delete	test

Request	to	delete	container	test	has	been	accepted.

	

$	zun	list

+--------------------------------------+------+--------+---------+------------+-------

-------------------+-------+

|	uuid																																	|	name	|	image		|	status		|	task_state	|	

addresses																|	ports	|

+--------------------------------------+------+--------+---------+------------+-------

-------------------+-------+

|	dd6764ee-7e86-4cf8-bae8-b27d6d1b3225	|	new		|	ubuntu	|	Stopped	|	None							|	

172.24.4.11,	2001:db8::d	|	[]				|

+--------------------------------------+------+--------+---------+------------+-------

-------------------+-------+		

We	will	now	look	at	some	commands	to	see	how	images	are	managed	in	Zun.
Download	an	Ubuntu	image:

$	zun	pull	ubuntu

+----------+--

--

---------------------------------------+

see more please visit: https://homeofpdf.com

|	Property	|	Value																																																																																																																																																																																																	

|

+----------+--

--

---------------------------------------+

|	uuid					|	9b34875a-50e1-400c-a74b-028b253b35a4																																																																																																																																																																		

|

|	links				|	["{u'href':	u'http://10.0.2.15/v1/images/9b34875a-50e1-400c-a74b-

028b253b35a4',	u'rel':	u'self'}",	"{u'href':	u'http://10.0.2.15/images/9b34875a-50e1-

400c-a74b-028b253b35a4',	u'rel':	u'bookmark'}"]	|

|	repo					|	ubuntu																																																																																																																																																																																																

|

|	image_id	|	None																																																																																																																																																																																																		

|

|	tag						|	latest																																																																																																																																																																																																

|

|	size					|	None																																																																																																																																																																																																		

|

+----------+--

--

---------------------------------------+		

Let's	look	at	the	list	of	images	in	Zun	now:

stack@galvin:~/devstack$	zun	image-list

+--------------------------------------+----------+--------+--------+------+

|	uuid																																	|	image_id	|	repo			|	tag				|	size	|

+--------------------------------------+----------+--------+--------+------+

|	9b34875a-50e1-400c-a74b-028b253b35a4	|	None					|	ubuntu	|	latest	|	None	|

+--------------------------------------+----------+--------+--------+------+		

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	learned	about	the	OpenStack	container	management	service,
Zun.	We	looked	into	the	different	objects	in	Zun.	Then,	we	also	learned	about
the	components	and	the	architecture	of	Zun.	The	chapter	also	provided	a	detailed
overview	of	the	workflow	of	a	user	request	to	manage	containers	in	Zun.	Then,
we	looked	at	how	to	install	a	development	setup	in	Zun	using	DevStack,	and	we
did	a	hands-on	exercise	using	Zun	CLI	to	create	a	container	and	start	and	stop
various	other	operations	on	containers.	In	the	next	chapter,	we	will	learn	about
Kuryr,	which	provides	the	networking	resources	to	containers	using	Neutron.

see more please visit: https://homeofpdf.com

Kuryr	–	Container	Plugin	for
OpenStack	Networking
In	this	chapter,	we	will	be	learning	about	Kuryr,	an	OpenStack	project	for
container	networking.	This	chapter	will	cover	the	following	topics:

Introducing	Kuryr
Kuryr	architecture
Installation	of	Kuryr
Walk-through

see more please visit: https://homeofpdf.com

Introducing	Kuryr
Kuryr	is	named	after	the	Czech	word	which	means	a	courier.	It	is	a	Docker
network	plugin	that	uses	OpenStack	Neutron	to	provide	networking	services	to
Docker	containers.	It	maps	container	network	abstractions	to	OpenStack	neutron
APIs.	This	provides	the	ability	to	connect	VMs,	containers,	and	bare	metal
servers	to	the	same	virtual	network	in	a	seamless	management	experience,	and
provides	consistent	networking	for	all	three.	Kuryr	can	be	deployed	using	a
Python	package	or	a	container	using	Kolla.	It	provides	the	following	features	to
containers	using	a	neutron	as	a	provider:

Security	groups
Subnet	pools
NAT	(SNAT/DNAT,	Floating	IP)
Port	security	(ARP	spoofing)
Quality	of	Service	(QoS)
Quota	management
Neutron	pluggable	IPAM
Well-integrated	COE	load	balancing	via	a	neutron
FWaaS	for	containers

see more please visit: https://homeofpdf.com

Kuryr	architecture
In	the	following	sections,	we	will	look	at	the	Kuryr	architecture.

see more please visit: https://homeofpdf.com

Mapping	the	Docker	libnetwork	to
the	neutron	API
The	following	diagram	shows	the	Kuryr	architecture	that	maps	the	Docker
libnetwork	networking	model	to	the	neutron	API.	Kuryr	maps	libnetwork	APIs
and	creates	the	appropriate	resource	in	the	neutron,	which	explains	why	the
Neutron	API	can	also	be	used	for	container	networking:

see more please visit: https://homeofpdf.com

Providing	the	generic	VIF-Binding
infrastructure
Kuryr	provides	a	generic	VIF	binding	mechanism	for	the	various	port	types
which	will	be	received	from	the	Docker	namespace	and	will	be	attached	to	the
networking	solution	infrastructure	depending	on	its	type,	for	example,	Linux
bridge	port,	Open	vSwitch	port,	Midonet	port,	and	so	on.	The	following
diagram	represents	this:

see more please visit: https://homeofpdf.com

Providing	containerized	images	of
neutron	plugins
Kuryr	aims	to	provide	containerized	images	of	the	various	neutron	plugins	that
are	integrated	with	Kolla,	as	well.

see more please visit: https://homeofpdf.com

Nesting	VMs	and	Magnum	use	cases
Kuryr	addresses	Magnum	project	use	cases	in	terms	of	container	networking	and
serves	as	a	unified	interface	for	Magnum	or	any	other	OpenStack	project	that
needs	to	leverage	container	networking	through	the	neutron	API.	In	this	regard,
Kuryr	leverages	neutron	plugins	that	support	VM	nested	container	use	cases	and
enhances	neutron	APIs	to	support	these	cases	(for	example,	OVN).

see more please visit: https://homeofpdf.com

Installation	of	Kuryr
In	this	section,	we	will	see	how	to	install	Kuryr.	The	prerequisites	are	as	follows:

KeyStone
Neutron
A	DB	management	system	such	as	MySQL	or	MariaDB	(for	neutron	and
KeyStone)
Neutron	agents	for	the	vendor	you	choose
Rabbitmq	if	the	neutron	agents	for	your	vendor	require	it
Docker	1.9+

The	following	steps	run	Kuryr	inside	a	Docker	container:

1.	 Pull	the	upstream	Kuryr	libnetwork	Docker	image:

								$	docker	pull	kuryr/libnetwork:latest		

2.	 Prepare	Docker	to	find	the	Kuryr	driver:

								$	sudo	mkdir	-p	/usr/lib/docker/plugins/kuryr

								$	sudo	curl	-o	/usr/lib/docker/plugins/kuryr/kuryr.spec	\				

																					https://raw.githubusercontent.com/openstack/kuryr-

								libnetwork/master/etc/kuryr.spec

								$	sudo	service	docker	restart		

3.	 Start	the	Kuryr	container:

								$	docker	run	--name	kuryr-libnetwork	\

								--net=host	\

								--cap-add=NET_ADMIN	\

								-e	SERVICE_USER=admin	\;

								-e	SERVICE_PROJECT_NAME=admin	\

								-e	SERVICE_PASSWORD=admin	\

								-e	SERVICE_DOMAIN_NAME=Default	\

								-e	USER_DOMAIN_NAME=Default	\

								-e	IDENTITY_URL=http://127.0.0.1:35357/v3	\

								-v	/var/log/kuryr:/var/log/kuryr	\

								-v	/var/run/openvswitch:/var/run/openvswitch	\

																		kuryr/libnetwork		

Here:

SERVICE_USER,	SERVICE_PROJECT_NAME,	SERVICE_PASSWORD,	SERVICE_DOMAIN_NAME,	and

see more please visit: https://homeofpdf.com

USER_DOMAIN_NAME	are	OpenStack	credentials
IDENTITY_URL	is	the	URL	to	the	OpenStack	KeyStone	v3	endpoint
A	volume	is	created	so	that	the	logs	are	available	on	the	host
NET_ADMIN	capabilities	are	given	in	order	to	perform	network	operations	on
the	host	namespace,	such	as	ovs-vsctl

see more please visit: https://homeofpdf.com

Walk-through
Kuryr	exists	in	each	host	that	runs	containers	and	serves	APIs	required	for	the
libnetwork	remote	network	driver.

The	following	are	the	steps	which	are	executed	to	create	a	container	network
provided	by	the	neutron:

1.	 A	user	sends	a	request	to	libnetwork	to	create	a	Docker	network	with	the
network	driver	specifier	as	Kuryr.	The	following	example	creates	a	Docker
network	named	bar:

								$	sudo	docker	network	create	--driver=kuryr	--ipam-driver=kuryr	--

								subnet	10.0.0.0/16	--gateway	10.0.0.1	--ip-range	10.0.0.0/24	bar		

2.	 libnetwork	makes	API	calls	to	the	Kuryr	plugin	to	create	the	network
3.	 Kuryr	forwards	the	call	to	the	Neutron	and	Neutron	creates	the	network

with	the	input	data	provided	by	Kuryr
4.	 Upon	receiving	a	response	from	the	neutron,	it	prepares	the	output	and

sends	it	to	libnetwork
5.	 libnetwork	stores	the	response	to	its	key/value	datastore	backend
6.	 The	user	can	then	launch	a	container	using	the	network	created	previously:

								$	sudo	docker	run	--net=bar	-itd	--name=nginx-container	nginx

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	we	learned	about	Kuryr.	We	learnt	what	Kuryr	is,	its	architecture,
and	its	installation	process.	We	also	looked	at	the	overall	workflow	when	a	user
creates	a	Docker	network	using	Kuryr	as	the	network	driver.

The	next	chapter	will	focus	on	project	Murano.	We	will	learn	about	Murano	and
its	architecture	and	complete	hands-on	exercises.

see more please visit: https://homeofpdf.com

Murano	–	Containerized	Application
Deployment	on	OpenStack
This	chapter	will	explain	the	OpenStack	project,	Murano,	which	is	the
application	catalog	to	OpenStack	that	enables	application	developers	and	cloud
administrators	to	publish	various	cloud-ready	applications	in	a	browsable
categorized	catalog.	Murano	greatly	eases	the	application	deployment	on	the
OpenStack	infrastructure	with	just	a	click.	In	this	chapter,	we	will	discuss	the
following	topics:

Introduction	to	Murano
Murano	concepts
Key	features
Murano	components
Walk-through
Murano	DevStack	installation
Deploying	containerized	application

see more please visit: https://homeofpdf.com

Introduction	to	Murano
Murano	is	the	OpenStack	application	catalog	service,	which	provides	various
cloud-ready	applications	to	be	easily	deployed	on	OpenStack,	abstracting	all	the
complexities	behind.	It	simplifies	the	packaging	and	deployment	of	various
applications	on	top	of	OpenStack	IaaS.	It	is	an	integration	point	for	external
applications	and	OpenStack	with	the	support	of	complete	life	cycle	management
of	applications.	Murano	applications	can	be	run	inside	Docker	containers	or
Kubernetes	Pod.

Murano	is	a	powerful	solution	for	end	users,	looking	for	application	deployment
on	top	of	OpenStack,	who	don't	want	to	worry	about	deployment	complexities.

The	following	is	a	list	of	features	provided	by	Murano:

Provides	production	ready	applications	and	dynamic	UI
Supports	running	containerized	application
Supports	provisioning	applications	on	both	Windows	and	Linux	systems
Secures	data	with	Barbican
Supports	running	application	packages	using	Heat	Orchestration
Templates	(HOT)
Deploys	multiregion	application
Allows	attaching	of	Cinder	volumes	to	the	VMs	in	an	application	and
storing	of	packages	in	Glare
Packages	similar	packages	in	a	bundle,	such	as	container-based	apps
Provides	statistics	related	to	the	environment	and	applications	for	billing
purpose

see more please visit: https://homeofpdf.com

Murano	concepts
In	this	section,	we	will	discuss	the	different	concepts	used	in	Murano.

see more please visit: https://homeofpdf.com

Environment
An	environment	in	Murano	represents	a	set	of	applications,	which	is	managed	by
a	single	tenant.	No	two	tenants	can	share	the	applications	in	an	environment.
Also	an	application	in	one	environment	is	independent	of	other	environments.
Multiple	applications,	that	are	logically	related	in	an	environment,	can	together
form	a	more	complex	application.

see more please visit: https://homeofpdf.com

Package
A	package	in	Murano	is	a	ZIP	archive	that	contains	all	the	installation	scripts,
class	definitions,	dynamic	UI	forms,	image	lists,	and	the	instruction	of	an
application	deployment.	This	package	is	imported	by	Murano	and	used	for
deploying	an	application.	Various	packages	can	be	uploaded	to	Murano	for
different	applications.

see more please visit: https://homeofpdf.com

Session
Murano	allows	modification	to	an	environment	from	multiple	users	who	are
from	different	locations.	To	allow	modification	from	multiple	users	at	the	same
time,	Murano	uses	sessions	that	stores	local	modification	from	all	users.	A
session	is	created	when	any	application	is	added	to	an	environment,	and	after	the
deployment	is	started,	the	session	becomes	invalid.	A	session	can't	be	shared
among	multiple	users.

see more please visit: https://homeofpdf.com

The	environment	template
A	set	of	applications	can	form	a	complex	application.	To	define	such
applications,	Murano	uses	the	concept	of	environment	template.	Each
application	in	the	template	is	managed	by	a	single	tenant.	This	template	can	be
deployed	by	translating	it	into	an	environment.

see more please visit: https://homeofpdf.com

Deployments
A	deployment	is	used	to	represent	a	process	of	installing	an	application.	It	stores
information	such	as	environment	status,	events,	and	errors	in	any	application
deployment.

see more please visit: https://homeofpdf.com

Bundle
A	bundle	in	Murano	represents	a	group	of	similar	applications.	Applications	in	a
bundle	need	not	to	be	closely	related.	They	are	sorted	according	to	usage.

An	example	for	this	is,	creating	a	bundle	of	database	apps	consisting	of	a
MySQL	or	Oracle	application.	A	bundle	can	be	imported	directly	in	Murano,
which	will	in	turn	import	all	the	applications	in	the	bundle.

see more please visit: https://homeofpdf.com

Categories
Applications	can	be	grouped	into	different	categories,	based	on	their	types,	such
as	application	servers,	big	data,	and	databases.

see more please visit: https://homeofpdf.com

Key	features
Murano	has	many	advanced	features	that	makes	it	a	strong	solution	for
application	management	on	OpenStack.	In	this	section,	we	will	talk	about	some
of	the	advanced	features	in	Murano.

see more please visit: https://homeofpdf.com

Production-ready	applications
Murano	has	various	cloud-ready	applications	that	can	be	configured	very	easily
on	either	VM	or	baremetal.	This	doesn't	need	any	knowledge	of	installation,
infrastructure	management,	and	so	on,	making	deployment	of	complex
applications	an	easy	task	for	OpenStack	users.	Users	can	choose	to	run	their
application	on	Docker	Host	or	Kubernetes	Pod.

see more please visit: https://homeofpdf.com

Application	catalog	UI
Murano	provides	a	UI	for	end	users	to	easily	browse	the	applications	available.
Users	can	deploy	any	complex	application	with	just	a	push	of	a	button.	The	UI	is
dynamic,	in	the	sense	that	it	provides	forms	for	user	input	while	an	application	is
provisioned.	It	also	allows	application	tagging,	provides	information	about	each
application,	shows	recent	activities,	and	so	on.

see more please visit: https://homeofpdf.com

Distributing	workloads
Murano	allows	its	users	to	select	regions	while	provisioning	any	application.
This	way,	your	application	can	be	distributed	in	cross-regions	for	achieving
scalability	and	high	availability	while	any	disaster	recovery.

see more please visit: https://homeofpdf.com

Application	development
Murano	Programming	Language	(MuranoPL)	can	be	used	to	define	an
application.	It	uses	YAML	and	YAQL	for	application	definition.	It	also	has	some
core	libraries	that	define	the	common	function	used	in	several	applications.
MuranoPL	also	supports	garbage	collection,	which	means	it	deallocates	all	the
resources	of	an	application.

see more please visit: https://homeofpdf.com

Murano	repository
Murano	supports	installing	packages	from	different	sources	such	as	a	file,	URL,
and	repository.	Murano	can	import	an	application	package	from	a	custom
repository.	It	downloads	all	the	dependent	packages	and	images,	if	defined	from
the	repository	for	application	deployment.

Refer	to	https://docs.openstack.org/murano/latest/admin/appdev-guide/muranopackage
s/repository.html	for	setting	up	a	custom	repository.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/murano/latest/admin/appdev-guide/muranopackages/repository.html

Cinder	volumes
Murano	supports	the	attaching	of	Cinder	volumes	to	the	VMs	in	an	application
and	also	supports	the	booting	of	these	VMs	from	a	Cinder	volume.	Multiple
volumes	can	be	attached	to	an	application	for	storage	purpose.

Refer	to	https://docs.openstack.org/murano/latest/admin/appdev-guide/cinder_volume_
supporting.html	for	the	detailed	step	of	using	Cinder	volumes	with
Murano.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/murano/latest/admin/appdev-guide/cinder_volume_supporting.html

Barbican	support
Barbican	is	the	OpenStack	project	to	support	sensitive	data	such	as	password	and
certificates.	Murano	ensures	that	your	data	is	secured	by	storing	it	in	Barbican.
You	need	to	install	Barbican,	and	configure	Murano	to	use	Barbican	as	the
backend	storage	solution.

see more please visit: https://homeofpdf.com

HOT	packages
Murano	supports	the	composing	of	an	application	package	from	the	Heat
template.	You	can	add	any	Heat	template	to	Murano	as	a	new	package	for
deployment.	Murano	supports	both	the	automatic	and	manual	way	of	composing
an	application	package	from	the	Heat	template.

Refer	to	https://docs.openstack.org/murano/latest/admin/appdev-guide/hot_packages.h
tml	for	details	on	using	Heat	templates	with	Murano.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/murano/latest/admin/appdev-guide/hot_packages.html

Murano	components
The	figure	in	The	Murano	dashboard	section	explains	the	architecture	of
Murano.	Murano	has	a	similar	architecture	to	other	OpenStack	components.	It
also	has	the	API	service	and	an	engine	as	the	main	components.	There	are	other
components	as	well,	such	as	murano-agent,	Murano	dashboard,	and	the	python
client,	that	is,	murano-pythonclient.	Let's	take	a	look	at	each	component	in	detail.

see more please visit: https://homeofpdf.com

The	Murano	API
The	Murano	API	(murano-api)	is	a	WSGI	server	that	serves	the	API	requests	of
users.	The	Murano	API	has	different	controllers	for	each	resource	type.	Each
controller	handles	a	request	for	specific	resources.	They	validate	the	request	for
permissions,	validate	the	data	provided	in	the	request,	and	create	a	DB	object	for
the	resource	with	the	input	data.	The	request	is	forwarded	to	the	murano-engine
service.	Upon	receiving	a	response	from	murano-engine,	the	murano-api	service
returns	the	response	to	the	user.

see more please visit: https://homeofpdf.com

The	Murano	engine
The	Murano	engine	(murano-engine)	is	the	service	where	most	of	the	orchestration
happens.	It	makes	a	series	of	calls	to	Heat,	the	OpenStack	Orchestration	service,
to	create	the	infrastructural	resources,	such	as	VMs	and	volumes,	required	for
the	deployment	of	the	application.	It	also	starts	an	agent	known	as	murano-agent
inside	the	VMs,	to	do	the	installation	of	external	applications.

see more please visit: https://homeofpdf.com

The	Murano	agent
The	Murano	agent	(murano-agent)	is	a	service	that	runs	inside	the	VMs	of	a
deployment.	It	does	the	software	configuration	and	installation	on	the	VMs.	VM
images	are	built	using	this	agent.

see more please visit: https://homeofpdf.com

The	Murano	dashboard
The	Murano	dashboard	provides	the	Web	UI	to	the	users	for	easy,	browsable
access	to	the	application	available	in	Murano.	It	supports	role-based	access
control	for	it	users:

see more please visit: https://homeofpdf.com

Walk-through
In	this	section,	we	will	do	a	walk-through	on	how	an	application	is	deployed	by
Murano.	Murano	interacts	with	multiple	OpenStack	services	for	resources
needed	for	application	deployment.

The	request	flow	for	deploying	an	application	in	Murano	is	as	follows:

1.	 The	user	sends	a	REST	API	call	to	the	murano-api	service	for	deploying	an
environment	via	a	CLI	or	Horizon	when	an	authentication	token	is	received
from	KeyStone

2.	 The	murano-api	service	receives	the	request	and	sends	the	request	for
validation	token	and	access	permission	to	KeyStone

3.	 KeyStone	validates	the	token	and	sends	updated	authentications	headers
with	roles	and	permissions

4.	 The	murano-api	service	checks	whether	the	session	is	valid	or	not.	If	the
session	is	not	valid	or	already	deployed,	the	request	fails	with	a	403	HTTP
status

5.	 A	check	is	done	to	check	if	the	environment	was	deleted	previously	or	not.
If	not	deleted,	an	entry	is	made	in	the	task	table	to	store	the	information	of
this	action

6.	 The	murano-api	service	sends	the	request	to	the	murano-engine	service	via	an
RPC	asynchronous	call	with	the	JSON	object	containing	class	types,
application	details,	and	the	user	data,	if	any

7.	 The	murano-engine	service	picks	the	request	from	the	message	queue
8.	 It	creates	a	KeyStone	trust,	which	is	to	be	used	with	the	application
9.	 It	downloads	the	needed	packages,	and	also	validates	if	the	required	class

are	available	and	accessible
10.	 The	murano-engine	service	then	creates	all	the	classes	defined	in	the	model

sent	to	it
11.	 Then	the	deploy	method	for	each	application	is	called.	In	this	stage,	murano-

engine	interacts	with	Heat	to	create	networks,	VMs,	and	other	resources
needed	for	the	application	to	run

12.	 After	the	instance	is	running,	a	userdata	script	is	run	to	install	and	run
murano-agent	on	the	VM

see more please visit: https://homeofpdf.com

13.	 The	murano-agent	service	does	the	software	configuration	and	installation
steps

	

14.	 After	the	installation	is	done,	murano-engine	sends	a	response	to	the	API
service	about	the	completion

15.	 The	murano-api	service	then	marks	the	environment	as	deployed	in	the
database

see more please visit: https://homeofpdf.com

Murano	DevStack	installation
We	will	now	see	how	to	install	a	development	setup	of	Murano	using	DevStack.

1.	 Create	a	root	directory	for	DevStack	if	needed:

								$	sudo	mkdir	-p	/opt/stack

								$	sudo	chown	$USER	/opt/stack		

2.	 Clone	DevStack	repository:

								$	git	clone	https://git.openstack.org/openstack-dev/devstack	

								/opt/stack/devstack

		

3.	 Now	create	a	minimal	local.conf	for	running	the	DevStack	setup:

								$	cat	>	/opt/stack/devstack/local.conf	<<	END

								[[local|localrc]]

								HOST_IP=$(ip	addr	|	grep	'state	UP'	-A2	|	tail	-n1	|	awk	'{print

								$2}'	|	cut	-f1		-d'/')

								DATABASE_PASSWORD=password

								RABBIT_PASSWORD=password

								SERVICE_TOKEN=password

								SERVICE_PASSWORD=password

								ADMIN_PASSWORD=password

								enable_plugin	murano	git://git.openstack.org/openstack/murano

								END	

4.	 Now	run	DevStack:

								$	cd	/opt/stack/devstack

								$./stack.sh		

Murano	should	be	installed	now.	To	verify	the	installation,	run	the	following:

$	sudo	systemctl	status	devstack@murano-*

		devstack@murano-engine.service	-	Devstack	devstack@murano-

engine.service

			Loaded:	loaded	(/etc/systemd/system/devstack@murano-

engine.service;	enabled;	vendor	preset:	enabled)

			Active:	active	(running)	since	Thu	2017-11-02	04:32:28	EDT;	2	

weeks	5	days	ago

	Main	PID:	30790	(murano-engine)

			CGroup:	/system.slice/system-devstack.slice/devstack@murano-

engine.service

											├─30790	/usr/bin/python	/usr/local/bin/murano-engine	--

config-file	/etc/murano/murano.conf

											├─31016	/usr/bin/python	/usr/local/bin/murano-engine	--

config-file	/etc/murano/murano.conf

see more please visit: https://homeofpdf.com

											├─31017	/usr/bin/python	/usr/local/bin/murano-engine	--

config-file	/etc/murano/murano.conf

											├─31018	/usr/bin/python	/usr/local/bin/murano-engine	--

config-file	/etc/murano/murano.conf

											└─31019	/usr/bin/python	/usr/local/bin/murano-engine	--

config-file	/etc/murano/murano.conf

		devstack@murano-api.service	-	Devstack	devstack@murano-api.service

			Loaded:	loaded	(/etc/systemd/system/devstack@murano-api.service;	

enabled;	vendor	preset:	enabled)

			Active:	active	(running)	since	Thu	2017-11-02	04:32:26	EDT;	2	

weeks	5	days	ago

	Main	PID:	30031	(uwsgi)

			Status:	"uWSGI	is	ready"

			CGroup:	/system.slice/system-devstack.slice/devstack@murano-

api.service

											├─30031	/usr/local/bin/uwsgi	--ini	/etc/murano/murano-api-

uwsgi.ini

											├─30034	/usr/local/bin/uwsgi	--ini	/etc/murano/murano-api-

uwsgi.ini

											└─30035	/usr/local/bin/uwsgi	--ini	/etc/murano/murano-api-

uwsgi.ini

You	can	see	that	both	the	murano-api	and	murano-engine	services	are	up	and	running.

see more please visit: https://homeofpdf.com

Deploying	a	containerized	application
In	the	previous	section,	you	learned	how	to	install	Murano	with	DevStack.	Now
we	will	see	how	to	use	Murano	in	order	to	install	an	application	on	OpenStack.
As	Murano	is	all	about	the	ease	that	it	provides	with	the	browsable,	dynamic	UI,
we	will	use	the	Application	Catalog	tab	in	Horizon	to	run	our	application.

We	will	install	an	NGINX	containerized	application	inside	Docker	in	this
example.	We	will	need	the	following	packages	for	running	this	application:

Docker	Interface	Library:	This	library	defines	a	framework	for	building
Docker	applications.	It	provides	the	data	structures	and	common	interfaces
used	by	all	the	applications	and	hosting	services	backed	by	Docker.
Docker	Standalone	Host:	This	is	a	regular	Docker	host	application.	All	the
container	applications	are	run	inside	a	dedicated	VM	running	image	built
with	Docker	and	murano-agent.
Kubernetes	Pod:	This	application	provides	an	infrastructure	for	running
containerized	applications	with	Kubernetes.	Kubernetes	is	installed	on
OpenStack	VMs.	This	is	optional	for	the	Docker	Standalone	Host
application.
Nginx	applications:	Nginx	is	a	web	server	application	that	will	be	run	using
either	Docker	Standalone	Host	or	Kubernetes	Pod	application.

All	the	container	applications	for	Murano	can	be	found	at	https://gith
ub.com/openstack/k8s-docker-suite-app-murano.

Now	let's	start	using	the	Murano	dashboard	to	run	our	container	application.	Log
in	to	your	Horizon	dashboard	by	entering	your	credentials:

1.	 Download	the	packages	from	https://github.com/openstack/k8s-docker-suite-app-murano
2.	 Create	a	.zip	archive	for	each	of	the	preceding	listed	applications
3.	 Now	navigate	to	App	Catalogue	|	Manage	|	Packages	on	the	dashboard
4.	 Click	on	Import	Package

Select	File	as	Package	Source,	and	browse	to	upload	the	ZIP	file	of	your

see more please visit: https://homeofpdf.com

https://github.com/openstack/k8s-docker-suite-app-murano
https://github.com/openstack/k8s-docker-suite-app-murano

application.	Fill	in	the	UI	form	with	necessary	details	for	each
application	and	click	on	Click	to	finish	uploading	a	package.	You	can
now	browse	the	available	application	by	navigating	to	App	Catalogue	|
Browse	|	Browse	Local.	You	will	see	a	page	like	this:

5.	 Build	the	VM	image	by	following	the	steps	provided	at	https://github.com/opensta
ck/k8s-docker-suite-app-murano/tree/master/DockerStandaloneHost/elements

6.	 Mark	the	image	to	be	used	by	Murano.	Navigate	to	App	Catalogue	|
Manage	|	Marked	Images,	click	on	Mark	Image,	and	fill	the	details	exactly
as	provided	in	the	following	screenshot:

see more please visit: https://homeofpdf.com

https://github.com/openstack/k8s-docker-suite-app-murano/tree/master/DockerStandaloneHost/elements

7.	 Deploy	an	application	by	clicking	on	Quick	Deploy

You	can	see	in	the	following	screenshot	that	we	are	given	two	options	to
choose	for	our	container	host:	Kubernetes	Pod	and	Docker	Standalone
Host.	We	will	choose	the	latter	one	as	the	option:

see more please visit: https://homeofpdf.com

8.	 Fill	in	the	details	for	the	VM	to	be	created	for	running	our	application,	as
shown	here:

see more please visit: https://homeofpdf.com

9.	 Click	on	Create	to	create	the	environment	for	our	deployment

You	will	be	automatically	redirected	to	the	newly	created	environment	in
App	Catalogue	|	Applications	|	Environment.

10.	 Click	on	Deploy	Environment	to	start	the	installation	of	your	application
and	the	necessary	infrastructure	required.

You	will	see	the	following	screenshot,	which	shows	that	it	started	creating	the
VM	on	which	Docker	will	run:

see more please visit: https://homeofpdf.com

Upon	the	successful	completion	of	the	preceding	deployment,	you	will	be	able	to
see	that	a	new	VM	will	be	created,	as	shown	in	the	following	screenshot,	and
your	Nginx	application	running	in	a	Docker	container	inside	the	VM:

see more please visit: https://homeofpdf.com

You	can	log	in	to	the	VM	and	access	the	Nginx	application.	We	have	now
successfully	installed	a	containerized	Nginx	application	on	OpenStack.

see more please visit: https://homeofpdf.com

Summary
In	this	chapter,	you	learned	about	Murano,	which	is	the	application	catalog
service	for	OpenStack,	in	detail.	We	looked	into	the	different	concepts	available
in	Murano.	Then,	you	also	learned	about	the	components	and	architecture	of
Murano.	The	chapter	also	gave	a	detailed	overview	of	the	workflow	of	a	user
request	for	deploying	an	application	with	Murano.	Then	we	saw	how	to	install	a
development	setup	of	Murano	using	DevStack,	and	we	did	a	hands-on	on	using
the	Murano	dashboard	to	create	an	environment,	add	applications	to	it,	and
deploy	the	environment.

In	the	next	chapter,	you	will	learn	about	Kolla,	which	provides	production	ready
containers	and	tools	for	deployment	of	the	OpenStack	services.

see more please visit: https://homeofpdf.com

Kolla	–	Containerized	Deployment	of
OpenStack
In	this	chapter,	you	will	learn	about	Kolla.	It	provides	production-ready
containers	and	deployment	tools	for	operating	OpenStack	cloud.	The	contents	of
this	chapter	are	as	follows:

Kolla	introduction
Key	features
Architecture
Deploying	containerized	OpenStack	services

see more please visit: https://homeofpdf.com

Kolla	introduction
The	OpenStack	cloud	consists	of	multiple	services,	and	each	service	interacts
with	other	services.	There	is	no	integrated	product	release	for	OpenStack.	Each
project	follows	a	release	cycle	after	every	6	months.	This	provides	a	greater
flexibility	for	operators	to	choose	from	multiple	options	and	builds	a	custom
deployment	solution	for	them.	However,	this	also	brings	a	complexity	of
deploying	and	managing	the	OpenStack	cloud.

There	is	need	for	these	services	to	be	scalable,	upgradable,	and	readily	available.
Kolla	provides	a	way	for	running	these	services	inside	containers,	and	this	adds
the	advantage	to	the	OpenStack	cloud	being	fast,	reliable,	scalable,	and
upgradeable.	Kolla	packs	the	OpenStack	services	and	their	requirements,	and
sets	up	all	the	configuration	in	the	container	images.

Kolla	uses	Ansible	to	run	these	container	images	and	deploy	or	upgrade
OpenStack	cluster	very	easily	on	bare	metal	or	VMs.	Kolla	containers	are
configured	to	store	the	data	on	persistent	storage,	which	can	then	be	mounted
back	onto	the	host	operating	system	and	restored	successfully	to	protect	against
any	faults.

In	order	to	deploy	OpenStack,	Kolla	has	three	projects	as	follows:

kolla:	All	the	Docker	container	images	for	OpenStack	projects	are
maintained	in	this	project.	Kolla	provides	an	image	building	tool	called
kolla-build	to	build	container	images	for	most	of	the	projects.
kolla-ansible:	This	provides	Ansible	playbooks	for	deploying	OpenStack
inside	Docker	containers.	It	supports	both	the	all-in-one	and	multi-node
setups	of	the	OpenStack	cloud.
kolla-kubernetes:	This	deploys	OpenStack	on	Kubernetes.	This	aims	to
leverage	the	self-healing,	health	checks,	upgrade,	and	other	capabilities	of
Kubernetes	for	managing	containerized	OpenStack	deployment.	kolla-
kubernetes	uses	Ansible	playbooks	and	the	Jinja2	template	to	generate
configuration	files	for	the	services.

see more please visit: https://homeofpdf.com

Key	features
In	this	section,	we	will	see	some	of	the	key	features	of	Kolla.

see more please visit: https://homeofpdf.com

Highly	available	deployment
The	OpenStack	ecosystem	consists	of	multiple	services	running	only	a	single
instance	of	them,	which	sometimes	becomes	the	single	point	of	failure	in	case	of
any	disaster,	and	it	can't	scale	beyond	a	single	instance.	To	make	it	scalable,
Kolla	deploys	the	OpenStack	cloud,	configured	with	HA.	So	even	if	any	service
fails,	it	can	scale	without	any	interruption	to	the	current	operations.	This	feature
makes	Kolla	an	ideal	solution	for	easy	upgrade	and	scale	without	any	downtime.

see more please visit: https://homeofpdf.com

Ceph	support
Kolla	uses	Ceph	to	add	persistent	data	to	the	VMs	running	our	OpenStack
environment,	so	that	we	can	easily	recover	from	any	disaster,	hence	making	the
OpenStack	cloud	more	reliable.	Ceph	is	also	used	for	storing	glance	images.

see more please visit: https://homeofpdf.com

Image	building
Kolla	provides	a	tool	called	kolla-build	to	build	container	images	on	multiple
distros	such	as	CentOs,	Ubuntu,	Debian,	and	Oracle	Linux.	Multiple	dependent
components	can	be	built	at	once.

see more please visit: https://homeofpdf.com

Docker	hub	support
You	can	pull	images	from	Docker	Hub	directly.	You	can	see	all	the	Kolla	images
at	https://hub.docker.com/u/kolla/.

see more please visit: https://homeofpdf.com

https://hub.docker.com/u/kolla/

Local	registry	support
Kolla	also	supports	pushing	images	to	the	local	registry.	Refer	to	https://docs.openstac
k.org/kolla-ansible/latest/user/multinode.html#deploy-a-registry	for	setting	a	local	registry.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/kolla-ansible/latest/user/multinode.html#deploy-a-registry

Multiple	build	sources
Kolla	supports	building	from	multiple	sources	binary	and	source.	The	binaries
are	the	packages	installed	by	the	package	manager	of	the	host	OS,	whereas	the
source	could	be	a	URL,	local	repository,	or	tarball.	Refer	to	https://docs.openstack.org/k
olla/latest/admin/image-building.html#build-openstack-from-source	for	more	details.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/kolla/latest/admin/image-building.html#build-openstack-from-source

Dockerfile	customization
Kolla	supports	building	images	from	Jinja2	templates,	which	provide	a	better
flexibility	for	customization	by	operators.	Operators	can	customize	their	image
building	to	include	additional	packages,	install	plugins,	change	some
configuration	settings,	and	so	on.	Refer	to	https://docs.openstack.org/kolla/latest/admin/image
-building.html#dockerfile-customisation	for	more	details	on	how	different	customizations
can	be	done.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/kolla/latest/admin/image-building.html#dockerfile-customisation

Architecture
In	this	section,	we	will	see	the	OpenStack	architecture	using	Kolla.	The
following	figure	shows	a	highly	available	(HA)	OpenStack	multimode	setup
done	by	Kolla.

The	infrastructure	engineering	here	means	the	code	or	application	written	for
infrastructure	management.	The	code	is	submitted	to	Gerrit	for	review	and	then
the	CI	system	reviews	and	checks	for	correctness	of	the	code.	Once	the	code	is
approved	by	CI,	the	CD	system	feeds	the	output	of	build,	that	is	the	OpenStack
containers	that	are	based	on	Kolla,	into	a	local	registry.

After	this,	the	Ansible	contacts	Docker	and	launches	our	OpenStack	multinode
environment	with	HA:

see more please visit: https://homeofpdf.com

Deploying	containerized	OpenStack
services
In	this	section,	we	will	understand	how	Kolla	deploys	containerized	OpenStack
using	kolla-ansible.	At	the	time	of	writing,	kolla-kubernetes	is	under
development.

Note	that	this	is	not	a	complete	guide	to	Kolla.

Kolla	is	evolving	now,	so	the	guide	is	upgraded	very	frequently.	Refer	to	the
latest	documentation	provided	at	https://docs.openstack.org/kolla-ansible/latest/.	We	will	try
to	explain	the	general	deploy	process	of	OpenStack	using	Kolla	and	the
subprojects.

Deploying	OpenStack	with	Kolla	is	pretty	easy.	Kolla	provides	both	all-in-one
and	multinode	installations	on	Docker	or	Kubernetes.	It	basically	involves	four
steps:

Setting	up	a	local	registry
Automatic	host	bootstrap
Building	images
Deploying	images

see more please visit: https://homeofpdf.com

https://docs.openstack.org/kolla-ansible/latest/

Setting	up	a	local	registry
A	local	registry	is	required	for	storing	the	container	images	built	by	Kolla.	It	is
optional	for	the	all-in-one	deployment,	the	Docker	cache	can	be	used	instead.
Docker	Hub	contains	all	the	images	for	all	major	releases	of	Kolla.	However,	it
is	strongly	recommended	for	the	multinode	deployment	to	ensure	a	single	source
of	images.	It	is	also	recommended	that	you	run	the	registry	over	HTTPS	to
secure	the	images	in	the	production	environment.

Refer	to	the	guide	at	https://docs.openstack.org/kolla-ansible/latest/user/multinode.
html#deploy-a-registry	for	detailed	steps	for	setting	up	a	local	registry.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/kolla-ansible/latest/user/multinode.html#deploy-a-registry

Automatic	host	bootstrap
Kolla	installation	requires	some	packages	and	tools,	such	as	Docker,	libvirt,	and
NTP,	to	be	installed	on	the	host	where	we	want	our	OpenStack	to	run.	These
dependencies	can	be	automatically	installed	and	configured	by	host	bootstrap.
kolla-ansible	provides	the	bootstrap-servers	playbook	for	preparing	and
installing	the	hosts	for	OpenStack	installation.

To	quickly	prepare	the	host,	run	this	command:

$	kolla-ansible	-i	<inventory_file>	bootstrap-servers		

see more please visit: https://homeofpdf.com

Building	images
In	this	step,	we	will	build	the	Docker	container	images	for	all	OpenStack
services.	We	can	specify	the	base	distro	for	our	images,	sources,	and	tags	while
building	the	images.	The	images	are	pushed	to	local	registry.

Building	images	in	Kolla	is	as	simple	as	running	this	command:

$	kolla-build		

This	command	by	default	builds	all	the	images	based	on	CentOS.	To	build
images	with	a	specific	distro,	use	the	-b	option:

$	kolla-build	-b	ubuntu		

To	build	images	for	a	specific	project,	pass	the	name	of	the	project	to	the
command:

$	kolla-build	nova	zun		

One	advanced	feature	in	Kolla	is	the	image	profiles.	Profiles	are	used	to	define	a
set	of	related	projects	in	OpenStack.	Some	of	the	defined	profiles	in	Kolla	are	as
follows:

infra:	All	infra-related	projects
main:	These	are	the	OpenStack	core	projects	such	as	Nova,	Neutron,
KeyStone,	and	Horizon
aux:	These	are	the	additional	projects	such	as	Zun	and	Ironic
default:	These	are	a	set	of	minimum	projects	required	for	a	ready	cloud

New	profiles	can	be	defined	in	the	kolla-build.conf	object	as	well.	To	do	this,	just
add	a	new	profile	under	the	[profile]	section	in	the	.conf	file:

[profiles]

containers=zun,magnum,heat		

In	the	preceding	example,	we	set	a	new	profile	called	containers	to	represent	a
group	of	projects	related	to	containerization	in	OpenStack.	The	heat	project	is
also	mentioned	and	used	because	it	is	required	by	magnum.	Also,	you	can	use	this

see more please visit: https://homeofpdf.com

profile	to	create	images	for	these	projects:

$	kolla-build	-profile	containers		

Images	can	also	be	pushed	to	Docker	Hub	or	to	the	local	registry	using	these
commands:

$	kolla-build	-push	#	push	to	Docker	Hub

$	kolla-build	-registry	<URL>	--push	#	push	to	local	registry		

Kolla	also	provides	more	advanced	operations	such	as	building
image	from	source	and	Docker	file	customization.	You	can	refer	to	
https://docs.openstack.org/kolla/latest/admin/image-building.html	for	more	details.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/kolla/latest/admin/image-building.html
https://docs.openstack.org/kolla/latest/admin/image-building.html

Deploying	images
Now	we	have	all	the	images	required	for	OpenStack	deployment;	kolla-ansible
contacts	Docker	and	provides	these	images	for	running	them.	The	deployment
can	be	all-in-one	or	mutlinode.	The	decision	is	made	on	the	Ansible	inventory
files	available	in	kolla-ansible.	This	inventory	file	contains	the	information	about
the	infrastructure	hosts	in	the	cluster.	The	deploy	process	in	Kolla	takes	the
environment	variables	and	passwords	specified	in	the	configuration	files	and	an
inventory	file	to	provision	the	highly	available	OpenStack	cluster.

All	the	configuration	options	and	passwords	used	for	OpenStack	deployment	are
stored	in	/etc/kolla/globals.yml	and	/etc/kolla/passwords.yml,	respectively.	Edit	these
files	manually	to	specify	your	choice	of	installation,	as	shown	here:

kolla_base_distro:	"centos"

kolla_install_type:	"source"		

You	can	generate	a	password	with	this	command:

$	kolla-genpwd		

You	can	run	prechecks	on	the	deployment	targets	nodes	to	check	whether	they	are
in	the	state	or	not:

$	kolla-ansible	prechecks	-i	<inventory-file>		

Now	we	are	ready	to	deploy	OpenStack.	Run	the	following	command:

$	kolla-ansible	deploy	-i	<inventory-file>		

To	verify	the	installation,	see	the	containers	list	in	docker:

$	docker	ps	-a		

You	should	see	all	the	OpenStack	service	containers	running.	Now	let's	generate
the	admin-openrc.sh	file	to	use	our	OpenStack	cluster.	The	generated	file	will	be
stored	in	the	/etc/kolla	directory:

$	kolla-ansible	post-deploy		

see more please visit: https://homeofpdf.com

Now	install	python-openstackclient:

$	pip	install	python-openstackclient		

To	initialize	the	neutron	networks	and	glance	image,	run	this	command:

$.	/etc/kolla/admin-openrc.sh

#On	centOS

$	/usr/share/kolla-ansible/init-runonce

#ubuntu

$	/usr/local/share/kolla-ansible/init-runonce		

After	the	successful	deployment	of	OpenStack,	you	can	access	the	Horizon
dashboard.	Horizon	will	be	available	at	the	IP	address	or	hostname	specified	in
kolla_external_fqdn,	or	kolla_internal_fqdn.	If	these	variables	were	not	set	during
deployment,	they	default	to	kolla_internal_vip_address.

Refer	to	https://docs.openstack.org/project-deploy-guide/kolla-ansible/latest/multinode.
html	for	detailed	steps	of	deploying	a	multi-node	OpenStack	cloud
using	kolla-ansible	and	https://docs.openstack.org/kolla-kubernetes/latest/deploy
ment-guide.html	using	kolla-kubernetes.

see more please visit: https://homeofpdf.com

https://docs.openstack.org/project-deploy-guide/kolla-ansible/latest/multinode.html
https://docs.openstack.org/kolla-kubernetes/latest/deployment-guide.html

Summary
In	this	chapter,	you	learned	about	Kolla,	which	deploys	a	containerized
OpenStack	cloud.	We	looked	at	various	projects	available	in	Kolla	and	learned
what	they	do	in	general.	Then	we	looked	into	some	of	the	key	features	of	Kolla
and	discussed	the	Kolla	architecture	for	OpenStack	deployment.	You	also
learned	how	to	build	images	with	Kolla	and	finally	understand	the	deployment
process	of	Kolla.

In	the	next	chapter,	we	will	look	at	the	best	practices	for	securing	your
containers	and	also	the	advantages	of	using	different	OpenStack	projects.

see more please visit: https://homeofpdf.com

Best	Practices	for	Containers	and
OpenStack
In	this	chapter,	we	will	focus	on	the	advantages	of	running	your	containers	on
OpenStack	and	best	practices	for	deploying	and	securing	your	containers	on
OpenStack.	Specifically,	we	will	look	at	the	following	topics:

The	advantages	of	different	OpenStack	projects
Best	practices	for	securing	and	deploying	containers

see more please visit: https://homeofpdf.com

The	advantages	of	different
OpenStack	projects
OpenStack	provides	the	resources	and	services	that	container	platforms	and
applications	can	use.	It	provides	standards	for	building	scalable	clouds.	It	also
provides	shared	networking,	storage,	and	many	other	advanced	services.	It	has
programmable	APIs,	which	can	be	used	to	create	the	infrastructure	on	demand.
Users	can	use	different	OpenStack	services	for	their	container-related	workloads.

Users	can	use	Magnum	to	provision	and	manage	their	COEs.	Magnum	provides
the	multitenant	capability,	which	means	that	one	COE	cluster	belongs	to	only
one	tenant.	This	enables	container	isolation,	and	containers	belonging	to
different	tenants	are	not	scheduled	on	the	same	hosts.	Magnum	has	built-in
support	for	Kubernetes,	Swarm,	and	Mesos.	Magnum	also	provides	TLS	support
to	secure	communication	between	the	services	of	a	cluster	and	the	outside	world.

Users	can	use	Zun	to	deploy	their	container	workloads	directly	to	OpenStack
without	using	COEs.	Zun	provides	full	container	life	cycle	management	support.
It	also	provides	Docker	networking	support	via	Kuryr.	This	means	that	users	can
use	Neutron	networking	for	their	container	and	virtual	machine	workloads,	and
access	each	other	from	inside	them.	Zun	also	provides	OpenStack	Cinder
support	for	persistent	storage	in	containers.	Zun	has	built-in	multitenant
capabilities	and	authentication	support	using	KeyStone.

OpenStack	Kolla	provides	support	to	deploy	OpenStack	services	insides
containers.	It	results	in	new,	fast,	reliable,	and	composable	building	blocks.
Kolla	simplifies	deployment	and	ongoing	operations	by	packaging	each	service,
for	the	most	part,	as	a	microservice	in	a	Docker	container.	Users	can	use	Kolla	to
deploy	OpenStack	services	in	Docker	containers	or	Kubernetes	pods.

For	deploying	their	containerized	application	on	OpenStack,	users	can	use
Murano.	Murano	will	create	the	infrastructure	for	deployment	and	deploy	the
containerized	applications	on	them.

see more please visit: https://homeofpdf.com

Best	practices	for	securing	and
deploying	containers
Containers	are	replacing	virtual	machines	for	running	most	of	the	enterprise
software	due	to	their	modularity	and	portability	between	servers.	However,	there
are	some	risks	associated	with	containers.	One	obvious	risk	is	related	to
distributing	containers	by	cloning	them	as	images.	If	there	is	any	unpatched
vulnerability	in	a	base	image,	all	clones	and	applications	inheriting	from	the	base
image	will	suffer	too.

The	second	and	major	risk	is	the	default	user	of	the	container	systems,	that	is,
the	root	user.	If	an	attacker	gains	access	to	a	root	user,	which	allows	an	escape
from	the	container,	he	can	get	access	to	not	only	inside	the	other	containers,	but
also	to	the	root	privileges	in	the	host	operating	system.	And	it	can	be
devastating!

Here	are	some	best	practices	for	securing	and	deploying	containers:

Users	should	always	use	a	lightweight	Linux	operating	system.	A
lightweight	operating	system,	reduces	the	chances	of	attack.	It	also	makes
applying	the	updates	a	lot	easier.
Users	should	keep	all	container	images	updated.	Keeping	all	images
updated	ensures	that	they	are	free	from	the	latest	vulnerabilities.	Always
keep	your	images	in	centralized	repositories	by	versioning	and	tagging
them.
Users	should	automate	all	security	updates.	This	ensures	that	patches	are
applied	quickly	to	your	infrastructure.
Users	should	always	scan	their	container	images	for	potential	defects.	There
are	many	scanning	tools,	such	as	Clair	by	CoreOS,	Dockscan,	and
Twistlock,	which	compare	container	manifests	with	lists	of	known
vulnerabilities	and	alert	you	when	they	detect	any	vulnerability.
Users	should	not	run	extraneous	network-facing	services	in	containers.
Users	should	avoid	mounting	a	host	directory	inside	containers,	because	it
may	give	access	to	some	sensitive	data	on	hosts	inside	containers.

see more please visit: https://homeofpdf.com

Users	should	always	define	restrictions	on	the	resource	consumption	of
containers.	It	will	help	to	avoid	the	consumption	of	all	the	resources	on	the
host	and	starving	other	containers.
Users	should	secure	their	Docker	hosts,	and	they	should	not	provide
sensitive	information	such	as	the	root	user's	credentials	to	other	users.
Users	should	run	their	Docker	registry	using	TLS.	Only	valid	users	should
be	able	to	pull	and	push	images	to	the	registry.
Users	should	always	monitor	the	container	behaviors	for	anomalies.
Users	can	use	clear	containers	or	open	source	Hyper	for	more	security
because	they	provide	more	isolation.

see more please visit: https://homeofpdf.com

Summary
Throughout	this	book,	we	came	across	several	container-related	projects	in
OpenStack	and	their	key	features.	In	this	chapter,	we	summarized	the	advantages
of	all	the	projects	explained	in	the	book	for	running	your	container	workloads.
We	also	explained	different	security	issues	in	containers	and	best	practices	to
resolve	them.

see more please visit: https://homeofpdf.com

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Working with Containers
	The historical context of virtualization
	Introduction to containers
	Container components
	Types of containers
	Machine containers
	Application containers

	Types of container runtime tools
	Docker
	Rocket
	LXD
	OpenVZ
	Windows Server containers
	Hyper-V containers
	Clear container

	Installation of Docker
	Docker hands-on
	Working with Docker images
	Listing images
	Getting new images
	Searching Docker images
	Deleting images

	Working with Docker containers
	Creating containers
	Listing containers
	Checking container's logs
	Starting containers
	Deleting containers

	Summary

	Working with Container Orchestration Engines
	Introduction to COE
	Docker Swarm
	Docker Swarm components
	Node
	Manager node
	Worker node

	Tasks
	Services
	Discovery service
	Scheduler

	Swarm mode

	Apache Mesos
	Apache Mesos and its components
	Master
	Slaves
	Frameworks
	Offer
	Tasks
	Zookeeper

	Kubernetes
	Kubernetes architecture
	External request
	Master node
	kube-apiserver
	etcd
	kube-controller-manager
	kube-scheduler

	Worker nodes
	kubelet
	kube-proxy
	Container runtime
	supervisord
	fluentd

	Concepts in Kubernetes
	Pod
	Replica sets and replication controllers
	Deployments
	Secrets
	Labels and selectors
	Services
	Volumes

	Kubernetes installation
	Kubernetes hands-on
	Summary

	OpenStack Architecture
	Introduction to OpenStack
	OpenStack architecture
	Introduction to KeyStone, the OpenStack identity service
	Introduction to Nova, the OpenStack compute service
	Introduction to Neutron, the OpenStack network service
	Introduction to Cinder, the OpenStack block storage service
	Introduction to Glance, the OpenStack image service
	Introduction to Swift, the OpenStack object store
	DevStack installation
	Creating a KeyStone user
	Assign role to the user
	Creating a VM using Nova
	Attach volume to VM
	Uploading an image to Swift

	Summary

	Containerization in OpenStack
	The need for containers in OpenStack
	Efforts within the OpenStack community to support containers
	Nova
	Heat
	Magnum
	Zun
	Kuryr
	Kolla
	Murano
	Fuxi
	OpenStack-Helm

	Summary

	Magnum – COE Management in OpenStack
	Magnum introduction
	Concepts
	Cluster template
	Cluster
	Cluster driver
	Heat Stack Template
	Template definition
	Certificate
	Service
	Stats
	Quotas

	Key features
	External load balancer for Kubernetes
	Transport Layer Security
	Scaling
	Storage
	Ephemeral storage
	Persistent storage

	Notifications
	Container monitoring

	Components
	Magnum API
	Magnum conductor

	Walk-through
	Magnum DevStack installation
	Managing COEs
	Summary

	Zun – Container Management in OpenStack
	Introduction to Zun
	Concepts
	Containers
	Images
	Services
	Hosts
	Capsules
	Container drivers
	Image drivers
	Network drivers

	Key features
	Cinder integration
	Container composition
	Kuryr networking
	Container sandbox
	CPU sets

	Components
	zun-api
	Zun scheduler
	zun-compute
	Zun WebSocket proxy

	Walk-through
	Zun DevStack installation
	Managing containers
	Summary

	Kuryr – Container Plugin for OpenStack Networking
	Introducing Kuryr
	Kuryr architecture
	Mapping the Docker libnetwork to the neutron API
	Providing the generic VIF-Binding infrastructure
	Providing containerized images of neutron plugins
	Nesting VMs and Magnum use cases

	Installation of Kuryr
	Walk-through
	Summary

	Murano – Containerized Application Deployment on OpenStack
	Introduction to Murano
	Murano concepts
	Environment
	Package
	Session
	The environment template

	Deployments
	Bundle
	Categories

	Key features
	Production-ready applications
	Application catalog UI
	Distributing workloads
	Application development
	Murano repository
	Cinder volumes
	Barbican support
	HOT packages

	Murano components
	The Murano API
	The Murano engine
	The Murano agent
	The Murano dashboard

	Walk-through
	Murano DevStack installation
	Deploying a containerized application
	Summary

	Kolla – Containerized Deployment of OpenStack
	Kolla introduction
	Key features
	Highly available deployment
	Ceph support
	Image building
	Docker hub support
	Local registry support
	Multiple build sources
	Dockerfile customization

	Architecture
	Deploying containerized OpenStack services
	Setting up a local registry
	Automatic host bootstrap
	Building images
	Deploying images

	Summary

	Best Practices for Containers and OpenStack
	The advantages of different OpenStack projects
	Best practices for securing and deploying containers
	Summary

